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Abstract

This thesis reviews the affine term structure model class as proposed by Duffie and Kan (1996). Since

prior research is scarce on evaluating data including the zero-lower bound, I contribute by investigating

a recent U.S. Treasury data set. I estimate one-, two-, and three-factor Vasicek (1977) and Cox et al.

(1985) models using the Kalman filter approach of De Jong (2000) in an empirical study while including

the zero-lower bound. I also perform a simulation study for the three-factor models under a zero-lower

bound environment by lowering the short rate and the volatility. I provide evidence that the three-factor

Vasicek (1977) model obtains the best fit and captures the stylized facts whereas the Cox et al. (1985)

only captures the yield curve’s level and slope. This evidence is less apparent on data including the

zero-lower bound. In the simulation study, the Cox et al. (1985) model is more accurate than the Vasicek

(1977) model on CIR data whereas the performance is close on Vasicek data.

1The content of this thesis is the sole responsibility of the author and does not reflect the view of either Erasmus School
of Economics or Erasmus University.
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1 Introduction

Affine Term Structure Models (ATSMs) are valuable to policy makers, practitioners and the academic

community for investigating bond prices, monetary policy, and the macroeconomic elements determining

discount rates (Piazzesi (2010), Gurkaynak and Wright (2012), Duffee (2013), Diebold and Rudebusch

(2013)). Today, these ATSMs might be even more valuable in times of historically low yields and an

emerging zero-lower bound (Hamilton and Wu (2012a), Krippner (2013a), Wu and Xia (2016), Bauer and

Rudebusch (2016)). Friedman (1977) originally noticed that researchers of statistical functions should

investigate the modelling of the whole term structure of yields by using a few parameters, resulting into

two traditional approaches in the literature. The first deals with Gaussian factors such as the Vasicek

(1977) approach, whereas the second deals with non-Gaussian factors as in the Cox, Ingersoll and Ross

(1985) approach. Some years later, Duffie and Kan (1996) generalized both in the class of ATSMs.

More recently, the literature has focused primarily on Gaussian term structure models (Christensen

et al. (2011), Joslin et al. (2011), Hamilton and Wu (2012b), Adrian et al. (2013), de Los Rios (2015))

whereas the developments of non-Gaussian estimation methods are limited. However, there are some novel

non-Gaussian developments (De Jong (2000), Ait-Sahalia and Kimmel (2010), Creal and Wu (2015)). For

instance, De Jong (2000) applies a state-space framework and estimates ATSMs by using the Kalman filter

and quasi-maximum likelihood (QML) of which the estimation result is known to be inconsistent which

can be eliminated by several procedures as illustrated by Gallant and Tauchen (1996), Gourieroux et al.

(1993), Frachot et al. (1995), Dai and Singleton (2000), and Lamoureux and Witte (2002). However, the

bias in the QML estimates is very small as shown by De Jong (2000) who also argues that these procedures

are numerically exhaustive. Therefore, I implement the QML-Kalman filter approach of De Jong (2000).

In this thesis, I present a new perspective on the yield curve in two manners. First, I investigate the

impact of the zero-lower bound on the Gaussian model of Vasicek (1977) in comparison with the non-

Gaussian model of Cox et al. (1985) since non-Gaussian models are unable to handle negative interest

rates. Therefore, I assess the zero-lower bound’s impact on the estimation performance of the n-factor

models of both Vasicek (1977) and Cox et al. (1985) by applying the Kalman filter approach of De Jong

(2000) in an empirical study, for n = 1, 2, 3. Second, I investigate the accuracy of both three-factor

models in an extensive simulation study while replicating a zero-lower bound environment.

To examine the impact of the zero-lower bound, defined by historically low yields and low volatility,

I equally divide the data set into a period excluding and a period including the zero-lower bound respec-

tively spanning from January 1982 until May 2000 and from June 2000 until October 2018. The data

set contains monthly observations on Treasury yields with maturities of (3,12,60,120) months. I assess

which factor model obtains the best fit and whether the factors represent the level, slope and curvature

factor in each period. In addition, using the obtained empirical parameter values, I simulate data from

the three-factor models to replicate a zero-lower bound (regular) environment by decreasing (increasing)

the long-term short rate and variance parameters. Subsequently, I perform an ordinary simulation where

I estimate the Vasicek (1977) (Cox et al. (1985)) model on Vasicek (CIR) data, and a cross-simulation

study where I estimate the Vasicek (1977) model on CIR data and reversed.
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To the best of my knowledge, an extensive empirical study by applying the Kalman filter approach of

De Jong (2000) has not been performed on the n-factor model of Vasicek (1977) and of Cox et al. (1985),

while incorporating the zero-lower bound, for n = 1, 2, 3. Since De Jong (2000) examined the time-period

from 1970 until 1991, his data does not include the zero-lower bound in the U.S. which spans from 2008

until 2017. Hence, by examining a recent data set, I add an interesting dimension which encompasses the

main contribution of this thesis: the impact of the zero-lower bound. In addition, I contribute to prior

research by examining the estimation performance of the three-factor models in both an ordinary and a

cross-simulation study where I replicate a controlled zero-lower bound and a regular environment.

In the ordinary simulation study, I find that the three-factor Cox et al. (1985) model appears to be

more accurate and less variable for most of the parameters than the Vasicek (1977) model which has

problems estimating its mean-reversion and variance parameters. Nevertheless, the bias on the average

short rate is somewhat smaller for the Vasicek (1977) model. The parameter standard deviations in the

Vasicek (1977) case appear somewhat larger under the zero-lower bound period, which is reversed in the

Cox et al. (1985) case. In the cross-simulation study, I find that the Cox et al. (1985) model appears to

be more accurate and less variable for all parameters than the Vasicek (1977) model on CIR data whereas

the estimation estimation results are close when estimating on Vasicek data.

In the empirical study, I find that the three-factor models are better specified than the one- and

two-factor models in both the period excluding and including the zero-lower bound. The third factor

enhances the fit of the average term structure considerably for the excluding zero-lower bound period

where the steepness in the middle appears to be only completely seized by the Vasicek (1977) model

which has a relatively tiny RMSE that is considerably larger in the other period. The serial correlation

is close to zero for both models in the period excluding, while it is considerably higher in the period

including the zero-lower bound. Consequently, the Vasicek (1977) three-factor model appears to be the

better specified in both periods, although substantially less in the including zero-lower bound period.

Moreover, I find that the first factor describes the level of the yield curve for each model in both

periods. The second factor enjoys substantial support as the yield curve’s slope for all models in both

periods except for the two-factor Cox et al. (1985) model in the including zero-lower bound period. In

the Vasicek (1977) case, the third factor has the interpretation as the (reversed) curvature factor. In the

Cox et al. (1985) case, the third factor’s interpretation as the curvature factor appears relatively little

given the tiny correlation between the third factor and its proxy. For both models, the correlation is

substantially lower in the period including the zero-lower bound for the first and third factor.

The outline of the remaining parts of this thesis is as follows: section 2 provides an overview of the

developments on Gaussian, non-Gaussian, and zero-lower bound estimation methods and models. Section

3 presents a discussion on the theory of ATSMs, the empirical implementation of ATSMs using a state-

space model along with the Kalman filter, and a brief description of the Vasicek (1977) as well as the Cox

et al. (1985) specification. Section 4 provides the ordinary and cross-simulation study including a detailed

description of the setup. Section 5 presents an extensive empirical study on the n-factor Vasicek (1977)

and the Cox et al. (1985) models’ performance when subject to the zero-lower bound, for n = 1, 2, 3.

Section 6 provides a conclusion and discussion.
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2 Related Literature

As described shortly in the introduction, Friedman (1977) suggested the innovative notion that researchers

of statistical demand functions should investigate the modelling of the whole term structure of yields by

using just a few parameters. With this notion, Friedman (1977) lay the groundwork for the extensive

literature on term structure models. In the classical version of these models characterizing the yield

curve, one or more factors move the short rate and the whole yield curve through no-arbitrage. Three

factors are often incorporated in order to seize the level, slope and curvature, i.e. the stylized facts, of

the yield curve. Consequently, two traditional approaches emerged in the literature.

The first approach handles Gaussian factors as in the Vasicek (1977) approach. The Vasicek model

follows an Ornstein-Uhlenbeck stochastic process, i.e. a stationary Gauss-Markov process, which implies it

is a Gaussian process where the random variables follow a multivariate normal distribution. Furthermore,

the volatility is assumed to be constant in the Vasicek approach. The second approach handles non-

Gaussian factors as in the Cox, Ingersoll and Ross (1985) approach, often denoted by the CIR approach.

The mutually independent factors in the CIR approach do not follow a normal distribution and are

therefore considered to be non-Gaussian. Moreover, the CIR approach relies on a square root volatility

framework instead of a constant volatility framework as in the Vasicek approach. This difference between

the short rate processes of the Vasicek and CIR approach is explained in more detail in section 3.

Duffie and Kan (1996) made a generalization of the Vasicek (1977) and Cox et al. (1985) approach by

developing the affine term structure model (ATSM) approach. In this affine class approach, the factors

contain an affine volatility framework that consists of a generalized version of the square-root volatility

framework of the CIR approach. Duffie and Kan (1996) allow on top of that for correlation of the

factors in their affine class. The affine term-structure model is highly docile since yields are affine factor

alterations. Apart from the Vasicek and CIR case, Duffie and Kan (1996) present a brief overview on

other special cases of their affine model which includes the model of Langetieg (1980), El Karoui and

Rochet (1989), Jamshidian (1989), Jamshidian (1991), Pennacchi (1991), Chen and Scott (1992), Heston

(1991), Jamshidian (1992), Longstaff and Schwartz (1992) and Chen (1993).

This generalization of Duffie and Kan (1996) lay the basis for the estimation of ATSMs on which

there is a consensus in the literature that it can be challenging (Duffee (2002), Ang and Piazzesi (2003),

Kim and Orphanides (2005)). For instance, a standard ATSM generates poor predictions of future yields

according to Duffee (2002), in comparison with assuming that yields reflect random walks. Duffee argues

that the lack of success of the ATSM is due to the feature that the risk premium is defined as the multiple

of the risk-variance. Furthermore, Ang and Piazzesi (2003) incorporate macroeconomic elements as well as

traditional unobserved factors in their ATSMs. They find that models which incorporate macroeconomic

elements obtain a better forecasting performance than traditional ATSMs which contain solely unobserved

factors. Moreover, Kim and Orphanides (2005) argue that estimating dynamic no-arbitrage ATSMs on a

small sample including an adaptable market price of risk results into difficulty because of the substantially

resolute character of interest rates. To surmount the problem, they apply survey predictions of a yield

with a short maturity as a supplementary variable for estimating ATSMs.
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Although estimating ATSMs appears to be challenging, the scientific community made substantial

improvements in estimating Gaussian ATSMs (Christensen et al. (2011), Joslin et al. (2011), Hamilton and

Wu (2012b), Adrian et al. (2013), de Los Rios (2015)). For example, the novel canonical Gaussian dynamic

term structure model (DTSM) results from the research of Joslin et al. (2011) which includes observable

portfolios of interest rates in the role of pricing factors. They find that predictions of the pricing factors

remain invariant to imposing arbitrage-free conditions even when there are several constraints imposed

on the factor process of bond yields. They also claim that regular maximum likelihood algorithms reach

the optimal global solution immediately for their normalization.

Instead of constructing DTSMs that include observable portfolios of interest rates, Christensen et al.

(2011) devise an approach based on no-arbitrage affine DTSMs which comes close to the popular Siegel

and Nelson (1988) term structure representation. These models are associated with a canonical no-

arbitrage ATSM specification with three factors. They find that enforcing the Siegel and Nelson (1988)

framework on this canonical specification substantially enhances its empirical tractability. Besides, they

find that imposing no-arbitrage conditions substantially improves predictive performance.

With respect to estimating ATSMs, Hamilton and Wu (2012b) suggest to reconsider maximum likeli-

hood estimation and instead use minimum-chi-square estimation. Since maximum likelihood estimation

is asymptotically identical to minimum-chi-square estimation, they claim that it is interesting to use

minimum-chi-square estimation by providing evidence that it is easier to compute than maximum like-

lihood estimation. Under some conditions, Hamilton and Wu (2012b) state that researchers are able to

compute small-sample standard errors with minimum-chi-square estimation and to infer with certainty

whether a certain estimate illustrates a global optimal solution of the likelihood function.

Adrian et al. (2013) suggest a different approach and use ordinary least squares regressions to price

yield curve elements in a cross-sectional as well as a time series manner. They claim that their approach

grants substantially rapid estimation of ATSMs accompanying a vast amount of pricing elements. Fur-

thermore, they argue that their approach produces a term structure of interest rates with limited pricing

errors in comparison with ordinarily disclosed specifications without enforcing cross-equation constraints

during estimation. Adrian et al. (2013) find this result for their approach both in- and out-of-sample.

Similar to Adrian et al. (2013), de Los Rios (2015) introduces a novel procedure to estimate Gaussian

DTSMs based on regressions. However, his novel estimation procedure relies instead on asymptotic least-

squares characterized by the arbitrage-free prerequisites inherent to Gaussian DTSMs and he presents an

empirical analysis on Canadian zero-coupon bonds. de Los Rios (2015) claims that his estimator maintains

its easy computation and remains asymptotically efficient under varying conditions where several newly

introduced procedures might be deprived of their tractability.

The above mentioned improvements of Christensen et al. (2011), Joslin et al. (2011), Hamilton and

Wu (2012b), Adrian et al. (2013), and de Los Rios (2015) allow for easier estimation of Gaussian term

structure models which resulted in an increased popularity of the implementation and research with

respect to estimation of Gaussian ATSMs. By contrast, the developments of estimation methods for

the non-Gaussian term structure models remain limited. However, there are some novel non-Gaussian

developments (Ait-Sahalia and Kimmel (2010), Creal and Wu (2015), De Jong (2000)).
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For instance, one of the earliest non-Gaussian estimation methods was proposed by De Jong (2000)

who presents an empirical study on the yield curve by applying the ATSM approach of Duffie and

Kan (1996). He computes the ATSMs in a theoretically correct manner through integrating the cross-

section and time series dimension appropriately. De Jong (2000) applies a state space framework and

estimates ATSMs by implementing a Kalman filter and quasi-maximum likelihood (QML) for which he

discretizes the continuous-time mechanism of the factors. In addition, he applies a broad framework for

measurement errors. De Jong (2000) consciously examines the empirical behavior of the n-factor ATSMs

where he evaluates the added value of every supplementary factor, for n = 1, 2, 3. Furthermore, De Jong

(2000) argues that incorporating a greater number of maturities than factors generally classifies every

parameter in the ATSM. He finds that a three-factor ATSM, where he approves for correlation among

the factors, captures a sufficiently well fit of the yield curve’s time series in addition to its cross-section

where the three factors deserve the interpretation of the level, slope, and curvature.

Instead of using QML like De Jong (2000), Ait-Sahalia and Kimmel (2010) develop another non-

Gaussian estimation method. They design and implement a procedure for closed-form maximum likeli-

hood estimation of multifactor ATSMs. They perform their procedure on nine Dai and Singleton (2000)

ATSMs which they estimate with distinct market price of risk specifications on U.S. treasury data and

show by performing a simulation study that their procedure precisely approximates true but improba-

ble maximum likelihood estimation. Ait-Sahalia and Kimmel (2010) conclude that estimation with real

and simulated data implies that their estimation procedure is substantially closer to the true maximum

likelihood estimate than Euler and QML.

Apart from the aforementioned methods, Creal and Wu (2015) devise a new non-Gaussian estima-

tion method to investigate spanned along with unspanned stochastic volatility models with three or four

factors. They optimize a concentrated likelihood constructed from linear regressions which increases the

speed of optimization significantly by lowering the dimension of the numerical optimization problem.

Nevertheless, it produces the equivalent estimator as maximizing the regular likelihood. Creal and Wu

(2015) state that their approach enhances the numerical behavior of estimation by removing parameters

from the objective function that create problems for traditional methods. As suggested by Collin-Dufresne

and Goldstein (2002), the closed-form log-likelihood function is not established for unspanned stochas-

tic volatility models. Therefore, Creal and Wu (2015) implement the expectation maximization (EM)

algorithm of Dempster et al. (1977). They observe that spanned stochastic volatility models produce

a sufficient fit of the cross-section of yields while causing a loss in capturing the volatility, whereas un-

spanned stochastic volatility models capture volatility while causing a loss in capturing the cross-section.

In recent years, the academic literature has its focus on evaluating the effect of fiscal stimulus programs

to increase spending and inflation during times in which the economy is subject to an interest rate climate

with a prominent existence of the zero-lower bound (Hamilton and Wu (2012a), Krippner (2013a), Bauer

and Rudebusch (2016), Wu and Xia (2016)). This research on evaluating fiscal stimulus programs in

times of historically low interest rates culminates in developments of so-called zero-lower bound models

to examine the effect and implications of the occurrence of the exceptional zero-lower bound phenomenon

(Krippner (2013b), Christensen and Rudebusch (2016)).
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For instance, Krippner (2013b) argues that if nominal yields come close to the zero-lower bound,

implementing the common approach of Gaussian ATSMs would be theoretically unsound due to their im-

plicit substantial probabilities of negative yields. Therefore, he introduces a docile alteration of Gaussian

ATSMs that imposes the zero-lower bound which comes close to the completely no-arbitrage, although

barely docile, structure as suggested by Black (1995). Krippner (2013b) implements his framework to U.S.

term structure data by using the iterated extended Kalman filter with robust estimation. He shows that

the results for a two-factor model are almost equivalent to the results from a similar Black (1995) model.

Moreover, using data sets containing longer maturities Krippner (2013b) illustrates that his zero-lower

bound framework allows for direct implementation under conditions where it would be computationally

troublesome or impossible to implement the Black (1995) framework by estimating Gaussian ATSMs

with two and with three factors.

Another development with respect to zero-lower bound models is the work of Christensen and Rude-

busch (2016) who implement a shadow-rate DTSM that considers the zero-lower bound. They compare

the shadow-rate DTSM’s performance with the regular affine Gaussian DTSM’s performance that does

not consider the zero-lower bound. Close to the zero-lower bound, they detect an evident decrease in

prediction accuracy of the regular Gaussian DTSM, whereas the shadow-rate DTSM predicts sufficiently.

Nevertheless, predictions on the premiums for ten year maturity yields are largely equal among the two

term structure models. At last, Christensen and Rudebusch (2016) do not discover an improvement in

the estimation on U.S. yields when incorporating a marginally positive lower bound.

All together, although zero-lower bound models are available in the literature, it is interesting to

investigate the performance of one of the first non-Gaussian estimation methods, i.e. the Kalman filter

approach of De Jong (2000), while subject to the zero-lower bound because research is quite scarce

involving non-Gaussian estimation methods in general, and especially when zooming in on the effect of

the zero-lower bound. To the best of my knowledge, an empirical study by applying the Kalman filter

approach of De Jong (2000) has not been performed on the n-factor models of Vasicek (1977) and Cox

et al. (1985), for n = 1, 2, 3 while incorporating the zero-lower bound.
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3 Models

This section provides the models and algorithms employed in this thesis. First, it provides an overview on

the approach of Affine Term Structure Models (ATSMs), in the spirit of Duffie and Kan (1996). Second,

it discusses the empirical application of the ATSM based on a state-space model. Then, it provides a

brief description on the Vasicek (1977) as well as the Cox et al. (1985) model. In addition, it presents

the Kalman filter, theory on quasi-maximum likelihood and the estimation methodology.

3.1 Affine Term Structure Models

In this subsection, I closely follow the terminology of Duffie and Kan (1996) who suggest that in term

structure models characterizing the yield curve, factor(s) move the short rate and the whole yield curve

by the no-arbitrage assumption. The zero-coupon bond price Pt(τ) for time t until maturity τ is obtained

by discounting its expected payment governed through “risk-neutral” measure Q by the short rate rs,

Pt(τ) = EQ
t

[
exp

(
−
∫ τ

t

rsds

)]
. (1)

Duffie and Kan (1996) introduce their ATSM approach where the short rate rt contains a constant

A0 as well as various latent factors Ft multiplied by a scale vector B0,

rt = A0 +B′0Ft, (2)

with Ft ∈ Rn. Duffie and Kan (1996) assume that the latent factors Ft pursue a diffusion mechanism

accompanying a framework for the affine volatility under the “real world” measure P,

dFt = Λ(Ft − µ)dt+ Σ


√
α1 + β′1FtdW1t

...√
αn + β′nFtdWnt

 , (3)

with Wit autonomous Wiener processes, Λ the mean-reversion matrix, µ the mean of the factors, Σ the

correlation matrix and α and β the variance parameters.

To price bonds Duffie and Kan (1996) require a stochastic factor mechanism under Q. Therefore, they

assume that factor j’s market price of risk ψj is reliant on a multiple of the volatility, ψj
√
αj + β′jFt. The

converted mechanism dW ∗jt ≡ dWjt + ψj
√
αj + β′jFtdt is due to this assumption a Wiener mechanism

governed by the identical martingale Q. Under Q, the stochastic factor mechanism reads,

dFt = Λ∗(Ft − µ∗)dt+ Σ


√
α1 + β′1FtdW

∗
1t

...√
αn + β′nFtdW

∗
nt

 , (4)

with the same definition for the parameters as in (3). Both the mean-reversion parameters and the
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risk-neutral intercept are connected with the real-world parameters via

Λ∗ = Λ− ΣΨB′ (5)

and

Λ∗µ∗ = Λµ+ ΣΨα′, (6)

where α = (α1, . . . , αn)′, B = (β1, . . . , βn), and Ψ = diag(ψ1, . . . , ψn).

Duffie and Kan (1996) exhibit in their ATSM approach that the zero-coupon bond price denoted by

Pt(τ) for time to maturity τ , consists of an exponential combination of the factors Ft,

Pt(τ) = exp[−A(τ)−B(τ)′Ft], (7)

with A(τ) the factor intercept and B(τ) the factor loadings. Thus, due to this relation the zero-coupon

bond yields Yt(τ) to maturity consist of a combination of the factors Ft. The time to maturity τ specifies

the factor loadings B′(τ)/τ and intercept A(τ)/τ in,

Yt(τ) ≡ −lnPt(τ)/τ = A(τ)/τ +B(τ)′/τ · Ft. (8)

These loadings A(τ) and B(τ) are in line with the regular differential equation structures,

dA(τ)

dτ
= A0 − (Λ∗µ∗)′B(τ)− 1

2

∑
i

∑
j

Bi(τ)Bj(τ)aij (9)

and
dB(τ)

dτ
= B0 − (Λ∗)′B(τ)− 1

2

∑
i

∑
j

Bi(τ)Bj(τ)bij , (10)

where the vectors bij and the scalars aij are constructed as aij + b′ijx ≡ [Σdiag(α+ B′x)Σ′]ij .

The class of ATSMs encompasses various popular models as special cases. For instance, the general-

ization of the Vasicek (1977) model to a multivariate version, i.e. the model of Langetieg (1980), arises

when B = 0. The generalization of the Cox et al. (1985) model arises when B is diagonal and α = 0.

This generalization ensures that every yield is positive. In an empirical setting, De Jong (2000) argues

that not every parameter of the ATSM can be classified and therefore some normalizations are inevitable.

The first classification problem involves the “intercepts” of the model. When A0 is a free parameter, the

variance intercept, α, and the average of the factors, µ, are not independently classified. As a result, in

line with De Jong (2000), I normalize µ = 0. Due to the normalization, A0 equals the average short rate

which is governed by the P measure, whereas α consists of the mean volatility for each factor.

For the next normalization, De Jong (2000) relies on Pang and Hodges (1996) who demonstrate that

the price of a bond remains constant when applying invertible factor alterations. This means that the

price of a bond remains constant when performing scale alterations of the factors. Therefore, I follow

De Jong (2000) and normalize B0 = ι which equates the instantaneous short rate with the total value

of the factor(s) and a constant (rt = A0 + ι′Ft), while maintaining generality. Another development of

8



the work of Pang and Hodges (1996) is that solely the product matrix K ≡ Σ−1ΛΣ can be classified.

Subsequently, De Jong (2000) assumes that Σ equals the identity matrix while maintaining generality.

However, he claims that in an empirical setting it is more convenient to normalize the diagonal elements

of Σ to be one and he parameterizes Λ = diag(−κ1, . . . ,−κn)′. Consequently, I follow this convention.

For every parametrization, the vector κ = (κ1, . . . , κn)′ comprises (minus) the mean-reversion eigenvalue

matrix which does not depend on the normalization and is continually classified.

At last, Duffie and Kan (1996)’s presence prerequisites in their ATSM approach, as reviewed by Dai

and Singleton (2000), enforce various complementary constraints concerning Σ and B. Following De Jong

(2000), I parametrize B′Σ = β̃, where β̃ is diagonal and consider (β̃11, . . . , β̃nn) to be free parameters.

The process below recaps the parametrization of the model which is similar to equations (2) and (3),

rt = A0 + ι′Ft (11)

and

dFt = ΛFtdt+ Σ


√
α1 + β̃11(Σ−1Ft)1dW1t

...√
α1 + β̃nn(Σ−1Ft)ndWnt

 , (12)

where Λ = diag(−κ1, . . . ,−κn). Every parameter in this process is classifiable, other than the diagonal

elements of Σ which are set to one. The market price of risk (ψ) classification, is reviewed below in 3.2.

3.2 Empirical Application Of The Affine Term Structure Model

De Jong (2000) argues that the most straightforward method of estimating a factor model is by picking

an equal amount of yields as the amount of distinct maturities. Then by inversion of the model, the

factors can be extracted. For a few models, the discrete transition density of the factors is recognized

such as for the multifactor Vasicek (1977) models. Multiplication of the Jacobian of the transformation

and the aforementioned discrete transition density results in the explicit likelihood function. Chen and

Scott (1992) and Pearson and Sun (1994) pursue the aforementioned procedure to analyze two-factor Cox

et al. (1985) models. However, the preference of maturities to compose the factors is quite subjective

while the results of the model are dependent on the preference. Alternatively, I closely follow De Jong

(2000) and my estimation depends on the state-space representation of the ATSM.

The non-Gaussian estimation method of De Jong (2000) that I examine is based on the Kalman Filter.

De Jong (2000) uses Quasi-Maximum Likelihood (QML) for estimating parameters via Kalman-filter

equations, modified from Hamilton (1995). He employs a state-space framework where he gathers both

the zero-coupon bond yields observed with error for time t with maturities τ1 to τk and the coefficients,

in matrix B and in the vectors yt and A, characterized as

yt ≡


Yt(τ1)

...

Yt(τk)

 , A ≡


A(τ1)/τ1

...

A(τk)/τk

 , B ≡


B′(τ1)/τ1

...

B′(τk)/τk

 . (13)
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The time period between two observations is denoted by h in the state-space representation of the

model,

yt = A+BFt + et, var (et) = H, (14)

Ft+h = ΦFt + vt+h, var (vt+h) = q (Ft). (15)

where (yt, A,B, Ft) are defined as before and Φ, et, vt are respectively the transition matrix and the

innovations of the equations. Equation (14) is called the measurement equation of which the coefficients

are dependent on the parameters under the risk-neutral distribution, (A0, µ
∗,Λ∗, α, β̃,Σ). These param-

eters rely on the underlying parameters (A0, κ, α, β̃,Σ, φ) via the two constraints stated in (5) and (6)

because of the representation of the model. Equation (15) renowned as the transition equation which

equates to the discretization of (3) where the normalization µ = 0 is enforced. In the transition equation,

the parameters adhere to the conditional factor mean and variance which are respectively denoted by

E[Ft+h|Ft] = ΦFt, and var(vt+h) = var(Ft+h|Ft) ≡ q(Ft).

The state-space model provides an understandable observation on the market prices of risk classifica-

tion. Governed by Q, the factor average (µ∗) obtains classification as the mean of the actual yield vector,

yt, granted there are for n factors at a minimum n+ 1 yields to maturity. For classification of the short

rate intercept, i.e. A0, an extra yield is required. Since I follow De Jong (2000) by restricting the average

of the factors governed by the measure P (µ) as being equal to zero, the parameters ψ are accurately

classified in constraint (6). This is in contradiction with Pearson and Sun (1994) and Dai and Singleton

(2000) who acquire classification for ψ via constraint (5) since they estimate n factor models based on n

yields to maturity. However, De Jong (2000) argues that this method solely provides classification when

the volatility relies upon the level of the factors.

The ATSM forecasts the accurate relation yt = A+BFt between the yields and the factors. However,

this exact relation is not gratified when incorporating a greater number of maturities than factors. Hence,

a type of estimation error must be implemented on which the theoretical ATSM unfortunately appears

quiet but various suggestions emerged from prior research. Chen and Scott (1992) use four maturities

to examine a two-factor ATSM where they assume that two interest rates are measured with no error

to perform inversion to extract the factors, whereas the estimation of the other interest rates involves a

normally distributed estimation error. Various papers assume an estimation error for all yields that has

no correlation on the cross-sectional and serial level (Jegadeesh and Pennacchi (1996), Geyer and Pichler

(1999), Duan and Simonato (1999)). Frachot et al. (1995) and Lund (1997) argue that the diagonal error

covariance matrix will be inappropriate when effected by linear alterations of the data. Therefore, both

papers suggest an ordinary, non-diagonal, cross-sectional error covariance matrix.

De Jong (2000) takes these notions into account and assumes the estimation errors to be on average

equal to zero and not serially correlated. Moreover, he allows for cross-sectional correlation through

constant covariance matrix H which he defines as LDL′ to assure that H is positive definite, with L

lower triangular where the diagonal components are set equal to one and D a diagonal eigenvalue matrix.

The definitions applied in prior research are less general than the definition of De Jong (2000) which

ensures that the estimated parameters remain constant despite alterations of the yield vector yt.
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3.3 The Gaussian Case: The Vasicek Model

The first approach deals with Gaussian factors such as the Vasicek (1977) approach where the model

follows the stochastic differential equation for the short rate rt with k mutually independent factors

dri,t = κi(θi − ri,t)dt+
√
α̃idWi,t, for i = 1, . . . , k (16)

where Wi,t is a Wiener process governed by Q, α̃i the constant variance parameter, θi the long term

average level of the yield, and κi the mean-reversion speed. This model follows an Ornstein-Uhlenbeck

stochastic process, i.e. a stationary Gauss-Markov process, which implies it is a Gaussian process where

the random variables follow a multivariate normal distribution.

In this subsection, I present the three-factor (k = 3) Vasicek (1977) model which can be easily

simplified to the one-dimensional and the two-dimensional case to obtain respectively the one-factor

(k = 1) and the two-factor (k = 2) ATSM. The term structure equals Pt(τ) = exp[−Ã(τ)−B(τ)rt], with

the definition of Duan and Simonato (1999) for intercept Ã(τ) and factor loading matrix B(τ), that is,

Ã(τ) = Ã1(τ) + Ã2(τ) + Ã3(τ), (17)

B(τ) = [B1(τ), B2(τ), B3(τ)], (18)

where the functions Ãi(τ) and Bi(τ) equal,

Ãi(τ) = Ri,∞(τ −Bi(τ)) +
α̃i
4κi

Bi(τ)2, (19)

Bi(τ) =
(1− e−κiτ)

κi
, (20)

with Ri,∞ ≡ θi − (ψiα̃i/κi)− (α̃i/2κ
2
i ) defined as the interest rate for bonds with infinite maturity.

The functional forms for transition matrix Φ and the variance of the measurement errors of the

transition equation Qt in the three-dimensional case are given by Duan and Simonato (1999), that is,

Φ =


e−κ1h 0 0

0 e−κ2h 0

0 0 e−κ3h

 (21)

and

Qt =


Q1,t 0 0

0 Q2,t 0

0 0 Q3,t,

 (22)

where

Qi,t =
α̃i
2κi

(1− e−2κih). (23)
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The parameters that I estimate are the long-term average short rate A0 (= θ), mean-reversion κ,

market price of risk ψ and variance parameter α̃. I assume that the factors are uncorrelated, i.e. Σ is the

identity matrix, to allow for a tractable analytic expression for the models.

3.4 The non-Gaussian Case: The CIR Model

The second approach deals is the Cox et al. (1985) approach which deals with non-Gaussian factors. Chen

and Scott (1992) made a multifactor Cox et al. (1985) representation where the short rate rt follows the

stochastic differential equation with k mutually independent factors,

dri,t = κi(θi − ri,t)dt+
√
βiri,tdWi,t, for i = 1, . . . , k (24)

where dWi,t are independent Wiener processes. The drift factor κi(θi − ri,t) is equal to the drift factor

in the Vasicek (1977) model which guarantees mean reversion of the yield by mean-reversion κi to the

long-term average level θi. The fluctuating variance parameter is βi. The factors in the CIR model do

not follow a normal distribution and are therefore considered to be non-Gaussian.

As in the previous subsection, I present the three-factor (k = 3) model, in this case the model of Cox

et al. (1985), which can be easily simplified to the one-dimensional and the two-dimensional case. The

term structure equals Pt(τ) = exp[−Ã(τ) − B(τ)rt], with the same definition for Ã(τ) and B(τ) as in

equations (17) and (18), respectively.

However, in the Cox et al. (1985) case the volatility fluctuates (α̃ = 0), whereas in the Vasicek (1977)

case the volatility is constant (β = 0). Therefore, the specification of the functions Ãi(τ) and Bi(τ)

differs in the Cox et al. (1985) case where Ãi(τ) as well as Bi(τ) are derived from a direct generalization

of the regular Cox et al. (1985) equations,

Ãi(τ) = −2φ̃i
βi

ln

(
2γie

[(κ∗
i +γi)/2]τ

(κ∗i + γi)(eγiτ − 1) + 2γi

)
, (25)

Bi(τ) =
2(eγiτ − 1)

(κ∗i + γi)(eγiτ − 1) + 2γi
, (26)

κ∗i = κi + ψiβi, φ̃i ≡ κi · θi γi ≡
√

(κ∗i )
2 + 2βi, (27)

as provided by Hull and White (1993) with κ∗ as the speed of mean-reversion governed by Q.

The specification for transition matrix Φ and the estimation error variance of the transition equation

Qt are the same as in equations (21) and (22). However, the specification of Qi,t is different and is defined

as,

Qi,t = ri,t
βi
κi

(e−κih − e−2κih) + θi
βi
2κi

(1− e−κih)2. (28)

The parameters that are estimated are the same as in the Vasicek (1977) case, except for the variance

parameter α̃ which is zero in the Cox et al. (1985) case. Instead, I estimate the fluctuating variance

parameter β. Similar to the Vasicek case, I assume that the factors are uncorrelated.
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3.5 The Kalman Filter And Quasi-Maximum Likelihood

Based on the state-space representation as presented in equations (14) and (15), the most suitable ap-

proach for estimating the parameters is quasi-maximum likelihood (QML) through the Kalman filter

as devised by Hamilton (1995). I closely follow the terminology of De Jong (2000) for the appropriate

Kalman filter equations in the ATSM. The primary prerequisites are the unconditional mean and uncon-

ditional variance, F̂0 = E(Ft) and P̂0 = var(Ft), respectively. Equation (16) shows the prediction step

where via the transition equation, as presented in (15), the factors Ft|t−h are predicted on the left and

the covariance matrix of the transition equation Pt|t−h is estimated in the equation on the right,

Ft|t−h = ΦF̂t−h and Pt|t−h = ΦP̂t−hΦ′ +Qt, (29)

with Φ the transition matrix, Qt the measurement-error matrix, and h the step size between observations.

By performing QML, the likelihood contributions per observation are summed up and maximized.

These (components of the) likelihood contributions are displayed in equation (30) where ut, Vt, and

−2lnLt, can be interpreted as the prediction error of the observation equation, the variance of the obser-

vation equation and an alteration of the standard likelihood, respectively,

ut = yt −A−BFt|t−h, Vt = BPt|t−hB
′ +H and − 2lnLt = ln|Vt|+ u′tV

−1
t ut, (30)

where (yt, A,B, Ft|t−h, Pt|t−h, H) are respectively the yield vector, factor intercept, factor loadings, pre-

dicted factors, predicted transition equation variance and the observation equation measurement-error

matrix. The Kalman filter as devised by Hamilton (1995) is a repetitive algorithm that updates the factor

predictions and the transition equation variance. The components of the updating step are,

Kt = Pt|t−hB
′V −1t , F̂t = Ft|t−h +Ktut and P̂t = (I −KtB)Pt|t−h, (31)

where Kt, F̂t, P̂t are respectively known as the Kalman gain, the updated factor and the updated variance

estimate. The identity matrix is denoted by I and the other parameters are the same as in (30).

The steps outlined above comprise the Kalman filter as used by De Jong (2000), which I apply to

acquire parameter estimates and maximize the likelihood function. However, to examine the contribution

of each additional factor of which more detailed explanations are provided in section 4.3, the Kalman

smoother is required. The Kalman smoother is just like the Kalman filter an iterative algorithm, but it

iterates backwards and provides smoothed predictions of the factors along with smoothed predictions of

the variance of the transition equation. The Kalman smoothing steps are,

F̂t−h|T = F̂t−h + P̂t−hΦ′P−1t|t−h(F̂t|T − F̂t|t−h), (32)

P̂t−h|T = P̂t−h − P̂t−hΦ′P−1t|t−h(Pt|t−h − Pt|T )P−1t|t−hΦP̂t−h. (33)

where F̂t−h|T and P̂t−h|T are the smoothed factor estimates and the smoothed transition equation vari-

ance, respectively. The other parameters are the same as in (29) and (31).
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I obtain asymptotic standard errors from the Fisher information matrix when assessed at the QML

estimates for parameter vector ν of the model. Because I minimize the negative log-likelihood -lnL, the

hessian matrix H(ν) at the maximum likelihood estimates

H(ν) =
δ2

δνiδνj
(-lnL), (34)

is identical to the Fisher information matrix. Hence, I determine for the optimal parameter vector

ν̂ML the covariance matrix by Var(ν̂ML) = [H(ν̂ML)]−1, and the estimated parameters are consequently

asymptotically normally distributed

ν̂ML
a∼N(ν0,Var(ν̂ML)), (35)

with the square root of the diagonal components of Var(ν̂ML) as standard errors.

If the factors and measurement errors adhere to normal distributions, De Jong (2000) argues that the

Kalman filter QML estimates are efficient as well as consistent. However, the distribution of the factors

in the case of many ATSMs does not adhere to the normal distribution. Nevertheless, De Jong (2000)

claims that the estimated parameter vector retrieved by the Kalman filter is probably consistent because

of the QML assumption, when the factor’s mean and variance are appropriately constructed. However,

there is a slight issue with the argument of De Jong (2000) that appears since the factor’s variance is

determined by prevailing values of the factors of which exact measurement is impossible since they are

underlying factors. Hence, the conditional variance employed in the likelihood contributions is imprecise.

Another issue is the undermining of the rules for the Kalman filter updating step. This issue arises since

the distribution of the factors in the case of many ATSMs does not adhere to the normal distribution.

Consequently, the QML parameter vector retrieved by the Kalman filter is inconsistent.

Therefore, to evaluate the bias in the Kalman filter QML estimator, De Jong (2000) implements a

modest Monte Carlo simulation analysis on the basis of which he concludes that the Kalman filter QML

estimator does not contain a systematic bias. He solely finds significant overestimation involving speed

of mean-reversion variable κ, although the bias appears quite limited. Hence, De Jong (2000) provides

evidence for the findings of Lund (1997) who indicates that the bias is quite limited for variables obtained

from the Kalman filter QML estimator during estimation of ATSMs. As a result, in line with De Jong

(2000), I abstain from applying numerically exhaustive simulation-based estimation procedures as used

by Gallant and Tauchen (1996), Gourieroux et al. (1993), Frachot et al. (1995), Dai and Singleton (2000),

and Lamoureux and Witte (2002). Instead, I present the Kalman filter QML estimates.

3.6 Estimation Methodology And Constraints

As stated before, the most straightforward method of estimating a factor model is by picking an equal

amount of yields as the amount of distinct maturities. Then by inversion of the model, the factors can

be extracted. However, the preference of maturities to compose the factors is quite subjective while the

results of the model are dependent on the preference. Furthermore, solely using the same number of

maturities as factors overlooks possible valuable information in the alternative maturities.
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Therefore, in line with De Jong (2000), I incorporate more yields than maturities and assume that

all yields, i.e. yields with a maturity of (3,12,60,120) months, are observed with error. With respect to

optimization, I apply the “fminunc” minimization algorithm in “MATLAB” to minimize the negative

log-likelihood function. After performing the optimization, I multiply the negative log-likelihood by minus

one to obtain the regular log-likelihood for each model. To ensure that the long-term average short rate

A0, the speed of mean-reversion κ, as well as the variance parameters α̃i and βi remain positive during

the optimization, I perform a logarithmic transformation.

With respect to the Cox et al. (1985) factor models, I need to make an additional constraint due to

the square-root diffusion process as stated in (24). Since βi is positive, the short rate rt also needs to

be positive to ensure that no complex numbers arise from taking the square-root of a negative number.

As stated before, the short rate depends on the factors, i.e. rt = A0 + ι′Ft, which must stay positive.

During my research I experimented with conditions, such as if statements, where some of the factors are

allowed to become negative while the short rate remained positive. However, there is a problem with this

approach when generating data in the simulation study. Since I generate the factors by implementing

an Euler discretization from the diffusion process in (12) with α equal to zero imposed, the factors must

be constrained to be positive to prevent complex numbers in the simulated data. Hence, to resolve this

problem I take the absolute value of the factors to ensure positive factors after each updating step in the

Kalman filter as stated in (31).
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4 Simulation Study

I use a simulation study to examine the Vasicek (1977) and Cox et al. (1985) three-factor models since

this version outperforms the versions with less factors in the research of De Jong (2000). I examine these

models while subject to a “regular period” and a “zero-lower bound period”. First, it introduces the setup

of my simulation study to enable the reader to replicate the results. Then, it presents the results of the

ordinary simulation to investigate the performance under the two different periods of the three-factor

models for both specifications. I also perform a cross-simulation where I estimate the Vasicek (1977)

model on data generated by the Cox et al. (1985) model and reversed.

4.1 Setup

To simulate data for both models, I follow De Jong (2000) who performs a small Monte Carlo analysis to

examine a bias in the QML estimates of an affine one-factor ATSM. First, I simulate the latent factors

from the diffusion process (3) for which I implement an Euler discretization scheme where each of the

simulated months contains 25 in-between steps. The diffusion process in (3) simplifies for both models

since β is zero for the Vasicek (1977) model whereas α̃ is zero for the Cox et al. (1985) model. In the latter

model, I restrict the factors to be positive since α̃ is zero and β is positive to obtain feasible numbers from

the square-root part of (3). For each month, I store the values of the factors and compute the yields for

maturities of (3,12,60,120) months by implementing the model in (8). Moreover, I simulate measurement

errors from the normal distribution with expectation zero and variance H for every observation. In line

with De Jong (2000), I assume that the measurement error covariance matrix is constructed as H = h2I

where h is the step size per latent factor observation. This allows the measurement errors for the distinct

maturities to have an identical variance and to be serially and cross-sectionally uncorrelated. Every

simulation for the four distinct maturities results in a sample of 221 monthly observations, equal to the

length of a period in the empirical study, and involves four distinct maturities. I estimate the model

parameters (A0, κi, α̃i, ψi) and (A0, κi, βi, ψi) on a 1000 simulations by implementing the Kalman-filter

QML estimator in respectively the Vasicek (1977) and Cox et al. (1985) case for i = 3 factors.

Regarding the population parameters underlying the simulated data for both the regular and cross-

simulation, I vary the long-term average short rate A0 as well as the variance parameters α̃ or β to replicate

the regular and the zero-lower bound period. Based on prior research, I set A0 equal to 0.06 under the

regular and to 0.01 in the zero-lower bound period. From the empirical study in section 5, I obtain the

population parameters for the market price of risk and the mean-reversion by taking the average of both

ψi and κi from the including and excluding zero-lower bound period to obtain legitimate base case values.

For the Vasicek (1977) model, there appears to be a ratio of 1/3 between the α̃ estimates for the two

different periods. Therefore, I set the population parameters α̃ to (1,2,6) which are approximately the

estimates for the period excluding and obtain the population parameters for the zero-lower bound period

by multiplying them by 1/3. For the Cox et al. (1985) model, this ratio is not that clear. Therefore, I

take the average of the estimates on the real data for β for both periods and double the average variance

under the regular and decrease the average variance by a half under the zero-lower bound period.
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4.2 Results

As explained in section 4.1, I obtain the population true values from the empirical study and subsequently

simulate data sets from the Vasicek (1977) as well as the Cox et al. (1985) three-factor specification under

the regular and zero-lower bound period. Afterwards, I estimate the three-factor models a 1000 times

under the regular and zero-lower bound period.

Table 1: Simulation results Vasicek model

This table presents the population values underlying the data generating process for the 1000 simulations as well as the
proceeding mean, median and standard deviation for the three-factor Vasicek model under the regular and the zero-lower
bound (ZLB) period. As before, the parameters A0 and α̃i are respectively multiplied by 102, 104, 102. The superscript ∗

means an extra multiplication by 10 per superscript ∗ to show the numbers behind the fourth decimal.

period Statistic A0 κ∗1 κ2 κ3 α̃1 α̃2 α̃3 ψ1 ψ2 ψ3

Regular

True Value 6.0000 0.0045 0.3370 3.2410 1.0000 2.0000 6.0000 1.3765 -21.1550 -17.9250
Mean 6.0170 0.0249 0.4085 3.9685 0.1857 0.5017 2.7590 1.9545 -20.8791 -18.1328

Median 5.9667 0.0048 0.4164 3.6628 0.2098 0.5882 3.1544 1.3760 -21.1562 -17.9259
Std. Dev. 0.8218 0.0747 0.0754 1.1761 0.0908 0.2933 1.4558 34.9331 7.6184 5.9770

ZLB

True Value 1.0000 0.0045 0.3370 3.2410 0.3333 0.6667 2.0000 1.3765 -21.1550 -17.9250
Mean 0.9895 0.0601 0.4979 4.0083 0.0735 0.1429 0.6014 -1.1663 -22.7084 14.7562

Median 0.9646 0.0049 0.4596 3.9560 0.0636 0.1241 0.5259 1.3894 -21.1559 -17.9244
Std. Dev. 0.3558 0.1763 0.2342 1.1596 0.0531 0.1216 0.4152 166.9726 15.1508 303.2229

Table 1 presents the simulation results of the three-factor Vasicek (1977) model which has problems

with estimating some of the parameters, especially the mean-reversion κi and variance α̃i are severely

biased under both periods. However, the median values for the other parameters are quite acceptable.

Interestingly, the market price of risk parameters’ standard deviation for the Vasicek (1977) specification

under the zero-lower bound period are substantially larger than for the regular period. The mean values

for the market price of risk parameters are severely biased due to extreme outliers that for example cause

the average ψ1 to be negative. Hence, the Vasicek (1977) model performs somewhat better under the

regular period although there are some severe biases.

Table 2: Simulation results CIR model

This table presents the population values underlying the data generating process for the 1000 simulations as well as the
proceeding mean, median and standard deviation for the three-factor CIR model under the regular and the zero-lower
bound period. As before, the parameters A0 and βi are respectively multiplied by 102, 104, 102. The superscript ∗ means
an extra multiplication by 10 per superscript ∗ to show the numbers behind the fourth decimal.

period Statistic A0 κ1 κ2 κ3* β∗
1 β∗∗

2 β∗∗
3 ψ1 ψ2 ψ3

Regular

True Value 6.000 0.0035 0.3903 3.2165 4.4780 100.9570 0.2500 4.5450 -8.0200 -17.2800
Mean 6.0392 0.0036 0.4147 3.1016 4.0223 91.8780 0.2507 4.5283 -8.0089 -17.2771

Median 6.0739 0.0036 0.4059 3.0759 4.0754 92.1945 0.2500 4.5346 -8.0119 -17.2792
Std. Dev. 0.1874 0.0001 0.0496 0.2437 0.2362 3.3534 0.0029 0.0275 0.0143 0.0073

ZLB

True Value 1.000 0.0035 0.3903 3.2165 1.1195 27.3925 0.0625 4.5450 -8.0200 -17.2800
Mean 0.9127 0.0036 0.4289 3.3324 1.0737 26.5069 0.0624 4.5421 -8.0178 -17.2795

Median 0.9173 0.0036 0.4265 3.3148 1.0776 26.4680 0.0624 4.5448 -8.0195 -17.2800
Std. Dev. 0.0429 0.0001 0.0247 0.1559 0.0156 0.3590 0.0004 0.0191 0.0106 0.0042
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Table 2 presents the simulation results of the three-factor Cox et al. (1985) model which performs

quite well under both periods. It does not have the severe biases in estimating the mean-reversion κi as

well as its variance of the factors βi. The mean and median values for the parameters are quite similar

under both periods although the bias for the average short rate A0 is larger under the zero-lower bound

than under the regular period. Besides, the standard deviation for all parameters appears somewhat

smaller under the zero-lower bound period for the three-factor Cox et al. (1985) model.

Figure 1: Histograms for 1000 simulations of Vasicek model

This figure contains histograms on the parameters estimated on a 1000 simulations for the three-factor Vasicek model under
the regular and zero-lower bound (ZLB) period. The red vertical line represents the population values as specified in table
1. The x-axis is scaled to a percentage bandwidth around the true value and hence the histograms might exclude outliers.
This percentage for the other histograms is respectively 50, 50, 50, 50, 30, 30, 10, 10, 0.05, 0.01 for each period. The top ten
histograms refer to the regular period, whereas the other ten histograms refer to the ZLB period.
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Figure 1 presents the histograms for the three-factor Vasicek (1977) model. Under the regular period,

there is a substantial mass of estimates around the true value except for the variance parameters α̃.

Furthermore, we can see that the mass is somewhat more widespread under the zero-lower bound period.
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Figure 2: Histograms for 1000 simulations of CIR model

This figure contains histograms on the parameters estimated on a 1000 simulations for the three-factor CIR model under the
regular and zero-lower bound (ZLB) period. The red vertical line represents the population values as specified in table 2. The
x-axis is scaled to a percentage bandwidth around the true value, except for βi which has as domain ∈ (0, 1.5 ∗ βp

i ). Hence,
the histograms might exclude outliers. This percentage for the other histograms is respectively 50, 50, 50, 50, 10, 0.05, 0.01
for each period. The top ten histograms refer to the regular period, whereas the other histograms refer to the ZLB period.
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Figure 2 presents the histograms on the estimation results in the three-factor Cox et al. (1985) case.

Under the regular period, there is a substantial mass of estimates around the true value except for the

variance parameters β1 and β2. Furthermore, we can see that the mass is somewhat more widespread

under the regular period. However, for almost all parameter estimates under the zero-lower bound period

the mass does not incorporate the true value except for the market of price parameters ψ. Hence, the

estimates under the zero-lower bound period for the three-factor Cox et al. (1985) model are heavily

concentrated around a certain value that is not necessarily the true value of the parameter.

Overall, the Cox et al. (1985) model appears to be more accurate and less variable for most of

the parameters than the Vasicek (1977) model which has problems estimating its variance parameters.

Nevertheless, the bias on the average short rate A0 is somewhat smaller for the Vasicek (1977) model.
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For the cross-simulation, I also obtain the population true values from the empirical study and subse-

quently simulate data sets from the Vasicek (1977) as well as the Cox et al. (1985) three-factor specification

under the regular and zero-lower bound period. However, I estimate the Vasicek (1977) model a 1,000

times on data generated by the Cox et al. (1985) model and reversed.

Table 3: Simulation results Vasicek model on CIR data

This table presents the population values underlying the data generating process for the 1000 simulations as well as the
proceeding mean, median and standard deviation for the three-factor CIR model under the regular and the zero-lower
bound period. As before, the parameters A0 and α̃i are respectively multiplied by 102 and 104. The superscript ∗ means
an extra multiplication by 10 per superscript ∗ to show the numbers behind the fourth decimal.

period Statistic A0 κ∗∗1 κ2 κ3* α̃∗∗
1 α̃∗∗

2 α̃3 ψ1 ψ2 ψ3

Regular

True Value 6.0000 0.3500 0.3903 0.3217 - - - 4.5400 -8.0200 -17.2800
Mean 6.8420 0.0084 0.3304 0.2990 0.0115 0.0025 0.0033 3.3424 -7.9236 -17.4540

Median 6.7891 0.0074 0.3193 0.3146 0.0098 0.0004 0.0012 3.3748 -7.9283 -17.3814
Std. Dev. 0.1522 0.0058 0.0264 0.0372 0.0111 0.0062 0.0066 0.1693 0.0180 0.2083

ZLB

True Value 1.0000 0.3500 0.3903 0.3217 - - - 4.5400 -8.0200 -17.2800
Mean 1.0431 0.0707 0.3169 0.3672 0.0016 0.0175 0.0145 -8.2847 -22.7445 -13.7108

Median 1.0392 0.0286 0.3064 0.3799 0.0004 0.0103 0.0000 3.4287 -7.8793 -17.2868
Std. Dev. 0.0813 0.0966 0.0413 0.0277 0.0030 0.0338 0.1461 50.4612 79.4864 24.7483

Table 3 presents the simulation results of the three-factor Vasicek (1977) model on CIR data which

has severe problems with estimating the average short rate A0, the mean-reversion of the first factor

κ1 and the first factor’s market price of risk ψ1 which are very biased in both periods. Interestingly,

the market price of risk parameters’ standard deviation are for the Vasicek (1977) specification in the

zero-lower bound period substantially larger than in the regular period. The mean values for the market

price of risk parameters are severely biased due to extreme outliers that for example cause the average ψ1

to be negative in the former period. Actually, every parameter estimate is biased and are considerably

more biased compared to the estimation results of the Cox et al. (1985) model on CIR data in Table 2.

Hence, the Vasicek (1977) model is not able to outperform the Cox et al. (1985) model on CIR data.

Table 4: Simulation results CIR model on Vasicek data

This table presents the population values underlying the data generating process for the 1000 simulations as well as the
proceeding mean, median and standard deviation for the three-factor Vasicek model under the regular and the zero-lower
bound (ZLB) period. As before, the parameters A0 and βi are multiplied by 102. The superscript ∗ means an extra
multiplication by 10 per superscript ∗ to show the numbers behind the fourth decimal.

period Statistic A0 κ∗1 κ2 κ3 β1 β2 β3 ψ1 ψ2 ψ3

Regular

True Value 6.0000 0.0045 0.3370 3.2410 - - - 1.3765 -21.1550 -17.9250
Mean 6.5737 0.0062 0.6872 1.8382 0.0151 0.0339 0.0729 1.3237 -21.1799 -17.8889

Median 6.4337 0.0047 0.3779 2.3251 0.0138 0.0238 0.0643 1.3700 -21.1546 -17.9236
Std. Dev. 1.0343 0.0374 0.6063 1.0910 0.0058 0.0303 0.0413 0.2413 0.9183 0.8767

ZLB

True Value 1.0000 0.0045 0.3370 3.2410 - - - 1.3765 -21.1550 -17.9250
Mean 0.8299 0.0052 0.6244 1.9160 0.0062 0.0085 0.0223 1.3258 -21.1402 -17.9078

Median 0.9171 0.0047 0.4136 1.8805 0.0053 0.0067 0.0202 1.3631 -21.1540 -17.9237
Std. Dev. 0.3418 0.0063 1.1671 1.1249 0.0035 0.0107 0.0108 0.2699 0.3322 0.3633
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Table 4 presents the simulation results of the Cox et al. (1985) model on Vasicek data which performs

better than the Vasicek (1977) model on CIR data although the average short rate A0 and mean-reversion

parameter κ3 are still very biased. The mean and median values for the parameters are quite similar in

both periods. The Cox et al. (1985) model obtains a better fit of the first two mean-reversion parameters

on Vasicek data than the Vasicek (1977) model on the same data as visible in Table 1. However, the

latter model has a considerably smaller bias for the average short rate A0 although its market price of risk

parameters’ standard deviation is considerably larger. Overall, the results for estimating both models on

Vasicek data is quite similar with biases for different parameters.

Figure 3: Histograms for 1000 cross simulations of Vasicek model on CIR data

This figure contains histograms on the parameters estimated on a 1000 simulations of CIR data for the three-factor Vasicek
model under the regular and zero-lower bound (ZLB) period. The red vertical line represents the population values as
specified in table 4. The purple vertical line represents the median value for the α̃ parameters since the true value is
unknown. The x-axis is scaled to a percentage bandwidth around the true value, except for α̃i which has as domain
∈ (0, d∗ α̃p

i ) with d = 4 for all histograms except for α̃3 ZLB which has d = 1000. The domain of κ1 is ∈ (0, κp1). Hence, the
histograms might exclude outliers. This bandwidth percentage for the other histograms is respectively 50, 50, 50, 50, 50, 10
for each period. The top ten histograms refer to the regular period, whereas the other histograms refer to the ZLB period.
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Figure 3 presents the histograms for the three-factor Vasicek (1977) model on CIR data. The red

vertical line represents the true values as specified in table 3 and the purple vertical line represents the

median value for the α̃ parameters since the true value is unknown. In the regular period, there is only

a substantial mass of estimates around the true value of mean-reversion κ3 and the market price of risk

parameters ψ1 and ψ2. In the zero-lower bound period, the mass is relatively somewhat closer to its true

value for the average short rate A0 and mean-reversion κ1 while the estimate of κ3 is worse. The estimate

for α̃3 is very widespread considering its domain. Looking at Figure 2 clearly shows that the Cox et al.

(1985) outperforms the Vasicek (1977) model on CIR data.

Figure 4: Histograms for 1000 cross simulations of CIR model on Vasicek data

This figure contains histograms on the parameters estimated on a 1000 simulations of Vasicek data for the three-factor
CIR model under the regular and zero-lower bound (ZLB) period. The red vertical line represents the population values
as specified in table 4. The purple vertical line represents the median value for the β parameters since the true value is
unknown. The x-axis is scaled to a percentage bandwidth around the true value, except for βi which has a bandwidth
around its median value. Hence, the histograms might exclude outliers. This percentage for the histograms is respectively
50, 50, 100, 100, 50, 100, 50, 50, 0.05, 0.05 for each period. The top ten histograms refer to the regular period, whereas the
other histograms refer to the ZLB period.
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Figure 4 presents the histograms on the estimation results for the three-factor Cox et al. (1985) model

when simulating data from the Vasicek (1977) model. The red vertical line represents the true values as

specified in table 4 and the purple vertical line represents the median value for the β parameters since

the true value is unknown. Under the regular period, there is a substantial mass of estimates around the

true value for the parameters which is somewhat more widespread under the zero-lower bound period.

Looking at Figure 4 shows that the estimation results for the Cox et al. (1985) model on Vasicek data

are comparable in both periods with the Vasicek (1977) model on Vasicek data.

Overall, the Cox et al. (1985) model appears to be more accurate and less variable for all parameters

than the Vasicek (1977) model on CIR data when comparing Table 2 and Figure 2 with Table 3 and

Figure 3. Hence, the Vasicek (1977) model is not able to outperform the Cox et al. (1985) model on

CIR data. However, the estimation performance of the Cox et al. (1985) and Vasicek (1977) are close

when estimating on Vasicek data. The first model obtains a better fit of the first two mean-reversion

parameters whereas the latter model has a considerably smaller bias for the average short rate although

its market price of risk parameters’ standard deviation is considerably larger. Consequently, performing

an empirical study using real Treasury yield data might be interesting to examine the performance of the

Vasicek (1977) and Cox et al. (1985) models while subject to the zero-lower bound.
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5 Empirical Study

This section provides an extensive empirical study on the performance of the Vasicek (1977) and the Cox

et al. (1985) one-, two- and three-factor models while subject to the zero-lower bound. First, it presents

a detailed description regarding the setup for my empirical study to enable the reader to replicate the

results. Second, it reviews the data and presents descriptive statistics used in this empirical study. Third,

it presents the results of estimating the n-factor models for both specifications to assess the impact for

n = 1, 2, 3 caused by the zero-lower bound.

5.1 Setup

To contribute to prior research, I assess the impact caused by the zero-lower bound on the Vasicek (1977)

and Cox et al. (1985) model specifications through employing a non-Guassian estimation method, i.e.

the Kalman filter approach of De Jong (2000). I assess this impact on the Gaussian model of Vasicek

(1977) in comparison with the non-Gaussian model of Cox et al. (1985) because non-Gaussian models

are unable to handle negative interest rates. Therefore, I estimate Vasicek (1977) and Cox et al. (1985)

n-factor models for n = 1, 2, 3 on data excluding as well as including the zero-lower bound to investigate

which factor model obtains the best fit and whether the existence of the zero-lower bound in the data set

impacts the estimation performance.

However, a common problem with regard to estimating ATSMs is the number of factors to incorpo-

rate. Therefore, in the spirit of De Jong (2000), I perform an empirical study on the one-, two- and

three-factor models of both Vasicek (1977) and Cox et al. (1985). I evaluate each factor model’s fit con-

taining n state variables graphically and by Root Mean Squared Error (RMSE) to assess every additional

factor’s contribution and whether the factors deserve the interpretation of respectively the level, slope

and curvature factor, for n = 1, 2, 3.

I present a thorough specification study for every model by evaluating the residuals of each factor

model of Vasicek (1977) and Cox et al. (1985). In addition, I compare the average actual and average

fitted term structure for each factor model and I provide a comparison between the factors and their

proxies as suggested in the literature. I also compare the actual yields with the fitted version of these

yields for each factor model of both Vasicek (1977) and Cox et al. (1985) in the Appendix. Furthermore,

I ensure that the short rate, rt = A0 + ι′Ft, does not become negative by taking the absolute value of

the factors in the Cox et al. (1985) model after the updating step in the Kalman filter.

I apply the “fminunc” minimization algorithm in “MATLAB” to minimize the negative log-likelihood

function. Via the inverted Fisher information matrix, I take the square root of its diagonal to obtain the

estimation error for the parameter vector. However, obtaining a proper inverse is known to be problematic

for Vasicek (1977) and Cox et al. (1985) ATSMs due to a lot of free parameters and the computation by

fminunc using finite differences. The resulting inverse often contains negative numbers on its diagonal

resulting in complex standard errors for the estimated parameters. Therefore, I set the seed to “rng(1)”

and run the models a 100 times from random initial values to obtain maximum likelihood estimates with

feasible standard errors that do not differ much from similar estimates with complex standard errors.
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5.2 Data

I use the Federal Reserve Bank data available via the Wharton Research Data Services (WRDS). The

data set encompasses U.S. Treasury interest rates with a constant maturity on a monthly basis and

spans from January 1982 until October 2018 leading to 422 observations with maturities of (3,12,60,120)

months. The lack of data for the shortest maturity prior to January 1982 determined the starting point

of this data set. The choice for the maturities is in line with De Jong (2000) who also examines yields

with maturities of (3,12,60,120) months. However, his data set spans from January 1970 until February

1991 and thus does not contain the recent occurrence of the zero-lower bound. He uses the McCulloch

and Kwon (1993) zero-coupon bond data set consisting of zero-coupon bond yields which are computed

by applying McCulloch’s interpolation procedure from prices of coupon bonds.

As can be seen in Figure (A.1) in the Appendix, this time period includes the exceptional zero-lower

bound phenomenon which spans approximately from August 2008 until March 2017. To examine the

impact on the estimation methods of the zero-lower bound, I divided the data set into two equal time

periods resulting in a time period excluding the zero-lower bound and a time period including the zero-

lower bound. The former period spans from January 1982 until May 2000, the latter spans from June

2000 until October 2018. This division results in 221 observations for each period to ensure that both

periods contain ample observations for adequate estimation.

Figure 5: U.S. Treasury yields with a constant maturity per period

On the left, this figure shows the U.S. Treasury yields with a constant maturity for the period excluding the zero-lower
bound (ZLB). On the right, it shows the period including the ZLB. The excluding ZLB period spans from January 1982
until May 2000, where the including ZLB period spans from June 2000 until October 2018. The lines represent the yield to
maturity for a maturity of 3, 12, 60, and 120 months.

Figure 5 visualizes this division and depicts the first difference between the period excluding the zero-

lower bound and the period including the zero-lower bound. It shows the U.S. Treasury yields with a

constant maturity for the period excluding the zero-lower bound on the left and including the zero-lower

bound on the right. The lines represent the zero-coupon bond yield for the maturities of (3,12,60,120)

months. In the including zero-lower bound period, we observe as expected a clear shift in the level of the

yields starting from the second half of the time period.
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Table 5: Descriptive statistics

This table displays descriptive statistics on U.S. Treasury yields with a constant maturity for the period excluding the
zero-lower bound (ZLB) and the period including the ZLB. The former period spans from January 1982 until May 2000,
the latter spans from June 2000 until October 2018. The variables 3M, 12M, 60M and 120M represent the yield to maturity
for a maturity of 3, 12, 60, and 120 months, respectively. This results in 221 observations for each yield to maturity within
each period.

Yield To Maturity (%)

Period Statistic 3M 12M 60M 120M

Excluding ZLB

Minimum 2.930 3.180 4.180 4.530
1st Quartile 5.090 5.390 6.040 6.300

Median 5.820 6.270 7.370 7.650
Mean 6.374 6.883 7.839 8.138

3rd Quartile 7.970 8.110 8.910 9.110
Maximum 14.280 14.730 14.650 14.590
Std. Dev. 2.234 2.395 2.360 2.300

Observations 221 221 221 221

Including ZLB

Minimum 0.010 0.100 0.620 1.500
1st Quartile 0.100 0.260 1.590 2.360

Median 0.950 1.240 2.520 3.460
Mean 1.545 1.762 2.741 3.439

3rd Quartile 2.200 2.570 3.910 4.420
Maximum 6.360 6.180 6.300 6.100
Std. Dev. 1.789 1.739 1.394 1.167

Observations 221 221 221 221

Table 5 presents descriptive statistics on both periods, i.e. the period including the zero-lower bound

and the period excluding the zero-lower bound. The table shows two interesting differences between these

two periods. First, as expected, the yields to maturity are substantially higher in the period excluding the

zero-lower bound in comparison with the period including the zero-lower bound. Second, all the yields

to maturity have a smaller standard deviation in the period including the zero-lower bound compared to

the period excluding the zero-lower bound.

As already deduced from Figure 5, we can see a clear shift in the level of the yields in the including

zero-lower bound period. We observe in Table 5 that the maximum yield to maturity for all maturities in

the period excluding the zero-lower bound ranges from 14.280 to 14.730, whereas in the period including

the zero-lower bound it ranges from 6.100 to 6.360. The minimum yield to maturity for all maturities in

the period excluding the zero-lower bound ranges from 2.930 to 4.530, whereas in the period including

the zero-lower bound it ranges from 0.010 to 1.5. Moreover, in Table 5 we observe the second difference

between the two periods, i.e. the standard deviation of the yield to maturity for all maturities is lower for

the period including the zero-lower bound. Specifically, for the period excluding the zero-lower bound,

the yield to maturity standard deviation for all maturities ranges from 2.234 to 2.395 whereas for the

period including the zero-lower bound it ranges from 1.167 to 1.789.

Hence, I examine the implications of the aforementioned two differences between the period including

and the period excluding the zero-lower bound on estimating the one-, two-, and three-factor Vasicek

(1977) as well as the one-, two-, and three-factor Cox et al. (1985) ATSMs by employing the non-Gaussian

estimation method of De Jong (2000).
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5.3 Results

This subsection presents the results of the empirical study by applying the Kalman filter approach of

De Jong (2000) on the Vasicek (1977) and Cox et al. (1985) factor ATSMs. I demonstrate an extensive

analysis for the one-, two-, and three-factor Vasicek (1977) and Cox et al. (1985) models including a

comparison between the models where I examine whether there is an effect of the occurrence of the

zero-lower bound on the estimation performance of these models. Hence, I first discuss the results for

the period excluding the zero-lower bound, after which I present the results for the period including the

zero-lower bound containing a comparison of the results for the two periods.

5.3.1 Results For Period Excluding The Zero-Lower Bound

The parameters that I estimate for the i-factor models are the long-term average short rate A0, the

speed of mean-reversion κi, market prices of risk ψi and variance parameters α̃i and βi, for i = 1, 2, 3. I

provide estimates based on the excluding zero-lower bound period in table 6, for the i-factor models of

Vasicek (1977) where the fluctuating variance parameter β is zero and the i-factor models of Cox et al.

(1985) where the constant variance parameter α̃ is zero. For both models, I assume that the factors are

uncorrelated to allow for a tractable analytic expression for the models.

Table 6: Estimation results for factor models

This table presents the n-factor Vasicek and the n-factor CIR model QML estimation results, for n = 1, 2, 3. The table
further provides the mean-reversion variable κ∗ along with the half-life of the factors, [ln(2)/κ∗], governed by measure Q.
These results are based on the period excluding the zero-lower bound.

Model Model A0(×100) κi α̃i(×104) βi(×100) ψi(×10−2) κ∗ 2 ln L

One-factor

Vasicek 7.7423 0.0090 0.9820 -0.0998 0.0090 9169.55
(5.0427) (0.0129) (52.0789) (0.0036) [77.40]

CIR 8.1673 0.0157 0.1160 -0.0917 0.0051 9208.00
(1.2393) (0.0131) (0.5631) (0.0017) [44.15]

Two-factor

1.6565 0.0098 0.9994 -0.1011 0.0098 10016.56
Vasicek (3.3478) (0.0118) (56.2993) (0.0008) [70.73]

0.6064 1.3571 -0.1558 0.6064
(0.0027) (55.0532) (0.0229) [1.14]

4.3256 0.0022 0.2428 0.0460 0.0133 9904.65
CIR (2.5242) (0.4387) (9.6555) (0.0075) [51.97]

0.6102 0.5539 -0.1421 0.5315
(0.0366) (8.5378) (0.0251) [1.30]

Three-factor

0.0000 0.0007 0.9880 -0.0137 0.0007 10150.58
(2.0518) (0.0954) (278.5723) (0.0071) [990.21]

0.4600 1.8167 -0.2064 0.4600
Vasicek (0.0257) (108.0129) (0.0074) [1.51]

3.6973 6.4548 -0.1362 3.6973
(0.0051) (89.3922) (0.0046) [0.19]

2.6500 0.0038 0.1544 0.0282 0.0082 9848.22
(1.1110) (0.4243) (8.0099) (0.0045) [84.69]

CIR 0.5108 0.6432 -0.0136 0.5020
(0.0717) (8.0989) (0.0061) [1.38]
0.4838 0.0023 -0.1037 0.4836

(0.0887) (157.9264) (0.0616) [1.43]
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For the one-factor Vasicek (1977) model the long-term average short rate is 7.7423, whereas for the

Cox et al. (1985) model it is 8.1673. The estimated mean-reversion coefficients are quite small, 0.0090 in

the Vasicek (1977) case and 0.0157 in the Cox et al. (1985) case. The implicit mean-reversion coefficient

governed by risk-neutral measure Q is yet smaller in the Cox et al. (1985) model with 0.0051, indicating

a 44.15 years half-life (ln(2)/κ∗), whereas for the Vasicek (1977) model the half-life is 77.40 years. The

moderate speed of mean-reversion indicates a substantially flat-fitted term structure. The constant

variance parameter α̃1 in the Vasicek (1977) model is highly insignificant due to its large standard error,

where the fluctuating variance parameter β1 in the Cox et al. (1985) model is also insignificant although

its standard error is substantially smaller. This might be evidence that a affine volatility structure which

combines α̃1 and β1 might be more appropriate. The market price of risk is significantly negative for

both models which indicates that owning a large maturity bond requires a positive risk premium. The

likelihood is slightly higher for the Cox et al. (1985) model indicating a better fit on the data.

With respect to the two-factor Vasicek (1977) and Cox et al. (1985) models, their long-term average

short rate decreases in both models to 1.6565 and 4.3256, respectively. The obtained likelihood is in the

two-factor case slightly higher for the Vasicek (1977) model. Moreover, the two factors in both models

show clear distinct characteristics. The mean reversion is comparable for the first factor in both models,

whereas the second factor has a much higher mean-reversion coefficient under Q, i.e. 0.6064 and 0.5315

with half-lives 1.14 and 1.30 years, in the Vasicek (1977) and the Cox et al. (1985) case, respectively.

Moreover, each models’ variance parameters are insignificant where the variance for the second factor

is larger in comparison with the first. Again, the standard error for the estimates of both variance

parameters in the Vasicek (1977) are relatively large. Moreover, the Vasicek (1977) two-factor model

measures for the first factor a significantly negative market price of risk of -0.1011 whereas the Cox et al.

(1985) model measures a significantly positive market price of risk of 0.0460.

In the three-factor case, dissimilarities arise between the Vasicek (1977) and Cox et al. (1985) model.

For instance, their long-term average short rate decreases even further in comparison with the two-factor

case although for the latter model it declines less. It appears that A0 becomes less relevant in the latter

case since the first factor incorporates its level as visible in Figure 8. Moreover, for the Vasicek (1977)

model, the first factor has a very small mean-reversion coefficient of 0.0007 with implied half-life of 990.21

whereas the third factor has a relatively large mean-reversion coefficient of 3.6973 with half-life 0.19 years.

In the Cox et al. (1985) model, for the first and second factor the mean-reversion is comparable with the

two-factor case and the third factor resembles the characteristics of the second factor. Furthermore, the

instant variance of the third factor is substantially higher in the Vasicek (1977) case relative to the other

factors, whereas it is lower in the Cox et al. (1985) case. The first factors’ market price of risk display

another difference, since ψ1 is significantly positive in the Cox et al. (1985) case, whereas negative in the

Vasicek (1977) case. Like the two-factor case, the Vasicek (1977) model obtains the highest likelihood.

Provided with the estimation results, I compose the models’ residuals which are interchangeable with

the Kalman filter estimation errors. I obtain these by calculating the discrepancy between the actual

and the predicted interest rates. For an adequate model specification, the mean of the residuals for every

maturity ought to be near zero. Moreover, there ought to be no serial correlation in the residuals.
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Table 7: Residuals of the factor models

This table presents the residuals’ summary statistics based on the n-factor Vasicek and the n-factor CIR model where ρk
represent the serial correlation for order k. The residuals are scaled to percentage points. These residuals are based on the
period excluding the zero-lower bound.

Vasicek CIR
Model Statistic 0.25 1 5 10 0.25 1 5 10

One-factor

Mean -1.0685 -0.5963 0.1996 0.3720 -0.7475 -0.2723 0.5338 0.7084
Stand. Dev. 1.0760 1.0240 0.6582 0.5714 1.1890 1.2030 1.0474 1.0296

ρ1 0.8235 0.7671 0.4740 0.3587 0.4250 0.3665 0.1926 0.2164
ρ12 0.3923 0.3641 0.0823 0.0236 0.1642 0.1273 0.0095 0.0444

Corr. matrix 1.0000 0.9269 0.5543 0.2605 1.0000 0.9433 0.6900 0.5439
0.9269 1.0000 0.7798 0.5100 0.9433 1.0000 0.8411 0.7036
0.5543 0.7798 1.0000 0.9220 0.6900 0.8411 1.0000 0.9704
0.2605 0.5100 0.9220 1.0000 0.5439 0.7036 0.9704 1.0000

Two-factor

Mean -0.0124 0.1194 0.1344 0.1185 0.1592 0.2809 0.2135 0.1506
Stand. Dev. 0.7380 0.8566 0.8738 0.8211 0.9142 1.0050 0.9044 0.8154

ρ1 0.1836 0.2721 0.2815 0.2191 0.1678 0.2688 0.2824 0.2301
ρ12 -0.0039 0.0337 0.0418 0.0399 0.0055 0.0389 0.0319 0.0271

Corr. matrix 1.0000 0.8798 0.8181 0.8385 1.0000 0.9256 0.8542 0.8686
0.8798 1.0000 0.9780 0.9752 0.9256 1.0000 0.9647 0.9583
0.8181 0.9780 1.0000 0.9928 0.8542 0.9647 1.0000 0.9940
0.8385 0.9752 0.9928 1.0000 0.8686 0.9583 0.9940 1.0000

Three-factor

Mean -0.0639 -0.0267 -0.0061 0.0145 0.1502 0.2758 0.2051 0.1602
Stand. Dev. 0.9570 1.0184 1.0009 0.9849 0.9168 1.0099 0.9145 0.8288

ρ1 0.1543 0.0827 0.0384 0.0323 0.1726 0.2776 0.3207 0.3073
ρ12 -0.0064 -0.0184 -0.0162 -0.0113 0.0044 0.0392 0.0232 0.0275

Corr. matrix 1.0000 0.9777 0.9396 0.9421 1.0000 0.9237 0.8428 0.8445
0.9777 1.0000 0.9795 0.9804 0.9237 1.0000 0.9668 0.9616
0.9396 0.9795 1.0000 0.9957 0.8428 0.9668 1.0000 0.9953
0.9421 0.9804 0.9957 1.0000 0.8445 0.9616 0.9953 1.0000

Table 7 presents summary statistics on the residuals for the n-factor models of both specifications, for

n = 1, 2, 3. The one-factor Vasicek (1977) model on average overestimates the yields of shorter maturities,

whereas it underestimates yields for longer maturities. The Cox et al. (1985) one-factor model shows

the same pattern, although its over- and underestimation is more balanced. The standard deviation for

the Vasicek (1977) model tends to decrease for longer maturities, whereas the Cox et al. (1985) case it

remains high. The first- and twelfth-order autocorrelation also tend to decrease to a lower level for longer

maturities for the Vasicek (1977) model, when in fact for the Cox et al. (1985) model they are lower for

almost all maturities and remain constant at this lower level.

The two-factor models obtain on average a substantially better fit than the one-factor models. The

Vasicek (1977) model slightly underestimates every maturity except the three-month maturity. The Cox

et al. (1985) model underestimates on average a bit more but still there is quite an enhancement visible.

Moreover, the standard deviation of the residuals is somewhat smaller for both models and the serial

correlation, which is of greater importance, is substantially lower for both models.
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In the three-factor specification, the fit is on average substantially better in the Vasicek (1977) case

as well as somewhat better in the Cox et al. (1985) case. However, the residuals’ standard deviation

increased for the former whereas it remained constant for the latter model. The first-order autocorrelation

decreases for the Vasicek (1977) specification, whereas it remains constant on average for the Cox et al.

(1985) specification when compared to the two-factor case. Importantly, the twelfth-order autocorrelation

for both models is near zero. Judging by the average mean and serial correlation of the residuals, the

Vasicek (1977) three-factor model appears to the best specified.

Figure 6: Fit of the factor models

These graphs present, regarding both the n-factor models of Vasicek and CIR, the average fitted as well as the average
actual term structure (TS), for n = 1, 2, 3. In addition, the root mean squared error (RMSE) is displayed for each model.
The graphs are based on the period excluding the zero-lower bound.

One-factor models Two-factor models

Three-factor models

Figure 6 illustrates the average actual and the average fitted term structure for the maturities of

(3,6,12,24,36,60,120) months for each model. I compute the fitted term structure by yt|T (τ) = A(τ) +

B(τ)Ft|T for all maturities τ . By implementing the Kalman smoother of Hamilton (1995), I acquire the

smoothed factor estimates, Ft|T . The graphs also contain the RMSE of the discrepancy between the

actual and the predicted interest rates. The one-factor models obtain a poor fit which is visible in the

upper-left graph where the Vasicek (1977) model fixates on the term structure’s longer end, whereas the

Cox et al. (1985) on the shorter end. Adding a second factor enhances the fit considerably although the

steepness of the actual term structure in the middle is not completely seized. Of the two models, the

three-factor Vasicek (1977) model appears to only capture this steepness with a relatively tiny RMSE.
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Figure 7: Regression of observed yields on the fitted factor(s)

These graphs present the coefficients of a regression for the n-factor Vasicek and the n-factor CIR model in first differences
of the actual interest rates on the fitted factor(s) and a constant, for n = 1, 2, 3. The graphs are based on the period
excluding the zero-lower bound.

One-factor Vasicek model One-factor CIR model

Two-factor Vasicek model Two-factor CIR model

Three-factor Vasicek model Three-factor CIR model

To further assess the model specification, I perform a regression on the estimated smoothed factors

and a constant where the actual yields are the dependent variables. I carry out the regression in first

differences since the data is practically non-stationary. The factor loadings B(τ) are illustrated by the

solid lines in Figure 7 which ought to converge to zero for large maturities. However, the first factor loading

B1(τ) is substantially flat for all models. Although B2(τ) decreases much faster, it is still significantly

above zero. In the three-factor Vasicek model B3(τ) appears to be negligible for longer maturities.
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Moreover, the regression coefficients ought to be close to the factor loadings B(τ). In the upper-left

corner in Figure 7, we see that this holds for longer maturities in the one-factor Vasicek (1977) model

whereas it is not for the one-factor Cox et al. (1985) model displayed in the upper-right corner. Looking at

the middle- and lower-left graphs, we see that the Vasicek (1977) two- and three-factor models’ regression

coefficients are comparable with their respective factor loadings. The two- and three-factor Cox et al.

(1985) model are displayed in the middle- and lower-right graphs, which does not illustrate the third

smoothed factor since the fit is substantially bad, as visible in Figure (A.2) in the Appendix.

Figure 8: Fit of the factors

These graphs present the fit of the n-factor Vasicek and the n-factor CIR model, for n = 1, 2, 3. The graphs are based on
the period excluding the zero-lower bound.

First factor one-factor models First factor two-factor models

First factor three-factor models Second factor two-factor models

Second factor three-factor models Third factor three-factor models

32



Figure 8 illustrates the fitted factors along with parts of the data to interpret the factors. The upper-

left, upper-right and middle-left graphs illustrate the fit of the first factor for the n-factor models, for

respectively n = 1, 2, 3. The fitted first factor is defined as the first factor plus the estimated intercept

A0 which is compared to the ten-year yield. The correlation between these two lines is very high for each

model: 0.9919 versus 0.9817, 0.9768 versus 0.9796, 0.9889 versus 0.9707, for the one-, two- and three-

factor Vasicek (1977) model versus the one-, two- and three-factor Cox et al. (1985) model, respectively.

Therefore, the first factor represents for each model the level of the yield curve.

In the middle-right and lower-left graph of Figure 8 we see the three-month and ten-year interest rate

spread in comparison with the second factor for the n-factor model of Vasicek (1977) and of Cox et al.

(1985), for respectively n = 2, 3. The correlation between these two lines is 0.9430 versus 0.9424, 0.7801

versus 0.9308, for the two- and three-factor Vasicek (1977) model versus the two- and three-factor Cox

et al. (1985) model, respectively. Hence, the interpretation of the second factor enjoys substantial support

as the yield curve’s slope in all models although there is somewhat less support for this interpretation

for the three-factor Vasicek (1977) model. The reason that the second factor in the two- and three-factor

Cox et al. (1985) model appears to be increased by a certain level compared to the proxy for the second

factor is because in the Cox et al. (1985) the factors are restricted to be positive.

To interpret the third factor, I graph the third factor and compare it to a proxy for the curvature in

the lower-right panel. I construct the curvature proxy by subtracting the total of the ten-year plus the

three-month yield from twice the two-year yield. The correlation is -0.6389 in the Vasicek (1977) case

which can be interpreted as a reversed curvature effect, whereas the correlation is 0.2541 in the Cox et al.

(1985) case which is more smooth than the curvature proxy. The support for third factor’s interpretation

as the curvature factor appears relatively little given the correlation between the third factor of the Cox

et al. (1985) model and its proxy.

5.3.2 Results For Period Including The Zero-Lower Bound

Similar to the period excluding the zero-lower bound, the parameters that I estimate for the i-factor

models in the period including the zero-lower bound are the long-term average short rate A0, the speed

of mean-reversion κi, market prices of risk ψi and variance parameters α̃i and βi, for i = 1, 2, 3. However,

in this section I explicitly focus on the best performing models in the excluding zero-lower bound period,

i.e. the three-factor models, to examine potential differences due to the zero-lower bound in the data set.

The results for the one- and two-factor models are stated in the tables (A.1) and (A.2) and in the figures

(A.3), (A.4) and (A.5) in the Appendix. I have also incorporated the results for the three-factor models

in the Appendix to enable the reader to easily compare the results between all factor models.

I provide estimates based on the including as well as the excluding zero-lower bound period in table 8

on the next page, for the three-factor model of Vasicek (1977) where the fluctuating variance parameter

β is zero and the three-factor model of Cox et al. (1985) where the constant variance parameter α̃ is

zero. The results for both periods are displayed to allow the reader to easily compare the results for the

three-factor model of both Vasicek (1977) and Cox et al. (1985) in the two periods. For both models, I

assume that the factors are uncorrelated to allow for a tractable analytic expression for the models.

33



Table 8: Estimation results three-factor models in both periods

This table presents the three-factor Vasicek and the three-factor CIR model QML estimation results. The table further
provides the mean-reversion variable κ∗ along with the half-life of the factors, [ln(2)/κ∗], governed by measure Q. These
results are based on the period excluding and including the zero-lower bound (ZLB).

Period Model A0(×100) κi α̃i(×104) βi(×100) ψi(×10−2) κ∗ 2 ln L

Excl. ZLB

0.0000 0.0007 0.9880 -0.0137 0.0007 10150.58
(2.0518) (0.0954) (278.5723) (0.0071) [990.21]

0.4600 1.8167 -0.2064 0.4600
Vasicek (0.0257) (108.0129) (0.0074) [1.51]

3.6973 6.4548 -0.1362 3.6973
(0.0051) (89.3922) (0.0046) [0.19]

2.6500 0.0038 0.1544 0.0282 0.0082 9848.22
(1.1110) (0.4243) (8.0099) (0.0045) [84.69]

CIR 0.5108 0.6432 -0.0136 0.5020
(0.0717) (8.0989) (0.0061) [1.38]
0.4838 0.0023 -0.1037 0.4836

(0.0887) (157.9264) (0.0616) [1.43]

Incl. ZLB

0.0011 0.0002 0.3520 0.0379 0.0002 10415.59
(3.4894) (0.0454) (124.9400) (0.0079) [3465.74]

0.2140 0.9750 -0.2167 0.2140
Vasicek (0.0048) (61.9792) (0.0105) [3.24]

2.7848 1.1581 -0.2223 2.7848
(0.0053) (46.2474) (0.8235) [0.25]

1.9275 0.0032 0.2934 0.0627 0.0216 9769.90
(1.2903) (0.1245) (4.4439) (0.0025) [32.14]

CIR 0.2698 0.4525 -0.1468 0.2034
(0.0138) (1.3897) (0.0026) [3.41]
0.1595 0.0002 -0.2419 0.1595

(0.0628) (41.5707) (0.0338) [4.35]

For the including zero-lower bound period, some dissimilarities arise between the models. For instance,

their long-term average short rate decreases even further in comparison with the two-factor case although

for the Cox et al. (1985) model it declines less. Moreover, for the Vasicek (1977) model, the first factor

has a very small mean-reversion coefficient of 0.0002 with implied half-life of 3465.74 whereas the third

factor has a relatively large mean-reversion coefficient of 2.7848 with half-life 0.25 years. In the Cox et al.

(1985) model, for the first and second factor the mean-reversion is comparable with the two-factor case

and the third factor resembles the characteristics of the second factor. Furthermore, the third factor’s

instant variance is substantially higher in the Vasicek (1977) case relative to the other factors, whereas

it is lower in the Cox et al. (1985) case. In both models, the first factor’s market price of risk is positive.

In addition, the Cox et al. (1985) model obtains a lower log-likelihood.

When comparing the results of the two periods, we observe that the characteristics of the parameters

of the three-factor models for the including zero-lower bound period appear to be quite similar to the

results for the period excluding the zero-lower bound. Overall, both the three-factor model of Vasicek

(1977) and of Cox et al. (1985) find that there is a lower mean-reversion for all the factors in the including

zero-lower bound period. In addition, they both find in according with the descriptive statistics a lower

variance for their factors in the including zero-lower bound period as depicted by the lower α̃ and β

parameters except for the first factor in the Cox et al. (1985) case.
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Table 9: Residuals of the three-factor models in both periods

This table presents the residuals’ summary statistics based on the three-factor Vasicek and the three-factor CIR model
where ρk represent the serial correlation for order k. The residuals are scaled to percentage points. These residuals are
based on the period excluding and including the zero-lower bound (ZLB).

Vasicek CIR
Period Statistic 0.25 1 5 10 0.25 1 5 10

Excl. ZLB

Mean -0.0639 -0.0267 -0.0061 0.0145 0.1502 0.2758 0.2051 0.1602
Error % -1.0025 -0.3879 -0.0778 0.1782 2.3564 4.0070 2.6164 1.9685

Stand. Dev. 0.9570 1.0184 1.0009 0.9849 0.9168 1.0099 0.9145 0.8288
ρ1 0.1543 0.0827 0.0384 0.0323 0.1726 0.2776 0.3207 0.3073
ρ12 -0.0064 -0.0184 -0.0162 -0.0113 0.0044 0.0392 0.0232 0.0275

Corr. matrix 1.0000 0.9777 0.9396 0.9421 1.0000 0.9237 0.8428 0.8445
0.9777 1.0000 0.9795 0.9804 0.9237 1.0000 0.9668 0.9616
0.9396 0.9795 1.0000 0.9957 0.8428 0.9668 1.0000 0.9953
0.9421 0.9804 0.9957 1.0000 0.8445 0.9616 0.9953 1.0000

Incl. ZLB

Mean -0.0116 -0.0216 -0.0514 -0.0348 -0.0156 -0.0378 -0.0108 0.0036
Error % -0.7508 -1.2259 -1.8752 -1.0119 -1.0097 -2.1453 -0.3940 0.1047

Stand. Dev. 0.4322 0.4453 0.5769 0.5289 0.4406 0.4818 0.6660 0.7404
ρ1 0.1205 0.0641 0.4224 0.3813 0.1883 0.3012 0.7070 0.8346
ρ12 0.0186 -0.0048 0.1654 0.1430 0.0377 0.0567 0.2469 0.3647

Corr. matrix 1.0000 0.9722 0.6484 0.6449 1.0000 0.9266 0.4406 0.2071
0.9722 1.0000 0.7409 0.7349 0.9266 1.0000 0.5763 0.2940
0.6484 0.7409 1.0000 0.9868 0.4406 0.5763 1.0000 0.9153
0.6449 0.7349 0.9868 1.0000 0.2071 0.2940 0.9153 1.0000

Table 9 presents summary statistics on the three-factor models’ residuals for both periods. In the

including zero-lower bound period, the fit for both models is quite sufficient where the Cox et al. (1985)

model’s fit seems to be a little bit better since its mean residuals are closer to zero on average. The

first-order autocorrelations decrease in the Vasicek (1977) compared to the two-factor case as visible in

Table (A.2) and are considerably lower than in the Cox et al. (1985) case. Importantly, the twelfth-order

autocorrelations for the Vasicek (1977) model are on average substantially closer to zero than the Cox

et al. (1985) model. Judging by the average mean and serial correlation of the residuals, the Vasicek

(1977) three-factor model appears to the better specified in the including zero-lower bound period.

To compare the residuals of the periods, we look at the mean error percentage constructed as the

mean error for a particular yield divided by its mean value as stated in Table 5. The Vasicek (1977) model

obtains on average a lower error percentage in the excluding, whereas the Cox et al. (1985) obtains it in

the including zero-lower bound period although the difference with the Vasicek (1977) model is smaller

than in the excluding zero-lower bound period. The first- and twelfth-order autocorrelations are closer to

zero in the period excluding than in the period including the zero-lower bound. Especially, the twelfth-

order autocorrelations for the Vasicek (1977) model are on average closer to zero. Although the error

percentage is somewhat smaller in the Cox et al. (1985) case for the including zero-lower bound period,

there is substantially more serial correlation and therefore the Vasicek (1977) three-factor model appears

to the better specified albeit substantially less than for the period excluding the zero-lower bound.
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Figure 9: Fit of the three-factor models in both periods

These graphs present, regarding both the three-factor models of Vasicek and CIR, the average fitted as well as the average
actual term structure (TS). In addition, the root mean squared error (RMSE) is displayed for each model. The graphs are
based on the period excluding and including the zero-lower bound (ZLB).

Excluding ZLB Including ZLB

Figure 9 illustrates the average actual and the average fitted term structure for the maturities of

(3,6,12,24,36,60,120) months for each model. The third factor provides a considerably better fit in both

periods as visible in Figures 6 and (A.3). In both periods, the three-factor models appear to capture the

yield curve quite well where the Vasicek (1977) model has a relatively smaller RMSE than the Cox et al.

(1985) model which is the smallest in the period excluding the zero-lower bound.

As before, I perform a regression on the estimated smoothed factors and a constant where the actual

yields for every maturity from three months to ten years are the dependent variables. The factor loadings

B(τ) for both periods are illustrated by the solid lines in Figure 10 on the next page which ought to

converge to zero for large maturities. For both models, we see that the first factor loading B1(τ) is

substantially flat in both periods. For the Vasicek (1977) model, the third factor loading B3(τ) in the

including zero-lower bound period appears to take over the pattern of the second factor loading B2(τ) in

the excluding zero-lower bound period whereas the second factor loading B2(τ) in the three-factor model

converges to zero for longer maturities in line with theory. The third factor loading B3(τ) in the Cox

et al. (1985) model has an unconventional form in both periods not in line with theory as visible in Figure

(A.2) in the Appendix. Moreover, the latter model appears better specified in the excluding compared to

the including zero-lower bound period since its factor loadings converge faster to zero. Overall, it appears

the the Vasicek (1977) model is better specified in both periods.

In addition to the theoretical convergence to zero of the factor loadings B(τ) for large maturities,

the regression coefficients ought to be close to the factor loadings B(τ). In Figure 10, we see that the

Vasicek (1977) model’s regression coefficients are comparable with their respective factor loadings in both

periods. However, the fit for the first factor in the including zero-lower bound period is substantially

worse compared to the period excluding the zero-lower bound. The three-factor Cox et al. (1985) model

illustrates in both periods a somewhat bad fit for the second factor as well as a substantially bad fit for

the third smoothed factor as visible in Figure 10 and (A.2), respectively. Based on the condition that

the regression coefficients ought to be close to the factor loadings B(τ), it seems that again the Vasicek

(1977) model appears to be better specified in both periods.
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Figure 10: Regression of observed yields on the fitted factors

These graphs present the coefficients of a regression for the three-factor Vasicek and the three-factor CIR model in first
differences of the actual interest rates on the fitted factor(s) and a constant for both the period including and excluding the
zero-lower bound (ZLB).

Three-factor Vasicek model in excl. ZLB period Three-factor CIR model in excl. ZLB period

Three-factor Vasicek model in incl. ZLB period Three-factor CIR model in incl. ZLB period

Figure 11 situated on the next page, illustrates the fitted factors along with parts of the data to

interpret the factors. The fitted first factor is defined as the first factor plus the estimated intercept A0

which is compared to the ten-year yield. The first factor represents the level of the yield curve in both

periods for both three-factor models due to the high correlation between the first factor and its proxy.

However, the evidence for this representation is stronger for the period excluding than for the period

including the zero-lower bound since the first factor and its proxy’s correlation is 0.9889 versus 0.9707

and 0.6848 versus 0.8040, respectively.

To interpret the second factor, I compare the second factor with the three-month and ten-year interest

rate spread. The correlation for respectively the Vasicek (1977) and Cox et al. (1985) model between

the second factor and its proxy is 0.7801 versus 0.9308 and 0.8771 versus 0.7893 for the period excluding

and including the zero-lower bound, respectively. Hence, the interpretation of the second factor enjoys

substantial support in both periods as the yield curve’s slope for both models. The reason that the second

factor in the three-factor Cox et al. (1985) model appears to be increased by a certain level compared to

the proxy for the second factor is because in the Cox et al. (1985) case the factors are restricted to be

positive. Furthermore, it appears that the fitted first and second factor remain flat during the zero-lower

bound time frame in the Cox et al. (1985) case.
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I graph the third factor and compare it to a proxy for the curvature defined as before. The correlation

for respectively the Vasicek (1977) and Cox et al. (1985) model between the third factor and its proxy is

-0.6389 versus 0.2541 and -0.5621 versus 0.0643 for respectively the period excluding and including the

zero-lower bound. Hence, in the Vasicek (1977) case the third factor can be interpreted as a reversed

curvature effect in both periods, whereas for the Cox et al. (1985) the evidence for the interpretation of

the third factor as the curvature factor appears relatively little for both periods.

Figure 11: Fit of the factors for the three-factor models

These graphs present the fit of the three-factor Vasicek and the three-factor CIR model. The graphs are based on the period
excluding and including the zero-lower bound (ZLB).

First factor in excl. ZLB period First factor in incl. ZLB period

Second factor in excl. ZLB period Second factor in incl. ZLB period

Third factor in excl. ZLB period Third factor in incl. ZLB period
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The impact of the zero-lower bound on the three-factor models is also visible in in Figure (A.8) in the

Appendix which contains the fitted yield versus the actual yield. In the period excluding the zero-lower

bound, the Vasicek (1977) obtains a somewhat better fit whereas in the including zero-lower bound period

the fit is substantially better than for the Cox et al. (1985) model which has substantial problems with

capturing the curvature of the five- and ten-year yields as well as the yields near the zero-lower bound.

The appendix also contains the impact of the zero-lower bound on the one-factor and two-factor models

in respectively Figure (A.6) and (A.7). In the period excluding the zero-lower bound, the one-factor

models obtain a similar fit but looking at the period including the zero-lower bound we observe that the

Cox et al. (1985) model has more problems with capturing the yields near the zero-lower bound. With

respect to the two-factor models, they obtain a similar fit in the period excluding the zero-lower bound,

whereas in the including the zero-lower bound period I observe that the Cox et al. (1985) model has

substantial problems to capture the curvature of the five- and ten-year yields.
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6 Conclusion and Discussion

In this thesis, I evaluated the term structure of yields while subject to the zero-lower bound by performing

the Kalman filter approach of De Jong (2000). The main contribution of this thesis lies in evaluating the

impact of the zero-lower bound on the estimation performance of the Vasicek (1977) and Cox et al. (1985)

model specifications. In particular, I contributed to prior research by examining the performance of the

three-factor specification for both models by simulating from a controlled zero-lower bound environment in

both an ordinary and a cross-simulation setup. Furthermore, I expanded on prior research by performing

an extensive empirical study on the performance of the one-, two- and three-factor models of both

specifications where I zoomed in on the effect of the zero-lower bound.

In the ordinary simulation study, I find that the three-factor Cox et al. (1985) model appears to be

more accurate and less variable for most of the parameters than the Vasicek (1977) model which has

problems estimating its mean-reversion and variance parameters. Nevertheless, the bias on the average

short rate is somewhat smaller for the Vasicek (1977) model. The parameter standard deviation in the

Vasicek (1977) case appears to be somewhat larger under the zero-lower bound period, which is reversed

in the Cox et al. (1985) case. In the cross-simulation, I find that the Cox et al. (1985) model appears to

be more accurate and less variable for all parameters than the Vasicek (1977) model on CIR data whereas

the estimation estimation results are close when estimating on Vasicek data.

In the empirical study, I find that the three-factor models are better specified than the one- and

two-factor models in both the period excluding and including the zero-lower bound. The third factor

enhances the fit of the average term structure considerably for the excluding zero-lower bound period

where the steepness in the middle appears to be only completely seized by the Vasicek (1977) model

which has a relatively tiny RMSE that is considerably larger in the other period. The serial correlation

is close to zero for both models in the period excluding, while it is considerably higher in the period

including the zero-lower bound. Consequently, the Vasicek (1977) three-factor model appears to be the

better specified in both periods, although substantially less in the including zero-lower bound period.

Moreover, I find that the first factor describes the level of the yield curve for each model in both

periods. The second factor enjoys substantial support as the yield curve’s slope for all models in both

periods except for the two-factor Cox et al. (1985) model in the including zero-lower bound period. In

the Vasicek (1977) case, the third factor has the interpretation as the (reversed) curvature factor. In the

Cox et al. (1985) case, the third factor’s interpretation as the curvature factor appears relatively little

given the tiny correlation between the third factor and its proxy. For both models, the correlation is

lower in the period including the zero-lower bound for the first and third factor.

Imperatively, I contemplated the limitations of this thesis which lead to a suggestion for further

research. Since I used data on U.S. Treasury yields where the minimum yield is 0.01% for the three-

month maturity bond, the data set does not contain negative yields while the yields in several European

countries are negative even for longer maturities at the time of writing. Hence, it might be interesting to

assess the performance of the Vasicek (1977) and Cox et al. (1985) models in a (purely) negative interest

rate environment. However, this additional research expands beyond the scope of this thesis.
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Appendix

Figure A.1: U.S. Treasury yields with a constant maturity

This figure shows the U.S. Treasury yields with a constant maturity for the period from January 1982 until October 2018. In
the lower right corner of this figure, we observe the exceptional zero-lower bound (ZLB) period which spans approximately
form August 2008 until March 2017. The lines represent the yield to maturity for a maturity of 3, 12, 60, and 120 months.

Figure A.2: Regression of observed yields on the fitted factor(s)

These graphs present the coefficients of a regression for the three-factor CIR model in first differences of the actual interest
rates on the fitted factor(s) and a constant. The result for the excluding zero-lower bound period is on the left, whereas for
the period including the zero-lower bound on the right.
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Table A.1: Estimation results factor models

This table presents the n-factor Vasicek and the n-factor CIR model QML estimation results, for n = 1, 2, 3. The table
further provides the mean-reversion variable κ∗ along with the half-life of the factors, [ln(2)/κ∗], governed by measure Q.
These results are based on the period including the zero-lower bound.

Model Model A0(×100) κi α̃i(×104) βi(×100) ψi(×10−2) κ∗ 2 ln L

One-factor

Vasicek 6.0460 0.1556 0.0381 0.3142 0.1556 9739.04
(0.9459) (0.0037) (45.6791) (0.0238) [4.46]

CIR 2.4966 0.1858 0.2442 -0.4954 0.0648 9812.66
(1.0633) (0.0096) (0.5493) (0.0076) [10.70]

Two-factor

4.1868 0.0002 0.2531 -0.02380 0.0002 10118.84
Vasicek (1.5379) (0.0873) (115.5277) (0.0057) [3465.74]

0.2169 0.6524 -0.0953 0.2169
(0.0045) (74.2825) (0.0267) [3.20]

2.5968 0.0812 0.2769 -0.0115 0.0780 9867.64
CIR (1.9926) (0.4318) (150.3961) (0.0045) [8.89]

0.1916 0.2097 -0.1015 0.1703
(0.0504) (96.6670) (0.0016) [4.07]

Three-factor

0.0011 0.0002 0.3520 0.0379 0.0002 10415.59
(3.4894) (0.0454) (124.9400) (0.0079) [3465.74]

0.2140 0.9750 -0.2167 0.2140
Vasicek (0.0048) (61.9792) (0.0105) [3.24]

2.7848 1.1581 -0.2223 2.7848
(0.0053) (46.2474) (0.8235) [0.25]

1.9275 0.0032 0.2934 0.0627 0.0216 9769.90
(1.2903) (0.1245) (4.4439) (0.0025) [32.14]

CIR 0.2698 0.4525 -0.1468 0.2034
(0.0138) (1.3897) (0.0026) [3.41]
0.1595 0.0002 -0.2419 0.1595

(0.0628) (41.5707) (0.0338) [4.35]
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Table A.2: Residuals of the factor models

This table presents the residuals’ summary statistics based on the n-factor Vasicek and the n-factor CIR model where ρk
represent the serial correlation for order k. The residuals are scaled to percentage points. These residuals are based on the
period including the zero-lower bound.

Vasicek CIR
Model Statistic 0.25 1 5 10 0.25 1 5 10

One-factor

Mean -0.0061 0.0038 0.1133 0.1120 0.0229 0.0462 0.1850 0.1742
Stand. Dev. 0.1984 0.2358 0.5519 0.6655 0.4352 0.4997 0.6965 0.7527

ρ1 0.6422 0.7681 0.9124 0.9434 0.1758 0.3631 0.7516 0.8628
ρ12 0.2823 0.1995 0.3364 0.4810 0.0206 0.0552 0.2699 0.4211

Corr. matrix 1.0000 0.5808 -0.2018 -0.3879 1.0000 0.9248 0.5077 0.3094
0.5808 1.0000 0.2991 -0.0033 0.9248 1.0000 0.6539 0.4239
-0.2018 0.2991 1.0000 0.9138 0.5077 0.6539 1.0000 0.9272
-0.3879 -0.0033 0.9138 1.0000 0.3094 0.4239 0.9272 1.0000

Two-factor

Mean 0.0044 -0.0348 -0.0455 -0.0378 -0.0058 0.0128 0.1570 0.1834
Stand. Dev. 0.1810 0.2520 0.5187 0.4573 0.4363 0.4880 0.6949 0.7674

ρ1 0.4904 0.7752 0.8898 0.8531 0.1335 0.2840 0.7146 0.8396
ρ12 0.1424 0.2340 0.3102 0.2680 0.0218 0.0351 0.2472 0.3867

Corr. matrix 1.0000 0.5365 0.2074 0.1479 1.0000 0.9223 0.4211 0.2032
0.5365 1.0000 0.6583 0.5383 0.9223 1.0000 0.5857 0.3307
0.2074 0.6583 1.0000 0.9734 0.4211 0.5857 1.0000 0.9262
0.1479 0.5383 0.9734 1.0000 0.2032 0.3307 0.9262 1.0000

Three-factor

Mean -0.0116 -0.0216 -0.0514 -0.0348 -0.0156 -0.0378 -0.0108 0.0036
Stand. Dev. 0.4322 0.4453 0.5769 0.5289 0.4406 0.4818 0.6660 0.7404

ρ1 0.1205 0.0641 0.4224 0.3813 0.1883 0.3012 0.7070 0.8346
ρ12 0.0186 -0.0048 0.1654 0.1430 0.0377 0.0567 0.2469 0.3647

Corr. matrix 1.0000 0.9722 0.6484 0.6449 1.0000 0.9266 0.4406 0.2071
0.9722 1.0000 0.7409 0.7349 0.9266 1.0000 0.5763 0.2940
0.6484 0.7409 1.0000 0.9868 0.4406 0.5763 1.0000 0.9153
0.6449 0.7349 0.9868 1.0000 0.2071 0.2940 0.9153 1.0000

47



Figure A.3: Fit of the factor models

These graphs present, regarding both the n-factor models of Vasicek and CIR, the average fitted as well as the average
actual term structure (TS), for n = 1, 2, 3. In addition, the root mean squared error (RMSE) is displayed for each model.
The graphs are based on the period including the zero-lower bound.

One-factor models Two-factor models

Three-factor models
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Figure A.4: Regression of observed yields on the fitted factor(s)

These graphs present the coefficients of a regression for the n-factor Vasicek and the n-factor CIR model in first differences
of the actual interest rates on the fitted factor(s) and a constant, for n = 1, 2, 3. The graphs are based on the period
including the zero-lower bound.

One-factor Vasicek model One-factor CIR model

Two-factor Vasicek model Two-factor CIR model

Three-factor Vasicek model Three-factor CIR model
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Figure A.5: Fit of the factors

These graphs present the fit of the n-factor Vasicek and the n-factor CIR model, for n = 1, 2, 3. The graphs are based on
the period including the zero-lower bound.

First factor one-factor models First factor two-factor models

First factor three-factor models Second factor two-factor models

Second factor three-factor models Third factor three-factor models
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Figure A.6: Fit of the one-factor model

These graphs present the fitted yields and the actual yields for (3,12,60,120) months with the fit of the one-factor models
on the left for the period including the zero-lower bound and the fit of the one-factor models on the right for the period
including the zero-lower bound.
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Figure A.7: Fit of the two-factor model

These graphs present the fitted yields and the actual yields for (3,12,60,120) months with the fit of the two-factor models
on the left for the period excluding the zero-lower bound and the fit of the two-factor models on the right for the period
including the zero-lower bound.
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Figure A.8: Fit of the three-factor model

These graphs present the fitted yields and the actual yields for (3,12,60,120) months with the fit of the three-factor models
in the period excluding the zero-lower bound on the left and the fit of the three-factor models in the period including the
zero-lower bound on the right.
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