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Abstract

The relevance for the identification of priced risk factors on the international level has

increased tremendously in the last couple of decades. We revisit the recent work of Barillas

and Shanken (2018) and Chib et al. (2018) who introduce a marginal likelihood based factor

selection methodology. We argue that the specification of the Barillas and Shanken (2018)

priors of the alpha’s (across the candidate models) implies a prior bias towards sparse factor

models, and find simulation results indicate that the factor selection methodology tends

to favour sparser factor models, as opposed to the factor model implied by the simulated

DGP, excessively. We find we can drastically increase the precision of the factor selection

methodology by increasing the spreads of the priors of the alpha’s, and find the precision of

the methodology to be robust in a setting with student-t distributed factors. We apply the

factor selection methodology, using priors for the alpha’s with increased spreads, to select

priced risk factors out of a set of prominent global factors as proposed in the literature, and

find our selected factor model outperforms several prominent factor models proposed in the

literature in terms of relative pricing performance.
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1 Introduction

The relevance for the identification of priced risk factors on the international level has increased

tremendously in the last couple of decades, along with the share of investors with foreign equity

holdings. Brusa et al. (2014) write that aggregate foreign equity holdings as a percentage of

global gross domestic product have increased steadily from roughly 3% in the 1980’s to 30% in

2011. Following the traditional CAPM of Sharpe (1964) and Lintner (1965), the excess-return

of the market portfolio is the only risk factor that carries a price of risk, and is able to fully

explain the cross-section of expected excess-returns of all assets. Brusa et al. (2014) argue that,

under the assumption of purchasing power parity (PPP), the traditional CAPM can easily be

extended to global markets, the World CAPM. Currently, there exists an extensive body of

literature that discusses anomalies of the (World) CAPM, and as such, the literature provides

us with numerous (global) candidate (excess-return) factors that help explain the anomalies of

the (World) CAPM (Brusa et al. (2014), Fama and French (2012), Asness et al. (2013)).

The relevance for the identification of priced risk factors increases with the number of pro-

posed (global) candidate (excess-return) factors, as the identification of priced risk factors helps

us to identify which of the candidate factors help explain expected excess-returns of (global)

assets, and which of the candidate factors are in fact non-risk factors with expected excess-

returns that can be fully explained by other, priced, risk factors. The quest to identify priced

(excess-return) risk factors that fully explain the cross-section of asset expected excess-returns

corresponds to the quest to find the mean-variance efficient portfolio (Huberman and Kandel

(1987), Back (2015)). Thus, identifying priced (excess-return) risk factors on the international

level is relevant from an explanatory viewpoint as well as from the viewpoint of an investor who

aims to find the mean-variance efficient portfolio on the international level.

The recent research of Barillas and Shanken (2018) introduces a Bayesian, marginal likelihood

based, factor identification (or, selection) methodology that allows us to filter out priced risk

factors from a set of (global) candidate excess-return factors. Barillas and Shanken (2018)

compare the relative pricing performance of candidate factor models simultaneously by the

means of the marginal likelihoods of the respective models. The marginal likelihood of a model

is defined as the likelihood that a model will generate the observed data, given a prior on the

model parameters. The marginal likelihood based factor model comparison methodology may

also be interpreted as a factor selection methodology. Out of a set of candidate factors, one could

simply select the combination of factors that form the factor model with the highest marginal

likelihood, as compared to other factor combinations, as priced risk factors.

For each candidate factor model, Barillas and Shanken (2018) specify the prior of the un-
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conditional mean of the proposed priced risk factors, or, alternatively, the alpha, as a proper

distribution and specify the prior of the remaining “nuisance” parameters as an improper Jef-

freys (1961) prior. Chib et al. (2018) revisit the framework of Barillas and Shanken (2018)

and point out that the marginal likelihood based factor selection methodology is unsound as

the improper Jeffreys (1961) priors of the “nuisance” parameters across the candidate models

depend on arbitrary constants that may vary across the priors. The marginal likelihoods are

therefore non-comparable across models and cannot be used to locate the true priced risk fac-

tors. Chib et al. (2018) show that the “nuisance” parameters across the models are connected

by invertible maps and, using the change-of-variable technique, Chib et al. (2018) derive new

improper priors for the “nuisance” parameters across the models that all depend on a single

arbitrary constant. Using the improper priors of Chib et al. (2018), the marginal likelihoods of

the candidate factor models can be properly compared as the single arbitrary constant, common

across all improper priors, always cancels out when constructing Bayes factors. Conveniently,

the methodology allows the marginal likelihoods to be derived as closed form expressions.

A Bayesian, marginal likelihood based, factor selection methodology, similar to Barillas and

Shanken (2018) and Chib et al. (2018), has been developed by Chib and Zeng (2018). Chib and

Zeng (2018) base their methodology on the assumption that excess-return factors are student-t

distributed, while the methodology of Barillas and Shanken (2018) and Chib et al. (2018) is based

on the assumption that excess-return factors are normally distributed. While the methodology

of Chib and Zeng (2018) accounts for fat tails exhibited by empirical (stock) return data (Fama

(1965)), marginal likelihoods are not available as closed form solutions and must be estimated

using MCMC methods, which may require substantial computing power. Chib et al. (2018)

consider the advances in their paper, as well as the advances of Chib and Zeng (2018), as

complementary, and state the advances open doors to an exciting new wave of reliable Bayesian

work on the comparison of factor models.

The marginal likelihood based factor selection methodology presented by Barillas and Shanken

(2018) and Chib et al. (2018) is related to a GMM based factor selection approach as discussed

in Cochrane (2005). Both methodologies attempt to partition a set of candidate excess-return

factors into a set of priced risk factors that, ceteris paribus, affect the SDF, and a set of non-

risk factor that, ceteris paribus, do not affect the SDF. Only the former set of factors consists

of priced risk factors, as investors only demand a risk premium on an asset’s expected return

when it is exposed to a factor that, ceteris paribus, affects the SDF. The marginal likelihood

based approach of Barillas and Shanken (2018) and Chib et al. (2018) evaluates which particular

partition of the candidate factors is most supported by the data. The GMM approach splits

the candidate factors by separating factors with estimated direct effects on the SDF that are
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significant from factors with estimated direct effects on the SDF that are insignificant.

Unlike the GMM based factor selection methodology of Cochrane (2005), the marginal likeli-

hood based factor selection methodology of Barillas and Shanken (2018) and Chib et al. (2018),

does not require the use of test-asset data, as the information contained in test-asset data can-

cels out when constructing Bayes factors. Indeed, in their research, Barillas and Shanken (2017)

find that, although test-asset data provides valuable information when assessing the pricing

performance of a factor model in an absolute setting, test-asset data provides no information

when simultaneously comparing the relative pricing performance of candidate factor models.

Many papers in the empirical literature, for example, Brusa et al. (2014), Hou et al. (2015) and

Hou et al. (2011), frame the comparison of the relative pricing performance of factor models

in terms of success in pricing, solely, test-assets, which Barillas and Shanken (2017) find may

lead to a false inference about factor model comparison. Furthermore, Barillas and Shanken

(2017) provide a thorough discussion on their finding that, when the comparison of the relative

pricing performance of factor models is framed appropriately in terms of success in pricing both

test-assets as well as excluded factors, the extent to which each factor model is able to price

excluded factors, not test-assets, is what matters for factor model comparison.

The fact that the marginal likelihood based factor selection methodology of Barillas and

Shanken (2018) and Chib et al. (2018) is not based on test-asset data gives it an advantage over

test-asset based factor selection methodologies (such as Cochrane (2005), or Pukthuanthong

et al. (2019)) in certain scenarios. In a scenario where only a few test-assets are of interest,

test-asset based factor selection methods might fail to select factors that are actually priced risk

factors, but not sufficiently related to the particular set of test-assets in question, even when a

large number of observations are available. When a large set of test-assets is of interest, and all

priced risk factors are assumed to be sufficiently related to the test-assets, accuracy of test-asset

based factor selection methods may suffer from a large N small T issue when, given a number

of available observations T , the number of test-assets N is sufficiently large. The marginal

likelihood based methodology, conveniently, does not suffer from these issues.

We extend upon the the research of Chib et al. (2018) and Barillas and Shanken (2018), and

further investigate the specification of the priors of the unconditional means of the proposed

priced risk factors, or alpha’s, across the candidate models. Barillas and Shanken (2018) specify

the priors of the alpha’s (across the candidate models) as proper normal distributions with means

of zero. Barillas and Shanken (2018) derive a theoretical restriction on the potential magnitude of

hyper-parameter k, governing the spreads of the priors, and set it to equal the squared maximum

(attainable) Sharpe ratio (over the portfolio) of the candidate factors, divided by the number

of candidate factors, as the unconditional mean of the candidate factors is directly related to

3



the squared maximum Sharpe ratio of the candidate factors. We argue that the Barillas and

Shanken (2018) priors of the alpha’s, with means of zero, imply a prior bias towards sparse factor

models, as economic intuition suggests that the (absolute values of the) unconditional means of

excess-returns of a set of tradeable factors are positive, instead of zero, such that investors are

compensated for bearing risk. The prior bias towards sparse models reflects our preference of

a sparse over a less-sparse factor model, on the condition that the sparse model is statistically

valid. We argue that spreads of the priors of the alpha’s that are excessively narrow (or strict)

may imply an excessive prior bias towards sparse factor models, in the sense that less-sparse

models will only be preferred over sparse models if posterior evidence against the statistical

validity of the sparse models is excessively strong.

In a simulation study, we we find the precision of the marginal likelihood based factor

selection methodology of Chib et al. (2018) and Barillas and Shanken (2018) to be wanting,

when the priors of the alpha’s (across the candidate models) are specified as suggested by

Barillas and Shanken (2018). Using the Barillas and Shanken (2018) priors of the alpha’s, the

marginal likelihood based factor selection methodology tends to excessively favour sparser factor

models, as opposed to the true factor model as implied by the simulated DGP, in turn suggesting

that the priors imply an excessive prior bias towards sparse factor models. Indeed, we find we

can substantially improve upon the precision of the marginal likelihood based factor selection

methodology by setting hyper-parameter k, though conflicting with theoretical restrictions on

the potential magnitude of k, equal to a multiple of the squared maximum Sharpe ratio of the

candidate factors, divided by the number of candidate factors, effectively increasing the spreads

of the priors of the alpha’s and decreasing the prior bias towards sparse factor models. Using our

specification of the priors of the alpha’s, we find the precision of the marginal likelihood based

factor selection methodology to be robust in a setting with student-t, as opposed to normally,

distributed factors and to be much more satisfactory than the precision of the GMM based

factor selection methodology of Cochrane (2005).

In an empirical study, we use the marginal likelihood based factor selection methodology of

Chib et al. (2018) and Barillas and Shanken (2018), using priors for the alpha’s with increased

spreads, to select priced risk factors out of a set of prominent global (excess-return) factors pro-

posed in the literature. Our selected factor model outperforms several prominent factor models

proposed in the literature in terms of pricing performance w.r.t. excluded candidate factors,

and in terms of the overall ability to explain differences across the cross-section of expected

excess-returns of global stock portfolios. It remains a challenge to fully explain the cross-section

of expected excess-returns of global stocks however, as we find none of our considered factor

models are likely able to price all of our global stock portfolios without pricing error.
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The remainder of our paper will be organised as follows. In section 2, we revisit the research of

Barillas and Shanken (2017) and discuss the marginal likelihood based and GMM based factor

selection methodologies of, respectively, Chib et al. (2018) and Barillas and Shanken (2018),

and Cochrane (2005). We introduce (global) candidate factor and test-asset data in section 3.

Section 3 also provides a brief discussion on the backgrounds of our candidate factors. Sections

4 and 5 respectively present our simulation study and our empirical study. Section 6 concludes.

2 Methodology

2.1 Preliminaries

We consider an international investor, situated in home country j, who invests in assets across

various countries. Following the fundamental asset valuation equation of Cochrane (2005), the

expected discounted excess-return of country i’s asset, from the perspective of a country j

investor equals 0:

Et(M
j
t+1r

i
j,t+1) = Et(M

j
t+1(R

i
i,t+1S

i
j,t/S

i
j,t+1 −R

f
j,t)) = 0, (1)

where M j
t denotes the (nominal) stochastic discount factor (SDF) of country j, Rij,t+1 (rij,t+1)

denotes the gross (excess) return of country i’s asset in terms of country j’s currency, and Sij,t

denotes the exchange rate between foreign currency i and domestic currency j. The exchange

rate is defined in units of foreign currency per unit of domestic currency. The gross risk-free rate

of country j is denoted by Rfj,t. We assume the perspective of an US investor in our research,

and suppress j when we consider the US as the home country.

Following Hansen and Jagannathan (1991), we specify the SDF as an affine function of risk

factors ft (a K × 1 vector). In turn, Eq. (1) implies a beta factor model for excess-returns. So,

given

Mt+1 = 1− b′t[ft+1 − Et(ft+1)], Et(Mt+1r
i
t+1) = 0, (2)

it holds (see Cochrane (2005))

Et(r
i
t+1) = β′i,tλt, βi,t = vart(ft+1)

−1covt(ft+1, r
i
t+1), λt = vart(ft+1)bt.

The vector βi,t contains the conditional sensitivities of excess-return rit+1 to the K risk factors,

and the vector λt contains the conditional prices of the risks the risk factors carry. When

ft+1 exclusively contains excess-returns (in our research we consider, exclusively, excess-return

factors), we end up with the (asset pricing) factor model

rt+1 = βtft+1 + εt+1, βt = [β1,t, ..., βN,t]
′, Et(εt+1) = 0, (3)

with rt+1 denoting a N × 1 vector of N test-asset excess-returns, and λt = Et(ft+1).
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2.2 Absolute Evaluation of Asset Pricing Factor Models

Gibbons, Ross and Shanken (Gibbons et al. (1989)) develop a test to evaluate the factor model

as given by Eq. (3) (the GRS-test) in an absolute sense. Gibbons et al. (1989) assume an

unconditional setting with constant factor sensitivities βt = β and prices of risk Et(ft) = E(ft),

and test the null H0 : α = 0 in the factor regression model:

rt+1 = α+ βft+1 + εt+1, εt ∼ NN (0,Σ), β = [β1, ..., βN ]′, (4)

disturbances εt are assumed to be normally distributed. In case α 6= 0, the factor regression

model does not reduce to the (unconditional form of) the factor model given by Eq. (3), meaning

that the cross-section of expected excess-returns is not fully explained by the factors ft.

We define R = (r1, ..., rT )′ and F = (f1, ..., fT )′. The GRS test is an F-test with N restric-

tions and test statistic

z =
T −N −K

N

α̂Σ̂−1α̂

1 + Sh(F )2
∼ F (N,T −N −K), α̂Σ̂−1α̂ = (Sh(F ,R)2 − Sh(F )2), (5)

with F (a, b) denoting the F-distribution with a and b degrees of freedom. Sh(F ) and Sh(F ,R)

denote maximum sample Sharpe ratios over, respectively, a portfolio of the K factors and a

portfolio of the K factors and N test-assets. Estimate α̂ denotes the OLS estimate of α, while

Σ̂ denotes the ML (biased) estimate of Σ. The null is rejected in case a significant increase

in maximum sample Sharpe ratio can be attained by constructing a Sharpe ratio maximizing

portfolio consisting of test-assets and factors, as opposed to factors only. Testing H0 : α = 0

by the means of the GRS test is thus equivalent to testing whether the mean-variance efficient

portfolio can be constructed by the K risk factors, exclusively.

2.3 Relative Evaluation of Asset Pricing Factor Models

While an (excess-return) factor model can be evaluated in an absolute sense by testing whether

it adequately prices a set of test-assets by the means of a GRS test, the GRS test results are

not informative for the relative pricing performance of the factor model, as compared to other

competing models. Barillas and Shanken (2017) show that, when the comparison of the relative

pricing performance of factor models is of interest, the comparison should be framed in terms

of success in pricing excluded factors, as opposed to the pricing of test-assets. Barillas and

Shanken (2017) find that framing the comparison of the relative pricing performance of factor

models in terms of success in pricing, solely, test-assets, may lead to a false inference about

model comparison.
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2.3.1 Comparing Nested Models

Let us consider a set of factors ft that can be partitioned ft = (f1,t, f2,t)
′. We label the (asset

pricing) factor model consisting of factors ft, and the factor model consisting of factors f1,t as

model M and model M1, respectively. Model M1 is nested in the model M in the sense that

modelM1 is a restricted version of modelM. We write the factor regression model as specified

in Eq. (4) consisting of factors ft as

rt = αr + β1f1,t + β2f2,t + εt, (6)

after partitioning β = (β1,β2) conform the factor partition ft = (f1,t, f2,t)
′. The relationship

between the parameters of the factor regression model consisting of factors f1,t

rt = αr1 + bf1,t + et, (7)

and parameters of regression model (6) depends on the parameters of the regression model

f2,t = α21 + df1,t + ut, (8)

where factors excluded from modelM1 are regressed on the factors included inM1. Substituting

regression equation (8) in regression equation (6) gives

rt = (αr + β2α21) + (β1 + β2d)f1,t + (β2ut + εt).

The relationship between the parameters of the regression model (6) and the regression model

(7) is thus given as

αr1 = αr + β2α21, b = β1 + β2d, (9)

under orthogonality conditions that ut and εt have means of 0 and are uncorrelated with f1,t.

Relationship (9) implies that nested model M1 is valid, in the sense that the factors in M1

price all test-assets as well as excluded factors f2,t (αr1 = 0 and α21 = 0), if and only if the

excluded factors f2,t are priced by the factors in the nested model M1 (α21 = 0) and test-

assets are priced by the factors in the larger model M (αr = 0). Furthermore, the relationship

implies that, in case excluded factors f2,t are priced by the factors in model M1 (α21 = 0),

model predictions for test-asset expected excess-returns are identical under both M and M1,

with identical pricing errors αr = αr1 (following from (9)). Under M1 and M, predicted

expected test-asset excess-returns are bE(f1,t) and β1E(f1,t)+β2E(f2,t), respectively (assuming

no pricing errors). In case α21 = 0, Eq. (8) implies E(f2,t) = dE(f1,t), ans so M predicts

β1E(f1,t) + β2dE(f1,t) = (β1 + β2d)E(f1,t) = bE(f1,t), which equals the prediction of M1.

Thus, in case the excluded factors f2,t are priced by modelM1 (α21 = 0),M1 is the superior

model (in terms of sparsity), as compared toM, regardless of the pricing performance of model
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M1 with respect to the test-assets. This, because pricing performances of models M1 and M,

with respect to the test-assets, are identical in case α21 = 0, but we favour a sparse model

over a less sparse model. In case model M1 fails to price factors f2,t (α21 6= 0), model M1 is

inferior to model M in the statistical sense that an asset pricing model solely comprising the

factors f1,t wrongly implies α21 = 0, and in the sense that factors f1,t can not possibly form

the mean-variance efficient portfolio, as the mean-variance efficient portfolio comprising both

factors f1,t and f2,t will attain a higher Sharpe ratio than the mean-variance efficient portfolio

solely comprising factors f1,t.

Although it might seem that, in case α21 6= 0, the general model M can only improve upon

the pricing of the test-assets, as compared to model M1, this is not necessarily the case. For

example, in case α21, αr, αr1 and β2 are scalars, and α21 and β2 have an opposite sign, it holds

that αr1 < αr. Thus, in case both αr1 and αr are positive and non-zero, the pricing performance

of the larger model M will be worse than the pricing performance of model M1, as judged by

the magnitude of test-asset alphas, even though M is the better model.

2.3.2 Comparing Non-Nested Models

When comparing relative pricing performance of non-nested factor models, we can use the fact

that each of the factor models is a nested version of the factor model that includes all the factors.

Thus, our discussion in section 2.3.1 also has implications in a setting where we compare non-

nested models. Let us denote two factor models that, respectively, include factors f1,t = (It, IIt)
′

and f2,t = (It, IIIt)
′ by M1 and M2. Both models are nested in the factor model including all

factors ft = (It, IIt, IIIt)
′, denoted by M. Factors I, II and III denote arbitrary factors.

Let α21, α12 and αr denote regression constants of, respectively, the regression of III on the

factors f1,t, the regression of II on the factors f2,t and the regression of test-assets on the factors

ft. Following our discussion in section 2.3.1, model M1 is valid, in the sense that the factors in

the model price all test-assets as well as excluded factor III, if and only if α21 = 0 and αr = 0.

Model M2 is valid if and only if α12 = 0 and αr = 0. We can only distinguish between relative

pricing performance of models M1 and M2 by focusing on the extent of deviations from the

excluded-factor restrictions α21 = 0 and α12 = 0, regardless of the validity of the restriction

αr = 0, which we will illustrate with an example.

Suppose that α21 = 0, and α12 6= 0. In this case, following our discussion in section 2.3.1

modelM1 is superior to modelM in terms of sparsity. On the other hand, modelM2 is inferior

to model M1 in the statistical sense that an asset pricing model solely comprising factors f2,t

wrongly implies α12 6= 0 and in the sense that the maximum attainable Sharpe ratio of a portfolio

of factors f2,t is lower than the maximum attainable Sharpe ratio of a portfolio of factors f1,t.
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Let αr1 and αr2, respectively, denote the constant of the regression of test-assets on the factors

in M1 and M2. In case α21 = 0, the relation between the parameters of the factor regression

models (including constants) corresponding to factor models M and M1 implies αr = αr1.

Thus, when αr = 0 modelM1 is not only valid in the sense that the factors f1,t price the factors

f2,t, but also valid in the sense that the factors f1,t fully explain the cross-section of test-asset

expected excess-returns.

Although,M1 clearly is the superior model as compared toM2 in case α21 = 0 and α12 6= 0,

pricing performance of modelM1 w.r.t. test-assets, as judged by test-asset alphas, can actually

be worse as compared to model M2, in case αr 6= 0. The relation between parameters of the

factor regression models (including constants) corresponding to factor modelsM andM2 is given

as αr2 = αr + β1α12, with β1 denoting the regression coefficient of f1,t in the factor regression

model corresponding to the full factor modelM. So in case α21 = 0, αr2 = αr1+β1α12. Suppose

αr2, αr1, α21 and β1 are scalars. When α12 6= 0 has the opposite sign as β1, it holds αr2 < αr1.

In case both αr1 and αr2 are positive and non-zero, the pricing performance of model M1 will

be worse than the pricing performance of model M2, as judged by the magnitude of test-asset

alphas, even though M1 is the better model.

The examples discussed in this section and section 2.3.1 thus serve to illustrate that, by

focusing on the pricing of test-assets, in isolation of factors, when comparing the relative pricing

performance of factor models (nested or non-nested), a false inference about model comparison

can be obtained. Test-assets should be solely used to evaluate whether the factors in an factor

model fully explain the cross-section of expected excess-returns of the test-assets, but provide no

information that is relevant for the comparison of the relative pricing performance of competing

factor models. When the comparison of the relative pricing performance of competing factor

models is of interest, the extent to which each model is able to price excluded factors is what

matters for model comparison.

2.4 Factor Selection: a GMM Approach

A factor is a priced risk factor if and only if the factor has a direct effect on the SDF. A factor

is a non-risk factor that is priced by other, priced, risk factors if and only if the factor has

no direct effect on the SDF. Factor (model) selection thus essentially boils down to determin-

ing which factors have a direct effect on the SDF, and which factors do not. In the current

section, we present the classical GMM based factor (model) selection approach (as discussed

in Cochrane (2005)). In section 2.5, we discuss the Bayesian marginal likelihood based factor

(model) selection approach as introduced by Barillas and Shanken (2018) and Chib et al. (2018).

Let f∗t denote the vector of H candidate excess-return risk factors. We define the SDF as
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an affine function of the candidate risk factors (we assume an unconditional setting):

Mt+1 = 1− b′f∗t+1,

In case we specify Mt+1 = 1− b′[f∗t+1−E(f∗t+1)] we end up with the unconditional version of the

SDF specification as displayed in Eq. (2). We opt not to use that specification in this setting to

avoid having to estimate E(f∗t+1). The GMM approach allows us to estimate the direct effects

of the various candidate factors on the SDF, b, and thus to isolate priced risk factors from a set

of candidate factors. A priced risk factor likely has an estimated direct effect that is significant,

a factor with an estimated direct effect that is insignificant is likely to be non-risk factor.

The fundamental asset valuation equation provides us with a set of N moment conditions:

E(Mtrt) = 0, E(ut(b)) = 0, ut(b) = rt − b′f∗t rt,

with rt denoting a vector of excess-returns of N test-assets. Given b, ut(b) captures the pricing

error at time t, which is expected to be 0 as implied by the fundamental asset valuation equa-

tion. With GMM, we estimate b such that the distance between sample moments and implied

population moments is minimized:

b̂ = arg min
b

gT (b)′W gT (b), gT (b) =
1

T

T∑
t=1

ut(b) = ET (ut(b)), ET (·) =
1

T

T∑
t=1

(·),

with ET (·) denoting the sample mean. The matrix W is a weighting matrix. Typically, the

weighting matrix is set W = I or W = S = E(ut(b)ut(b)
′). In the former case, pricing errors

of all test-assets are given equal weights. Pricing errors of test-assets are given higher weights

when their respective (co-)variances are smaller and vice versa, in the latter case. The matrix

S may be estimated in a first stage estimate of b, where weighting matrix W = I is used. We

solve analytically for the GMM estimate b̂ (see Cochrane (2005)):

b̂ = (X ′W−1X)−1X ′W−1ET (rt), X ′ = ET (f∗t r
′
t).

The asymptotic distribution of the estimator b̂, using weighting matrix W = I, is given as:

√
T (b̂− b) d→ N(0,V ), V = (X ′X)−1X ′SX(X ′X)−1. (10)

When we use weighting matrix W = S, the expression V collapses to V = (X ′S−1X)−1.

We are now equipped with the tools to evaluate whether a candidate factor f∗2,t has a direct

effect on the SDF. We estimate b = [b′1 b2]
′ (where b2 is a scalar) of the model

Mt+1 = 1− b′f∗t+1 = 1− (b′1f
∗
1,t+1 + b2f

∗
2,t+1), f∗t = [(f∗1,t)

′ f∗2,t]
′,

10



and test whether the candidate factor f∗2,t has a significant direct effect on the SDF by the means

of an asymptotic z-test. We thus test H0 : b2 = 0, where the asymptotic distribution of the test

statistic follows directly from Eq. (10)

Z =
b̂2√

var(b̂2)

d→ N(0, 1).

To split the set of candidate factors into a set of priced risk factors and a set of non-risk factors,

we employ a hybrid backward elimination / forward selection strategy, see Algorithm 1. After

applying our hybrid factor selection strategy, we end up with a set of factors in ft that all have a

statistically significant direct effect on the SDF, and are therefore likely to be priced risk factors.

None of factors in f̃t have a statistically significant direct effect on the SDF, all factors in f̃t are

therefore likely to be non-risk factors.

Algorithm 1 Factor Selection by hybrid backward elimination / forward selection

1: Let ft and f̃t respectively denote potential risk factors included in the model for the SDF,

and excluded in the model for the SDF. Start of with including all H candidate risk factors

in ft, so that f̃t is empty.

2: Estimate b of the model Mt+1 = 1− b′ft+1.

3: Test for significance of each individual factor in ft+1 (we use a 5% significance level). If one

or more factors are found to have an insignificant effect, transfer the factor with the weakest

significance from ft to f̃t, and go back to step 2. If all factors are found to have a significant

effect, proceed to step 4.

4: Let E denote the number of factors in f̃t. For all e = 1, ..., E, estimate be1 and be2 of the model

Mt+1 = 1− (be1)
′ft+1− be2f̃e,t+1, with f̃e,t+1 denoting element e of f̃t+1. If none of the factors

in f̃t+1 are found to have a significant effect, or E = 0, terminate the procedure. If one or

more factors have a significant effect, transfer the factor with the strongest significance from

f̃t to ft, and return back to step 2.

2.5 Factor Selection: a Bayesian Marginal Likelihood based Approach

Given H candidate excess-return risk factors (collected in vector f∗t ), a total of J = 2H − 1

candidate factor models can be constructed. Each candidate factor might either be a priced risk

factor or a non-risk factor with an expected excess-return that is fully explained by other, priced,

risk factors (we assume at least one of the factors in our set of candidate factors is a priced risk

factor). Following Barillas and Shanken (2018), Chib et al. (2018) compare the (relative) pricing

performance of all candidate factor models simultaneously by the means of marginal likelihoods.

11



The marginal likelihood of a model is defined as the likelihood that a model will generate the

observed data, given a prior on the model parameters. The procedure of Chib et al. (2018)

can be used as a factor selection procedure. Given H candidate factors and J candidate factor

models, one could simply select the factors that make up the model with the highest marginal

likelihood as priced risk factors. LetMj , j = 1, ..., J , denote any of the candidate factor models.

Each model Mj , j = 1, ..., J , partitions the vector of H candidate factors, f∗t , into a vector of

Kj proposed priced risk factors fj,t and a vector of Mj = (H −Kj) implied non-risk factors f̃j,t:

f∗t = (f ′j,t, f̃
′
j,t)
′. The partition of the vector of candidate factors f∗t into a vector of (proposed)

priced risk factors fj,t and a vector of (implied) non-risk factors f̃j,t is unique for each model

Mj , j = 1, ..., J . Let rt denote a vector of excess-returns of N test-assets. For each model Mj ,

j = 1, ..., J , we collect test-assets rt and non-risk factors f̃j,t in the vector yj,t.

Assuming a setting with student-t distributed (excess-returns of) test-assets and candidate

factors, we write the joint distribution of test-assets rt and the partition of f∗t = (f ′j,t, f̃
′
j,t)
′

implied by model Mj , j = 1, ..., J , as (we assume an unconditional setting)fj,t
yj,t

 ∼ tH+N

(µj
µ̃j

 ,

Σj Ωj

Ω′j Ω̃j

 , ν

)
, Ωj = cov(fj,t, yj,t), yj,t =

f̃j,t
rt

 ,

with td(µ,Σ, ν) denoting the d-dimensional multivariate student-t distribution with location

parameter µ, scale parameterΣ and ν d.o.f.. In case ν →∞, the student-t distribution collapses

to a normal distribution. We can write model Mj , j = 1, ..., J , as a marginal distribution of

priced risk factors fj,t and a (conditional) joint distribution of test-assets rt and non-risk factors

f̃j,t (collected jointly in yj,t), conditional on priced risk factors fj,t:

fj,t = µj + εj,t,

yj,t = µ̃j + βj(fj,t − µj) + εj,t,

where εj,t
εj,t

 ∼ tH+N

(
0,

Σj 0

0 Σ̃yj

 , ν

)
, Σ̃yj = Ω̃j −Ω′jΣ−1j Ωj , βj = Ωj

′Σ−1j ,

with βj denoting the matrix of regression coefficients in the regression of the test-assets and

non-risk factors (collected jointly in yj,t) on the priced risk factors fj,t.

Model Mj , j = 1, ..., J , proposes the factors in fj,t to be priced risk factors, and therefore

proposes that each single factor in fj,t has a direct effect on the SDF:

Mt+1 = 1− b′j [fj,t+1 − E(fj,t+1)], bj = var(fj,t+1)
−1λj ,

As model Mj , j = 1, ..., J , implies that the factors in f̃j,t are not priced risk factors, the model

implies that the factors in f̃j,t do not affect the SDF (ceteris paribus). The fundamental asset
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valuation equation

E

(
Mt+1

fj,t
yj,t

) = 0

implies µj = λj and µ̃j = βjλj . Each model Mj , j = 1, ..., J , can thus be written as

fj,t =
( ν

ν − 2

)
Σjbj + εj,t, εj,t ∼ tKj (0,Σj , ν),

f̃j,t = βj,ffj,t + νj,t, νj,t ∼ tMj (0, Σ̃j , ν), cov(εj,t, νj,t) = 0,

rt = βj,rfj,t + uj,t, uj,t ∼ tN (0, Σ̃rj , ν), cov(εj,t, uj,t) = 0, cov(νj,t, uj,t) = Cj ,

Assuming the model is correctly specified, the expected excess-returns of both test-assets rt and

non-risk factors f̃j,t are fully explained by the risk factors fj,t. Following our discussion in section

2.3.1, in case the proposed priced risk factors in a factor model price the non-risk factors as well

as test-assets, the test-assets are also priced by the joint set of proposed priced risk factors and

non-risk factors. We are able to derive a closed form expression for the marginal likelihood of

modelMj , j = 1, ..., J , under the assumption that (excess-returns of) factors and test-assets are

normally distributed. Setting ν →∞, and following our discussion in section 2.3.1, we re-write

model Mj , j = 1, ..., J , as

fj,t = αj + εj,t, αj = Σjbj , εj,t ∼ NKj (0,Σj),

f̃j,t = βj,ffj,t + νj,t, νj,t ∼ NMj (0, Σ̃j),

rt = βrf
∗
t + ut, ut ∼ NN (0, Σ̃r),

(11)

with shocks εj,t, νj,t and ut being mutually independent, and with the sub-model of the test-

assets being identical across all models Mj , j = 1, ..., J .

Let βj,f = vec(βj,f ) and βr = vec(βr) respectively denote the vectorizations of βj,f and βr.

Let σr = vech(Σ̃r), σj = vech(Σj) and σ̃j = vech(Σ̃j) denote the half vectorizations of the three

covariance matrices. The parameters of model Mj , j = 1, ..., J , are then

θj = (α′j , η
′
j , β
′
r, σ
′
r)
′ ∈ (Θ′αj , Θ

′
ηj , Θ

′
βr , Θ

′
σr)
′, ηj = (β′j,f , σ

′
j , σ̃
′
j)
′ ∈ Θηj ,

where Θαj , Θηj , Θβr and Θσr respectively denote the parameter spaces of αj , ηj , βr and σr.

We specify a prior density of parameter θj :

p(θj |Mj) = π(αj |Mj , ηj)ψ(ηj |Mj)ψr(βr, σr).

As parameters βr and σr are identical across all candidate models, the prior density ψr(βr, σr)

is identical across all candidate models as well. Following Barillas and Shanken (2018), Chib

et al. (2018) specify the conditional prior of αj , π(αj |Mj , ηj), as a proper density:

π(αj |Mj , ηj) = φKj (αj |0, kΣj), (12)
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with φd(·|µ,Σ) denoting the pdf of the d-dimensional multivariate normal distribution with

mean µ and covariance Σ. Barillas and Shanken (2018) derive a theoretical restriction on the

potential magnitude of hyper-parameter k (Appendix A.1), controlling the spread of the prior.

As the unconditional mean of the candidate factors is directly related to the squared maximum

(attainable) Sharpe ratio (over the portfolio) of the candidate factors, Barillas and Shanken

(2018) set k to equal the maximum Sharpe ratio of the candidate factors, divided by H:

k = ShMax2/H, ShMax = τShMkt,

with ShMax and ShMkt respectively denoting the maximum Sharpe ratio of the candidate

factors and the Sharpe ratio of the market portfolio. Assuming the candidate factors span the

mean-variance efficient portfolio, ShMax equals the Sharpe ratio of the mean-variance efficient

portfolio. Under the hypothesis that the market portfolio is not mean-variance efficient, ShMax

is specified to be a multiple, governed by τ , of ShMkt. Economic intuition provides limits on

the magnitude of τ . Barillas and Shanken (2018) suggests using τ in the range τ ∈ [1.5 3]. We

discuss the specification of the proper prior of parameter αj in further detail in section 2.5.1.

Let M1 stand for the model in which all of the H candidate factors are (proposed) priced

risk-factors (omitting the pricing equation for the test-assets, for simplicity):

f1,t = α1 + ε1,t, ε1,t ∼ NH(0,Σ1), η1 = σ1 = vech(Σ1).

Chib et al. (2018) specify a Jeffreys (1961) improper prior for η1 (with c an arbitrary constant):

ψ(η1|M1) = cψ̃(η1|M1) = c|Σ1|−
H+1

2 , ψ̃(η1|M1) = |Σ1|−
H+1

2 . (13)

To derive the improper priors of ηj , j = 2, ..., J , Chib et al. (2018) make use of the fact that the

“nuisance” parameters {ηj}Jj=1 are all connected by invertible maps. Thus, the parameter η1 of

model M1 and parameter ηj of model Mj (j > 1) are connected by the invertible map

ηj = gj(η1), such that η1 = g−1j (ηj).

We derive the inverse map η1 = g−1j (ηj) in Appendix A.2. The invertible maps can be used to

derive the improper priors of {ηj}Jj=2 by applying the change-of-variable technique to η1 with a

prior as specified in Eq. (13):

ψ(ηj |Mj) = cψ̃(g−1j (ηj)|M1)

∣∣∣∣∣det

(
∂g−1j (ηj)

∂η′j

)∣∣∣∣∣, j = 2, ..., J, (14)

the last term being the absolute value of the Jacobian of the transformation. When the prior

of η1 is specified according to Eq. (13), the change of variable technique implies the following

improper priors of {ηj}Jj=2 (see Chib et al. (2018) for the derivation):

ψ(ηj |Mj) = c|Σj |−
2Kj−H+1

2 |Σ̃j |−
H+1

2 , j = 2, ..., J. (15)
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In general, improper priors invalidate Bayesian model comparison by marginal likelihoods.

When we multiply an improper prior by an arbitrary constant we end up with exactly the same

improper prior, as an improper prior is a distribution whose integral over the parameter space is

infinite. Thus, when prior π(θ) is improper, ciπ(θ) is exactly the same prior for any ci > 0. The

use of improper priors thus renders marginal likelihoods incomparable (in general), as marginal

likelihoods will depend on arbitrary constants. Fixing the arbitrary constants at some fixed value

does not solve the problem (in general) as Bayes factors depend on that choice. In our setting,

though, the use of the Chib et al. (2018) improper priors for “nuisance” parameters {ηj}Jj=1

does not render the marginal likelihoods incomparable. The invertible maps that connect all

parameters {ηj}Jj=1 and the change of variable formula (Eq. (14)) force our priors to all depend

on a single arbitrary constant c. When we multiply one of our priors for {ηj}Jj=1 with an

arbitrary constant, the invertible maps that connect the parameters {ηj}Jj=1 and the change of

variable formula force us to multiply all other priors of {ηj}Jj=1 with exactly the same constant

as well. Thus, although marginal likelihoods will still depend on a single arbitrary constant c,

this arbitrary constant will always cancel out when we construct Bayes factors, rendering our

marginal likelihoods comparable.

We collect all observed excess-returns of candidate risk factors and test-assets in the obser-

vation matrix Y = (y1, ..., yT )′, where yt = ((f∗t )′, r′t)
′. The marginal likelihood of model Mj ,

j = 1, ..., J , is then given as

m(Y |Mj) =

∫
Θσr

∫
Θβr

∫
Θηj

∫
Θαj

p(Y |Mj , θj)π(αj |Mj , ηj)ψ(ηj |Mj)ψr(βr, σr)dθj .

The density function p(Y |Mj , θj) is the likelihood function implied by model Mj , and can

be directly derived from the formulation of model Mj as defined in Eq. (11). Let observation

matrices F = (fj,1, ..., fj,T )′, F̃ = (f̃j,1, ..., f̃j,T )′ andR = (r1, ..., rT )′ denote observation matrices

of excess-returns of, respectively, (proposed) priced risk factors, (implied) non-risk factors and

test-assets. The marginal likelihood of model Mj , j = 1, ..., J , can be split up

m(Y |Mj) = m(F |Mj)m(F̃ |Mj)m(R),

with m(F |Mj), m(F̃ |Mj) and m(R) denoting the marginal likelihoods of the sub-models, as

implied by model Mj (as defined in Eq. (11)), of, respectively, the priced risk factors, the

non-risk factors and the test assets. A derivation is given in Appendix A.3. As the sub-model of

the test-assets is identical across all modelsMj , j = 1, ..., J , the contribution of the information

contained in the test-assets to the marginal likelihood of model Mj , m(R), is identical across

all candidate modelsMj , j = 1, ..., J . When constructing ratio’s of marginal likelihoods (Bayes

factors) of candidate models, the information contained in the test-assets thus always cancels
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out (see A.3). Thus, when simultaneously comparing the (relative) pricing performance of the

J candidate factor models by the means of marginal likelihoods, the inclusion of test-assets in

the factor models may be omitted (resulting in an empty test-asset vector rt and N = 0), as

the test-assets provide no relevant information for the comparison of the marginal likelihoods.

This key insight is in line with our discussion in section 2.3, namely that test-assets provide no

information that is relevant for the comparison of (relative) pricing performance of competing

factor models. When we omit the inclusion of test-assets in our candidate factor models, the

marginal likelihood of model Mj , j = 1, ..., J simplifies to

m(Y |Mj) = m(F |Mj)m(F̃ |Mj).

Under the assumption of normally distributed factors we are, conveniently, able to derive

closed form expressions for the marginal likelihoods m(F |Mj) and m(F̃ |Mj), in turn resulting

in a closed form expression for marginal likelihood m(Y |Mj). Derivations are given in Appendix

A.3. The closed form expressions of m(F |Mj) and m(F̃ |Mj) are given as:

m(F |Mj) = k−
Kj
2

(
1

2

)KjMj
2
(

1

π

)KjT

2

ΓKj

(
T −Mj

2

)∣∣Sj∣∣−T−Mj
2 (T + k−1)−

Kj
2 ,

m(F̃ |Mj) =

(
1

2

)−KjMj
2
(

1

π

)Mj(T−Kj)
2

ΓMj

(
T

2

)∣∣S̃j∣∣−T2 ∣∣F ′F ∣∣−Mj2 ,
Sj =

T∑
t=1

(fj,t − α̂j)(fj,t − α̂j)′ +
k−1T

T + k−1
α̂jα̂

′
j , S̃j =

T∑
t=1

(f̃j,t − β̂j,ffj,t)(f̃j,t − β̂j,ffj,t)′,

(16)

with Γd(·) denoting the d dimensional multivariate gamma function, and α̂j and β̂j,f denoting

OLS estimates of αj and βj,f .

Model Mj , j = 1, ..., J , implies the restriction that all supposed non-risk factors f̃j,t are

priced by the proposed priced risk factors fj,t with a (restricted) pricing error of zero. The

marginal likelihood of model Mj , j = 1, ..., J , is directly tied to the (negative) impact of the

model’s zero pricing error restriction on the sample fit of the model via m(F̃ |Mj) (via the S̃j

term in m(F̃ |Mj)). Ceteris paribus, marginal likelihood m(F̃ |Mj) will reach its maximum

when the expected excess-returns of the supposed non-risk factors f̃j,t are perfectly explained

by the proposed priced risk factors fj,t in-sample, i.e. modelMj ’s zero pricing error implication

that E(f̃j,t) − E(βj,ffj,t) = 0 is perfectly supported by the sample data. Ceteris paribus, the

less modelMj ’s implication that E(f̃j,t)−E(βj,ffj,t) = 0 is supported by the sample data, the

more marginal likelihood m(F̃ |Mj) will be negatively affected. In case modelMj ’s zero pricing

error restriction is poorly supported by the sample data, the supposed non-risk factors f̃j,t may

contain priced risk factors with expected excess-returns that can not be fully explained by the

proposed priced risk factors fj,t, while the proposed priced risk factors fj,t may contain non-risk

16



factors that have no explanatory power for explaining expected excess-returns. Thus, ceteris

paribus, the stronger the (negative) impact of model Mj ’s zero pricing error restriction on the

model’s sample fit, the lower m(F̃ |Mj) and, in turn, the lower m(Y |Mj).

Using the marginal likelihoods, we can compute the posterior probability that model Mj ,

j = 1, ..., J , has generated the observed data:

P (Mj |Y ) =
m(Y |Mj)P (Mj)
J∑
i=1

m(Y |Mi)P (Mi)

,

where P (Mi) denotes the prior probability that model Mi has generated the data.

2.5.1 Alpha Prior

As previously discussed, the prior distribution of parameter αj is, for each factor model Mj ,

j = 1, ..., J , specified as

π(αj |Mj , ηj) = φKj (αj |0, kΣj).

The prior distribution implies a prior belief that E(αj) = 0, which in fact conflicts with the

economic intuition that (absolute values of) expected excess-returns of risky traded portfolios are

positive such that investors are compensated for bearing risk. In the subsequent discussion, we

will show the prior distribution implies a prior bias towards sparse factor models, meaning models

with few proposed priced risk factors, as opposed to less-sparse factor models. As previously

discussed, each factor model implies the restriction that all supposed non-risk factors are priced

by the proposed priced risk factors with zero pricing error. The prior distribution ensures sparse

factor models will be favoured over less-sparse models, unless posterior evidence against the

validity of the zero-pricing error restrictions of sparse factor models is strong enough. Thus,

although the prior distribution may conflict with economic intuition, it reflects our preference

towards sparse factor models over less-sparse models, on the condition that the zero pricing error

restrictions of the sparse factor models are valid.

To investigate the implications of the prior distribution of parameter αj in closer detail,

we continue our discussion with an example setting. We consider a setting with two normally

distributed candidate factors, f1,t and f2,t, and suppose that f1,t is known to be a priced risk-

factor while f2,t is a candidate factor that may either be a priced risk factor, or a non-risk factor.

In the latter case, factor f2,t will be priced by f1,t. This leaves us with two candidate factor

models. In the first model, denoted byM1, f2,t is a priced risk factor that is not priced by f1,t.

Factor f2,t is priced by f1,t in the second model, denoted by M2. Model M1 is written as

ft = α+ εt, εt ∼ N2(0,Σ), ft =

f1,t
f2,t

 , α =

α1

α2

 , Σ =

σ21 ρ

ρ σ22

 .
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For illustrative purposes, we treat α1 and Σ as given. We specify an informative prior distribu-

tion for α2

π(α2) = φ1(α2|m, ks2), s2 = σ22 − ρ2σ−21 ,

with hyper-parameters m and k.

ModelM1 can be re-written as a marginal distribution of f1,t and a conditional distribution

of f2,t, conditional on f1,t such that

f1,t = α1 + ut, ut ∼ N1(0, σ
2
1),

f2,t = αe + βf1,t + vt, vt ∼ N1(0, s
2),

where

αe = α2 − βα1, β = ρσ−21 , s2 = σ22 − ρ2σ−21 , cov(ut, vt) = 0.

Factor model M2 implies f2,t to be priced by f1,t, and is thus a restricted version of (the

conditional version of) model M1 with restriction αe = 0. Assuming factors ft are normally

distributed, model M1 is statistically valid. As model M2 is a restricted version of model M1,

it is statistically valid if and only if pricing error αe indeed equals 0.

Let F1 = (f1,1, ..., f1,T )′ and F2 = (f2,1, ..., f2,T )′ respectively denote observation vectors of

f1,t and f2,t. Given α1, β and F1, observing F2 implies observing E2 = F2 + βα1ιT − βF1 with

E2 ∼ NT (α2ιT , s
2IT ), where ιT and IT respectively denote a (T × 1) vector of ones and the

(T × T ) identity matrix. Let α̂2 = Ē2 denote the sample mean of E2, and let α̂e = α̂2 − βα1.

Given an observed α̂2, α̂e varies as we vary βα1. If, for example, we decrease βα1, α̂e increases.

We compare our modelsM1 andM2 by the means of their marginal likelihoods, respectively

denoted by m(F1,F2|M1) and m(F1,F2|M2). The marginal likelihoods can be split up:

m(F1,F2|M1) = m(F1|M1)m(F2|F1,M1), m(F1,F2|M2) = m(F1|M1)m(F2|F1,M2),

with m(F1|Mj) and m(F2|F1,Mj) respectively denoting the marginal likelihoods of the sub-

models of f1,t and f2,t as implied by model Mj , j = 1, 2. As m(F1|M1) = m(F1|M2), only

marginal likelihoods m(F2|F1,Mj), j = 1, 2 matter for model comparison. Let us abbreviate

m(F2|F1,M1) and m(F2|F1,M2) with m1 and m2 respectively, for ease of reference.

Marginal likelihoods m1 and m2 can be written in closed form:

m2 = φT (F2|βF1, s
2IT ),

m1 = (T + k−1)−
1
2k−

1
2 (2πs2)−

T
2 exp(−1

2
s−2d), c = (T + k−1)−

1
2k−

1
2 , (17)

d = (E2 − α̃2ιT )′(E2 − α̃2ιT ) + k−1(α̃2 −m)2, α̃2 = (T + k−1)−1(E2ιT + k−1m),

we suppress the derivation of m1 as the derivation is similar to the marginal likelihood derivations

presented in Appendix A.3. In terms of marginal likelihood, model M1 is preferred over model
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M2 in case m1 > m2, or m1/m2 > 1. Marginal likelihood m2 reaches maximum value when

α̂e = 0, in this case the restriction αe = 0 does not negatively impact the sample fit of restricted

model M2 and the sample fits of both models M1 and M2 are identical. Holding T fixed,

as |α̂e| increases, m2 decreases, and when |α̂e| → ∞, m2 → 0. Fixing |α̂e| 6= 0, as T → ∞,

m2 → 0. Thus, the more the restriction αe = 0 hurts the sample fit of restricted model M2,

or the more evidence is available (due to more observations being available) that in fact the

restriction αe = 0 is invalid, the lower marginal likelihood m2 will be.

For fixed k, marginal likelihood m1 reaches maximum value when we set m = α̂2, the sample

mean of E2. Setting m = α̂2 gives α̃2 = α̂2, and as α̂2 = Ē2 is the OLS estimate of α2, setting

m = α̂2 will thus result in d reaching its minimal value, in turn resulting in m2 reaching maximal

value. As c is a decreasing function of k, m1 is a decreasing function of k as well, given m = α̂2.

Setting m = α̂2 and k = 0 thus results in m1 attaining maximum value

m1 = φT (E2|α̂2ιT , s
2IT ) = φT (F2|(α̂2 − βα1)ιT + βF1, s

2IT ) = φT (F2|α̂eιT + βF1, s
2IT ).

When setting m = α̂2 and k = 0, it will always hold that m1 ≥ m2, with m1 = m2 if and only if

α̂e = 0. Thus, when setting m = α̂2 and k = 0, model M1 will always be preferred over model

M2 unless the restriction αe = 0 has absolutely no impact on the sample fit of model M2.

Given α̂2 and k, the larger the distance between m and α̂2, |m − α̂2|, the smaller m1, due

to d being an increasing function of |m − α̂2|. Consider setting, in contrast to the economic

intuition that |α2| > 0 and |E(α̂2)| > 0, m = 0 with k = 0. In this case m1 collapses to (with

0T a (T × 1) zero vector):

m1 = φT (E2|0T , s2IT ) = φT (F2| − (βα1)ιT + βF1, s
2IT ).

We know from our previous discussion that, setting m = 0 with k = 0, m1 = m2 in case

α̂2 = 0 = m and α̂e = 0. So in case |m − α̂2| > 0, and α̂e = 0, model M2 will be preferred

over M1. This illustrates that, given α̂2 and k, as |m − α̂2| increases, either |α̂e| will have to

increase, or T will have to increase with fixed |α̂e| > 0, in order for m1/m2 to remain constant.

Summarizing, given |α̂2| > 0 (and for fixed k), when setting m = 0 as opposed to m = α̂2, the

sample fit of model M2 (measured by the magnitude of |α̂e|) will have to be poorer or more

evidence (more observations) will have to be available against the statistical validity of model

M2, in order for modelM1 to maintain the same degree of favourability, relative to modelM2.

The questions remains as to what motivates Barillas and Shanken (2018) and Chib et al.

(2018) to set m = 0 as opposed to, for example, α̂2. First of all, hyper-parameter m should be

chosen based on prior information, a rule that is violated when setting m = α̂2, as α̂2 contains

posterior information. Second, setting m = 0, albeit conflicting with economic intuition, actually
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has a clear motivation in our factor model comparison framework. As setting m = 0 implies

E(α2) = 0, setting m = 0 in turn implies a prior belief that the candidate factor f2,t does not

carry a risk premium and, therefore, that the factor is a non-risk factor with no direct effect on

the SDF (a factor with no risk premium must be uncorrelated with the SDF). The prior belief

that f2,t is a non-risk factor in turn implies a prior belief that the sparse modelM2, sparse in the

sense that, as opposed to modelM1, only one out of the two factors is regarded as a priced risk

factor, is statistically valid. Furthermore, as economic intuition suggests |E(α̂2)| > 0, the prior

bias towards sparse model M2 is expected to be stronger when setting m = 0, as opposed to

m = α̂2, due to the negative impact of |m− α̂2| on m1. The prior bias towards the sparse factor

model is perfectly in line with the general preference of a sparse factor model over a less-sparse

factor model, under the (prior) assumption that the sparse factor model is statistically valid.

Without a proper prior bias towards sparse modelM2, less sparse modelM1 would be favoured

over model M2 too easily a posteriori, as the zero-pricing error restriction imposed on model

M2 can only negatively impact the sample fit of modelM2, while it does not impact the sample

fit of model M1. Summarizing, assuming |α̂2| > 0, setting m = 0 implies a prior bias towards

sparse modelM2 and ensures modelM2 will only be rejected in favour of the less sparse model

M1 when posterior evidence against the prior belief that sparse modelM2 is statistically valid,

and that f2,t is a non-risk factor, is sufficiently strong.

After setting m = 0, we are left with the issue of choosing k. Assuming |α̂2| > 0, k has

two effects on marginal likelihood m1 (17). First, k has a negative effect on m1 via its negative

effect on c, and as k → ∞, c → 0 and thus m1 → 0. Second, k has a positive effect on m1

via its negative effect on d. As k → ∞, d → (E2 − α̂2ιT )′(E2 − α̂2ιT ), which is the minimum

value d can attain due to the fact that α̂2 is the OLS estimate of α2. As m1 is an exponential

function of −d but a lineair function of c, the positive effect of k on m1 will be stronger than

the negative effect on the condition that k is sufficiently small. As we keep increasing k, d will

start to converge towards its minimum value meaning that the positive effect of k on m1 will

start to fade as we keep increasing k. The negative effect of k on m1 via c will not fade as

we keep increasing k though, and as such the negative effect of k on m1 will start to dominate

the positive effect when k is sufficiently large. Summarizing, if k is set either excessively small

or excessively large, m1 may be penalized excessively in the sense that model M1, although

statistically valid but less sparse, will only be favoured in case the posterior evidence against

the statistical validity of sparse model M2 is exceptionally strong. Setting k either excessively

small or excessively large may thus lead towards an excessively strong prior bias towards the

sparse, but potentially statistically invalid, model M2.
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3 Data

In this section, we present the empirical data we use in our analysis. Our set of candidate

excess-return factors will be discussed first, after which we will turn our discussion to our set(s)

of test-assets. Our sample period runs from February 1995 until April 2018, the sample consists

of T = 278 observations in total. We assume the perspective of an US investor, and denominate

all (excess-)returns in US dollars. All monthly (excess-)returns are expressed in percentages.

3.1 Factors

Our set of candidate (excess-return) factors consists of two different aggregate global market

factors, WMKT and LWMKT, where WMKT and LWMKT are excess-returns (in excess of

the US risk-free rate) of a global market portfolio denominated in, respectively, US dollars and

local currencies. Although LWMKT is not an excess-return denominated in US dollars, Brusa

et al. (2014) find that the factor mimicking portfolio (assuming an US investor) of LWMKT

is highly correlated with LWMKT and delivers virtually identical returns. In addition to the

global market factors, our set of candidate factors consists of global versions of the SMB, HML,

CMA and RMW factors of Fama and French (2015), a global version of the MOM factor of

Carhart (1997), a global version of the BAB factor of Frazzini and Pedersen (2014), a global

version of the QMJ factor of Asness et al. (2019), a global version of the DHML factor of Asness

and Frazzini (2013), the currency factor Global Tail of Fan et al. (2019) and the currency factors

Carry and Dollar of Brusa et al. (2014). Before describing our raw factor data in section 3.1.2,

we briefly discuss the backgrounds of our candidate factors.

3.1.1 Factors Background

Brusa et al. (2014) argue that the traditional CAPM can easily be extended to global markets,

the World CAPM, under the assumption of (purchasing power parity) PPP. Thus, following

the World CAPM (and assuming the perspective of an US investor), the WMKT factor is the

only risk factor that carries a price of risk. Following Dumas and Solnik (1995), Brusa et al.

(2014) question the PPP assumption of the World CAPM and investigate whether international

equity investors are compensated for bearing exchange rate risk. Brusa et al. (2014) argue

the assumption on PPP to be unrealistic, as investors who invest abroad like to consume at

home, even when deviations from PPP are present. Brusa et al. (2014) present the three-

factor International CAPM Redux model, which, in addition to the LWMKT factor, includes

two currency factors, Dollar and Carry, which effectively summarise variation in a broad cross-

section of bilateral exchange rates and account for exchange rate risk. The Dollar factor is the
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average excess-return earned by an U.S. investor who invests in a broad portfolio of foreign

currencies. The Carry factor is the average excess-return earned by a U.S. investor that goes

short (long) in a portfolio of low (high) interest rates currencies.

Asness et al. (2013) and Fama and French (2012) investigate the role of the size, value

and momentum effects, as originally discovered by Fama and French (1992) and Jegadeesh and

Titman (1993) to be present across the cross-section of expected excess-returns of US stocks,

on the international level. Fama and French (2012) construct global versions of the original size

(SMB), value (HML) and momentum (MOM) factors of Fama and French (1993) and Carhart

(1997) and find the global factors help explain size, value and momentum anomalies of the World

CAPM. Following Fama and French (1993), Fama and French (2012) construct the HML value

factor by sorting on book-to-price (B/P) ratios that are constructed with book value and price

data that is lagged six months to make sure the data would actually have been available at the

time of portfolio construction. Asness and Frazzini (2013) recommend to construct B/P ratios

with current, as opposed to lagged, price data, as price data would have been known at the time

of portfolio construction with certainty, and construct the DHML value factor.

Fama and French (2015) show, using the dividend discount model, that, ceteris paribus,

expected earnings (directly linked to expected profitability) are positively related to the expected

return of a stock, while, ceteris paribus, expected future investment is negatively related to the

expected return of a stock. Indeed, Fama and French (2015) find the presence of profitability

and investment effects in the cross-section of US stock returns and find these effects to be

unexplained by the original three-factor asset pricing model of Fama and French (1993). Fama

and French (2015) propose a new five-factor model that includes the RMW and CMA factors,

respectively constructed by sorting stocks on profitability and investment characteristics. In our

research, we use global versions of the RMW and CMA factors.

Asness et al. (2019) investigate whether quality stocks command higher prices than low-

quality, or junk, stocks. Asness et al. (2019) define quality as characteristics that investors

should be willing to pay for. In the research of Asness et al. (2019), profitability, growth and

safety characteristics form the basis for the definition of quality. Asness et al. (2019) show

that investors indeed pay more for firms with higher quality characteristics, but also find the

explanatory power of quality for asset prices to be limited. Consistent with the limited pricing

performance of quality, high quality stocks have delivered high risk-adjusted returns while low

quality stocks have delivered low risk-adjusted returns. Thus a quality minus junk portfolio

(the QMJ factor) that invests long in quality stocks and shorts junk stocks produces a high

risk-adjusted return in the US and globally across 24 countries.
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Frazzini and Pedersen (2014) argue the basic premise of the CAPM that all agents invest

in the market portfolio and leverage or de-leverage the portfolio to suit risk-preferences to be

unrealistic, as many investors face leverage constraints. Frazzini and Pedersen (2014) argue that

agents with leverage constraints overweight high (market) beta assets to suit risk preferences,

causing these assets to offer lower risk adjusted returns. Unconstrained investors can exploit

this effect by shorting high beta assets and leveraging up low beta assets. Frazzini and Pedersen

(2014) construct a betting against beta (BAB) factor by longing a portfolio of low beta assets,

leveraged to a beta of one, and shorting a portfolio of high beta assets, de-leveraged to a beta

of one, with offsetting positions in the risk-free asset to make it self-financing. Indeed, the BAB

factor produces a high risk-adjusted return in the US and globally across 19 developed countries.

Fan et al. (2019) find that, from the perspective of an investor of any country, US tail risk

carries a negative price of risk in the cross-section of currency returns. In their paper, Fan et al.

(2019) argue that currencies which offer high returns when US tail risk spikes, receive a negative

risk premium as they essentially provide a hedge against US tail risk, and vice versa. Fan et al.

(2019) sort currencies according to their sensitivities to the US tail risk (their US tail beta) and

show a long-short US tail beta sorted portfolio can identify the global component of the US

tail risk factor. Fan et al. (2019) find that their two-factor asset pricing model containing their

Global Tail factor explains a large portion of the cross-section of expected returns of carry and

momentum currency portfolios (assuming the perspective of an US investor), and outperforms a

foreign exchange market CAPM-equivalent single factor model containing only the Dollar factor.

3.1.2 Factors Data

We use MSCI World Total Return Indices denominated in US dollars and local currencies respec-

tively to construct the WMKT and LWMKT factors, the MSCI indices are from the Bloomberg

database. Global versions of the SMB, HML, CMA, RMW and MOM factors are extracted from

the Kenneth French Data Library1. Data of the US risk-free rate is extracted from the Kenneth

French Data Library as well (KFDL). Global versions of the BAB, DHML and QMJ factors are

obtained from the AQR Data Library2. The Carry and Dollar factors are available on Adrien

Verdelhan’s website3 (we use the “all currencies” dataset). We construct the Global Tail factor

(which we abbreviate with GT) of Fan et al. (2019) using the methodology of Fan et al. (2019).

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
2https://www.aqr.com/Insights/Datasets
3http://web.mit.edu/adrienv/www/Data.html
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Table 1: Summary Statistics Potential Factors

Mean Std. Dev Skewness Kurtosis α̂WMKT α̂LWMKT

WMKT 0.52 3.95 -0.85 4.55
LWMKT 0.52 4.25 -0.75 4.71
SMB 0.11 1.99 -0.22 5.15 0.15∗ 0.15∗

HML 0.30 2.44 0.57 8.33 0.36∗∗∗ 0.35∗∗∗

DHML 0.24 3.07 0.68 13.1 0.19∗ 0.19∗

RMW 0.38 1.54 -0.05 5.14 0.46∗∗∗ 0.46∗∗∗

CMA 0.21 1.96 0.78 7.07 0.32∗∗∗ 0.31∗∗∗

MOM 0.63 4.13 -1.00 9.10 0.77∗∗∗ 0.76∗∗∗

QMJ 0.49 2.22 0.09 4.42 0.70∗∗∗ 0.69∗∗∗

BAB 0.94 2.97 -0.30 5.62 0.99∗∗∗ 1.04∗∗∗

Dollar 0.08 1.79 -0.25 4.02 0.02 -0.04
Carry 0.62 2.41 -0.19 3.76 0.47∗∗∗ 0.49∗∗∗

GT -0.30 1.91 0.29 4.89 -0.26∗∗ -0.26∗∗

Summary statistics of our candidate (excess-return) factors. Estimates α̂WMKT and α̂LWMKT denote
estimated constants (alpha’s) of test regressions, in each regression returns of one of our potential non-
market factors are regressed on, respectively, market factor WMKT or market factor LWMKT. Test
regressions are performed using full sample data (we assume an unconditional setting). Estimated
alphas that differ significantly from 0 are marked with a *, ** and ***, where significance levels of,
respectively 10%, 5% and 1% are used. GT is the abbreviation of Global Tail.

Summary statistics of our candidate factors are displayed in Table 1. Estimates α̂WMKT and

α̂LWMKT denote estimated alpha’s of test regressions, in each regression returns of one of our

candidate non-market factors are regressed on a constant (alpha) and on, respectively, market

factor WMKT and market factor LWMKT. Test regressions are performed using full sample

data (we assume an unconditional setting). The test regression results suggest expected excess-

returns of none of the factors, with the exception of the Dollar factor, are fully explained by either

WMKT or LWMKT. The results therefore suggest we can improve upon the efficiency of the

global market portfolios in terms of mean-variance trade-off. All factors display excess kurtosis

and most factors display skewness, contradicting the normality assumption of the Bayesian factor

selection methodology of Barillas and Shanken (2018) and Chib et al. (2018). Although Chib

and Zeng (2018) relax the assumption of normality and allow for excess kurtosis of the factors,

the methodology is still based on the assumption of symmetric distributions. Chib et al. (2018)

consider the advances in their paper, as well as those described in Chib and Zeng (2018), as

complementary, and state the advances open doors to an exciting new wave of reliable Bayesian

work on the comparison of factor models. We will evaluate the robustness of the normality

assumption of the Bayesian factor selection methodology of Barillas and Shanken (2018) and

Chib et al. (2018) against factors displaying excess kurtosis in a simulation study in section 4.

The sample correlation matrix of our candidate factors is displayed in Figure 11, in Appendix

B. We observe a substantial correlation of 0.97 between the WMKT and LWMKT factors,

24



indicating these factors to be almost identical. As both these factors capture the performance

of the global market portfolio, this comes at no surprise. We do not observe other correlations

between factor pairs of the same magnitude, all other correlations are smaller than 0.5, with

the exception of correlations between the pairs HML and DHML (0.68), CMA and HML (0.73),

and QMJ and RMW (0.75). The relatively high correlation between HML and DHML can be

explained by the fact that both factors are constructed to capture the value effect.

3.2 Test-assets

We consider four sets of test-assets. Our first set consist of Country Market (equity) indices

of 20 developed countries: Austria, Australia, Belgium, Canada, Denmark, Finland, France,

Germany, Hong Kong, Italy, Japan, the Netherlands, New Zealand, Norway, Singapore, Spain,

Sweden, Switzerland, the UK and the USA. The second set includes, for each of the 20 respective

countries, 3 different indices: a Country Market (equity) index, a Country Value (equity) index

and a Country Growth (equity) index. To construct the Country Growth and Country Value

indices of a country, that country’s stocks are sorted using univariate 30-40-30 sorts on BE/ME

(book-to-market). The third set of test-assets contains 25 global portfolios formed by bi-variate

5 × 5 sorts on ME (size) and BE/ME, 25 global portfolios formed by bi-variate 5 × 5 sorts on

ME and OP (operating profitability), 25 global portfolios formed by bi-variate 5 × 5 sorts on

ME and INV (investment) and 25 global portfolios formed by bi-variate 5× 5 sorts on ME and

MOM (momentum). We form our fourth, and aggregate, set of test-assets by combining our

second set of test-assets with our third set of test-assets. Our first, second, third and fourth sets

thus, respectively, contain N1 = 20, N2 = 60, N3 = 100 and N4 = 160 test-assets. All test-asset

returns are US dollar denominated and are extracted from the KFDL4.

4 Simulation Study

We perform a simulation study to evaluate the performance of our factor model selection proce-

dures discussed in sections 2.4 and 2.5 in a finite sample setting. We will discuss the simulation

procedure first, where-after we will discuss our results.

4.1 Simulation Procedure

Let us consider a setting with H candidate excess-return factors (collected in vector f∗t ) and N

test-assets (collected in vector rt). To simulate a financial market in this setting, we may use a

total of J = 2H − 1 DGP’s. Each of our candidate factors might either be a priced risk factor

4http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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or a non-risk factor with an expected excess-return that is fully explained by other, priced, risk

factors (we assume at least one of our candidate factors to be a priced risk factor). In each DGP,

the expected excess-returns of all N test-assets are fully explained by the respective set of priced

risk factors. Let Dj , j = 1, ..., J , denote any of the possible DGP’s. Each DGP Dj , j = 1, ..., J ,

has a unique partition of the set of H candidate factors, f∗t , into a set of Kj implied priced risk

factors fj,t and a set of implied Mj = (H −Kj) non-risk factors f̃j,t: f
∗
t = (f ′j,t, f̃

′
j,t)
′.

We assume a setting with student-t distributed factors and test-assets. When simulating from

student-t distributions, simulated factor and test-asset data exhibits excess kurtosis, reflecting

real-world factor and test-asset data. Following the fundamental asset valuation equation and

our derivations in section 2.5, each DGP Dj , j = 1, ..., J , can be written as

fj,t =
( ν

ν − 2

)
Σjbj + εj,t, εj,t ∼ tKj (0,Σj , ν),

f̃j,t = βj,ffj,t + νj,t, νj,t ∼ tMj (0, Σ̃j , ν),

rt = βrf
∗
t + ut, ut ∼ tN (0, Σ̃r, ν),

(18)

with shocks εj,t, νj,t and ut being mutually independent. To fix the parameters of a DGP, we first

estimate the parameters of the model implied by the DGP by the means of maximum likelihood

(ML), and then fix the DGP parameters at the ML estimates to ensure that generated data

resembles real-world data. We consider parameter ν given, and consider values of interest ν = 5

(excess kurtosis) and ν = ∞ (normal distribution). Following Chib et al. (2018), who perform

a, albeit less extensive, similar simulation study, we only simulate a DGP Dj in case all the

estimates of the parameters in parameter vector bj = [b1j , ..., b
Kj
j ]′ of the model implied by DGP

Dj differ significantly from 0 (we use a significance level of 1%). In case one of the elements of

parameter bj equals 0, one of the factors in fj,t has no direct effect on the SDF, contradicting

the implication of respective DGP Dj that all priced risk factors fj,t have a direct effect on the

SDF. Thus a DGP Dj is valid if and only if none of the elements of parameter bj equal 0.

For each DGP Dj , parameter βj,r = [β1j,r, ..., β
Kj
j,r ] is a matrix of N×Kj regression coefficients,

with βij,r, i = 1, ...,Kj , denoting the vector of N regression coefficients that correspond with the

same factor f ij,t, fj,t = [f1j,t, ..., f
Kj
j,t ]′. When estimating βij,r, we may test the null H0 : βij,r = 0

with an (asymptotic) F-test. Details of this test are discussed in Appendix A.4. In case the

estimate of the parameter βij,r of the model implied by DGP Dj does not differ significantly

from 0 (we use a significance level of 1%), we set βij,r = 0. In that case, DGP Dj implies the

factor f ij,t to be a priced risk factor, that does not influence any of the N test-assets. We expect

test-asset based factor selection methodologies to be unable to accurately identify f ij,t as a priced

risk factor in such a scenario, as the factor f ij,t will be unrelated to the relevant test-assets.
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4.2 Results

We proceed discussing our simulation results. Table 2 displays our candidate factors considered

in the simulation study, each factor is assigned to a roman numeral for ease of reference. Using

the H = 12 candidate factors, a total of J = 2H − 1 = 4095 potential factor model DGP’s

may be constructed (see Eq. 18). Each DGP we simulate is simulated with four distinct sets of

test-assets. The first, second, third and fourth sets of test-assets respectively contain N1 = 20,

N2 = 60, N3 = 100 and N4 = 160 test-assets. We use data of the factors and the four sets of

test-assets, as described in sections 3.1 and 3.2 respectively, to estimate the parameters of the

models implied by the DGP’s we simulate. Each simulated DGP is simulated Z = 100 times

in total. To keep the disucussion of the results manageable, while ensuring that results are not

contingent on a particular DGP, we simulate 13 random eligible DGP’s, Chib et al. (2018) follow

a similar approach in their simulation study. Table 4 displays the DGP’s we simulate. Each

simulated DGP is represented by a set of implied priced risk factors, as implied by the respective

DGP. Note that each of the DGP’s we simulate implies a multi-factor model.

Table 2: Candidate Factors Simulation Study

WMKT SMB HML DHML RMW CMA MOM QMJ BAB Dllr Crry GT
I II III IV V VI VII IIX IX X XI XII

Roman Numerals Corresponding To Factors. The Dollar and Carry Factors are respectively abbrevi-
ated with Dllr and Crry.

We start of by discussing the simulation study results of the Bayesian (marginal likelihood

based) factor selection methodology of Barillas and Shanken (2018) and Chib et al. (2018).

As discussed in section 2.5, Barillas and Shanken (2018) set hyper-parameter k, governing the

spreads of the priors of the alpha’s of the candidate models (see Eq. (11) and Eq. (12)) as

k = ShMax2/H, ShMax = τShMkt, ShMkt = Sh(WMKT), (19)

with ShMax and ShMkt respectively denoting the maximum attainable Sharpe ratio and the

Sharpe ratio of the market portfolio, and with Sh(WMKT) denoting the sample Sharpe ratio

over the WMKT portfolio, calculated each simulation iteration with simulated data. Economic

intuition provides limits on the magnitude of τ , as we do not expect ShMax to deviate too much

from ShMkt. Barillas and Shanken (2018) suggest using τ in the range τ ∈ [1.5 3] and Chib

et al. (2018) use τ = 3. As discussed in section 2.5.1 though, we can expect a prior bias towards

sparse candidate factor models when the prior means of the alpha’s of the candidate models

are set to equal zero, as, reflecting the fact that investors want to be compensated for bearing

risk, (absolute values of) the true factor means will be positive. Furthermore, as discussed
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in section 2.5.1, when hyper-parameter k is set too small, the prior bias towards sparse, but

potentially statistically invalid, candidate models may be to be too strong, in the sense that

the marginal likelihood of less sparse candidate models may be penalized excessively. Thus,

although conflicting with economic intuition, we consider values of τ ∈ {1.5, 2, 3, 5, 10, 20, 30}

and investigate the impact of setting τ > 3 on the performance of the Bayesian factor selection

methodology.

Table 3: Simulation Study Results Bayesian Factor Selection Methodology I

τ

1.5 2 3 5 10 20 30

T = 300

Average Accuracy 01 (73) 05 (69) 15 (60) 37 (38) 60 (20) 67 (14) 67 (14)
Minimum Accuracy 00 (99) 00 (99) 00 (98) 00 (98) 11 (82) 41 (52) 42 (53)

T = 600

Average Accuracy 07 (67) 14 (58) 34 (45) 68 (15) 80 (05) 86 (02) 87 (02)
Minimum Accuracy 00 (99) 00 (99) 00 (98) 10 (90) 56 (40) 77 (10) 74 (10)

T = 1200

Average Accuracy 19 (55) 40 (37) 50 (30) 88 (15) 92 (05) 94 (00) 95 (00)
Minimum Accuracy 00 (99) 00 (99) 01 (98) 34 (64) 81 (02) 89 (00) 89 (00)

Simulation results Bayesian factor selection methodology. We simulate 13 random DGP’s, each DGP
is simulated Z = 100 times. We apply the Bayesian factor selection methodology to select factors for
each simulated DGP, using multiple alternative values for τ . In each “Average Accuracy” row, we
display, in plain text, the average selection accuracy observed across the simulated DGP’s. In addition,
in each “Average Accuracy” row, we display, in (parentheses), the average of the percentages of times
a sparser, instead of the (DGP implied) true, factor model is selected, observed across the simulated
DGP’s. In each “Minimum Accuracy” row, we display, in plain text, the minimum selection accuracy
observed across the simulated DGP’s. In addition, in each “Minimum Accuracy” row, we display, in
(parentheses), the maximum of the percentages of times a sparser, instead of the (DGP implied)
true, factor model is selected, observed across the simulated DGP’s. Results are displayed for various
sample sizes T . We simulate normally distributed factors.

For each simulated DGP and for each τ , we keep track of the “selection accuracy”, defined

as the percentage of times the true priced risk factors, as implied by the relevant simulated

DGP, are correctly identified out of a total of Z = 100 simulation iterations. In addition to the

selection accuracy, we keep track of, for each DGP and each τ , the percentage of times (out of

Z = 100) a sparser factor model (meaning a model with less factors), as opposed to the model

implied by the true DGP, is selected. Tables 3 and 12 (Appendix B) display, for each τ , the

average of, as well as the minimum of, the selection accuracies observed across the simulated

DGP’s. In addition, the tables display, in (parentheses), for each τ , the average of, as well

as the maximum of, the percentages of times a sparser, instead of the (DGP implied) true,
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factor model is selected, observed across the simulated DGP’s. When, for a particular DGP,

the percentage of times a sparser, instead of the (DGP implied) true, model is selected is high,

the percentage of times we fail to accurately identify all true priced risk factors as implied by

the DGP will be high. Thus, a high maximum of the percentages of times a sparser, instead of

the true, model is selected implies a low selection accuracy for at least one, or more, DGP(’s).

Tables 3 and 12 display results in settings with, respectively, normally and student-t distributed

factors. Various sample sizes T are considered.

The results displayed in Table 3 are quite surprising. For all relevant sample sizes T , we

observe a positive relation between the magnitude of τ and the performance of the Bayesian

factor selection methodology, which fades as we increase τ from τ = 20 onwards. For all sample

sizes T , both the average as well as the minimum selection accuracy increase as we increase

τ = 1.5 to τ = 20. The average as well as the minimum selection accuracy stop increasing as we

further increase τ to τ = 30. Interestingly, the overall selection accuracy is dismal when we set

τ ∈ {1.5, 2}, as suggested by Barillas and Shanken (2018). In their simulation study, Chib et al.

(2018) set τ = 3, and consider sample sizes T = 600 and T = 1200, with H = 12 candidate

factors. Chib et al. (2018) obtain average selection accuracies of 30% and 47% for, respectively,

sample sizes of T = 600 and T = 1200, which match our average selection accuracies for these

sample sizes. Although Chib et al. (2018) find that the use of their improper priors of the

“nuisance” parameters of the candidate models (see Eq. (13) and Eq. (15)), as opposed to the

improper priors as specified by Barillas and Shanken (2018), drastically improves upon overall

selection accuracy of the Bayesian methodology, we find we can further improve upon overall

selection accuracy by increasing τ to τ = 20, which effectively increases k for fixed ShMkt (and

H). Furthermore, setting τ = 3 in a setting with sample size T = 300, a setting not considered

by Chib et al. (2018), results in a dismal overall selection accuracy, and the increase in overall

selection accuracy resulting from setting τ = 20 as opposed to τ = 3 is most prominent for this

sample size. The results displayed in Table 12 confirm our discussion remains valid in a setting

with student-t distributed factors.

The results in Table 3 show that, overall, across the simulated DGP’s, the percentage of

times a sparser, as opposed to the true, model is selected is excessively high when τ is set in the

range τ ∈ [1.5 3]. As a direct result, overall selection accuracy suffers severely (with τ ∈ [1.5 3]).

For sample size T = 300, the average of the percentages of times a sparser (instead of the true)

model is selected, equals 73%, 69% and 60% when τ is set to, respectively, τ = 1.5, τ = 2 and

τ = 3. The average of the percentages of times a sparser model is selected reduces to 14% as

we increase τ to τ = 20 or τ = 30. As we increase sample size, the average of the percentages

of times a sparser model is selected decreases for all values of τ considered. However, we still
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observe a significant negative relation between the size of τ and the average of the percentages of

times a sparser model is selected for the larger sample sizes, and, for the larger sample sizes, we

are able to reduce the average of these percentages (close) to 0% when we set τ = 20 or τ = 30.

Furthermore, the maximum of the percentages of times a sparser factor model is selected equals

99% when τ is set in the range τ ∈ [1.5 3], for all sample sizes, and is reduced significantly, for

all sample sizes, when we increase τ to τ = 20 or τ = 30. Again, the results displayed in Table

12 confirm our discussion remains valid in a setting with student-t distributed factors.

Figure 1: Simulation Results DGP: WMKT-DHML-MOM-QMJ, WMKT-SMB-DHML-QMJ
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We simulate DGP: WMKT-DHML-MOM-QMJ (left hand side) and WMKT-SMB-DHML-QMJ (right
hand side), with normally distributed factors and use sample size T = 300. Each DGP is simulated
Z = 100 times. We apply the Bayesian factor selection methodology to select factors for each
simulated DGP, using multiple alternative values for τ in the range τ ∈ [1.5 30]. For both DGP’s,
we plot the percentage of times the true factor model as implied by the DGP is correctly identified,
the percentage of times a one factor model is selected, the percentage of times either a one or a two
factor model is selected, and the percentage of times either a one, a two or a three factor model is
selected against the multiple alternative values for τ considered.

We continue our discussion by simulating individual DGP: WMKT-DHML-MOM-QMJ as

well as individual DGP: WMKT-SMB-DHML-QMJ (with T = 300 and ν = ∞). For both

DGP’s, we closely investigate the impact of the magnitude of τ on the selection accuracy of the

Bayesian methodology. Figure 1 plots, for both DGP’s, the percentage of times the true (DGP

implied) factor model is correctly identified, the percentage of times a (false) one factor model

is selected, the percentage of times either a one or a two (false) factor model is selected, and

the percentage of times either a one, a two or a three (false) factor model is selected against

multiple alternative values for τ in the range τ ∈ [1.5 30]. Clearly, for both DGP’s, we observe a

positive relationship between the magnitude of τ and selection accuracy, in line with the results

displayed by Table 3. When τ is set τ = 1.5, we observe, for both DGP’s, that the percentage

of times a sparser, instead of the true, model is selected approaches 100%. In turn, for τ = 1.5

and both DGP’s, we observe a selection accuracy of approximately 0%. For both DGP’s, as we
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increase τ from τ = 1.5 to τ = 20, we decrease the percentage of times a sparser, instead of

the true, factor model is selected to approximately 5%, while significantly increasing selection

accuracy. The beneficiary effect of increasing τ on selection accuracy fades, for both DGP’s, as

we keep increasing τ from τ = 20 to τ = 30.

Summarizing, when τ is set in the range τ ∈ [1.5 3], we find the overall (across the DGP’s)

percentage of times a sparser, instead of the true, factor model is selected to be excessively high

(for the relevant sample sizes), which suggests that setting τ in the range τ ∈ [1.5 3] results in a

excessively strict hyper-parameter k, in turn resulting in an excessively high prior bias towards

sparse models. From our discussion in section 2.5.1, we know that, when the prior bias towards

sparse models is excessive due to an excessively strict k, sparse models may, a posteriori, still

be favoured over less sparse models, even when posterior evidence against the statistical validity

of the sparse models is strong. In that case, the excessive prior bias towards sparse models will

have a detrimental effect on selection accuracy. Our findings thus strongly suggest to set hyper-

parameter k, although conflicting with the theoretical restriction of the potential magnitude of

k as discussed in Appendix A.1, to equal a multiple of ShMax2, divided by H:

k = (cShMax)2/H, cShMax = τShMkt,

as setting ShMax = τShMkt with τ > 3 would imply an unrealistically high maximum Sharpe

ratio. This allows us to use larger values of τ , such as τ = 20 (with, for example, c = 7),

thereby effectively increasing the spreads of the priors of the alpha’s of the candidate models

and decreasing the excessive prior bias towards sparse factor models, while drastically increasing

overall selection accuracy.

For robustness analysis, we also simulate a (fourteenth) one-factor model DGP: WMKT, and

investigate whether selection accuracy of the Bayesian methodology is still satisfactory when τ is

set τ > 3. Table 13 (Appendix B) displays, for various sample sizes T and normally distributed

factors, the selection accuracy for τ ∈ {1.5, 2, 3, 5, 10, 20, 30}. For all sample sizes, we observe the

selection accuracy to be similar across all the values of τ considered. Indeed, as we simulate a

one-factor model, an excessively strong prior bias towards sparse models, resulting from setting

τ ∈ [1.5 3], no longer negatively impacts selection accuracy.

We proceed to investigate the performance of the Bayesian factor selection methodology,

while setting τ = 20, in more detail. Specifically, we analyze the robustness of the methodology

in a setting with student-t distributed factors. Table 4 displays, for each simulated DGP, the

percentage of times the true priced risk factors are correctly identified, as well as the percentage

of times the factor model, as implied by the relevant simulated DGP, ranks among the top five

models with the highest marginal likelihoods (in parentheses). The Bayesian factor selection
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methodology performs remarkably well, especially in settings with larger sample sizes of T = 600

and T = 1200. In the setting with normally distributed factors, we observe the Bayesian

methodology to be least accurate when we simulate the DGP I-III-IV-VII-IIX-IX with a sample

size of T = 300. In this setting, the selection accuracy of the methodology is 41% and the factor

model, as implied by the true DGP, is ranked 65 times out of a total of Z = 100 simulation

iterations among the top-5 models with the highest marginal likelihoods. In the setting with

normally distributed factors, we observe the selection accuracy of the Bayesian methodology to

range from 75% to 95% and from 90% to 98% across the simulated DGP’s, when considering

sample sizes of T = 600 and T = 1200, respectively.

Table 4: Simulation Study Results Bayesian Factor Selection Methodology II

Priced Factors

T = 300 T = 600 T = 1200

ν = 5 ν =∞ ν = 5 ν =∞ ν = 5 ν =∞

I-V 67 (88) 78 (93) 78 (98) 89 (99) 92 (97) 96 (100)
I-IX 66 (86) 80 (96) 75 (95) 95 (100) 90 (99) 93 (99)
I-VI 26 (54) 49 (80) 57 (82) 83 (97) 80 (100) 90 (100)
I-IIX 65 (92) 88 (95) 82 (96) 86 (100) 91 (99) 89 (99)
I-II-V 48 (74) 68 (89) 78 (99) 89 (100) 94 (100) 94 (100)

I-II-IIX 79 (89) 89 (98) 91 (99) 89 (99) 93 (99) 91 (100)
I-III-VII 32 (60) 45 (75) 69 (92) 79 (97) 95 (100) 90 (100)
I-IIX-IX 58 (78) 82 (91) 84 (95) 87 (96) 91 (99) 97 (100)

I-II-III-IIX 31 (77) 49 (92) 62 (96) 82 (96) 83 (98) 90 (100)
I-II-IV-IIX 57 (84) 62 (91) 82 (99) 90 (99) 81 (99) 98 (100)
I-II-VI-IIX 32 (80) 57 (91) 67 (92) 84 (97) 91 (99) 94 (99)

I-IV-VII-IIX 71 (85) 81 (90) 88 (95) 94 (99) 93 (99) 94 (100)
I-III-IV-VII-IIX-IX 20 (51) 41 (65) 62 (83) 77 (97) 86 (97) 97 (100)

Simulation results Bayesian factor selection methodology (with τ = 20). The left hand side of the
table displays sets of true priced risk factors implied by the DGP’s we simulate. Each DGP is
simulated Z = 100 times. The numerical entries displayed in plain text and within (parentheses)
respectively give the percentage of times the true priced risk factors are correctly identified and the
percentage of times the factor model, as implied by the true DGP, ranks among the top five models
with the highest marginal likelihoods. Results are displayed for various sample sizes T and d.o.f. of
the student-t distribution ν.

The Bayesian factor selection methodology exhibits adequate robustness in a setting with

student-t (with ν = 5 d.o.f.), as opposed to normally, distributed factors. The largest loss

in selection accuracy resulting from simulating student-t, as opposed to normally, distributed

factors is observed when we simulate the DGP I-III-IV-VII-IIX-IX with a sample size of T = 300.

We observe an accuracy loss of 50% in this setting. As the sample size T increases, accuracy

losses resulting from simulating student-t, as opposed to normally, distributed factors fade. The

accuracy loss resulting from simulating student-t distributed factors decreases from 50% to 11%

when we simulate DGP I-III-IV-VII-IIX-IX with sample size T = 1200, as opposed to T = 300.
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Furthermore, as the sample size T increases, the percentage of times the true risk factors are

identified seems to converge to 100%, for each simulated DGP, in settings with normally, as well

as student-t, distributed factors.

In addition to investigating the performance of the Bayesian methodology in terms of selec-

tion accuracy, we may investigate the economic loss that results from selecting a wrong model,

i.e. selecting a model that is not equivalent to the model implied by the true DGP. This of inter-

est as, judging from the results displayed in Table 4, the Bayesian methodology will not attain

a perfect selection accuracy for relevant sample sizes. We assume investors are mean-variance

investors that seek to minimize portfolio variance given a target portfolio mean, and quantify

the economic loss resulting from selecting a wrong model as the percentage loss in Sharpe ratio

resulting from constructing the mean-variance efficient portfolio with selected priced risk factors

as opposed to true (DGP implied) priced risk factors. Mean-variance efficient portfolios may

be constructed using either true moments, usually unknown in practice, or estimated moments.

We calculate Sharpe ratio’s of constructed portfolios using true moments. Table 14 (Appendix

B) displays the average percentage loss in Sharpe ratio, given that the Bayesian methodology

(with τ = 20) selects the wrong model, resulting from constructing the mean-variance efficient

portfolio with selected, as opposed to true, priced risk factors, across the simulated DGP’s.

Percentage losses displayed in plain text and in (parentheses) are calculated in a setting where

portfolio weights are constructed with, respectively, true and estimated moments.

In a setting where portfolio weights are constructed using true moments and T = 300, the

average percentage loss in Sharpe ratio ranges from 15% to 35% and from 5% to 32% across the

DGP’s, when we set ν = 5 and ν =∞, respectively. As we increase the sample size T to T = 1200

(and calculate portfolio weights using true moments), the average percentage loss in Sharpe

ratio decreases to 0% across most of the DGP’s. Thus, when sample size is sufficiently large,

we can expect the Bayesian methodology to identify all priced risk factors with (approximately)

100% probability, even when the Bayesian methodology is not expected to attain perfect model

selection accuracy at the relevant sample size. A set of selected factors that contains all true

priced risk factors will still be wrong, in the sense that it does not equal the true set of priced

risk factors as implied by the DGP, when the set of selected factors contains redundant non-risk

factors. When a set of selected risk factors is wrong the true mean-variance efficient portfolio

may still be constructed using the set of selected factors with 100% probability if and only if

the set of selected factors contains all true priced risk factors, in addition to redundant non-risk

factors, with 100% probability. Thus, given that a selected model is wrong, but the incurred

percentage loss in Sharpe ratio equals 0% with 100% probability, the set of selected factors must

contain all true priced risk factors, in addition to non-risk factors, with 100% probability.
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The average percentage loss in Sharpe ratio increases across all DGP’s when portfolio weights

are constructed using estimated, as opposed to true, moments, even for the largest sample size

T = 1200. This reflects the fact that, in a setting where portfolio weights are constructed using

estimated, as opposed to true, moments a loss in Sharpe ratio may be incurred when the set

of selected factors contains redundant non-risk factors, in addition to the true set of priced

risk factors, as the selection of additional redundant factors increases the difficulty of moment

estimation, thereby effectively increasing the difficulty of estimating the true weights of the

mean-variance efficient portfolio.

Table 5: Simulation Study Results GMM Based Factor Selection Methodology

Priced Factors

T = 300 T = 1200

N1 N2 N3 N4 N1 N2 N3 N4

I-V 2 7 11 8 8 12 11 18
I-IX 5 7 8 7 8 13 20 24
I-VI 3 2 5 1 5 20 10 10
I-IIX 12 19 37 22 35 41 40 44
I-II-V 2 4 16 22 13 10 32 22

I-II-IIX 6 19 47 55 23 47 62 58
I-III-VII 0 2 1 0 1 3 5 3
I-IIX-IX 4 12 15 13 6 18 27 22

I-II-III-IIX 2 7 13 18 3 13 24 25
I-II-IV-IIX 3 10 20 20 6 30 34 26
I-II-VI-IIX 1 3 13 5 4 13 30 16

I-IV-VII-IIX 4 9 20 25 14 24 38 35
I-III-IV-VII-IIX-IX 0 0 4 6 4 7 24 8

Simulation results GMM factor selection methodology. Sets of true priced risk factors implied by
the DGP’s we simulate are displayed on the left hand side. Each DGP is simulated Z = 100 times.
Numerical entries give the percentage of times the true priced risk factors are correctly identified.
Results are displayed for various sample sizes T , various test-assets set sizes N1 = 20, N2 = 60,
N3 = 100 and N4 = 160, and ν = 5 d.o.f. of the student-t distribution.

We turn our discussion to the simulation study results of the GMM based factor selection

methodology of Cochrane (2005). Table 5 displays simulation results of the GMM based factor

selection methodology, in a setting with student-t (ν = 5) distributed factors and test-assets. For

each simulated DGP, we display the percentage of times the true priced risk factors are correctly

identified. We find the selection accuracy of the GMM based methodology to be wanting. For

the sample size T = 300, selection accuracy of the GMM based methodology ranges from 0%

to 12%, from 0% to 19%, from 1% to 47% and from 0% to 55% across the various simulated

DGP’s, when considering the test-assets set sizes of N1, N2, N3 and N4, respectively. The overall

selection accuracy of the methodology increases when one of the larger test-assets set sizes, N3

or N4, is used as opposed to one of the smaller test-assets set sizes, N1 and N2. Using the largest
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test-assets set size, N4, and sample size T = 300, we observe a selection accuracy smaller than

25% for 11 out of the 13 simulated DGP’s. This in sharp contrast with the observed selection

accuracy of the Bayesian methodology (with τ = 20) in the setting with student-t distributed

factors and sample size T = 300. We observe the selection accuracy of the Bayesian methodology

to be larger than 25% for all but a single one of the simulated DGP’s in this setting.

When we increse the sample size to T = 1200, we observe an increase in the selection

accuracy of the GMM based methodology, for all relevant test-assets set sizes. The GMM based

methodology does not achieve the same levels of selection accuracy the Bayesian methodology

(with τ = 20) achieves when we use the larger sample size of T = 1200 (in the setting with

student-t distributed factors and test-assets) though. Using one of the larger test-assets set sizes

N3 or N4, the selection accuracy of the GMM based methodology ranges, respectively, from 5%

to 62% or from 3% to 58% across the simulated DGP’s. The selection accuracy of the Bayesian

methodology (with τ = 20) ranges from 86% to 95% across simulated DGP’s. Furthermore, in

the setting with student-t distributed factors and test-assets, for both sample sizes T = 300 and

T = 1200, we observe that the Bayesian methodology (with τ = 20) attains a higher selection

accuracy across all the simulated DGP’s, as compared to the GMM methodology, regardless of

which of our test-assets set sizes is relevant.

Table 15, see Appendix B, displays simulation results of the GMM based factor selection

methodology, in a setting with normally distributed factors and test-assets. Although the GMM

based methodology does not rely on assumptions about the distributions of the test-assets and

candidate factors, we observe the GMM based methodology attains a higher overall selection

accuracy across the simulated DGP’s when test-assets and candidate factors follow normal, as

opposed to student-t, distributions. We still find the selection accuracy of the GMM based

methodology, as compared to the Bayesian methodology (with τ = 20), to be wanting in this

setting, however.

As discussed in section 4.1, we only simulate a DGP Dj in case all the estimates of the

parameters in parameter vector bj = [b1j , ..., b
Kj
j ]′ of the model implied by DGP Dj differ signifi-

cantly from 0 (we use a significance level of 1%). In that case, we can reject the null H0 : bij = 0,

for all i = 1, ...,Kj . In case we cannot reject the null for a particular i = 1, ...,Kj , either the

respective parameter bij is actually zero, or the data does not provide enough support to reject

the null, although the respective parameter bij is actually non-zero. In the former case, DGP

Dj is invalid, as discussed in section 4.1. In the latter case, the DGP Dj is actually valid, but

factor selection methodologies might have trouble identifying the priced risk factor associated

to bij when simulating the DGP with a sample size that is sufficiently small.

We proceed the discussion with an example. We estimate the parameters of the model

35



implied by the DGP with WMKT-RMW-Dollar (I-V-X) as the set of true priced risk factors,

Table 6 displays the estimated parameter b of the model implied by the DGP. We assume that

factors and test-assets are normally distributed, and use test-assets set size N4. The estimated

direct effects of WMKT and RMW on the SDF are significant, using a 1% significance level, but

the estimated direct effect of Dollar on the SDF is not. Even at a significance level of 10%, the

estimated direct effect of Dollar remains insignificant. It might well be the case that the Dollar

factor does not have a direct effect on the SDF. It might also be the case that the Dollar factor

actually has a direct effect on the SDF, but that the effect is too subtle, in the sense that the

data does not provide sufficient evidence for the actual presence of the effect.

Table 6: Estimated parameter b of the model implied by DGP: WMKT-RMW-Dollar

Factor WMKT RMW Dollar

b̂
0.071 0.240 0.018
(0.018) (0.046) (0.034)

ML estimate of the parameter b of the model implied by the DGP with WMKT-RMW-Dollar as the
set of true priced risk factors. Standard errors are displayed in parentheses. Factors and test-assets
are assumed to be normally distributed.

We proceed by simulating the DGP with WMKT-RMW-Dollar as the set of true priced

risk factors, using sample sizes T = 1200 and T = 12000. Factors and test-assets are normally

distributed, we use test-assets set size N4. We manually set the parameter governing the direct

effect of Dollar on the SDF, denoted by bDlr, at various values in the interval [0 0.2]. For each

value of bDlr considered, we simulate the respective DGP Z = 100 times. Figures 2 and 6

(Appendix B) display, for both the Bayesian (with τ = 20) and the GMM based factor selection

methodologies, for values of bDlr in interval [0 0.2], the percentage of times WMKT and RMW

are selected, as well as the percentage of times WMKT, RMW and Dollar are selected. The

factor selection methodologies are applied in a setting where the set of candidate risk factors

solely consists of the factors WMKT, RMW and Dollar.

In case bDlr is set bDlr = 0, the DGP is invalid in the sense that the implied priced risk

factor Dollar has no direct effect on the SDF. The Bayesian and GMM based methodologies

only identify WMKT and RMW as priced factors, in all simulation iterations, in that case, as

observed in Figures 2 and 6. In case bDlr is set at a value in the interval (0 0.2] (for example bDlr

is set at the ML estimate bDlr = 0.018), the DGP is valid in the sense that the implied priced

risk factor Dollar has a direct effect on the SDF. Judging from Figures 2 and 6, the Bayesian

and GMM based methodologies have trouble identifying the direct effect of Dollar on the SDF

though, for the smaller values of bDlr in the interval (0 0.2]. For the sample size T = 1200,

the Bayesian and the GMM based methodologies respectively fail to identify the Dollar factor
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as a priced risk factor in all simulation iterations when bDlr is set bDlr < 0.1 and bDlr < 0.16.

Although the selection accuracy of the Bayesian as well as the GMM based methodologies

increases as we increase the sample size to an epic size of T = 12000, the methodologies still

fail to consistently identify Dollar as a priced risk factor in the simulation iterations for small

enough values of bDlr in the interval (0 0.2]. The Bayesian and GMM based methodologies may

thus fail to identify a priced risk factor when its direct effect on the SDF is too subtle, in the

sense that (simulated) data fails to provide sufficient evidence for the presence of the effect.

Figure 2: Simulation Results DGP: WMKT-RMW-Dollar, T = 1200

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

SDF effect Dollar

0

10

20

30

40

50

60

70

80

90

100

%

WMKT-RMW

WMKT-RMW-Dollar

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

SDF effect Dollar

0

10

20

30

40

50

60

70

80

90

100

%

WMKT-RMW

WMKT-RMW-Dollar

We simulate the DGP: WMKT-RMW-Dollar, with normally distributed factors and test-assets (we
use N4 test-assets and sample size T = 1200), Z = 100 times, for various values of bDlr (the direct
effect of Dollar on the SDF). We use the Bayesian (with τ = 20) and GMM based factor selection
methodologies to select priced risk factors each simulation iteration. The set of candidate factors
solely consists of WMKT, RMW and Dollar. For each relevant value of bDlr, the percentage of
times WMKT and RMW are selected as well as the percentage of times WMKT, RMW and Dollar
are selected are displayed. On the left: Bayesian methodology results. On the right: GMM based
methodology results.

As discussed in section 4.1, we expect test-asset based factor selection methodologies, such

as the GMM based methodology, to be unable to accurately identify a priced risk factor, when

it is unrelated to the relevant set of test-assets. We illustrate this discussion with an example.

We estimate the parameters of the model implied by the DGP with WMKT-HML-MOM (I-III-

VII) as the set of true priced risk factors. We assume that factors and test-assets are normally

distributed, and use test-assets set size N1. Estimated direct effects of factors WMKT, HML

and MOM on the SDF are all significant, at the 1% level. Let βWMKT , βHML and βMOM

denote N1×1 parameter vectors of the model implied by the DGP that govern the direct effects

of, respectively, WMKT, HML and MOM on the N1 test-assets. We test H0 : βWMKT = 0,

H0 : βHML = 0 and H0 : βMOM = 0 with F-tests, and do not reject H0 : βMOM = 0 at a 10%

significance level. We reject the null hypotheses H0 : βWMKT = 0 and H0 : βHML = 0 at a 1%

significance level. In case βMOM = 0, the MOM factor is a priced risk factor, as it has a direct
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effect on the SDF, but is unrelated to the relevant set of N1 test-assets.

We simulate the DGP with WMKT-HML-MOM as the set of true priced risk factors, using

sample sizes T = 1200 and T = 12000. Factors and test-assets are normally distributed, we

use test-assets set size N1. We set parameter βMOM = cι, where ι denotes a N1 × 1 vector

of ones and c denotes a constant, and consider various values for c in the interval [0 1]. For

each value of c considered, we simulate the respective DGP Z = 100 times. Figure 3 and 7

(Appendix B) display, for both the Bayesian (with τ = 20) and the GMM based factor selection

methodologies, for values of c in interval [0 1], the percentage of times WMKT and HML are

selected, as well as the percentage of times WMKT, HML and MOM are selected. The factor

selection methodologies are applied in a setting where the set of candidate factors solely consists

of WMKT, HML and MOM.

Figure 3: Simulation Results DGP: WMKT-HML-MOM, T = 1200
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We simulate the DGP: WMKT-HML-MOM, with normally distributed factors and test-assets (we use
N1 test-assets and sample size T = 1200), Z = 100 times, for various values c, the constant governing
βMOM = cι. We use the Bayesian (with τ = 20) and GMM based factor selection methodologies
to select priced risk factors each simulation iteration. The set of candidate factors solely consists of
WMKT, HML and MOM. For each relevant value of c, the percentage of times WMKT and HML
are selected as well as the percentage of times WMKT, HML and MOM are selected are displayed.
On the left: Bayesian methodology results. On the right: GMM based methodology results.

The GMM based methodology fails to select all three factors WMKT, HML and MOM in

more than 90% of the simulation iterations in case βMOM = 0, even when we use an epic sample

size of T = 12000. As we increase the direct effect of MOM on the test-assets, the selection

accuracy of the GMM based methodology increases. However, when the direct effect of MOM

on the test-assets is sufficiently subtle, in the sense that (simulated) data does not provide

sufficient evidence for the presence of the effect, we still find the selection accuracy of the GMM

based methodology to be wanting. For example, we observe selection accuracies of 10% and 30%

for sample sizes T = 1200 and T = 12000, respectively, in case βMOM = 0.1ι. The Bayesian

methodology does not depend on the use of test-asset data, and does not suffer from a loss in
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selection accuracy when MOM is unrelated, or only subtly related, to our set of N1 test-assets.

For both sample sizes T = 1200 and T = 12000, the Bayesian methodology attains a selection

accuracy of 100%, regardless of the strength of the effect of MOM on the N1 test-assets.

5 Empirical Study

We apply our factor selection methodologies to select priced risk factors from our set of candidate

factors discussed in section 3, and evaluate the pricing performance of candidate factor models.

5.1 Factor Model Selection

Table 7 displays our set of H = 13 candidate factors considered in the empirical study, each

factor is assigned to a roman numeral for ease of reference.

Table 7: Candidate Factors Empirical Study

W L SMB HML DHML RMW CMA MOM QMJ BAB Dllr Crry GT
I II III IV V VI VII IIX IX X XI XII XIII

Roman Numerals Corresponding To Factors. WMKT is abbreviated with W and is assigned to roman
numeral I. LWMKT is abbreviated with L and is assigned to roman numeral II. The Dollar, Carry
and Global Tail factors are respectively abbreviated with Dllr, Crry and GT.

Using our set of H = 13 candidate factors, a total of J = 213 − 1 = 8191 candidate factor

models of the form specified in Eq. (11) can be constructed. We apply the Bayesian (marginal

likelihood based) factor selection methodology to filter out priced risk factors from our set of

candidate factors, and, following our discussion in section 4.2, specify hyper-parameter k, as

k = (cShMax)2/H, cShMax = τSh(WMKT ), τ = 20,

with ShMax denoting the maximum attainable Sharpe ratio, and Sh(WMKT) denoting the

sample Sharpe ratio over the WMKT portfolio.

We use the Bayesian factor selection methodology to identify factor models with the highest

posterior probabilities (we use equal prior weights) out of the set of J candidate factor models.

The upper part of Table 8 displays the top-8 models, as ranked by their posterior probabilities.

We refer to the factor model with rank x, as ranked by posterior probability, as (factor) model

x, in our following discussion, for ease of reference. The posterior probability of model 1 equals

23%, and is 2 times higher than the posterior probability of model 2 and up to 10 times higher

than the posterior probabilities of the other top-8 models displayed in Table 8.
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Table 8: Posterior Model Probabilities and Cumulative Factor Probabilities

Priced Factors Posterior Prob. Priced Factors Posterior Prob.

1: I-III-IV-V-IIX-IX 0.230 5: I-III-IV-V-IIX-IX-XIII 0.031
2: I-III-V-IIX-IX 0.111 6: I-III-V-VI-IIX-IX 0.028
3: I-III-IV-V-VI-IIX-IX 0.088 7: II-III-IV-V-IIX-IX-XI-XII 0.027
4: II-III-IV-V-IIX-IX-XI 0.048 8: I-III-IV-V-VII-IIX-IX 0.022

Cumulative Factor Probabilities
I II III IV V VI VII IIX IX X XI XII XIII
0.76 0.28 1.00 0.68 0.99 0.26 0.09 0.94 1.00 0.01 0.22 0.19 0.09

We use the Bayesian factor selection methodology (with τ = 20) to identify the models with the
highest posterior probabilities out of the set of total potential models that can be constructed using
our set of H candidate factors. The upper part of the table displays the top-8 models as ranked by
their posterior probabilities. For each of these models, we display the posterior probability, as well
as the set of factors, that are proposed (by the respective model) to be priced risk factors. The lower
part of the table displays cumulative factor probabilities. The cumulative probability of a factor is
defined as the sum of posterior probabilities of models that include the factor.

The lower part of Table 8 displays cumulative factor probabilities. The cumulative factor

probability is defined as the sum of posterior probabilities of models that include the factor. The

cumulative probability of a factor can be interpreted as the posterior probability that the factor

is a priced risk factor. We compute the posterior probability that either one, but not both, of the

WMKT or LWMKT factors is a (are) priced risk factor(s) as the sum of posterior probabilities of

models that include either one, but not both, of the factors and find it to equal 96%. This finding

is in line with our expectation that one, but not both, of the global market factors is a (are)

priced risk factor(s). The cumulative factor probabilities of SMB, DHML, QMJ and MOM are

close to, or equal to, 100%, indicating that these factors are very likely to be priced risk factors,

in addition to one of the global market factors, as well. These are precisely the factors that, in

addition to WMKT and HML, make up the factor model with the highest posterior probability.

The posterior probability that both HML and DHML are priced risk factors, computed as the

sum of posterior probabilities of models that include both factors, is 68%, which is surprising

as both factors aim to capture the value effect. As the sample correlation of HML and DHML

(Table 11) equals 0.68, the factors may carry different information related to the value effect.

The question remains as to which factors should be selected as priced risk factors. We could

simply select the factors that make up model 1 as priced risk factors, but judging from our

discussion in section 4, we have no guarantee that the set of factors that make up the model

with the highest posterior probability will equal the set of true priced risk factors. Therefore, it

seems prudent to consider multiple potential sets of priced risk factors. For example, we could

consider eight potential sets of priced risk factors, where each factor model in the top-8 (in terms

of posterior probability) is made up by one of the potential sets of factors.
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Table 9: GRS Tests Nested Factor Models

Model Pair: Nested vs. General RW

I-III-V-IIX-IX vs. I-III-IV-V-IIX-IX 0.46
I-III-V-IIX-IX vs. I-III-IV-V-VI-IIX-IX 0.00
I-III-V-IIX-IX vs. I-III-IV-V-IIX-IX-XIII 4.57
I-III-V-IIX-IX vs. I-III-V-VI-IIX-IX 2.74
I-III-V-IIX-IX vs. I-III-IV-V-VII-IIX-IX 0.00
II-III-IV-V-IIX-IX-XI vs. II-III-IV-V-IIX-IX-XI-XII 37.00
II-III-V-IIX-IX-XI-XII vs. II-III-IV-V-IIX-IX-XI-XII 0.46
II-III-V-IIX-IX vs. II-III-V-IIX-IX-XI-XII 91.00

We test, for each listed pair of factor models (each pair contains one nested and one general model),
whether the nested factor model prices factors that are excluded from the nested model, but included
in the general model, by the means of rolling window GRS tests. For each pair of factor models, RW
reports the share of 60-month rolling windows where the GRS test rejects the null that the nested
factor model prices the excluded factors (expressed in percentages). We use a significance level of 5%.

We observe that many of the high ranking factor models (as ranked by posterior probability)

are actually nested in other high ranking factor models. For example, factor model 2 is nested

in models 1, 3, 5, 6 and 8, while factor model 4 is nested in model 7. As discussed in section

2.3.1, a factor model that is nested in a more general model is superior to the general model if

the nested factor model actually prices excluded factors that are included in the general model.

We proceed to test whether factor model 2 outperforms the more general models 1, 3, 5, 6 and

8, and whether factor model 4 outperforms the more general model 7. Table 9 reports results

of rolling window GRS tests. We test, in a conditional setting, for each listed pair of factor

models (each pair contains one nested and one general model), whether the nested factor model

prices factors that are excluded from the nested model, but included in the general model, by

the means of rolling window GRS tests. For each pair of factor models, we report the share

of 60-month rolling windows where the GRS test rejects the null that the nested factor model

prices the excluded factors. A significance level of 5% is used. We use a conditional setting

and 60-month rolling windows to account for potential time-variation of factor loadings and risk

premia, in the spirit of Brusa et al. (2014) and Lewellen and Nagel (2006).

Judging from our rolling window (RW) GRS test results, factor model 2 likely dominates

each of the more general models 1, 3, 5, 6 and 8 in a conditional setting. For each of the more

general models of interest, we are able to reject the null that factor model 2 prices excluded

factors, in less than 5% of the rolling windows. On the other hand, in a conditional setting,

factor model 4 does not seem to adequately price factor Carry (XII), which is included in more

general model 7. In 37% of the rolling windows, we reject the null that factor model 4 prices

Carry (XII). Factor model 7 is therefore likely to be superior to factor model 4. We also test

whether a nested version of factor model 7, II-III-V-IIX-IX-XI-XII, which excludes HML (IV),
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is able to (conditionally) price HML (IV). RW GRS test results indicate the restricted version

of model 7 is indeed able to (condtionally) price HML (IV), as we are able to reject the null

that the restricted version of model 7 prices HML (IV) in less than 1% of the rolling windows.

In addition to the Bayesian factor selection methodology, we may apply the GMM based

methodology to select priced risk factors out of our set of H = 13 candidate factors. Results

based on the GMM based methodology may well be unreliable though, as we found the selection

accuracy of the methodology to be wanting in our simulation study (section 4). Table 16

(Appendix B) displays, using each of our four distinct sets of test assets (discussed in section

3.2), the factors that are selected by the GMM based methodology as priced risk factors. Only

when we use our aggregate set of N4 = 160 test-assets, results seem plausible, and the GMM

methodology selects II, III, V, IIX and IX to be priced risk factors. The factor model II-III-

V-IIX-IX is nested in model II-III-V-IIX-IX-XI-XII, but is unable to adequately (conditionally)

price excluded factors XI and XII, judging from the RW GRS test result displayed in Table 9.

We end up with two potential sets of priced risk factors. The first one being I-III-V-IIX-

IX, and the second one being II-III-V-IIX-IX-XI-XII. The first set contains the (global) market

factor WMKT and all the factors with cumulative probabilities of (approximately) 100%: SMB,

DHML, MOM and QMJ. The second set contains, in addition to the factors with cumulative

probabilities of (approximately) 100%, the factors that make up the CAPM Redux model of

Brusa et al. (2014): (global) market factor LWMKT and currency factors Dollar and Carry. We

refer to the factor model made up by the factors in the first set and the factor model made up

by the factors in the second set as the Bayes I model and the Bayes II model, respectively.

5.2 Evaluating Factor Models

We proceed to evaluate the pricing performance of candidate factor models. Our set of candidate

factor models consists of the Bayes I and Bayes II models, and three prominent factor models

proposed in the literature: the Word CAPM model, the (International) CAPM Redux model of

Brusa et al. (2014) and a 6 factor model based on the WMKT factor, the 4 (global) factors of

Fama and French (2015) and the (global) momentum factor of Carhart (1997), which we refer

to as the FF6 model. We thus consider a total of five candidate factor models, or five candidate

(priced risk) factor sets. First, we compare the relative pricing performance of our candidate

factor models. As discussed in section 2.3, we should compare the relative pricing performance

of factor models by evaluating the pricing performance of the models with respect to (excluded)

factors. Second, we evaluate the pricing performance of the candidate factor models in an

absolute setting. We investigate whether the factor models fully explain the cross-section of

expected excess-returns of test-assets and (excluded) factors.
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To gain insight into the relative pricing performance of the candidate factor models, we

evaluate, for each candidate factor set, the maximum sample Sharpe ratio (over the portfolio)

of the factors. In case a factor model prices all excluded factors, the maximum Sharpe ratio

of all H = 13 candidate factors will equal the maximum Sharpe ratio of the set of factors that

make up the respective factor model. Otherwise, the maximum Sharpe ratio of all factors will be

higher. The maximum Sharpe ratio of the factors that make up the candidate factor model with

the highest pricing performance w.r.t. excluded factors, will be closest to the maximum Sharpe

ratio of all factors, as compared to the maximum Sharpe ratios of the other candidate factor

sets. To account for potential time-variation of means and variances, we use a 60-month rolling

window (RW) to construct sample Sharpe-ratio’s at each time point in our sample period. For

each candidate factor set, as well as the complete set of candidate factors, Figure 4 displays the

evolution of the RW maximum sample Sharpe ratio over time.

Figure 4: Rolling Window Sharpe Ratio’s
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The Figure displays, for each candidate factor set (or model), the evolution of the 60-month rolling
window (RW) maximum sample Sharpe ratio (over the portfolio) of the respective candidate factors
over time. “Factors” displays the evolution of the RW maximum sample Sharpe ratio of all candidate
factors. We display the evolution of the RW maximum sample Sharpe ratio’s in the period Febru-
ary 2000 - April 2018 and sub-period February 2000 - May 2013 on the left and right hand side,
respectively.

We observe that the RW maximum (sample) Sharpe ratio (over the portfolio of the factors)

of the Bayes II model closely matches the RW maximum Sharpe ratio of all factors during the

whole time period February 2000 - May 2013. The RW maximum Sharpe ratio of the Bayes

I model does not match the RW maximum Sharpe ratio of all factors as closely as the RW

maximum Sharpe ratio of the Bayes II model does during the time period February 2000 - May

2013, but clearly matches the RW maximum Sharpe ratio of all factors closer than the RW

maximum Sharpe ratio’s of the CAPM, CAPM Redux and FF6 models during the whole length

of the time period. During the time period May 2013 - April 2018, we observe that the RW

maximum Sharpe ratio of all factors starts to increase over time and that it diverges from the
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RW maximum Sharpe ratio’s of the candidate factor models over time. During the whole time

period May 2013 - April 2018, the RW maximum Sharpe ratio’s of the Bayes I and Bayes II

models still outperform the RW maximum Sharpe ratio’s of the other candidate factor models

though. The results suggest that, in a conditional setting, as compared to the other candidate

models, the Bayes II model performs best in terms of relative pricing performance, followed by

the Bayes I model. Furthermore, it may well be the case that, in a conditional setting, the Bayes

II factor model prices all excluded factors without any pricing error in the time period February

2000 - May 2013. In the time period May 2013 - April 2018 this is likely not the case, as the

RW maximum Sharpe ratio of all factors is up to twice as large as the RW maximum Sharpe

ratio of the Bayes II model during the time period.

Table 10: Results GRS Tests

Model

Test-Assets

ExF Market Value Growth MEBM MEINV MEMOM MEOP

I: Rolling Window

CAPM 99 95 90 91 95 89 99 90
Redux 94 91 83 85 91 82 99 80
FF6 84 75 67 57 77 63 96 79

Bayes I 37 34 42 20 53 43 91 56
Bayes II 25 23 32 13 42 36 85 44

II: Full Sample

CAPM 13.63 7.54 6.78 6.90 7.90 7.84 9.43 7.88
Redux 14.37 7.29 6.52 6.65 7.65 7.59 9.19 7.63
FF6 11.98 5.59 4.86 4.97 6.04 5.99 7.48 6.03

Bayes I 2.13∗ 2.69 2.10 2.19 3.36 3.32 4.51 3.35
Bayes II 1.66∗∗ 2.60 1.98 2.08 3.32 3.27 4.52 3.30

Part I of the Tables displays, for each candidate factor model and for several sets of test-assets, the
share of 60-month rolling windows where the GRS test rejects the null that the factor model prices
the set of test-assets (expressed in percentages) during the full sample period February 1995 - April
2018. A significance level of 5% is used. Part II of the Tables display GRS test statistics of full sample
GRS tests. GRS test statistics with p-values higher than 5% and 10% are, respectively denoted with
a ∗ and a ∗∗. For each candidate factor model, the test-asset set “ExF” refers to the set of factors
that are excluded from the factor model (but included in our total set of H candidate factors). To
combat the the small T versus large N problem resulting from using 60-month rolling windows, we
split our set of all N4 = 160 test assets up into seven smaller test-asset sets. The Market, Value and
Growth sets respectively consist of the country market indices, country growth indices and country
value indices discussed in section 3.2. The MEBM, MEINV, MEMOM and MEOP sets respectively
consist of the global portfolios formed by bi-variate sorts on ME and BE/ME, bi-variate sorts on
ME and INV, bi-variate sorts on ME and MOM and bi-variate sorts on ME and OP, as discussed in
section 3.2. For each factor model, the set of excluded factors “ExF” is included in all the sets of our
test-assets.
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We proceed to formally test whether our candidate factor models price all (excluded) factors

and test-assets by the means of full-sample GRS tests as well as rolling window GRS tests.

Rolling window GRS tests allow us to account for potential time-variation of factor loadings

and risk premia. Part I of Tables 10 and 17 (Appendix B) displays, for each candidate factor

model and for several sets of test-assets, the share of 60-month rolling windows where the GRS

test rejects the null that the factor model prices the set of test-assets during, respectively, our

full sample period and the sub-sample period February 1995 - May 2013. A significance level

of 5% is used. Part II of the respective Tables displays GRS test statistics of full sample GRS

tests. For each candidate factor model, the test-asset set “ExF” refers to the set of factors that

are excluded from the factor model (but included in our total set of H candidate factors). To

combat the small T versus large N problem resulting from using 60-month rolling windows, we

split our aggregate set of N4 = 160 test assets up into seven smaller test-asset sets. The Market,

Value and Growth sets respectively consist of the Country Market indices, Country Growth

indices and Country Value indices discussed in section 3.2. The MEBM, MEINV, MEMOM and

MEOP sets respectively consist of the global portfolios formed by bi-variate sorts on ME and

BE/ME, bi-variate sorts on ME and INV, bi-variate sorts on ME and MOM and bi-variate sorts

on ME and OP, as discussed in section 3.2. For each factor model, the set of excluded factors

“ExF” is included in all the sets of our test-assets, as a factor model should adequately price all

assets, that is, test-assets and (excluded) factors.

In the full sample period, the share of rolling windows where the GRS test rejects the null

that the excluded factors are priced equals 84%, 94%, 99%, 37% and 25% for, respectively, the

FF6 model, the CAPM Redux model, the (World) CAPM model and the Bayes I and Bayes II

models. In the sub-sample period February 1995 - May 2013, the rolling window GRS test results

for excluded factors are similar for the CAPM, CAPM Redux and FF6 models, as compared

to the full sample period. As compared to the full sample period, the Bayes II and Bayes I

models perform better in the sub-sample though, in the sense that the share of rolling windows

where the GRS test rejects the null that the excluded factors are priced is much lower in the

sub-sample than in the full-sample, for both models. In the sub-sample, the share of rolling

windows where the GRS test rejects the null that the Bayes II model prices the excluded factors

is only 1%. These results are in line with our discussion of the rolling window maximum sample

Sharpe ratio’s of the candidate factor sets (models). The results of the rolling window GRS tests

support the claim that, in a conditional setting, during the full-sample period, as compared to

the other models, the pricing performance of the Bayes II model w.r.t. excluded factors is most

satisfactory, followed by the Bayes I model. Although it is likely the case that the Bayes II model

is not able to (conditionally) price the excluded factors without pricing error during the entire
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full-sample period, the rolling window GRS tests support the claim that it may well be the case

that the Bayes II model (conditionally) prices the excluded factors without pricing error during

the sub-sample period February 1995 - May 2013. When we consider full-sample GRS tests, we

only fail to reject the null that excluded factors are adequately priced for the Bayes I and Bayes

II models, when using a significance level of 5%. For all other models, we reject the null at the

5% significance level. This holds for the sample period February 1995 - April 2018 as well as

the sub-sample period February 1995 - May 2013.

Our results clearly indicate that the Bayes II model performs best in terms of relative pricing

performance, as compared to the other models, followed by the Bayes I model. We proceed the

discussion by evaluating the pricing performance of our candidate factor models in an absolute

setting. When considering full sample GRS test results (Tables 10 and 17), we reject the null

that test-assets are priced for each of our candidate models, and each of our test-asset sets

at a significance level of 5%. Judging from the results of the rolling window (RW) GRS tests

(during our full sample period) displayed in Table 10, none of the factor models are likely able to

(conditionally) price all of the seven sets of test-assets (all test-asset sets include excluded factors)

during the entirety of our full sample period. For the CAPM, CAPM Redux and FF6 models,

the share of rolling windows where the GRS test rejects the null that test-assets are priced is

higher than 57%, for all sets of test-assets. These models are likely unable to (conditionally)

price any of the sets of test-assets during the majority of the (or even during the whole) full

sample period. Although the Bayes I and Bayes II models likely fail to (conditionally) price the

MEMOM test-assets during the majority of the (or even during the whole) full sample period,

as for both models the share of rejected RW GRS tests is higher than 85% for this set of test-

assets, the Bayes I and Bayes II models may be able to (conditionally) price some of the other

sets of test-assets during a (significant) sub-sample of the full-sample period. For all test-asset

sets other than MEMOM, the share of rejected RW GRS tests is lower than 44% for the Bayes

II model and lower than 56% for the Bayes I model. The Bayes II model is thus most likely

to be able to (conditionally) price some of the test-asset sets, other than MEMOM, during a

(significant) sub-sample of the full sample period.

To gain further insight into the pricing performance of the candidate factor models we plot,

for each factor model, realized expected excess-returns of our entire cross-section of N4 = 160

test-assets against the predicted expected excess-returns of the same test-assets as predicted by

the factor model (we do not include excluded factors). We use 60-month rolling windows to

estimate factor loadings of the factor models and to estimate (conditional) means of test-asset

and factor excess-returns. Each rolling window, mean test-asset excess-returns are predicted, for

each factor model, by multiplying estimated (conditional) factor loadings by the corresponding
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estimated (conditional) factor means. All rolling window predicted mean excess-returns and

rolling window realized sample mean excess-returns are then averaged over the total number

of rolling windows. Averaged realized mean excess-returns are then plotted against averaged

predicted mean excess-returns, for each factor model. Figure 5 displays plots for the CAPM

Redux and Bayes II models and Figure 8 (Appendix B) displays plots for the CAPM, FF6 and

Bayes I models.

Figure 5: Realized versus Predicted Expected excess-returns
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For each of the factor models, the Figure plots realized expected excess-returns of our entire cross-
section of test-assets against the predicted expected excess-returns of the same test-assets as predicted
by the candidate factor model (excluded factors are not included in the Figure). We use 60-month
rolling windows to estimate factor loadings of the factor models and to estimate (conditional) means
of test-asset and factor excess-returns. Each rolling window, mean test-asset excess-returns are pre-
dicted, for each of the factor models, by multiplying estimated (conditional) factor loadings by the
corresponding estimated (conditional) factor means. All rolling window predicted mean excess-returns
and rolling window realized sample mean excess-returns are then averaged over the total number of
rolling windows. Averaged predicted mean excess-returns are plotted against averaged realized mean
excess-returns, for each of the factor models.

Figures 5 and 8 allow us to visually evaluate the extent to which our candidate factor

models are, on average, able to explain differences in the expected excess-returns across the

cross-section of test-assets. A factor model is able to explain the differences in the expected
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excess-returns across the cross-section of test-assets, in case the difference between realized

expected excess-returns of any pair of test-assets is properly matched by the difference between

predicted expected excess-returns of the pair. Judging from Figures 5 and 8, on average, the

(World) CAPM is barely able to explain any of the differences in the expected excess-returns

across the cross-section of test-assets. Although the CAPM Redux, as opposed to CAPM, seems,

on average, to be able to explain some of the differences in the expected excess-returns of the

Country Market, Country Value and Country Growth indices, differences in the expected excess-

returns of the MEBM, MEINV, MEMOM and MEOP portfolios are, on average, not explained

by the CAPM Redux at all. When closely investigating the realized expected excess-returns of

the Country Market indices, we observe that, on average, the FF6 explains almost none of the

differences in these expected excess-returns. When the Country Market indices are concerned,

the CAPM Redux thus seems, on average, to be better able to explain differences in expected

excess-returns, as compared to FF6. When test-assets other than the Country Market indices

are concerned, the FF6 model is, on average, better able to explain differences in expected

excess-returns, as compared to the CAPM Redux. The Bayes I model seems to, on average,

(conditionally) overprice most test-assets, as realized expected excess-returns of most test-assets

are, on average, higher than corresponding predicted expected excess-returns. Overall, the Bayes

II model seems, on average, best able to explain the differences in expected excess-returns across

the cross-section of test-assets, as compared to the other models. Although the Bayes II model,

on average, does not explain all the differences in expected excess-returns across the cross-section

of test-assets, there is, on average, no particular set of test-assets with differences in expected

excess-returns that are left, for the most part, unexplained by the model.

Judging from Figures 5 and 8, all candidate factor models (conditionally) price many of our

test-assets with, on average, substantial pricing error. The results of rolling window GRS tests

(Table 10) indicate that the Bayes I and Bayes II models may be able to (conditionally) price

the Market, Value and Growth test-asset sets (including excluded factors), during a (significant)

sub-sample of our full sample period. This conflicts with the (substantial) average pricing errors

of the Bayes I and Bayes II models observed in Figures 5 and 8 (concerning the Country Market,

Country Value and Country Growth indices). Therefore, concerning the Bayes I and Bayes II

models, it is likely the case that, either, we are unable to reject a false null hypothesis of no

pricing errors for the Market, Value and Growth test-asset sets during a substantial share of

our rolling windows, or differences between the relevant predicted and realized expected excess-

returns differ substantially during the rolling windows. Either way, our findings support the

claim that none of our candidate factor models are able to (conditionally) price all test-assets

during the entire full sample period.
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6 Conclusion

The relevance for the identification of priced risk factors on the international level has increased

tremendously in the last couple of decades, along with an increasing share of investors with for-

eign equity holdings and an increase in (global) candidate factors, as proposed by the literature,

that help explain anomalies of the (World) CAPM. The quest to identify priced (excess-return)

risk factors that fully explain the cross-section of asset expected excess-returns corresponds to

the quest to find the mean-variance efficient portfolio (Huberman and Kandel (1987)). The

identification of priced (excess-return) risk factors on the international level is therefore relevant

from an explanatory viewpoint as well as from the viewpoint of an investor who aims to find

the mean-variance efficient portfolio on the international level.

The recent research of Barillas and Shanken (2018) and Chib et al. (2018) provides a

Bayesian, marginal likelihood based, factor selection methodology that enables us to filter out

priced risk factors from a set of candidate (excess-return) factors. We extend upon the research

of Barillas and Shanken (2018) and Chib et al. (2018), and argue that the specification of the

priors of the unconditional means of proposed priced risk factors, or alpha’s, (across the can-

didate models) implies a prior bias towards sparse factor models, as, conflicting with economic

intuition, the prior means of the alpha’s are set to equal zero. We argue that excessively narrow

spreads of the priors of the alpha’s may imply an excessive prior bias towards sparse models.

Indeed, in a simulation study, we find the precision of the marginal likelihood based factor

selection methodology of Chib et al. (2018) and Barillas and Shanken (2018) to be wanting when

the hyper-parameter k, governing the spreads of the priors of the alpha’s, is set to equal the

squared maximum (attainable) Sharpe ratio (over the portfolio) of the candidate factors, divided

by the number of candidate factors, as proposed by Barillas and Shanken (2018). When hyper-

parameter k is specified as suggested by Barillas and Shanken (2018), the marginal likelihood

based factor selection methodology tends to excessively favour sparser factor models, as opposed

to the true factor model as implied by the simulated DGP. The finding in turn suggests the

specification of the priors of the alpha’s as proposed by Barillas and Shanken (2018) implies

a prior bias towards sparse factor models that is too excessive. We find we can substantially

improve upon the precision of the marginal likelihood based factor selection methodology by

setting hyper-parameter k, although conflicting with theoretical restrictions on the potential

magnitude of k as derived by Barillas and Shanken (2018), equal to a multiple of the squared

maximum Sharpe ratio of the candidate factors, divided by the number of candidate factors,

thereby effectively increasing the spreads of the priors of the alpha’s and decreasing the prior

bias towards sparse factor models. Using our specification of the priors of the alpha’s, we find the

49



precision of the marginal likelihood based factor selection methodology to be robust in a setting

with student-t, as opposed to normally, distributed factors and to be much more satisfactory

than the precision of the GMM based factor selection methodology of Cochrane (2005).

It may well be prudent to further investigate the specification of the priors of the alpha’s

though, as our new specification of the priors that allows for larger spreads actually violates

theoretical restrictions on the potential magnitude of hyper-parameter k. The key insight here

is that we have to violate the theoretical restrictions in order to compensate for the (excessive)

prior bias towards sparse factor models otherwise implied by setting the prior means of the

alpha’s to equal zero, which is in conflict with economic theory in the first place. Investors

demand compensation for bearing risk, and we can a priori expect (absolute values) of expected

excess-returns of traded factors to be positive. Although a prior bias towards sparse factor

models, resulting from setting the prior means of the alpha’s to equal zero, is in line with a

preference of a sparse over a less-sparse factor model, unless sufficient posterior evidence is

available against its statistical validity, it may well be prudent to re-evaluate the specification

of the prior means and prior variances of the alpha’s across the candidate models in further

research, such that they are more in harmony with economic theory.

In our empirical study, we apply the marginal likelihood based factor selection methodology of

Chib et al. (2018), using priors for the alpha’s with increased spreads, to select priced risk factors

out of a set of prominent global (excess-return) factors proposed in the literature. We find that

the maximum attainable (sample) Sharpe ratios over two portfolios of, respectively, two selected

factor sets outperform maximum attainable Sharpe ratio’s over portfolios of, respectively, factor

sets of several prominent factor models proposed in the literature. The two selected factor models

also outperform the factor models proposed in the literature in terms of pricing performance

w.r.t. excluded factors. We find the seven factor model consisting of the LWMKT, Dollar

and Carry factors of Brusa et al. (2014) and the SMB, DHML, QMJ and MOM factors of,

respectively, Fama and French (1993), Asness and Frazzini (2013), Asness et al. (2019) and

Carhart (1997) performs best in terms of pricing performance w.r.t. excluded factors. The set

of factors making up the seven factor model is thus superior in terms of approximating the

true mean-variance efficient portfolio on the international level, as compared to other popular

factor sets proposed in the literature. Although we find the seven factor model’s overall ability to

explain differences across the cross-section of expected excess-returns of global stock portfolios to

be more satisfactory as compared to other prominent factor models proposed in the literature, it

remains a challenge to fully explain the cross-section of expected excess-returns of global stocks,

as none of our considered factor models are likely able to price all of our global stock portfolios

without pricing error.
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7 Appendix

A Auxiliary Derivations

A.1 Specifying the Spread of the Prior of Parameter Alpha

We consider a set of H normally distributed (candidate) excess-return risk factors, captured in

(H × 1) vector ft:

ft = α+ εt, εt ∼ NH(0,Σ).

We consider variance matrix Σ given for illustrative purposes, and specify the prior distribution

of α as

π(α) = φH(α|0, kΣ). (20)

Back (2015) shows that the squared maximum attainable Sharpe ratio over any portfolio of

assets equals

Sh2 = µ′Ω−1µ,

with µ denoting the mean of the excess-returns of the assets and Ω denoting the variance matrix

of the excess-returns of the assets. Thus, the squared maximum attainable Sharpe ratio over

the portfolio of our H factors, denoted by Sh(f)2, equals

Sh(f)2 = α′Σ−1α.

Barillas and Shanken (2018) argue that, in case H = 1, k equals the prior expectation of the

squared alpha divided by residual variance Σ = σ2, or the expected squared Sharpe ratio. In

case H = 1, prior (20) implies

E(α2) = kσ2, k = E(α2/σ2), k = E(Sh(f)2).

Barillas and Shanken (2018) argue that, in general, with H > 1 factors, the quadratic form

α′(kΣ)−1α is distributed as chi-square with H d.o.f. Thus

E(α′(kΣ)−1α) = H, k = E(α′(Σ)−1α)/H, k = E(Sh(f)2)/H.

Assuming our set of H factors span the true mean-variance efficient portfolio, and assuming

the market portfolio is not mean-variance efficient, our best guess for the prior expectation of

the squared maximum Sharpe ratio over the portfolio of the factors, which equals the squared

Sharpe ratio of the mean-variance efficient portfolio, ShMax2, is a multiple of the squared Sharpe

ratio of the market portfolio, ShMkt2:

E(Sh(f)2) = ShMax2 = (τShMkt)2.
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A.2 Inverse Map Derivation

Let factor model M1 stand for the factor model in which all of the H candidate factors are

(proposed) priced risk factors (we omit the pricing equation of the test-assets for simplicity)

f1,t = α1 + ε1,t, ε1,t ∼ NH(0,Σ1). (21)

The “nuisance” parameter η1 of this model is η1 = σ1 = vech(Σ1). Factor model Mj (j > 2) is

written as (omitting the pricing equation of the test-assets)

fj,t = αj + εj,t, εj,t ∼ NKj (0,Σj),

f̃j,t = βj,ffj,t + νj,t, εj,t ∼ NMj (0, Σ̃j),

with fj,t and f̃j,t denoting, respectively, a vector of (proposed) priced risk factors and a vector

of non-risk factors. The “nuisance” parameter ηj of model Mj (j > 2) is

ηj = (β′j,f , σ
′
j , σ̃
′
j)
′, βj,f = vec(βj,f ), σj = vech(Σj), σ̃j = vech(Σ̃j).

We will proceed to derive the inverse map that connects “nuisance” parameters η1 and ηj (j > 2)

η1 = g−1j (ηj).

We rewrite model Mj (j > 2) by substituting the expression for fj,t into the expression of

f̃j,t: fj,t
f̃j,t

 =

 αj

βj,fαj

+

 εj,t

βj,f εj,t + εj,t

 , (22)

with  εj,t

βj,f εj,t + εj,t

 ∼ NH(0,Vj), Vj =

 Σj Σjβ
′
j,f

βj,fΣj Σ̃j + βj,fΣjβj,f

 . (23)

Under the assumption that model Mj (j > 2) is correctly specified, i.e. non-risk factors f̃j,t

are priced by proposed priced risk factors fj,t without pricing error, model Mj , as given by

equations (22) and (23), is equivalent to model M1, as given by equation (21). Thus, assuming

model Mj (j > 2) is correctly specified, Σ1 equals Vj

Σ1 =

 Σj Σjβ
′
j,f

βj,fΣj Σ̃j + βj,fΣjβ
′
j,f

 .

Alternatively, in vech form:

σ1 =


σj

(Σj ⊗ IMj )βj,f

σ̃j + vech(βj,fΣjβ
′
j,f )

 , (24)
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with IMj denoting the (Mj ×Mj) identity matrix (and Mj being the number of non-risk factors

in f̃j,t). The set of vector equations given in Eq. (24) constitute the inverse map

η1 = σ1 = g−1j (ηj).

A.3 Marginal Likelihood Derivation

We derive a closed form expression for the marginal likelihood of factor model Mj , j = 1, ..., J :

fj,t = αj + εj,t, εj,t ∼ NKj (0,Σj),

f̃j,t = βj,ffj,t + νj,t, νj,t ∼ NMj (0, Σ̃j),

rt = βrf
∗
t + ut, ut ∼ NN (0, Σ̃r),

(25)

with shocks εj,t, νj,t and ut being mutually independent. Vectors f∗t and rt respectively denote

a (H × 1) vector of candidate factors and a (N × 1) vector of test-assets. Vectors fj,t and f̃j,t

respectively denote a (Kj × 1) vector of proposed priced risk factors and a (Mj × 1) vector

of implied non-risk factors. Let βj,f = vec(βj,f ) and βr = vec(βr) respectively denote the

vectorizations of βj,f and βr. Let σj = vech(Σj), σ̃j = vech(Σ̃j) and σr = vech(Σ̃r) denote the

half vectorizations of the three covariance matrices. The parameters of model Mj , j = 1, ..., J ,

are then

θj = (α′j , η
′
j , β
′
r, σ
′
r)
′ ∈ (Θ′αj , Θ

′
ηj , Θ

′
βr , Θ

′
σr)
′, ηj = (β′j,f , σ

′
j , σ̃
′
j)
′ ∈ Θηj ,

where Θαj , Θηj , Θβr and Θσr respectively denote the parameter spaces of αj , ηj , βr and σr. We

specify the prior density of parameter θj :

p(θj |Mj) = π(αj |Mj , ηj)ψ(ηj |Mj , βr)ψr(βr, σr).

The conditional prior of αj , π(αj |Mj , ηj), is specified as a proper density:

π(αj |Mj , ηj) = φKj (αj |0, kΣj),

with φd(·|µ,Σ) denoting the pdf of the d-dimensional multivariate normal distribution with

mean µ and covariance matrix Σ. The prior of parameter ηj is specified as the uninformative

prior (we set c = 1):

ψ(ηj |Mj) = |Σj |−
2Kj−H+1

2 |Σ̃j |−
H+1

2

We leave the prior of parameters βr and σr, ψr(βr, σr) unspecified, the following derivations

hold for any arbitrary specification of the prior ψr(βr, σr).

Let Y = (y1, ..., yT )′ (with yt = ((f∗t )′, r′t)
′) denote the observation matrix of all candidate

risk factors and test-assets. The marginal likelihood of model Mj is given as

m(Y |Mj) =

∫
Θσr

∫
Θβr

∫
Θηj

∫
Θαj

p(Y |Mj , θj)π(αj |Mj , ηj)ψ(ηj |Mj , βr)ψr(βr, σr)dθj . (26)
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The density p(Y |Mj , θj) is the likelihood function implied by factor model Mj (Eq. (25)).

Let F ∗ = (f∗1 , ..., f
∗
T )′, F = (fj,1, ..., fj,T )′, F̃ = (f̃j,1, ..., f̃j,T )′ and R = (r1, ..., rT )′ denote

observation matrices of, respectively, all candidate factors, priced risk factors, non-risk factors

and test-assets. Let IT denote the T × T identity matrix, and ιT a (T × 1) vector of ones. The

likelihood function p(Y |Mj , θj) can be split up due to the independence of the error terms of

model Mj :

p(Y |Mj , θj) = φT×Kj (F |ιTα′j ,Σj ⊗ IT )φT×Mj (F̃ |Fβ′j,f , Σ̃j ⊗ IT )φT×N (R|F ∗β′r, Σ̃r ⊗ IT ),

with φc×d(·|M ,S ⊗ L) denoting the pdf of a matricvariate normally distributed random c × d

matrix with mean matrix M (c × d) and with covariance matrix S ⊗ L (S : d × d, L : c × c).

Plugging in the likelihood function p(Y |Mj , θj) into the marginal likelihood, Eq. (26), results

in the following expression for the marginal likelihood:

m(Y |Mj) = m(F |Mj)m(F̃ |Mj)m(R),

with

m(F |Mj) =

∫
Θαj

∫
Θσj

φT×Kj (F |ιTα′j ,Σj ⊗ IT )φKj (αj |0, kΣj)|Σj |−
2Kj−H+1

2 dαjdσj

m(F̃ |Mj) =

∫
Θσ̃j

φT×Mj (F̃ |Fβ′j,f , Σ̃j ⊗ IT )|Σ̃j |−
H+1

2 dσ̃j

m(R) =

∫
Θσr

∫
Θβr

φT×N (R|F ∗β′r, Σ̃r ⊗ IT )ψr(βr, σr)dβrdσr.

The expression m(F |Mj) corresponds to the marginal likelihood of the sub-model of the

priced risk factors, as implied by model Mj :

fj,t = αj + εj,t, εj,t ∼ NKj (0,Σj),

with the following prior density for the sub-model parameters:

p(αj , σj |Mj) = φKj (αj |0, kΣj)|Σj |−
2Kj−H+1

2 .

The expression m(F̃ |Mj) corresponds to the marginal likelihood of the sub-model of the non-risk

factors, as implied by model Mj :

f̃j,t = βj,ffj,t + νj,t, νj,t ∼ NMj (0, Σ̃j),

with the following prior density for the sub-model parameters:

p(σ̃j , βj,f |Mj) = |Σ̃j |−
H+1

2 .

The expression m(R) corresponds to the marginal likelihood of the sub-model of the test-assets

rt = βrf
∗
t + ut, ut ∼ NN (0, Σ̃r),
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with an (unspecified) arbitrary prior density for the sub-model parameters, denoted by ψr(βr, σr).

The sub-model of the test-assets is identical across all candidate modelsMj , j = 1, ..., J . There-

fore, the marginal likelihood of the sub-model of the test-assets, m(R), is identical across all

candidate models Mj , j = 1, ..., J , as well.

As marginal likelihood m(R) is identical across all candidate factor modelsMj , j = 1, ..., J ,

the marginal likelihood m(R) always cancels out when constructing ratio’s of marginal likeli-

hoods (Bayes factors) of candidate factor models. When comparing the marginal likelihoods of

candidate factor models, we thus may omit the inclusion of test-assets in our candidate factor

models (resulting in an empty vector rt with N = 0) and simply calculate the marginal likelihood

of candidate model Mj , j = 1, ..., J , as

m(Y |Mj) = m(F |Mj)m(F̃ |Mj).

We proceed to derive closed form expressions for marginal likelihoods m(F |Mj) and m(F̃ |Mj),

in turn resulting in a closed form expression for marginal likelihood m(Y |Mj).

The expression m(F |Mj) corresponds to the marginal likelihood of the sub-model of the

priced risk factors, as implied by model Mj :

fj,t = αj + εj,t, εj,t ∼ NKj (0,Σj), Aj = α′j , (27)

with the following prior density for the sub-model parameters:

p(αj , σj |Mj) = φKj (αj |0, kΣj)|Σj |−
2Kj−H+1

2 ,

which may be written as

p(αj , σj |Mj) = (2π)−
1
2
Kjk−

1
2
Kj |Σj |−

1
2 exp

(
− 1

2
tr[Σ−1j (A′jk

−1Aj)]
)
|Σj |−

Kj−Mj+1

2 , (28)

with tr[M ] denoting the trace operator of square matrix M . The likelihood function of the

sub-model of priced risk factors, implied by Mj and given by Eq. (27), is given as

p(F |αj , σj ,Mj) = φT×Kj (F |ιTα′j ,Σj ⊗ IT ),

p(F |αj , σj ,Mj) = (2π)−
1
2
KjT |Σj |−

T
2 exp

(
− 1

2
tr[Σ−1j (F − ιTAj)′(F − ιTAj)]

)
. (29)

Marginal likelihood m(F |Mj) is, following Chib (1995), calculated as

m(F |Mj) =
p(F |αj , σj ,Mj)p(αj , σj |Mj)

p(αj |F , σj ,Mj)p(σj |F ,Mj)
, (30)

with p(αj |F , σj ,Mj) denoting the conditional posterior of αj , conditional on σj , and p(σj |F ,Mj)

denoting the marginal posterior distribution of σj . Substituting closed form expressions of
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p(αj , σj |Mj), p(F |αj , σj ,Mj), p(αj |F , σj ,Mj) and p(σj |F ,Mj) in Eq. (30) will result in a

closed form expression for m(F |Mj).

We proceed our discussion by deriving closed form expressions of p(αj |F , σj ,Mj) and p(σj |F ,Mj).

First, we determine the kernel of the joint posterior distribution of αj and σj

p(αj , σj |F ,Mj) ∝ p(αj , σj |Mj)p(F |αj , σj ,Mj)

p(αj , σj |F ,Mj) ∝ |Σj |−
T+Kj−Mj+2

2 exp
(
−1

2
tr[Σ−1j (A′jk

−1Aj)]
)

exp
(
−1

2
tr[Σ−1j (F−ιTAj)′(F−ιTAj)]

)
.

We re-write

(F − ιTAj)′(F − ιTAj) +A′jk
−1Aj = (W − V Aj)′(W − V Aj),

W =

 F

01×Kj

 , V =

 ιT

k−
1
2

 ,

with 01×Kj a (1×Kj) vector of zeroes. Thus, we are able to re-write the kernel of p(αj , σj |F ,Mj)

as

p(αj , σj |F ,Mj) ∝ |Σj |−
T+Kj−Mj+2

2

(
− 1

2
tr[Σ−1j (W − V Aj)′(W − V Aj)]

)
.

Using the decomposition rule

(W − V Aj)′(W − V Aj) = (W − V Ãj)′(W − V Ãj) + (Aj − Ãj)′(V ′V )(Aj − Ãj), (31)

with Ãj = (V ′V )−1V ′W , we re-write the kernel of p(αj , σj |F ,Mj) as

p(αj , σj |F ,Mj) ∝ |Σj |−
T+Kj−Mj+2

2 exp
(
− 1

2
tr[Σ−1j (W − V Ãj)′(W − V Ãj)]

)
exp
(
− 1

2
tr[Σ−1j (Aj − Ãj)′(T + k−1)(Aj − Ãj)]

)
,

with Ãj = (T +k−1)−1ιTF . Thus, the kernel of the marginal posterior distribution p(σj |F ,Mj)

is given as

p(σj |F ,Mj) ∝
∫
Θαj

p(αj , σj |F ,Mj)dαj ,

which can be re-written as

p(σj |F ,Mj) ∝ |Σj |−
T+Kj−Mj+2

2 exp
(
− 1

2
tr[Σ−1j (W − V Ãj)′(W − V Ãj)]

)
|Σj(T + k−1)−1|

1
2∫

Θαj

|Σj(T + k−1)−1|−
1
2 exp

(
− 1

2
tr[Σ−1j (Aj − Ãj)′(T + k−1)(Aj − Ãj)]

)
dαj .

Using the fact that∫
Θαj

|Σj(T + k−1)−1|−
1
2 exp

(
− 1

2
tr[Σ−1j (Aj − Ãj)′(T + k−1)(Aj − Ãj)]

)
dαj
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integrates to a constant as the integrand is the kernel of a multivariate normal distribution with

mean Ãj and variance (T + k−1)−1Σj , and the fact that |Σj(T + k−1)−1| = |Σj |(T + k−1)−Kj ,

we re-write the kernel of the marginal posterior distribution p(σj |F ,Mj) as

p(σj |F ,Mj) ∝ |Σj |−
T+Kj−Mj+1

2 exp
(
− 1

2
tr[(W − V Ãj)′(W − V Ãj)]

)
,

which we identify to be the kernel of an inverted Wishart distribution with parameter matrix

Sj = (W − V Ãj)′(W − V Ãj), and T −Mj d.o.f.:

p(σj |F ,Mj) = c−1|Sj |
T−Mj

2 |Σj |−
T−Mj+Kj+1

2 exp
(
− 1

2
tr[Σ−1j Sj ]

)
, (32)

with c =
[
2

(T−Mj)Kj
2 ΓKj

(
T−Mj

2

)]
, and with Γd(·) denoting the d dimensional multivariate

gamma function. Note that we may re-write parameter Sj as

Sj =

T∑
t=1

(fj,t − α̂j)(fj,t − α̂j)′ +
k−1T

T + k−1
α̂jα̂

′
j ,

with αj denoting the OLS estimate of αj .

By conditioning the kernel of p(αj , σj |F ,Mj) on σj , we write, using the decomposition rule

of Eq. (31), the kernel of the conditional posterior distribution of αj as

p(αj |F , σj ,Mj) ∝ exp
(
− 1

2
tr[Σ−1j (Aj − Ãj)′(T + k−1)(Aj − Ãj)]

)
,

which we identify to be the kernel of multivariate normal distribution with mean Ãj and variance

(T + k−1)−1Σj . Thus

p(αj |F , σj ,Mj) =
( 1

2π

)Kj
2 |Σ|−

1
2 (T + k−1)

Kj
2 exp

(
− 1

2
tr[Σ−1j (Aj − Ãj)′(T + k−1)(Aj − Ãj)]

)
.

Substituting the closed form expression of p(αj |F , σj ,Mj) and the closed form expressions of

p(αj , σj |Mj), p(F |αj , σj ,Mj) and p(σj |F ,Mj) respectively given by equations (28), (29) and

(32) in equation (30) gives the closed form expression of m(F |Mj) as given by Eq. (16).

We turn the discussion towards the derivation of the closed form expression of m(F̃ |Mj).

The expression m(F̃ |Mj) corresponds to the marginal likelihood of the sub-model of the non-risk

factors, as implied by model Mj :

f̃j,t = βj,ffj,t + νj,t, νj,t ∼ NMj (0, Σ̃j), Bj = β′j,f , (33)

with the following prior density for the sub-model parameters:

p(σ̃j , βj,f |Mj) = |Σ̃j |−
Kj+Mj+1

2 . (34)
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In the subsequent discussion, we treat observation matrix F = (fj,1, ..., fj,T )′ as given. The

likelihood function of the sub-model of the non-risk factors, implied by modelMj and given by

Eq. (33), is given as

p(F̃ |σ̃j , βj,f ,Mj) = φT×Mj (F̃ |Fβ′j,f , Σ̃j ⊗ IT ),

p(F̃ |σ̃j , βj,f ,Mj) = (2π)−
1
2
MjT |Σ̃j |−

T
2 exp

(
− 1

2
tr[Σ̃−1j (F̃ − FBj)

′(F̃ − FBj)]
)
. (35)

Again, we calculate marginal likelihood m(F̃ |Mj) as

m(F̃ |Mj) =
p(F̃ |σ̃j , βj,f ,Mj)p(σ̃j , βj,f |Mj)

p(βj,f |F̃ , σ̃j ,Mj)p(σ̃j |F̃ ,Mj)
, (36)

with p(βj,f |F̃ , σ̃j ,Mj) denoting the conditional posterior of βj,f , conditional on σ̃j , and p(σ̃j |F̃ ,Mj)

denoting the marginal posterior of σ̃j .

We derive closed form expressions of p(βj,f |F̃ , σ̃j ,Mj) and p(σ̃j |F̃ ,Mj). We determine the

kernel of the joint posterior distribution of βj,f and σ̃j

p(σ̃j , βj,f |F̃ ,Mj) ∝ p(F̃ |σ̃j , βj,f ,Mj)p(σ̃j , βj,f |Mj)

p(σ̃j , βj,f |F̃ ,Mj) ∝ |Σ̃j |−
T+Kj+Mj+1

2 exp
(
− 1

2
tr[Σ̃−1j (F̃ − FBj)

′(F̃ − FBj)]
)
.

The kernel of the marginal posterior p(σ̃j |F̃ ,Mj) is given as

p(σ̃j |F̃ ,Mj) ∝
∫
Θβj,f

p(σ̃j , βj,f |F̃ ,Mj)dβj,f ,

which can be re-written as

p(σ̃j |F̃ ,Mj) ∝ |Σ̃j |−
T+Kj+Mj+1

2 exp
(
− 1

2
tr[Σ̃−1j (F̃ − FB̂j)

′(F̃ − FB̂j)]
)
|Σ̃j ⊗ (F ′F )−1|

1
2∫

Θβj,f

|Σ̃j ⊗ (F ′F )−1|−
1
2 exp

(
− 1

2
tr[Σ̃−1j (Bj − B̂j)

′(F ′F )(Bj − B̂j)]
)

dβj,f ,

using the decomposition rule

(F̃ − FBj)
′(F̃ − FBj) = (F̃ − FB̂j)

′(F̃ − FB̂j) + (Bj − B̂j)
′(F ′F )(Bj − B̂j), (37)

with B̂j = (F ′F )−1F F̃ . Using the fact that∫
Θβj,f

|Σ̃j ⊗ (F ′F )−1|−
1
2 exp

(
− 1

2
tr[Σ̃−1j (Bj − B̂j)

′(F ′F )(Bj − B̂j)]
)

dβj,f

integrates to a constant as the integrand is the kernel of a matricvariate normal distribution

with mean B̂j and covariance matrix Σ̃j⊗ (F ′F )−1, and |Σ̃j⊗ (F ′F )−1| = |Σ̃j |Kj |(F ′F )−1|Mj ,

we re-write the kernel of the marginal posterior p(σ̃j |F̃ ,Mj) as

p(σ̃j |F̃ ,Mj) ∝ |Σ̃j |−
T+Mj+1

2 exp
(
− 1

2
tr[Σ̃−1j (F̃ − FB̂j)

′(F̃ − FB̂j)]
)
,
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which we recognise to be the kernel of an inverted Wishart distribution with parameter matrix

S̃j = (F̃ −FB̂j)
′(F̃ −FB̂j) =

T∑
t=1

(f̃j,t− β̂j,ffj,t)(f̃j,t− β̂j,ffj,t)′ (with β̂j,f the OLS estimate of

βj,f ) and T d.o.f.:

p(σ̃j |F̃ ,Mj) = c−1|S̃j |
T
2 |Σ̃j |−

T+Mj+1

2 exp
(
− 1

2
tr[Σ̃−1j S̃j ]

)
, (38)

with c =
[
2
TMj

2 ΓMj

(
T
2

)]
.

By conditioning the kernel of p(σ̃j , βj,f |F̃ ,Mj) on σ̃j , we write, using the decomposition rule

of Eq. (37), the kernel of the conditional posterior of βj,f as

p(βj,f |F̃ , σ̃j ,Mj) ∝ exp
(
− 1

2
tr[Σ̃−1j (Bj − B̂j)

′(F ′F )(Bj − B̂j)]
)
,

which we recognise to be the kernel of a matricvariate normal distribution with mean B̂j and

covariance matrix Σ̃j ⊗ (F ′F )−1:

p(βj,f |F̃ , σ̃j ,Mj) =
( 1

2π

)MjKj
2 |Σ̃j |−

Kj
2 |(F ′F )−1|−

Mj
2 exp

(
−1

2
tr[Σ̃−1j (Bj−B̂j)

′(F ′F )(Bj−B̂j)]
)
.

Substituting the closed form expression of p(βj,f |F̃ , σ̃j ,Mj) and the closed form expressions

of p(σ̃j , βj,f |Mj), p(F̃ |σ̃j , βj,f ,Mj) and p(σ̃j |F̃ ,Mj) respectively given by equations (34), (35)

and (38) in Eq. (36) gives the closed form expression of m(F̃j |Mj) as given by Eq. (16).

A.4 Testing for the effect of a factor in a SUR factor model

We consider the factor regression model

rt = α+ βft + εt, εt ∼ NN (0,Σ), β = [β1, ..., βK ],

with rt and ft respectively denoting a (N × 1) vector of test-assets (or non-risk factors) and

a (K × 1) vector of (proposed) priced risk factors. Matrix β is a matrix of N ×K regression

coefficients, with βi, i = 1, ...,K, denoting the vector of N regression coefficients that correspond

with the same factor f it , ft = [f1t , ..., f
K
t ]′. In case factors ft price all test-assets rt, it holds α = 0.

Let R = (r1, ..., rT )′, F = (f1, ..., fT )′ respectively denote observation matrices of test-assets and

priced risk factors. Let E = (ε1, ..., εT )′ denote the (non-observed) matrix of disturbances. Let

regressor matrix X be defined as: X = (ιT F ), with ιT denoting a (T × 1) vector of ones. The

factor regression model can be written as a SUR (seemingly unrelated regression) model:

R = XB +E, vec(E) ∼ NTN (0,Σ ⊗ IT ), B = (α β)′.

The OLS estimator of B is

B̂ = (X ′X)−1XR.
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Let us denote row i, i = 1, ...,K + 1 of B and B̂ with Bi and B̂i, respectively. Thus, Bi+1,

i = 1, ...,K, equals the transpose of βi, the set of N regression coefficients corresponding with

factor f it . It can be shown that the distribution of the OLS estimator of Bi, B̂i, is given by

B̂′i ∼ NN (B′i, qiiΣ),

with qii denoting the i-th diagonal element of matrix Q = (X ′X)−1. To test for the effect of

factor f it , i = 1, ...,K, on the N test-assets, we can base a test on the hypothesis H0 : B′i+1 = a.

If, for example, we aim to test whether the effect of factor f it differs significantly from 0, we test

H0 : B′i+1 = 0. The quadratic form

(B̂′i − a)′Σ−1(B̂′i − a)/qii ∼ χ2(N), (39)

is a chi-squared distributed random variable with N d.o.f.. The chi-squared test depends on the

covariance matrix Σ, and is exact in case Σ is given. Alternatively, Σ may be estimated

Σ̂ =
1

T −K
Ê′Ê, Ê = R−XB̂,

and has the property

(T −K)Σ̂ ∼WN (Σ, T −K),

with WN (Σ, T −K) denoting the Wishart distribution with (N ×N) scale matrix Σ and T −K

d.o.f.. Plugging in the estimator of Σ, Σ̂, into the quadratic form given in Eq. (39) gives the

statistic

t2 = (B̂′i − a)′Σ̂−1(B̂′i − a)/qii ∼ T2(N,T −K),

with T2(N,T −K) denoting Hotelling’s T2-distribution with parameters N and T −K. The t2

statistic can be scaled such that the F -statistic

F =
T −M −K + 1

N(T −K)
t2 ∼ F (N,T −K −N + 1),

is a F-distributed random variable with N and T − K − N + 1 d.o.f.. All derived results are

exact under the assumption of normally distributed disturbances. If we relax the assumption,

results still hold asymptotically.
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B Auxiliary Graphs and Tables

Data

Table 11: Correlation Matrix Candidate Factors
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Sample correlation matrix of the set of candidate factors. DLLR, CRRY and GT are abbreviations
of Dollar, Carry and Global Tail respectively.
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Simulation Study

Table 12: Simulation Study Results Bayesian Factor Selection Methodology I

τ

1.5 2 3 5 10 20 30

T = 300

Average Accuracy 00 (75) 02 (73) 07 (67) 20 (52) 40 (35) 50 (30) 51 (31)
Minimum Accuracy 00 (99) 00 (99) 00 (99) 01 (96) 12 (82) 20 (77) 21 (77)

T = 600

Average Accuracy 03 (72) 08 (66) 21 (51) 50 (28) 70 (11) 75 (09) 76 (09)
Minimum Accuracy 00 (99) 00 (99) 00 (99) 03 (96) 36 (59) 57 (43) 56 (40)

T = 1200

Average Accuracy 10 (65) 20 (53) 39 (37) 78 (17) 85 (03) 91 (01) 92 (01)
Minimum Accuracy 00 (99) 00 (99) 01 (99) 10 (85) 60 (35) 80 (06) 79 (06)

Simulation results Bayesian factor selection methodology. We simulate 13 random DGP’s, each DGP
is simulated Z = 100 times. We apply the Bayesian factor selection methodology to select factors for
each simulated DGP, using multiple alternative values for τ . In each “Average Accuracy” row, we
display, in plain text, the average selection accuracy observed across the simulated DGP’s. In addition,
in each “Average Accuracy” row, we display, in (parentheses), the average of the percentages of times
a sparser, instead of the (DGP implied) true, factor model is selected, observed across the simulated
DGP’s. In each “Minimum Accuracy” row, we display, in plain text, the minimum selection accuracy
observed across the simulated DGP’s. In addition, in each “Minimum Accuracy” row, we display, in
(parentheses), the maximum of the percentages of times a sparser, instead of the (DGP implied)
true, factor model is selected, observed across the simulated DGP’s. Results are displayed for various
sample sizes T . We simulate student-t distributed factors (with ν = 5 d.o.f.).

Table 13: Simulation Study Results Bayesian Factor Selection Methodology DGP: WMKT

τ

1.5 2 3 5 10 20 30

T = 300
Observed Selection Accuracy 55 58 58 58 59 62 62

T = 600
Observed Selection Accuracy 71 71 67 67 65 71 73

T = 1200
Observed Selection Accuracy 93 90 89 85 85 90 90

Simulation results Bayesian factor selection methodology. We simulate DGP: WMKT, the DGP is
simulated Z = 100 times. We apply the Bayesian factor selection methodology to select factors for the
simulated DGP, using multiple alternative values for τ . For each τ , we display the observed selection
accuracy: the percentage of times the true model WMKT is identified. Results are displayed for
various sample sizes T . We simulate normally distributed factors.
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Table 14: Average Loss in Sharpe Ratio, Bayesian Factor Selection Methodology

Priced Factors

T = 300 T = 600 T = 1200

ν = 5 ν =∞ ν = 5 ν =∞ ν = 5 ν =∞

I-V 15 (50) 05 (25) 08 (40) 00 (11) 00 (10) 00 (02)
I-IX 16 (35) 08 (10) 03 (23) 00 (05) 00 (05) 00 (05)
I-VI 28 (35) 17 (43) 16 (31) 08 (18) 05 (25) 00 (05)
I-IIX 15 (35) 00 (18) 06 (10) 00 (10) 00 (03) 00 (03)
I-II-V 34 (55) 32 (50) 11 (25) 04 (21) 00 (07) 00 (02)

I-II-IIX 20 (38) 04 (13) 00 (05) 00 (05) 00 (03) 00 (03)
I-III-VII 28 (48) 08 (44) 09 (39) 05 (30) 00 (23) 00 (05)
I-IIX-IX 18 (40) 06 (35) 12 (20) 00 (04) 00 (01) 00 (01)

I-II-III-IIX 35 (53) 28 (51) 25 (50) 15 (33) 03 (20) 00 (10)
I-II-IV-IIX 33 (55) 10 (49) 15 (40) 00 (25) 00 (15) 00 (02)
I-II-VI-IIX 35 (52) 30 (47) 28 (48) 16 (35) 00 (23) 00 (14)

I-IV-VII-IIX 34 (53) 11 (33) 04 (15) 00 (05) 00 (07) 00 (03)
I-III-IV-VII-IIX-IX 29 (38) 13 (21) 06 (11) 00 (00) 00 (00) 00 (00)

Simulation results Bayesian factor selection methodology (with τ = 20). The left hand side of the
table displays sets of true priced risk factors implied by the DGP’s we simulate. Each DGP is
simulated Z = 100 times. Each numerical entry displays the average percentage loss in Sharpe ratio
(given that the wrong model has been selected) resulting from constructing the mean-variance efficient
portfolio with selected, as opposed to true, priced risk factors. Percentage losses displayed in plain
text and in (parentheses) are calculated in a setting where portfolio weights are constructed with,
respectively, true and estimated moments. Sharpe ratio’s of constructed portfolios are calculated
using true moments. Results are displayed for various sample sizes T and d.o.f. of the t-distribution
ν.

Table 15: Simulation Study Results GMM Based Factor Selection Methodology

Priced Factors

T = 300 T = 1200

N1 N2 N3 N4 N1 N2 N3 N4

I-V 9 22 27 26 21 19 26 32
I-IX 7 18 20 32 13 25 24 38
I-VI 5 7 7 6 12 13 15 19
I-IIX 25 37 58 49 38 46 47 54
I-II-V 5 16 33 33 18 18 34 31

I-II-IIX 19 39 65 70 41 70 70 68
I-III-VII 1 4 5 8 2 3 8 8
I-IIX-IX 9 22 26 28 17 29 26 31

I-II-III-IIX 0 12 22 19 8 23 32 27
I-II-IV-IIX 3 25 44 27 17 21 27 31
I-II-VI-IIX 2 8 22 19 5 27 29 28

I-IV-VII-IIX 8 18 41 35 18 40 36 35
I-III-IV-VII-IIX-IX 0 0 8 9 7 20 37 35

Simulation results GMM factor selection methodology. Sets of true priced risk factors implied by
the DGP’s we simulate are displayed on the left hand side. Each DGP is simulated Z = 100 times.
Numerical entries give the percentage of times the true priced risk factors are correctly identified.
Results are displayed for various sample sizes T , various test-assets set sizes N1 = 20, N2 = 60,
N3 = 100 and N4 = 160, and ν =∞ d.o.f. of the student-t distribution.
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Figure 6: Simulation Results DGP: WMKT-RMW-Dollar, T = 12000
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We simulate the DGP: WMKT-RMW-Dollar, with normally distributed factors and test-assets (we
use N4 test-assets and sample size T = 12000), Z = 100 times, for various values of bDlr (the direct
effect of Dollar on the SDF). We use the Bayesian (with τ = 20) and GMM based factor selection
methodologies to select priced risk factors each simulation iteration. The set of candidate factors
solely consists of WMKT, RMW and Dollar. For each relevant value of bDlr, the percentage of
times WMKT and RMW are selected as well as the percentage of times WMKT, RMW and Dollar
are selected are displayed. On the left: Bayesian methodology results. On the right: GMM based
methodology results.

Figure 7: Simulation Results DGP: WMKT-HML-MOM, T = 12000
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We simulate the DGP: WMKT-HML-MOM, with normally distributed factors and test-assets (we use
N1 test-assets and sample size T = 12000), Z = 100 times, for various values c, the constant governing
βMOM = cι. We use the Bayesian (with τ = 20) and GMM based factor selection methodologies
to select priced risk factors each simulation iteration. The set of candidate factors solely consists of
WMKT, HML and MOM. For each relevant value of c, the percentage of times WMKT and HML
are selected as well as the percentage of times WMKT, HML and MOM are selected are displayed.
On the left: Bayesian methodology results. On the right: GMM based methodology results.
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Table 16: GMM Based Factor Selection

Test-assets Priced Risk Factors Test-assets Priced Risk Factors

Set 1 VII Set 3 IX-XI
Set 2 II Set 4 II-III-V-IIX-IX

We use the GMM based methodology to select priced risk factors out of our set of H = 13 candidate
factors. The table displays, for each of our test-asset sets (discussed in section 3.2), which factors the
GMM based methodology selects as priced risk factors.

Table 17: Results GRS Tests, sub-sample period

Model

Test-Assets

ExF Market Value Growth MEBM MEINV MEMOM MEOP

I: Rolling Window

CAPM 99 93 86 89 95 85 99 86
Redux 91 88 80 84 91 75 98 74
FF6 78 81 72 62 73 50 95 73

Bayes I 20 35 44 18 45 26 87 44
Bayes II 1 20 28 10 32 17 79 30

II: Full Sample

CAPM 10.30 6.20 5.48 5.59 6.69 6.52 7.66 6.20
Redux 9.95 5.67 4.96 5.07 6.18 6.01 7.13 5.69
FF6 8.91 4.70 4.00 4.12 5.25 5.09 6.17 4.78

Bayes I 2.10∗ 2.65 2.06 2.16 3.32 3.18 4.07 2.93
Bayes II 1.13∗∗ 2.44 1.84 1.93 3.15 3.01 3.91 2.75

Part I of the Tables displays, for each candidate factor model and for several sets of test-assets, the
share of 60-month rolling windows where the GRS test rejects the null that the factor model prices
the set of test-assets (expressed in percentages) during during the sub-sample period February 1995
- May 2013. A significance level of 5% is used. Part II of the Tables display GRS test statistics of
full sample GRS tests (during the sub-sample period February 1995 - May 2013). For each candidate
factor model, the test-asset set “ExF” refers to the set of factors that are excluded from the factor
model (but included in our total set of H candidate factors). GRS test statistics with p-values higher
than 5% and 10% are, respectively denoted with a ∗ and a ∗∗. To combat the the small T versus large
N problem resulting from using 60-month rolling windows, we split our set of all N4 = 160 test assets
up into seven smaller test-asset sets. The Market, Value and Growth sets respectively consist of the
country market indices, country growth indices and country value indices discussed in section 3.2.
The MEBM, MEINV, MEMOM and MEOP sets respectively consist of the global portfolios formed
by bi-variate sorts on ME and BE/ME, bi-variate sorts on ME and INV, bi-variate sorts on ME and
MOM and bi-variate sorts on ME and OP, as discussed in section 3.2. For each factor model, we add
the set of excluded factors “ExF” to all the sets of our test-assets.
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Figure 8: Realized versus Predicted Expected excess-returns
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For each of the factor models, the Figure plots realized expected excess-returns of our entire cross-
section of test-assets against the predicted expected excess-returns of the same test-assets as predicted
by the candidate factor model (excluded factors are not included in the Figure). We use 60-month
rolling windows to estimate factor loadings of the factor models and to estimate (conditional) means
of test-asset and factor excess-returns. Each rolling window, mean test-asset excess-returns are pre-
dicted, for each of the factor models, by multiplying estimated (conditional) factor loadings by the
corresponding estimated (conditional) factor means. All rolling window predicted mean excess-returns
and rolling window realized sample mean excess-returns are then averaged over the total number of
rolling windows. Averaged predicted mean excess-returns are plotted against averaged realized mean
excess-returns, for each of the factor models.
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