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Abstract

The relevance for the identification of priced risk factors on the international level has
increased tremendously in the last couple of decades. We revisit the recent work of Barillas
and Shanken| (2018) and |Chib et al.| (2018]) who introduce a marginal likelihood based factor
selection methodology. We argue that the specification of the [Barillas and Shanken| (2018)
priors of the alpha’s (across the candidate models) implies a prior bias towards sparse factor
models, and find simulation results indicate that the factor selection methodology tends
to favour sparser factor models, as opposed to the factor model implied by the simulated
DGP, excessively. We find we can drastically increase the precision of the factor selection
methodology by increasing the spreads of the priors of the alpha’s, and find the precision of
the methodology to be robust in a setting with student-t distributed factors. We apply the
factor selection methodology, using priors for the alpha’s with increased spreads, to select
priced risk factors out of a set of prominent global factors as proposed in the literature, and
find our selected factor model outperforms several prominent factor models proposed in the

literature in terms of relative pricing performance.
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1 Introduction

The relevance for the identification of priced risk factors on the international level has increased
tremendously in the last couple of decades, along with the share of investors with foreign equity
holdings. Brusa et al.| (2014) write that aggregate foreign equity holdings as a percentage of
global gross domestic product have increased steadily from roughly 3% in the 1980’s to 30% in
2011. Following the traditional CAPM of [Sharpe| (1964) and Lintner| (1965), the excess-return
of the market portfolio is the only risk factor that carries a price of risk, and is able to fully
explain the cross-section of expected excess-returns of all assets. [Brusa et al.| (2014) argue that,
under the assumption of purchasing power parity (PPP), the traditional CAPM can easily be
extended to global markets, the World CAPM. Currently, there exists an extensive body of
literature that discusses anomalies of the (World) CAPM, and as such, the literature provides
us with numerous (global) candidate (excess-return) factors that help explain the anomalies of
the (World) CAPM (Brusa et al|(2014), Fama and French) (2012)), Asness et al. (2013))).

The relevance for the identification of priced risk factors increases with the number of pro-
posed (global) candidate (excess-return) factors, as the identification of priced risk factors helps
us to identify which of the candidate factors help explain expected excess-returns of (global)
assets, and which of the candidate factors are in fact non-risk factors with expected excess-
returns that can be fully explained by other, priced, risk factors. The quest to identify priced
(excess-return) risk factors that fully explain the cross-section of asset expected excess-returns
corresponds to the quest to find the mean-variance efficient portfolio (Huberman and Kandel
(1987), Back| (2015)). Thus, identifying priced (excess-return) risk factors on the international
level is relevant from an explanatory viewpoint as well as from the viewpoint of an investor who
aims to find the mean-variance efficient portfolio on the international level.

The recent research of Barillas and Shanken| (2018) introduces a Bayesian, marginal likelihood
based, factor identification (or, selection) methodology that allows us to filter out priced risk
factors from a set of (global) candidate excess-return factors. Barillas and Shanken (2018)
compare the relative pricing performance of candidate factor models simultaneously by the
means of the marginal likelihoods of the respective models. The marginal likelihood of a model
is defined as the likelihood that a model will generate the observed data, given a prior on the
model parameters. The marginal likelihood based factor model comparison methodology may
also be interpreted as a factor selection methodology. Out of a set of candidate factors, one could
simply select the combination of factors that form the factor model with the highest marginal
likelihood, as compared to other factor combinations, as priced risk factors.

For each candidate factor model, Barillas and Shanken (2018) specify the prior of the un-



conditional mean of the proposed priced risk factors, or, alternatively, the alpha, as a proper
distribution and specify the prior of the remaining “nuisance” parameters as an improper |Jef-
freys (1961) prior. |Chib et al. (2018]) revisit the framework of Barillas and Shanken (2018)
and point out that the marginal likelihood based factor selection methodology is unsound as
the improper Jeffreys| (1961) priors of the “nuisance” parameters across the candidate models
depend on arbitrary constants that may vary across the priors. The marginal likelihoods are
therefore non-comparable across models and cannot be used to locate the true priced risk fac-
tors. |Chib et al. (2018)) show that the “nuisance” parameters across the models are connected
by invertible maps and, using the change-of-variable technique, |Chib et al,| (2018)) derive new
improper priors for the “nuisance” parameters across the models that all depend on a single
arbitrary constant. Using the improper priors of |Chib et al.| (2018]), the marginal likelihoods of
the candidate factor models can be properly compared as the single arbitrary constant, common
across all improper priors, always cancels out when constructing Bayes factors. Conveniently,
the methodology allows the marginal likelihoods to be derived as closed form expressions.

A Bayesian, marginal likelihood based, factor selection methodology, similar to [Barillas and
Shanken (2018) and |Chib et al.| (2018), has been developed by |Chib and Zeng| (2018). |Chib and
Zeng| (2018)) base their methodology on the assumption that excess-return factors are student-t
distributed, while the methodology of Barillas and Shanken| (2018) and |Chib et al.| (2018]) is based
on the assumption that excess-return factors are normally distributed. While the methodology
of |Chib and Zeng| (2018]) accounts for fat tails exhibited by empirical (stock) return data (Fama
(1965)), marginal likelihoods are not available as closed form solutions and must be estimated
using MCMC methods, which may require substantial computing power. (Chib et al.| (2018)
consider the advances in their paper, as well as the advances of |(Chib and Zeng (2018), as
complementary, and state the advances open doors to an exciting new wave of reliable Bayesian
work on the comparison of factor models.

The marginal likelihood based factor selection methodology presented by |Barillas and Shanken
(2018) and (Chib et al. (2018) is related to a GMM based factor selection approach as discussed
in |Cochrane| (2005). Both methodologies attempt to partition a set of candidate excess-return
factors into a set of priced risk factors that, ceteris paribus, affect the SDF, and a set of non-
risk factor that, ceteris paribus, do not affect the SDF. Only the former set of factors consists
of priced risk factors, as investors only demand a risk premium on an asset’s expected return
when it is exposed to a factor that, ceteris paribus, affects the SDF. The marginal likelihood
based approach of Barillas and Shanken (2018]) and |Chib et al.| (2018) evaluates which particular
partition of the candidate factors is most supported by the data. The GMM approach splits

the candidate factors by separating factors with estimated direct effects on the SDF that are



significant from factors with estimated direct effects on the SDF that are insignificant.

Unlike the GMM based factor selection methodology of Cochrane| (2005), the marginal likeli-
hood based factor selection methodology of Barillas and Shanken| (2018) and |Chib et al.| (2018)),
does not require the use of test-asset data, as the information contained in test-asset data can-
cels out when constructing Bayes factors. Indeed, in their research, Barillas and Shanken! (2017))
find that, although test-asset data provides valuable information when assessing the pricing
performance of a factor model in an absolute setting, test-asset data provides no information
when simultaneously comparing the relative pricing performance of candidate factor models.
Many papers in the empirical literature, for example, Brusa et al. (2014]), Hou et al.| (2015) and
Hou et al| (2011), frame the comparison of the relative pricing performance of factor models
in terms of success in pricing, solely, test-assets, which [Barillas and Shanken (2017) find may
lead to a false inference about factor model comparison. Furthermore, [Barillas and Shanken
(2017) provide a thorough discussion on their finding that, when the comparison of the relative
pricing performance of factor models is framed appropriately in terms of success in pricing both
test-assets as well as excluded factors, the extent to which each factor model is able to price
excluded factors, not test-assets, is what matters for factor model comparison.

The fact that the marginal likelihood based factor selection methodology of Barillas and
Shanken| (2018) and |Chib et al.| (2018) is not based on test-asset data gives it an advantage over
test-asset based factor selection methodologies (such as |Cochrane, (2005]), or Pukthuanthong
et al.| (2019)) in certain scenarios. In a scenario where only a few test-assets are of interest,
test-asset based factor selection methods might fail to select factors that are actually priced risk
factors, but not sufficiently related to the particular set of test-assets in question, even when a
large number of observations are available. When a large set of test-assets is of interest, and all
priced risk factors are assumed to be sufficiently related to the test-assets, accuracy of test-asset
based factor selection methods may suffer from a large N small T issue when, given a number
of available observations 7', the number of test-assets N is sufficiently large. The marginal
likelihood based methodology, conveniently, does not suffer from these issues.

We extend upon the the research of (Chib et al. (2018) and [Barillas and Shanken, (2018)), and
further investigate the specification of the priors of the unconditional means of the proposed
priced risk factors, or alpha’s, across the candidate models. |[Barillas and Shanken! (2018) specify
the priors of the alpha’s (across the candidate models) as proper normal distributions with means
of zero. Barillas and Shanken| (2018) derive a theoretical restriction on the potential magnitude of
hyper-parameter k, governing the spreads of the priors, and set it to equal the squared maximum
(attainable) Sharpe ratio (over the portfolio) of the candidate factors, divided by the number

of candidate factors, as the unconditional mean of the candidate factors is directly related to



the squared maximum Sharpe ratio of the candidate factors. We argue that the |Barillas and
Shanken| (2018)) priors of the alpha’s, with means of zero, imply a prior bias towards sparse factor
models, as economic intuition suggests that the (absolute values of the) unconditional means of
excess-returns of a set of tradeable factors are positive, instead of zero, such that investors are
compensated for bearing risk. The prior bias towards sparse models reflects our preference of
a sparse over a less-sparse factor model, on the condition that the sparse model is statistically
valid. We argue that spreads of the priors of the alpha’s that are excessively narrow (or strict)
may imply an excessive prior bias towards sparse factor models, in the sense that less-sparse
models will only be preferred over sparse models if posterior evidence against the statistical
validity of the sparse models is excessively strong.

In a simulation study, we we find the precision of the marginal likelihood based factor
selection methodology of |Chib et al| (2018) and Barillas and Shanken| (2018]) to be wanting,
when the priors of the alpha’s (across the candidate models) are specified as suggested by
Barillas and Shanken (2018). Using the Barillas and Shanken| (2018) priors of the alpha’s, the
marginal likelihood based factor selection methodology tends to excessively favour sparser factor
models, as opposed to the true factor model as implied by the simulated DGP, in turn suggesting
that the priors imply an excessive prior bias towards sparse factor models. Indeed, we find we
can substantially improve upon the precision of the marginal likelihood based factor selection
methodology by setting hyper-parameter k, though conflicting with theoretical restrictions on
the potential magnitude of k, equal to a multiple of the squared maximum Sharpe ratio of the
candidate factors, divided by the number of candidate factors, effectively increasing the spreads
of the priors of the alpha’s and decreasing the prior bias towards sparse factor models. Using our
specification of the priors of the alpha’s, we find the precision of the marginal likelihood based
factor selection methodology to be robust in a setting with student-t, as opposed to normally,
distributed factors and to be much more satisfactory than the precision of the GMM based
factor selection methodology of |(Cochrane| (2005)).

In an empirical study, we use the marginal likelihood based factor selection methodology of
Chib et al. (2018)) and Barillas and Shanken| (2018), using priors for the alpha’s with increased
spreads, to select priced risk factors out of a set of prominent global (excess-return) factors pro-
posed in the literature. Our selected factor model outperforms several prominent factor models
proposed in the literature in terms of pricing performance w.r.t. excluded candidate factors,
and in terms of the overall ability to explain differences across the cross-section of expected
excess-returns of global stock portfolios. It remains a challenge to fully explain the cross-section
of expected excess-returns of global stocks however, as we find none of our considered factor

models are likely able to price all of our global stock portfolios without pricing error.



The remainder of our paper will be organised as follows. In section[2] we revisit the research of
Barillas and Shanken (2017) and discuss the marginal likelihood based and GMM based factor
selection methodologies of, respectively, |(Chib et al. (2018) and Barillas and Shanken| (2018)),
and [Cochrane| (2005). We introduce (global) candidate factor and test-asset data in section
Section 3] also provides a brief discussion on the backgrounds of our candidate factors. Sections

and [f] respectively present our simulation study and our empirical study. Section [6] concludes.

2 Methodology

2.1 Preliminaries

We consider an international investor, situated in home country j, who invests in assets across
various countries. Following the fundamental asset valuation equation of |(Cochrane (2005), the
expected discounted excess-return of country i’s asset, from the perspective of a country j

investor equals 0:

By(My 175 141) = Bu(Myy (Rl 4185/ 010 = B) ) = 0, (1)
where M denotes the (nominal) stochastic discount factor (SDF) of country 7, Ré-,t 1 (r%t 1)
denotes the gross (excess) return of country i’s asset in terms of country j’s currency, and S;-’t
denotes the exchange rate between foreign currency ¢ and domestic currency j. The exchange
rate is defined in units of foreign currency per unit of domestic currency. The gross risk-free rate
of country j is denoted by Rf’ - We assume the perspective of an US investor in our research,
and suppress j when we consider the US as the home country.
Following Hansen and Jagannathan| (1991), we specify the SDF as an affine function of risk
factors f; (a K x 1 vector). In turn, Eq. implies a beta factor model for excess-returns. So,
given

My =1 =b[fis1 — Ee(fis1)],  Ef(Mipary,) =0, (2)

it holds (see (Cochrane (2005)))

Ey(ri,,) = Bitht, By = vary(fis1) " eove(frar, i), e = vare(fren)be

The vector 3;; contains the conditional sensitivities of excess-return rj,; to the K risk factors,
and the vector A; contains the conditional prices of the risks the risk factors carry. When
fr+1 exclusively contains excess-returns (in our research we consider, exclusively, excess-return

factors), we end up with the (asset pricing) factor model

Tit1 = Bifiv1 + a1, Be = [Bies s BN,t]/, Ei(et+1) =0, (3)

with 7441 denoting a N x 1 vector of N test-asset excess-returns, and A\ = E¢(fiy1).



2.2 Absolute Evaluation of Asset Pricing Factor Models

Gibbons, Ross and Shanken (Gibbons et al. (1989)) develop a test to evaluate the factor model
as given by Eq. (the GRS-test) in an absolute sense. |Gibbons et al| (1989) assume an
unconditional setting with constant factor sensitivities 8; = B and prices of risk Ey(f;) = E(fi),

and test the null Hy : @ = 0 in the factor regression model:

Tt+1 :a+16ft+1+€t+17 EtNNN(O,Z), /8: [517"‘751\7]/7 (4)

disturbances ¢; are assumed to be normally distributed. In case « # 0, the factor regression
model does not reduce to the (unconditional form of) the factor model given by Eq. (3], meaning
that the cross-section of expected excess-returns is not fully explained by the factors f;.

We define R = (r1,...,r7) and F = (f1,..., fr)’. The GRS test is an F-test with N restric-
tions and test statistic

_T-N-K aX'a

: N 1+ Sh(F)

s ~F(N,T—N-K), aX¥'a=(ShF,R)’-Sh(F)?), (5)

with F'(a,b) denoting the F-distribution with a and b degrees of freedom. Sh(F') and Sh(F, R)
denote maximum sample Sharpe ratios over, respectively, a portfolio of the K factors and a
portfolio of the K factors and IV test-assets. Estimate & denotes the OLS estimate of a, while
3 denotes the ML (biased) estimate of X. The null is rejected in case a significant increase
in maximum sample Sharpe ratio can be attained by constructing a Sharpe ratio maximizing
portfolio consisting of test-assets and factors, as opposed to factors only. Testing Hy : « = 0
by the means of the GRS test is thus equivalent to testing whether the mean-variance efficient

portfolio can be constructed by the K risk factors, exclusively.

2.3 Relative Evaluation of Asset Pricing Factor Models

While an (excess-return) factor model can be evaluated in an absolute sense by testing whether
it adequately prices a set of test-assets by the means of a GRS test, the GRS test results are
not informative for the relative pricing performance of the factor model, as compared to other
competing models. Barillas and Shanken! (2017)) show that, when the comparison of the relative
pricing performance of factor models is of interest, the comparison should be framed in terms
of success in pricing excluded factors, as opposed to the pricing of test-assets. Barillas and
Shanken| (2017) find that framing the comparison of the relative pricing performance of factor
models in terms of success in pricing, solely, test-assets, may lead to a false inference about

model comparison.



2.3.1 Comparing Nested Models

Let us consider a set of factors f; that can be partitioned fy = (fi+, for)'. We label the (asset
pricing) factor model consisting of factors f;, and the factor model consisting of factors fi; as
model M and model M, respectively. Model M is nested in the model M in the sense that
model M is a restricted version of model M. We write the factor regression model as specified

in Eq. consisting of factors f; as

re = o + Bifie + Bafor + &, (6)

after partitioning B = (81, B2) conform the factor partition f; = (f1+, f2¢)’. The relationship

between the parameters of the factor regression model consisting of factors fi ¢
re=ar1 +bf1t + e, (7)
and parameters of regression model @ depends on the parameters of the regression model

for = a1 +df1s + uy, (8)

where factors excluded from model M are regressed on the factors included in M. Substituting

regression equation in regression equation @ gives

re = (ap + Bacr) + (81 + Bad) f1+ + (Bour + €1).

The relationship between the parameters of the regression model @ and the regression model
(7) is thus given as
ar1 = ap + Baagr, b= 1+ Bad, (9)

under orthogonality conditions that u; and ¢; have means of 0 and are uncorrelated with fi ;.
Relationship @ implies that nested model M is valid, in the sense that the factors in My
price all test-assets as well as excluded factors fa; (o1 = 0 and ag; = 0), if and only if the
excluded factors fo: are priced by the factors in the nested model M; (a1 = 0) and test-
assets are priced by the factors in the larger model M (a, = 0). Furthermore, the relationship
implies that, in case excluded factors fp; are priced by the factors in model My (a2; = 0),
model predictions for test-asset expected excess-returns are identical under both M and My,
with identical pricing errors o, = a1 (following from @) Under M; and M, predicted
expected test-asset excess-returns are bE(f1 ) and B1E(f1,+)+B2E(fa,t), respectively (assuming
no pricing errors). In case as; = 0, Eq. implies E(f2:) = dE(f14+), ans so M predicts
B1E(f1t) + B2dE(f14) = (B1 + B2d)E(f1,1) = bE(f1,t), which equals the prediction of M.
Thus, in case the excluded factors fo; are priced by model M; (a2 = 0), M is the superior

model (in terms of sparsity), as compared to M, regardless of the pricing performance of model



M with respect to the test-assets. This, because pricing performances of models M7 and M,
with respect to the test-assets, are identical in case as; = 0, but we favour a sparse model
over a less sparse model. In case model M; fails to price factors fo; (21 # 0), model M is
inferior to model M in the statistical sense that an asset pricing model solely comprising the
factors f1; wrongly implies ap; = 0, and in the sense that factors fi; can not possibly form
the mean-variance efficient portfolio, as the mean-variance efficient portfolio comprising both
factors f1; and fo; will attain a higher Sharpe ratio than the mean-variance efficient portfolio
solely comprising factors fi ;.

Although it might seem that, in case a1 # 0, the general model M can only improve upon
the pricing of the test-assets, as compared to model M1, this is not necessarily the case. For
example, in case a1, o, a1 and B are scalars, and s and B9 have an opposite sign, it holds
that a1 < a,. Thus, in case both a,1 and «,. are positive and non-zero, the pricing performance
of the larger model M will be worse than the pricing performance of model M, as judged by

the magnitude of test-asset alphas, even though M is the better model.

2.3.2 Comparing Non-Nested Models

When comparing relative pricing performance of non-nested factor models, we can use the fact
that each of the factor models is a nested version of the factor model that includes all the factors.
Thus, our discussion in section also has implications in a setting where we compare non-
nested models. Let us denote two factor models that, respectively, include factors f1 ¢ = (I, IL;)’
and fo; = (It, IIL;)" by M; and Mj. Both models are nested in the factor model including all
factors fy = (I, 1, 111;)’, denoted by M. Factors I, IT and III denote arbitrary factors.

Let as1, age and «, denote regression constants of, respectively, the regression of III on the
factors f1, the regression of II on the factors f2; and the regression of test-assets on the factors
ft. Following our discussion in section model M; is valid, in the sense that the factors in
the model price all test-assets as well as excluded factor III, if and only if as; = 0 and «a, = 0.
Model M5 is valid if and only if a0 = 0 and «, = 0. We can only distinguish between relative
pricing performance of models M; and My by focusing on the extent of deviations from the
excluded-factor restrictions a1 = 0 and a2 = 0, regardless of the validity of the restriction
a, = 0, which we will illustrate with an example.

Suppose that as; = 0, and a2 # 0. In this case, following our discussion in section [2.3.1
model M is superior to model M in terms of sparsity. On the other hand, model My is inferior
to model M in the statistical sense that an asset pricing model solely comprising factors fo;
wrongly implies a12 # 0 and in the sense that the maximum attainable Sharpe ratio of a portfolio

of factors fs; is lower than the maximum attainable Sharpe ratio of a portfolio of factors f ;.



Let a1 and a,9, respectively, denote the constant of the regression of test-assets on the factors
in M7 and M. In case ao; = 0, the relation between the parameters of the factor regression
models (including constants) corresponding to factor models M and M; implies o, = 1.
Thus, when o, = 0 model M is not only valid in the sense that the factors fi; price the factors
fa,t, but also valid in the sense that the factors fi; fully explain the cross-section of test-asset
expected excess-returns.

Although, M clearly is the superior model as compared to Ms in case ao; = 0 and a2 # 0,
pricing performance of model M w.r.t. test-assets, as judged by test-asset alphas, can actually
be worse as compared to model M, in case a, # 0. The relation between parameters of the
factor regression models (including constants) corresponding to factor models M and My is given
as apo = o + PBroe, with By denoting the regression coefficient of fi; in the factor regression
model corresponding to the full factor model M. So in case as; = 0, aio = a1 +B112. Suppose
Qr2, a1, aio; and By are scalars. When a2 # 0 has the opposite sign as 81, it holds a9 < ay1.
In case both «,1 and «,o are positive and non-zero, the pricing performance of model M; will
be worse than the pricing performance of model Ms, as judged by the magnitude of test-asset
alphas, even though M is the better model.

The examples discussed in this section and section thus serve to illustrate that, by
focusing on the pricing of test-assets, in isolation of factors, when comparing the relative pricing
performance of factor models (nested or non-nested), a false inference about model comparison
can be obtained. Test-assets should be solely used to evaluate whether the factors in an factor
model fully explain the cross-section of expected excess-returns of the test-assets, but provide no
information that is relevant for the comparison of the relative pricing performance of competing
factor models. When the comparison of the relative pricing performance of competing factor
models is of interest, the extent to which each model is able to price excluded factors is what

matters for model comparison.

2.4 Factor Selection: a GMM Approach

A factor is a priced risk factor if and only if the factor has a direct effect on the SDF. A factor
is a non-risk factor that is priced by other, priced, risk factors if and only if the factor has
no direct effect on the SDF. Factor (model) selection thus essentially boils down to determin-
ing which factors have a direct effect on the SDF, and which factors do not. In the current
section, we present the classical GMM based factor (model) selection approach (as discussed
in |Cochrane, (2005))). In section we discuss the Bayesian marginal likelihood based factor
(model) selection approach as introduced by Barillas and Shanken| (2018) and (Chib et al.[ (2018)).

Let f; denote the vector of H candidate excess-return risk factors. We define the SDF as



an affine function of the candidate risk factors (we assume an unconditional setting):
My =1- b/ft*+1a

In case we specify M;11 = 1-0V'[f — E(f/,)] we end up with the unconditional version of the
SDF specification as displayed in Eq. . We opt not to use that specification in this setting to
avoid having to estimate E(f7 ). The GMM approach allows us to estimate the direct effects
of the various candidate factors on the SDF, b, and thus to isolate priced risk factors from a set
of candidate factors. A priced risk factor likely has an estimated direct effect that is significant,
a factor with an estimated direct effect that is insignificant is likely to be non-risk factor.

The fundamental asset valuation equation provides us with a set of N moment conditions:
E(Mt’l“t) = 0, E(ut(b)) = 0, ’LLt(b) =Tt — b,ft*T‘t,

with r; denoting a vector of excess-returns of N test-assets. Given b, uy(b) captures the pricing
error at time ¢, which is expected to be 0 as implied by the fundamental asset valuation equa-
tion. With GMM, we estimate b such that the distance between sample moments and implied
population moments is minimized:

T
>0,

t=1

Nl =

T
b= arg Z1£1r1i1r1 gr(b)Wgr(b), gr(b) = %Zut(b) = Er(w(b), Er()=
t=1

with E7(-) denoting the sample mean. The matrix W is a weighting matrix. Typically, the
weighting matrix is set W =T or W = S = E(u(b)us(b)’). In the former case, pricing errors
of all test-assets are given equal weights. Pricing errors of test-assets are given higher weights
when their respective (co-)variances are smaller and vice versa, in the latter case. The matrix
S may be estimated in a first stage estimate of b, where weighting matrix W = I is used. We

solve analytically for the GMM estimate b (see (Cochrane| (2005)):
b= (X'W'X) ' X'W ' Ep(ry), X' = Ep(fir)).
The asymptotic distribution of the estimator I;, using weighting matrix W = I, is given as:
VT(h—b) 4 N, V), V=(XX)'X'$X(X'X) " (10)

When we use weighting matrix W = S, the expression V collapses to V = (X’'S~1 X)L
We are now equipped with the tools to evaluate whether a candidate factor f3, has a direct

effect on the SDF. We estimate b = [b] beo]’ (where by is a scalar) of the model

My =1- b/ft*+1 =1- ( ,1fft+1 + b2f§,t+1)a ft* = Kff,t), fg,t],»

10



and test whether the candidate factor f3, has a significant direct effect on the SDF by the means
of an asymptotic z-test. We thus test Hy : by = 0, where the asymptotic distribution of the test
statistic follows directly from Eq.

Z=—2_ % N®,1).

~

var(by)

To split the set of candidate factors into a set of priced risk factors and a set of non-risk factors,
we employ a hybrid backward elimination / forward selection strategy, see Algorithm [I} After
applying our hybrid factor selection strategy, we end up with a set of factors in f; that all have a
statistically significant direct effect on the SDF, and are therefore likely to be priced risk factors.
None of factors in f; have a statistically significant direct effect on the SDF, all factors in f; are

therefore likely to be non-risk factors.

Algorithm 1 Factor Selection by hybrid backward elimination / forward selection

1: Let f; and ft respectively denote potential risk factors included in the model for the SDF,
and excluded in the model for the SDF. Start of with including all H candidate risk factors
in f;, so that f; is empty.

2: Estimate b of the model My, =1 — b fi41.

3: Test for significance of each individual factor in f;41 (we use a 5% significance level). If one
or more factors are found to have an insignificant effect, transfer the factor with the weakest
significance from f; to f, and go back to step 2. If all factors are found to have a significant
effect, proceed to step 4.

4: Let F denote the number of factors in ft Foralle =1, ..., E/, estimate b and b§ of the model
Mt =1— () fee1 — bgfeﬂH_l? with fe,t+1 denoting element e of ft—i—l‘ If none of the factors
in ft+1 are found to have a significant effect, or £ = 0, terminate the procedure. If one or
more factors have a significant effect, transfer the factor with the strongest significance from

ft to ft, and return back to step 2.

2.5 Factor Selection: a Bayesian Marginal Likelihood based Approach

Given H candidate excess-return risk factors (collected in vector f;), a total of J = 2 —1
candidate factor models can be constructed. Each candidate factor might either be a priced risk
factor or a non-risk factor with an expected excess-return that is fully explained by other, priced,
risk factors (we assume at least one of the factors in our set of candidate factors is a priced risk
factor). Following Barillas and Shanken| (2018]), |(Chib et al. (2018) compare the (relative) pricing

performance of all candidate factor models simultaneously by the means of marginal likelihoods.
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The marginal likelihood of a model is defined as the likelihood that a model will generate the
observed data, given a prior on the model parameters. The procedure of |Chib et al.| (2018)
can be used as a factor selection procedure. Given H candidate factors and .J candidate factor
models, one could simply select the factors that make up the model with the highest marginal
likelihood as priced risk factors. Let M;, j = 1,...,J, denote any of the candidate factor models.
Each model M;, j = 1,...,J, partitions the vector of H candidate factors, fJ, into a vector of
K proposed priced risk factors f;; and a vector of M; = (H — K) implied non-risk factors fj,t:
fi =l ~]’-7t)’ . The partition of the vector of candidate factors f;" into a vector of (proposed)
priced risk factors f;; and a vector of (implied) non-risk factors fjﬂg is unique for each model
M;, j=1,...,J. Let r; denote a vector of excess-returns of N test-assets. For each model M,
j=1,...,J, we collect test-assets r; and non-risk factors fj,t in the vector y; ;.

Assuming a setting with student-t distributed (excess-returns of) test-assets and candidate
/

factors, we write the joint distribution of test-assets r; and the partition of f;" = ( ]/',m Nj’t)

implied by model M;, j =1,...,J, as (we assume an unconditional setting)

fi w\ (= 2 Fje
T tmen | UL v ) 2 =coufinyia, wie= |
Yit fij 2, £ Ty

with ¢4(u, X, v) denoting the d-dimensional multivariate student-t distribution with location
parameter p, scale parameter X and v d.o.f.. In case v — 00, the student-t distribution collapses
to a normal distribution. We can write model M, j = 1,...,J, as a marginal distribution of
priced risk factors f;; and a (conditional) joint distribution of test-assets r; and non-risk factors

f}-,t (collected jointly in y; ), conditional on priced risk factors f;:

fit = s + €
yjt = ftj + Bi(fie — 1y) +€jt,
where

€J7t

X 0 S 0. Iy—10y. 0.y
~tgyn |0, v, Xy, =82 - 3000, B =825,
0 Xy,

Ejt
with B; denoting the matrix of regression coefficients in the regression of the test-assets and
non-risk factors (collected jointly in y;+) on the priced risk factors f;;.

Model M, j = 1,...,J, proposes the factors in f;; to be priced risk factors, and therefore

proposes that each single factor in f;; has a direct effect on the SDF:

My = 1=V fier — B(fies1)l, by =var(fje) ' A,

As model M;, j =1,...,J, implies that the factors in fjﬂf are not priced risk factors, the model

implies that the factors in ']E]‘ﬂg do not affect the SDF (ceteris paribus). The fundamental asset
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valuation equation

E(Mt+1 Tt ):0
Yjt

implies p1; = Aj and fi; = B;)\;. Each model M;, j =1,...,J, can thus be written as

1%
fie= (m)ijj e e~ i, (0, X5, v),

Jit =Biplit + Vit Vit~ tu; (0,%5,v), cov(ejs,vjt) =0,

re = Birfie +uje,  uje~tn(0, Z~’Tj, v), cov(ej,uje) =0, cov(vjs,uje) =Cj
Assuming the model is correctly specified, the expected excess-returns of both test-assets r; and
non-risk factors fj,t are fully explained by the risk factors f;;. Following our discussion in section
2.3.1] in case the proposed priced risk factors in a factor model price the non-risk factors as well
as test-assets, the test-assets are also priced by the joint set of proposed priced risk factors and
non-risk factors. We are able to derive a closed form expression for the marginal likelihood of
model M;, j =1, ..., J, under the assumption that (excess-returns of) factors and test-assets are

normally distributed. Setting v — oo, and following our discussion in section [2.3.1] we re-write

model M;, j =1,...,J, as

fir =0+, aj=35b5, €~ Nk, (0,%)),
Fit = Bigfin +vie, vie~ Ny (0, 5), (11)
Tt:/BTft*+ut7 utNNN(O)ZNIT))

with shocks €+, v;; and u; being mutually independent, and with the sub-model of the test-
assets being identical across all models M, j =1,...,J.
Let B; f = vec(Bj,s) and B, = vec(B,) respectively denote the vectorizations of B; s and 3.

Let 0, = vech(X,), 0; = vech(X};) and 6; = vech(X) denote the half vectorizations of the three

covariance matrices. The parameters of model M;, j =1,..., J, are then

0; = (), Br.00) € (O, O, O, €4, nj=(8),05,55) € Oy,

where Oy, Oy, Op, and O, respectively denote the parameter spaces of «;, n;, 8, and o,.

We specify a prior density of parameter 6;:

p(0;|M;) = m(a;| My, m;) (| M) (Br, o).

As parameters (3, and o, are identical across all candidate models, the prior density ¥, (5;, o)
is identical across all candidate models as well. Following Barillas and Shanken| (2018)), Chib

et al| (2018) specify the conditional prior of ¢, m(a;|M;,n;), as a proper density:
(| My, m5) = o, (4]0, kX)), (12)
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with ¢g(-|u, X) denoting the pdf of the d-dimensional multivariate normal distribution with
mean p and covariance ¥. Barillas and Shanken (2018) derive a theoretical restriction on the
potential magnitude of hyper-parameter k (Appendix , controlling the spread of the prior.
As the unconditional mean of the candidate factors is directly related to the squared maximum
(attainable) Sharpe ratio (over the portfolio) of the candidate factors, Barillas and Shanken

(2018) set k to equal the maximum Sharpe ratio of the candidate factors, divided by H:
k = ShMax®/H, ShMax = 7ShMkt,

with ShMax and ShMkt respectively denoting the maximum Sharpe ratio of the candidate
factors and the Sharpe ratio of the market portfolio. Assuming the candidate factors span the
mean-variance efficient portfolio, ShMax equals the Sharpe ratio of the mean-variance efficient
portfolio. Under the hypothesis that the market portfolio is not mean-variance efficient, ShMax
is specified to be a multiple, governed by 7, of ShMkt. Economic intuition provides limits on
the magnitude of 7. |Barillas and Shanken, (2018) suggests using 7 in the range 7 € [1.5 3]. We
discuss the specification of the proper prior of parameter «; in further detail in section m
Let M stand for the model in which all of the H candidate factors are (proposed) priced

risk-factors (omitting the pricing equation for the test-assets, for simplicity):
fit=a1+ey, e~ Np(0,X1), m = o1 =vech(X).

Chib et al.| (2018) specify a Jeffreys (1961) improper prior for n; (with ¢ an arbitrary constant):

H+1

~ _H+l ~ _H+l
Y(mMy) = cp(m|My) =c| 2|72, PmMy) = |Z1] 2. (13)
To derive the improper priors of 7;,j = 2, ..., J,|Chib et al.| (2018) make use of the fact that the
“nuisance” parameters {n; }3]:1 are all connected by invertible maps. Thus, the parameter n; of
model M; and parameter 7); of model M; (j > 1) are connected by the invertible map
nj = gj(m), such that g = g; ' (n;).

We derive the inverse map 7 = g;l(nj) in Appendix The invertible maps can be used to

derive the improper priors of {; }3]:2 by applying the change-of-variable technique to 7 with a

prior as specified in Eq. :
A9 (n;
det 295 ) (/n])
(977]-

the last term being the absolute value of the Jacobian of the transformation. When the prior

w(nJ‘MJ) = 07/3(9;1(773')\/\41) s J =200, (14)

of my is specified according to Eq. , the change of variable technique implies the following
improper priors of {n; }]J:2 (see |Chib et al.| (2018) for the derivation):

2Kj7H+1 ~ H+t1

Y(nilM;) =cl X" | X, =2, 0 (15)
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In general, improper priors invalidate Bayesian model comparison by marginal likelihoods.
When we multiply an improper prior by an arbitrary constant we end up with exactly the same
improper prior, as an improper prior is a distribution whose integral over the parameter space is
infinite. Thus, when prior 7(6) is improper, ¢;m(0) is exactly the same prior for any ¢; > 0. The
use of improper priors thus renders marginal likelihoods incomparable (in general), as marginal
likelihoods will depend on arbitrary constants. Fixing the arbitrary constants at some fixed value
does not solve the problem (in general) as Bayes factors depend on that choice. In our setting,
though, the use of the (Chib et al,| (2018]) improper priors for “nuisance” parameters {773‘}3']:1
does not render the marginal likelihoods incomparable. The invertible maps that connect all
parameters {7); }3]:1 and the change of variable formula (Eq. (14)) force our priors to all depend
on a single arbitrary constant ¢. When we multiply one of our priors for {"73‘}}‘]:1 with an
arbitrary constant, the invertible maps that connect the parameters {n; }3]:1 and the change of
variable formula force us to multiply all other priors of {n; }3-]:1 with exactly the same constant
as well. Thus, although marginal likelihoods will still depend on a single arbitrary constant c,
this arbitrary constant will always cancel out when we construct Bayes factors, rendering our
marginal likelihoods comparable.

We collect all observed excess-returns of candidate risk factors and test-assets in the obser-
vation matrix Y = (y1,...,yr)’, where y; = ((f)’,7;)’. The marginal likelihood of model M},

j=1,...,J, is then given as

m(Y|M;) = /@ ] /@ ) /@ / YL 0 M) 0 M) 51140

The density function p(Y'|M;,6;) is the likelihood function implied by model M;, and can
be directly derived from the formulation of model M, as defined in Eq. . Let observation
matrices F' = (fj1, ..., f;r) F= (fﬂ, ey ijT)’ and R = (rq,...,r7)" denote observation matrices
of excess-returns of, respectively, (proposed) priced risk factors, (implied) non-risk factors and

test-assets. The marginal likelihood of model M, j =1, ..., J, can be split up
m(Y | M;) = m(F|M;)m(F|M;)m(R),

with m(F|M;), m(F|M;) and m(R) denoting the marginal likelihoods of the sub-models, as
implied by model M; (as defined in Eq. ), of, respectively, the priced risk factors, the
non-risk factors and the test assets. A derivation is given in Appendix [A-3] As the sub-model of
the test-assets is identical across all models M, j =1, ..., J, the contribution of the information
contained in the test-assets to the marginal likelihood of model M;, m(R), is identical across
all candidate models M;, j =1, ..., J. When constructing ratio’s of marginal likelihoods (Bayes

factors) of candidate models, the information contained in the test-assets thus always cancels
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out (see . Thus, when simultaneously comparing the (relative) pricing performance of the
J candidate factor models by the means of marginal likelihoods, the inclusion of test-assets in
the factor models may be omitted (resulting in an empty test-asset vector r and N = 0), as
the test-assets provide no relevant information for the comparison of the marginal likelihoods.
This key insight is in line with our discussion in section namely that test-assets provide no
information that is relevant for the comparison of (relative) pricing performance of competing
factor models. When we omit the inclusion of test-assets in our candidate factor models, the

marginal likelihood of model M, j =1, ..., J simplifies to
m(Y|M;) = m(F|M;)m(F|M;).

Under the assumption of normally distributed factors we are, conveniently, able to derive
closed form expressions for the marginal likelihoods m(F|M;) and m(F|M;), in turn resulting
in a closed form expression for marginal likelihood m(Y|M;). Derivations are given in Appendix

m The closed form expressions of m(F|M;) and m(F|M;) are given as:

K 1 szMj 1 % T — M T—M; K
_2J - 1 - _J I TN}
U EIM) =5 <2) <7r> FKJ-( 2 j)\Sj\ (T k)T
KM M;(T—K;) .
~ 1\ 2 1 2 T . T My
m(FlM,) = <2> <W> I, <2> Ealid s (16)
T k_lT ~ T _ . ~ .
Sj = (fie — @) (fie — ;) + de&}, Sj =Y (fie = Bisfid) Fix = Bisfie)s
t=1 t=1

with I}4(-) denoting the d dimensional multivariate gamma function, and &; and ,3Aj7 ¢ denoting
OLS estimates of a;; and 3, s.

Model M;, j = 1,...,J, implies the restriction that all supposed non-risk factors J?j,t are
priced by the proposed priced risk factors f;; with a (restricted) pricing error of zero. The
marginal likelihood of model M;, j = 1,...,J, is directly tied to the (negative) impact of the
model’s zero pricing error restriction on the sample fit of the model via m(F |M;) (via the S'j
term in m(F|M;)). Ceteris paribus, marginal likelihood m(F|M;) will reach its maximum
when the expected excess-returns of the supposed non-risk factors fjﬂg are perfectly explained
by the proposed priced risk factors f;; in-sample, i.e. model M’s zero pricing error implication
that E(f]t) — E(Bj.sfjt) = 0 is perfectly supported by the sample data. Ceteris paribus, the
less model M’s implication that E(f]t) — E(Bj ¢fj+) = 0 is supported by the sample data, the
more marginal likelihood m(F|M;) will be negatively affected. In case model M;’s zero pricing
error restriction is poorly supported by the sample data, the supposed non-risk factors fj,t may
contain priced risk factors with expected excess-returns that can not be fully explained by the

proposed priced risk factors f;;, while the proposed priced risk factors f;; may contain non-risk
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factors that have no explanatory power for explaining expected excess-returns. Thus, ceteris
paribus, the stronger the (negative) impact of model M;’s zero pricing error restriction on the
model’s sample fit, the lower m(F|M;) and, in turn, the lower m(Y | M;).

Using the marginal likelihoods, we can compute the posterior probability that model M,
7 =1,...,J, has generated the observed data:
m(Y | M;)P(M;)

PM;Y) = —
;m(Y!Mi)P(Mi)

)

where P(M;) denotes the prior probability that model M; has generated the data.

2.5.1 Alpha Prior

As previously discussed, the prior distribution of parameter «; is, for each factor model M,
j=1,...,J, specified as
(0| M, n5) = b, ()0, kX5).

The prior distribution implies a prior belief that E(a;) = 0, which in fact conflicts with the
economic intuition that (absolute values of) expected excess-returns of risky traded portfolios are
positive such that investors are compensated for bearing risk. In the subsequent discussion, we
will show the prior distribution implies a prior bias towards sparse factor models, meaning models
with few proposed priced risk factors, as opposed to less-sparse factor models. As previously
discussed, each factor model implies the restriction that all supposed non-risk factors are priced
by the proposed priced risk factors with zero pricing error. The prior distribution ensures sparse
factor models will be favoured over less-sparse models, unless posterior evidence against the
validity of the zero-pricing error restrictions of sparse factor models is strong enough. Thus,
although the prior distribution may conflict with economic intuition, it reflects our preference
towards sparse factor models over less-sparse models, on the condition that the zero pricing error
restrictions of the sparse factor models are valid.

To investigate the implications of the prior distribution of parameter «; in closer detail,
we continue our discussion with an example setting. We consider a setting with two normally
distributed candidate factors, fi; and fa;, and suppose that fi; is known to be a priced risk-
factor while fo; is a candidate factor that may either be a priced risk factor, or a non-risk factor.
In the latter case, factor fs; will be priced by fi;. This leaves us with two candidate factor
models. In the first model, denoted by M, f2; is a priced risk factor that is not priced by fi ;.
Factor fo; is priced by f1; in the second model, denoted by Mj. Model M; is written as

11, a1 o?
fizata, a~N0.3), fi=[""], a= >
fot Qs p 03
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For illustrative purposes, we treat oy and X' as given. We specify an informative prior distribu-
tion for o

(o) = ¢1(azim, ks?), s* =3 - pPoy?,

with hyper-parameters m and k.
Model M can be re-written as a marginal distribution of f;; and a conditional distribution

of fat, conditional on fi; such that

fl,t:a1+uta ’LLtNNl(O,O'%),
for=ae+Bfis+v, v~ Ni(0,5%),
where

-2 2 2 2 2
ae =g — Poy, PB=poy®, s°=o05—po;°, cov(u,v)=0.

Factor model My implies fo; to be priced by fi1;, and is thus a restricted version of (the
conditional version of) model M; with restriction o, = 0. Assuming factors f; are normally
distributed, model M is statistically valid. As model M, is a restricted version of model M1,
it is statistically valid if and only if pricing error «, indeed equals 0.

Let Fi = (fi1,-.-, fir) and Fy» = (fa1, ..., fo,r)" respectively denote observation vectors of
fi and fa;. Given oy, 8 and Fi, observing Fy implies observing Ey = F5 + Soqur — BFy with
E; ~ Np(asir,s?It), where v and I respectively denote a (T x 1) vector of ones and the
(T x T) identity matrix. Let d&g = E5 denote the sample mean of E», and let &, = da — fay.
Given an observed &s, G, varies as we vary Bay. If, for example, we decrease faq, &, increases.

We compare our models M7 and My by the means of their marginal likelihoods, respectively

denoted by m(Fi, F»|M;i) and m(F}, F2|Ms). The marginal likelihoods can be split up:
m(Fy, Fo|My) = m(Fi[My)m(Fy|Fi, My),  m(Fy, F2|Ma) = m(Fi|[My)m(F|Fi, Ma),

with m(Fi|M;) and m(F»|Fy, M;) respectively denoting the marginal likelihoods of the sub-
models of fi; and fo; as implied by model M;, j = 1,2. As m(F1|My) = m(F1|Mz), only
marginal likelihoods m(F»|Fy, M;), j = 1,2 matter for model comparison. Let us abbreviate
m(Fy|F1, M1) and m(F3|Fy, Ms) with my and my respectively, for ease of reference.

Marginal likelihoods m1 and mo can be written in closed form:

ma = ¢r(Fa|BFy, s*Ir),
—1y—t, L 9T 1 _9 N S §
my =T+ k™) 2k 2(2ws*) 2exp(—§s d), c=T+k ") 2k 2, (17)
d= (EQ — &QLT)/(EQ — dQLT) + kfl(dQ - m)2, Qg = (T + kil)fl(EQLT + kflm),

we suppress the derivation of m; as the derivation is similar to the marginal likelihood derivations

presented in Appendix In terms of marginal likelihood, model M is preferred over model
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My in case my > mg, or mi/mo > 1. Marginal likelihood mso reaches maximum value when
& = 0, in this case the restriction a, = 0 does not negatively impact the sample fit of restricted
model My and the sample fits of both models M; and My are identical. Holding T fixed,
as |Ge| increases, mo decreases, and when |&.| — oo, ma — 0. Fixing |G| # 0, as T — oo,
mgy — 0. Thus, the more the restriction o, = 0 hurts the sample fit of restricted model My,
or the more evidence is available (due to more observations being available) that in fact the
restriction a, = 0 is invalid, the lower marginal likelihood ms9 will be.

For fixed k, marginal likelihood m; reaches maximum value when we set m = é&so, the sample
mean of Es. Setting m = &» gives s = G, and as G = E» is the OLS estimate of o, setting
m = Gg will thus result in d reaching its minimal value, in turn resulting in me reaching maximal
value. As c is a decreasing function of k, m; is a decreasing function of k£ as well, given m = &a.

Setting m = a9 and k = 0 thus results in m; attaining maximum value
my = ¢r(Eso|doir, s°It) = ¢r(Fa|(62 — Bon )ur + BFy, s*Ir) = ¢r(Fo|aetr + BFy, s*Ir).

When setting m = a9 and k = 0, it will always hold that my > msy, with my = my if and only if
Qe = 0. Thus, when setting m = &y and k = 0, model M will always be preferred over model
M unless the restriction o, = 0 has absolutely no impact on the sample fit of model M.
Given &9 and k, the larger the distance between m and éag, |m — éal, the smaller mq, due
to d being an increasing function of |m — é&s|. Consider setting, in contrast to the economic
intuition that |ag| > 0 and |E(&2)| > 0, m = 0 with £ = 0. In this case mj collapses to (with

Op a (T x 1) zero vector):
m1 = ¢r(Bs|0r, s*Ir) = ¢r(Fy| — (Bay)ur + BFL, s°Ir).

We know from our previous discussion that, setting m = 0 with £k = 0, m; = meo in case
da =0 =m and & = 0. So in case |m — ag| > 0, and &, = 0, model Mo will be preferred
over M. This illustrates that, given Gg and k, as |m — do| increases, either |é.| will have to
increase, or T" will have to increase with fixed |Ge| > 0, in order for m;/msa to remain constant.
Summarizing, given |&g| > 0 (and for fixed k), when setting m = 0 as opposed to m = éy, the
sample fit of model My (measured by the magnitude of |&.|) will have to be poorer or more
evidence (more observations) will have to be available against the statistical validity of model
Mo, in order for model M; to maintain the same degree of favourability, relative to model M.

The questions remains as to what motivates [Barillas and Shanken| (2018) and |Chib et al.
(2018) to set m = 0 as opposed to, for example, éo. First of all, hyper-parameter m should be
chosen based on prior information, a rule that is violated when setting m = &s, as &g contains

posterior information. Second, setting m = 0, albeit conflicting with economic intuition, actually
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has a clear motivation in our factor model comparison framework. As setting m = 0 implies
E(az) = 0, setting m = 0 in turn implies a prior belief that the candidate factor fo; does not
carry a risk premium and, therefore, that the factor is a non-risk factor with no direct effect on
the SDF (a factor with no risk premium must be uncorrelated with the SDF). The prior belief
that fo; is a non-risk factor in turn implies a prior belief that the sparse model My, sparse in the
sense that, as opposed to model M7, only one out of the two factors is regarded as a priced risk
factor, is statistically valid. Furthermore, as economic intuition suggests |E(dz2)| > 0, the prior
bias towards sparse model My is expected to be stronger when setting m = 0, as opposed to
m = &g, due to the negative impact of |m — &s| on my. The prior bias towards the sparse factor
model is perfectly in line with the general preference of a sparse factor model over a less-sparse
factor model, under the (prior) assumption that the sparse factor model is statistically valid.
Without a proper prior bias towards sparse model Ms, less sparse model M; would be favoured
over model My too easily a posteriori, as the zero-pricing error restriction imposed on model
M can only negatively impact the sample fit of model My, while it does not impact the sample
fit of model M;. Summarizing, assuming |&o| > 0, setting m = 0 implies a prior bias towards
sparse model My and ensures model Mo will only be rejected in favour of the less sparse model
M1 when posterior evidence against the prior belief that sparse model M is statistically valid,
and that fo; is a non-risk factor, is sufficiently strong.

After setting m = 0, we are left with the issue of choosing k. Assuming |G| > 0, k has
two effects on marginal likelihood m; . First, k has a negative effect on my via its negative
effect on ¢, and as k — oo, ¢ — 0 and thus m; — 0. Second, k has a positive effect on m;y
via its negative effect on d. As k — oo, d — (E3 — dgur)'(Ey — dour), which is the minimum
value d can attain due to the fact that &g is the OLS estimate of as. As mq is an exponential
function of —d but a lineair function of ¢, the positive effect of k on m; will be stronger than
the negative effect on the condition that & is sufficiently small. As we keep increasing k, d will
start to converge towards its minimum value meaning that the positive effect of k on mq will
start to fade as we keep increasing k. The negative effect of £ on m; via ¢ will not fade as
we keep increasing k though, and as such the negative effect of k on m; will start to dominate
the positive effect when k is sufficiently large. Summarizing, if k is set either excessively small
or excessively large, m; may be penalized excessively in the sense that model My, although
statistically valid but less sparse, will only be favoured in case the posterior evidence against
the statistical validity of sparse model Mj is exceptionally strong. Setting k either excessively
small or excessively large may thus lead towards an excessively strong prior bias towards the

sparse, but potentially statistically invalid, model M.
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3 Data

In this section, we present the empirical data we use in our analysis. Our set of candidate
excess-return factors will be discussed first, after which we will turn our discussion to our set(s)
of test-assets. Our sample period runs from February 1995 until April 2018, the sample consists
of T'= 278 observations in total. We assume the perspective of an US investor, and denominate

all (excess-)returns in US dollars. All monthly (excess-)returns are expressed in percentages.

3.1 Factors

Our set of candidate (excess-return) factors consists of two different aggregate global market
factors, WMKT and LWMKT, where WMKT and LWMKT are excess-returns (in excess of
the US risk-free rate) of a global market portfolio denominated in, respectively, US dollars and
local currencies. Although LWMKT is not an excess-return denominated in US dollars, [Brusa
et al.| (2014) find that the factor mimicking portfolio (assuming an US investor) of LWMKT
is highly correlated with LWMKT and delivers virtually identical returns. In addition to the
global market factors, our set of candidate factors consists of global versions of the SMB, HML,
CMA and RMW factors of Fama and French (2015), a global version of the MOM factor of
Carhart| (1997), a global version of the BAB factor of Frazzini and Pedersen| (2014), a global
version of the QMJ factor of |Asness et al.| (2019)), a global version of the DHML factor of |/Asness
and Frazzini (2013), the currency factor Global Tail of |[Fan et al.| (2019) and the currency factors
Carry and Dollar of Brusa et al. (2014). Before describing our raw factor data in section

we briefly discuss the backgrounds of our candidate factors.

3.1.1 Factors Background

Brusa et al.| (2014)) argue that the traditional CAPM can easily be extended to global markets,
the World CAPM, under the assumption of (purchasing power parity) PPP. Thus, following
the World CAPM (and assuming the perspective of an US investor), the WMKT factor is the
only risk factor that carries a price of risk. Following Dumas and Solnik| (1995), Brusa et al.
(2014) question the PPP assumption of the World CAPM and investigate whether international
equity investors are compensated for bearing exchange rate risk. Brusa et al. (2014) argue
the assumption on PPP to be unrealistic, as investors who invest abroad like to consume at
home, even when deviations from PPP are present. Brusa et al| (2014) present the three-
factor International CAPM Redux model, which, in addition to the LWMKT factor, includes
two currency factors, Dollar and Carry, which effectively summarise variation in a broad cross-

section of bilateral exchange rates and account for exchange rate risk. The Dollar factor is the

21



average excess-return earned by an U.S. investor who invests in a broad portfolio of foreign
currencies. The Carry factor is the average excess-return earned by a U.S. investor that goes
short (long) in a portfolio of low (high) interest rates currencies.

Asness et al| (2013) and |[Fama and French| (2012) investigate the role of the size, value
and momentum effects, as originally discovered by Fama and French| (1992) and |Jegadeesh and
Titman| (1993) to be present across the cross-section of expected excess-returns of US stocks,
on the international level. |Fama and French) (2012) construct global versions of the original size
(SMB), value (HML) and momentum (MOM) factors of Fama and French| (1993) and |Carhart
(1997) and find the global factors help explain size, value and momentum anomalies of the World
CAPM. Following [Fama and French (1993)), Fama and French (2012) construct the HML value
factor by sorting on book-to-price (B/P) ratios that are constructed with book value and price
data that is lagged six months to make sure the data would actually have been available at the
time of portfolio construction. |Asness and Frazzini| (2013) recommend to construct B/P ratios
with current, as opposed to lagged, price data, as price data would have been known at the time
of portfolio construction with certainty, and construct the DHML value factor.

Fama and French (2015) show, using the dividend discount model, that, ceteris paribus,
expected earnings (directly linked to expected profitability) are positively related to the expected
return of a stock, while, ceteris paribus, expected future investment is negatively related to the
expected return of a stock. Indeed, Fama and French (2015)) find the presence of profitability
and investment effects in the cross-section of US stock returns and find these effects to be
unexplained by the original three-factor asset pricing model of |Fama and French| (1993). Fama
and French| (2015) propose a new five-factor model that includes the RMW and CMA factors,
respectively constructed by sorting stocks on profitability and investment characteristics. In our
research, we use global versions of the RMW and CMA factors.

Asness et al. (2019) investigate whether quality stocks command higher prices than low-
quality, or junk, stocks. |Asness et al| (2019) define quality as characteristics that investors
should be willing to pay for. In the research of Asness et al.| (2019), profitability, growth and
safety characteristics form the basis for the definition of quality. |Asness et al. (2019) show
that investors indeed pay more for firms with higher quality characteristics, but also find the
explanatory power of quality for asset prices to be limited. Consistent with the limited pricing
performance of quality, high quality stocks have delivered high risk-adjusted returns while low
quality stocks have delivered low risk-adjusted returns. Thus a quality minus junk portfolio
(the QMJ factor) that invests long in quality stocks and shorts junk stocks produces a high

risk-adjusted return in the US and globally across 24 countries.
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Frazzini and Pedersen| (2014) argue the basic premise of the CAPM that all agents invest
in the market portfolio and leverage or de-leverage the portfolio to suit risk-preferences to be
unrealistic, as many investors face leverage constraints. [Frazzini and Pedersen| (2014) argue that
agents with leverage constraints overweight high (market) beta assets to suit risk preferences,
causing these assets to offer lower risk adjusted returns. Unconstrained investors can exploit
this effect by shorting high beta assets and leveraging up low beta assets. [Frazzini and Pedersen
(2014) construct a betting against beta (BAB) factor by longing a portfolio of low beta assets,
leveraged to a beta of one, and shorting a portfolio of high beta assets, de-leveraged to a beta
of one, with offsetting positions in the risk-free asset to make it self-financing. Indeed, the BAB
factor produces a high risk-adjusted return in the US and globally across 19 developed countries.

Fan et al| (2019) find that, from the perspective of an investor of any country, US tail risk
carries a negative price of risk in the cross-section of currency returns. In their paper, [Fan et al.
(2019) argue that currencies which offer high returns when US tail risk spikes, receive a negative
risk premium as they essentially provide a hedge against US tail risk, and vice versa. [Fan et al.
(2019) sort currencies according to their sensitivities to the US tail risk (their US tail beta) and
show a long-short US tail beta sorted portfolio can identify the global component of the US
tail risk factor. Fan et al. (2019) find that their two-factor asset pricing model containing their
Global Tail factor explains a large portion of the cross-section of expected returns of carry and
momentum currency portfolios (assuming the perspective of an US investor), and outperforms a

foreign exchange market CAPM-equivalent single factor model containing only the Dollar factor.

3.1.2 Factors Data

We use MSCI World Total Return Indices denominated in US dollars and local currencies respec-
tively to construct the WMKT and LWMKT factors, the MSCI indices are from the Bloomberg
database. Global versions of the SMB, HML, CMA, RMW and MOM factors are extracted from
the Kenneth French Data Library|} Data of the US risk-free rate is extracted from the Kenneth
French Data Library as well (KFDL). Global versions of the BAB, DHML and QM.J factors are
obtained from the AQR Data Library?} The Carry and Dollar factors are available on Adrien
Verdelhan’s Websiteﬂ (we use the “all currencies” dataset). We construct the Global Tail factor

(which we abbreviate with GT) of |[Fan et al. (2019) using the methodology of [Fan et al.| (2019).

'http://mba.tuck.dartmouth.edu/pages/faculty /ken.french /index.html
https://www.aqr.com/Insights/Datasets
3http://web.mit.edu/adrienv/www/Data.html
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Table 1: Summary Statistics Potential Factors

Mean Std. Dev Skewness Kurtosis A&wymgr QLWMKT
WMKT 0.52 3.95 -0.85 4.55
LWMKT | 0.52 4.25 -0.75 4.71
SMB 0.11 1.99 -0.22 5.15 0.15* 0.15*
HML 0.30 2.44 0.57 8.33 0.36*** 0.35***
DHML 0.24 3.07 0.68 13.1 0.19* 0.19*
RMW 0.38 1.54 -0.05 5.14 0.46*** 0.46***
CMA 0.21 1.96 0.78 7.07 0.32%** 0.31***
MOM 0.63 4.13 -1.00 9.10 0.77** 0.76***
QMJ 0.49 2.22 0.09 4.42 0.70*** 0.69***
BAB 0.94 2.97 -0.30 5.62 0.99*** 1.047**
Dollar 0.08 1.79 -0.25 4.02 0.02 -0.04
Carry 0.62 2.41 -0.19 3.76 0.47** 0.49***
GT -0.30 1.91 0.29 4.89 -0.26** -0.26**

Summary statistics of our candidate (excess-return) factors. Estimates &y arxr and &pw prrr denote
estimated constants (alpha’s) of test regressions, in each regression returns of one of our potential non-
market factors are regressed on, respectively, market factor WMKT or market factor LWMKT. Test
regressions are performed using full sample data (we assume an unconditional setting). Estimated
alphas that differ significantly from 0 are marked with a *, ** and *** where significance levels of,
respectively 10%, 5% and 1% are used. GT is the abbreviation of Global Tail.

Summary statistics of our candidate factors are displayed in Table[l] Estimates aw g and
arwmkT denote estimated alpha’s of test regressions, in each regression returns of one of our
candidate non-market factors are regressed on a constant (alpha) and on, respectively, market
factor WMKT and market factor LWMKT. Test regressions are performed using full sample
data (we assume an unconditional setting). The test regression results suggest expected excess-
returns of none of the factors, with the exception of the Dollar factor, are fully explained by either
WMKT or LWMKT. The results therefore suggest we can improve upon the efficiency of the
global market portfolios in terms of mean-variance trade-off. All factors display excess kurtosis
and most factors display skewness, contradicting the normality assumption of the Bayesian factor
selection methodology of Barillas and Shanken| (2018) and |Chib et al| (2018). Although (Chib
and Zeng (2018) relax the assumption of normality and allow for excess kurtosis of the factors,
the methodology is still based on the assumption of symmetric distributions. (Chib et al.| (2018)
consider the advances in their paper, as well as those described in |Chib and Zeng| (2018), as
complementary, and state the advances open doors to an exciting new wave of reliable Bayesian
work on the comparison of factor models. We will evaluate the robustness of the normality
assumption of the Bayesian factor selection methodology of Barillas and Shanken (2018) and
Chib et al.| (2018) against factors displaying excess kurtosis in a simulation study in section

The sample correlation matrix of our candidate factors is displayed in Figure in Appendix
We observe a substantial correlation of 0.97 between the WMKT and LWMKT factors,
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indicating these factors to be almost identical. As both these factors capture the performance
of the global market portfolio, this comes at no surprise. We do not observe other correlations
between factor pairs of the same magnitude, all other correlations are smaller than 0.5, with
the exception of correlations between the pairs HML and DHML (0.68), CMA and HML (0.73),
and QMJ and RMW (0.75). The relatively high correlation between HML and DHML can be

explained by the fact that both factors are constructed to capture the value effect.

3.2 Test-assets

We consider four sets of test-assets. Our first set consist of Country Market (equity) indices
of 20 developed countries: Austria, Australia, Belgium, Canada, Denmark, Finland, France,
Germany, Hong Kong, Italy, Japan, the Netherlands, New Zealand, Norway, Singapore, Spain,
Sweden, Switzerland, the UK and the USA. The second set includes, for each of the 20 respective
countries, 3 different indices: a Country Market (equity) index, a Country Value (equity) index
and a Country Growth (equity) index. To construct the Country Growth and Country Value
indices of a country, that country’s stocks are sorted using univariate 30-40-30 sorts on BE/ME
(book-to-market). The third set of test-assets contains 25 global portfolios formed by bi-variate
5 x 5 sorts on ME (size) and BE/ME, 25 global portfolios formed by bi-variate 5 x 5 sorts on
ME and OP (operating profitability), 25 global portfolios formed by bi-variate 5 x 5 sorts on
ME and INV (investment) and 25 global portfolios formed by bi-variate 5 x 5 sorts on ME and
MOM (momentum). We form our fourth, and aggregate, set of test-assets by combining our
second set of test-assets with our third set of test-assets. Our first, second, third and fourth sets
thus, respectively, contain N1 = 20, No = 60, N3 = 100 and N4 = 160 test-assets. All test-asset

returns are US dollar denominated and are extracted from the KFDIA

4 Simulation Study

We perform a simulation study to evaluate the performance of our factor model selection proce-
dures discussed in sections [2.4) and [2.5]in a finite sample setting. We will discuss the simulation

procedure first, where-after we will discuss our results.

4.1 Simulation Procedure

Let us consider a setting with H candidate excess-return factors (collected in vector f;) and N
test-assets (collected in vector 7). To simulate a financial market in this setting, we may use a

total of J = 27 — 1 DGP’s. Each of our candidate factors might either be a priced risk factor

“http://mba.tuck.dartmouth.edu/pages/faculty /ken.french /index.html
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or a non-risk factor with an expected excess-return that is fully explained by other, priced, risk
factors (we assume at least one of our candidate factors to be a priced risk factor). In each DGP,
the expected excess-returns of all IV test-assets are fully explained by the respective set of priced
risk factors. Let D, j = 1,...,J, denote any of the possible DGP’s. Each DGP D;, j =1,...,J,
has a unique partition of the set of H candidate factors, f;", into a set of K; implied priced risk
factors fj; and a set of implied M; = (H — K;) non-risk factors f;: f; = ( i NJ’-7t)’.

We assume a setting with student-t distributed factors and test-assets. When simulating from
student-t distributions, simulated factor and test-asset data exhibits excess kurtosis, reflecting

real-world factor and test-asset data. Following the fundamental asset valuation equation and

our derivations in section each DGP Dj, j =1, ..., J, can be written as
fit = <$)Ejbj +€jt, €~ UK (0, X},v),
Fit = Bislie +via,  vie ~tag, (0, Z5,v), (18)
re=Bff +u,  u~tyn(0,3,v),

with shocks €; ¢, v;; and u; being mutually independent. To fix the parameters of a DGP, we first
estimate the parameters of the model implied by the DGP by the means of maximum likelihood
(ML), and then fix the DGP parameters at the ML estimates to ensure that generated data
resembles real-world data. We consider parameter v given, and consider values of interest v = 5
(excess kurtosis) and v = oo (normal distribution). Following (Chib et al.| (2018), who perform
a, albeit less extensive, similar simulation study, we only simulate a DGP D; in case all the
estimates of the parameters in parameter vector b; = [b}, e bjl-(j ] of the model implied by DGP
D; differ significantly from 0 (we use a significance level of 1%). In case one of the elements of
parameter b; equals 0, one of the factors in f;; has no direct effect on the SDF, contradicting
the implication of respective DGP D; that all priced risk factors f;; have a direct effect on the
SDF. Thus a DGP D; is valid if and only if none of the elements of parameter b; equal 0.

For each DGP D, parameter 3, = | ]1-77”, e ]Iif] is a matrix of N x K; regression coefficients,
with B;’,r’ i = 1,..., Kj, denoting the vector of N regression coefficients that correspond with the
same factor f]’:’t, fit = [f]{t, ey j{?}’. When estimating 6;-’7", we may test the null Hy : 5},7‘ =0
with an (asymptotic) F-test. Details of this test are discussed in Appendix In case the
estimate of the parameter 5;-,74 of the model implied by DGP D, does not differ significantly
from 0 (we use a significance level of 1%), we set B;-J = 0. In that case, DGP D; implies the
factor f;"t to be a priced risk factor, that does not influence any of the N test-assets. We expect

test-asset based factor selection methodologies to be unable to accurately identify f]’:t as a priced

risk factor in such a scenario, as the factor f]’ft will be unrelated to the relevant test-assets.
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4.2 Results

We proceed discussing our simulation results. Table [2| displays our candidate factors considered
in the simulation study, each factor is assigned to a roman numeral for ease of reference. Using
the H = 12 candidate factors, a total of J = 2H — 1 = 4095 potential factor model DGP’s
may be constructed (see Eq. . Each DGP we simulate is simulated with four distinct sets of
test-assets. The first, second, third and fourth sets of test-assets respectively contain Ny = 20,
Ny = 60, N3 = 100 and N4 = 160 test-assets. We use data of the factors and the four sets of
test-assets, as described in sections and respectively, to estimate the parameters of the
models implied by the DGP’s we simulate. Each simulated DGP is simulated Z = 100 times
in total. To keep the disucussion of the results manageable, while ensuring that results are not
contingent on a particular DGP, we simulate 13 random eligible DGP’s, |Chib et al.| (2018]) follow
a similar approach in their simulation study. Table [4| displays the DGP’s we simulate. Each
simulated DGP is represented by a set of implied priced risk factors, as implied by the respective

DGP. Note that each of the DGP’s we simulate implies a multi-factor model.

Table 2: Candidate Factors Simulation Study

WMKT SMB HML DHML RMW CMA MOM QMJ BAB Dlr Crry GT
I II 11 v \Y VI VII Ix IX X XI XII

Roman Numerals Corresponding To Factors. The Dollar and Carry Factors are respectively abbrevi-
ated with Dllr and Crry.

We start of by discussing the simulation study results of the Bayesian (marginal likelihood
based) factor selection methodology of Barillas and Shanken (2018) and |Chib et al.| (2018).
As discussed in section Barillas and Shanken (2018) set hyper-parameter k, governing the
spreads of the priors of the alpha’s of the candidate models (see Eq. and Eq. ) as

k = ShMax?/H, ShMax = 7ShMkt, ShMkt = Sh(WMKT), (19)

with ShMax and ShMkt respectively denoting the maximum attainable Sharpe ratio and the
Sharpe ratio of the market portfolio, and with Sh(WMKT) denoting the sample Sharpe ratio
over the WMKT portfolio, calculated each simulation iteration with simulated data. Economic
intuition provides limits on the magnitude of 7, as we do not expect ShMax to deviate too much
from ShMkt. Barillas and Shanken| (2018) suggest using 7 in the range 7 € [1.5 3] and |Chib
et al.|(2018) use 7 = 3. As discussed in section though, we can expect a prior bias towards
sparse candidate factor models when the prior means of the alpha’s of the candidate models
are set to equal zero, as, reflecting the fact that investors want to be compensated for bearing

risk, (absolute values of) the true factor means will be positive. Furthermore, as discussed
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in section when hyper-parameter k is set too small, the prior bias towards sparse, but
potentially statistically invalid, candidate models may be to be too strong, in the sense that
the marginal likelihood of less sparse candidate models may be penalized excessively. Thus,
although conflicting with economic intuition, we consider values of 7 € {1.5,2,3,5,10,20,30}
and investigate the impact of setting 7 > 3 on the performance of the Bayesian factor selection

methodology.

Table 3: Simulation Study Results Bayesian Factor Selection Methodology 1

Average Accuracy 01 (73) 05 (69) 15 (60) 37 (38) 60 (20) 67 (14) 67 (14)
Minimum Accuracy 00 (99) 00 (99) 00 (98) 00 (98) 11 (82) 41 (52) 42 (53)

Average Accuracy 07 (67) 14 (58) 34 (45) 68 (15) 80 (05) 86 (02) 87 (02)
Minimum Accuracy 00 (99) 00 (99) 00 (98) 10 (90) 56 (40) 77 (10) 74 (10)

T = 1200

Average Accuracy 19 (55) 40 (37) 50 (30) 88 (15) 92 (05) 94 (00) 95 (00)
Minimum Accuracy 00 (99) 00 (99) 01 (98) 34 (64) 81 (02) 89 (00) 89 (00)

Simulation results Bayesian factor selection methodology. We simulate 13 random DGP’s, each DGP
is simulated Z = 100 times. We apply the Bayesian factor selection methodology to select factors for
each simulated DGP, using multiple alternative values for 7. In each “Average Accuracy” row, we
display, in plain text, the average selection accuracy observed across the simulated DGP’s. In addition,
in each “Average Accuracy” row, we display, in (parentheses), the average of the percentages of times
a sparser, instead of the (DGP implied) true, factor model is selected, observed across the simulated
DGP’s. In each “Minimum Accuracy” row, we display, in plain text, the minimum selection accuracy
observed across the simulated DGP’s. In addition, in each “Minimum Accuracy” row, we display, in
(parentheses), the maximum of the percentages of times a sparser, instead of the (DGP implied)
true, factor model is selected, observed across the simulated DGP’s. Results are displayed for various
sample sizes 1. We simulate normally distributed factors.

For each simulated DGP and for each 7, we keep track of the “selection accuracy”, defined
as the percentage of times the true priced risk factors, as implied by the relevant simulated
DGP, are correctly identified out of a total of Z = 100 simulation iterations. In addition to the
selection accuracy, we keep track of, for each DGP and each 7, the percentage of times (out of
Z = 100) a sparser factor model (meaning a model with less factors), as opposed to the model
implied by the true DGP, is selected. Tables |3| and (Appendix display, for each 7, the
average of, as well as the minimum of, the selection accuracies observed across the simulated
DGP’s. In addition, the tables display, in (parentheses), for each 7, the average of, as well

as the maximum of, the percentages of times a sparser, instead of the (DGP implied) true,
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factor model is selected, observed across the simulated DGP’s. When, for a particular DGP,
the percentage of times a sparser, instead of the (DGP implied) true, model is selected is high,
the percentage of times we fail to accurately identify all true priced risk factors as implied by
the DGP will be high. Thus, a high maximum of the percentages of times a sparser, instead of
the true, model is selected implies a low selection accuracy for at least one, or more, DGP(’s).
Tables [3| and [12] display results in settings with, respectively, normally and student-t distributed
factors. Various sample sizes T are considered.

The results displayed in Table [3] are quite surprising. For all relevant sample sizes T', we
observe a positive relation between the magnitude of 7 and the performance of the Bayesian
factor selection methodology, which fades as we increase 7 from 7 = 20 onwards. For all sample
sizes T, both the average as well as the minimum selection accuracy increase as we increase
7 = 1.5 to 7 = 20. The average as well as the minimum selection accuracy stop increasing as we
further increase 7 to 7 = 30. Interestingly, the overall selection accuracy is dismal when we set
T € {1.5,2}, as suggested by [Barillas and Shanken| (2018)). In their simulation study, |Chib et al.
(2018) set 7 = 3, and consider sample sizes T' = 600 and 7" = 1200, with H = 12 candidate
factors. |Chib et al. (2018) obtain average selection accuracies of 30% and 47% for, respectively,
sample sizes of T' = 600 and T" = 1200, which match our average selection accuracies for these
sample sizes. Although |Chib et al. (2018)) find that the use of their improper priors of the
“nuisance” parameters of the candidate models (see Eq. and Eq. ), as opposed to the
improper priors as specified by [Barillas and Shanken| (2018]), drastically improves upon overall
selection accuracy of the Bayesian methodology, we find we can further improve upon overall
selection accuracy by increasing 7 to 7 = 20, which effectively increases k for fixed ShMkt (and
H). Furthermore, setting 7 = 3 in a setting with sample size T' = 300, a setting not considered
by (Chib et al. (2018]), results in a dismal overall selection accuracy, and the increase in overall
selection accuracy resulting from setting 7 = 20 as opposed to 7 = 3 is most prominent for this
sample size. The results displayed in Table [12] confirm our discussion remains valid in a setting
with student-t distributed factors.

The results in Table [3] show that, overall, across the simulated DGP’s, the percentage of
times a sparser, as opposed to the true, model is selected is excessively high when 7 is set in the
range 7 € [1.5 3]. As a direct result, overall selection accuracy suffers severely (with 7 € [1.5 3]).
For sample size T' = 300, the average of the percentages of times a sparser (instead of the true)
model is selected, equals 73%, 69% and 60% when T is set to, respectively, 7 = 1.5, 7 = 2 and
7 = 3. The average of the percentages of times a sparser model is selected reduces to 14% as
we increase 7 to 7 = 20 or 7 = 30. As we increase sample size, the average of the percentages

of times a sparser model is selected decreases for all values of 7 considered. However, we still
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observe a significant negative relation between the size of 7 and the average of the percentages of
times a sparser model is selected for the larger sample sizes, and, for the larger sample sizes, we
are able to reduce the average of these percentages (close) to 0% when we set 7 = 20 or 7 = 30.
Furthermore, the maximum of the percentages of times a sparser factor model is selected equals
99% when 7 is set in the range 7 € [1.5 3], for all sample sizes, and is reduced significantly, for
all sample sizes, when we increase 7 to 7 = 20 or 7 = 30. Again, the results displayed in Table

[[2] confirm our discussion remains valid in a setting with student-t distributed factors.

Figure 1: Simulation Results DGP: WMKT-DHML-MOM-QMJ, WMKT-SMB-DHML-QMJ
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We simulate DGP: WMKT-DHML-MOM-QMJ (left hand side) and WMKT-SMB-DHML-QMJ (right
hand side), with normally distributed factors and use sample size T' = 300. Each DGP is simulated
Z = 100 times. We apply the Bayesian factor selection methodology to select factors for each
simulated DGP, using multiple alternative values for 7 in the range 7 € [1.5 30]. For both DGP’s,
we plot the percentage of times the true factor model as implied by the DGP is correctly identified,
the percentage of times a one factor model is selected, the percentage of times either a one or a two
factor model is selected, and the percentage of times either a one, a two or a three factor model is
selected against the multiple alternative values for 7 considered.

We continue our discussion by simulating individual DGP: WMKT-DHML-MOM-QM.J as

well as individual DGP: WMKT-SMB-DHML-QMJ (with 7" = 300 and v = For both

00).
DGP’s, we closely investigate the impact of the magnitude of 7 on the selection accuracy of the
Bayesian methodology. Figure 1| plots, for both DGP’s, the percentage of times the true (DGP
implied) factor model is correctly identified, the percentage of times a (false) one factor model
is selected, the percentage of times either a one or a two (false) factor model is selected, and
the percentage of times either a one, a two or a three (false) factor model is selected against
multiple alternative values for 7 in the range 7 € [1.5 30]. Clearly, for both DGP’s, we observe a
positive relationship between the magnitude of 7 and selection accuracy, in line with the results
displayed by Table [3] When 7 is set 7 = 1.5, we observe, for both DGP’s, that the percentage

of times a sparser, instead of the true, model is selected approaches 100%. In turn, for 7 = 1.5

and both DGP’s, we observe a selection accuracy of approximately 0%. For both DGP’s, as we
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increase 7 from 7 = 1.5 to 7 = 20, we decrease the percentage of times a sparser, instead of
the true, factor model is selected to approximately 5%, while significantly increasing selection
accuracy. The beneficiary effect of increasing 7 on selection accuracy fades, for both DGP’s, as
we keep increasing 7 from 7 = 20 to 7 = 30.

Summarizing, when 7 is set in the range 7 € [1.5 3|, we find the overall (across the DGP’s)
percentage of times a sparser, instead of the true, factor model is selected to be excessively high
(for the relevant sample sizes), which suggests that setting 7 in the range 7 € [1.5 3] results in a
excessively strict hyper-parameter k, in turn resulting in an excessively high prior bias towards
sparse models. From our discussion in section we know that, when the prior bias towards
sparse models is excessive due to an excessively strict k, sparse models may, a posteriori, still
be favoured over less sparse models, even when posterior evidence against the statistical validity
of the sparse models is strong. In that case, the excessive prior bias towards sparse models will
have a detrimental effect on selection accuracy. Our findings thus strongly suggest to set hyper-
parameter k, although conflicting with the theoretical restriction of the potential magnitude of

k as discussed in Appendix to equal a multiple of ShMax?, divided by H:
k = (cShMax)?/H, cShMax = 7ShMkt,

as setting ShMax = 7ShMkt with 7 > 3 would imply an unrealistically high maximum Sharpe
ratio. This allows us to use larger values of 7, such as 7 = 20 (with, for example, ¢ = 7),
thereby effectively increasing the spreads of the priors of the alpha’s of the candidate models
and decreasing the excessive prior bias towards sparse factor models, while drastically increasing
overall selection accuracy.

For robustness analysis, we also simulate a (fourteenth) one-factor model DGP: WMKT, and
investigate whether selection accuracy of the Bayesian methodology is still satisfactory when 7 is
set 7 > 3. Table 13| (Appendix displays, for various sample sizes T' and normally distributed
factors, the selection accuracy for 7 € {1.5,2,3,5,10,20,30}. For all sample sizes, we observe the
selection accuracy to be similar across all the values of 7 considered. Indeed, as we simulate a
one-factor model, an excessively strong prior bias towards sparse models, resulting from setting
7 € [1.5 3], no longer negatively impacts selection accuracy.

We proceed to investigate the performance of the Bayesian factor selection methodology,
while setting 7 = 20, in more detail. Specifically, we analyze the robustness of the methodology
in a setting with student-t distributed factors. Table [] displays, for each simulated DGP, the
percentage of times the true priced risk factors are correctly identified, as well as the percentage
of times the factor model, as implied by the relevant simulated DGP, ranks among the top five

models with the highest marginal likelihoods (in parentheses). The Bayesian factor selection
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methodology performs remarkably well, especially in settings with larger sample sizes of T' = 600
and T = 1200. In the setting with normally distributed factors, we observe the Bayesian
methodology to be least accurate when we simulate the DGP I-ITI-IV-VII-IIX-IX with a sample
size of T'= 300. In this setting, the selection accuracy of the methodology is 41% and the factor
model, as implied by the true DGP, is ranked 65 times out of a total of Z = 100 simulation
iterations among the top-5 models with the highest marginal likelihoods. In the setting with
normally distributed factors, we observe the selection accuracy of the Bayesian methodology to
range from 75% to 95% and from 90% to 98% across the simulated DGP’s, when considering

sample sizes of T'= 600 and T = 1200, respectively.

Table 4: Simulation Study Results Bayesian Factor Selection Methodology I1

T = 300 T = 600 T = 1200
Priced Factors =5 =00 v =5 =00 =5 U — 00
-V 67 (88) 78 (93) 78 (98) 89 (99) 92 (97) 96 (100)
LIX 66 (86) 80 (96) 75 (95) 95 (100) 90 (99) 93 (99)
I-VI 26 (54) 49 (80) 57 (82) 83 (97) 80 (100) 90 (100)
L-IIX 65 (92) 88 (95) 82 (96) 86 (100) 91 (99) 89 (99)
[-II-V 48 (74) 68 (89) 78 (99) 89 (100) 94 (100) 94 (100)
L-II-1IX 79 (89) 89 (98) 91 (99) 89 (99) 93 (99) 91 (100)
[-ITI-VII 32 (60) 45 (75) 69 (92) 79 (97) 95 (100) 90 (100)
-IIX-IX 58 (78) 82 (91) 84 (95) 87 (96) 91 (99) 97 (100)
L-IT-TTI-1TX 31 (77) 49 (92) 62 (96) 82 (96) 83 (98) 90 (100)
[-II-IV-IIX 57 (84) 62 (91) 82 (99) 90 (99) 81 (99) 98 (100)
[-II-VI-IIX 32 (80) 57 (91) 67 (92) 84 (97) 91 (99) 94 (99)
[-IV-VII-IIX 71 (85) 81 (90) 88 (95) 94 (99) 93 (99) 94 (100)
L-ITI-IV-VII-IIX-IX 20 (51) 41 (65) 62 (83) 77 (97) 86 (97) 97 (100)

Simulation results Bayesian factor selection methodology (with 7 = 20). The left hand side of the
table displays sets of true priced risk factors implied by the DGP’s we simulate. Each DGP is
simulated Z = 100 times. The numerical entries displayed in plain text and within (parentheses)
respectively give the percentage of times the true priced risk factors are correctly identified and the
percentage of times the factor model, as implied by the true DGP, ranks among the top five models
with the highest marginal likelihoods. Results are displayed for various sample sizes T' and d.o.f. of
the student-t distribution v.

The Bayesian factor selection methodology exhibits adequate robustness in a setting with
student-t (with v = 5 d.o.f.), as opposed to normally, distributed factors. The largest loss
in selection accuracy resulting from simulating student-t, as opposed to normally, distributed
factors is observed when we simulate the DGP I-III-IV-VII-IIX-IX with a sample size of T" = 300.
We observe an accuracy loss of 50% in this setting. As the sample size T increases, accuracy
losses resulting from simulating student-t, as opposed to normally, distributed factors fade. The
accuracy loss resulting from simulating student-t distributed factors decreases from 50% to 11%

when we simulate DGP I-ITI-IV-VII-IIX-IX with sample size T' = 1200, as opposed to T = 300.
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Furthermore, as the sample size T' increases, the percentage of times the true risk factors are
identified seems to converge to 100%, for each simulated DGP, in settings with normally, as well
as student-t, distributed factors.

In addition to investigating the performance of the Bayesian methodology in terms of selec-
tion accuracy, we may investigate the economic loss that results from selecting a wrong model,
i.e. selecting a model that is not equivalent to the model implied by the true DGP. This of inter-
est as, judging from the results displayed in Table [4 the Bayesian methodology will not attain
a perfect selection accuracy for relevant sample sizes. We assume investors are mean-variance
investors that seek to minimize portfolio variance given a target portfolio mean, and quantify
the economic loss resulting from selecting a wrong model as the percentage loss in Sharpe ratio
resulting from constructing the mean-variance efficient portfolio with selected priced risk factors
as opposed to true (DGP implied) priced risk factors. Mean-variance efficient portfolios may
be constructed using either true moments, usually unknown in practice, or estimated moments.
We calculate Sharpe ratio’s of constructed portfolios using true moments. Table (Appendix
displays the average percentage loss in Sharpe ratio, given that the Bayesian methodology
(with 7 = 20) selects the wrong model, resulting from constructing the mean-variance efficient
portfolio with selected, as opposed to true, priced risk factors, across the simulated DGP’s.
Percentage losses displayed in plain text and in (parentheses) are calculated in a setting where
portfolio weights are constructed with, respectively, true and estimated moments.

In a setting where portfolio weights are constructed using true moments and 7' = 300, the
average percentage loss in Sharpe ratio ranges from 15% to 35% and from 5% to 32% across the
DGP’s, when we set v = 5 and v = oo, respectively. As we increase the sample size T to T' = 1200
(and calculate portfolio weights using true moments), the average percentage loss in Sharpe
ratio decreases to 0% across most of the DGP’s. Thus, when sample size is sufficiently large,
we can expect the Bayesian methodology to identify all priced risk factors with (approximately)
100% probability, even when the Bayesian methodology is not expected to attain perfect model
selection accuracy at the relevant sample size. A set of selected factors that contains all true
priced risk factors will still be wrong, in the sense that it does not equal the true set of priced
risk factors as implied by the DGP, when the set of selected factors contains redundant non-risk
factors. When a set of selected risk factors is wrong the true mean-variance efficient portfolio
may still be constructed using the set of selected factors with 100% probability if and only if
the set of selected factors contains all true priced risk factors, in addition to redundant non-risk
factors, with 100% probability. Thus, given that a selected model is wrong, but the incurred
percentage loss in Sharpe ratio equals 0% with 100% probability, the set of selected factors must

contain all true priced risk factors, in addition to non-risk factors, with 100% probability.
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The average percentage loss in Sharpe ratio increases across all DGP’s when portfolio weights
are constructed using estimated, as opposed to true, moments, even for the largest sample size
T = 1200. This reflects the fact that, in a setting where portfolio weights are constructed using
estimated, as opposed to true, moments a loss in Sharpe ratio may be incurred when the set
of selected factors contains redundant non-risk factors, in addition to the true set of priced
risk factors, as the selection of additional redundant factors increases the difficulty of moment
estimation, thereby effectively increasing the difficulty of estimating the true weights of the

mean-variance efficient portfolio.

Table 5: Simulation Study Results GMM Based Factor Selection Methodology

T =300 T =1200
Priced Factors Nl N2 N3 N4 Nl N2 N3 N4
-V 2 7T 11 8 8 12 11 18
I-IX 5 7 8 7 8 13 20 24
I-VI 3 2 ) 1 5 20 10 10
I-I1X 12 19 37 22 35 41 40 44
-II-V 2 4 16 22 13 10 32 22
[HII-ITX 6 19 47 55 23 47 62 58
I-ITI-VII 0 2 1 0 1 3 ) 3
I-TIX-IX 4 12 15 13 6 18 27 22
I-TI-TTI-1IX 2 7T 13 18 3 13 24 25
I-II-IV-IIX 3 10 20 20 6 30 34 26
[-II-VI-IIX 1 3 13 5 4 13 30 16
-IV-VII-IIX 4 9 20 25 14 24 38 35
I-ITT-TV-VII-IIX-1X 0 0 4 6 4 7 24 8

Simulation results GMM factor selection methodology. Sets of true priced risk factors implied by
the DGP’s we simulate are displayed on the left hand side. Each DGP is simulated Z = 100 times.
Numerical entries give the percentage of times the true priced risk factors are correctly identified.
Results are displayed for various sample sizes T', various test-assets set sizes N; = 20, Ny = 60,
N3 =100 and N4 = 160, and v = 5 d.o.f. of the student-t distribution.

We turn our discussion to the simulation study results of the GMM based factor selection
methodology of |(Cochrane| (2005)). Table [5| displays simulation results of the GMM based factor
selection methodology, in a setting with student-t (v = 5) distributed factors and test-assets. For
each simulated DGP, we display the percentage of times the true priced risk factors are correctly
identified. We find the selection accuracy of the GMM based methodology to be wanting. For
the sample size T = 300, selection accuracy of the GMM based methodology ranges from 0%
to 12%, from 0% to 19%, from 1% to 47% and from 0% to 55% across the various simulated
DGP’s, when considering the test-assets set sizes of N1, No, N3 and Ny, respectively. The overall
selection accuracy of the methodology increases when one of the larger test-assets set sizes, N3

or Ny, is used as opposed to one of the smaller test-assets set sizes, N1 and Na. Using the largest
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test-assets set size, N4, and sample size T' = 300, we observe a selection accuracy smaller than
25% for 11 out of the 13 simulated DGP’s. This in sharp contrast with the observed selection
accuracy of the Bayesian methodology (with 7 = 20) in the setting with student-t distributed
factors and sample size T' = 300. We observe the selection accuracy of the Bayesian methodology
to be larger than 25% for all but a single one of the simulated DGP’s in this setting.

When we increse the sample size to T' = 1200, we observe an increase in the selection
accuracy of the GMM based methodology, for all relevant test-assets set sizes. The GMM based
methodology does not achieve the same levels of selection accuracy the Bayesian methodology
(with 7 = 20) achieves when we use the larger sample size of 7' = 1200 (in the setting with
student-t distributed factors and test-assets) though. Using one of the larger test-assets set sizes
N3 or Ny, the selection accuracy of the GMM based methodology ranges, respectively, from 5%
to 62% or from 3% to 58% across the simulated DGP’s. The selection accuracy of the Bayesian
methodology (with 7 = 20) ranges from 86% to 95% across simulated DGP’s. Furthermore, in
the setting with student-t distributed factors and test-assets, for both sample sizes T" = 300 and
T = 1200, we observe that the Bayesian methodology (with 7 = 20) attains a higher selection
accuracy across all the simulated DGP’s, as compared to the GMM methodology, regardless of
which of our test-assets set sizes is relevant.

Table see Appendix displays simulation results of the GMM based factor selection
methodology, in a setting with normally distributed factors and test-assets. Although the GMM
based methodology does not rely on assumptions about the distributions of the test-assets and
candidate factors, we observe the GMM based methodology attains a higher overall selection
accuracy across the simulated DGP’s when test-assets and candidate factors follow normal, as
opposed to student-t, distributions. We still find the selection accuracy of the GMM based
methodology, as compared to the Bayesian methodology (with 7 = 20), to be wanting in this
setting, however.

As discussed in section we only simulate a DGP Dj in case all the estimates of the
parameters in parameter vector b; = [bjl-, e bjl.(j ]’ of the model implied by DGP D; differ signifi-
cantly from 0 (we use a significance level of 1%). In that case, we can reject the null H : b} =0,
for all i = 1,..., K;. In case we cannot reject the null for a particular ¢ = 1, ..., Kj, either the
respective parameter b;- is actually zero, or the data does not provide enough support to reject
the null, although the respective parameter b; is actually non-zero. In the former case, DGP
D; is invalid, as discussed in section In the latter case, the DGP D; is actually valid, but
factor selection methodologies might have trouble identifying the priced risk factor associated
to b; when simulating the DGP with a sample size that is sufficiently small.

We proceed the discussion with an example. We estimate the parameters of the model
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implied by the DGP with WMKT-RMW-Dollar (I-V-X) as the set of true priced risk factors,
Table [6] displays the estimated parameter b of the model implied by the DGP. We assume that
factors and test-assets are normally distributed, and use test-assets set size N4. The estimated
direct effects of WMKT and RMW on the SDF are significant, using a 1% significance level, but
the estimated direct effect of Dollar on the SDF is not. Even at a significance level of 10%, the
estimated direct effect of Dollar remains insignificant. It might well be the case that the Dollar
factor does not have a direct effect on the SDF. It might also be the case that the Dollar factor
actually has a direct effect on the SDF, but that the effect is too subtle, in the sense that the

data does not provide sufficient evidence for the actual presence of the effect.

Table 6: Estimated parameter b of the model implied by DGP: WMKT-RMW-Dollar

Factor WMKT RMW  Dollar
i 0.071 0.240 0.018
(0.018)  (0.046) (0.034)
ML estimate of the parameter b of the model implied by the DGP with WMKT-RMW-Dollar as the

set of true priced risk factors. Standard errors are displayed in parentheses. Factors and test-assets
are assumed to be normally distributed.

We proceed by simulating the DGP with WMKT-RMW-Dollar as the set of true priced
risk factors, using sample sizes T' = 1200 and T = 12000. Factors and test-assets are normally
distributed, we use test-assets set size Ny. We manually set the parameter governing the direct
effect of Dollar on the SDF, denoted by bP'", at various values in the interval [0 0.2]. For each
value of bP'" considered, we simulate the respective DGP Z = 100 times. Figures [2| and |§|
(Appendix display, for both the Bayesian (with 7 = 20) and the GMM based factor selection
methodologies, for values of b”"" in interval [0 0.2], the percentage of times WMKT and RMW
are selected, as well as the percentage of times WMKT, RMW and Dollar are selected. The
factor selection methodologies are applied in a setting where the set of candidate risk factors
solely consists of the factors WMKT, RMW and Dollar.

In case bP! is set P = 0, the DGP is invalid in the sense that the implied priced risk
factor Dollar has no direct effect on the SDF. The Bayesian and GMM based methodologies
only identify WMKT and RMW as priced factors, in all simulation iterations, in that case, as
observed in Figures [2/and @ In case bP'" is set at a value in the interval (0 0.2] (for example b2
is set at the ML estimate b”"" = 0.018), the DGP is valid in the sense that the implied priced
risk factor Dollar has a direct effect on the SDF. Judging from Figures [2 and [6] the Bayesian
and GMM based methodologies have trouble identifying the direct effect of Dollar on the SDF
though, for the smaller values of b”'" in the interval (0 0.2]. For the sample size T = 1200,

the Bayesian and the GMM based methodologies respectively fail to identify the Dollar factor
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as a priced risk factor in all simulation iterations when P is set bP" < 0.1 and bP" < 0.16.
Although the selection accuracy of the Bayesian as well as the GMM based methodologies
increases as we increase the sample size to an epic size of T = 12000, the methodologies still
fail to consistently identify Dollar as a priced risk factor in the simulation iterations for small
enough values of b”" in the interval (0 0.2]. The Bayesian and GMM based methodologies may
thus fail to identify a priced risk factor when its direct effect on the SDF is too subtle, in the

sense that (simulated) data fails to provide sufficient evidence for the presence of the effect.

Figure 2: Simulation Results DGP: WMKT-RMW-Dollar, T'= 1200
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We simulate the DGP: WMKT-RMW-Dollar, with normally distributed factors and test-assets (we
use Ny test-assets and sample size T = 1200), Z = 100 times, for various values of b”" (the direct
effect of Dollar on the SDF). We use the Bayesian (with 7 = 20) and GMM based factor selection
methodologies to select priced risk factors each simulation iteration. The set of candidate factors
solely consists of WMKT, RMW and Dollar. For each relevant value of bP!", the percentage of
times WMKT and RMW are selected as well as the percentage of times WMKT, RMW and Dollar
are selected are displayed. On the left: Bayesian methodology results. On the right: GMM based
methodology results.

As discussed in section we expect test-asset based factor selection methodologies, such
as the GMM based methodology, to be unable to accurately identify a priced risk factor, when
it is unrelated to the relevant set of test-assets. We illustrate this discussion with an example.
We estimate the parameters of the model implied by the DGP with WMKT-HML-MOM (I-ITI-
VII) as the set of true priced risk factors. We assume that factors and test-assets are normally
distributed, and use test-assets set size Nj. Estimated direct effects of factors WMKT, HML
and MOM on the SDF are all significant, at the 1% level. Let gWMKT gHML 54 gMOM
denote Nj x 1 parameter vectors of the model implied by the DGP that govern the direct effects
of, respectively, WMKT, HML and MOM on the N; test-assets. We test Hy : SWVMET =
Hy : pAML — (0 and H, : fMOM = () with F-tests, and do not reject Hy : SMOM = 0 at a 10%
significance level. We reject the null hypotheses Hy : SV MET = 0 and Hy : BAME =0 at a 1%

,BMOM

significance level. In case = 0, the MOM factor is a priced risk factor, as it has a direct
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effect on the SDF, but is unrelated to the relevant set of V] test-assets.
We simulate the DGP with WMKT-HML-MOM as the set of true priced risk factors, using
sample sizes T' = 1200 and T = 12000. Factors and test-assets are normally distributed, we

BMOM — ¢, where ¢ denotes a N; x 1 vector

use test-assets set size Ni. We set parameter
of ones and ¢ denotes a constant, and consider various values for ¢ in the interval [0 1]. For
each value of ¢ considered, we simulate the respective DGP Z = 100 times. Figure [3| and
(Appendix display, for both the Bayesian (with 7 = 20) and the GMM based factor selection
methodologies, for values of ¢ in interval [0 1], the percentage of times WMKT and HML are
selected, as well as the percentage of times WMKT, HML and MOM are selected. The factor

selection methodologies are applied in a setting where the set of candidate factors solely consists

of WMKT, HML and MOM.

Figure 3: Simulation Results DGP: WMKT-HML-MOM, T = 1200
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We simulate the DGP: WMKT-HML-MOM, with normally distributed factors and test-assets (we use
N test-assets and sample size T' = 1200), Z = 100 times, for various values ¢, the constant governing
BMOM — ¢, We use the Bayesian (with 7 = 20) and GMM based factor selection methodologies
to select priced risk factors each simulation iteration. The set of candidate factors solely consists of
WMKT, HML and MOM. For each relevant value of ¢, the percentage of times WMKT and HML
are selected as well as the percentage of times WMKT, HML and MOM are selected are displayed.
On the left: Bayesian methodology results. On the right: GMM based methodology results.

The GMM based methodology fails to select all three factors WMKT, HML and MOM in
more than 90% of the simulation iterations in case SMOM = 0, even when we use an epic sample
size of T" = 12000. As we increase the direct effect of MOM on the test-assets, the selection
accuracy of the GMM based methodology increases. However, when the direct effect of MOM
on the test-assets is sufficiently subtle, in the sense that (simulated) data does not provide
sufficient evidence for the presence of the effect, we still find the selection accuracy of the GMM
based methodology to be wanting. For example, we observe selection accuracies of 10% and 30%
for sample sizes T = 1200 and T = 12000, respectively, in case SMOM = (.1¢. The Bayesian

methodology does not depend on the use of test-asset data, and does not suffer from a loss in
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selection accuracy when MOM is unrelated, or only subtly related, to our set of Ny test-assets.
For both sample sizes T' = 1200 and 7" = 12000, the Bayesian methodology attains a selection
accuracy of 100%, regardless of the strength of the effect of MOM on the N7 test-assets.

5 Empirical Study

We apply our factor selection methodologies to select priced risk factors from our set of candidate

factors discussed in section [3| and evaluate the pricing performance of candidate factor models.

5.1 Factor Model Selection

Table [7] displays our set of H = 13 candidate factors considered in the empirical study, each

factor is assigned to a roman numeral for ease of reference.

Table 7: Candidate Factors Empirical Study

W L SMB HML DHML RMW CMA MOM QMJ BAB Dlr Crry GT
I I III v v VI VII IIX IX X XTI  XII  XIII

Roman Numerals Corresponding To Factors. WMKT is abbreviated with W and is assigned to roman
numeral I. LWMKT is abbreviated with L and is assigned to roman numeral II. The Dollar, Carry
and Global Tail factors are respectively abbreviated with Dllr, Crry and GT.

Using our set of H = 13 candidate factors, a total of J = 2!3 — 1 = 8191 candidate factor
models of the form specified in Eq. can be constructed. We apply the Bayesian (marginal
likelihood based) factor selection methodology to filter out priced risk factors from our set of

candidate factors, and, following our discussion in section specify hyper-parameter k, as
k = (cShMax)?/H, cShMax = 7Sh(WMKT), 7 =20,

with ShMax denoting the maximum attainable Sharpe ratio, and Sh(WMKT) denoting the
sample Sharpe ratio over the WMKT portfolio.

We use the Bayesian factor selection methodology to identify factor models with the highest
posterior probabilities (we use equal prior weights) out of the set of J candidate factor models.
The upper part of Table [§] displays the top-8 models, as ranked by their posterior probabilities.
We refer to the factor model with rank z, as ranked by posterior probability, as (factor) model
x, in our following discussion, for ease of reference. The posterior probability of model 1 equals
23%, and is 2 times higher than the posterior probability of model 2 and up to 10 times higher
than the posterior probabilities of the other top-8 models displayed in Table
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Table 8: Posterior Model Probabilities and Cumulative Factor Probabilities

Priced Factors Posterior Prob. Priced Factors Posterior Prob.
1: -III-IV-V-IIX-IX 0.230 5: I-III-IV-V-IIX-IX-XIII 0.031
2: [-III-V-IIX-IX 0.111 6: I-ITI-V-VI-IIX-IX 0.028
3: FIII-IV-V-VI-IIX-IX  0.088 7: I-ITI-TV-V-IIX-IX-XI-XII  0.027
4: II-III-IV-V-IIX-IX-XI  0.048 8: I-III-IV-V-VII-IIX-IX 0.022

Cumulative Factor Probabilities
I II IIT IV Vv VI VII IIX IX X XI XIT XIII
0.76 0.28 1.00 0.68 0.99 0.26 0.09 094 1.00 0.01 0.22 0.19 0.09

We use the Bayesian factor selection methodology (with 7 = 20) to identify the models with the
highest posterior probabilities out of the set of total potential models that can be constructed using
our set of H candidate factors. The upper part of the table displays the top-8 models as ranked by
their posterior probabilities. For each of these models, we display the posterior probability, as well
as the set of factors, that are proposed (by the respective model) to be priced risk factors. The lower
part of the table displays cumulative factor probabilities. The cumulative probability of a factor is
defined as the sum of posterior probabilities of models that include the factor.

The lower part of Table [§| displays cumulative factor probabilities. The cumulative factor
probability is defined as the sum of posterior probabilities of models that include the factor. The
cumulative probability of a factor can be interpreted as the posterior probability that the factor
is a priced risk factor. We compute the posterior probability that either one, but not both, of the
WMKT or LWMKT factors is a (are) priced risk factor(s) as the sum of posterior probabilities of
models that include either one, but not both, of the factors and find it to equal 96%. This finding
is in line with our expectation that one, but not both, of the global market factors is a (are)
priced risk factor(s). The cumulative factor probabilities of SMB, DHML, QMJ and MOM are
close to, or equal to, 100%, indicating that these factors are very likely to be priced risk factors,
in addition to one of the global market factors, as well. These are precisely the factors that, in
addition to WMKT and HML, make up the factor model with the highest posterior probability.
The posterior probability that both HML and DHML are priced risk factors, computed as the
sum of posterior probabilities of models that include both factors, is 68%, which is surprising
as both factors aim to capture the value effect. As the sample correlation of HML and DHML
(Table equals 0.68, the factors may carry different information related to the value effect.

The question remains as to which factors should be selected as priced risk factors. We could
simply select the factors that make up model 1 as priced risk factors, but judging from our
discussion in section [4] we have no guarantee that the set of factors that make up the model
with the highest posterior probability will equal the set of true priced risk factors. Therefore, it
seems prudent to consider multiple potential sets of priced risk factors. For example, we could
consider eight potential sets of priced risk factors, where each factor model in the top-8 (in terms

of posterior probability) is made up by one of the potential sets of factors.
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Table 9: GRS Tests Nested Factor Models

Model Pair: Nested vs. General RW
I-ITI-V-IIX-IX vs. I-ITI-IV-V-IIX-1X 0.46
I-ITI-V-IIX-IX vs. I-ITI-IV-V-VI-IIX-IX 0.00
I-ITI-V-IIX-IX vs. I-ITI-IV-V-TIX-IX-XIII 4.57
I-ITI-V-IIX-IX vs. I-ITI-V-VI-IIX-IX 2.74
I-ITI-V-IIX-IX vs. I-ITI-IV-V-VII-IIX-IX 0.00

II-ITI-IV-V-IIX-IX-XT vs. IT-IIT-IV-V-IIX-IX-XI-XIT ~ 37.00
II-ITI-V-IIX-IX-XI-XII vs. II-ITI-IV-V-IIX-IX-XI-XII ~ 0.46
II-ITI-V-1IX-IX vs. II-ITI-V-TIX-IX-XI-XII 91.00

We test, for each listed pair of factor models (each pair contains one nested and one general model),
whether the nested factor model prices factors that are excluded from the nested model, but included
in the general model, by the means of rolling window GRS tests. For each pair of factor models, RW
reports the share of 60-month rolling windows where the GRS test rejects the null that the nested
factor model prices the excluded factors (expressed in percentages). We use a significance level of 5%.

We observe that many of the high ranking factor models (as ranked by posterior probability)
are actually nested in other high ranking factor models. For example, factor model 2 is nested
in models 1, 3, 5, 6 and 8, while factor model 4 is nested in model 7. As discussed in section
2.3.1] a factor model that is nested in a more general model is superior to the general model if
the nested factor model actually prices excluded factors that are included in the general model.
We proceed to test whether factor model 2 outperforms the more general models 1, 3, 5, 6 and
8, and whether factor model 4 outperforms the more general model 7. Table [9] reports results
of rolling window GRS tests. We test, in a conditional setting, for each listed pair of factor
models (each pair contains one nested and one general model), whether the nested factor model
prices factors that are excluded from the nested model, but included in the general model, by
the means of rolling window GRS tests. For each pair of factor models, we report the share
of 60-month rolling windows where the GRS test rejects the null that the nested factor model
prices the excluded factors. A significance level of 5% is used. We use a conditional setting
and 60-month rolling windows to account for potential time-variation of factor loadings and risk
premia, in the spirit of |Brusa et al. (2014]) and |Lewellen and Nagel (2006)).

Judging from our rolling window (RW) GRS test results, factor model 2 likely dominates
each of the more general models 1, 3, 5, 6 and 8 in a conditional setting. For each of the more
general models of interest, we are able to reject the null that factor model 2 prices excluded
factors, in less than 5% of the rolling windows. On the other hand, in a conditional setting,
factor model 4 does not seem to adequately price factor Carry (XII), which is included in more
general model 7. In 37% of the rolling windows, we reject the null that factor model 4 prices
Carry (XII). Factor model 7 is therefore likely to be superior to factor model 4. We also test
whether a nested version of factor model 7, II-ITI-V-IIX-IX-XI-XII, which excludes HML (IV),
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is able to (conditionally) price HML (IV). RW GRS test results indicate the restricted version
of model 7 is indeed able to (condtionally) price HML (IV), as we are able to reject the null
that the restricted version of model 7 prices HML (IV) in less than 1% of the rolling windows.
In addition to the Bayesian factor selection methodology, we may apply the GMM based
methodology to select priced risk factors out of our set of H = 13 candidate factors. Results
based on the GMM based methodology may well be unreliable though, as we found the selection
accuracy of the methodology to be wanting in our simulation study (section . Table
(Appendix displays, using each of our four distinct sets of test assets (discussed in section
, the factors that are selected by the GMM based methodology as priced risk factors. Only
when we use our aggregate set of Ny = 160 test-assets, results seem plausible, and the GMM
methodology selects II, III, V, IIX and IX to be priced risk factors. The factor model TI-11I-
V-IIX-IX is nested in model II-TTI-V-IIX-IX-XI-XII, but is unable to adequately (conditionally)
price excluded factors XI and XII, judging from the RW GRS test result displayed in Table [9]
We end up with two potential sets of priced risk factors. The first one being I-I1I-V-I1IX-
IX, and the second one being II-III-V-IIX-IX-XI-XII. The first set contains the (global) market
factor WMKT and all the factors with cumulative probabilities of (approximately) 100%: SMB,
DHML, MOM and QMJ. The second set contains, in addition to the factors with cumulative
probabilities of (approximately) 100%, the factors that make up the CAPM Redux model of
Brusa et al.| (2014): (global) market factor LWMKT and currency factors Dollar and Carry. We
refer to the factor model made up by the factors in the first set and the factor model made up

by the factors in the second set as the Bayes I model and the Bayes II model, respectively.

5.2 Evaluating Factor Models

We proceed to evaluate the pricing performance of candidate factor models. Our set of candidate
factor models consists of the Bayes I and Bayes II models, and three prominent factor models
proposed in the literature: the Word CAPM model, the (International) CAPM Redux model of
Brusa et al.| (2014) and a 6 factor model based on the WMKT factor, the 4 (global) factors of
Fama and French| (2015) and the (global) momentum factor of |Carhart| (1997), which we refer
to as the FF6 model. We thus consider a total of five candidate factor models, or five candidate
(priced risk) factor sets. First, we compare the relative pricing performance of our candidate
factor models. As discussed in section we should compare the relative pricing performance
of factor models by evaluating the pricing performance of the models with respect to (excluded)
factors. Second, we evaluate the pricing performance of the candidate factor models in an
absolute setting. We investigate whether the factor models fully explain the cross-section of

expected excess-returns of test-assets and (excluded) factors.
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To gain insight into the relative pricing performance of the candidate factor models, we
evaluate, for each candidate factor set, the maximum sample Sharpe ratio (over the portfolio)
of the factors. In case a factor model prices all excluded factors, the maximum Sharpe ratio
of all H = 13 candidate factors will equal the maximum Sharpe ratio of the set of factors that
make up the respective factor model. Otherwise, the maximum Sharpe ratio of all factors will be
higher. The maximum Sharpe ratio of the factors that make up the candidate factor model with
the highest pricing performance w.r.t. excluded factors, will be closest to the maximum Sharpe
ratio of all factors, as compared to the maximum Sharpe ratios of the other candidate factor
sets. To account for potential time-variation of means and variances, we use a 60-month rolling
window (RW) to construct sample Sharpe-ratio’s at each time point in our sample period. For
each candidate factor set, as well as the complete set of candidate factors, Figure [4] displays the

evolution of the RW maximum sample Sharpe ratio over time.

Figure 4: Rolling Window Sharpe Ratio’s
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The Figure displays, for each candidate factor set (or model), the evolution of the 60-month rolling
window (RW) maximum sample Sharpe ratio (over the portfolio) of the respective candidate factors
over time. “Factors” displays the evolution of the RW maximum sample Sharpe ratio of all candidate
factors. We display the evolution of the RW maximum sample Sharpe ratio’s in the period Febru-
ary 2000 - April 2018 and sub-period February 2000 - May 2013 on the left and right hand side,
respectively.

We observe that the RW maximum (sample) Sharpe ratio (over the portfolio of the factors)
of the Bayes II model closely matches the RW maximum Sharpe ratio of all factors during the
whole time period February 2000 - May 2013. The RW maximum Sharpe ratio of the Bayes
I model does not match the RW maximum Sharpe ratio of all factors as closely as the RW
maximum Sharpe ratio of the Bayes II model does during the time period February 2000 - May
2013, but clearly matches the RW maximum Sharpe ratio of all factors closer than the RW
maximum Sharpe ratio’s of the CAPM, CAPM Redux and FF6 models during the whole length
of the time period. During the time period May 2013 - April 2018, we observe that the RW

maximum Sharpe ratio of all factors starts to increase over time and that it diverges from the
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RW maximum Sharpe ratio’s of the candidate factor models over time. During the whole time
period May 2013 - April 2018, the RW maximum Sharpe ratio’s of the Bayes I and Bayes II
models still outperform the RW maximum Sharpe ratio’s of the other candidate factor models
though. The results suggest that, in a conditional setting, as compared to the other candidate
models, the Bayes II model performs best in terms of relative pricing performance, followed by
the Bayes I model. Furthermore, it may well be the case that, in a conditional setting, the Bayes
IT factor model prices all excluded factors without any pricing error in the time period February
2000 - May 2013. In the time period May 2013 - April 2018 this is likely not the case, as the
RW maximum Sharpe ratio of all factors is up to twice as large as the RW maximum Sharpe

ratio of the Bayes II model during the time period.

Table 10: Results GRS Tests

Test- Assets
Model ExF  Market Value Growth MEBM MEINV MEMOM MEOP
I: Rolling Window

CAPM 99 95 90 91 95 89 99 90
Redux 94 91 83 85 91 82 99 80

FF6 84 75 67 57 7 63 96 79
Bayes 1 37 34 42 20 53 43 91 56
Bayes 11 25 23 32 13 42 36 85 44

II: Full Sample

CAPM 13.63 7.54 6.78 6.90 7.90 7.84 9.43 7.88
Redux 14.37 7.29 6.52 6.65 7.65 7.59 9.19 7.63
FF6 11.98 5.59 4.86 4.97 6.04 5.99 7.48 6.03
Bayes 1 2.13* 2.69 2.10 2.19 3.36 3.32 4.51 3.35
Bayes II 1.66™* 2.60 1.98 2.08 3.32 3.27 4.52 3.30

Part I of the Tables displays, for each candidate factor model and for several sets of test-assets, the
share of 60-month rolling windows where the GRS test rejects the null that the factor model prices
the set of test-assets (expressed in percentages) during the full sample period February 1995 - April
2018. A significance level of 5% is used. Part II of the Tables display GRS test statistics of full sample
GRS tests. GRS test statistics with p-values higher than 5% and 10% are, respectively denoted with
a x and a *x. For each candidate factor model, the test-asset set “ExF” refers to the set of factors
that are excluded from the factor model (but included in our total set of H candidate factors). To
combat the the small T" versus large N problem resulting from using 60-month rolling windows, we
split our set of all Ny = 160 test assets up into seven smaller test-asset sets. The Market, Value and
Growth sets respectively consist of the country market indices, country growth indices and country
value indices discussed in section The MEBM, MEINV, MEMOM and MEOP sets respectively
consist of the global portfolios formed by bi-variate sorts on ME and BE/ME, bi-variate sorts on
ME and INV, bi-variate sorts on ME and MOM and bi-variate sorts on ME and OP, as discussed in
section For each factor model, the set of excluded factors “ExF” is included in all the sets of our
test-assets.
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We proceed to formally test whether our candidate factor models price all (excluded) factors
and test-assets by the means of full-sample GRS tests as well as rolling window GRS tests.
Rolling window GRS tests allow us to account for potential time-variation of factor loadings
and risk premia. Part I of Tables and (Appendix displays, for each candidate factor
model and for several sets of test-assets, the share of 60-month rolling windows where the GRS
test rejects the null that the factor model prices the set of test-assets during, respectively, our
full sample period and the sub-sample period February 1995 - May 2013. A significance level
of 5% is used. Part II of the respective Tables displays GRS test statistics of full sample GRS
tests. For each candidate factor model, the test-asset set “ExF” refers to the set of factors that
are excluded from the factor model (but included in our total set of H candidate factors). To
combat the small T" versus large N problem resulting from using 60-month rolling windows, we
split our aggregate set of Ny = 160 test assets up into seven smaller test-asset sets. The Market,
Value and Growth sets respectively consist of the Country Market indices, Country Growth
indices and Country Value indices discussed in section 3.2 The MEBM, MEINV, MEMOM and
MEOP sets respectively consist of the global portfolios formed by bi-variate sorts on ME and
BE/ME, bi-variate sorts on ME and INV, bi-variate sorts on ME and MOM and bi-variate sorts
on ME and OP, as discussed in section [3.2] For each factor model, the set of excluded factors
“ExF” is included in all the sets of our test-assets, as a factor model should adequately price all
assets, that is, test-assets and (excluded) factors.

In the full sample period, the share of rolling windows where the GRS test rejects the null
that the excluded factors are priced equals 84%, 94%, 99%, 37% and 25% for, respectively, the
FF6 model, the CAPM Redux model, the (World) CAPM model and the Bayes I and Bayes II
models. In the sub-sample period February 1995 - May 2013, the rolling window GRS test results
for excluded factors are similar for the CAPM, CAPM Redux and FF6 models, as compared
to the full sample period. As compared to the full sample period, the Bayes II and Bayes I
models perform better in the sub-sample though, in the sense that the share of rolling windows
where the GRS test rejects the null that the excluded factors are priced is much lower in the
sub-sample than in the full-sample, for both models. In the sub-sample, the share of rolling
windows where the GRS test rejects the null that the Bayes II model prices the excluded factors
is only 1%. These results are in line with our discussion of the rolling window maximum sample
Sharpe ratio’s of the candidate factor sets (models). The results of the rolling window GRS tests
support the claim that, in a conditional setting, during the full-sample period, as compared to
the other models, the pricing performance of the Bayes II model w.r.t. excluded factors is most
satisfactory, followed by the Bayes I model. Although it is likely the case that the Bayes II model

is not able to (conditionally) price the excluded factors without pricing error during the entire
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full-sample period, the rolling window GRS tests support the claim that it may well be the case
that the Bayes II model (conditionally) prices the excluded factors without pricing error during
the sub-sample period February 1995 - May 2013. When we consider full-sample GRS tests, we
only fail to reject the null that excluded factors are adequately priced for the Bayes I and Bayes
IT models, when using a significance level of 5%. For all other models, we reject the null at the
5% significance level. This holds for the sample period February 1995 - April 2018 as well as
the sub-sample period February 1995 - May 2013.

Our results clearly indicate that the Bayes II model performs best in terms of relative pricing
performance, as compared to the other models, followed by the Bayes I model. We proceed the
discussion by evaluating the pricing performance of our candidate factor models in an absolute
setting. When considering full sample GRS test results (Tables and , we reject the null
that test-assets are priced for each of our candidate models, and each of our test-asset sets
at a significance level of 5%. Judging from the results of the rolling window (RW) GRS tests
(during our full sample period) displayed in Table none of the factor models are likely able to
(conditionally) price all of the seven sets of test-assets (all test-asset sets include excluded factors)
during the entirety of our full sample period. For the CAPM, CAPM Redux and FF6 models,
the share of rolling windows where the GRS test rejects the null that test-assets are priced is
higher than 57%, for all sets of test-assets. These models are likely unable to (conditionally)
price any of the sets of test-assets during the majority of the (or even during the whole) full
sample period. Although the Bayes I and Bayes IT models likely fail to (conditionally) price the
MEMOM test-assets during the majority of the (or even during the whole) full sample period,
as for both models the share of rejected RW GRS tests is higher than 85% for this set of test-
assets, the Bayes I and Bayes II models may be able to (conditionally) price some of the other
sets of test-assets during a (significant) sub-sample of the full-sample period. For all test-asset
sets other than MEMOM, the share of rejected RW GRS tests is lower than 44% for the Bayes
IT model and lower than 56% for the Bayes I model. The Bayes II model is thus most likely
to be able to (conditionally) price some of the test-asset sets, other than MEMOM, during a
(significant) sub-sample of the full sample period.

To gain further insight into the pricing performance of the candidate factor models we plot,
for each factor model, realized expected excess-returns of our entire cross-section of Ny, = 160
test-assets against the predicted expected excess-returns of the same test-assets as predicted by
the factor model (we do not include excluded factors). We use 60-month rolling windows to
estimate factor loadings of the factor models and to estimate (conditional) means of test-asset
and factor excess-returns. Each rolling window, mean test-asset excess-returns are predicted, for

each factor model, by multiplying estimated (conditional) factor loadings by the corresponding
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estimated (conditional) factor means. All rolling window predicted mean excess-returns and
rolling window realized sample mean excess-returns are then averaged over the total number
of rolling windows. Averaged realized mean excess-returns are then plotted against averaged
predicted mean excess-returns, for each factor model. Figure [5| displays plots for the CAPM
Redux and Bayes II models and Figure 8 (Appendix [B)) displays plots for the CAPM, FF6 and

Bayes I models.

Figure 5: Realized versus Predicted Expected excess-returns
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For each of the factor models, the Figure plots realized expected excess-returns of our entire cross-
section of test-assets against the predicted expected excess-returns of the same test-assets as predicted
by the candidate factor model (excluded factors are not included in the Figure). We use 60-month
rolling windows to estimate factor loadings of the factor models and to estimate (conditional) means
of test-asset and factor excess-returns. Each rolling window, mean test-asset excess-returns are pre-
dicted, for each of the factor models, by multiplying estimated (conditional) factor loadings by the
corresponding estimated (conditional) factor means. All rolling window predicted mean excess-returns
and rolling window realized sample mean excess-returns are then averaged over the total number of
rolling windows. Averaged predicted mean excess-returns are plotted against averaged realized mean
excess-returns, for each of the factor models.

Figures p| and [§] allow us to visually evaluate the extent to which our candidate factor
models are, on average, able to explain differences in the expected excess-returns across the

cross-section of test-assets. A factor model is able to explain the differences in the expected
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excess-returns across the cross-section of test-assets, in case the difference between realized
expected excess-returns of any pair of test-assets is properly matched by the difference between
predicted expected excess-returns of the pair. Judging from Figures [5| and |8 on average, the
(World) CAPM is barely able to explain any of the differences in the expected excess-returns
across the cross-section of test-assets. Although the CAPM Redux, as opposed to CAPM, seems,
on average, to be able to explain some of the differences in the expected excess-returns of the
Country Market, Country Value and Country Growth indices, differences in the expected excess-
returns of the MEBM, MEINV, MEMOM and MEOP portfolios are, on average, not explained
by the CAPM Redux at all. When closely investigating the realized expected excess-returns of
the Country Market indices, we observe that, on average, the FF6 explains almost none of the
differences in these expected excess-returns. When the Country Market indices are concerned,
the CAPM Redux thus seems, on average, to be better able to explain differences in expected
excess-returns, as compared to FF6. When test-assets other than the Country Market indices
are concerned, the FF6 model is, on average, better able to explain differences in expected
excess-returns, as compared to the CAPM Redux. The Bayes I model seems to, on average,
(conditionally) overprice most test-assets, as realized expected excess-returns of most test-assets
are, on average, higher than corresponding predicted expected excess-returns. Overall, the Bayes
II model seems, on average, best able to explain the differences in expected excess-returns across
the cross-section of test-assets, as compared to the other models. Although the Bayes II model,
on average, does not explain all the differences in expected excess-returns across the cross-section
of test-assets, there is, on average, no particular set of test-assets with differences in expected
excess-returns that are left, for the most part, unexplained by the model.

Judging from Figures [5/and [8] all candidate factor models (conditionally) price many of our
test-assets with, on average, substantial pricing error. The results of rolling window GRS tests
(Table indicate that the Bayes I and Bayes II models may be able to (conditionally) price
the Market, Value and Growth test-asset sets (including excluded factors), during a (significant)
sub-sample of our full sample period. This conflicts with the (substantial) average pricing errors
of the Bayes I and Bayes II models observed in Figures [5{and |8 (concerning the Country Market,
Country Value and Country Growth indices). Therefore, concerning the Bayes I and Bayes 11
models, it is likely the case that, either, we are unable to reject a false null hypothesis of no
pricing errors for the Market, Value and Growth test-asset sets during a substantial share of
our rolling windows, or differences between the relevant predicted and realized expected excess-
returns differ substantially during the rolling windows. Either way, our findings support the
claim that none of our candidate factor models are able to (conditionally) price all test-assets

during the entire full sample period.
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6 Conclusion

The relevance for the identification of priced risk factors on the international level has increased
tremendously in the last couple of decades, along with an increasing share of investors with for-
eign equity holdings and an increase in (global) candidate factors, as proposed by the literature,
that help explain anomalies of the (World) CAPM. The quest to identify priced (excess-return)
risk factors that fully explain the cross-section of asset expected excess-returns corresponds to
the quest to find the mean-variance efficient portfolio (Huberman and Kandel (1987)). The
identification of priced (excess-return) risk factors on the international level is therefore relevant
from an explanatory viewpoint as well as from the viewpoint of an investor who aims to find
the mean-variance efficient portfolio on the international level.

The recent research of [Barillas and Shanken (2018) and |Chib et al.| (2018]) provides a
Bayesian, marginal likelihood based, factor selection methodology that enables us to filter out
priced risk factors from a set of candidate (excess-return) factors. We extend upon the research
of Barillas and Shanken| (2018)) and |Chib et al. (2018)), and argue that the specification of the
priors of the unconditional means of proposed priced risk factors, or alpha’s, (across the can-
didate models) implies a prior bias towards sparse factor models, as, conflicting with economic
intuition, the prior means of the alpha’s are set to equal zero. We argue that excessively narrow
spreads of the priors of the alpha’s may imply an excessive prior bias towards sparse models.

Indeed, in a simulation study, we find the precision of the marginal likelihood based factor
selection methodology of (Chib et al.| (2018]) and Barillas and Shanken! (2018) to be wanting when
the hyper-parameter k, governing the spreads of the priors of the alpha’s, is set to equal the
squared maximum (attainable) Sharpe ratio (over the portfolio) of the candidate factors, divided
by the number of candidate factors, as proposed by |Barillas and Shanken| (2018]). When hyper-
parameter k is specified as suggested by Barillas and Shanken (2018), the marginal likelihood
based factor selection methodology tends to excessively favour sparser factor models, as opposed
to the true factor model as implied by the simulated DGP. The finding in turn suggests the
specification of the priors of the alpha’s as proposed by Barillas and Shanken| (2018]) implies
a prior bias towards sparse factor models that is too excessive. We find we can substantially
improve upon the precision of the marginal likelihood based factor selection methodology by
setting hyper-parameter k, although conflicting with theoretical restrictions on the potential
magnitude of k as derived by Barillas and Shanken| (2018), equal to a multiple of the squared
maximum Sharpe ratio of the candidate factors, divided by the number of candidate factors,
thereby effectively increasing the spreads of the priors of the alpha’s and decreasing the prior

bias towards sparse factor models. Using our specification of the priors of the alpha’s, we find the
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precision of the marginal likelihood based factor selection methodology to be robust in a setting
with student-t, as opposed to normally, distributed factors and to be much more satisfactory
than the precision of the GMM based factor selection methodology of |(Cochrane, (2005)).

It may well be prudent to further investigate the specification of the priors of the alpha’s
though, as our new specification of the priors that allows for larger spreads actually violates
theoretical restrictions on the potential magnitude of hyper-parameter k. The key insight here
is that we have to violate the theoretical restrictions in order to compensate for the (excessive)
prior bias towards sparse factor models otherwise implied by setting the prior means of the
alpha’s to equal zero, which is in conflict with economic theory in the first place. Investors
demand compensation for bearing risk, and we can a priori expect (absolute values) of expected
excess-returns of traded factors to be positive. Although a prior bias towards sparse factor
models, resulting from setting the prior means of the alpha’s to equal zero, is in line with a
preference of a sparse over a less-sparse factor model, unless sufficient posterior evidence is
available against its statistical validity, it may well be prudent to re-evaluate the specification
of the prior means and prior variances of the alpha’s across the candidate models in further
research, such that they are more in harmony with economic theory.

In our empirical study, we apply the marginal likelihood based factor selection methodology of
Chib et al. (2018)), using priors for the alpha’s with increased spreads, to select priced risk factors
out of a set of prominent global (excess-return) factors proposed in the literature. We find that
the maximum attainable (sample) Sharpe ratios over two portfolios of, respectively, two selected
factor sets outperform maximum attainable Sharpe ratio’s over portfolios of, respectively, factor
sets of several prominent factor models proposed in the literature. The two selected factor models
also outperform the factor models proposed in the literature in terms of pricing performance
w.r.t. excluded factors. We find the seven factor model consisting of the LWMKT, Dollar
and Carry factors of Brusa et al,| (2014) and the SMB, DHML, QMJ and MOM factors of,
respectively, [Fama and French (1993)), /Asness and Frazzini (2013), |Asness et al.| (2019) and
Carhart| (1997) performs best in terms of pricing performance w.r.t. excluded factors. The set
of factors making up the seven factor model is thus superior in terms of approximating the
true mean-variance efficient portfolio on the international level, as compared to other popular
factor sets proposed in the literature. Although we find the seven factor model’s overall ability to
explain differences across the cross-section of expected excess-returns of global stock portfolios to
be more satisfactory as compared to other prominent factor models proposed in the literature, it
remains a challenge to fully explain the cross-section of expected excess-returns of global stocks,
as none of our considered factor models are likely able to price all of our global stock portfolios

without pricing error.
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7 Appendix

A Auxiliary Derivations

A.1 Specifying the Spread of the Prior of Parameter Alpha

We consider a set of H normally distributed (candidate) excess-return risk factors, captured in
(H x 1) vector fi:
ft:a+6t, GtNNH(O,Z).

We consider variance matrix X given for illustrative purposes, and specify the prior distribution

of o as

m(a) = ¢g(al0, k). (20)

Back (2015) shows that the squared maximum attainable Sharpe ratio over any portfolio of
assets equals

Sh? = /27y,
with u denoting the mean of the excess-returns of the assets and §2 denoting the variance matrix

of the excess-returns of the assets. Thus, the squared maximum attainable Sharpe ratio over

the portfolio of our H factors, denoted by Sh(f)?, equals
Sh(f)? =o' X a.

Barillas and Shanken| (2018) argue that, in case H = 1, k equals the prior expectation of the

2

squared alpha divided by residual variance X' = ¢, or the expected squared Sharpe ratio. In

case H = 1, prior (20) implies
E(a?) = ko?, k= E(a*/d®), k= E(Sh(f)?).

Barillas and Shanken| (2018) argue that, in general, with H > 1 factors, the quadratic form
o/ (kX)~la is distributed as chi-square with H d.o.f. Thus

E(d(kX)'a)=H, k=E((X)'a)/H, k= FE(Sh(f)*/H.

Assuming our set of H factors span the true mean-variance efficient portfolio, and assuming
the market portfolio is not mean-variance efficient, our best guess for the prior expectation of
the squared maximum Sharpe ratio over the portfolio of the factors, which equals the squared
Sharpe ratio of the mean-variance efficient portfolio, ShMax?, is a multiple of the squared Sharpe

ratio of the market portfolio, ShMkt?:
E(Sh(f)?) = ShMax® = (7ShMkt)?.
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A.2 Inverse Map Derivation

Let factor model M; stand for the factor model in which all of the H candidate factors are

(proposed) priced risk factors (we omit the pricing equation of the test-assets for simplicity)
fig=a1+es, e~ Ny(0,3). (21)

The “nuisance” parameter 1, of this model is 71 = o1 = vech(X). Factor model M; (j > 2) is

written as (omitting the pricing equation of the test-assets)

fir =aj+€ir, €~ Nk, (0, %)),
Fit =Bislis+vie, eie~ Nag,(0,5),

with f;; and f~j¢ denoting, respectively, a vector of (proposed) priced risk factors and a vector

of non-risk factors. The “nuisance” parameter 7; of model M; (j > 2) is
n = (B 0565),  Bjy=vec(Bjf), oj=vech(X;), ;= Vech(ZN‘j).
We will proceed to derive the inverse map that connects “nuisance” parameters n; and n; (j > 2)
m=g; ().

We rewrite model M; (j > 2) by substituting the expression for f;; into the expression of

fj,ti

f’,t a5 €t
= T+ ’ , (22)
fit Bj.ro Bj.reit + €t
with
€ X, 3.3
2t ~ Ng(0,Vj), V;= J ) iPis _ (23)
Bi.r€jt + €jt Bjr2; 25+ B 2By ¢

Under the assumption that model M; (j > 2) is correctly specified, i.e. non-risk factors fj,t
are priced by proposed priced risk factors f;; without pricing error, model M;, as given by
equations and , is equivalent to model M, as given by equation . Thus, assuming

model M; (j > 2) is correctly specified, X equals V;

3. 3.3
21 — J ~ Jl@]vf )
Bir%j X+ BBy
Alternatively, in vech form:
03
o1 = (¥ ® IM].)ﬁj,f ) (24)

5j + VeCh(,@ijZjB;’f)

54



with Ips; denoting the (M; x Mj) identity matrix (and M; being the number of non-risk factors

in fjt) The set of vector equations given in Eq. constitute the inverse map
I |
m=o01=9; (m5)-

A.3 Marginal Likelihood Derivation
We derive a closed form expression for the marginal likelihood of factor model M;, j =1,..., J:
fir =g +€ip, €40 ~ Ni; (0, X5),
fit = Bisfie+vie, vie~ Nag (0, %)), (25)
re = Beff +us,  u~ Ny(0,3,),
with shocks €+, v;+ and u; being mutually independent. Vectors f;" and r; respectively denote
a (H x 1) vector of candidate factors and a (N x 1) vector of test-assets. Vectors f;; and fj,t
respectively denote a (K; x 1) vector of proposed priced risk factors and a (M; x 1) vector
of implied non-risk factors. Let (;f = vec(B,s) and B, = vec(B,) respectively denote the
vectorizations of B; ; and B,. Let o; = vech(X};), &; = vech(X;) and o, = vech(X,) denote the
half vectorizations of the three covariance matrices. The parameters of model M, j =1,...,J,

are then
0, = () Bl 0l) € (Bl O, O, 6L), 1= (B0 55 €6,

where O,;, Oy, Op, and O,, respectively denote the parameter spaces of aj;, n;, f; and o,. We

specify the prior density of parameter 0;:
p(0;|M;) = (| My, n;) (0| M, Br)ve(Br, ov).
The conditional prior of o, m(a;j|M;,n;), is specified as a proper density:
m(aj| My, mj) = ¢k, (o]0, kX;),

with ¢q4(-|p, X) denoting the pdf of the d-dimensional multivariate normal distribution with
mean p and covariance matrix Y. The prior of parameter n; is specified as the uninformative
prior (we set ¢ = 1):

2K;—H+1 Hi1

Y My) = |27 = | X7

We leave the prior of parameters 8, and o, 1,(5,,0,) unspecified, the following derivations
hold for any arbitrary specification of the prior ¢,.(8,, o).
Let Y = (y1,...,yr)" (with y, = ((ff)’,7;)") denote the observation matrix of all candidate

risk factors and test-assets. The marginal likelihood of model M; is given as

m(Y|M;) = /@ ) /@ ) /@ /@ DY IM 0 0 M ) )05 (20
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The density p(Y|M;,6;) is the likelihood function implied by factor model M; (Eq. (25)).
Let F* = (ff,., f5), F = (fi1,- fir)s F = (fj1,., fir) and R = (rq,...,r7)" denote
observation matrices of, respectively, all candidate factors, priced risk factors, non-risk factors
and test-assets. Let I7 denote the T' x T identity matrix, and 7 a (T x 1) vector of ones. The
likelihood function p(Y'|M;, ;) can be split up due to the independence of the error terms of
model M;:

p(Y|M;,0;) = drus, (Flird)y, 35 @ Ir)¢rwn,(FIFB 4, 35 ® Ir)rwn (RIF*B,, X, @ Ir),

with ¢exa(-|M,S ® L) denoting the pdf of a matricvariate normally distributed random ¢ x d
matrix with mean matrix M (¢ x d) and with covariance matrix S ® L (S :d x d, L: c x c).
Plugging in the likelihood function p(Y|Mj, 6;) into the marginal likelihood, Eq. , results

in the following expression for the marginal likelihood:
m(Y |M;) = m(F|M;)m(F|M;)m(R),

with

2Kj—H+1

m(F|M;) :/e /@ o< (Floray, X @ It)di; (aj]0,kX5)| X572 daydo;

H

+1
2 dO’j

m(FIM;) = /@ b, (FIFB, . 550 In)| 55
Gj

m(R) = / / ¢TXN(R|F*;6;7 2‘r ® IT)¢7“(B7"7 O'r)dﬁrdo'r‘
O, J Op,

The expression m(F|M;) corresponds to the marginal likelihood of the sub-model of the

priced risk factors, as implied by model M:
fix =g +¢€jp, €~ Nigy (0, 35),
with the following prior density for the sub-model parameters:

2Kj—H+1

plaj, 0| Mj) = bk, (o]0, kX)) X257 2

The expression m(F| M) corresponds to the marginal likelihood of the sub-model of the non-risk

factors, as implied by model M:
Fit = Bipfie +vie vie~ Nag (0, 55),

with the following prior density for the sub-model parameters:

H+1

p(5j, Bj.fIMy) = |25~
The expression m(R) corresponds to the marginal likelihood of the sub-model of the test-assets
Tt :BTft*+ut7 UtNNN(O, 27”)7
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with an (unspecified) arbitrary prior density for the sub-model parameters, denoted by ¢, (5, o).
The sub-model of the test-assets is identical across all candidate models M, j =1, ..., J. There-
fore, the marginal likelihood of the sub-model of the test-assets, m(R), is identical across all
candidate models M;, j =1, ..., J, as well.

As marginal likelihood m(R) is identical across all candidate factor models M;, j =1, ..., J,
the marginal likelihood m(R) always cancels out when constructing ratio’s of marginal likeli-
hoods (Bayes factors) of candidate factor models. When comparing the marginal likelihoods of
candidate factor models, we thus may omit the inclusion of test-assets in our candidate factor
models (resulting in an empty vector r; with N = 0) and simply calculate the marginal likelihood

of candidate model M;, j =1,...,J, as
m(Y|M;) = m(F|M;)m(F|M;).

We proceed to derive closed form expressions for marginal likelihoods m(F|M;) and m(F|M i),
in turn resulting in a closed form expression for marginal likelihood m(Y | M;).
The expression m(F|M;) corresponds to the marginal likelihood of the sub-model of the

priced risk factors, as implied by model M:

fjﬂf = Oy + €5ty €t~ NK]' (07 2])) A] = a./ja (27)
with the following prior density for the sub-model parameters:
_2K;—H+1
plaj, 0|l M;) = ox; (a0, kX5)| 3572,
which may be written as
_li., _lp. _1 1 _ _ _KimMi4
plag, 73l M) = (2m) H5 k50 33 Sexp( — Sul B A A BT, (29)

with tr[M] denoting the trace operator of square matrix M. The likelihood function of the

sub-model of priced risk factors, implied by M; and given by Eq. , is given as
p(Flaj, 05, Mj) = ¢rxk,; (Flirad;, 35 @ Ir),
_1gk. _T 1 _
p(Flog, 05, M) = (2m) 457 55 Fexp( — L0lZ; (F — A (F — 10 4p)]). (29)

Marginal likelihood m(F'|M;) is, following |Chib| (1995)), calculated as

p(Floy, 05, Mj)p(aj, o] M;)

F . pry
m(F|M;) p(aj|F, 05, M;)p(oj|F, M;)’

(30)

with p(a;|F', 0, M;) denoting the conditional posterior of cj, conditional on ¢}, and p(o;| F', M;)

denoting the marginal posterior distribution of o;. Substituting closed form expressions of
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p(ay, 05| M;), p(Flay, 05, M;), p(aj|F, 05, M;) and p(o;|F, M;) in Eq. will result in a
closed form expression for m(F|M;).
We proceed our discussion by deriving closed form expressions of p(o;|F', 0, M) and p(o;|F, M;).

First, we determine the kernel of the joint posterior distribution of «; and o

p(ay, 04| F, M;) o< p(aj, 05| M;)p(Flag, o5, M)

KMy Loy -
plag, o3 [ F, M) o | 5577 exp (= 50e[ 3 (A3 4)] Jexp (5 tr B (F—ir Ay) (F =1 Ay) ).

We re-write

(F — LTA]')/(F - LTA]') + A;kilAj = (W - VAJ)/(W - VA]'),

F
W = 5 V = 1 y
OIXKJ' k™2

with 01xx, a (1x Kj) vector of zeroes. Thus, we are able to re-write the kernel of p(a;, o;|F', M)

as
Y Bl 1 1 /
plag, oj B, My) o [ B3~ 7 (= SulZ7 (W = VA (W - V4))).

Using the decomposition rule

(W = VA) (W -VA) = (W -VA) (W -VA)+ (A4 - 4)(V'V)(4 - 4;), 31

with A; = (V/'V)"'V'W, we re-write the kernel of p(«;, 0| F, M;) as

_T+Kj71\/1j+2 1 _1 ~ ~
plag, i | F, M) o< | B3 exp( = st Z7H W = VA) (W - VA4))
1 _ ~ . ~
exp(— 5027 (4; = 4) (T +k7)(4; - 4,)]),

with A; = (T+k~")~upF. Thus, the kernel of the marginal posterior distribution p(o;|F, M;)
is given as

P(Uj|Fij)0</ p(ay, 05| F, Mj)dag,

5

which can be re-written as

T+Kj7]b1j+2

_THK;—M;+2 1 _ ~ ~ Cy—1L

p(oj|F, Mj) o< | ] 2 exp(—itr[ﬂj1(W—VAj)'(W—VAj)])IEj(TJrk H7Ye
C1v—1,-1 1 _ ~ _ -

/@ | Z5(T+ k=)™ 2eXp(—§tr[2jI(Aj—Aj)'(TJrk 1)(Aj—Aj)]>d04j-

Using the fact that

|1 k) e - GlE (4 - AT+ R, - 4)day
O, 2

o8



integrates to a constant as the integrand is the kernel of a multivariate normal distribution with
mean A; and variance (T + k~')~'%;, and the fact that |X;(T + k=)~ = | Z;(T + k1)~ 55,
we re-write the kernel of the marginal posterior distribution p(o;|F', M;) as

T4~ M;j+1

Plos M) ox |57 7 e — Sul(W — VA (W - VA,

which we identify to be the kernel of an inverted Wishart distribution with parameter matrix

S;=(W - VA (W —-VA;),and T — M; d.o.f:

1 T-M; | T—Mj+K +1 1 .
ploy | F, M) = 185 BT e — 5l ZS))), (32)
. (M) K T—M,; . . . . o
with ¢ = 2772 T, <TJ>}, and with I4(-) denoting the d dimensional multivariate

gamma function. Note that we may re-write parameter S; as

T
k=iT AA,
;f], Mo = &5) + g d5a

with a; denoting the OLS estimate of «;.
By conditioning the kernel of p(a;, 0| F, M;) on o;, we write, using the decomposition rule

of Eq. , the kernel of the conditional posterior distribution of a; as
1 _ ~ _ ~
pay|F, 05, My) o exp( = S0{Z7 (4; = A)'(T + k) (4; - 4)]).

which we identify to be the kernel of multivariate normal distribution with mean flj and variance
(T + k=1)713;. Thus

;W)z’mr(uk HF exp( = Sl Ay - AT+ k(A - A)).

p(oy|F, 05, M;) =< 5

Substituting the closed form expression of p(«a;|F', 0, M; ) and the closed form expressions of
p(aj, 0j|M;), p(F|aj, 05, M;) and p(o;|F, M;) respectively given by equations (28), and
in equation gives the closed form expression of m(F|M;) as given by Eq. (L6).

We turn the discussion towards the derivation of the closed form expression of m(F|M;).
The expression m(F| M) corresponds to the marginal likelihood of the sub-model of the non-risk

factors, as implied by model M:
fie = Bipfie +vie. vie~ N (0.55), Bj =0, (33)

with the following prior density for the sub-model parameters:

K +]\4 +1

P65, B, 1M;) = | 251
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In the subsequent discussion, we treat observation matrix F = (fj1,..., fjr)" as given. The

likelihood function of the sub-model of the non-risk factors, implied by model M, and given by
Eq. (33), is given as

p(F|6;,B; 5, M;) = ¢TxMj(13'!F,3},f7 > @ Ir),

- M e T 1 ey, = ) =
PUF15, 8.5, My) = (2m) 7| Z5| S exp( — Sl E71(F — FB))(F - FBy))).  (35)

Again, we calculate marginal likelihood m(F|M;) as

p(F|55, Bj.5, M;)p(55, Bj I M,;)

= — , (36)
p(Bj.f|F, 75, M;)p(a;|F, M;)

m(F|M;) =

with p(5;,f |13‘, 7, M) denoting the conditional posterior of 3} ¢, conditional on ¢;, and p(&; \ﬁ‘, M;)
denoting the marginal posterior of o;.
We derive closed form expressions of p(3; ¢|F,&;, M;) and p(6;|F, M;). We determine the

kernel of the joint posterior distribution of 3; y and 7;

p(65, Bj.|F, M;) o< p(F|65, Bj.r. Mj)p(65, Bj s

M;)
~ ~ - _T+Kj+1\/1]-+1 1 =1, ’
P(E;. B3| B M) o< | 5175 exp( — 5t Z7 (F — FB,)(F - FB)))).
The kernel of the marginal posterior p((}j\ﬁ‘ , M) is given as
p(G;|F, M;) /@ P65, B g1 F, M;)dB g,
B, f

which can be re-written as

- - THK M+l 1 = 1= £, = . - 1L
P(6;F, M) o< | 5177 exp(— 50l (F - FB)(F - FB))])| £ (F'F) ™'}
= 11 1 _
L 150 PR e - 5l (B, — By (FF)(B, - B))ds, .
Bj.f

using the decomposition rule
(F - FB,;)(F - FB;) = (F — FB;)(F - FB)) + (B; — B;)(F'F)(B; — B)), (37)

with Bj = (F'F)~'FF. Using the fact that

/@m |2 ® (F'F)_l\_%exp( - %tr[f?jl(Bj — B))(F'F)(B; — Bj)Ddﬂj,f
integrates to a constant as the integrand is the kernel of a matricvariate normal distribution
with mean B; and covariance matrix 3; @ (F'F)~!, and | X; @ (F'F)~'| = | 3|5 |(F'F) =M,
we re-write the kernel of the marginal posterior p(6j|13’, M;) as

- . THM;+1 1 - 1, P R
p(651 B, M) o |55 2 exp( - S0{Z7(F — FB,)(F - FB))]),
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which we recognise to be the kernel of an inverted Wishart distribution with parameter matrix

- - N . . T N - N A

Sj = (F — FBJ)/(F — FBJ) = Z (fj,t — Bj,ffj,t)(fj,t — /Bj,ffj,t)/ (Wlth Bj,f the OLS estimate of
t=1

Bj.s) and T d.o.f.:

~ | 1,8 1L, & _THM+L 1 S—1 &
P(G51F, M) = 7815 Z5 7= exp( — 5t Z; 8] (38)
. Ty
with ¢ = [2 2 Iy (5)}
By conditioning the kernel of p(G;, §;, f\ﬁ‘, M) on 6, we write, using the decomposition rule

of Eq. , the kernel of the conditional posterior of ; y as
~ 1 - . R
p(Bjf|F, 05, Mj) o eXP( — 5t '(Bj — B))'(F'F)(Bj - Bj)]),

which we recognise to be the kernel of a matricvariate normal distribution with mean Bj and
covariance matrix X; @ (F'F)~":
M, K

p(Bjf|F, 65, M;) = ( ! ) :

2

J

557 () T exp(— 5l E (B~ By) (F'F) (B~ By))).

Substituting the closed form expression of p(g;, f\F,&j,Mj) and the closed form expressions
of p(a;, Bj,r|M;), p(F‘a'j,,BjJ,Mj) and p(&;|F, M;) respectively given by equations (39,
and in Eq. gives the closed form expression of m(F}|M;) as given by Eq. (16).

A.4 Testing for the effect of a factor in a SUR factor model

We consider the factor regression model

Tt:a"i'/@ft"i'eta EtNNN(Ovz)a B:[ﬁla“'w@K]v

with r; and f; respectively denoting a (N x 1) vector of test-assets (or non-risk factors) and
a (K x 1) vector of (proposed) priced risk factors. Matrix 3 is a matrix of N x K regression
coefficients, with 37, i = 1, ..., K, denoting the vector of NV regression coefficients that correspond
with the same factor ff, f; = [f}, ..., f/X]". In case factors f; price all test-assets 7, it holds o = 0.
Let R = (r1,....,r7)", F = (f1, ..., fr) respectively denote observation matrices of test-assets and
priced risk factors. Let E = (ey,...,er)" denote the (non-observed) matrix of disturbances. Let
regressor matrix X be defined as: X = (vp F'), with ¢ denoting a (7" x 1) vector of ones. The

factor regression model can be written as a SUR (seemingly unrelated regression) model:
R=XB+E, vec(E)~Npy(0,¥®Ir), B=(xp).

The OLS estimator of B is
B=(X'X)"'XR.
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Let us denote row i, ¢ =1, ..., K + 1 of B and B with B; and BZ-, respectively. Thus, B;1,
i =1,..., K, equals the transpose of 3%, the set of N regression coefficients corresponding with

factor f{. It can be shown that the distribution of the OLS estimator of B;, B, is given by
B ~ Ny (B}, i %),

with g;; denoting the i-th diagonal element of matrix Q = (X’X)~!. To test for the effect of
factor ff, i =1,..., KK, on the N test-assets, we can base a test on the hypothesis Hy : B , =a.
If, for example, we aim to test whether the effect of factor ftZ differs significantly from 0, we test

Hy: Bj, ; = 0. The quadratic form
(B} —a) 7Y (B} — a)/qi ~ X*(N), (39)
is a chi-squared distributed random variable with N d.o.f.. The chi-squared test depends on the

covariance matrix X, and is exact in case X is given. Alternatively, X' may be estimated

1
T-K

¥ = F'E, E=R- XB,

and has the property
(T-K)¥ ~Wy(Z,T - K),

with W (X, T — K) denoting the Wishart distribution with (N x N) scale matrix X and T'— K
d.o.f.. Plugging in the estimator of 3, ¥, into the quadratic form given in Eq. (39)) gives the
statistic

t* = (B, - a)/ X" Y(B] - a)/qi ~ T*(N,T - K),
with T?(N, T — K) denoting Hotelling’s T2-distribution with parameters N and T — K. The t2
statistic can be scaled such that the F'-statistic

T-M-K+1
F =
N(T - K)

t? ~F(N,T— K — N +1),

is a F-distributed random variable with N and T'— K — N + 1 d.o.f.. All derived results are
exact under the assumption of normally distributed disturbances. If we relax the assumption,

results still hold asymptotically.
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B Auxiliary Graphs and Tables

Data

Table 11: Correlation Matrix Candidate Factors
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Sample correlation matrix of the set of candidate factors. DLLR, CRRY and GT are abbreviations

of Dollar, Carry and Global Tail respectively.
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Simulation Study

Table 12: Simulation Study Results Bayesian Factor Selection Methodology 1

1.5 2 3 5 10 20 30

Average Accuracy 00 (75) 02 (73) 07 (67) 20 (52) 40 (35) 50 (30) 51 (31)
Minimum Accuracy 00 (99) 00 (99) 00(99) 01 (96) 12 (82) 20 (77) 21 (77)

Average Accuracy 03 (72) 08 (66) 21 (51) 50 (28) 70 (11) 75 (09) 76 (09)
Minimum Accuracy 00 (99) 00 (99) 00(99) 03 (96) 36 (59) 57 (43) 56 (40)

T = 1200

Average Accuracy 10 (65) 20 (53) 39 (37) 78 (17) 85(03) 91 (01) 92 (01)
Minimum Accuracy 00 (99) 00 (99) 01 (99) 10 (85) 60 (35) 80 (06) 79 (06)

Simulation results Bayesian factor selection methodology. We simulate 13 random DGP’s, each DGP
is simulated Z = 100 times. We apply the Bayesian factor selection methodology to select factors for
each simulated DGP, using multiple alternative values for 7. In each “Average Accuracy” row, we
display, in plain text, the average selection accuracy observed across the simulated DGP’s. In addition,
in each “Average Accuracy” row, we display, in (parentheses), the average of the percentages of times
a sparser, instead of the (DGP implied) true, factor model is selected, observed across the simulated
DGP’s. In each “Minimum Accuracy” row, we display, in plain text, the minimum selection accuracy
observed across the simulated DGP’s. In addition, in each “Minimum Accuracy” row, we display, in
(parentheses), the maximum of the percentages of times a sparser, instead of the (DGP implied)
true, factor model is selected, observed across the simulated DGP’s. Results are displayed for various
sample sizes T. We simulate student-t distributed factors (with v =5 d.o.f.).

Table 13: Simulation Study Results Bayesian Factor Selection Methodology DGP: WMKT

-

1.5 2 3 5 10 20 30
T = 300

Observed Selection Accuracy 55 58 58 58 59 62 62
T =600

Observed Selection Accuracy 71 71 67 67 65 T1 73
T = 1200

Observed Selection Accuracy 93 90 89 8 8 90 90

Simulation results Bayesian factor selection methodology. We simulate DGP: WMKT, the DGP is
simulated Z = 100 times. We apply the Bayesian factor selection methodology to select factors for the
simulated DGP, using multiple alternative values for 7. For each 7, we display the observed selection
accuracy: the percentage of times the true model WMKT is identified. Results are displayed for
various sample sizes T. We simulate normally distributed factors.
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Table 14: Average Loss in Sharpe Ratio, Bayesian Factor Selection Methodology

T = 300 T = 600 T = 1200
Priced Factors v=5 =00 =5 =00 v=5 =00
v 15 (50) 05 (25) 08 (40) 00 (11) 00 (10) 00 (02)
X 16 (35) 08 (10) 03 (23) 00 (05) 00 (05) 00 (05)
I-VI 28 (35) 17 (43) 16 (31) 08 (18) 05 (25) 00 (05)
HIIX 15 (35) 00 (18) 06 (10) 00 (10) 00 (03) 00 (03)
LII-V 34 (55) 32 (50) 11 (25) 04 (21) 00 (07) 00 (02)
LII-IIX 20 (38) 04 (13) 00 (05) 00 (05) 00 (03) 00 (03)
[-ITI-VII (48) 08 (44) 09 (39) 05 (30) 00 (23) 00 (05)
HIIX-IX 8 (40) 06 (35) 12 (20) 00 (04) 00 (01) 00 (01)
[-IT-TTI-1TX (53) 28 (51) 25 (50) 15 (33) 03 (20) 00 (10)
HII-IV-IIX 33 (55) 10 (49) 15 (40) 00 (25) 00 (15) 00 (02)
HI-VI-IIX 35 (52) 30 (47) 28 (48) 16 (35) 00 (23) 00 (14)
[-IV-VII-IIX 34 (53) 11 (33) 04 (15) 00 (05) 00 (07) 00 (03)
HII-IV-VII-ITX-IX 29 (38) 13 (21) 06 (11) 00 (00) 00 (00) 00 (00)

Simulation results Bayesian factor selection methodology (with 7 = 20). The left hand side of the
table displays sets of true priced risk factors implied by the DGP’s we simulate. Each DGP is
simulated Z = 100 times. Each numerical entry displays the average percentage loss in Sharpe ratio
(given that the wrong model has been selected) resulting from constructing the mean-variance efficient
portfolio with selected, as opposed to true, priced risk factors. Percentage losses displayed in plain
text and in (parentheses) are calculated in a setting where portfolio weights are constructed with,
respectively, true and estimated moments. Sharpe ratio’s of constructed portfolios are calculated
using true moments. Results are displayed for various sample sizes T" and d.o.f. of the t-distribution
v.

Table 15: Simulation Study Results GMM Based Factor Selection Methodology

T =300 T = 1200
Priced Factors N, No N3 N, N, N, N3 N
v 9 22 27 26 21 19 26 32
I-IX 7T 18 20 32 13 25 24 38
I-VI 5 7 7 6 12 13 15 19
I-1IX 25 37 58 49 38 46 47 54
I-1I-V 5 16 33 33 18 18 34 31
I-TI-ITX 19 39 65 70 41 70 70 68
I-TII-VII 1 4 5 8 2 3 8 8
I-IIX-IX 9 22 26 28 17 29 26 31
I-TI-ITI-IIX 0o 12 22 19 8 23 32 27
I-II-IV-IIX 3 25 44 27 17 21 27 31
I-TII-VI-IIX 2 8 22 19 5 27 29 28
I-IV-VII-IIX 8 18 41 35 18 40 36 35
I-ITI-IV-VII-IIX-IX 0 0 8 9 7 20 37 35

Simulation results GMM factor selection methodology. Sets of true priced risk factors implied by
the DGP’s we simulate are displayed on the left hand side. Each DGP is simulated Z = 100 times.
Numerical entries give the percentage of times the true priced risk factors are correctly identified.
Results are displayed for various sample sizes T, various test-assets set sizes N; = 20, Ny = 60,
N3 =100 and N4 = 160, and v = oo d.o.f. of the student-t distribution.
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Figure 6: Simulation Results DGP: WMKT-RMW-Dollar, T" = 12000
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We simulate the DGP: WMKT-RMW-Dollar, with normally distributed factors and test-assets (we
use Ny test-assets and sample size T' = 12000), Z = 100 times, for various values of bP!" (the direct
effect of Dollar on the SDF). We use the Bayesian (with 7 = 20) and GMM based factor selection
methodologies to select priced risk factors each simulation iteration. The set of candidate factors
solely consists of WMKT, RMW and Dollar. For each relevant value of P!, the percentage of
times WMKT and RMW are selected as well as the percentage of times WMKT, RMW and Dollar
are selected are displayed. On the left: Bayesian methodology results. On the right: GMM based
methodology results.

Figure 7: Simulation Results DGP: WMKT-HML-MOM, T = 12000
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We simulate the DGP: WMKT-HML-MOM, with normally distributed factors and test-assets (we use
N test-assets and sample size T' = 12000), Z = 100 times, for various values ¢, the constant governing
pMOM — ¢, We use the Bayesian (with 7 = 20) and GMM based factor selection methodologies
to select priced risk factors each simulation iteration. The set of candidate factors solely consists of
WMKT, HML and MOM. For each relevant value of ¢, the percentage of times WMKT and HML
are selected as well as the percentage of times WMKT, HML and MOM are selected are displayed.
On the left: Bayesian methodology results. On the right: GMM based methodology results.
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Table 16: GMM Based Factor Selection

Test-assets Priced Risk Factors ‘ Test-assets Priced Risk Factors

Set 1 VII Set 3 IX-XI
Set 2 II Set 4 TI-ITI-V-IIX-IX

We use the GMM based methodology to select priced risk factors out of our set of H = 13 candidate
factors. The table displays, for each of our test-asset sets (discussed in section , which factors the
GMM based methodology selects as priced risk factors.

Table 17: Results GRS Tests, sub-sample period

Test-Assets
Model ExF  Market Value Growth MEBM MEINV MEMOM MEOP
I: Rolling Window

CAPM 99 93 86 89 95 85 99 86
Redux 91 88 80 84 91 75 98 74
FF6 78 81 72 62 73 50 95 73
Bayes 1 20 35 44 18 45 26 87 44
Bayes II 1 20 28 10 32 17 79 30

II: Full Sample

CAPM 10.30 6.20 5.48 5.59 6.69 6.52 7.66 6.20
Redux 9.95 5.67 4.96 5.07 6.18 6.01 7.13 5.69

FF6 8.91 4.70 4.00 4.12 5.25 5.09 6.17 4.78
Bayes 1 2.10* 2.65 2.06 2.16 3.32 3.18 4.07 2.93
Bayes II 1.13* 2.44 1.84 1.93 3.15 3.01 3.91 2.75

Part I of the Tables displays, for each candidate factor model and for several sets of test-assets, the
share of 60-month rolling windows where the GRS test rejects the null that the factor model prices
the set of test-assets (expressed in percentages) during during the sub-sample period February 1995
- May 2013. A significance level of 5% is used. Part II of the Tables display GRS test statistics of
full sample GRS tests (during the sub-sample period February 1995 - May 2013). For each candidate
factor model, the test-asset set “ExF” refers to the set of factors that are excluded from the factor
model (but included in our total set of H candidate factors). GRS test statistics with p-values higher
than 5% and 10% are, respectively denoted with a * and a **. To combat the the small T versus large
N problem resulting from using 60-month rolling windows, we split our set of all N4 = 160 test assets
up into seven smaller test-asset sets. The Market, Value and Growth sets respectively consist of the
country market indices, country growth indices and country value indices discussed in section
The MEBM, MEINV, MEMOM and MEOP sets respectively consist of the global portfolios formed
by bi-variate sorts on ME and BE/ME, bi-variate sorts on ME and INV, bi-variate sorts on ME and
MOM and bi-variate sorts on ME and OP, as discussed in section For each factor model, we add
the set of excluded factors “ExF” to all the sets of our test-assets.
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Observed Mean Excess Return

Figure 8: Realized versus Predicted Expected excess-returns
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For each of the factor models, the Figure plots realized expected excess-returns of our entire cross-
section of test-assets against the predicted expected excess-returns of the same test-assets as predicted
by the candidate factor model (excluded factors are not included in the Figure). We use 60-month
rolling windows to estimate factor loadings of the factor models and to estimate (conditional) means
of test-asset and factor excess-returns. Each rolling window, mean test-asset excess-returns are pre-
dicted, for each of the factor models, by multiplying estimated (conditional) factor loadings by the
corresponding estimated (conditional) factor means. All rolling window predicted mean excess-returns
and rolling window realized sample mean excess-returns are then averaged over the total number of
rolling windows. Averaged predicted mean excess-returns are plotted against averaged realized mean
excess-returns, for each of the factor models.

68



