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Abstract

In this research, the product design optimization is addressed. The objective is to
maximize an objective value such as margin, revenue or market share by composing
a product based on multiple attributes. The Nested Partition (NP) method in com-
bination with Genetic Algorithms (GA) and a machine learning method (CTREE)
is used to optimize margin for a hairdryer manufacturer. Methods lead to high
increases in margin compared to the current scenario in the hairdryer market.



Contents

1 Introduction 1

2 Literature review 2

3 Problem description 3
3.1 Product design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Conjoint analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Market simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Data analysis 8

5 Methodology 10
5.1 Nested Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 CTREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Computational experiments 17
6.1 Test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Conclusion 23

References 25



1 Introduction

In product design optimization, products are composed such that objective values as
revenue or market share are maximized. As new products are introduced very often, it
is important for companies maintain their competitive position and optimize their own
products. Composing an optimal product can be very complex. A simple product al-
ready possesses many different aspects or attributes such as price, colour, shape and size.
For these attributes, we can choose from many different options or levels. To optimize
market share, we want to compose the product in such a way that a customer chooses
ours over competitor products. Blauw Research estimated the added utility to a prod-
uct of an attribute level per respondent (customer) using a conjoint analysis. It is then
possible to calculate the total utility of a product given any selection of attribute levels.
If this is also done for the products of competitors, we can then make predictions on the
probability of customers choices and eventually the profit of company. It is therefore
the goal to select attribute levels in such a way that a given objective value is maximized.

As Blauw Research has multiple clients, it is important that the optimization model
is applicable to a wide variety of problem instances. For some companies costs are in-
cluded and the margin on a product has to be optimized, for others we are concerned
with revenue or even market shares. For these different objectives, it should be possible
to include multiple products in the optimization. Companies sometimes want to intro-
duce new products into existing markets where they already offer products. It should
thus be possible to optimize the profit of the entire product line. Due to development
costs and avoiding risks, companies do not want to change many products in a product
line. Therefore, we focus on adjusting a single product. Also, the model must be able
to handle constraints and the possibilities of continuous and discrete variables have to
be incorporated. Thus as stated before, a general optimization method is required.

In this research, we propose the use of a Nested Partition (NP) method to solve the
product design problem. To enhance performance, the NP method is extended with
Genetic Algorithms (GA) and a version of a Greedy Search (GS). The version of GS is
based on machine learning methodology.

We now present an outline for this paper. In Section 2 we review previous work on
the topic of product design optimization. Then, in Section 3 we give a more detailed
description of the problem and in Section 4 we present a concise data analysis. Next, our
optimization method is explained in Section 5. Computational experiments and results
are shown in Section 6 and in Section 7 we draw conclusions and discuss possible further
research.
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2 Literature review

Our research combines different methods to solve the product design problem. For that
reason, we will briefly discuss some academic references related to our work. We con-
clude by presenting a small survey of other research on product design optimization.

Conjoint Analysis
For estimating utilities of products, Blauw Research performs a conjoint analysis. Re-
spondents represent the customers and are asked to choose between a few variants of
a product. Repeating this gives an indication on which attributes and attribute levels
affect the decision of buying a product. The term conjoint analysis was first introduced
by Luce and Tukey [1964], but applications on product design optimization gained its
popularity after Green et al. [1981]. Here, optimization is done by an enumerating proce-
dure as the size of the problem instance was not an instance. Green et al. [2001] previse
more complex applications for conjoint analysis, such as optimization of profits.

Complexity
In multiple instances we encountered, the number of possible designs are more than a
few billion, thus enumerating over all these solutions is not an option. The product
design problem can be formulated as a mixed integer program. However, the problem is
shown to be NP-hard by Kohli and Krishnamurti [1989]. Therefore, we have to resort
to heuristics.

Dynamic Programming
Kohli and Krishnamurti [1989] propose a Dynamic Programming (DP) approach. Prod-
uct attributes represent stages with attribute levels as states. A product is iteratively
formed. In a certain stage j, one calculates the best partial product profiles for each level
of attribute j+ 1. These profiles are then again used for forming new product profiles in
the next stage, thus for the next attribute. Following this results in a complete product.

Nested Partition
A similar method to DP in solving the product design problem is the NP method pro-
posed by Shi et al. [2001]. Here again, attribute levels are selected iteratively until a
complete product profile is formed. A level is selected based on how promising it is that
the optimal solution contains that level. Contrary to DP, the NP method is shown to
be globally convergent in finite time (Shi et al. [1999]). In improving the estimation of
the promisingness of an attribute level, Shi and Ólafsson [2000] combine the NP method
with GA. Stretching this idea even further, Shi et al. [2001] also include a GS heuristic.

Genetic Algorithms
A more popular method for the product design problem are GA (Jiao et al. [2007]).
GA are based on natural selection. Given an initial solution set, we take a subset of
solutions with highest objective values. Within this new set, couples of solutions are
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formed that together will generate offspring. This is usually done by crossover and mu-
tation. In the product design problem, crossover can be performed by swapping levels
for some attributes within a couple. Mutation occurs after crossover and consists of
randomly changing an attribute. The initial solution can be formed using any method
and is therefore suited to be used in combination with other techniques (Balakrishnan
and Jacob [1996]).

Greedy Search
Next to DP, Kohli and Krishnamurti [1989] also propose a shortest-path heuristic for a
graph representation of the problem. This boils down to a GS, where for each attribute
the level with highest aggregate utility over all respondents is selected. Solutions are
shown to be close to optimal for simulated instances. However, instances are small and
the GS could perform worse on larger cases. Moreover, for optimizing revenue or profit,
this greedy method can result in bad solutions when selecting levels with high utilities
leads to low prices or high costs.

Survey
We now discuss other research on product design optimization and explain why it is less
applicable to our problem. Belloni et al. [2008] present a comparison between methods
of optimizing an entire product line. The method closest to NP presented in this paper
is a DP algorithm, which is shown to be outperformed by GA, Simulated Annealing and
a Product-Swapping heuristic. In this paper, the problem consists of six attributes with
only two levels and a price attribute with seven levels. Our problem instance is larger
and we focus on the optimization of a single product instead of the entire line.

In Albritton and McMullen [2007], authors propose an Ant Colony Optimization (ACO)
for the product design problem. Results show that ACO is a suitable method for prob-
lem instances with similar sizes. However, the method uses many input parameters and
solutions can be dependent on the fine-tuning of these parameters. As our method ought
to be general, this fine-tuning is not desired.

3 Problem description

Blauw Research provides companies with a tool that is able to simulate the market
for their products. Now they also want to implement an optimizer into the tool. The
methodology of simulating the market lies outside the scope of this research, but we will
briefly address this in this section for completeness. We start by giving our definition
of the product design and its complexities for our problem. Following, we explain how
conjoint analysis is used in estimating customer preference. Then, a brief description of
the market simulator is given and we conclude this section with an overview of what we
want the optimizer to achieve.
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3.1 Product design

A product is most commonly seen as a tangible object like beers, hairdryers or cell-
phones. However, we also consider products as phone subscriptions and bank accounts.
The products just mentioned have one similarity that is important for this research: the
markets on which they exists are oligopolies. The majority of such markets is provided
by only a small number of competitors. In addition, we only focus on the oligopolies with
heterogeneous product as optimizing product design in homogeneous markets would not
be very interesting.

We assume that all products in the market have a similar structure. This means that
they consist of the same attributes, but the level of the attribute that is chosen can differ
between products. If we take a hairdryer for example, an attribute would be the wattage
(and the drying power that comes with it) and the level of the wattage. Each hairdryer
does have drying power, but one could have stronger drying power than the other. The
same holds for bank accounts, all banks provide an interest rate but the rates can be
different. Attributes can have discrete levels like certain design features, attachments or
the brand. Continuous attributes are also possible, but usually this only concerns the
price and in most cases this can also be discretized.

Furthermore, there can exist restrictions on the product design. Let us take the hairdry-
ers as example again. A stronger, larger engine does not fit in a small design type or
having pre-set drying modes requires the dryer to have an electronic user interface. Also,
for some attributes their level can be fixed for certain products. Mainly brand is such
an attribute, it is usually one the most important features of a product but it is fixed to
the company that offers that product. It can also be the case that a company advertises
their products as being the cheapest and therefore requires that the price is lower than
any of the competitors.

Finally, attribute levels can also be associated with different costs. We only consider
variable costs for the different levels as we do not have any other data, we are therefore
only able to calculate market share, revenue and margins of the products. In the fol-
lowing section, we discuss how we are able to establish utilities to calculate these results
given a certain product design.

3.2 Conjoint analysis

Blauw Research provides clients with market researches and one of the options that
is offered is a conjoint analysis. With this, the way customer preferences work can
be approximated so companies are able to make more substantiated decisions on their
product design. For the conjoint analysis, clients provide Blauw Research with the set of
all possible attributes and levels. Then, a survey is created where respondents repeatedly
are presented with a set of products and each time have to state their favourable one.
These sets of products are chosen such that within the set, products differ slightly from
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each other. After a certain number of iterations of this process, dependent on among
other things the number of attributes and levels, we can estimate for each level of each
attribute an utility value, which differs also for each respondent. For (near) continuous
variables, the utility values are estimated on only a number of points and all other values
can be calculated using interpolation. The points on which they are estimated are the
same for all respondents and can be either given as input or left to decide by the program
that calculates these utilities. The program used for calculation is the Lighthouse Studio
provided by Sawtooth Software.

3.3 Market simulator

After having estimated the utilities, we have to decide on a method to transform utilities
into decisions of the customers. We first calculate the total utility of a product, thus
for all attributes we aggregate the utility per customer of its selected level. This is done
for all products included in the simulation. We are now already able to use one possible
method, which we refer to as the First Choice Method (FCM). This method boils down
to simply having customers buy the product that is their first choice, thus the product
for which their utility is highest. This method is incorporated in the market simulator.
The concept is easy to grasp and can be computationally efficient. If our goal is to
only change one product and keep remaining products fixed, we are only required to
calculate the utilities of the remaining products first. Then we select for each customer
the product that has, among these products, the highest utility. That product is for
the given customer the status quo product. If we change one product, we recalculate its
utility per customer and check whether it is higher than the status quo product for that
customer. Thus if many recalculations are needed, this is an efficient method.

However, FCM also has its downsides. Estimations can be very poor if utilities are
close to each other. Customers will select products with highest utility although the
differences might be insignificant such that the customer would actually be indifferent.
In the most extreme case, this method could indicate that a certain product would never
sell when in fact it supplies half of the entire demand. To capture this, another customer
decision method can be used: the Logit Choice Method (LCM). Here, one follows the
same steps of the FCM. However, we continue by transforming the utility per product
and per customer and then calculating the probability that a customer will buy a certain
product. Let uij be the utility of customer i for product j and respectively I and J
the sets of customers and products. We can then calculate the probability of buying a
product as follows:

qij =
euij∑

k∈J
euik

∀ i ∈ I, j ∈ J . (1)

Here, qij is the probability that customer i will buy product j. The set of customers
is represented by respondents of surveys. Thus to get the expected market share of
product j given V , the total market value in number of customers, we perform following

5



calculations.

Mj =

∑
i∈I

qij∑
i∈I

∑
k∈J

qik
V ∀ j ∈ J . (2)

The same holds for calculation of the market share Mj using FCM, but then probabilities
qij are 1 if customer i buys product j and 0 otherwise. Calculations of revenue and
margin are then respectively multiplying Mj with the price and the price minus costs of
the corresponding product j. We use these same calculations for objective values in the
product design optimization, which we will discuss next.

3.4 Optimizer

We will now elaborate on the optimization problem and certain features that increase the
difficulty of the problem. Clients usually resort to market research when they introduce
a new product to the market and want to know how to compile the product, but also to
improve existing products. In both cases, it is almost always the case that these are not
their only products in the same market. Changes of the products thus affect performance
of their other products. Therefore, in optimizing either market share, revenue or profit,
we have to take this into account. This increases the complexity of the problem, which
is shown to be NP-hard by Kohli and Krishnamurti [1989].

In addition, we include the option of incorporating costs in the model which means
there is also a trade-off between higher utility and higher costs that has to be made
for all levels of all attributes. Many proposed heuristics use a local search component
that maximizes utility. When including costs, these solutions can correspond to high
costs and poor solutions. We also add the possibility of imposing constraints. This
can be restrictions on certain attribute levels such as explained in Section 3.1, but also
constraints to ensure that for example the market share of a product is above a certain
threshold while maximizing its margin. These constraints again affect the complexity
and performances of solution algorithms.

The size of some instances can raise issues as well. The total number of different prod-
uct designs is calculated by multiplying the number of levels for each attribute and
thus increases exponentially with the number of attributes. Other important factors on
computation time are the number of respondents and if the LCM is used for modelling
customer decisions also the number of products used in the simulation. These compli-
cate the evaluation of functions (1) and (2). To find solutions relatively fast, we want
an optimization method that is able to reduce the feasible region and requires only few
evaluations of the objective value.

In many papers on product optimization, authors focus on the optimization of an en-
tire product line (Belloni et al. [2008]). This is obviously a harder problem than only
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focusing on a single product. However, it usually is not applicable to real life problems.
Developing and introducing a new product takes a long time and is associated with high
costs. Therefore, clients commonly ask Blauw Research to investigate the ”killing” of
one product and replacing it with a new product. In addition, many of the problem
instances are of such large scale that optimizing an entire product line takes too much
computation time. The focus will thus only be on single product optimization. We now
give a general mathematical programming formulation of this problem:

max
x

∑
j∈P

Mj(pj − cj) , (3)

s.t.

Mj =

∑
i∈I

qij∑
i∈I

∑
k∈J

qik
V ∀ j ∈ J , (4)

qij =
euij∑

k∈J
euik

∀ i ∈ I, j ∈ J , (5)

uij =
∑
a∈A

∑
l∈L(a)

vial · xjal ∀ i ∈ I, j ∈ J , (6)

xjal = Njal ∀ j ∈ J \ ĵ, a ∈ A, l ∈ L(a), (7)∑
l∈L(a)

xĵal = 1 ∀ a ∈ A, (8)

cj =
∑
a∈A

∑
l∈L(a)

kal · xjal ∀ j ∈ J , (9)

pj =
∑

l∈L(aP )

xjaP l · bl ∀ j ∈ J , (10)

xjal ∈ {0, 1} ∀ j ∈ J , a ∈ A, l ∈ L(a). (11)

The formulation can be interpreted as follows:

• The objective value (3) is the margin of all products in the clients portfolio P. This
is calculated as the market share Mj of each product j ∈ P times the difference
between the corresponding price pj and costs cj . When costs are set to zero, the
objective value becomes revenue and if in addition the price is 1, market share is
maximized.

• Constraints (4) and (5) are used for the calculation of the market share Mj and
are already explained via equations (2) and (1), respectively. Notice that we chose
here for the LCM method for customer decisions due to downsides of FCM that
we discussed before.
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• Utilities used in (5) can be acquired via constraint (6). vial contains the utilities of
customer i for the level l of attribute a. As xjal is equal to 1 if level l is selected for
attribute a for product j, the right hand side of the equation denotes the utility
for all products j ∈ J .

• Restrictions (7) fix all products, except ĵ, to the null scenario. Here, ĵ denotes the
product that is optimized.

• To ensure that also for product ĵ a complete product is formed, we imply con-
straints (8) and (11). Then exactly one level is selected for each attribute. Note
here that continuous attributes are discretized for reasons which are discussed in
Section 4.

• The costs associated with product j (cj) are calculated using restrictions (9). Costs
of level l for attribute a are represented by kal. If xjal is equal to 1, the corre-
sponding costs are added to the product.

• Constraints (10) are used to link the price to the products j. Attribute aP repre-
sents the price attribute, thus xjaP l is 1 if price level l is selected for product j.
Then bl is the corresponding price for that product.

As stated, this is only a general formulation. In many problem instances, additional
constraints are imposed. Any type of constraint can be incorporated in this formulation.

4 Data analysis

For testing our methodology, we will focus on an example of the hairdryers markets of
China. A null scenario, corresponding to the current state of the market, was delivered
to Blauw Research and a conjoint analysis was performed to estimate utilities. In this
section, we will present an overview and analysis of the hairdryer case.

The data was gathered by Blauw Research using a conjoint analysis. A survey was
set out in China and was answered by 1038 respondents. The Chinese hairdryer market
is represented by 21 hairdryers divided over 6 customers. Of these products, 8 belong
to the client for which the optimization is performed. A hairdryer is assumed to possess
15 attributes that can influence a customers choice decision. Also, each attribute has
between 3 and 12 levels and for price we can even choose from over 400 different levels.
This is a relatively large case as without any constraints, there are more than 450 billion
possible designs for a hairdryer. However, part of these designs are actually infeasible
due to imposed restrictions.

We now present some interesting findings on the utilities. As stated in Section 3, we aim
for a general optimizer. Therefore, irregularities in data are not used in the development
of methods. It is however interesting for conclusions on results. The conjoint analysis
for this case was quite unusual. One of the attributes incorporated is the appearance
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of the hairdryer, for which 12 different options are possible. These 12 options consist
of 6 different models which are all offered in either black or white. Beforehand, it was
decided which respondents would be shown black hairdryers or white hairdryers. The
research was therefore basically split up into two different researches for each colour.
Then, utilities were also estimated separately for both colours, but afterwards the data
was concatenated. The 6 appearance options of both colours were thus combined into
12 options in total. For the models of the colour that was not shown to a respondent,
those utilities were set to -100. Whereas utilities normally add up to 0, for the appear-
ance attribute this is not the case. In addition, estimating utilities of other attributes is
affected by which survey is taken by a customer.
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40
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Figure 1: Aggregated utilities for price

Price is in almost all cases an important factor for customer decisions. Higher prices
are accompanied with lower utilities. Usually, this relation is non-linear as utilities tend
to decrease harder for higher prices. We plotted the utilities for price, summed over all
respondents, in Figure 1. As can be seen for this case, the relation between price and
utility is practically linear. The points in the graph denote the points on which utility
was estimated. The first points are all close to each other whereas the difference with the
last is relatively large. In this gap, true utilities might show a more non-linear relation.
This is not captured as we use a linear interpolation for estimating intermediate points.
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Furthermore, we notice a lot of indifference among respondents. More specifically, 45%
of all utilities are zero. These zeros always occur for all levels of a specific attribute. This
occurs if a respondent has replied in the survey that that attribute is irrelevant. This
indifference can be found for all attributes except price. The percentage of respondents
that have zero utilites for an attribute varies from 15% to even 90% for some attributes.

5 Methodology

In Section 3 we derived some guidelines that our optimization model has to conform to.
We will use the Nested Partition (NP) method as described in Shi et al. [2001] as the basis
of our optimization method. However, we will apply a few required adjustments to the
method since our problem is more complicated and larger than instances used in Shi et al.
[2001]. First, we will give an outline of the NP method and our implementation. Then,
respectively, we discuss how the algorithm is extended by Genetic Algorithms (GA) and
a CTREE method, which is a mixture of Greedy Search (GS) and randomness. GA and
GS are also included in Shi et al. [2001] but, especially GS, require modifications to cope
with our problem instances.

Table 1: Attribute levels for hairdryer example

Colour Drying Power Price

Black High 49.99
White Medium 99.99

Low

In the following sections, we will make use of some visualizations to clarify the method-
ology. We again resort to hairdryers, but use a simplified example for illustration. The
possible designs can be created by any combination of levels for the 3 attributes given
in Table 1. Also, some results on margin are presented in Sections 5.2 and 5.3. These
are fictional and solely used for clarifications.

5.1 Nested Partition

The NP method is useful for optimization of product designs as it is able to split feasible
regions and focus only on the promising parts. For product design, the feasible region
is initially represented by all possible product profiles. Splitting up this feasible region
is done iteratively per attribute. Let us illustrate this with our hairdryer example via
Figure 2. The nodes represent feasible regions with the size of the region between
brackets. At the start of the algorithm, the hairdryer is an empty product. As can be
seen in the root node, the feasible region then consists of 12 hairdryers.
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All
hairdryers (12)

Black
hairdryers (6)

White
hairdryers (6)

Figure 2: Nested Partition at depth 0

We continue by deciding whether the hairdryer is going to be black or white. The feasible
region is then split up into all possible black hairdryers and all possible white hairdryers.
So if we are now able to decide in which subregion the optimal solution can be found,
we reduced the size of the feasible region by 50%. If for example the optimal hairdryer
is black, we move to this subregion and obtain Figure 3. For this new reduced feasible
region, we can repeat this procedure for drying power and price. After selecting the
price, the feasible region is singular and we are left with a complete hairdryer. This
hairdryer would then be the global optimal solution.

All (12)

Black (6) White (6)

High (2) Medium (2) Low (2)

Figure 3: Nested Partition at depth 1

Unfortunately we are, in a reasonable amount of time, not able to state with certainty
whether a subregion contains the optimal solution. Instead we estimate how promising
a subregion (or attribute level) is and reduce the feasible region to the most promising
subregion. This would again be repeated until a complete product is established. The
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product design found is then a local optimal solution. The probability that also the
global optimum is found, depends on the method of estimating a subregions promising-
ness.

As we know from Section 3.4, evaluations of objective values can be computationally
expensive. To decide how promising a subregion is, we prefer methods with only few
evaluations. In addition, we only have a part of the product. Evaluating this does not
give full insight in the profitability of the product. To solve both these issues, we ran-
domly sample the remainder of the product. Objective values of this product can be
calculated and with these values could be decided how promising a region is. If the ma-
jority of a product is randomly formed, which is the case early on in the algorithm, the
probability of having a poor product while it was selected from an actual very promis-
ing region is quite high. To prevent this from happening, we randomly draw multiple
products from each subregion. We then evaluate all these products and take the highest
objective value per region as index of how promising that region is. In deciding on the
number of products to select per region, one has to make a trade-off between compu-
tation times of the algorithm and in probability of selecting the actual most promising
region.

Since computation times must be reasonable, we will have in many cases a positive
probability of selecting a region that does not contain the global optimum. If we im-
plement the method as described until now, we have no chance of finding the global
optimum after choosing the wrong region. Therefore, the idea of backtracking is in-
cluded in the NP algorithm. Next to estimating the promisingness of the subregion, we
also do this for the super region. In Figure 4, we currently have selected black hairdryers
with high drying power. The two promising regions to investigate are a price of 49.99
(PR 1) and 99.99 (PR 2). In addition, we also sample solutions from the aggregate re-
gion OR. Similar to the promising regions, we can sample any number of solutions here
which should be calibrated based on results. If only one solution is sampled, this could
for example be a white hairdryer with medium drying power and a price of 99.99. Let us
assume this hairdryer has a higher objective value than the hairdryers of the promising
regions PR 1 and PR 2. We now have to backtrack to a super region. This is done
by removing the most recently added attribute and for that region, the subregions and
super region are again investigated. In Figure 4, this would mean removing the high
drying power which results in returning to the situation of Figure 3.
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All (12)

Black (6) White (6)

High (2) Medium (2) Low (2)

€49.99 (1) €99.99 (1)

OR

OR OR

PR 1 PR 2

Figure 4: Nested Partition at depth 2

The NP algorithm we just described runs for a given amount of computation time.
For reasons we will describe in Section 5.2, we keep track of our randomly sampled
solutions. Therefore at search termination, we are able to return the solution with the
highest objective value found up to that point. Completing the algorithm, so reaching a
singular most promising region and a complete product, does not terminate it. We then
restart the algorithm but randomize the order of attributes, except for the price which
will always be the last attribute. Price is selected last such that given a certain product
design, revenue and margin can be optimal. By changing the order, the subregions are
different so the algorithm ends less in a certain local optimum. Since the algorithm uses
much random sampling, finding multiple local optima is likely. However, this decreases
by including a Greedy Search into the NP method which we discuss in the upcoming
section.

5.2 CTREE

Similar to Section 5.1, we give an entire description of the algorithm to be able to clearly
describe our own adjustments. The CTREE is included to improve estimations of the
promising region index. In the base version of the NP algorithm, we complete partial
products by randomly selecting levels for remaining attributes. As alternative, Shi et al.
[2001] propose a Greedy Search (GS). Then, not every attribute is determined randomly
but based on the maximization of utility. For a certain attribute a, GS is performed with
a given probability pa and an attribute level is randomly selected with probability 1−pa.

The attribute level selection using GS is quite simple, the level with the highest utility
summed over all respondents is selected. Let us illustrate this with Table 2. In this
example, we represent the market by three respondents. For each of these respondents,
the utility is estimated for the levels of in this case the attribute ”Drying Power”. In
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the bottom row, the summed utility is given. Thus if GS is used in the selection of this
attribute, a medium drying power would be selected. This method is based on problem
instances that differ from ours and is therefore not suitable in this manner. For example,
Shi et al. [2001] do not include costs and the idea of appending cannibalization to the
objective function is proposed, although not carried out.

Table 2: Example utilities for drying power

Respondent High Medium Low

1 3 0 -3
2 -2 1 1
3 -1 0 1

Total 0 1 -1

Both costs and cannibalization can occur in our problem. In the case of costs, greedily
selecting attribute levels with highest utility can lead to excessive costs such that less
preferred levels are more profitable. It is reasonable to state that medium drying power
costs more to establish such that in our example of Table 2 the low drying power would
result into higher margins. Furthermore, as utilities differ for respondents, it can be
profitable to offer different products to reach as many customers as possible. As can be
seen in Table 2, we can appeal more customers by offering two products. One with high
drying power that is favoured by the first respondent and one with low drying power
that is preferred by the other respondents.

Products will be composed to do so if we include cannibalization in our objective func-
tion. In this case, we do not want to focus on attribute levels that has highest summed
utility over all respondents but appeal customers that do not yet purchase any of our
products. A greedy search is then again not suitable. However, selecting attribute levels
in a more sophisticated way than randomly is a good idea to improve the promising
region estimation. So instead of performing GS based on utilities, we develop a method
of estimating which levels have highest impact on the objective value.

To do so, we adopt machine learning into our algorithm. In selecting the most promising
region, we calculate the objective values of multiple products. We now keep track of all
these solutions and their objective values. With this information, we can estimate re-
gression trees. Such trees are easily interpreted and user friendly for making predictions.
However, they are applicable in a different manner for our problem. Usually, one reads
the tree by starting at the root node and following the branches according to the data
they want to predict or explain and find according values at the terminal nodes. We
start at the terminal node with highest average value and then find the corresponding
variable splits. We illustrate this with a tree for the drying power attribute in Figure
5. Here, the left node is the terminal node with the highest average margin of slightly
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below 900. The high and low drying power hairdryers show significantly more margin
than the hairdryers with medium power. Now, with probability pCTREE

a the random
sampling is restricted to hairdryers with high or low drying power. With probability
1 − pCTREE

a , the drying power is selected completely random. In the case of Figure 2,
this procedure is first performed for the drying power attribute and then for the price to
create a single hairdryer in a promising region. Again, multiple hairdryers are created
per promising region and the highest objective value found is taken as promising region
index.

Drying_power
p < 0.001

1

High, Low Medium

Node 2 (n = 2018)

500

600

700

800

900

1000

Node 3 (n = 982)

500

600

700

800

900

1000

Figure 5: Regression tree of margin

This new method is thus a mixture of greedy and random and we will refer to it as
CTREE. Next to being able to use the concept of GS again, it also suits the NP frame-
work better. Early on in the algorithm, we have found only few solutions. The diver-
sification is then quite high in the random sampling as the regression tree is not likely
to have any splits. The sampling is then completely random. The more solutions we
gather, intensification increases as the tree is able to make more accurate estimations. In
addition, we set a maximum number of solutions that are stored. If this cap is reached
and a new solution is found, we add this solution if its objective value is higher than
the lowest objective value in the set. The solution with lowest objective value is then
removed. Note that a solution is never added if its duplicate is already present in the
data set.

For establishing trees such as in Figure 5, we adapt the conditional inference frame-
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work as described in Hothorn et al. [2006]. These obtained trees overcome some well
known problems in comparable regression tools. The first is overfitting. Overfitting
would in our case be an issue as it decreases diversification. The regression tree would
try to fit the current data set too much and especially if only few solutions are found,
we might be focusing on regions that are actually not the most promising. The sec-
ond problem is the bias to variables with many possible splits. Since attributes can
be both continuous and discrete, the algorithm would focus less on promising levels of
discrete attributes and might thus lack some important intensification. Additionally,
the conditional inference trees are able to capture multiple variable types, such as or-
dinal, nominal or numeric. Implementing the trees is done with the partykit package
in R, which is a reimplementation of the party package provided by Hothorn et al. [2006].

As stated in Section 5.1, we randomize the order of attributes each time the NP al-
gorithm repeats itself. The first time we determine the order differently. We then
perform random mutations with a given probability pIOa for each attribute in the null
scenario of the product that is to be optimized. We create a specified number of these
mutated products and calculate objective values. We then estimate the regression trees
for each attribute. The attributes are then ordered based on their highest terminal node
mean value, which in Figure 5 would be approximately 875. The attribute for which
that value is the highest is first in the order and so on, except for the price which will
again be last in the order.

5.3 Genetic Algorithm

The next extension on the NP algorithm is the Genetic Algorithm (GA). Like GS, the GA
is incorporated to improve the selection of the promising region. After having sampled a
certain number n products from a subregion, the GA is executed. From these products,
the best n

2 are selected for crossover but will also be added to the new solution set in
their current form. In the crossover, we randomly create n

4 couples. For each couple,
their levels for attributes are swapped with a probability pGA

a per attribute.

Table 3: Initial solution set

Design 1 Design 2 Design 3 Design 4

Colour Black Black Black Black
Drying power Medium Medium High Low
Price 49.99 49.99 99.99 49.99

Margin 520 520 825 730

Let us clarify this again by visualization. In Table 3 we show four solutions that could be
obtained during the investigation of the promising region of black hairdryers. To recall,
this means we are in the situation of Figure 2. As we have sampled four solutions, the
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GA uses two solutions for crossovers. The two best solutions are Design 3 and Design
4 and as there are only two, they will form a couple. Then for each attribute we swap
the levels within the couple. If for example Drying power will be swapped and other
attributes remain constant, the initial solution set of Table 3 is transformed into the
solution set of Table 4.

Table 4: Solution set after a GA iteration

Design 3 Design 4 Design 3’ Design 4’

Colour Black Black Black Black
Drying power High Low Low High
Price 99.99 49.99 99.99 49.99

Margin 825 730 685 900

The first two solutions, Design 3 and Design 4, of Table 4 are the two initial solutions
used for crossovers and the other two are the ones obtained by crossover. Contrary to
Shi et al. [2001], we do not include mutation in the GA as we want to conserve solutions.
Mutation is usually included to avoid local optima (Grefenstette [1986]). However, we
want to estimate how promising a certain subregion is and this is evaluated by the
highest objective value found. Therefore, in this application of the GA, intensification
is more important than diversification.

6 Computational experiments

We will now test above presented methods by means of numerical experiments. As
stated, we focus on the hairdryer case. As given in our data analysis in Section 4, this
is a relatively large instance for the product design problem. Consequently, we were not
able to find solutions that guarantee optimality. We therefore focus on results relative
to the null scenario. Now, we present the test environment.

6.1 Test environment

For this problem, we focus on the optimization of margin. With our method, we are
able to optimize the margin of all products by adjusting a single product. There are 8
products in the clients portfolio. We optimize each one of them keeping the others equal
to the null scenario so after optimizing, only one product is changed. We can then state
which product should be killed and replaced with another to have the highest increase
in margin. Also, this provides us with more insight in the performance of the optimizer
given different starting solutions.
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Table 5: Parameter values

Name Description Value

PRS Number of solutions sampled from each promising region 40
ORS Number of solutions sampled from the super region 40
CT Computation time of the algorithm in minutes 60
MS Maximum number of solutions stored for CTREE estimations 500
N IO Number of solutions created to determine initial order 200
pIOa Probability of mutating attribute a to create the N IO solutions 0.75
pCTREE
a Probability of using CTREE instead of randomly sampling for attribute a 0.5
pGA
a Probability of swapping the levels of attribute a of a pair during the GA stage 0.25

Unless stated otherwise, the algorithm is executed with parameter values given in Table
5. We will compute results for multiple versions of the NP algorithm. Our main method
will be the NP algorithm in combination with GA and CTREE, from now on referred
to as NP GA CTREE. As we noted that a Greedy Search is not compatible with this
problem, the closest comparison we have to the methodology of Shi et al. [2001] is the NP
algorithm with only GA. Let this be abbreviated to NP GA. Thus, our first evaluation
will be of the inclusion of CTREE. Furthermore, we compare the randomization of the
attribute order to having a fixed order.

6.2 Results

We now present results using the test environment discussed in Section 6.1. In Table 6,
results of our main method NP GA CTREE are given. In the first column, we present
which product is optimized. The remaining columns show respectively the market share,
revenue and margin of all products achieved after the optimization of margin. Results
are an average over 5 runs of the algorithm where the value between brackets represent
the standard deviations in percentages.

Table 6: Results after optimizations of margin using NP GA CTREE

Optimized product Market share (%) Revenue (e ) Margin (e )

Null scenario 68.60 46041.39 -3166.58
1 70.49(0.67%) 78173.77(4.49%) 28236.53(9.23%)

2 71.32(1.37%) 80717.87(7.74%) 25120.66(11.62%)

3 71.52(0.34%) 78396.10(2.62%) 21829.30(5.66%)

4 69.02(0.41%) 83032.68(2.58%) 25152.69(7.76%)

5 70.94(0.28%) 85787.60(2.99%) 27956.14(4.05%)

6 69.41(0.65%) 82532.95(4.93%) 25732.12(4.69%)

7 70.27(0.44%) 83275.84(4.18%) 25669.08(7.44%)

8 69.82(0.47%) 85759.65(3.12%) 26961.65(5.45%)

The most striking result is the huge increase in margin that is obtained. Whereas there
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was a loss in the null scenario, the optimization of any product turns this into a positive
margin of approximately 7 to 10 times the absolute value of this loss. This could be due
to all clients products being far from optimal in the null scenario. However, it might
also be due to errors in utilities. Next to high increases in margin, the total revenue
almost doubles. The market share also shows a slight improvement after optimization.
The highest margins can be found for the optimization of products 1 and 5 whereas op-
timizing product 3 leads to a considerably lower margin than the other products. Notice
that for product 1 the lowest average revenue is achieved whereas the average margin
was highest. In the null scenario, costs of product 1 are more than twice the costs of
the other products. Thus in optimization, high increases in margin can be obtained by
cutting these costs.

In the optimization of the 8 different products, the designs of the optimized hairdryers
were quite similar to each other. Independent of the original appearance, optimization
almost always led to selecting the first white appearance option. In the null scenario,
products 1, 5 and 8 already have this appearance. As can be seen in Table 6, these
products also perform best in optimization. Furthermore, the price was always set to
the highest level. This is a peculiar outcome as in the null scenario none of the hairdry-
ers have a price equal to the maximum. A possible explanation would be that higher
prices do not lead to realistic drops in utility. This might also cause the high increases
in revenue and margin.

Table 7: Results after optimizations of margin using NP GA

Optimized product Market share (%) Revenue (e ) Margin (e )

Null scenario 68.60 46041.39 -3166.58
1 70.38(0.98%) 78177.29(6.63%) 27826.51(6.70%)

2 71.50(0.63%) 83540.24(3.17%) 25161.43(8.81%)

3 71.85(0.72%) 82037.07(3.86%) 23480.36(8.62%)

4 69.08(0.61%) 83459.10(4.55%) 26669.27(5.42%)

5 70.98(0.48%) 86857.62(3.56%) 28158.43(4.30%)

6 69.43(0.49%) 81470.58(4.73%) 25140.97(8.99%)

7 70.43(0.58%) 82286.91(2.94%) 25000.59(9.41%)

8 69.85(0.92%) 87609.48(6.45%) 27151.02(11.03%)

We now discuss results of NP GA for evaluating our CTREE extension. These results
can be found in Table 7. The structure of the table is similar to Table 6 and again
5 runs are performed. We notice that results are very similar to those from our NP
GA CTREE method. This can be seen in Figure 6, where optimized margin for each
product is plotted for all three methods. As before, products 1 and 5 show the highest
increase in margin with product 8 ranking third again. Products 3 and 4 show better
performance using NP GA while 6 and 7 result in higher margin when including CTREE.
Notice however that differences between methods are rather low in comparison with the
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standard deviations. Thus, both NP GA CTREE and NP GA are suitable methods to
optimize product designs of which it is not possible to show if one outperforms the other.

Table 8: Results after optimizations of margin using NP GA CTREE with fixed attribute
order

Optimized product Market share (%) Revenue (e ) Margin (e )

Null scenario 68.60% 46041.39 -3166.58
1 70.13(1.03%) 74912.10(6.68%) 25590.44(9.46%)

2 71.27(0.49%) 81977.77(3.93%) 24934.64(9.90%)

3 71.62(0.78%) 80643.05(4.32%) 23605.57(3.94%)

4 68.83(0.74%) 82293.41(5.23%) 25000.06(7.68%)

5 70.73(0.92%) 84096.38(4.08%) 26615.95(9.92%)

6 69.20(0.77%) 80326.82(5.34%) 24878.02(7.90%)

7 69.78(0.82%) 76845.57(6.30%) 21912.21(12.19%)

8 69.45(0.79%) 83523.41(2.36%) 25419.65(8.29%)

In Table 8, again similar to the previous two tables, we present results of the NP GA
CTREE method when we keep a fixed order of selecting the attribute levels. Here again,
optimizing products 1, 5 and 8 results in the highest margin. However, the margins
are considerably lower than for the methods with randomized attribute order, except
for product 3 for which average margin is higher than for both other methods. Figure
6 clearly shows that having a fixed order is outperformed by randomized orders. Note
that again standard deviations are quite high and results are based on only 5 runs.
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Figure 6: Comparisons of margins from Table 6, 7 and 8

6.3 Sensitivity Analysis

Now we check how robust the solutions of our optimization are. This is done by making
perturbations on the utilities. Here, we focus on two different parts. First, we make
adjustments to the utilities of price. As stated in section 6, the price was set to the
highest possible level in all optimizations. This might be due to the aggregated utility
being practically linear (Figure 1). Drops in utility due to higher prices does not impact
the total utility sufficiently. Our second analysis will focus on overall robustness and
the difference between black and white hairdryers as in almost all optimizations white
hairdryers were formed. As explained in Section 4, respondents currently have a strict
preference for one colour. However, no reasons are given that this is a realistic represen-
tation and therefore white hairdryers might not perform as well as they do now.

For the analysis, we selected the solution with highest margin over all runs of all meth-
ods. This solution was obtained by optimizing product 1 using the NP GA CTREE
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method, with randomized order of attributes. Results of this optimization can be found
in Table 9 in the row ”Initial”. The remaining rows represent results if utility is adjusted.
Hereby, we subtract a certain percentage of the absolute value of utility of the last point
estimation in Figure 1. Let this point estimation for a respondent i be uPE

i . The new

utility ˆuPE
i can then be calculated as follows:

ûPE
i = uPE

i − pdecrease × |uPE
i |

Here, pdecrease is the percentage in the first column of Table 9 divided by 100. Note that
this also affects interpolated utilities between the fourth and the final point estimates,
resulting in a more concave utility function for price. It can be seen that the 5% decrease
leads to a higher margin but a huge decrease in market share. The margin again decreases
for 10% and 20% decreases but shows the highest margin if 50% decrease is applied. Note
that the margin is aggregated over all clients’ products of which prices vary widely. This
illustrates that changes in utility of price have a high impact, but that the problem is
non-convex.

Table 9: Sensitivity Analysis on price

pdecrease Market share (%) Revenue (e ) Margin (e )

Initial 70.59 79980.58 31884.10
5% decrease 44.12 67666.40 33719.7

10% decrease 44.07 65661.26 32114.73
20% decrease 43.90 60279.13 27809.43
50% decrease 44.19 69825.28 35445.97

We now assess the overall robustness of the solutions. Random perturbations will be
made on the utility values in the data set to evaluate how this affects margin. As stated
in Section 4, utilities of white or black appearances were set to -100 if these were not
shown to the respondents. Since this has a huge impact, we first make adjustments here.
For every appearance with utility -100, the appearance of the other color has a regular
utility. The utility of -100 will then be set equal to the regular utility as if customers
have no preference in colour. We continue with the same solution used in the previous
sensitivity analysis. As utilities have already changed, we obtain different results which
can be found in Table 10 in the row ”Initial∗”. In the columns, for all objective values
the minimum, maximum and mean over the runs are given. In the columns for the mean,
the standard deviations in percentages are given between brackets. As ”Initial∗” does
not change over runs, these values are the same for all three statistics.

The remaining rows represent results over 100 samples of perturbations. We randomly
select 1%, 5% and 10% of all possible data points, which is the number of respondents
times the number of levels of all attributes. Let ual be the utility of such an attribute
level. The perturbated utility ûal is then as follows:

ûal = ual + σal × z

22



Here, σal is the standard deviation of the utilities of all respondents for attribute level
al and z is a random number drawn from the standard normal distribution.

Table 10: Sensitivity analysis on utilities

Market share (%) Revenue (e ) Margin (e )
Minimum Mean Maximum Minimum Mean Maximum Minimum Mean Maximum

Initial 70.59 79980.58 31884.10
Initial∗ 52.03 58266.78 29198.32
1% perturbations 51.16 51.76(0.48%) 52.36 54789.15 57635.51(1.54%) 59350.55 26560.04 28656.30(2.21%) 29848.31

5% perturbations 49.27 50.97(1.00%) 52.54 51892.73 56079.95(2.99%) 59824.07 23886.47 27182.97(4.32%) 29548.85

10% perturbations 48.13 50.00(1.22%) 51.28 48339.08 53846.91(3.24%) 57200.72 21103.32 25121.98(5.06%) 27758.40

We first notice that the assumption of indifference between colours leads to a slight
decrease in margin and a huge drop in revenue and market share. For perturbations,
a clear relation is seen between the number of perturbations and the performance. All
statistics for market share, revenue and margin show a decrease if more changes are made
in the utilities. Especially the lowest margin found when 10% of utilities are different
deviates highly from the mean value of ”Initial∗” as it decreases by almost 30%.

7 Conclusion

In this research, we extended on methods for the optimization of product design. Using
the NP method proposed by Shi et al. [2001] as a base model, we made adjustments to
apply this method to the optimization of margin. The Greedy Search part was replaced
by the CTREE method and a randomization of the attribute order was introduced to
improve performance. We derived following conclusions on our research:

• All methods tend to work well. Optimizations lead to high increase in objective
values compared to the null scenario. As there was no method of optimization
before, our optimization model is a good addition to the market simulator.

• To improve the estimation of the promising region index, we included the CTREE
method. Margins highly increased using this methodology. However, we were not
not able to show that performance of NP GA CTREE was significantly better or
worse than of NP GA.

• The methods NP GA and NP GA CTREE both randomized the attribute order
after a complete product was formed. Results of NP GA CTREE were also shown
if the order was fixed throughout the optimization. Margins were considerably
higher for the optimization of nearly all products if randomization was included.

• The optimization of each different product led to one specific appearance option.
Products that already possessed that option resulted in the highest increase in
margin. Having more similar products in the product line decreases margin of
the other products. However, it might also be a consequence of the data. The
CTREE method uses a set of the best solutions found until then. Changing colour
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of the hairdryer has a huge impact on the objective value. It might therefore take
longer computation time to find good hairdryer designs if the appearance option
is initially not the optimal option.

• For all methods, standard deviations on margins after optimization are high. Also,
the randomization of attribute order showed better results. Thus if the attribute
order influences performance, increasing computation time and thus the number
of different orders used should lead to higher margins.

• It was shown that perturbations of the utilities influence the margin after optimiza-
tion. If the utilities of higher prices were decreased, the total margin increased in
most cases. The loss of margin of the optimized product with highest price was
compensated by other products in the product line. For the sake of robustness,
it is thus important to vary prices over the product line. Furthermore, applying
perturbations on parts of the entire utility set has a high impact on margin. In the
worst case, margins even decreased by 30%. As solutions are sensitive, it is thus
important to have accurate estimations of utilities.

We conclude with a few remarks on our research and possible further research on our
methodology. First, let us emphasize that results and conclusions are based on 5 runs
per method. To draw better and more justified conclusions, more iterations and longer
optimization times are required. As 1 run consisted of 8 different optimizations taking
each one hour, obtaining current results already takes a long time. Within the time
framework, more extensive computational experiments were unfortunately not possible.

Furthermore, we were not able to assess performance of our methods compared to the
global optimum. Due to the size of this instance, we were not able to find the optimal
solution. For future research, it would be interesting to test our methodology on smaller
instances and make comparisons with other heuristics.

Finally, we propose a rather simple method to improve robustness of the optimization.
Our sensitivity analysis might not represent realistic utilities. However, if it is possible
to make such perturbations, robustness could easily be incorporated in the objective
function. The objective value is then not calculated for a single set of utilities, but av-
eraged over multiple data set. It is then also possible to select solutions based on a level
of robustness, such that in for example 95% of the cases a certain margin is achieved.
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