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Abstract

This thesis introduces Markov-switching in the dynamic Nelson-Siegel model to fit and

forecast the yield curve in a low interest rate environment. I allow for regime-switching in

the mean of the Nelson-Siegel slope factor to distinguish between a period where the yield

curve is flat and one where the curve is steep. I extend the regime-switching model by

linking the yield curve to the macro-economy in three ways: by adding the macro-economic

indicators as state variables; by letting the transition probabilities depend on the indicators;

and a combination of both. The regime-switching model significantly improves the in-sample

fit and out-of-sample forecasting performance relative to the regular dynamic Nelson-Siegel

model. The addition of macro-economic indicators marginally increases the model fit. Out

of all models, a regime-switching model that allows the transition probabilities to depend on

the macro-economic indicators produces the most superior forecasts, especially at the short

end of the yield curve.
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1 Introduction

The term structure of interest rates, also known as the yield curve, is the relation between

interest rates or bond yields and different terms or maturities. Interest rates play several pivotal

roles within the economy. One of them is being a key policy instrument of central banks to

steer the state of the economic environment. It is therefore of great interest of various market

participants such as investors, policy makers, and risk managers to accurately predict interest

rates movements. For investors, forecasting interest rates may result in higher portfolio returns.

However, for policy makers understanding the change in future interest rates may help their

decision making concerning macro-economic monetary policy.

Many of the currently used dynamic term structure models (DTSMs) are not able to properly

capture the behavior of the yield curve in periods of low interest rates. This is because DTSMs

assume that the probability of yields falling close to or below zero is negligible (see e.g. Bauer

and Rudebusch (2016)). However, during the global financial crisis in 2008, the US nominal

short rate has dropped toward 0% - 0.25% and has remained at historically low levels ever since.

When interest rates are almost at their zero lower bound (ZLB), the dynamics of the fixed-

income market change due to three factors. First, the yield curve exhibits asymmetric yield

movement since a downside shift of the yield curve is far less likely than an upward shift (see

e.g. Christensen (2013)). Second, monetary institutions are reluctant to decrease interest rates

when the yield curve is near the ZLB.1 Third, investors always have the option to extract their

money from the bank and hold cash which might be more profitable during periods of extreme

low interest rates. Therefore, it is necessary to consider alternative ways of modelling the term

structure in a low interest rate environment.

The growing literature on modelling the yield curve during periods of low interest rates can

be split into two branches. A first approach is based on the Gaussian shadow-rate model of Black

(1995) which sets the short-term interest rate equal to the maximum of zero (that is, the ZLB)

and a shadow interest rate. The shadow interest rate is an alternative Federal funds rate that,

contrary to the nominal short rate, can become negative.2 The shadow rate reflects the policy

of the Federal Reserve (Fed) during unconventional monetary policies.3 Gorovoi and Linetsky

(2004) show that analytical solutions exist for a one-factor shadow-rate model. However, due

1In order not to lower interest rates near the ZLB, central banks have to rely on unconventional forms of
monetary policy. Examples include purchasing long-term assets (better known as quantitative easing) or publicly
communicating about the current state of the economy and possible future monetary policy (better known as
forward guidance).
2In fact, the nominal short rate has attained negative values in the past. This is due to the non-negligible costs

of transacting and holding large amounts of cash. For instance, in mid-2016 the 1-year German bund paid a
negative interest rate of -0.60%.
3See Black (1995) and Wu and Xia (2016) for an elaborate discussion on shadow interest rates.
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to the computational burden of estimating multi-factor shadow-rate models, the literature has

only considered one- or two-factor models.

The second branch of literature is much more nascent and is based on modelling the term

structure with a regime-switching model. Hevia et al. (2015) characterize the regimes by a latent

Markov-switching component and use the dynamic Nelson-Siegel (DNS) model of Diebold and

Li (2006) to incorporate a regime-switching decay parameter. They motivate their modelling

approach by arguing that the shape of the yield curve heavily depends on the stance of monetary

policy. Christensen (2013) introduces regime-switching in the arbitrage-free Nelson-Siegel model

of Christensen et al. (2011) and distinguishes between two states: a state with normal interest

rate levels, and one where interest rates are extremely low. Both studies find that the proposed

model forecasts better than a single-regime model and that the regime-switching is related to

business cycles.

This thesis follows the second strand of literature and uses a Markov-switching dynamic

Nelson-Siegel (MS-DNS) model to capture the behaviour of the yield curve in a low interest

rate environment. I use the model of Bernadell et al. (2005) and distinguish between a regime

with normal interest rate levels, and one where interest rates are low. In the MS-DNS model,

regime-switching occurs in the mean of the Nelson-Siegel slope factor. This is because during

periods of economic downturn, central banks often lower short-term interest rates to stimulate

the economy. As long-term interest rates most likely remain stable or rise, lowering short-term

rates causes an increase in the slope of the yield curve. However, when inflation levels are

high, central banks try to moderate the economy by for example increasing the short-term rate.

Hence, this thesis evaluates whether the MS-DNS model performs better than the single-regime

DNS model, in terms of model fit and forecasting performance.

I extend the MS-DNS model by linking the shape of the yield curve to the macro-economy. A

direct way to study the effect of macro-economic indicators on the term structure is by including

them in the set of state variables, as in Diebold et al. (2006) (DRA). However, a more subtle

approach is to let the indicators enter the MS-DNS model through the transition probabilities.

In this set-up, the state of the indicators determine the transition probabilities in each period,

resulting in time-varying transition probabilities. Lastly, I combine both of the approaches

and let the macro-economic indicators enter the model through the state variables as well as

through the time-varying transition probabilities. It is worthwhile to consider a joint macro-

finance perspective because the dynamics of the yield curve and the state of the macro-economy

are jointly related. For instance, the short-term interest rate is based on the policy rate of

central banks which is a key instrument used for monetary policy.4 According to the Taylor

4Since long-term interest rates can be viewed as a weighted average of expected future short-term rates, one
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(1993) rule, the decisions of central banks also heavily rely on macro-economic indicators such

as the current inflation level and the gross domestic product.5 Therefore, I use the policy rate,

the current inflation level, and the gross domestic product to study to what extent the addition

of macro-economic indicators improves the performance of the MS-DNS model.

Since interest rates were far away from zero before the crisis in 2008, Bernadell et al. (2005)

mainly used the MS-DNS model to distinguish between periods where the shape of the yield

curve differs (e.g. during different stances of monetary policy). However, the MS-DNS model

is also suitable for modelling the ZLB period. For instance, after the financial crisis it was not

possible for the American central bank to implement an expansionary monetary policy since

interest rates were already extremely low. Therefore, the Fed adopted its quantitative easing

program to fight domestic deflation by buying government bonds and riskier assets with a longer

maturity. This caused a rapid increase in liquidity in the market and a rise in the supply of

money in the economy. The liquidity premium charged on these securities decreased which was

reflected in the form of reduced medium term interest rates and, hence, a steep yield curve.6

In the regime-switching models, regimes are characterized by a latent Markov-switching

component. This component determines which state drives the dynamics of the three latent

Nelson-Siegel factors, better known as the level, slope and curvature, respectively. Kim and

Nelson (1999) introduce an efficient way to estimate the latent factors while simultaneously

determine the current state, called the Kim filter. In essence, the Kim filter combines both

the Kalman filter to extract the latent factors and the Hamilton filter to compute the state

probabilities. The in-sample fit of the regime-switching models relative to the baseline DNS

model is studied by considering their residual diagnostics. However, the true residuals in the

regime-switching models are unobserved due to the latent Markov-switching component. Hence,

I adopt the Rosenblatt (1952) transformation to ensure that the residuals of the DNS and

regime-switching models are compared on a fair basis. I also present goodness-of-fit statistics and

perform likelihood ratio tests to study the in-sample performance of the models. The forecasts

constructed by the regime-switching models are compared with those of the DNS model and a

random walk.

Based on US Treasury yield data, the MS-DNS model is indeed able to distinguish between

a regime with normal and low interest rate levels. The mean of the slope factor is slightly

negative in the first regime indicating a nearly flat yield curve. In the second regime, the mean

may even argue that the whole yield curve responds to changes in the macro-economy.
5Several studies, including DRA, indeed include these indicators to examine the performance of the macro DNS

model. In the context of regime-switching models, Zhu and Rahman (2009) use the state-space representation of
DRA to extend the DNS model to a regime-switching macro-finance model.
6For an extensive study on the effects of the quantitative easing program on interest rates, I refer to Krishna-

murthy and Vissing-Jorgensen (2011).
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is, however, considerably more negative which corresponds to a steep curve. In terms of model

fit, I find that the MS-DNS model is superior relative to the baseline DNS model. The regime-

switching model is particularly able to model the short end of the yield curve better, except

for the 3-month yield. The filtered state probabilities coincide quite well with NBER recessions

and periods where the short-term interest rate is relatively low, such as the ZLB period. The

MS-DNS model also generates better forecasts than the DNS model and a random walk at the

short end of the curve.

The inclusion of macro-economic indicators only marginally improves the in-sample perfor-

mance of the MS-DNS model. Out of the three considered approaches to include the indicators,

allowing the transition probabilities to depend on the indicators and, therefore, vary over time

is the most promising. In terms of forecasting performance, all macro regime-switching models

forecast the short end of the yield curve better than the MS-DNS model. The macro model with

time-varying transition probabilities, again, outperforms the other two macro models. Includ-

ing macro-economic indicators through both the state variables and the transition probabilities

does not further improve the in-sample fit and out-of-sample forecasting performance relative

to either one of the two approaches.

This thesis contributes towards the growing literature on regime-switching term structure

modelling by incorporating macro-economic indicators in the model of Bernadell et al. (2005).

As opposed to Bernadell et al. (2005) who a priori determine the regimes by subjective threshold

levels based on economic indicators, I endogenously link the shape of the yield curve to the macro-

economy. I also introduce a macro regime-switching model with macro-economic state variables

as well as macro-dependent transition probabilities, and compare its performance against a

model which only considers one of the two approaches to include the indicators. Lastly, this

thesis extends the paper of Bernadell et al. (2005) by evaluating the out-of-sample performance

of the (macro) regime-switching models during the recent periods of extreme low interest rates

in the US.

The remainder of the thesis is organized as follows. Section 2 describes the baseline DNS

model and its regime-switching extensions. Section 3 describes the data on US Treasury yields

and macro-economic indicators. In Section 4 and 5, I present and discuss the in-sample fit

and forecasting performance of the Nelson-Siegel models, respectively. Concluding remarks and

directions for future research are given in Section 6.
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2 Models and Methodology

This section introduces the Nelson-Siegel framework. In Section 2.1, I present the model of

Nelson and Siegel (1987). Section 2.1.1 discusses the baseline DNS model and Section 2.1.2

presents its state-space representation. Section 2.1.3 elaborates on the estimation of the DNS

model which is based on the Kalman filter. In Section 2.2, I introduce regime-switching in the

DNS model and extend this model by including macro-economic indicators. Section 2.3 discusses

the likelihood ratio test which is used to statistically test for the presence of the second regime.

2.1 The Nelson-Siegel Model

The original Nelson and Siegel (1987) model gives a static description of the yield curve in the

form of a factor model. In the corresponding representation, the term structure is expressed in

terms of a small set of unobserved factors:

y(τi) = β1 + β2 (
1 − e−λτi
λτi

) + β3 (
1 − e−λτi
λτi

− e−λτi) , (2.1)

where y(τi) is the yield of a bond maturing in τi months, β1, β2 and β3 are latent factors,

and λ is a loading parameter, for i = 1, ...,N different maturities. Due to the simplicity of the

Nelson-Siegel yield curve model, many central banks have adopted Nelson-Siegel type of models

to fit the term structure of interest rates, as described in the documentation from the Bank for

International Settlements (1999).

2.1.1 The Dynamic Nelson-Siegel Model

A major drawback of the Nelson-Siegel model, as specified in (2.1), is its poor out-of-sample

forecasting performance. This is because the latent Nelson-Siegel factors tend to vary over

time. Hence, Diebold and Li (2006) dynamically extend the Nelson-Siegel model by allowing for

time-varying latent factors at each time t. This gives the DNS model:

yt(τi) = β1t + β2t (
1 − e−λtτi
λtτi

) + β3t (
1 − e−λtτi
λtτi

− e−λtτi) . (2.2)

In the DNS model, β1t, β2t and β3t determine the dynamics of yt(τi), while the expression next

to each factor, the factor loading, describes the cross-section of the yields. Diebold and Li (2006)

show that β1t, β2t and β3t can be interpreted as a level, slope and curvature factor, respectively.

This interpretation becomes more clear in Figure 1, which shows a plot of the factor loadings as

a function of the maturity. For instance, the loading on β1t is constant and equal to one for all

maturities. An increase in β1t, hence, results in an equal increase in yields across all maturities.

Therefore, the loading on β1t may be interpreted as a long-term or level factor.
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Figure 1: Nelson-Siegel factor loadings

Note: This figure shows the loadings of the Nelson-Siegel level, slope and curvature factor as a function of maturity

for a decay parameter λ = 0.0609; the value found by Diebold and Li (2006).

To interpret the loading on β2t and β3t, it is useful to consider the limits of the DNS model

in (2.2). These are given by

lim
τi→0

yt(τi) = β1t + β2t, lim
τi→∞

yt(τi) = β1t. (2.3)

Since the loading on β2t only affects the short end of the yield curve, it is often interpreted as a

short-term factor. This factor is also closely related to the slope of the yield curve, which can be

defined as the yield on an infinitely long bond minus the yield on an infinitely short bond and is

equal to −β2t. Hence, Diebold and Li (2006) interpret the short-term factor as a slope factor.7

Finally, from (2.3) it is evident that the loading on β3t does not affect the short end nor the

long end of the term structure. However, an increase in β3t does affect medium-term yields since

the corresponding factor loading, (1−e−λtτi
λtτi

− e−λtτi), is an increasing function for middle-term

maturities. Therefore, this factor is also called the medium-term or curvature factor.

In the DNS model, the time-varying loading parameter λt determines the exponential decay

rate. For instance, small values of λt correspond to a slow decay of the yield curve and result

in a better fit of the curve at long maturities. Conversely, large values of λt fit the curve better

at short maturities. Moreover, λt determines the maturity where the loading on the curvature

factor β3t is maximized.

Since the DNS formulation in (2.2) is a nonlinear function of the parameters, the set of

parameters θ = {β1t, β2t, β3t, λt} can be estimated with nonlinear least squares, for each month

7Following the literature however, I define β2t as the slope factor instead of −β2t for ease of discussion.
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t. However, a potential disadvantage of this estimation procedure is that one has to rely on

iterative optimization procedures to compute θ which heavily depend on the chosen starting

values for the unknown parameters. Hence, it is of interest to consider alternative ways to

deal with the decay parameter λt. Koopman et al. (2010) propose to model λt as a fourth

time-varying unobserved component, and use the extended Kalman filter to estimate the DNS

model. However, I follow Diebold and Li (2006) and fix λt in the DNS model.8 This greatly

facilitates the estimation procedure as the DNS formulation in (2.2) is now linear in the unknown

parameters β1t, β2t and β3t.

2.1.2 The DNS Model as a State-Space Representation

In addition to extending the Nelson-Siegel framework by allowing for time-varying latent factors,

Diebold and Li (2006) also find that the factors are highly correlated over time. Therefore, they

suggest to model the dynamics of the factors with either a multivariate VAR(1) process or three

univariate AR(1) processes. This allows one to easily estimate the DNS model with the following

two-step procedure. First, estimate β1t, β2t and β3t in equation (2.2) for each yield curve at time

t by cross-sectional OLS. Afterwards, one can use the (V)AR(1) process to estimate the factors

at time t + 1. Introducing an autoregressive process in the DNS model also aids in forecasting

future yields. The obtained estimates of the latent factors in the second step of the two-step

approach can simply be plugged into equation (2.2) to generate bond yields at time t + 1.

DRA recognize that the DNS model with an autoregressive process directly forms a state-

space model. They introduce the following state-space representation for a VAR(1) specification:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

yt(τ1)

yt(τ2)

⋮

yt(τN)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1−e−λτ1
λτ1

1−e−λτ1
λτ1

− e−λτ1

1 1−e−λτ2
λτ2

1−e−λτ2
λτ2

− e−λτ2

⋮

1 1−e−λτN
λτN

1−e−λτN
λτN

− e−λτN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

β1t

β2t

β3t

⎞
⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

εt(τ1)

εt(τ2)

⋮

εt(τN)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.4)

where

⎛
⎜⎜⎜⎜⎜
⎝

β1t

β2t

β3t

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

µ1

µ2

µ3

⎞
⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜
⎝

f11 f12 f13

f21 f22 f23

f31 f32 f33

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

β1,t−1

β2,t−1

β3,t−1

⎞
⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜
⎝

η1t

η2t

η3t

⎞
⎟⎟⎟⎟⎟
⎠

. (2.5)

Here, equation (2.4) is referred to as the measurement equation, which describes the cross-section

of yields with the three latent factors β1t, β2t, and β3t. Equation (2.5) is also called the transition

8From now on, I drop the subscript and refer to the decay parameter as λ.

7



equation and models the dynamics of the factors. The corresponding state-space system can

easily be re-written into vector notation as

yt =Xβt + εt, εt ∼ N(0,Σε), (2.6)

βt = µ +Fβt−1 + ηt, ηt ∼ N(0,Ση), (2.7)

where yt = (yt(τ1), ..., yt(τN))′ is the (N ×1) vector of yields, βt = (β1t, β2t, β3t)′ the (3×1) vector

of latent factors,X the (N×3) matrix of factor loadings and F the (3×3) matrix of autoregressive

coefficients.9 An advantage of the DNS state-space representation is that all parameters can

be estimated simultaneously with the Kalman filter. For instance, De Pooter (2007) finds that

the use of the Kalman filter gives better out-of-sample results than the aforementioned two-step

approach. This is because the latter procedure does not take into account the estimation error

in the transition equation when estimating the measurement equation.

For optimality of the filter, it is necessary that the measurement error εt and transition

disturbance ηt are white noise. Furthermore, both εt and ηt are required to be orthogonal to

each other and to the unobserved factors βt. I also assume that the covariance matrix Σε and

Ση are diagonal. Following DRA, the assumption of a diagonal Σε matrix is quite common since

it indicates that deviations of implied yields from the yield curve are not correlated between

different maturities. Opting for a diagonal Ση matrix allows the shocks to the factors in βt to

be uncorrelated over time.

In previous literature, the AR(1) specification of the DNS model has been preferred over the

VAR(1) specification for several reasons. For instance, Christensen et al. (2011) show that the

off-diagonal elements in the autoregressive matrix F are not statistically significant. Diebold

and Li (2006) also argue that the VAR(1) forecasts are inferior to the AR(1) forecasts since

unrestricted VARs tend to produce poor forecasts of economic variables and are subject to

overfitting. For completeness, I estimate both versions of the DNS model and choose one of the

two model specifications based on the estimation results.

2.1.3 Estimation of the DNS Model

Since the DNS model assumes a fixed decay parameter λ, the measurement equation in (2.6)

becomes linear in the latent factors βt. Consequently, the DNS model in (2.6) and (2.7) be-

comes a linear Gaussian state space model. Following DRA, I therefore use the Kalman filter in

combination with Maximum Likelihood (ML) to estimate βt. The Kalman filter is a recursive

procedure that computes estimates of βt based on It, the available information at time t. In

9One obtains the DNS state-space representation for three univariate AR(1) processes by assuming the matrix
F to be diagonal.
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the first step, one chooses starting values for βt and its covariance matrix Pt. These are then

used in the prediction and updating step of the Kalman filter to form optimal predictions of βt

and Pt given It. The other parameters in the DNS model are collected in the parameter set θ

and are assumed to be unknown. Optimal parameter values θML are obtained by numerically

maximizing the log-likelihood function. Below, I describe each step of the Kalman filter and ML

in more detail.

Initialisation

Recall that the state-space representation of the DNS model in vector notation is given by

yt =Xβt + εt, εt ∼ N(0,Σε),

βt = µ +Fβt−1 + ηt, ηt ∼ N(0,Ση).

Given this model set-up, the set of parameters to be estimated is θ = {µ,F ,Σε,Ση, λ}. As

starting values for µ,F , and Ση, I use the estimates of the DNS model obtained from the two-

step approach described in Section 2.1.2. Furthermore, I initialise λ with the value found by

Diebold and Li (2006), which is 0.0609, and set Σε equal to the identity matrix such that the

yield deviation is equal for every maturity.10 Lastly, the state vector β0∣0 is initialised with its

unconditional mean, β0∣0 = (I − F )−1µ, and its covariance matrix P0∣0 with its unconditional

covariance matrix, vec(P0∣0) = (I −F ⊗F )−1 vec(Ση).11

Prediction step

In the prediction step, one uses the initial parameter values θ(0) as input in the Kalman filter

to obtain an estimate of βt∣t−1, the latent factors at time t given It−1, and its covariance matrix

Pt∣t−1. The prediction step consists of the following two equations:

βt∣t−1 = µ +Fβt−1∣t−1, (2.8)

Pt∣t−1 = FPt−1∣t−1F ′ +Ση. (2.9)

10Recall that λ maximizes the loading on the medium-term factor, which is usually taken to be a zero-coupon
bond with a two- or three-year maturity. By taking the average of both maturities, which is 30 months, Diebold
and Li (2006) find that the value of λ that maximizes the loading on the medium-term factor equals 0.0609.
11For the derivation of the unconditional mean and covariance matrix, I refer to Appendix A.
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Updating step

When yt is realized at the end of time t, one can calculate the prediction error νt∣t−1. This

prediction error contains new information about βt that is not contained in βt∣t−1. Therefore,

one can make a more accurate inference on βt after observing yt, which is based on all information

up to time t. The updating step of the Kalman filter is summarized in the following four steps:

νt∣t−1 = yt − yt∣t−1 = yt −Xβt∣t−1,

ft∣t−1 =XPt∣t−1X ′ +Σε,

βt∣t = βt∣t−1 +Pt∣t−1X ′f−1t∣t−1νt∣t−1,

Pt∣t = Pt∣t−1 −Pt∣t−1X ′f−1t∣t−1XPt∣t−1,

where ft∣t−1 = E[ν2t∣t−1], the conditional variance of the prediction error.

Maximum Likelihood

After the prediction and updating step, the output of the Kalman filter is used to obtain an

estimate of the parameter set θ(1). This is done via ML by maximizing the log-likelihood function.

If one assumes that the conditional distribution of yt is normal, one can use the prediction-error

decomposition to obtain the relevant predictive log-likelihood as

`(θ) = −1

2

T

∑
t=1

ln(2π∣ft∣t−1∣) −
1

2

T

∑
t=1

ν′t∣t−1f
−1
t∣t−1νt∣t−1, (2.10)

which is maximized with respect to θ. The new estimates of the unknown parameters θ(1)

serve as input for the prediction and updating step in the next iteration of the Kalman filter.

One obtains optimal parameter values θML when these parameters maximize the log-likelihood

function in equation (2.10).

2.2 The Markov-switching Dynamic Nelson-Siegel Model

In this section, I extend the baseline DNS model by allowing for regime-switching. Section 2.2.1

presents the MS-DNS model of Bernadell et al. (2005) which lets the DNS model switch between

two regimes. The first regime is a period with normal interest rate levels and a nearly flat yield

curve. In the second regime, short-term rates are considerably lower indicated by a steep curve.

Afterwards, I propose several approaches to include macro-economic indicators in the MS-DNS

model in Section 2.2.2. Section 2.2.3 discusses the estimation of the regime-switching models

which is based on the Kim filter.
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2.2.1 A Yield Curve Model without Macro-Economic Indicators

Most of the empirical literature on term structure modelling does not assume distinct regimes

within the term structure. However, the existence of regimes is intuitively appealing since

regimes can be linked to different states of the economy and, hence, have immediate impact on

the shape of the yield curve. Studies such as Ang and Bekaert (2002) and Dai et al. (2007) also

find considerable support for the existence of regime-switching in interest rates.

I adjust the DNS model by introducing regime-switching in the mean of the slope factor β2t.

The unobserved Markov component St, the realized state at time t, follows a two-state Markov

process with transition probability matrix P given by

P =
⎛
⎜
⎝

p11 1 − p11
1 − p22 p22

⎞
⎟
⎠
,

where pij = P [St = j∣St−1 = i]. Furthermore, St is equal to 1 when the yield curve is nearly flat

(e.g. the short end is away from the ZLB) or 2 when it is steep (e.g. the short end is near the

ZLB). In the resulting MS-DNS model of Bernadell et al. (2005), the measurement equation is

the same as in (2.6), but the transition equation is modified to

βt = µSt +Fβt−1 + ηt, ηt ∼ N(0,Ση), (2.11)

where

µSt =

⎛
⎜⎜⎜⎜⎜
⎝

µ1

µ2,St

µ3

⎞
⎟⎟⎟⎟⎟
⎠

, F =

⎛
⎜⎜⎜⎜⎜
⎝

f11 0 0

0 0 0

0 0 f33

⎞
⎟⎟⎟⎟⎟
⎠

.

Similar to the DNS model, I assume that the white noise measurement error εt and transition

disturbance ηt are uncorrelated to each other and to the factors, and that Σε and Ση are

diagonal. It is also possible to include the slope factor, f22, in the autoregressive matrix F .

However, Bernadell et al. (2005) state that under this specification regime-switching hardly

occurs and that the states are far less persistent. Hence, I follow Bernadell et al. (2005) and set

f22 equal to zero.

The motivation for modelling the regime-behaviour in this way is based on the Taylor rule

and the Fisher decomposition. Taylor (1993) discusses how central banks, for example the Fed,

should adjust interest rates as shifts in the economy occur, such as periods with lower than

expected GDP growth or higher inflation levels. For example, when economic growth is falling
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(in terms of GDP), the Fed should try to stimulate the economy by lowering short-term interest

rates. As long-term rates are unaffected by the monetary policy of the Fed, lowering short-term

rates causes an increase in the slope of the yield curve. On the other hand, during periods of

high inflation, the Fed should moderate the economy by raising its policy rate, the Federal funds

rate, which is a short-term rate. This increases all other short-term rates and causes the yield

curve to flatten.

The assumption that the long-term rate is more stable than the short-term rate rests on

the principle of the Fisher decomposition. According to the Fisher decomposition, the nominal

interest rate consists of the sum of the expected real interest rate and the inflation rate. It is

known in macro-economics that, in the long run, the expected real rate is equal to the growth of

the economy. However, in the short run the expected real rate is also affected by other factors

causing the real rate to be more volatile. Therefore, the long-term rate is expected to be more

stable and is, hence, unaffected by monetary policy decisions.12

2.2.2 A Yield Curve Model with Macro-Economic Indicators

I extend the MS-DNS model by linking the shape of the yield curve to the macro-economy. A

straightforward approach is proposed by DRA who include k macro-economic indicators to the

set of state variables βt. However, since in the MS-DNS model the off-diagonal elements of the

transition matrix F are set to zero, there is no linkage between the macro-economic indicators

and latent factors. Therefore, I modify F as follows

F ∗ =
⎛
⎜
⎝

Diagonal3×3 Unrestricted3×3

0k×k Diagonalk×k

⎞
⎟
⎠
, (2.12)

where the upper left block consists of the Nelson-Siegel factors (and the slope factor is still set

to zero), and the bottom right block includes the k indicators. In this way, the yields do not give

any feedback to the macro-economic indicators but the indicators do affect the yields through

the Nelson-Siegel latent factors.13 The corresponding MS-DRA model is similar to the MS-DNS

model except that the dimensions are increased and F is replaced by F ∗:

yt =Xβt + εt, εt ∼ N(0,Σε), (2.13)

βt = µSt +F ∗βt−1 + ηt, ηt ∼ N(0,Ση), (2.14)

12The implication of the Fisher decomposition that long-term rates are more stable than short-term rates is also
empirically found in yield curve data and is, hence, considered to be one of the stylized facts of the yield curve.
13The modification of the transition matrix F in this manner is first introduced by Exterkate et al. (2013) who
extend the DNS model by including factors extracted from a large set of macro-economic indicators.
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where βt, µSt and ηt are (3 + k) × 1, and F ∗ and Ση are (3 + k) × (3 + k). Furthermore, X is

(3+k)×(3+k) where the k rightmost columns contain only zeros such that the yields load only

on the Nelson-Siegel factors. This specification of X is consistent with the general idea that the

level, slope and curvature are sufficient to capture almost all of the cross-sectional variance of

the yields (see Litterman and Scheinkman (1991)).

A downside of the two previous regime-switching models is that the transition probabilities

are assumed to be constant over time; that is, the probability of switching from one regime to

the other does not depend on the behaviour of underlying economic fundamentals. A constant

transition probability may lead to model misspecification for estimating the yield curve. For

example, given a current regime with low interest rate levels, the probability the economy stays

within this regime decreases over time. Changes in leading economic indicators may also cause

central banks to adjust their policy rates which in turn affect the shape of the yield curve.

Therefore, macro-economic indicators may contain valuable information, particularly for the

evolution of the transition probabilities over time.

I consider time variability in the transition probabilities by introducing a logit model, as

proposed by Diebold et al. (1994). This transformation ensures that the transition probabilities

are bounded between zero and one. The time-varying transition probabilities (TVTPs) are

modeled as

pjj,t = P [St = j∣St−1 = j,zt−1] =
exp(z′t−1γj)

1 + exp(z′t−1γj)
, j ∈ {1,2}, (2.15)

where the TVTP matrix of St is given by

Pt =
⎛
⎜
⎝

p11,t 1 − p11,t
1 − p22,t p22,t

⎞
⎟
⎠
. (2.16)

Here, zt−1 = (1, z1,t−1, ..., zk,t−1)′ and is a (k+1)×1 vector containing macro-economic indicators

that affect the state transition probabilities. Furthermore, γj = (γ0j , γ1j , ..., γkj )′ and is a (k+1)×1

vector of parameters governing the transition probabilities in regime j and which determine the

weights of the macro-economic indicators in zt−1. The first element, γ0j , serves as a constant

and provides additional fit in modelling the TVTPs. The inclusion of a constant also reduces

the model with TVTPs to the MS-DNS model (with fixed transition probabilities) when the

indicators are not significant, that is, γ1j = γ2j = ... = γkj = 0. The MS-DNS model in (2.6) and

(2.7) together with the TVTP model in (2.15) forms the MS-TVTP model.

A last extension of the MS-DNS model combines both of the previous approaches: the macro-
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economic indicators enter the model through the transition matrix F ∗ and through the transition

probabilities in (2.15). In this way, the indicators affect the yields within each regime through

the state variables, as well as across each regime through the TVTPs. I refer to the MS-DRA

model in (2.13) and (2.14) together with the TVTP model in (2.15) as the MS-DRA-TVTP

model.

2.2.3 Estimation of the MS-DNS Model

To estimate the MS-DNS model, one needs to use the Kalman filter to extract estimates of the

latent factors, and the Hamilton filter to determine the state and transition probabilities. Kim

and Nelson (1999) develop such a procedure where the Hamilton filter is embedded within the

Kalman filter, better known as the Kim filter. The last step of the Kim filter, the collapsing step,

ensures that the dimension of the Kalman filter stays tractable. At each iteration of the Kim

filter, the parameter exhibiting regime-switching, in the MS-DNS model µSt , is updated through

a weighting scheme where the weights are estimated by the Hamilton filter. Optimal parameter

values θML are obtained from repeating the Kim filter and ML until the log-likelihood function

is maximized. Below, I explain each step of the Kim filter and ML in more detail, which closely

follows the Kim filtering as described in Kim and Nelson (1999).

Initialisation

In the MS-DNS model, the set of parameters to be estimated is θ = {µSt ,F ,Σε,Ση, λ, p11, p22}.

The initialisation of the Kim filter is similar to that of the Kalman filter described in Section 2.1.3;

that is, I use the two-step estimates of the DNS model as starting values for µ1 = (µ1, µ2,1, µ3)′,F ,

and Ση. To ensure different estimates of µ2,1 and µ2,2, I initialise µ2,2 as two plus the two-

step estimate of µ2,1. Furthermore, the decay parameter λ is set to 0.0609 and Σε to the

identity matrix. The transition probabilities p11 and p22 are set to 0.98 and 0.90, respectively,

to ensure persistence within each regime. I initialise the state vector in regime j, βj
0∣0

, with its

unconditional mean, βj
0∣0

= (I −F )−1µSt , and its covariance matrix P0∣0 with its unconditional

covariance matrix, vec(P0∣0) = (I−F⊗F )−1 vec(Ση). Here, it should be noted that the covariance

matrix P0∣0 does not depend on regime j since the regime-switching enters the MS-DNS model

through the mean of the transition equation µSt . Finally, I use the steady-state probabilities as

initial values for the state probabilities P [S0 = j∣It], that is

P [S0 = 1] = 1 − p11
2 − p11 − p22

,

P [S0 = 2] = 1 − p22
2 − p11 − p22

.
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Kalman filter

In the MS-DNS model, one is not interested in an estimate of βt given It but also conditional

on the state St being in regime j at time t and in regime i at time t − 1

β
(i,j)
t∣t−1

= E[βt∣It−1, St = j, St−1 = i],

where its covariance matrix Pt∣t−1 is defined similarly. Conditional on St−1 = i and St = j, the

Kalman filter described in Section 2.1.3 is modified as follows

β
(i,j)
t∣t−1

= µj +Fβit−1∣t−1, (2.17)

Pt∣t−1 = FPt−1∣t−1F ′ +Ση, (2.18)

ν
(i,j)
t∣t−1

= yt −Xβ(i,j)t∣t−1
, (2.19)

ft∣t−1 =XPt∣t−1X
′ +Σε, (2.20)

β
(i,j)
t∣t

= β(i,j)
t∣t−1

+Pt∣t−1X ′f−1t∣t−1ν
(i,j)
t∣t−1

,

Pt∣t = Pt∣t−1 −Pt∣t−1X ′f−1t∣t−1XPt∣t−1.

Collapsing step

Given a M -state Markov-switching component St, the Kalman filter produces M2 forecasts

at each time t, corresponding to every possible value for i and j. This means that, at each

iteration, the number of forecasts of β
(i,j)
t∣t

increases by a factor M . Even in the MS-DNS

model, where M = 2, this would still result in more than 1,000 forecasts to consider after just

10 iterations. Therefore, it is necessary to introduce approximations to make the above Kalman

filter computationally feasible. This is done in the collapsing step, where the key idea is to

collapse the (M ×M) forecasts of β
(i,j)
t∣t

into M forecasts βj
t∣t

. Kim and Nelson (1999) propose

the following approximations for βj
t∣t

:14

βj
t∣t
=
∑Mi=1 P [St = j, St−1 = i∣It]β(i,j)t∣t

P [St = j∣It]
. (2.21)

At the end of each iteration, equation (2.21) is used to collapse the (M ×M) forecasts of β
(i,j)
t∣t

into (M × 1) forecasts βj
t∣t

. The latter are then used as input into equation (2.17) for the next

14For the derivation of the approximation for βj
t∣t, see Kim and Nelson (1999).
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iteration of the Kalman filter. However, to complete the Kalman filter with the proposed ap-

proximations, one needs to make inference on the state probabilities in equation (2.21). This is

done through the Hamilton filter.

Hamilton filter

At the beginning of iteration t, I start the Hamilton filter by calculating the joint probability of

the states P [St = j, St−1 = i∣It] using Bayes’ rule:

P [St = j, St−1 = i∣It] = P [St = j, St−1 = i∣It−1,yt]

= f(yt, St = j, St−1 = i∣It−1)
f(yt∣It−1)

= f(yt∣St = j, St−1 = i, It−1)P [St = j, St−1 = i∣It−1]
f(yt∣It−1)

. (2.22)

The two terms in the numerator and the density in the denominator can be expressed in terms

of known quantities. For instance, one can use the prediction error decomposition to rewrite the

conditional density f(yt∣St = j, St−1 = i, It−1) as

f(yt∣St = j, St−1 = i, It−1) = (2π)−
N
2 ∣ft∣t−1∣−

1
2 exp(−1

2
ν
(i,j)
t∣t−1

′f−1t∣t−1ν
(i,j)
t∣t−1

) , (2.23)

where ν
(i,j)
t∣t−1

and ft∣t−1 are obtained through the Kalman filter in equations (2.19) and (2.20),

respectively. Furthermore, the second term in equation (2.22), P [St = j, St−1 = i∣It−1], can be

rewritten as

P [St = j, St−1 = i∣It−1] = P [St = j∣St−1 = i]P [St−1 = i∣It−1]. (2.24)

Here, P [St = j∣St−1 = i] is the transition probability and P [St−1 = i∣It−1] is assumed to be given.

The density in the denominator of equation (2.22), f(yt∣It−1), is obtained by taking the sum

over all states i and j:

f(yt∣It−1) =
M

∑
j=1

M

∑
i=1

f(yt, St = j, St−1 = i∣It−1)

=
M

∑
j=1

M

∑
i=1

f(yt∣St = j, St−1 = i, It−1)P [St = j, St−1 = i∣It−1]. (2.25)
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Equation (2.23), (2.24) and (2.25) are then used to calculate P [St = j, St−1 = i∣It] in equation

(2.22). Finally, one needs to make inference on P [St = j∣It] in order to complete the collapsing

step of the Kim filter. This is done by summing over all M states

P [St = j∣It] =
M

∑
i=1

P [St = j, St−1 = i∣It]. (2.26)

After running the Hamilton filter, the probabilities in equation (2.24) and (2.26) are used in

the collapsing step to calculate βj
t∣t

. Once the Kim filtering is finished, the state vector βt∣t is

obtained by taking the probability-weighted average of the regime-dependent state vectors βj
t∣t

:

βt∣t =
M

∑
j=1

P [St = j∣It]βjt∣t.

Maximum Likelihood

After completing the Kim filter, ML is used to obtain optimal parameter estimates. In vector

notation, the (M × 1) vector of state probabilities πt∣t−1 and densities Dt are given by

πt∣t−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

P [St = 1∣It−1]

⋮

P [St = j∣It−1]

⋮

P [St =M ∣It−1]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Dt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f(yt∣St = 1, It−1)

⋮

f(yt∣St = j, It−1)

⋮

f(yt∣St =M,It−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.27)

The log-likelihood which the Kim filter maximizes with respect to θ is then given as

`(θ) = ln[f(y1,y2, ...,yT )] =
T

∑
t=1

ln[f(yt∣It−1)]

=
T

∑
t=1

log[1′(πt∣t−1 ⊙Dt)], (2.28)

where 1 is a (M×1) vector of ones and ⊙ denotes element-wise multiplication. The new estimates

of the unknown parameters θ(1) serve as input for the first step of next iteration in the Kim filter.

One obtains optimal parameter values θML when these parameters maximize the log-likelihood

function in equation (2.28). Afterwards, the updated state probabilities πt∣t are calculated as

πt∣t =
πt∣t−1 ⊙Dt

1′(πt∣t−1 ⊙Dt)
. (2.29)
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Estimation of the three macro MS-DNS models is also done with the Kim filter and is

initialised with the estimates of the two-step procedure. In the MS-DRA and MS-DRA-TVTP

model, I set the mean of the k transition equations with macro-economic indicators to 0.05. For

the MS-TVTP model, I initialise the k + 1 parameters γj in the transition probabilities with

zero such that the transition probability matrix Pt is initialised to be fixed. Finally, the same

log-likelihood as in (2.28) is maximized in all macro models but the density of yt now conditions

on the macro-economic indicators zt−1 as well.

Relative to linear time series models, diagnostic checking in regime-switching models is rather

difficult since the true residuals depend on the unobserved state St. This causes the true residuals

to be unobserved as well. To compare the in-sample performance of the DNS model and regime-

switching models, I therefore follow Smith (2008) and use the Rosenblatt (1952) transformation.

Let µj and σ2j be the conditional mean and conditional variance of yt in regime j, respectively.

Then the Rosenblatt residual ẽt is defined as

ẽt = Φ−1 ⎛
⎝
M

∑
j=1

P [St = j∣It−1]Φ(σ−1j (yt − µj))
⎞
⎠
, (2.30)

where Φ−1 is the inverse of a standard normal cumulative distribution function. If yt is generated

by the distribution implied by the model, then ẽt is i.i.d. and standard normally distributed.

In calculating the Rosenblatt residuals, I identify the yield to be in regime j when the filtered

probability for regime j is greater than 0.5.

2.3 Likelihood Ratio Test

Since all discussed models are extensions of the baseline DNS model, I assess the significance of

the extended models by performing likelihood ratio (LR) tests. For instance, I employ this test

to evaluate the additional value of the macro-economic indicators in the three macro regime-

switching models relative to the MS-DNS model.

Statistically testing for the presence of a second regime is, however, not as straightforward.

This is because the MS-DNS model is not fully nested within the DNS model due to the imposed

restriction that f22 is equal to zero. Moreover, under the null hypothesis of a single regime, the

transition probabilities and regime-switching parameter µ2,2 are not identified. This causes the

LR test statistic no longer to be approximately χ2 distributed such that LR test results are

incorrect. Consequentially, the three macro regime-switching models are also not nested within

the DNS model. An overview of which models are nested within the baseline DNS and MS-

DNS model is provided in Table 1. Here, I note that I slightly modify the DRA model and set

f22 equal to zero to keep the model specification consistent with the (macro) regime-switching
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Table 1: Overview nested models within baseline DNS and MS-DNS model

DNS DRA MS-DNS MS-DRA MS-TVTP MS-DRA-TVTP

DNS × × × × ×
MS-DNS ✓ ✓ ✓

Note: This table gives an overview of which models are nested within the baseline DNS and MS-DNS model. A
checkmark (✓) means that the considered models are indeed nested. A cross (×) indicates that it statistically
incorrect to perform the likelihood ratio test since the considered models are not fully nested.

models. This causes the DRA and DNS model not to be nested anymore.

Multiple alternatives exist to overcome the problem of a non-χ2 distributed LR statistic

when testing for the existence of multiple regimes. Hansen (1996) introduces a standardized LR

test for nonlinear models such as regime-switching models. In this test, the identified parameters

are concentrated out of the likelihood function (also called the ’concentrated’ likelihood) which

is then maximized with respect to the unidentified parameters through a grid search. How-

ever, Garcia (1998) shows that the standardized LR test of Hansen (1996) is computationally

demanding, even when the amount of model parameters is quite small.

Therefore, numerous studies still resort to the LR test to provide a certain degree of confi-

dence about the significance of a second regime. For instance, Gelman and Wilfling (2009) es-

timate a Markov-switching generalized autoregressive conditional heteroscedasticity (GARCH)

model and use bootstrapping techniques to evaluate the finite-sample distribution of their LR

test statistic. They report the finite distribution to be comparable to a χ2 distribution with the

degrees of freedom equal to the number of parameter restrictions. Due to this promising result

and because existing tests for regime-switching models require substantial computer power, I

also recede to the LR test.
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3 Data

This section discusses the data used in this thesis. Section 3.1 studies the US Treasury yield

data. In Section 3.2, I describe the macro-economic indicators which are used to extend the

MS-DNS model and elaborate on the relation between these indicators and the yield curve.

3.1 US Treasury Yields

I use end-of-the-month US yield data from January 1986 to December 2018. For the short

end of the yield curve, I use three- and six-month Treasury yields from the H.15 database of

the Fed. This yield data is combined with continuously compounded smoothed zero-coupon

Treasury yields with maturities of one, two, three, five, seven and ten years from the Gürkaynak

et al. (2007) database.15 This database provides Treasury yield curve estimates based on the

Svensson (1994) model which is an extension of the Nelson-Siegel model by including a second

curvature factor. Combining yield data from these two databases is done before by studies such

as Christensen (2013) and Bauer and Rudebusch (2016).

An important reason to particularly study this sample period is due to the recent periods

of extreme low interest rates in the US. Gaussian term structure models, including the Nelson-

Siegel model, typically do not incorporate the possibility of interest rates to reach the ZLB

since this rarely happens in practice. Therefore, Gaussian type of models often provide a poor

approximation of the yield curve near the ZLB.

Figure 2 presents a surface plot of the yield curve against maturity and time. It shows that

yields vary significantly over time and that interest rates are extremely low from the start of

the global financial crisis in 2008. Furthermore, it is evident that the yield curve is not constant

over time but can take a variety of shapes. During the beginning of the sample period, the yield

curve is nearly flat, whereas it is steeply upward sloping during the global financial crisis.

15The yield data sets are available at https://www.federalreserve.gov/releases/h15/ and
https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
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Figure 2: Yield curve surface plot

Note: This figure shows a surface plot of the monthly US yield data, spanning the period January 1986 to

December 2018 at maturities of 3 and 6 months, and 1, 2, 3, 5, 7, and 10 years.

Table 2 presents summary statistics of the US Treasury yields data and of the empirical

level, slope and curvature factors which are similarly defined as in Diebold and Li (2006). The

empirical level factor is equal to the 120-month yield. The empirical slope factor is the spread

of the 3-month yield over the 120-month yield, and the empirical curvature factor is twice the

24-month yield minus the sum of the 3-month and 120-month yield.

The statistics show that, in general, the yield curve is upward sloping, and that the long end

is less volatile and more persistent over time than the short end. However, the 3-month Treasury

yield is still quite persistent with an autocorrelation of 0.519 after 30 months. Furthermore, the

level factor is highly persistent and has a relatively small standard deviation. On the other hand,

the slope factor is the least persistent factor and highly variable around its mean. This is in

contrast to previous literature which often finds the curvature factor to be the least persistent.

My finding regarding the slope factor is most likely due to the change from a nearly flat to a

steep curve during the end of the sample period where interest rates are extremely low.16

It is known from the literature that the first three principal components summarize most

of the information contained in the yield curve (see Litterman and Scheinkman (1991)). In

Table C.12 of the Appendix, I perform a principal component analysis and indeed find that the

first three components account for 99.97% of the total variation in the yield curve. The first

component explains 97.13% of the variation in the data and has a positive loading across all

maturities. Hence, the first component may be interpreted as a level factor as a shock would

cause all yields to change in the same direction. The second component captures 2.66% of the

16 Levant and Ma (2017) also find the slope factor to be the least persistent factor in periods of low interest rates
due to the yield curve being flat.
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Table 2: Summary statistics Treasury yields (in %)

Maturity Mean Std. dev. Minimum Maximum ρ̂1 ρ̂12 ρ̂30

3 3.285 2.573 0.000 9.230 0.993 0.845 0.519
6 3.432 2.613 0.030 9.540 0.993 0.850 0.528
12 3.617 2.635 0.099 9.658 0.993 0.863 0.567
24 3.874 2.611 0.188 9.566 0.991 0.877 0.633
36 4.108 2.543 0.306 9.459 0.990 0.885 0.679
60 4.511 2.398 0.627 9.317 0.988 0.891 0.730
84 4.837 2.285 1.007 9.406 0.987 0.892 0.751
120 (level) 5.195 2.174 1.498 9.642 0.986 0.890 0.760
Slope 1.910 1.205 −0.616 4.376 0.966 0.442 −0.286
Curvature −0.731 0.900 −2.691 1.634 0.949 0.596 0.148

Note: This table presents summary statistics of the US Treasury yields, spanning the period January 1986 to
December 2018, measured in percentages on a monthly basis. For each maturity, I show the mean, standard
deviation, minimum, maximum and the autocorrelation coefficient at 1 month (ρ̂1), 1 year (ρ̂12), and 30
months (ρ̂30).

variation in the Treasury yields and has considerable negative loadings at the short end and

substantial positive loadings at the long end of the yield curve. Therefore, this component

serves as a slope factor since shocks to this factor determine whether the yield curve flattens or

becomes steeper. Lastly, the third component, which accounts for 0.18% of the yield variation,

is hump shaped as the loadings are only negative for the middle part of the curve and can thus

be interpreted as a curvature factor. This motivates the use of the Nelson-Siegel model, which

also uses a level, slope and curvature factor, for modelling the Treasury yields.17

3.2 Macro-Economic Indicators

As macro-economic indicators, I consider the real gross domestic product (GDP) growth, the

Federal funds rate (FFR), and the percent change in the seasonally-adjusted consumer price

index (CPI), which are all obtained from the database of the Federal Reserve Bank of St. Louis

(FRED).18 I consider these three indicators as they are widely considered to be the minimum

set of economic fundamentals required to capture macro-economic dynamics (see Rudebusch

and Svensson (1999) and Kozicki and Tinsley (2001)). The three variables namely represent the

level of real economic activity relative to potential, the monetary policy instrument, and the

inflation rate, respectively. GDP (CPI) growth is measured as the percentage change relative to

the same quarter (month) one year ago (also known as year-over-year changes). Furthermore,

as GDP is only available at a quarterly frequency, I assume that GDP growth is equal for the

months within each quarter.

Panel (A) of Table 3 presents summary statistics of the macro-economic indicators. The

17It should be noted, however, that the principal component factors are not identical to the estimated level, slope
and curvature factor from the Nelson-Siegel model.
18Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org/.
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year-over-year changes of both GDP and CPI are on average positive. The average FFR is far

away from zero but quite volatile around its mean. Furthermore, both GDP and CPI growth

attain their minimum value around the global financial crisis in 2008. It was also during this

period that the Fed started its first round of quantitative easing to fight domestic deflation. The

American central bank had to rely on such an unconventional form of monetary policy since its

policy rate was already near the ZLB. This is also reflected in the minimum FFR of seven basis

points which is reached approximately two years after the crisis.

Table 3: Summary statistics macro-economic indicators

Panel (A): Summary statistics (in %) and autocorrelation coefficients

Macro Factor Mean Std. dev. Minimum Maximum ρ̂1 ρ̂12 ρ̂30

GDP Growth 2.618 1.636 -3.900 5.300 0.963 0.331 0.032

FFR 3.492 2.744 0.070 9.850 0.994 0.842 0.507

CPI Growth 2.611 1.333 -2.097 6.290 0.957 0.294 0.149

Panel (B): Correlation with empirical factors and first three principal components

Macro Factor Level Slope Curvature First P.C. Second P.C. Third P.C.

GDP Growth 0.310 -0.307 0.523 0.398 -0.177 -0.300

FFR 0.879 -0.537 0.679 0.972 -0.187 0.098

CPI Growth 0.588 -0.260 0.346 0.616 -0.043 0.162

Note: This table presents summary statistics of the macro-economic indicators, spanning the period January
1986 to December 2018. In Panel (A), I show the mean, standard deviation, minimum, maximum (all in %) and
the autocorrelation coefficient at 1 month (ρ̂1), 1 year (ρ̂12), and 30 months (ρ̂30). Panel (B) presents correlations
between the indicators, the empirical factors and the first three principal components. The latter are obtained
from the principal component analysis shown in Table C.12 of the Appendix.

In Figure 3, I plot time series of the empirical factors and the three macro-economic indi-

cators. The three indicators follow roughly the same pattern as they are all quite stable before

the start of the global financial crisis and drop dramatically during the crisis. From the plots,

one may see a clear relation between GDP growth, the FFR and the inflation rate (measured

by CPI). During times of economic contraction, unemployment rates often increase while wages

decrease. This results in a decrease of the inflation rate. The Fed tries to prevent the inflation

from falling by stimulating the economy. One way is by lowering the FFR which makes bor-

rowing money cheaper. Therefore, consumers have more money to spend, causing GDP to grow

and inflation to increase. The pattern described above is clearly visible during, for example, the

period of 2001 and onward.

Figure 3 also shows that the empirical yield factors are closely linked to the macro-economic

indicators. This is confirmed by the correlations between the indicators and empirical factors,

which are shown in the first three columns of Panel (B) of Table 3. The correlation between
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the empirical level and CPI growth is 0.588; for the empirical slope and GDP growth this is

0.307. The magnitude of these correlations is consistent with those found in DRA. Furthermore,

the correlation between the empirical curvature and FFR is 0.679. The last three columns of

Panel (B) of Table 3 also show that the correlations between the indicators and the first three

principal components are of a similar size (except for the correlation between GDP growth and

the third component). This supports the interpretation of the first three components as a level,

slope and curvature factor. Since CPI, GDP growth and the FFR are closely linked to the first

three components and the empirical level, slope and curvature, it is sensible to include these

three macro-economic indicators in the regime-switching models.

Figure 3: Time series of empirical factors and macro-economic indicators

Note: This figure shows time series of the empirical level, slope and curvature factors together with three closely

linked macro-economic indicators, spanning the period January 1986 to December 2018. GDP growth and CPI

growth are measured based on year-over-year changes.
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4 In-sample Results

In this section, I present in-sample results of the various Nelson-Siegel models. Section 4.1

describes the findings on the baseline DNS model. Section 4.2 presents the model of DRA which

extends the DNS model with macro-economic indicators. In Section 4.3, I discuss the in-sample

fit of the MS-DNS model which allows for regime-switching in the baseline model. Extensions

of the MS-DNS model with macro-economic indicators are discussed in Section 4.4 - 4.6.

4.1 DNS: Baseline Dynamic Nelson-Siegel Model

In Panel (A) of Table 4, I report estimation results for the baseline DNS model where the latent

factors follow a restricted AR(1) process, as shown in equations (2.6) and (2.7) of Section 2.1.2.

Estimates of the autoregressive matrix F show that all three Nelson-Siegel factors are significant

and highly persistent. Furthermore, the level is the most persistent and the curvature the least

persistent factor. This is in line with the first-order autocorrelation coefficients of the empirical

factors found in Table 2 of Section 3.1. The mean level and slope are both insignificantly

different from zero; only the mean curvature is significant at the five percent level. Estimates of

the covariance matrix Ση are presented in Panel (B). The volatility of the transition disturbances

increases when we move from the level to the slope to the curvature factor. Finally, the estimated

decay parameter λ of 0.040 is highly significant and implies that the loading on the curvature

factor attains its maximum at a maturity of 44.8 months.

Table 4: Estimates of the DNS model - AR specification

Panel (A): Autoregressive matrix F and vector of means µ

Levelt−1 Slopet−1 Curvaturet−1 µ

Levelt (β1,t) 0.993 0.041

(0.005) (0.030)

Slopet (β2,t) 0.986 -0.032

(0.008) (0.025)

Curvaturet (β3,t) 0.942 −0.088

(0.017) (0.048)

Panel (B): Covariance matrix Ση and decay parameter λ

Levelt (β1,t) Slopet (β2,t) Curvaturet (β3,t) λ

Levelt (β1,t) 0.066 0.040

(0.004) (0.000)

Slopet (β2,t) 0.112

(0.007)

Curvaturet (β3,t) 0.942

(0.060)

Note: This table reports estimates of the baseline DNS model where the latent factors follow an AR(1) process.
Panel (A) presents estimates of the autoregressive coefficient matrix F and vector of means µ. Panel (B) shows
estimates of the covariance matrix Ση and decay parameter λ. Bold entries denote parameter estimates significant
at the five percent level. Standard errors appear in parentheses.
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For completeness, I also present parameter estimates of the DNS model where the latent fac-

tors follow a VAR(1) process. Table C.13 of the Appendix shows that all estimated coefficients

and standard errors are of equal magnitude relative to the restricted AR(1) DNS model. More-

over, only one of the off-diagonal elements in F and none of the off-diagonal elements in Ση are

significant. Since both versions of the DNS model give similar parameter estimates in-sample

but the parsimonious AR(1) version has found to produce significantly better forecasts out-of-

sample (see Christensen et al. (2011)), I use the restricted AR(1) DNS model as the baseline

model for its extensions.

To evaluate the in-sample performance of the Nelson-Siegel models, the first column of Table

5 reports residual diagnostics of the DNS model based on the Rosenblatt transformation as shown

in equation (2.30) of Section 2.2.3. According to the Jarque-Bera test statistics in Panel (A),

normality is rejected for 7 out of the 8 maturities at the five percent level. This suggests that the

DNS model does not fit the yield data quite well. The Ljung-Box test statistics for the residuals

and squared residuals in Panel (B) and (C) do, however, indicate that the Rosenblatt residuals

are i.i.d. distributed.

I use the Kalman filter to obtain estimates of the latent Nelson-Siegel factors. The top panel

of Figure 4 shows the predicted latent factors together with their empirical proxies. The level

factor is positive but steadily decreases over time. In contrast, the slope and curvature factor

are mostly negative. The loading on the slope factor also switches between a state where it is

negative and one where its loading is near zero. Finally, all three factors are closely linked to

their empirical proxies with a correlation of 0.82, -0.85 and 0.78, respectively, which supports

the interpretation of the latent factors as a level, slope and curvature factor. Only starting

from the beginning of the global financial crisis in 2008, the DNS model tends to produce more

extreme estimates of the latent factors. That is, the estimated factor is more positive when the

empirical proxy is positive, and more negative when the empirical proxy is negative.
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Table 5: Rosenblatt residual diagnostics

Maturity (months) DNS DRA MS-DNS MS-DRA MS-TVTP MS-DRA-TVTP

Panel (A): Jarque-Bera test
3 0.028* 0.047* 0.050* 0.025* 0.010* 0.124
6 0.045* 0.071 0.107 0.111 0.141 0.119
12 0.042* 0.068 0.105 0.111 0.072 0.064
24 0.055 0.041* 0.067 0.107 0.118 0.126
36 0.040* 0.031* 0.094 0.028* 0.062 0.104
60 0.038* 0.061 0.089 0.062 0.108 0.103
84 0.034* 0.029* 0.081 0.022* 0.106 0.100
120 0.030* 0.057 0.037* 0.087 0.105 0.129

Panel (B): Ljung-Box test
3 0.409 0.386 0.730 0.779 0.810 0.795
6 0.421 0.522 0.737 0.785 0.824 0.810
12 0.395 0.478 0.701 0.758 0.800 0.778
24 0.390 0.355 0.698 0.741 0.789 0.772
36 0.378 0.336 0.684 0.729 0.772 0.763
60 0.381 0.444 0.715 0.740 0.794 0.791
84 0.412 0.361 0.733 0.761 0.810 0.804
120 0.347 0.401 0.589 0.678 0.718 0.689

Panel (C): Ljung-Box test squared residuals
3 0.346 0.315 0.518 0.576 0.612 0.600
6 0.381 0.402 0.555 0.594 0.634 0.618
12 0.339 0.359 0.514 0.558 0.601 0.584
24 0.335 0.308 0.512 0.547 0.594 0.571
36 0.333 0.295 0.483 0.539 0.589 0.567
60 0.335 0.356 0.494 0.545 0.595 0.580
84 0.369 0.310 0.491 0.573 0.608 0.581
120 0.321 0.348 0.427 0.518 0.560 0.522

Note: This table reports residual diagnostics of the Nelson-Siegel models based on the Rosenblatt transformation, as shown in equation (2.30) of
Section 2.2.3. Panel (A), (B) and (C) show p-values of the Jarque-Bera normality test, Ljung-Box serial correlation test, and the Ljung-Box test
for squared residuals, respectively. An asterisk (*) denotes significance at the five percent level.
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Figure 4: Predicted Nelson-Siegel factors of the DNS and MS-DNS model

Note: This figure presents the predicted level, slope, and curvature obtained from the DNS model (bold line) and

the MS-DNS model (dashed line). Panels (A), (B), and (C) show the predicted level, slope, and curvature factor,

respectively, of both models together with their empirical proxies. The empirical level is equal to the 120-month

yield. The slope is the spread of the 3-month yield over the 120-month yield, and the curvature is twice the

24-month yield minus the sum of the 3-month and 120-month yield. In the bottom plot of each panel, I present

the differences of the predicted level, slope and curvature estimates of the DNS and MS-DNS model.
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Figure 4: (Continued.)

4.2 DRA: The DNS Model with Macro-Economic State Variables

In this section, I follow the work of DRA and include macro-economic indicators as state variables

in the baseline DNS model. Recall that I set f22 to zero to keep the model specification consistent

with the specification of the (macro) regime-switching models. In addition, I only let the upper

right (3 × 3) block unrestricted in the autoregressive matrix F ∗ such that there is a macro-

to-yields interaction but the yields do not give any feedback to the indicators. This is, again,

consistent with the (macro) regime-switching models.

The parameter estimates of the DRA model in Table 6 are quite similar to those found by

DRA. First, the level, curvature and the macro-economic indicators are all highly significant

and persistent. Second, GDP growth is a significant predictor for the slope factor whereas the

Federal funds rate significantly influences both the level and slope factor.19

Residual diagnostics of the DRA model, presented in the second column of Table 5 in Section

4.1, show that the inclusion of macro-economic indicators in the baseline DNS model marginally

improves the in-sample fit. The p-values of the Jarque-Bera and Ljung-Box statistics slightly

increase for 4 out of the 8 maturities. The minor improvement of the DRA model is also

profound in terms of log-likelihood and information criteria values, which are shown in Table

7. The addition of 18 parameters in the DRA model improves the log-likelihood value by just

118.0. The decrease in the Akaike information criterion (AIC) and the Bayesian information

19The only difference between the indicators used in the original model of DRA and in this thesis is that DRA
use manufacturing capacity utilization instead of GDP growth as a proxy for the level of real economic activity
relative to potential.

29



criterion (BIC) value is of a similar magnitude. However, the value of the LR test statistic of

236.0 gives an indication that the performance of the DRA model over the baseline model is

still sizeable.

Table 6: Estimates of the DRA model

Levelt−1 Slopet−1 Curvaturet−1 GDPt−1 FFRt−1 CPIt−1 µ λ

Levelt (β1,t) 0.951 -0.018 0.024 -0.006 1.327 0.039

(0.032) (0.021) (0.028) (0.012) (1.120) (0.004)

Slopet (β2,t) 0.036 0.341 0.031 −0.518

(0.015) (0.071) (0.028) (0.367)

Curvaturet (β3,t) 0.878 0.042 0.008 -0.002 -0.412

(0.031) (0.017) (0.074) (0.043) (0.437)

GDPt 0.998 1.586

(0.012) (0.452)

FFRt 0.991 0.741

(0.037) (0.439)

CPIt 0.976 0.418

(0.010) (0.448)

Note: This table reports a selection of the parameter estimates of the DRA model. The table presents estimates
of the autoregressive coefficient matrix F ∗, vector of means µ and decay parameter λ. Bold entries denote
parameter estimates significant at the five percent level. Standard errors appear in parentheses.

Table 7: Log-likelihood and information criteria of the Nelson-Siegel models

Log-likelihood # parameters AIC BIC LR-stat. (DNS) LR-stat. (MS-DNS)

DNS 4240.0 18 −8443.9 −8372.2
DRA 4358.0 36 −8644.0 −8500.7 236.0(×)
MS-DNS 4930.8 20 −9821.6 −9741.9 1381.7(×)
MS-DRA 5067.1 38 −10 058.3 −9907.0 1654.2(×) 272.7
MS-TVTP 5012.4 26 −9972.9 −9869.3 1544.8(×) 163.3
MS-DRA-TVTP 5148.4 44 −10 208.8 −10 033.6 1816.8(×) 435.2

Note: This table presents log-likelihood values, the number of parameters (# parameters), the Akaike information
criterion (AIC) and Bayesian information criterion (BIC) for the DNS model and its extensions with regime-
switching and macro-economic indicators. In the last two columns, I present likelihood ratio test statistics
(LR-stat.) of the extended models against the baseline DNS model, and of the regime-switching macro models
against the MS-DNS model, respectively. A cross (×) indicates that it is statistically incorrect to perform the
likelihood ratio test since the considered models are not fully nested. In these cases, the likelihood ratio test
statistic is reported to provide a certain degree of confidence about the improvement of the considered model.
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4.3 MS-DNS: The DNS Model with Markov-Switching

The second modification of the baseline DNS model allows for regime-switching in the mean

of the latent slope factor. Panel (A) of Table 8 presents estimation results for the MS-DNS

model, which modifies the transition equation of the DNS model as given in equation (2.11) of

Section 2.2.1. The switching mean has two distinct states that are both highly significant. In

the first state, µ2,1 equals -1.190 indicating a nearly flat yield curve and, hence, a period where

short and long term interest rates do not differ substantially. The second state corresponds

to a steep yield curve as µ2,2 equals -4.503. The two estimates of the regime-switching mean

accurately coincide with the two states found in the empirical slope in Figure 4 of Section 4.1.

The estimated transition probabilities in Panel (B) show that both states are highly persistent.

This is economically very encouraging since it indicates that within each regime the shape of the

term structure is relatively stable across time. Contrary to the DNS model, the volatility in the

transition disturbances of Ση is the highest for the slope factor. This is due to the specification

of the MS-DNS model which sets the middle element of F , f22, equal to zero. Hence, all the

variability in the slope factor is accounted for in the regime-switching mean and the transition

error.

Table 8: Estimates of the MS-DNS model

Panel (A): Autoregressive matrix F , vector of means µ1 and µ2, and decay parameter λ

Levelt−1 Slopet−1 Curvaturet−1 µ1 µ2 λ

Levelt (β1,t) 0.991 0.052 0.041

(0.006) (0.036) (0.001)

Slopet (β2,t) −1.190 −4.503

(0.089) (0.107)

Curvaturet (β3,t) 0.944 -0.086

(0.017) (0.047)

Panel (B): Covariance matrix Ση, and transition probabilities p11 and p22

Levelt (β1,t) Slopet (β2,t) Curvaturet (β3,t) p11 p22

Levelt (β1,t) 0.082 0.975 0.971

(0.007) (0.011) (0.012)

Slopet (β2,t) 1.038

(0.078)

Curvaturet (β3,t) 0.622

(0.066)

Note: This table reports estimates of the MS-DNS model. Panel (A) presents estimates of the autoregressive
coefficient matrix F , vector of means during periods of normal interest rates (µ1) and low interest rates (µ2), and
decay parameter λ. Panel (B) presents estimates of the covariance matrix Ση, and the transition probabilities
p11 and p22. Bold entries denote parameter estimates significant at the five percent level. Standard errors appear
in parentheses.
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The third column of Table 5 in Section 4.1 shows residual diagnostics of the MS-DNS model.

It shows that the model fits the term structure considerably better than the baseline DNS model

as normality is only rejected for 2 out of the 8 maturities. The Ljung-Box statistics for the MS-

DNS model are also considerably larger. Similar to the DNS model, the 3-month and 120-month

yield are the most difficult to fit for the regime-switching model indicated by the significant p-

value of the Jarque-Bera test. However, the crucial middle part with maturities ranging from 6

to 60 months is fit substantially better as 4 out of the 6 improvements of in-sample fit occur in

the middle part of the curve. Table 7 of Section 4.2 presents the performance of the Nelson-Siegel

models in terms of their log-likelihood, AIC and BIC values, as well as LR test statistics. The

difference in log-likelihood between the MS-DNS and DNS model of 690 is very encouraging.

This is also shown by the substantial decrease in AIC and BIC values. In addition, the LR

statistic of 1381.7 provides strong evidence for the presence of the second regime.

In the top panel of Figure 4 in Section 4.1, I plot the predicted latent factors of the MS-

DNS model. The predicted level and curvature obtained from the DNS and MS-DNS model

do not deviate substantially from their empirical proxies until the start of 2008 and onward.

The difference between the predicted slope of both models is more apparent. The slope of the

MS-DNS model is indeed able to distinguish between the two states, which is in line with the

parameter estimates found for the regime-switching mean in Table 8. In addition, when the

empirical slope is near zero, the MS-DNS model slightly underestimates the slope relative to the

DNS model. However, the predicted slope of the regime-switching model follows its empirical

proxy considerably better when the empirical slope is far away from zero.

The bottom panel of Figure 4 presents the difference between the predicted factors of both

models. A difference above (below) the zero line indicates an overestimation (underestimation)

of the DNS model relative to the MS-DNS model. The difference is mostly visible for the slope

and curvature factor, especially during economic recessions such as the Mexican peso crisis in

1994, the dot-com bubble in 2002, and the global financial crisis in 2008. For the level factor,

the difference between the two models is less apparent with only a major outlier in 2008. The

predicted factors obtained from the MS-DNS model follow their empirical proxies slightly better

during recessions. For instance, in 2008 the DNS model overestimates the level factor relative

to the MS-DNS model. This indicates that the filtered level of the MS-DNS model is closer

to its empirical proxy (as the empirical level is lower than the filtered level of both models).

The finding above is also confirmed in terms of correlation. The inclusion of regime-switching

improves the correlation between the latent and empirical factors from 0.82, -0.85 and 0.78 to

0.93, -0.96 and 0.95 for the level, slope and curvature, respectively.
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I present filtered probabilities of the low interest rate regime (regime 2) obtained from the

Kim filter in Figure 5. It confirms that the second regime is very persistent since regime switches

only occur after an extended time period. This behaviour of the term structure in both regimes

naturally links to the evolution of the business cycle.20 Next to the filtered probabilities, I show

NBER recession periods which include economic crises such as the early 1990s recession, the

dot-com bubble, and the global financial crisis. The NBER recessions coincide fairly well with

the filtered probabilities and the MS-DNS model is able to identify the start of all three major

crises during the sample period.

Figure 5 also displays the short-term interest rate, taken to be the 3-month yield, which

is normalized between 0 and 1. It shows that periods where the filtered probability for the

low interest rate regime is close to one correspond to periods where the short rate decreases

substantially. Furthermore, the short rate remains relatively low during the low interest rate

regime until the filtered probability decreases towards zero (e.g. during the periods 1990 - 1995,

2000 - 2005, and 2008 - 2016). Particularly interesting is the period after 2010 which the MS-

DNS model recognizes as a low interest rate regime, even though it does not coincide with a

recession. This indicates that the MS-DNS model is not only able to recognize periods of low

interest rates due to the start of an economic recession but also when the economy is relatively

stable.

In Figure 6, I assess the in-sample fit of the MS-DNS model in both regimes as well as

over the full sample. The estimated yields in each regime are obtained by including the yield

in regime j when the filtered probability for regime j is greater than 0.5, for each month t.

Figure 6 confirms that the first regime corresponds to a nearly flat curve whereas the second

regime exhibits a steep curve. Furthermore, the fitted short rate is, on average, 2.96% lower in

the second regime. This indeed indicates that the first regime resembles a period with normal

interest rate levels, and the second regime a period with low interest rates. Consequently, the

average yield curve over the full sample falls between the two regime-dependent curves. For

completeness, I also compare the fitted curves in each regime by taking the probability-weighted

average between the fitted yields and the filtered state probabilities. These are shown in Figure

C.13 of the Appendix. The shape of the fitted curves is similar to those presented in Figure 6

and the average fitted short rate in the second regime is also substantially lower than in the first

regime.

20I also estimate a version of the MS-DNS model which relaxes the assumption that f22 equals zero and sets F
to a diagonal matrix. Figure C.12 of the Appendix presents the filtered probabilities of this model specification.
It shows that regime-switching occurs less frequently and the two states are less persistent which is intuitively
unappealing. This confirms the claim of Bernadell et al. (2005) that setting f22 to zero in the MS-DNS model is
preferred.
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Figure 5: Filtered probabilities second regime of the MS-DNS model

Note: This figure shows filtered probabilities for the second regime, a regime with low interest rates, based on

the MS-DNS model. It also plots the 3-month yield (dashed line), normalized between 0 and 1. Shaded areas

correspond to NBER recession periods.

Figure 6: Average fit of the MS-DNS model

Note: This figure shows the average fit of the MS-DNS model. I show the average fitted yield curve over the full

sample (solid line), and in each regime (dashed line). The regime-dependent curves are obtained by including the

yield in regime j when the filtered probability for regime j is greater than 0.5. Observed yields are presented as

dots, stars and crosses.
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The difference in in-sample fit between the DNS and MS-DNS model becomes more visible

when one considers the fit for different yield curve shapes. Figure 7 reveals that both models

fit the curve well when it is upward sloping (e.g. November 1987). However, the small hump

in the short end of the curve in October 2008 is not fit by both models. The fitting capability

of the MS-DNS model is more apparent for hump shaped curves such as in February 2006 and

December 2018. Both curves are fit remarkably well by the MS-DNS model, except for the

3-month and 120-month yield, which is consistent with the residual diagnostics found in Table

5 of Section 4.1. Interestingly, the DNS model seems to take the relatively low 3-month yield

into account by underestimating the entire short end of the yield curve.

Figure 7: Fitted yield curve of the DNS and MS-DNS model for various shapes

Note: This figure shows the fitted yield curve of the DNS (solid line) and MS-DNS model (dashed line) for various

yield curve shapes. Observed yields are presented as dots.
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4.4 MS-DRA: Macro-Economic State Variables

Next, I introduce the addition of macro-economic indicators as state variables in the MS-DNS

model. Table 9 presents a selection of the parameter estimates of the MS-DRA model, shown

in equations (2.13) and (2.14) of Section 2.2.2. The parameter estimates of the MS-DRA model

are very similar to those of the DRA model discussed in Section 4.2. That is, the level and

curvature factor as well as the macro-economic indicators are all highly persistent and signifi-

cant.21 Furthermore, when I consider the macro-to-yields interaction represented by the upper

right 3×3 block of F ∗, GDP growth has a significant effect on the slope factor while the Federal

funds rate significantly influences the yields through both the level and slope factor. Estimates

of the regime-switching mean are similar to those of the MS-DNS model. The mean of the slope

factor in the second state is substantially lower than in the first state, indicating a steeper curve

in the second regime. Lastly, both transition probabilities are significant and both states are

very persistent as well.

Table 9: Estimates of the MS-DRA model

Levelt−1 Slopet−1 Curvaturet−1 GDPt−1 FFRt−1 CPIt−1 µ1 µ2 λ p11 p22

Levelt (β1,t) 0.935 -0.029 0.048 -0.016 0.328 0.040 0.973 0.981

(0.052) (0.037) (0.041) (0.033) (0.022) (0.005) (0.009) (0.014)

Slopet (β2,t) 0.043 0.335 0.043 −2.904 −5.499

(0.024) (0.086) (0.032) (0.094) (0.112)

Curvaturet (β3,t) 0.907 0.053 0.022 -0.013 -0.337

(0.038) (0.021) (0.089) (0.052) (0.041)

GDPt 0.997 1.434

(0.017) (0.036)

FFRt 1.000 0.868

(0.054) (0.044)

CPIt 0.982 0.257

(0.014) (0.048)

Note: This table reports a selection of the parameter estimates of the MS-DRA model. The table presents estimates of
the autoregressive coefficient matrix F ∗, vector of means during periods of normal interest rates (µ1) and low interest rates
(µ2), decay parameter λ and transition probabilities p11 and p22. Bold entries denote parameter estimates significant at the
five percent level. Standard errors appear in parentheses.

I evaluate the in-sample fit of the MS-DRA model by examining the diagnostics of the

Rosenblatt residuals, which are shown in the fourth column of Table 5 in Section 4.1. The MS-

DRA model performs substantially better than the DRA model as normality is only rejected for

2 out the 8 maturities. The in-sample gain is most profound at the short and middle end of the

yield curve (except for the 36-month yield). Relative to the MS-DNS model, including macro-

economic indicators as state variables improves the in-sample fit for 5 out of the 8 maturities. The

MS-DRA model particularly fits the short end of the curve better. In terms of serial correlation,

21The own-lag coefficient of FFRt rounds to 1.00 but is actually slightly less than one (0.9998).
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the Ljung-Box statistics of the MS-DRA model are higher for all maturities suggesting that the

Rosenblatt residuals are indeed i.i.d.

Table 7 of Section 4.2 shows the performance of the MS-DRA model in terms of log-likelihood,

AIC and BIC values, and LR test statistics. The improvement of the MS-DRA model over the

DRA model is substantial and of a similar magnitude as that of the MS-DNS model over the

DNS model. Relative to the MS-DNS model, the log-likelihood value of the MS-DRA model

slightly improves. However, compared to the increase in log-likelihood value when one includes

regime-switching in the DRA model, the improvement of the MS-DRA model over the MS-DNS

model is not much. The same result can be found from the AIC and BIC values. The MS-

DRA model, however, still significantly improves the MS-DNS model indicated by the high LR

test statistic of 272.7. This suggests that the inclusion of macro-economic indicators as state

variables does significantly improve the in-sample performance of the MS-DNS model.

In Figure 8, I show filtered probabilities of the second regime obtained from the MS-DRA

model. The second regime is still very persistent as regime-switches occur infrequently. The

filtered state probabilities of the MS-DRA model are, for a large extent, similar to those of the

MS-DNS model. The former model recognizes the start of all three major crises during the

sample period. The extreme low interest rate period after 2010 is also captured by the MS-DRA

model. The effect of the macro-economic indicators is most profound during the beginning of

the sample period until 1989. During this period the Federal funds rate, which significantly

influences the slope factor in the MS-DRA model, was quite volatile and mostly decreasing.

Hence, the MS-DRA model assigns a considerably higher state probability for the second regime

than the MS-DNS model during the same period.

Lastly, I examine the in-sample performance of the MS-DRA model within each regime in

Figure 9. The regime-dependent curves are obtained in a similar way as for the MS-DNS model

in Figure 6 of Section 4.3. The yield curve is, again, substantially steeper in the low interest rate

regime than in the normal regime. However, relative to the MS-DNS model the average fitted

short rate in the normal regime is 0.79% lower, whereas the average fitted short rate in the low

interest rate regime is 1.03% higher. This is most likely because the MS-DRA model recognizes

the period before 1990 as a low interest rate regime, while interest rates were actually quite high

during that time compared to interest rate levels later in the sample period.
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Figure 8: Filtered probabilities second regime macro regime-switching models

Note: This figure shows filtered probabilities for the second regime, a regime with low interest rates, based on the

three macro regime-switching models. It also plots the 3-month yield (dashed line), normalized between 0 and 1.

Shaded areas correspond to NBER recession periods.

Figure 9: Average fit of the MS-DRA model

Note: This figure shows the average fit of the MS-DRA model. I show the average fitted yield curve over the full

sample (solid line), and in each regime (dashed line). Observed yields are presented as dots, stars and crosses.
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4.5 MS-TVTP: Time-Varying Transition Probabilities

I relax the assumption of a constant transition probability matrix and allow the transition

probabilities to vary over time, as shown in equation (2.15) of Section 2.2.2. The parameter

estimates of the autoregressive matrix F and vector of means in both regimes are similar to

those of the MS-DNS model. Hence, I only present estimates of the logit model which are used

to compute the TVTPs. One caveat in interpreting the coefficients in the MS-TVTP (and MS-

DRA-TVTP) model is the nonlinearity of the logit model. This causes parameter interpretation

to be less straightforward. To solve this problem, I follow Kole and Van Dijk (2017) who suggest

to consider the marginal effect of the change in one indicator, evaluated at specific values for all

indicators. For a more elaborate discussion on how the marginal effects in the logit model are

computed, I refer to Appendix B.

The first two columns of Table 10 show estimates and marginal effects of the logit specification

in the MS-TVTP model. The parameter estimates reveal that an increase (decrease) in GDP

growth results in a significantly higher probability of staying in the normal (low interest rate)

regime in the next state. This is as expected since an increase in GDP levels indicates an

expansion of the economy such that interest rate cuts are not necessary. Similarly when GDP

growth shrinks, it is more likely that central banks lower interest rate levels to stimulate the

economy. The Federal funds rate quite surprisingly does not influence the transition probabilities

significantly. This is in contrast to the estimation results of the MS-DRA model in Table 9 of

Section 4.4, where the Federal funds rate does affect both the level and slope factor. Lastly,

inflation is only significant in a regime with low interest rates which correctly suggests that it is

an important indicator to determine whether interest rates will remain low in the next state.

The marginal effect of a one-standard deviation change is calculated using the reference

probability p̂jj and the coefficients of the indicators. The former term is calculated based on

equation (B.2) of Appendix B. Consequentially, in a two-state logit model the marginal effect of

indicator k in regime j with coefficient γj,k is calculated as p̂jj(1− p̂jj)γj,k. Table 10 shows that,

in general, marginal effects are quite small, ranging from -0.045 to 0.144. However, the addition

of the macro-economic indicators can still substantially increase the probability of remaining

in the low interest rate regime. For instance, the marginal effect of a one-standard deviation

increase in CPI growth almost triples the probability of remaining in the second regime from

0.078 to 0.222.

I compare the model fit of the MS-TVTP model relative to the MS-DNS and MS-DRA

model in the fifth column of Table 5 in Section 4.1. Allowing for TVTPs in the MS-DNS model

improves the performance for 5 out of the 8 maturities. In addition, the MS-TVTP model
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Table 10: Estimates and marginal effects for the TVTPs - logit model

MS-TVTP MS-DRA-TVTP

St = 1 St = 2 St = 1 St = 2

Constant 1.010 1.529 6.223 2.101

[ 0.044 ] [ 0.110 ] [ 0.086 ] [ 0.051 ]

GDP Growth 1.834 −0.626 1.147 −0.028

[ 0.081 ] [−0.045 ] [ 0.016 ] [−0.001 ]

FFR 0.420 0.368 0.323 0.493

[ 0.018 ] [ 0.027 ] [ 0.005 ] [ 0.012 ]

CPI Growth −0.292 2.000 −0.327 1.141

[−0.013 ] [ 0.144 ] [−0.005 ] [ 0.028 ]

p̂jj 0.954 0.078 0.986 0.025

p̄jj 0.928 0.953 0.922 0.934

Note: This table reports estimates and marginal effects of the logit model which are used to compute the time-varying
transition probabilities in the MS-TVTP and MS-DRA-TVTP model. It also presents the average transition probability p̄jj
in regime j ∈ {1,2}. The marginal effects, presented in brackets, are calculated using the average forecast probability p̂jj ,
shown in equation (B.2) of Appendix B. The marginal effect of indicator k in regime j is obtained as p̂jj(1-p̂jj)γj,k. Bold
entries denote parameter estimates significant at the five percent level.

performs slightly better than the MS-DRA model. The Jarque-Bera test indicates a higher p-

value for the former model for 6 out of the 8 maturities. A similar pattern is found in terms of

Ljung-Box statistics where the MS-TVTP model outperforms both the MS-DNS and MS-DRA

model for all maturities. However the log-likelihood, AIC and BIC values in Table 7 of Section

4.2 reveal that the improvement of the MS-TVTP model is lower compared to the MS-DRA

model. This is also confirmed by the significant but lower LR statistic of 163.30.

The filtered probability for the low interest rate regime obtained from the MS-TVTP model

is shown in Figure 8 of Section 4.4. It is evident that the filtered probability is similar to that

of the MS-DRA model. The second regime is very persistent and the MS-TVTP model is able

to identify the start of the three recession periods as well as the beginning of the extreme low

interest rate period in 2008.

I analyze the performance of the MS-TVTP model in more detail by examining the TVTP p22

which is shown in Figure 10. The MS-TVTP model is correctly able to recognize the historically

low interest rate levels since 2008 but is not able to model the persistence of the low interest

rates during this period. For instance, the probability of remaining in the low interest rate

regime is, incorrectly, very low according to the MS-TVTP model given the first large spike.

A possible explanation for this finding is that the MS-TVTP model expects interest rates to

exit the ZLB in the near future since interest rates have not been decreasing at such a quick

pace during the sample period. However, the second large spike around 2015 perfectly projects

the development of the short rate. Shortly after p22 is close to zero, the short rate increases

substantially from around 0% to 0.27% and, hence, exits the low interest rate regime. Therefore,

40



it is credible to allow the transition probabilities to vary over time. Lastly, in unreported results

I find the average in-sample fit of the MS-TVTP model in each regime to be similar to that of

the MS-DNS model, as shown in Figure 6 of Section 4.3.

Figure 10: Transition probability p22 of the MS-TVTP and MS-DRA-TVTP model

Note: This figure shows the time-varying transition probability p22 of the two macro regime-switching models.

It also plots the 3-month yield (dashed line), normalized between 0 and 1. Shaded areas correspond to NBER

recession periods.

4.6 MS-DRA-TVTP: Macro-Economic State Variables and Time-Varying

Transition Probabilities

Given the promising results of both the MS-DRA and MS-TVTP model, I examine in more detail

the performance of the MS-DRA-TVTP model which introduces macro-economic indicators as

state variables and allows the transition probabilities to vary over time. I find that the parameter

estimates in the transition equation are similar to those of both the MS-DRA and MS-TVTP

model.22 Therefore, I only present estimates and marginal effects of the logit model.

The third and fourth column of Table 10 in Section 4.5 show that the parameter estimates of

the TVTPs are similar to those of the MS-TVTP model: GDP growth is a significant predictor

of the next state in both regimes, and inflation is only significant in the low interest rate regime.

The magnitude of the marginal effects is slightly smaller in the MS-DRA-TVTP model, ranging

from -0.005 to 0.086. Although the size of these effects is minor, the marginal effect of a one-

standard deviation increase in CPI growth still doubles the probability of a low interest rate

regime occurring in the next state from 0.025 to 0.053. The parameter estimates of the macro-

economic indicators are quite encouraging. In the MS-DRA-TVTP model, the Federal funds rate

significantly affects the yields within each regime through the transition equation, whereas GDP

22The only difference is that the macro-to-yields interaction is less apparent in the MS-DRA-TVTP model
compared to the MS-DRA model. This is because the Federal funds rate is the only significant indicator in the
former model.
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growth and inflation significantly influence the yields across each regime through the transition

probabilities.

The Rosenblatt residuals of the MS-DRA-TVTP model, which are shown in the last column

of Table 5 in Section 4.1, show that the in-sample improvement is, however, only marginal

relative to either the MS-DRA or MS-TVTP model. Compared to the MS-DRA and MS-TVTP

model, the p-values for the Jarque-Bera test of the combined model are smaller for 1 and 3 out of

the 8 maturities, respectively. This finding is confirmed by the minor increase in log-likelihood

value and slight decrease in the AIC and BIC value of the MS-DRA-TVTP model, shown in

Table 7 of Section 4.2.

The filtered probability of the MS-DRA-TVTP model for the low interest rate regime is

shown in Figure 8 of Section 4.4. The state probabilities of the combined model are similar

to those of the previous two macro regime-switching models. Hence, it appears that adding

macro-economic indicators as state variables as well as through the TVTPs does not further

capture the behavior of the short rate during low interest rate periods.

The TVTP of the MS-DRA-TVTP model of remaining in a regime with low interest rates,

p22, is shown in Figure 10 of Section 4.5. The TVTP of the combined model is far less extreme

than that of the MS-TVTP model. However, the former model is also not able to capture the

persistence of the low interest rates during the end of 2008. The probability of staying in the

low interest rate regime at the end of 2008 is, correctly, higher for the MS-DRA-TVTP model.

However, it also gives a considerable higher probability of staying in the low interest rate regime

at the end of 2015. Lastly, in unreported results I find the average in-sample fit of the MS-

DRA-TVTP model in each regime to be similar to that of the MS-DNS and MS-TVTP model,

as shown in Figure 6 of Section 4.3.

42



5 Out-of-sample Forecasting

A proper term structure model should not only be able to fit the yield curve well in-sample but

also generate reliable predictions of future interest rates out-of-sample. Given the promising

in-sample performance of the regime-switching models, I now study whether these models are

also able to forecast well out-of-sample.

I recursively estimate all models, using data from January 1986 to December 2007, and use a

rolling window to generate forecasts from January 2008 to December 2018. In this way, I examine

whether the regime-switching models are able to forecast the extreme low interest rate levels

starting around 2008. For the baseline DNS model, forecasting is relatively straightforward as

future yields only depend on the latent Nelson-Siegel factors. Hence, it is sufficient to compute

the h-month ahead forecast of β̂T which is given by

β̂T+h = [I − F̂ h][I − F̂ ]−1µ̂ + F̂ hβ̂T . (5.1)

The level and curvature factor in the MS-DNS model are computed similarly as in (5.1).

However, F̂ and µ̂ are now set to the autoregressive coefficient and mean of the respective

factor, and I is a scalar equal to 1. One obtains the h-month ahead forecast for the regime-

switching slope factor by taking its expectation at time T + h:

β̂2,T+h = E[β2,T+h∣IT ]

= E[µ2,ST+h + η2,T+h∣IT ]

= P [ST+h = 1∣IT ] ⋅ µ̂2,1 + P [ST+h = 2∣IT ] ⋅ µ̂2,2. (5.2)

Afterwards, Hamilton (1995) proposes to construct forecasts of the state probabilities at time

T + h as

π̂T+h∣T = P̂ hπ̂T ∣T ,

where π̂T ∣T is found from equation (2.29). In the model extensions with macro-economic indi-

cators, the dimension of β̂T is extended appropriately to include the indicators as well. Con-

sequently for the DRA, MS-DRA and MS-DRA-TVTP model, I use F̂ ∗ as given in equation

(2.16) of Section 2.2.2 to construct β̂T+h. Furthermore in the MS-TVTP and MS-DRA-TVTP

model, the TVTP matrix P̂T as given in equation (2.12) of Section 2.2.2 is used to obtain π̂T+h∣T .

The h-month ahead forecast of the latent factors is then used to construct h-month ahead yield

predictions as
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ŷT+h =Xβ̂T+h.

I compare the forecasts of the DNS model and its regime-switching extensions with those

of a random walk (RW). Duffee (2002) argues that most affine term structure models already

have trouble beating this naive model which does not use any past information to construct its

forecasts. The RW is given by

yt(τi) = yt−1(τi) + εt(τi), εt(τi) ∼ N(0, σ2(τi)),

where yt(τi) is the yield at time t with maturity τi, with i = 1, ..,N the number of different

maturities. The h-month ahead forecast is then simply obtained by taking the yield of the last

in-sample period. That is,

ŷT+h(τi) = yT (τi).

I also formally test whether the baseline DNS model and its regime-switching extensions are

able to produce significantly better forecasts than the RW by performing the test of Diebold and

Mariano (2002) (DM) of equal forecast accuracy. In calculating the loss differentials, I assume

that the relevant loss function is the squared forecast error and the DM-statistic is standard

normally distributed. Diebold and Mariano (2002) note that the DM-test is not appropriate

when one compares the forecast accuracy of nested models. However, recall that the MS-DNS

model is not fully nested within the DNS model due to the imposed restriction that f22 is equal

to zero.23

Table 11 shows root mean squared errors (RMSEs) of the RW, and ratios of the RMSEs of

the Nelson-Siegel models relative to the RW, for forecast horizons h = 1, 6 and 12 months. A

ratio smaller than 1 indicates that the Nelson-Siegel model forecasts the term structure better

than the RW. At the 1-month horizon, the baseline DNS model already produces considerable

better forecasts at the short end of the yield curve than the RW. This is consistent with Diebold

and Li (2006) who also find that the DNS model with AR(1) factor dynamics is able to forecast

the short end of the curve better. The inclusion of regime-switching in the DNS model only

improves the prediction accuracy of the 3-month and 36-month yield. According to the DM-

statistics which are shown in Table C.14 of the Appendix, the MS-DNS model predicts the

long end of the yield curve significantly worse compared to the RW. When one includes macro-

economic indicators, the improvement of the MS-DNS model is also negligible at the short end,

23In case of the MS-DRA and MS-TVTP model, which are nested within the MS-DNS model, Giacomini and
White (2006) prove that the DM-test is valid when one uses a rolling window to construct forecasts, as is done in
this thesis.
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whereas the macro regime-switching models perform significantly worse at the long end of the

curve.

When the forecast horizon lengthens, the performance of the (macro) regime-switching mod-

els improves noticeably. At the 6-month horizon, the MS-DNS model produces better forecasts

for 6 out of the 8 maturities compared to the DNS model, and it outperforms the RW for 4 out

of the 8 maturities. The effect of macro-economic indicators is also more profound at longer

horizons. The MS-DRA and MS-TVTP model outperform the MS-DNS model for 4 and 6 out

of the 8 maturities, and the RW for 3 and 4 out of 8 the maturities, respectively. The difference

in RMSE between the (macro) regime-switching and DNS models at the longer end of the curve

is also considerably smaller at longer horizons.

Similarly, the 12-month ahead forecasts of the (macro) regime-switching models outperform

those of the baseline DNS model at all maturities. For completeness, Table C.15 and Table

C.16 of the Appendix present DM-statistics of the extended Nelson-Siegel models against the

DNS model and of the regime-switching models against each other, respectively. Table C.15

shows that the forecasting performance of all the regime-switching models improves especially

for the 3-month yield. Furthermore, from Table C.16 it is evident that the MS-DRA-TVTP

model does not further improve the forecasting performance compared to either the MS-DRA

or MS-TVTP model, at all horizons. In general, the MS-TVTP model forecasts the best out

of all the regime-switching models: although it does not beat the baseline DNS model at the

1-month horizon, its performance is much more promising at longer horizons.

To better understand the predictive performance of the regime-switching models over time, I

plot the cumulative squared forecast errors, averaged over all maturities, in Figure 11. Consistent

with the forecasting results in Table 11, the RW performs the best at a forecast horizon of 1

month. At longer horizons, the regime-switching models start to outperform both the RW and

the DNS model. From the evolution of the squared forecast errors, it is evident that the regime-

switching models are better able to forecast the beginning of the out-of-sample period, when

short-term interest rates are reaching the ZLB. Finally, there is a sudden increase in the squared

forecast error of both the MS-DRA (at the end of 2013) and MS-DRA-TVTP model (at the end

of 2014). This is most likely because the filtered probability for the low interest rate regime is,

incorrectly, close to zero for both models during the period 2013 - 2014, as can be seen from

Figure 8 of Section 4.4.

Since the regime-switching models forecast the short end of the yield curve particularly

well, I also show the cumulative squared forecast errors, averaged over the short end of the

curve, in Figure C.14 of the Appendix. For the short end, I take the 3-month, 6-month and
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12-month yield. The outperformance of the regime-switching models relative to the RW is much

more evident for short-term yields. Similar to the squared forecast errors over all maturities,

the regime-switching models are especially able to better forecast the start of the extreme low

interest rate period at the end of 2008.
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Table 11: Root mean squared errors

Maturity (months) RW (in %) DNS DRA MS-DNS MS-DRA MS-TVTP MS-DRA-TVTP

Panel (A): 1-month horizon
3 0.53 0.94 0.94 0.91 0.92 0.90 0.93
6 0.51 0.84 0.82 0.96 0.93 0.91 0.94
12 0.47 0.96 0.95 0.97 0.98 0.96 0.97
24 0.41 0.90 0.88 1.05 1.05 1.01 1.08
36 0.37 1.45 1.47 1.32 1.30 1.27 1.32
60 0.32 1.57* 1.53* 1.75* 1.75* 1.63 1.68*
84 0.35 1.41 1.38 1.83* 1.83* 1.69* 1.70*
120 0.35 1.60* 1.62* 2.00* 2.56* 2.43* 2.55*

Panel (B): 6-month horizon
3 1.21 0.95 0.90∗ 0.88* 0.83* 0.80* 0.84*
6 1.18 0.86* 0.82∗ 0.84* 0.80* 0.77* 0.80*
12 1.12 0.81* 0.77∗ 0.86* 0.85* 0.83* 0.85*
24 0.99 1.07 1.11 0.97 1.02 0.93 0.96
36 0.91 1.04 1.03 1.03 1.04 1.02 1.03
60 0.83 1.21 1.22 1.05 1.05 1.05 1.06
84 0.83 1.18 1.17 1.23 1.22 1.21 1.22
120 0.82 1.25 1.27 1.23 1.24 1.39 1.24

Panel (C): 12-month horizon
3 1.47 0.91* 0.87* 0.81* 0.78* 0.71* 0.76*
6 1.40 0.90* 0.84* 0.88* 0.87* 0.80* 0.82*
12 1.30 0.92* 0.87* 0.90* 0.88* 0.82* 0.82*
24 1.21 1.08 1.05 1.05 1.04 1.01 1.04
36 1.23 1.16 1.12 1.16 1.15 1.13 1.14
60 1.30 1.12 1.13 1.09 1.13 1.12 1.13
84 1.33 1.17 1.15 1.07 1.16 1.13 1.14
120 1.29 1.25 1.28 1.13 1.24 1.20 1.22

Note: This table reports the root mean squared error (RMSE) of the 1-month (Panel (A)), 6-month (Panel (B)) and 12-month (Panel
(C)) ahead forecasts of the random walk (RW ) in percentages, for all maturities. The other columns present RMSEs of the Nelson-Siegel
models relative to the random walk. A value smaller than 1 is highlighted in bold and indicates an outperformance of the model relative
to the random walk. An asterisk (*) denotes significant outperformance (underperformance) at the five percent level relative to the
random walk when the RMSE is lower (higher) than 1, based on the test of equal forecast accuracy of Diebold and Mariano (2002)
shown in Table C.14 of the Appendix. In calculating the loss differentials of the Diebold and Mariano (2002) test statistic, I assume
that the relevant loss function is the squared forecast error and that the test statistic is standard normally distributed.
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Figure 11: Cumulative squared forecast error - all maturities

Note: This figure presents the cumulative squared forecast error, averaged over all maturities, for the random

walk (RW) and the Nelson-Siegel models, measured in percentages. Panel (A), (B) and (C) show the cumulative

squared forecast error for a forecast horizon h = 1, 6 and 12, respectively.
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6 Conclusion

This thesis introduces regime-switching in the mean of the Nelson-Siegel slope factor. I use the

model of Bernadell et al. (2005) which distinguishes between a state where interest rate levels

are normal and the yield curve is nearly flat, and a state where the curve is steep and short-term

interest rates are near the ZLB. I find that the MS-DNS model is able to identify both regimes.

The mean of the slope factor is close to zero in the normal regime and profoundly negative in

the low interest rate regime. The regime-switching model fits the term structure considerably

better in-sample than the baseline DNS model of Diebold and Li (2006), except for the 3-month

yield. In addition, the filtered probabilities for the low interest rate regime coincide quite well

with the start of recessions and with periods where the short-term interest rate is relatively low.

The regime-switching model is also able to recognize the period after 2008 as a low interest rate

regime, when interest rates are indeed near the ZLB. In an out-of-sample study, I find that the

MS-DNS model produces superior forecasts relative to the DNS model. However, the regime-

switching model is only able to forecast the short end of the yield curve better than a random

walk.

I extend the MS-DNS model by linking the shape of the yield curve to the macro-economy

in three ways: the macro-economic indicators enter the regime-switching model as state vari-

ables; the transition probabilities depend on the indicators and, hence, vary over time; and a

combination of both where the indicators enter the model as state variables and through the

transition probabilities. In general, the inclusion of macro-economic indicators slightly improves

the in-sample performance of the MS-DNS model. The Federal funds rate is the most signifi-

cant indicator in a model with macro-economic state variables. When I allow for TVTPs, the

inflation level is the most important indicator in predicting whether interest rates remain low

in the next state. The forecasting performance of the macro regime-switching models is also

substantially better than the performance of the MS-DNS model, especially for the 3-month and

6-month yield. Including macro-economic indicators through both the state variables and the

transition probabilities, however, does not further improve the performance relative to either

one of the two approaches. I find that a regime-switching model with time-varying transition

probabilities outperforms the other two macro regime-switching models, in terms of in-sample

fit and forecasting performance.

Lastly, I note that the MS-DNS model and its extensions with macro-economic indicators are

very sensitive to the initial parameter values. Similar to studies such as DRA, I use the two-step

estimates of the DNS model as starting values for the Kim filter in the (macro) regime-switching

models. However, I also estimated the macro regime-switching models with the estimates of the
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MS-DNS model as starting values but found the results of these models to deviate substantially

from those reported in this thesis.

The findings presented in this thesis provide several directions for future research. A natural

extension is to consider a regime-switching model with three states. Historically, an inverted

yield curve is known to predict lower future short-term interest rates as long-term bonds are

more attractive causing the yield of these bonds to fall. Hence, the inclusion of a third state

where the yield curve is inverted and the mean of the slope factor is positive would be interesting.

Second, besides the Kim filter, Kim and Nelson (1999) also propose a Bayesian approach

to estimate state-space models with regime-switching which is based on the Gibbs sampler.

An advantage of the Bayesian approach is that it overcomes the nonlinearity in the model

due to the regime-switching by simulating from the conditional posterior distribution of the

parameters in the Gibbs sampler. For instance, when one samples the Nelson-Siegel factors

βt, all other parameters are assumed to be given such that the model becomes linear. In a

Bayesian setting, parameter uncertainty is also taken into account directly by sampling from

the posterior distribution. For an application of the Gibbs sampler in regime-switching term

structure modelling, I refer to Zhu and Rahman (2009).

Lastly, one could consider a more sophisticated approach than a logit model to incorporate

time variability in the transition probability matrix. Recent attention has been given to the

class of dynamic score models such as the generalized autoregressive score (GAS) model of

Creal et al. (2011). In the context of regime-switching models, an advantage of the GAS model

is its intuitive way of updating the transition probabilities. At each time t, a score is given

based on the difference between the likelihood in each regime, which is then scaled by the total

likelihood given all the non-switching parameters. Bazzi et al. (2017) include TVTPs in the

Markov-switching mean-variance component model of Doornik (2013) and find that the GAS

model is able to effectively describe the dynamics of the transition probabilities over time.
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A The Unconditional Mean and Covariance of the State Vector

Following equation (2.8) of the prediction step in the Kalman filter, the unconditional mean of

the stationary state vector βt is derived as

β0∣0 = µ +Fβ0∣0,

= (I −F )−1µ.

From equation (2.9) of the prediction step in the Kalman filter, the unconditional covariance

of βt is derived as

P0∣0 = FP0∣0F
′ +Ση,

vec(P0∣0) = vec(FP0∣0F
′) + vec(Ση),

= (F ⊗F )vec(P0∣0) + vec(Ση),

= (I −F ⊗F )−1 vec(Ση),

where vec(⋅) denotes the vectorization operator.
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B Marginal Effects in the Logit Model

In the logit model, the time-varying transition probabilities are modeled as

pjj,t = P [St = j∣St−1 = j,zt−1] =
exp(z′t−1γj)

1 + exp(z′t−1γj)
, j ∈ {1,2}. (B.1)

The marginal effect of a change in the k−th variable zk, evaluated at specific values for all

variables z̄ is then simply obtained by taking the first derivative of (B.1) with respect to zk:

∂pjj(z)
∂zk

∣
z=z̄

= pjj(z̄)(1 − pjj(z̄))γj,k,

where γj,k is the coefficient on zk in regime j.

Next, to evaluate the effect of a change in zk on the transition probabilities, I follow Kole

and Van Dijk (2017) and calculate the marginal effect of a one-standard deviation change in

zk on a certain reference probability p. Kole and Van Dijk (2017) suggest to use the average

forecast probability p̂jj as the reference probability:

p̂jj =
∑Tt=1 P [St+1 = j∣St = j,zt−1]P [St = j∣It]

∑Tt=1 P [St = j∣It]
. (B.2)

Here, each forecast probability of staying in regime j, P [St+1 = j∣St = j,zt−1], is weighted by

the probability of entering regime j at time t, P [St = j∣It]. The latter probability is obtained

through the Hamilton step of the Kim filter, shown in equation (2.26) of Section 2.2.3.
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C Additional Tables and Figures

Table 12: Principal component analysis

Maturity in

months

First P.C. Second P.C. Third P.C.

3 0.36 -0.42 0.53

6 0.37 -0.39 0.23

12 0.38 -0.28 -0.18

24 0.38 -0.09 -0.44

36 0.37 0.07 -0.43

60 0.34 0.30 -0.18

84 0.32 0.44 0.12

120 0.30 0.56 0.46

% explained 97.13 2.66 0.18

Note: This table presents the factor loadings of the US Treasury yields according to a principal component

analysis. For each maturity, the first eight rows show how the bond yields load on the first three principal

components. The last row presents the total variation in the yield data, explained by each principal component.

Table 13: Estimates of the DNS model - VAR specification

Panel (A): Vector-autoregressive matrix F and vector of means µ

Levelt−1 Slopet−1 Curvaturet−1 µ

Levelt (β1,t) 0.977 0.005 0.022 0.045

(0.012) (0.017) (0.010) (0.050)

Slopet (β2,t) -0.006 0.965 0.020 -0.031

(0.013) (0.017) (0.011) (0.021)

Curvaturet (β3,t) 0.045 0.040 0.905 -0.092

(0.036) (0.029) (0.024) (0.055)

Panel (B): Covariance matrix Ση and decay parameter λ

Levelt (β1,t) Slopet (β2,t) Curvaturet (β3,t) λ

Levelt (β1,t) 0.134 -0.124 -0.138 0.038

(0.009) (0.015) (0.032) (0.000)

Slopet (β2,t) 0.168 0.13

(0.006) (0.042)

Curvaturet (β3,t) 0.834

(0.029)

Note: This table reports estimates of the baseline DNS model where the latent factors follow a VAR process.
Panel (A) presents estimates of the vector-autoregressive coefficient matrix F and vector of means µ. Panel (B)
presents estimates of the covariance matrix Ση and decay parameter λ. Bold entries denote parameter estimates
significant at the five percent level. Standard errors appear in parentheses.
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Table 14: Diebold-Mariano statistics - random walk model

Maturity (months) DNS DRA MS-DNS MS-DRA MS-TVTP MS-DRA-TVTP

Panel (A): 1-month horizon
3 1.12 1.12 1.18 1.13 1.34 1.07
6 1.37 1.43 1.03 1.17 1.35 1.10
12 1.16 1.10 1.18 1.12 1.19 1.05
24 1.61 1.72 −0.38 −0.21 −0.14 −0.22
36 −1.67 −1.74 −1.68 −0.83 −0.73 −0.69
60 −2.78* −2.54* −2.44* −2.28* −1.45 −2.00*
84 −1.85 −1.68 −2.85* −2.33* −2.32* −2.04*
120 −2.99* −3.06* −3.78* −2.77* −3.15* −2.50*

Panel (B): 6-month horizon
3 1.90 2.12* 2.62* 2.45* 2.85* 2.47*
6 2.34* 2.53* 2.61* 2.49* 2.81* 2.42*
12 2.71* 2.90* 2.53* 2.36* 2.63* 2.30*
24 −0.50 −0.66 1.13 −0.01 1.22 1.07
36 −0.80 −0.84 −0.11 −0.07 −0.07 −0.05
60 −1.16 −1.18 −0.11 −0.07 −0.10 −0.07
84 −1.87 −1.84 −0.60 −0.39 −0.61 −0.31
120 −1.08 −1.21 −0.71 −0.42 −1.25 −0.34

Panel (C): 12-month horizon
3 3.97* 4.12* 3.56* 3.63* 4.01* 3.69*
6 4.29* 4.48* 4.43* 3.37* 3.98* 3.48*
12 4.03* 4.37* 3.48* 3.51* 4.32* 3.23*
24 −0.32 −0.22 −0.62 −0.17 −0.23 −0.68
36 −0.41 −0.36 −0.63 −0.21 −0.31 −0.77
60 −0.66 −0.68 −0.35 −0.18 −0.28 −0.73
84 −0.69 −0.61 −0.43 −0.24 −0.41 −0.77
120 −1.55 −1.74 −1.09 −0.39 −0.89 −0.92

Note: This table reports statistics of the Diebold-Mariano (DM) test for equal forecast accuracy between the Nelson-Siegel
models and the random walk. Under the null hypothesis, the forecasts of both models have the same mean squared error.
A positive DM-statistic is highlighted in bold and indicates that the model constructs better forecasts than the random
walk. An asterisk (*) denotes significance relative to the asymptotic null distribution at the five percent level.
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Table 15: Diebold-Mariano statistics - baseline DNS model

Maturity (months) DRA MS-DNS MS-DRA MS-TVTP MS-DRA-TVTP

Panel (A): 1-month horizon
3 0.00 0.15 0.11 0.30 −0.21
6 0.14 −0.25 −0.15 −0.01 −0.20
12 0.12 −0.05 −0.03 0.13 −0.09
24 0.17 −2.21* −1.98* −1.65 −1.95
36 −0.14 1.92 1.74 1.87 1.94
60 0.51 −0.88 −1.12 −1.84 −1.41
84 0.91 −1.29 −1.08 −1.06 −0.74
120 −0.13 −1.14 −0.45 −0.28 −0.93

Panel (B): 6-month horizon
3 0.62 0.88 0.79 1.30 0.94
6 0.58 0.62 0.56 0.70 0.53
12 0.57 −0.37 −0.43 −0.33 −0.45
24 −0.41 2.26* 1.02 2.44* 2.14*
36 −0.35 1.14 1.21 1.21 1.27
60 −0.32 1.09 1.15 1.10 1.15
84 0.33 −1.32 −1.51 −1.33 −1.67
120 −0.42 1.66 1.89 −0.37 1.71

Panel (C): 12-month horizon
3 2.04* 2.40* 2.65* 2.98* 2.18*
6 2.04* 2.33* 2.18* 1.93 1.04
12 2.08* 2.36* 2.77* 2.07* 1.05
24 1.69 2.44* 1.73 1.62 0.76
36 1.48 0.00 1.51 1.16 0.46
60 −1.03 1.53 2.27* 1.82 1.05
84 1.58 1.72 2.35* 1.59 1.39
120 −1.12 1.70 3.25* 2.57* 2.27*

Note: This table reports statistics of the Diebold-Mariano (DM) test for equal forecast accuracy between
the Nelson-Siegel models and the baseline DNS model. Under the null hypothesis, the forecasts of both
models have the same mean squared error. A positive DM-statistic is highlighted in bold and indicates that
the model constructs better forecasts than the DNS model. An asterisk (*) denotes significance relative
to the asymptotic null distribution at the five percent level.
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Table 16: Diebold-Mariano statistics - regime-switching models

MS-DNS MS-DRA MS-TVTP

Maturity (months) MS-DRA MS-TVTP MS-DRA-TVTP MS-TVTP MS-DRA-TVTP MS-DRA-TVTP

Panel (A): 1-month horizon
3 −0.34 1.44 −0.39 1.89 −0.35 −0.80
6 0.44 0.61 0.37 1.85 −0.36 −0.81
12 −0.35 0.31 −0.41 1.66 1.36 −0.88
24 0.45 0.67 0.48 1.37 −0.25 −0.97
36 2.19* 2.33* 1.51 1.58 −0.83 −0.95
60 2.33* 2.59* 1.82 2.64* 1.88 −1.38
84 1.82 1.85 1.32 0.05 0.88 −0.88
120 2.73* 2.23* 2.16* −0.54 1.90 −1.19

Panel (B): 6-month horizon
3 1.09 2.09* 1.06 2.01* −1.47 −1.51
6 1.05 2.08* 1.09 2.17* −0.84 −1.27
12 1.09 2.04* 1.15 1.97* −0.83 −1.49
24 −4.01 2.08* 1.95 6.24* 5.88* −1.12
36 1.64 1.64 1.85 0.00 0.71 −1.21
60 1.64 1.31 1.64 −1.00 0.00 −1.09
84 2.05* −0.82 −2.52* −0.81 1.51 −1.74
120 2.59* −1.76 −2.68* −2.81* 1.27 2.41*

Panel (C): 12-month horizon
3 2.02* 2.53* 2.32* 2.10* 3.29* −1.87
6 −1.76 −0.90 1.01 2.18* 3.33* −1.57
12 1.61 2.64* 1.22 2.23* 2.21* −1.98
24 3.27* 2.37* 2.19* 2.35* 2.06* −1.78
36 3.33* 2.49* 1.89 2.48* 2.29* −1.87
60 2.81* 2.12* 1.55 2.56* 2.28* −1.82
84 2.96* 1.95 1.63 2.71* 2.13* −1.66
120 3.36* 2.12* 2.19* 2.28* 2.08* −1.47

Note: This table reports statistics of the Diebold-Mariano (DM) test for equal forecast accuracy between the (macro) regime-switching models.
The model in the first row is the model of which the forecast accuracy is compared against. Under the null hypothesis, the forecasts of both
models have the same mean squared error. A positive DM-statistic is highlighted in bold and indicates that the model constructs better forecasts
than the model shown in the first row. An asterisk (*) denotes significance relative to the asymptotic null distribution at the five percent level.
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Figure 12: Filtered probabilities second regime MS-DNS model including f22

Note: This figure shows filtered probabilities for the second regime, a regime with low interest rates, based on

the MS-DNS model which includes the slope factor f22 in the autoregressive matrix F . It also plots the 3-month

yield (dashed line), normalized between 0 and 1. Shaded areas correspond to NBER recession periods.

Figure 13: Average fit of the MS-DNS model - probability weighted curve

Note: This figure shows the average fit of the MS-DNS model. I show the average fitted yield curve over the

full sample (solid line), and in each regime (dashed line). The regime-dependent curves are obtained by taking

the probability-weighted average of the fitted yields and the filtered state probabilities in each regime. Observed

yields are presented as dots, stars and crosses.
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Figure 14: Cumulative squared forecast error - short end yield curve

Note: This figure presents the cumulative squared forecast error, averaged over the short end of the yield curve,

for the random walk (RW) and the Nelson-Siegel models, measured in percentages. For the short end, I take the

3-month, 6-month and 12-month yield. Panel (A), (B) and (C) show the cumulative squared forecast error for a

forecast horizon h = 1, 6 and 12, respectively.
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