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Abstract

In this thesis I investigate the costs of complying with Dutch pension fund regulation. More specifically,
this study investigates whether the benefits of interest rate hedging outweigh the costs by means of
a simulation of a general pension fund. The simulation discriminates between periods of economic
expansion and slump. I find that in periods of economic downturn a difference in transaction cost
expenditures of 8 bps of total fund value exists between funds that maintain a high hedge ratio versus
their less hedged counterparts. Furthermore, the gains in fund performance from hedging disappear
at longer time horizons. In times of economic upswing the costs of hedging are a factor 5-6 lower
compared to periods of economic distress. In such periods, differences in fund performance are tiny.
While in times of economic bust regulation could be relaxed, a modest hedge is advised in a boom.

Keywords: nFTK, Pension Fund, interest Rate Swaps, Hedging, Heston model, Hull-White model,
Kalman Filter, Particle Filter
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“If people do not believe that

mathematics is simple, it is only

because they do not realize how

complicated life is.”

- JOHN VON NEUMANN, 1947.
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1 Introduction

Since the Great Financial Crisis of 2007 EU regulation of institutional investors has increased drastically.
The Solvency II, Basel III and IV are examples of EU insurance and banking regulation that came to life
since 2009. To minimize the risk of insolvency of Dutch pension funds the Nederlandsche Bank (DNB)
introduced the new Financial Assessment Framework (Dutch: nieuw Financieel Toetsingskader, short:
nFTK) in 2015. One of the main goals of the nFTK is to limit interest rate risk. The interest rate
risk of a pension fund stems from the duration mismatch between the pension benefits (the liabilities)
and its interest rate sensitive assets. The nFTK strongly encourages a high hedge position regarding
interest rate risk: a high hedge ratio drastically decreases the buffer the fund needs to maintain.

As swaps have an initial price of zero, they are regarded a low cost solution to interest rate risk
hedging. There exist, however, several drawbacks to using swaps. First, the use of swaps adds
interest rate volatility (rho) to the portfolio by construction. As such, in order to comply to the
fund’s investment strategy a fund should rebalance its portfolio more frequently, which implies higher
transaction costs. Second, as a swap is an over-the-counter (OTC) product, the agreement can not be
sold in the market. Only with mutual agreement the contract can be nullified. Another solution to
revoke the swap is by entering into another swap agreement with an opposing character to the initial
swap. In turn, this translates to higher transaction and management costs.

Although, there exist a rich literature on interest rate swaps, a thorough cost-benefit analysis of
interest rate hedging with swaps for pension funds has, to the best of my knowledge, not been carried
out. The impact of intensive interest rate hedging on fund performance has not been investigated
either. This is an important question as Dutch pension funds are the largest institutional investors
in the Netherlands. Moreover, most Dutch pension funds are defined benefit (DB) schemes, where
liability risk is carried by the fund. Significant costs or other consequences due to hedging likely have
substantial macro-economic effects. Not only a direct effect through investments is imaginable, but
also income redistributive effects are plausible: by complying to strict regulation, pension funds often
have to refrain from pension benefit indexation or increase the pension contributions. Such measures
have a wealth redistributive character (from the young generation to the old, or vice versa).

The question becomes even more interesting if interest rates have a mean-reverting character. As the
average duration of pension funds is around 18 years1, there is ample time for the term-structure to
revert to its mean. Then, hedging short term movements in the term-structure might seem redundant.
The existence of a mean of the term-structure is disputable as interest rates are continuously subject
to monetary policy. If true, regulation regarding interest rate risk might be too strict, especially if
hedging turns out to be costly.

To this backdrop, this thesis aims to shed light on the usefulness of swaps for hedging purposes
for pension funds. On the one hand, this research tries to unveil the direct (value impact) and
indirect (extra rebalancing) costs of hedging practices for pension funds. On the other hand, this
study investigates the beneficial aspects of hedging. Moreover, I study how the results to this cost-
benefit analysis alter over time, and behave in the long run particularly. Therefore, the research
question I try to answer is:
Do the gains from the stabilizing character of interest rate swaps outweigh the costs of interest rate
hedging for pension funds? And, does the answer to this question change when focusing on different
time horizons?

With the help of the following sub-questions I try to answer this question:

1. What is the effect of interest rate hedging on the expenditures on transaction costs?

1https://www.dnb.nl/en/binaries/AV293139%20TK%20Bijlage_tcm47-334285.pdf?2016010115
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2. What is the effect of interest rate hedging on the performance of the fund?

3. Does the funding ratio become more stable as the hedge ratio increases?

4. Are more hedged funds less frequent insolvent compared to their less hedged counterparts?

5. From a regulative viewpoint, what is the effect of hedging intensity on the level of indexation?

I expect that transaction costs increase with the chosen hedge ratio of the fund. A larger rho of the
portfolio in combination with other investment restrictions mean more frequent rebalancing. If a trend
in interest rates movement is absent, then adding swaps should not alter the fund performance, but
should make the returns of the pension fund more volatile due to increased rebalancing frequency.
However, the volatility of the funding ratio should decrease in the hedging intensity, and hence the
frequency of solvent funds should increases. This finding should be reflected in larger price level
compensations for highly hedged funds.

I intent to answer these questions by means of a controlled simulation experiment. In this experiment
funds are simulated over a length of 20 years, which (more or less) is the average duration of pension
funds. To infer the impact of swaps on identical funds that differ in investment and hedging strategy
requires many instances of a financial world, which simply do not exist. Moreover, by means of a
simulation experiment I can isolate the rules of nFTK and its consequences. Although the assumptions
made in creating the model are close to reality, the results should be understood as indicative.

This thesis touches two different strands of literature. First, the financial market model is a combination
of the Heston model (1993) and Hull-White model (1990). This hybrid model is studied in Grzelak
& Oosterlee (2010). However, whereas Grzelak & Oosterlee (2010) calibrate their model parameters
to quoted prices in the financial market, I use historical data to estimate the parameters. Although
Girsanov Theorem states that the diffusion term remains identical under the Q- and P-measure, the
drift term is different. This is of importance as this study does not concern asset pricing (for which
the Q-measure is needed), but risk management (for which the P-measure is key). With the help of
a Cholesky decomposition, the model can be historically estimated in two steps. The first stage is a
Kalman filter (1960), the second is an adaptation of the particle filter of Aihara et al. (2012).
Second, this thesis adds to the asset liability management (ALM) literature. ALM is a form of asset
management that takes the liabilities into account in defining the investment strategy. When applied
to pension funds, ALM considers risk on future liabilities and the available instruments, e.g. hedge
ratio, premium contribution, indexation strategy, and investment strategy. This study makes use of
such a model, focusing on interest rate hedging. This study fits into the literature of ALM modelling
of pension funds, such as Drijver (2002), Dert (1995), Broeders et al. (2017). To the best of my
knowledge this is the first stochastic ALM-model specification of a pension fund in the literature that
focuses on interest rate hedging.

The rest of the thesis is organized as follows. Section 2 gives some background on interest rate
risk for pension funds, and the nFTK. Section 3 presents the pension fund model, and the financial
market model that lies at its core. Section 4 describes the data on which the financial market model
is estimated. Section 5 presents the results of both the financial market model estimation, and the
results of the pension fund model. Section 6 concludes the analysis and Section 7 presents some points
of discussion.
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2 Interest Rate Risk & the New Financial Assessment Framework

Interest rate risk is one of the main risk factors of pension funds2. Both sides of the balance sheet
of a pension fund are very sensitive to changes in the interest rate curves. As well the value of the
assets as the value of the liabilities of the fund are determined by the current yield curves. Due to
the different size and maturities of the assets than those of the liabilities, the asset side responds in
a different manner to a change in the yield curves than the liability side. This is what is known as
the duration gap or duration mismatch, or more generally, the rho gap. The duration gap is the main
reason why a pension fund is susceptible to interest rate risk.

In theory, a pension fund could invest in fixed income securities, such as bonds, in such a way that the
change in the value of the assets would be congruent with the movement in the value of the liabilities.
This is known as a natural hedge, since it covers the interest rate risk. A full natural hedge solely
by bonds is infeasible due to the illiquidity of bonds with a maturity equal to the maturity of the
liabilities far in the future34. A report by the DNB (2011)5 publishes the size of the liabilities and
prime grade bonds by maturity for the aggregate Dutch pension sector. Figure 1 shows the assets
and liabilities of the aggregate pension sector per maturity. The figure shows the discrepancy (read:
duration mismatch) between the liabilities and the bonds, both in value and maturity. Moreover, it
depicts the illiquidity of bonds with a maturity higher than 10 years. Furthermore, as liabilities have to
be discounted against the risk-free rate since the introduction of the Financial Assessment Framework
(Nederlands: Financieel Toetsingskader, short: FTK) in 2007, bonds are not a perfect natural hedge,
because they are valued on a different yield curve due to their inherent risk.

Figure 1: Duration Mismatch, source: DNB.

A pension fund can cover its remaining interest rate risk by investing in hedge products, such as
interest rate swaps (short: swaps). Figure 1 depicts that Dutch funds add swaps to their portfolio
to close the duration gap. Even though the height of the interest rate hedge can be chosen by the

2http://www.toezicht.dnb.nl/2/50-202312.jsp
3Note that pension benefits range up to roughly 70 years
4Even if bonds on the long end of the curve were liquid, pension funds would remain to invest partly in equities to

achieve higher returns and to lower potentially the pension premiums.
5https://www.dnb.nl/nieuws/nieuwsoverzicht-en-archief/dnbulletin-2011/dnb253798.jsp
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fund itself, the investment strategy of pension funds is restrained. These restrictions are denoted in
the nFTK, of which the so-called square-root formula is the most important. The square-root formula
negatively relates the amount of risk pension fund is exposed to with the buffer they need to maintain.
Among the risks the nFTK regards are interest rate risk, equity and real estate risk, currency risk,
commodity risk, and credit rate risk. The buffer is expressed in a lower bound on the equity of the
fund, the so-called required own equity (Nederlands: Vereist eigen vermogen (VEV)), which should
ensure solvency of a pension fund. The standard model of DNB that calculates the VEV as a funding
ratio is defined as:

V EV = 1 +

√
S2

1 + S2
2 + 2ρ12S1S2 + S2

3 + S2
4 + S2

5 + 2ρ15S1S5 + 2ρ25S2S5

100
(2.1)

Where:

1. S1 is interest rate risk, which is defined as the duration mismatch between the liabilities and
portfolio (including interest rate hedging products). Therefore, S1 is a function of the hedge
ratio. For instance, if the duration of the liabilities is 40 and the fund targets a 50% hedge ratio,
then S1 = 40− 0.5× 40 = 20.

2. S2 is equity and real estate risk, which is calculated as the percentage change in the value of
overall equity and real estate portfolio. For mature markets this shortfall percentage is 30% of
the equity and real estate portfolio value.

3. S3 is currency risk, which is calculated as the aggregate of depreciation of currencies is developed
and emerging markets, controlling for correlations in the exchange rate movements.

4. S4 is commodity risk, which is calculated as an overall decrease (35%) in the commodity portfolio.

5. S5 is credit rate risk, which is calculated as the effect of a credit spread movement on the bond
portfolio.

6. ρi,j denotes the correlation between risk class i and j.

According to the nFTK, the VEV roughly ranges between 105% and 135%.

The goal of a pension fund is to compensate their nominal pension payments in order to account
for inflation. The level of the price level correction depends on the VEV. Moreover, following article
15 of nFTK, a pension fund may not grant price level correction of the pension benefits, if it is not
able to meet a funding ratio of at least 110%. If the funding ratio is larger than the VEV, the fund
is allowed to grant full indexation. For the intermediate values (between a 110% funding ratio and
the VEV) the fund may grant a partial indexation. The most straightforward method is a linear
interpolation method between the maximum level of indexation and zero (Dutch: staffelmethode).
The maximum level of indexation is calibrated at 2%, the ECB’s target of yearly inflation. Hence, the
level of indexation is determined by a piecewise linear function. Denote by π the level of indexation
and by f the actual funding ratio. Then:

π =


0, f < 1.1

2
V EV−1.1f, 1.1 ≤ f < V EV

2, f ≥ V EV
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3 The ALM-Model: A General Pension Fund

This section describes the ALM-model, which consists of two layers. The first layer is the financial
market model that provides the simulated equity and term-structure paths. On this financial market
the assets and liabilities of the pension fund are priced. Moreover, this market provides the interest
rate sensitivity of the fund’s portfolio. The second layer is the pension fund model and resembles the
asset management of a general pension fund.

The main characteristic of the pension fund model is its investment strategy. This strategy is expressed
by two key ratio’s: the asset mix and the hedge ratio. The asset mix represents the fractions of the
total capital the fund allocates over the different asset classes. The asset mix of the pension fund
model is captured by the distribution between equity and fixed income instruments. As a pension fund
will use less swaps to cover interest rate sensitivity as it holds a larger bond portfolio, I investigate
multiple asset mixes. Concerning equity, optimal portfolio construction as in stock picking or sector
timing is outside the scope of this paper. A blue chip index, the Euronext100, represents the stock
portfolio of the pension fund, as in Kaschutkze & Muerer (2016). This keeps the model tractable and
captures the differences in performance due to different hedging strategies.

This chapter is organized as follows. First, I turn to the assumptions that ensure tractability of
the model, which are supported data and/or reports of DNB. Second, I describe the first layer: the
models that simulate the financial market. Then, based on the assumptions and the simulations, I
provide the algorithm that produces the required results for the pension funds that differ in their
investment strategy.

3.1 Assumptions

1. Assets: equity, bonds, cash, and swaps.
The model is restricted to take positions in equity, bonds, cash and swaps. Bikker et al. (2007)
states that for small and medium sized pension funds around 90% of the asset value is constituted
by bonds and equity. For large pension funds this fraction is somewhat smaller, around 80%.
Around 1% of the asset value is captured by cash. Cash is used as a reservation for running
costs, such as transaction costs and swaps payments. Following data of DNB 1% of the total
asset value is allocated to cash. The rest of the value comes from derivatives, real estate and
commodities. The model refrains from real estate, which accounts for roughly 5% of the asset
value. Moreover, the model does not consider commodities, which accounts for 1% of the asset
value of Dutch pension funds, see Broeders et al. (2017). Concerning derivatives, data by DNB6

shows that around 95% of the value of the derivative portfolio comes from swaps. As such, swaps
are the only derivatives the model trades. Empirically, the considered asset classes constitute
the largest part of pension fund portfolio’s. As such, the modelled pension fund portfolio should
capture the main effects and dynamics.

Figure 2 below displays the asset mix of the Dutch pension sector in the aggregate. In particular,
it shows the allocation of total assets to bonds and equity. The data indicates that most of pension
fund capital is invested in either one of these asset classes. Moreover, of the sum of fixed interest
securities and equity around 60% is allocated to fixed income and 40% to equity.

6https://statistiek.dnb.nl/downloads/index.aspx#/details/derivatenposities-naar-type/dataset/

a02b1607-cc2c-4bdf-9887-2503608521bf/resource/1feee170-cf48-40cf-8b36-a09f82db9938
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Figure 2: Asset mix of aggregate pension sector, Q1 2007- Q3 2017. source: DNB.

To ensure parsimony of the model the interest rate products are restricted to be traded on ten
maturities. These pillars are the 1, 2, 3, 5, 7, 10, 15, 20, and 30 year maturities. These maturities
are not equidistant, but tries to capture the nonlinearity of the term-structure. Moreover, the
hypothetical fund can only trade in prime grade (AAA) bonds. Although not completely true,
DNB data on the aggregate pension sector shows that 68% of the bonds in the portfolio have a
credit rating A or higher7. Around 83% is of investment grade. Figure 3 shows these observations.

Figure 3: Credit rating of bonds in portfolio of aggregate sector, Q4 2016. source: DNB.

7https://statistiek.dnb.nl/en/downloads/index.aspx#/details/fixed-income-securities-by-credit-rating/

dataset/32d24b43-6395-4102-b1a1-92df0647b24d/resource/302bc395-d89a-4225-9a94-c5f91aef65ed
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2. Liabilities: stationarity and indexation.
The model assumes that pension contributions are as large as the payments. Data of DNB shows
that the incoming pension premiums are of comparable in size to the outgoing pension payments,
see Figure 4. This assumption enables the model to focus solely on investment decisions and it’s
consequences on the funding ratio rather than operational decisions. If this assumption would be
violated, the fund could always increase the contribution rate or opt to not correct the pension
benefits for inflation until the assumption is met.

Figure 4: Pension premiums and payments of the aggregate sector. source: DNB

Further, I assume that the growth rate of the liabilities equals zero, apart from indexation. Thus,
the ageing of the society is outside the scope of this thesis. Ageing has an effect on the shape of
the liability curve, see Figure 1. As the life expectancy of society would increase, the fund would
have to payout over a longer timespan. This would translate into a thicker tail of the liability
curve to the right. Moreover, the probability that elderly will survive increases. As such, the
height of the curve would increase at the short term liabilities. On the other hand, as western
societies experience drops in fertility rates, the liability curve is expected to shift downwards.
Furthermore, the average age of retirement also increases. As such, the time to accumulate
pension assets increases and the liability curve shifts to the left as in expectation the time span
of pension benefits decreases. Demographic effects can produce contrary effects on the liabilities
and migration isn’t even considered yet. Modelling these effects is a tough exercise and outside
the scope of the thesis. Moreover, in the pension literature there is no consensus on the joint
effect of ageing and migration, see e.g. Zaiceva & Zimmerman (2016).

This assumption would be violated if the composition of the population does change significantly
over the course of the simulation (20 years) - if the distribution of the population is unstable
over the time of roughly one generation. If this assumption does not hold, the results of this
study would induce a lower bound. As the liabilities grow due to ageing, so does their interest
rate sensitivity. As a result more hedging is needed, which likely translates to an increased use
of swaps.

With this assumption in place, the liability curve of the pension fund is stationary with respect
to ageing. As such, the effect of interest rate hedging works through a changing economy and
not through a change in demographics. This is a desirable feature as it isolates the effect of the
use of swaps for pension funds.
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Considering indexation, the pension fund model potentially grants yearly price level correction
of the pension benefits. The pension fund follows the staffelmethode, as described in previous
section.

3. Rebalancing.
When the fund’s portfolio does not satisfy the investment strategy - that is, the hedge- and equity-
to-total-asset-value ratio - the portfolio should be rebalanced. In the asset pricing literature the
exists a consensus on infeasibility of continuous rebalancing. More recent papers developed
methods that involve so-called bound rebalancing. That is, rebalancing is triggered when the
targeted strategy surpasses certain bounds, see e.g. Donohue & Yip (2003) or Woodside-Oriakhi
et al. (2013). More interestingly, it has been shown that rebalancing to the point where the
investment strategy is exactly satisfied might be sub-optimal as the market potentially moves
towards the target after rebalancing already has taken place. Therefore, rebalancing towards a
point between the bound and the target is preferred.

The modelled pension fund has a two-step rebalancing method. The first step is triggered
when the equity-to-total-asset-value ratio is off by 3%8. Then, the portfolio is rebalanced to
1.5% off target under under minimal transaction costs. Moreover, in this same step, the bonds
and swaps are set to satisfy the hedge ratio. The first step is skipped if the fund still satisfies
the equity-to-total-asset-value ratio when arriving in a new time point. If the portfolio does not
satisfy the hedge ratio, the fund enters contracts to satisfy the hedge ratio. Note that this action
does not distort the equity-to-total-asset-value ratio as new swap agreements have nil value when
contracted. The result is a portfolio that satisfies the equity-to-total-asset-value ratio and the
hedge ratio.

Important to note is that the rebalancing objective is to establish a general portfolio that satisfies
both restrictions under minimal transaction costs instead of making predictions which portfolio
will generate maximum return. This model replicates a general pension fund and investigates
the effects of interest rate hedging rather than the optimal portfolio. Secondly, swaps cannot
be sold as they are OTC contracts. They can only be offset by new swaps agreements in the
opposite direction. Therefore, every swap agreement is held until maturity.

4. Market liquidity.
The market is assumed to be perfectly liquid, i.e. the pension fund is able to trade all products
its investment strategy dictates. It is known that fixed income securities, such as bonds and
swaps, on the long end of the curve are less liquid.

The effect of violation of this assumption on results is unclear. If the liquidity of fixed income
products are uncorrelated with the chosen hedging strategy, results are likely to be robust against
other specifications of market liquidity - any specification affects every fund in similar fashion.
However, it is imaginable that the hedging strategy is endogenous to market liquidity. Pension
funds cannot adapt their strategy on short notice responding to liquidity shocks, but probably
incorporate the ongoing difference in liquidity of short- and long-term fixed income products.
However, for simplicity it is assumed that the fund is freely able to make such trades.

5. Initialization.
Initially, the fund is assumed to hold sufficient own capital. This amount is calculated by the

8Remember that the target value is 40%

8



square-root formula of the DNB9. This assumption is made to enable honest comparison between
pension funds that differ in strategy. For instance, a fund that has a low hedging ratio should
hold more own equity as a buffer to compensate the risk. When endowing all different type of
funds with the same amount of capital would yield a biased comparison in, for instance, the level
on indexation.

The pension fund model investigates the effect of different hedging strategies. Therefore, the
different funds considered in the analysis only differ in investment decisions involving hedging.
These decisions affect the interest rate risk and equity risk. Other risk factors, such as currency
and commodity risk, are homogeneous over the different funds to isolate the effect of the hedging
strategy. For homogeneous risk factors the modal estimate is incorporated for all funds:

- Currency risk: currency denomination is not considered in the pension fund model as the
model trades in European stock only. However, to create a acceptable resemblance of the
VEV, a constant is taken for this type of risk. A modal estimate by DNB for this risk
factor is 9.5%10 of the value of assets denominated in foreign currencies. This estimate is
based on a portfolio where 50,51%11 is invested in foreign assets and 75% of total assets is
denominated in developed currencies.

- Commodity risk: As the pension fund model cannot trade in commodities this risk factor
is not considered, hence S4 = 0.

- Credit risk: The pension fund model is assumed to invest in AAA sovereign bonds only. As
such, S5 is equal to zero, see DNB12.

- Further, ρ12 = 0.4 (if interest rates increase and nil otherwise), ρ15 = 0.4, and ρ25 = 0.5 -
as calibrated by DNB13.

Initialization of the portfolio works as follows. When the required own funds are calculated as,
for instance, 120% and the present value of liabilities equals e100,-, the fund is endowed with
e120,- in cash. With this capital the fund takes positions as it would when rebalancing the
portfolio, i.e. the fund buys a portfolio satisfying the equity-to-total-asset-value-ratio and the
hedge ratio. The size of the fund is not important for the results. An increase in the number of
pension contributors would translate into an increase in both liabilities and contributions.

6. Constant Spread.
To ensure tractability of the model, the financial market model simulates one curve, namely the
risk-free curve used for discounting the liabilities. However, the model also needs to price the
AAA government bonds. This might seem problematic at first sight. However, the model is
evaluated on two different data sets. In one of the two samples, the pre-crisis period of Economic
Expansion (EE), the two curves coincide. Thus one curve is enough to carry out the necessities,
and no spread is needed.

In the other sample, the period of Quantative Easing (QE), the spread between the risk-free
curve and the average of AAA government bonds remained relatively stable. Following Zhu
(2012), a constant spread is added to the simulated risk-free curve to obtain a curve that can be
used for pricing of the AAA government bonds.

9http://www.toezicht.dnb.nl/2/50-202138.jsp
10http://www.toezicht.dnb.nl/2/50-202274.jsp
11https://statistiek.dnb.nl/en/downloads/index.aspx#/details/pension-assets-by-currency-breakdown/

dataset/f2031581-8b7d-48b3-9eea-e169f13b4373/resource/50ad2f1e-0eae-4e0b-a8ec-21086ea940f9
12http://www.toezicht.dnb.nl/2/50-202270.jsp
13http://www.toezicht.dnb.nl/2/50-202138.jsp
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3.2 Simulation Financial Market

This section presents the models that are used to generate the equity and interest rate paths. First,
I treat the Heston model, which is responsible for the stock prices. Second, I turn to the Hull-White
model that generates the yield curves. Then, I present the hybrid model, which combines the Heston-
and Hull-White model into one joint model.

3.2.1 Equity: Heston Model

To simulate equity paths I use a stochastic volatilty (SV) model. Since there exists a vast amount
of SV models, I give an overview of the models that have been developed over the years and provide
argumentation of the selection of the appropriate model.

Probably the most popular model where the dynamics of an asset price was modelled, is the Black-
Scholes model (1973), which is closely related to the work of Bachelier (1900). The paper applies the
link between a Brownian motion and the heat-diffusion equation, which was discovered by Einstein
(1905), to the field of financial mathematics and was awarded with a Nobel prize. The popularity of
this model stemmed from the analytical results for the value of options, the Black-Scholes formula.
However, this model does not belong to the class of SV models, since the derivation rests on the
assumption of constant volatility. Moreover, this assumption is proven not to hold in most cases.
Mandelbrot already noticed in 1963 that there seemed to be a clustering effect of volatility: “Large
changes tend to be followed by large changes, of either sign, and small changes tend to be followed
by small changes.” Black and Scholes noted this problem themselves in 1972 (p. 416): “... there is
evidence of non-stationarity in the variance. More work must be done to predict variances using the
information available.” Next to the clustering, volatility is subordinated to the leverage effect, where
positive changes in the stock price affect the volatility differently in a mild and negative manner,
whereas negative changes in the stock price do the opposite, see e.g. Nelson (1991) and Engle & Ng
(1993).

To incorporate the aforementioned effects and provide bias-free results, autoregressive conditional
heteroskedasticity (ARCH) and SV models were developed in the late eighties and the beginning of
the nineties. The ARCH, Engle (1982), and generalized ARCH models, Bollerslev (1986), is not the
focus of this thesis, nor will be their further developments, such as Glosten, Jagannathan and Runkle
(1993) who modelled the asymmetric leverage effect. The reason I refrain from ARCH models in
the analysis is twofold. The first reason is that these models incorporate positivity constraints on
the parameters to ensure that the variance process remains positive. In the process of estimation
this constraint is often violated, see Nelson (1991). Although the exponential GARCH (EGARCH)
model of Nelson (1991) relaxed these constraints, the second reason to abstract from ARCH models
remains: in the class of ARCH models, the conditional variance, conditional on past returns and/or
past variances, is explicitly modelled. As such, random oscillatory behaviour of the variance process
is not likely to happen.

In SV models the distribution of the conditional variance is modelled indirectly through the structure
of the model, the stochastic differential equations. This seems more natural, and more convenient in
continuous time, since such a model does not model the predictive conditional distribution directly.
At first, there was critique by econometricians that such models were not easy to estimate or test.
But with the arrival of simulation based methods that were able to do so, these models gained a lot of
popularity. Especially since these models are better able to explain the observations in the financial
markets.

The first SV model alternative that was provided as an alternative to the ARCH models was by
Taylor (1982). This model is now known as the log-normal SV model if the innovations are assumed
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to be Gaussian. Johnson & Shanno (1987) and Hull-White (1987) were the first to cast SV models
into continuous time. The latter model was the first to provide a coherent structure to incorporate
the leverage effect and looked like the continuous counterpart of the GARCH model. Scott (1987)
incorporated a long term mean by modelling the volatility as a mean reverting Ornstein-Uhlenbeck
process. The inclusion of mean-reversion for the volatility is a desirable feature, as it is consistent
with empirics. Wiggins (1987) went further and modelled the logarithm of the volatility to ensure
positiveness of the process. The Stein and Stein (1991) model was the first SV model to provide
a closed-form solution for as well the distribution of the asset price as the option price. One main
drawback of the model is that it is able to produce negative values for the volatility. All the before-
mentioned models lack the direct correlation between the stock dynamics and the volatility process.
As such the models are unable to capture the skewness of the returns, see Heston (1993).

The model developed by Heston (1993) allows for non-zero correlation between the asset and volatility
dynamics and is able to provide a closed-form solution of the option price. Moreover, since the dynamics
of the volatility in this model are modelled as a Cox-Ingersoll-Ross (1985) process, the volatility cannot
become negative. Bates (1996) and Scott (1997) both extended the Heston (1993) model to allow for
jumps in the stock dynamics. The main difference between these two models is that the latter allows
for stochastic interest rates. Schöbel and Zhu (1999) extended the Stein and Stein model (1991) to
allow for non-zero correlation between the asset and volatility dynamics. There is much empirical
evidence that the original Heston model outperforms the extensions, see e.g. Bakshi, Cao & Chen
(1997), Kim and Kim (2004), and Moon et al. (2009). Moreover, the original Heston model is more
parsimonious and is therefore easier to estimate. Later work, e.g. the papers by Barndorff-Nielsen &
Shephard (2001), Chernov, Gallant, Ghysels and Tauchen (2003) and Nicolato and Venardos (2003),
focuses more on long memory to better explain the behaviour of the dynamics of volatility in a high-
frequency setting. As I will be working with long term horizons sampled on a less frequent basis, such
models are not needed. Based on the evidence given above and what is needed for the research, the
model chosen for the analysis is the Heston model.

Dynamics
Assuming the probability space (Ω,F ,P), the Heston model takes the form of:

dS(t) = µS(t)dt+
√
V (t)S(t)dWS(t)

dV (t) = κ (θ − V (t)) dt+ σ
√
V (t)dWV (t)

(3.1)

where,

- µ is the rate of return on the asset. This can easier be seen by rewriting the dynamics of the
value of the asset as dS(t)/S(t) = µdt +

√
V (t)dWS(t). The interpretation of this parameter

depends on the time definition used in the model. For instance, when one looks at daily data,
using dt = 1/252 implies that µ will represent the yearly expected rate of return.

- θ is the long term mean of the instantaneous variance of the asset V (t).

- κ is the speed with which V (t) reverts to it’s long term mean θ.

- σ is the variance of V (t).

- ρ is the correlation of the Wiener increments dWS(t) and dWV (t). Put differently, the quadratic
variation d [WS ,WV ] (t) = ρdt. Typically, this parameter is negative due to the leverage effect;
a decrease in the asset value typically goes hand in hand with an increase in the volatility.
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Negative values of the variance process are prevented if 2κθ ≥ σ2. This condition is known as the
Feller condition, see Feller (1951). Intuitively, when the variance process reaches zero, the volatility
term σ

√
V (t) approaches zero as well. Subsequently, the process is pushed back towards θ at such a

point. However, this only holds if the upward drift is large enough, i.e. if the Feller condition is satisfied.

In what follows it turns out useful to transform the dynamics of the asset to the log dynamics. By
applying Itô’s lemma, one obtains:

d logS (t) =
∂ logS (t)

∂t︸ ︷︷ ︸
=0

dt+
∂ logS (t)

∂S(t)︸ ︷︷ ︸
=1/S(t)

dS(t) +
1

2

∂2 logS (t)

∂S(t)2︸ ︷︷ ︸
=−1/S(t)2

[dS(t), dS(t)]︸ ︷︷ ︸
=V (t)S(t)2dt

=

(
µ− 1

2
V (t)

)
dt+

√
V (t)dWS(t)

(3.2)

By applying a Choleksy decomposition on the correlation structure of the Wiener processes, one can
rewrite the Heston model in terms of two independent Wiener processes; {W1(t)}t≥0 and {W2(t)}t≥0,
W1(t) ⊥⊥ W2(t),∀t ≥ 0. With the help of equation (3.1) and (3.2) the Heston model can be rewritten
as:

d logS (t) =

(
µ− 1

2
V (t)

)
dt+

√
V (t)dW1(t)

dV (t) = κ (θ − V (t)) dt+ σ
√
V (t)

(
ρdW1(t) +

√
1− ρ2dW2(t)

) (3.3)

In deriving the solution of the model by integrating the system, one stumbles upon the stochastic
integral

∫ t
s
V (u)du. The difficulty of the the analytical solution of the Heston model lies in the

impossibility to calculate this stochastic integral.

As the volatility process is a latent process, standard maximum likelihood methods are not applicable.
Furthermore, due to the non-Gaussian transition distribution, the Kalman filter is not suitable either,
since the updating equations are derived by invoking results for the normal distribution. A widely used
method in historically estimating the Heston model is the particle filter. The particle filter rests on
simulating the propagation of the model and inferring which paths are most likely. Hence, simulation
of the process is a key element in order to estimate the model. As such, there exists a rich literature
on the simulation of the Heston model, which I summarize below. In simulating the Heston model,
there are two different approaches.

The first approach is to apply a discretization scheme. Discretization schemes partition the interval
on which one wants to solve the SDE and approximate the solution to the SDE on this grid. The finer
the grid is, the better the approximation. This approach is the most popular in the literature. The
main rationale underlying this choice is that discretization delivers transition distributions for which
quick sampling methods exist, which is key in particle filtering. However, this method is inevitably
accompanied by an increase in bias.

The most simple discretization scheme is the Euler-Maruyama scheme. This scheme intuitively
differences the SDE, which for the log asset dynamics of the Heston model in equation (3.2) looks
like:

log (S (t+ ∆t)) = log (S (t)) +

(
µ− 1

2
V (t)

)
∆t+

√
V (t)∆W (t) (3.4)

As one can see, this scheme can produce negative values if the draw of ∆W (t)
d
=
√

∆tZ, where Z is
a standard normal, is negative enough - an undesirable feature. The Milstein scheme outperforms the
Euler-Maruyama scheme in accuracy as it considers expansions of both the drift and diffusion terms
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coefficients via Itô’s Lemma. However, the problem of possible negative values remains. Kahl & Jäckel
(2006) developed the IJK scheme, an implicit Milstein scheme, to solve the possibility of negative
values. The scheme is efficient, but seems to fail in practice due to the constraint on the parameters
that has to be met to prevent negative values. Lord et al. (2010) proposed to use the Full Truncation
scheme, which just replaces the value by zero if the new draw would be negative. Although this
scheme is heuristic, it works relatively well and outperforms higher order Milstein schemes. However
the discretization error remains quite large for a practical number of grid points.

The literature is consistent on the efficiency of the Quadratic-Exponential (QE) scheme developed
by Andersen (2007). The QE scheme is based on drift interpolation and moment-matching techniques;
the exact distribution is approximated by a similar distribution whose moments are (locally) matched
with those of the exact distribution. Even for a practical number of grid points the scheme is very
fast and highly accurate. The QE scheme suffers a serious drawback though: it alters the correlation
structure between the asset and volatility which is the core of the Heston model. Andersen was aware
of this problem and named it the leaking correlation problem.

The second method uses the exact distributions of the model. Per definition this eliminates the
discretization bias. Broadie and Kaya (2006) derived the characteristic function of

∫ t
s
V (u)du. As

such, the distribution function of
∫ t
s
V (u)du can be obtained through the Fourier inverse of this

characteristic function, which unfortunately has to be done numerically as this inversion cannot be
computed analytically. A particle filter based on this method is very slow due to the complicated
distribution of the integrated variance process which involves many evaluations of a modified Bessel
function of the first kind. Moreover, since the Fourier inversion of the characteristic function of the
integrated variance process involves a non-computable integral, this method is in fact already an
approximation. Alongside the fact that the method is slow, it can also lead to numerical errors due to
truncation.

Glasserman & Kim (2011) proposed another representation of the integrated variance process. They
opt to rewrite the process in terms of infinite sums and mixtures of Gamma distributed random
variables. Even though they improve on the speed of the simulation method of Broadie & Kaya (2006),
their method still entails a computationally costly Fourier inversion. Van Haastrecht and Pelsser (2010)
propose a hybrid solution that is highly accurate and fast. They combine the QE method of Andersen
(they use the drift interpolation method of Andersen to approximate the stochastic integral

∫ t
s
V (u)du)

with the exact transition distribution by using a Poisson representation of the non-central chi-squared
distribution, which is slightly slower than the QE scheme due to the sampling of Poisson random
numbers. Their scheme, called the NCI scheme, solves the leaking correlation problem and is in terms
of overall accuracy and efficiency very comparable.

Due to the fact that the Hybrid model cannot be solved analytically and the aforementioned continuous
simulation schemes cannot be applied either, I discuss the Euler-Maruyama discretization scheme. The
continuous time solution, and their simulation and estimation schemes are discussed in the Appendix.

3.2.1.1 Euler-Maruyama discretization
For the Heston model, the Euler-Maruyama scheme takes the form:

logS (t+ ∆t) = logS (t) +

(
µ− 1

2
V (t+ ∆t)

)
∆t+

√
V (t)∆W1(t)

V (t+ ∆t) = V (t) + κ (θ − V (t)) ∆t+ σ
√
V (t)

(
ρ∆W1(t) +

√
1− ρ2∆W2(t)

) (3.5)

Note that different time indices are used for the variance in the log asset dynamics, following Aihara et
al. (2008). Otherwise, the instantaneous link between the log assets and variance dynamics would have
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been lost. As such, using the log asset observation as a proxy for the variance at the same point in time
would not have been possible. Subsequently, deriving a particle filter would have been problematic or
even impossible.

One can readily see that the conditional transition distributions are Gaussian as the distribution
of a Wiener increment is Gaussian, e.g. ∆W1(t) ∼ N (0,∆t). This simplicity is the basis and the
power of the Euler-Maruyama scheme.

In the estimation it is useful to rewrite the system by plugging ∆W1(t) in the variance dynamics. The
resulting equation incorporates of the observable log asset process, which yields valuable information
on the unobservable variance process.

V (t+ ∆t) = V (t) + κ (θ − V (t)) ∆t+ σρ

(
logS (t+ ∆t)− logS (t)−

(
µ− 1

2
V (t+ ∆t)

)
∆t

)
+ σ

√
V (t)

√
1− ρ2∆W2(t)

=

(
1− σρ∆t

2

)−1

[V (t) + κ (θ − V (t)− σρµ) ∆t+ σρ (logS (t+ ∆t)− logS (t))]

+

(
1− σρ∆t

2

)−1 (
σ
√
V (t)

√
1− ρ2

)
∆W2(t)

(3.6)

3.2.1.2 Estimation
Per contra auxiliary particle filters where parameters and state are sampled jointly, such as the Liu-
West (2001) particle filter, the particle filter used in this thesis generates two different sets of particles.
The parameter particles are parallel to the state particles; for every parameter particle, the state
particle is updated. As such, the likeliness of every parameter particle is considered per state particle.
The particle filter presented is a decretized version of the particle filter developed by Aihara et al.
(2012).

The optimal importance density (the original exact distribution), as described in Doucet et al. (2000),
can be used as the exact distribution is known and easy to simulate from. From equation (3.6):

g (V (t+ ∆t)| logS(t+ ∆t), logS(t), V (t)) = N
(
m, s2

)
m =

(
1− σρ∆t

2

)−1

[V (t) + κ (θ − V (t)− σρµ) ∆t+ σρ (logS (t+ ∆t)− logS (t))]

s2 =
σ2V (t)(1− ρ2)(

1− σρ∆t
2

)2 ∆t

(3.7)

The observational equation directly follows from equation (3.5):

p (logS(t+ ∆t)| logS(t), V (t+ ∆t), V (t)) = N
(
m, s2

)
m = log (St) +

(
µ− 1

2
V (t+ ∆t)

)
∆t

s2 = V (t) ∆t

(3.8)

The transition density p (V (t+ ∆t| log(S(t)), V (t)) used by Aihara et al. (2008) is obtained by plugging
in the observation equation log(S(t + ∆t)) into equation (3.6). However, this distribution should be
equal to the original distributions stated in equation (3.5) as these two dynamics are mathematically
equal. The fact that the transition distribution used in the particle filter of Aihara et al. (2008) does
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not include log(S(t)), just as the original transition distribution, supports this:

p (V (t+ ∆t| logS(t), V (t)) = N
(
m, s2

)
m = V (t) + κ (θ − V (t)) ∆t

s2 = σ
√
V (t)∆t

(3.9)

To start the particle filter one starts by selecting an appropriate amount of state particles N and
parameter particles M . The initial state particles, {Vj(0)}Nj=1, are drawn from a Gaussian distribution,

and the parameter particles, {ψj(0)}Mj=1, are drawn from an uniform distribution. The mean µ0 and

variance σ2
0 of the Gaussian distribution, and the lower lbψ and upper bounds ubψ of the uniform

distribution need to be set. Set the initial weights - read likelihoods - of the state particles to ωVj (0) =
1
N ,∀j = 1, 2, . . . , N , and of the parameter particles to ωψj (0) = 1

M ,∀j = 1, 2, . . . ,M . Negative initial
state particle values need to be excluded. Two possibilities are to resample until no negative values
are left, or to replace the negatives with small numbers. As I opt to replace negative values with
small values, the simulation scheme is a Full Truncation scheme by Lord et al. (2010). To stimulate
parameter diversity, resampling takes place if the filter reached time point τ . Moreover, a vector ε is
multiplied with the variance of the parameter vector to mitigate the degeneracy problem. Formally,
the particle filter is dictated by:
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Algorithm 1 Parallel Particle Filter Discretized Heston Model

Initialize. Sample {(Vj(0))}Nj=1 ∼ N
(
µ0, σ

2
0

)
and set ωVj (0) = 1

N ,∀j = 1, 2, . . . , N .

Sample {(ψm(0))}Mm=1 ∼ U(lbψ, ubψ) and set ωψm(0) = 1
M ,∀m = 1, 2, . . . ,M .

Initialize ε

for t = 1, 2, . . . T do

for m = 1, 2, . . . ,M do

1. ∀j = 1, 2, . . . N , sample Vj(t) ∼ g (V (t)|Vj(t− 1), ψm(t), logS(t), logS(t− 1))

2. ∀j = 1, 2, . . . N , calculate particle weights

ω̃Vj (t) = ωVj (t− 1)
p(logS(t)|Vj(t), ψm(t), logS(t− 1), Vj(t− 1))× p(Vj(t)|ψm(t), logS(t− 1), Vj(t− 1))

g (Vj(t)|ψm(t), logS(t), logS(t− 1), Vj(t− 1))

3. Normalize ωVj (t) =
ω̃Vj (t)∑
j ω̃

V
j (t)

4. Resample if
(∑

j ω
V
j (t)2

)−1

< 2
3N

Resample {(Vj(t))}Nj=1 with probabilities
{
ωVj (t)

}N
j=1

. Set ωVj (t) = 1
N ,∀j = 1, 2, . . . N .

5. Calculate ω̃ψm(t) = ωψm(t− 1)
∑
j ω

V
j (t)p(logS(t)|Vj(t), ψm(t), logS(t− 1), Vj(t− 1))

6. Normalize ωψm(t) =
ω̃ψm(t)∑
m ω̃

ψ
m(t)

7. Inference V̂ (t) =
∑
m ω

ψ
m(t)

∑
j Vj(t)ω

V
j (t) . Note:

∑
j Vj(t)ω

V
j (t) = f(ψm(t))

8. Inference ψ̂(t) =
∑
m ω

ψ
m(t)ψm(t)

9. Resample if

((∑
j ω

V
j (t)2

)−1

< 2
3N

)
∧ (t ≥ τ)

Calculate Σ̂ =
∑
m ω

ψ
m(t)

(
ψm(t)− ψ̂(t)

)(
ψm(t)− ψ̂(t)

)>
If not first resample, set lbψp = max

[
lbψp , ψ̂p(t)− 3Σ̂p,p

]
and ubψp = minm

[
ubψp , ψ̂p(t) + 3Σ̂p,p

]
∀p = 1, 2, . . . , |ψ| to counter degeneracy

Create candidates c(i) = lbψ +
ubψ − lbψ
M − 1

(i− 1), i = 1, 2, . . .M . Create |ψ| ×M matrix

Calculate for each parameter p(cp(i)) =
φ
(
cp(i)−ψ̂p(t)

εpσ̂p

)
Φ

(
ubψp−ψ̂p(t)

σ̂p

)
− Φ

(
lbψp−ψ̂p(t)

σ̂p

) ,∀i = 1, 2, . . .M ,

∀p = 1, 2, . . . , |ψ|
Resample each parameter independently {ψpm(t)}Mm=1 from {cp(i)}Mi=1 with probabilities p(cp(i))

Set ωψm(t) = 1
M ,∀m = 1, 2, . . .M

end for

end for
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3.2.1.3 Simulation
Simulating the Heston model follows directly from equation (3.5). Given the time increment ∆t, the
end point T , the initial asset price S0, the initial variance V0, and the parameters ψ, the simulating
algorithm is given by:

Algorithm 2 Simulation Discretized Heston Model

for t = 1, 2, . . . , T do

Draw (Z1(t), Z2(t))
> ∼ N

(
(0, 0)>,

[
1, 0

0, 1

])

V (t) = V (t− 1) + κ (θ − V (t− 1)) ∆t+ σ
√
V (t− 1)

√
∆t
(
ρZ1(t) +

√
1− ρ2Z2(t)

)
logS(t) = logS (t) +

(
µ− 1

2V (t)
)

∆t+
√
V (t)

√
∆tZ1(t)

end for

3.2.2 Term-Structure: Hull-White Model

This section starts with describing the most widely-used term-structure models, which are models
that describe the progression of the whole curve of zero rates (the term-structure). As can be seen in
Section 9.1.1.1 in the Appendix, Equation (9.7), the zero rate can be obtained from short rates. This
relation enables the term-structure to be modelled solely by the short rate. If a process for the short
rate is defined, these models are able to determine the initial term-structure and its evolution through
time.

Model Selection: Equilibrium versus No-Arbitrage Models
Within the class of term-structure models, there exist two different types of models. Models of the first
type are called equilibrium models. These models are based on economic assumptions about interest
rates and typically can not perfectly replicate the initial term-structure. In contrast, models of the
second type are meant to capture the initial term-structure and are called no-arbitrage models. The
main distinction between the two models is that the initial term-structure is an output in equilibrium
models and an input in no-arbitrage models. Furthermore, whereas the drift term in the dynamics of
the short rate is constant in equilibrium models, this term is a deterministic function of time (a F(t)-
adapted process, see Section 9.1.2 in the Appendix) no-arbitrage models. This is due to the so-called
expectations hypothesis, which postulates that long-term interest rates are fully explained by current
and future expected short rates. In other words, the shape of the initial term-structure explains the
direction of the future short rate in a no-arbitrage model. This proposition has been debated, see
Froot (1989) and Sarno et al. (2007), but reaffirmed by Guidolin and Thornton (2008).

For the aforementioned reasons, I opt to exclude equilibrium models - such as the Vasicek model
(1977), Rendleman & Bartter (1980) model, Brennan & Schwartz model (1980), Courtadon model
(1982), the Cox-Ingersoll-Ross model (1985), and the Longstaff model (1989) - in my analysis and
solely focus on no-arbitrage models. Moreover, the Cox-Ingersoll-Ross model and the Longstaff model
are extensions of the Vasicek model in the sense that it uses the same drift term, but adapts the
diffusion term (includes the square root of the short rate) such that the short rate cannot become
negative. This property of these models used to make them very popular amongst practitioners.
However, in the episode of QE2 the world has witnessed that interest rates can cross the Zero Lower
Bound (ZLB) and can become negative. Therefore, the models that can not provide negative rates are
not realistic.
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The Ho-Lee (1986) model was the first no-arbitrage term-structure model. This model belongs to
the class of the Affine Term-Structure (ATS) models, see Dai & Singleton (2000), which means that
the price of a zero coupon bond can be expressed as an affine function (linear plus a constant) of the
short rate. The Ho-Lee model does not provide a mean-reverting process. Not only is this property
desirable for tractability, but since then it was believed that interest rates are pulled back to their
long-run average level. The reason is based on a supply-and-demand argument; when rates are high,
the economy tends to stagnate due to inter-temporal substitution (people are more willing to consume
later) and due to low demand for funds from borrowers (since it is expensive to borrow against such
rates). As a result, rates decline. When rates are low, the opposite applies and rates tend to rise.
Another argument is that a central bank may hold onto a stable interest rate policy.

The Hull-White model (1990) is a no-arbitrage model that possesses mean-reversion and is a very
popular model among practitioners due to its tractability. The ability to perfectly incorporate the
initial term-structure is the extension that Hull and White provided in comparison with the Vasicek
model. Also, the Hull-White model is an extension of the Ho-Lee model in the sense that it includes
mean-reversion. The Hull-White model regained popularity due to the ability to produce negative
interest rates. Occurrence of negative rates was perceived as something impossible due to the ZLB,
but has been proven to be possible.

Due to the perception that interest rates could not become negative, several extensions have been
made to the Hull-White model. The model of Black–Derman–Toy (1990) is based on the Hull-White
model in the sense that it has the same dynamics, but applied to the logarithm of the short rate. The
model assumes a direct relation between the mean-reversion parameter and the volatility parameter,
which both are a function of time. The relation is such that the process only reverts to its mean if
the volatility decreases over time. As most practitioners use a constant volatility, the mean-reversion
parameter is zero. Hence, the model collapses to a log-normal version of the Ho-Lee model.

To fix this problem, Black & Karinski (1991) altered the Black-Derman-Toy model and dropped
the direct relation between the mean-reversion and the volatility. The drawback of no analytical
properties and the absence of negative rates remains. Moreover, Hogan and Weintraub (1993) pointed
out that the Black-Derman-Toy model and the Black-Karinski model could provide exploding short
rates. Therefore, Sandmann & Sondermann (1993) developed a model to circumvent this problem.
However, this model could not replicate the initial term-structure. The model of Miltersen, Sandman
& Sondermann (1997) provided a solution to this problem, but still abstracted from negative rates.

Table 1 below summarizes the properties of the no-arbitrage models discussed above. The model
that is used in this thesis is the Hull-White model.

Table 1: Properties of No-Arbitrage Term-Structure Models

Model Initial TS matched Mean reversion Negative rates Stable rates

Ho-Lee (1986) + - + +

Hull-White (1990) + + + +

Black-Derman-Toy (1990) + +/- - -

Black-Karinski (1990) + + - -

Sandman & Sondermann (1993) - + + +

Sandman & Sondermann (1997) + + - +
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Dynamics
As the Hull-White model has an explicit Gaussian solution, there is no role for discretization of the
model for computational gains. The model describes the dynamics of the short rate r as follows:

dr (t) = (Θ (t)− κr (t)) dt+ σdW (t) (3.10)

Equation (3.10) can be seen as a mean reverting Ornstein–Uhlenbeck process with a time dependent
level. In this equation κ determines the speed with which the short rate r (t) reverts to the time
dependent level Θ (t) /κ. The parameter σ determines the volatility of the short rate and W (t) is a
Wiener process with respect to measure Q. Moreover the function Θ (t) is chosen in such a way that
the model can replicate the term-structure observed in the market. As can be seen from equation
(3.10) the volatility in the model stems from one Wiener process. Therefore, the model is accounted
amongst the one-factor models and is able to explain one factor of market risk. The propagation of
the rate process is mainly determined by horizontal shifts and tilts of the term-structure.

In order to estimate the parameters and to obtain simulations for the term-structure of interest rates,
I make use of the state space formulation of the model. To put the model in a state space formulation,
one needs to solve the stochastic differential equation and obtain the closed form solution for the zero-
coupon bonds prices (which have a one-to-one relation with the zero-rates) dictated by the model.
First, I turn to the solution of the stochastic differential equation. Then, I provide the closed form
solution of the price of a zero-coupon. In both derivations I follow the approach by Rom (2013).

The assumption of a single factor is not as restrictive as it might appear. A one-factor model implies
that all rates move in the same direction over any short time interval, but not that they all move by
the same amount. The shape of the zero curve can therefore change with the passage of time.

3.2.2.1 Affine Term-Structure & Solution of the Stochastic Differential Equation
As the Hull-White model is an ATS model the zero rates can be expresses as a function of the short
rate plus a constant. More specifically, the price of a bond (with face value e1,-) can be formulated
as:

P (t, T ) = eα(t,T )+β(t,T )r(t) (3.11)

Using (3.11), and the relation between the discount factor and the spot rate, see equation (9.13):

R(t, T ) = − log (P (t, T ))

T − t
= −α(t, T )

T − t
− β(t, T )

T − t
r(t) (3.12)

which is an affine function in the short rate. The expressions of β(t, T ) and α(t, T ) are given by:

β(t, T ) =
1

κ

(
e−κ(T−t) − 1

)
α(t, T ) = −β(t, T )f(0, t) + log

(
P (0, T )

P (0, t)

)
+
σ2

4κ
β2(t, T )

(
e−2κt − 1

)
(3.13)

Proof: See Section 9.2.1 in the Appendix.

The solution of the stochastic differential equation 3.10 is given by:

r(t)|r(s) ∼ N
(
e−κ(t−s) (r (s)− µ(s)) + µ(t),

σ2

2κ

(
1− e−2κ(t−s)

))
(3.14)

with µ(t) = f(0, t) +
σ2

2κ2
(1− e−κt)2

.
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Proof: See Section 9.2.2 in the Appendix.

3.2.2.2 State Space Formulation
The Hull-White model can be written in a linear Gaussian state space model. This is due to the fact
that the model belongs to the class of affine term-structure models and the conditional distribution of
the short rate, the state, is Gaussian. The observations in the state space formulation are the zero rates
observed in the market. Assume that the observations are equidistant in time with a time difference of
∆t. The system matrices, as in Eq. (9.28) in the Appendix, follow from equations (3.12) and (3.14).
More specifically, when one uses p points of the term-structure per point in time, the Hull-White model
can be represented in state space form as follows:

y(t) = (R1(t), R2(t), . . . , Rp(t))
>

γ(t) = r(t), γ(·) represents state variable (α(·) taken)

c(t) =

(
−α(t, T1)

T1 − t
,−α(t, T2)

T2 − t
, . . . ,−α(t, Tp)

Tp − t

)>
Z(t) =

(
−β(t, T1)

T1 − t
,−β(t, T2)

T2 − t
, . . . ,−β(t, Tp)

Tp − t

)>

H(t) =

0 . . . 0
...

. . .
...

0 . . . 0


d(t) = µ(t+ ∆t)− e−κ∆tµ(t)

T (t) = e−κ∆t

R(t) = 1

Q(t) =
σ2

2κ

(
1− e−2κ∆t

)

(3.15)

Since the model has constant parameters the process is stationary, see Hull & White (1996). Therefore,
αt1 ∼ N (at1 , Pt1), with at1 , Pt1 the unconditional mean and unconditional variance, respectively. In
other words, the long-term mean and variance of the state are used as mean and variance for the initial
state distribution. One obtains the long-term mean and variance by taking the limit of the mean and
variance conditional on the initial state. Mathematically:

at1 = lim
t→∞

E[r(t)|r(0)] = lim
t→∞

e−κt (r (0)− µ(0)) + µ(t) = lim
t→∞

f(0, t) +
σ2

2κ2

(
1− e−κt

)2
= lim
t→∞

f(0, t)

Substituting f(0, t) = −∂ log (P (0, t)) /∂t in order to express the forward rate into model parameters
is not useful, as the resulting expression involves the short rate. Since both the long-term forward
and short rate are unknown, I opt to include at1 as a parameter in my estimation. An expression for
long-term variance can be expressed as:

Pt1 = lim
t→∞

Var[r(t)|r(0)] = lim
t→∞

σ2

2κ

(
1− e−2κt

)
=
σ2

2κ

3.2.2.3 Estimation
In contrast with the parameter estimation approach of Hull & White (1990), who use derivatives, I use
historical term-structures. When one calibrates the parameters to the price of derivatives observed in
the market, one obtains parameter estimates of the short rate process under the risk-free measure Q.
This measure is useful for the pricing of derivatives and other market instruments, but not for scenario
analysis. In scenario analysis the real world measure P is needed to identify the risks of the portfolio.
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Hence, the model is estimated on historical term-structures.

Although the conditional distribution of the short rate given a previous observation of the short rate
is known, maximum likelihood estimation of the parameters is not very useful. This is due to the fact
that the short rate is not observed, and hence should be estimated first. In earlier work, such as Chan
et al. (1992) or Nowman (1996), short-term interest rates (e.g. 1 month maturity) were used as a proxy
for the short rate. The approaches of Brown & Dybvig (1986) and De Munnik & Schotman (1994)
were based on a cross-sectional analysis (incorporating different maturity levels in the estimation).
However, all these approaches rested on the assumption that the short-term interest rate is able to
proxy for the short rate. In more recent work, application of the Kalman filter has gained popularity
due to it’s ability to extract the unobservable process of the short rate, see e.g. Babbs & Nowman
(1999) and the references therein. The empirical work by Sapp (2009) provided evidence that the
Kalman filter outperformed the earlier estimation methods in terms of estimation bias.

As the system matrices are defined,the Kalman filter can directly be applied to historical term-
structures.

3.2.2.4 Simulation
Simulation of the Hull-White model is very simple because of the state space formulation of the model.
The algorithm to sample a path of yield curves of length T with time increment ∆t is given below.

Algorithm 3 Simulation Hull-White Model

for t = 1, 2, . . . , T do

Draw Z(t) ∼ N (0, 1)

γ(t) = d(t) + T (t)γ(t− 1) +Q(t)Z(t)

y(t) = c(t) + Z(t)γ(t)

end for

3.2.3 Heston-Hull-White Model

The hybrid model combines the short rate dynamics of the Hull-White model and the stock dynamics
of the Heston model. Due to more complicated correlation structure of the processes, the transition
densities become very different. The Heston-Hull-White model is dictated by:

dr (t) = κr (Θ (t)− r (t)) dt+ σrdWr (t)

d log (S (t)) =

(
µ− 1

2
V (t)

)
dt+

√
V (t)dWS(t)

dV (t) = κV (θ − V (t)) dt+ σV
√
V (t)dWV (t)

(3.16)

where the Wiener processes are correlated by covariance matrix Σ =

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

. A Cholesky

decomposition on Σ = LL′, yields L =

 1 0 0

ρ12

√
1− ρ2

12 0

ρ13
ρ23−ρ13ρ12√

1−ρ212

√
1− ρ2

13 −
(ρ23−ρ13ρ12)2

1−ρ212

 ≡
l11 0 0
l21 l22 0
l31 l32 l33

.
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Then, the model can be written as:

dr (t) = κr (Θ (t)− r (t)) dt+ σrdW1 (t)

d log (S (t)) =

(
µ− 1

2
V (t)

)
dt+

√
V (t) (l21dW1 (t) + l22dW2 (t))

dV (t) = κV (θ − V (t)) dt+ σV
√
V (t) (l31dW1 (t) + l32dW2 (t) + l33dW3 (t))

(3.17)

where W1(t) ⊥⊥W2(t) ⊥⊥W3(t),∀t. By iterated substitution one obtains:

dr (t) = κr (Θ (t)− r (t)) dt+ σrdW1 (t)

d log (S (t)) =

(
µ− 1

2
V (t)− l21

σr
κr (Θ (t)− r (t))

√
V (t)

)
dt+

l21

σr

√
V (t)dr (t) + l22

√
V (t)dW2 (t)

dV (t) =

(
κV θ −

l32µσV
l22

−
(
κV −

l32σV
2l22

)
V (t)−

(
l31 −

l21l32

l22

)
σV
σr
κr (Θ (t)− r (t))

√
V (t)

)
dt

+

(
l31 −

l21l32

l22

)
σV
√
V (t)

σr
dr (t) +

l32σV
l22

d log (S (t)) + l33σV
√
V (t)dW3 (t)

(3.18)

Mathematically speaking, this decomposition does not alter the interpretation of the model as it is
defined in continuous time. However, at any lower frequency the decomposition has some economic
meaning. By applying the decomposition in this order, one assumes that the stock and variance
processes have no contemporaneous effect on the short rate dynamics. The short rate dynamics
affect both the stock and variance process directly. The stock process affects the variance process
contemporaneously, but not vice versa. This decomposition order can be justified by the fact that
interest rates do not respond directly to a sudden change in the equity markets, but equity markets
respond directly to a change in interest rates (e.g. due to change in monetary policy). Since the
system is decoupled into a regular Hull-White model and an adapted Heston model, the estimation
of the models is similar to the earlier approaches. As the short rate dynamics are independent of the
log asset and variance dynamics, the parameters can be obtained by applying the Kalman filter as
described in the previous section. The dynamics in the Heston model include extra terms that give
information on the processes, and hence alter the transition distributions. I present the discretized
version of the model, and why a continuous solution is not feasible at this stage.

3.2.3.1 Discrete
Discretization of the system (3.17) yields:

r (t+ ∆t) = r (t) + κr (Θ (t)− r (t)) ∆t+ σr∆W1(t)

log (S (t+ ∆t)) = log (S (t)) +

(
µ− 1

2
V (t+ ∆t)

)
∆t+

√
V (t) (l21∆W1(t) + l22∆W2(t))

V (t+ ∆t) = V (t) + κV (θ − V (t)) ∆t+ σV
√
V (t)∆t (l31∆W1(t) + l32∆W2(t) + l33∆W3(t))

(3.19)

Isolating ∆W1(t) and ∆W2(t) gives:

∆W1(t) =
r (t+ ∆t)− r (t)− κr (Θ (t)− r (t)) ∆t

σr
√

∆t

∆W2(t) =
log (S (t+ ∆t))− log (S (t))−

(
µ− 1

2V (t+ ∆t)
)

∆t

l22

√
V (t)∆t

− l21∆W1(t)

l22

=
log (S (t+ ∆t))− log (S (t))−

(
µ− 1

2V (t+ ∆t)
)

∆t

l22

√
V (t)∆t

− l21

l22

(
r (t+ ∆t)− r (t)− κr (Θ (t)− r (t)) ∆t

σr
√

∆t

)
(3.20)
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Plugging ∆W1(t) and ∆W2(t) into (3.19) yields:

r (t+ ∆t) = r (t) + κr (Θ (t)− r (t)) ∆t+ σr∆W1 (t)

log (S (t+ ∆t)) = log (S (t)) +

(
µ− 1

2
V (t)−

l21

√
V (t)

σr
κr (Θ (t)− r (t))

)
∆t+

l21

√
V (t)

σr
(r (t+ ∆t)− r (t))

+l22

√
V (t)∆W2 (t)

V (t+ ∆t) = V (t) +

(
θ − l32µσV

l22
−
(
κV −

l32σV
2l22

)
V (t)−

(
l31 −

l21l32

l22

)
σV
√
V (t)

σr
κr (Θ (t)− r (t))

)
∆t

+

(
l31 −

l21l32

l22

)
σV
√
V (t)

σr
(r (t+ ∆t)− r (t)) +

l32σV
l22

(log (S (t+ ∆t))− log (S (t)))

+l33σV
√
V (t)∆W3 (t)

(3.21)

From this system, the densities that are needed for the particle filter are easily obtained. In principle,
one could estimate the parameters of the short rate alongside the parameters of the stochastic volatility
model. As the Cholesky decomposition enables one to use the Kalman filter, the estimated state and
parameters can be used as the basis of the second stage of the estimation procedure:

log (S (t+ ∆t)) = log (S (t)) +

(
µ− 1

2
V (t)−

l21

√
V (t)

σ̂r
κ̂r

(
Θ̂ (t)− r̂ (t)

))
∆t+

l21

√
V (t)

σ̂r
(r̂ (t+ ∆t)− r̂ (t))

+l22

√
V (t)∆W2 (t)

V (t+ ∆t) = V (t) +

(
θ − l32µσV

l22
−
(
κV −

l32σV
2l22

)
V (t)−

(
l31 −

l21l32

l22

)
σV
√
V (t)

σ̂r
κ̂r

(
Θ̂ (t)− r̂ (t)

))
∆t

+

(
l31 −

l21l32

l22

)
σV
√
V (t)

σ̂r
(r̂ (t+ ∆t)− r̂ (t)) +

l32σV
l22

(log (S (t+ ∆t))− log (S (t)))

+l33σV
√
V (t)∆W3 (t)

(3.22)

From this system of equations the densities used in the particle filter are apparent:

p (log (S (t+ ∆t)) | log (S (t)) , V (t+ ∆t) , r̂ (t+ ∆t) , r̂ (t)) ∼ N
(
µS , l

2
22V (t)∆t

)
,where

µS = log (S (t)) +

(
µ− 1

2
V (t)−

l21

√
V (t)

σ̂r
κ̂r

(
Θ̂ (t)− r̂ (t)

))
∆t+

l21

√
V (t)

σ̂r
(r̂ (t+ ∆t)− r̂ (t))

p (V (t+ ∆t) | log (S (t+ ∆t)) , log (S (t)) , V (t), r̂ (t+ ∆t) , r̂ (t)) ∼ N
(
µV , (l33σV )

2
V (t)∆t

)
,where

µV = V (t) +

(
θ − l32µσV

l22
−
(
κV −

l32σV
2l22

)
V (t)−

(
l31 −

l21l32

l22

)
σV
√
V (t)

σ̂r
κ̂r

(
Θ̂ (t)− r̂ (t)

))
∆t

+

(
l31 −

l21l32

l22

)
σV
√
V (t)

σ̂r
(r̂ (t+ ∆t)− r̂ (t)) +

l32σV
l22

(log (S (t+ ∆t))− log (S (t)))

(3.23)
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The only density that still is required is p (V (t+ ∆t) | log (S (t)) , V (t), r̂ (t+ ∆t) , r̂ (t)), which is
obtained by replacing the first equation in the system of (3.22) into the second equation:

V (t+ ∆t) = V (t) +

(
θ − κV V (t)−

l31σV
√
V (t)

σ̂r
κ̂r

(
Θ̂ (t)− r̂ (t)

)
+
l32σV
l22

log (S (t))

)
∆t

+
l31σV

√
V (t)

σ̂r
(r̂ (t+ ∆t)− r̂ (t)) + σV

√
V (t) (l32∆W2 (t) + l33∆W3 (t))

(3.24)

Since W2(t) and W3(t) are independent ∀t:

p (V (t+ ∆t) | log (S (t)) , V (t), r̂ (t+ ∆t) , r̂ (t)) ∼ N
(
c, σ2

V V (t)
(
l232 + l233

)
∆t
)

,where

c = V (t) +

(
θ − κV V (t)−

l31σV
√
V (t)

σ̂r
κ̂r

(
Θ̂ (t)− r̂ (t)

)
+
l32σV
l22

log (S (t))

)
∆t

+
l31σV

√
V (t)

σ̂r
(r̂ (t+ ∆t)− r̂ (t))

(3.25)

Note that l232 + l233 simplifies to 1− ρ2
13. In other words, the correlation between the Wiener processes

of the stock and variance dynamics do not contribute to the variance of the conditional transition
distribution of the variance process. Hence, the adapted Heston dynamics parameters can be estimated
by the earlier stated particle filter adapted for the correct conditional transition distributions.

3.2.3.2 The Continuous Time Problem
The hybrid model decoupled in this particular Cholesky ordering creates a difficult distribution for
the volatility dynamics. The process looks like a squared Ornstein-Uhlenbeck process. If so, the
this transition distribution would become a chi-squared distribution. This would make sense as its
marginal transition distribution is chi-squared as well. However, the resulting dynamics are not a
squared Ornstein-Uhlenbeck process exactly. The drift function is different. In the squared Ornstein-
Uhlenbeck process the drift has a direct link with the diffusion parameter. Applying these dynamics
to the model would be very restrictive. Moreover, it would create indeterminacy in the parameters.
Of course this is undesirable. A more formal and elaborate discussion of the restrictiveness of this
solution can be found in the Section 9.4 in the Appendix.

Another solution is to solve the conditional transition distribution by the Kolmogorov forward equations
(under physicians known as the Fokker-Planck equation). The solution not is straightforward, and I
doubt whether it exists.

Of course, one could try to do a useful transformation to get rid of one of the stochastic drift terms.
However, as the distance in powers is a half, a useful transformation is hard to find. It might be
non-existent even.

A last solution would be by reversing the Choleksy ordering. This seems to be a nice solution as we
know the marginal transition distribution of the volatility process. However, this turns out problematic
for the reason that not only a

∫ t
s
V (u)du term pops up in the conditional transition distribution of

the short rate, but also a
∫ t
s

√
V (u)du term. The

∫ t
s
V (u)du term can be sampled by the Broadie &

Kaya (2006) approach, the
∫ t
s

√
V (u)du term not. Then one could apply a drift interpolation method.

However, this method would have to be applied twice. The continuous time solution method drifts
towards a discretization scheme and loses a lot of its unbiasedness.

I discussed the problem of the continuous hybrid model and proposed some directions where the
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solution may lie. However, I dedicate this problem to future research and proceed with the discrete
hybrid model for now. Although there are undoubtedly effects on the results of the pension fund
analysis, these effects are likely to be small. The reason is that discretization bias increases in the
step size ∆t of the simulation/estimation grid. As our time step is relatively small (especially in the
estimation of the model, ∆t = 1/252), the discretization bias is not likely to be that large.
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3.3 Pension Fund Model

In this section I present the main model that generates the results. With the simulated financial market
from the hybrid model as input, the pension fund model iterates through time constantly complying
to its investment strategy. At every point in time the fund interprets the financial market, evaluates
its portfolio, calculates its risk, and undertakes transactions accordingly. The transactions are made
such that the investment strategy, the equity-to-total-asset-value ratio and hedge ratio, are satisfied
under minimal costs. Once a year the fund possibly grants price level compensation. The formula’s
lying at the basis of the pricing functions can be found in Section Preliminaries in the Appendix.

Suppose the fund is evaluated up to a horizon of T years with time increments ∆t year. Then,
the time grid is defined by G = (∆t, 2∆t, . . . , T ). Denote the set of key pillars of the term-structure by
P = {1y, 2y, 3y, 5y, 7y, 10y, 15y, 20y, 30y}, such that |P| = 9. Then, we can denote the financial market
as a set

{
E ,Rrf ,RAAA

}
that contains the time evolution of the equity prices E , the term-structure

Rrf of risk-free rates, and of the yield curve of AAA government bonds RAAA. A typical element of
the sequence E , of size T , is the scalar PE,t being the price of equity at time t. An element of Rrf is

the vector Rrft , of size |P|, representing the risk-free term-structure characterized by the key pillars.
The notation for the AAA yield curve is analogous.

Turning to the instruments in the market, all traded bonds have a face value of FVbond. Without loss
of generality, bonds are specified as zero coupon bonds. As coupon paying bonds are a combination
of a series of zero coupon bonds, the fund is perfectly able to replicate any coupon bearing bond it
desires. Given the term-structure RAAAt ∈ RAAA, the price of a bond maturing m years from now is
characterized by the function ZCBondPrice:

function ZCBondPrice(RAAAt ,m, FVbond)
DF = DiscFactor(RAAAt );
P = FVbond ×DFm;
return P ;

end function

Note that the index m does not have to coincide with p. As time progresses in the model, it is perfectly
possible that a bond has a time to maturity of two and a half years, which is is not included in the set P.

Swap prices are specified as a fixed-for-floating agreement. If the fund desires a floating-for-fixed
contract, the contract is shorted such that wanted position is obtained. To price the swap agreement
the vector of fixed rate payments needs to be defined. These payments are a function of the maturity
m and the fixed rate of the swap rswap. Swap payments are assumed to be exchanged semi-annually.
Then, the fixed cash flow payments of a swap of maturity m is defined by a sequence of length m/∆t,

where at each 1/∆t
2 th position the element equals rswap times the notional FVswap of the swap, and

zero elsewhere. The last element of the the sequence CF (m, rswap) is the sum of the last fixed leg
payment rswap × FVswap and the notional FVswap. Normally, swap agreements are specified as one
agreement of a certain notional. Without loss of generality, I specify swap agreements with a fixed
notional. The fund can enter several (or partial) identical agreements to obtain the desired hedge
position. A more thorough discussion on swap pricing can be found in the Section Preliminaries in the
Appendix. Given the term-structure Rrft ∈ Rrf , the price of a swap of maturity m with contractual
predetermined fixed rate rswap and notional FVswap is given by the function SwapPrice:
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function SwapPrice(Rrft , CF (m, rswap), FVswap) . Fixed-for-floating

DF = DiscFactor(Rrft );
return DFm/∆t × CFm/∆t︸ ︷︷ ︸

=FVswap

−DF>(1:m/∆t)CF(1:m/∆t);

end function

With the help of these pricing functions the interest rate sensitivity of the fixed income securities can
be calculated. Denote the interest rate exposure of a bond of maturity m by ∆B,m. Notation for swaps
is analogous: ∆S,m. The interest rate sensitivity is specified as the difference in the present value as
a consequence of a basis point increase in pillar p ∈ P. This measure is called the Price Value of a
Basis Point (PVBP). The PVBP of a fixed income security S of maturity m, given the term-structure
RSt ∈ RS , is calculated with the function PVBP:

function PVBP(RSt ,P,S,m)
∆S = (0, 0, . . . , 0) ; where |∆S | = |P| . initialize delta’s as sequence of zero’s

for p ∈ P do

if S =Bond then
R∗ = RAAA;
R∗p = RAAAp + 0.0001;

∆B,p =ZCBondPrice(RAAA,m, FVbond)−ZCBondPrice(R∗,m, FVbond);

else if S =Swap then
R∗ = Rrf ;
R∗p = Rrfp + 0.0001;

∆S,p =SwapPrice(Rrf , CF (m, rswap), FVswap)−SwapPrice(R∗, CF (m, rswap), FVswap);
end if

end for

return ∆S ;
end function

The PVBP of the pension benefits, or liabilities, L is calculated in similar fashion. The liabilities are
captured in a sequence L, with |L| = K. Every element of the sequence represent the outgoing pension
benefits at that particular time. The length of the sequence K typically runs up to about 70 years.
The PVPB of the pension benefits are calculated with the following function:
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function PVBPL(Rrft ,P,L)
∆L = (0, 0, . . . , 0) ; where |∆L| = |P|

for p ∈ P do
R∗ = Rrft ;

R∗p = Rrft,p + 0.0001;

DF = DiscFactor(Rrft );
DF ∗ = DiscFactor(R∗);
∆B,p =

∑
kDFkLk −

∑
kDF

∗
kLk;

end for

return ∆L;
end function

A rebalance is triggered when the fund does not satisfy its equity-to-total-asset-value ratio, or when
the cash reserves are depleted. The optimization problem minimizes the transaction costs to obtain
the portfolio that is aligned with the investment strategy. More specifically, the selected portfolio
should comply with the fund’s hedge ratio h, equity-to-total-asset-value ratio a, and cash reserves.
Denote by Π = {ΠE ,ΠB ,ΠS , C} the portfolio of the fund, consisting out of the equity, bond, and swap
portfolio, and cash, respectively. A typical element of Π contains all information about that specific
asset class. For instance, ΠE contains the number of stocks in the portfolio NE,t at time t ∈ G at price
PE . The bond portfolio ΠB contains for every bond b ∈ ΠB the amount held NB,b,t at time t ∈ G,
its maturity mb, and its the interest rate sensitivity ∆B,b,t. The notation for the swap portfolio is
analogous. Denote by Πmkt =

{
Πmkt
B ,Πmkt

S

}
, the collection of bond and swap securities available in

the market. Note that for equities the product in the portfolio of the fund is identical as the security
in the market. However, as for bonds and swap the maturity changes over time the products become
heterogeneous. Transaction costs for security S of maturity mS are denoted by τS,mS . For product
S ∈ Πmkt available in the market, it obviously holds that NS,t−1 = 0. Then the fund, that implements
equity-to-total-asset-value ratio a and hedge ratio h, rebalances its portfolio according to the following
optimization problem:
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function Portfolio(Π,Πmkt, a, h)

min
NE,t,NB,t,NS,t

|NE,t −NE,t−1|PEτE +
∑
b∈ΠB∪ΠmktB

|NB,b,t −NB,b,t−1|PB,bτB,mb+∑
s∈ΠS∪ΠmktS

|NS,s,t −NS,s,t−1|PS,sτS,ms

s.t.

1. | NE,tPE
NE,tPE +

∑
b∈ΠB∪ΠmktB

NB,b,tPB,b +
∑
s∈ΠS∪ΠmktS

NS,s,tPS,s
− a| ≤ 0.015

2.
∑
b∈ΠB∪ΠmktB

NB,b,t∆B,b +
∑
s∈ΠS∪ΠmktS

NS,s,t∆S,s ≥ h∆L , ∀p ∈ P

3.
Ct

NE,tPE +
∑
b∈ΠB∪ΠmktB

NB,b,tPB,b +
∑
s∈ΠS∪ΠmktS

NS,s,tPS,s + Ct
= 0.01

4. NE,tPE +
∑
b∈ΠB∪ΠmktB

NB,b,tPB,b +
∑
s∈ΠS∪ΠmktS

NS,s,tPS,s + Ct − T =

NE,t−1PE +
∑
b∈ΠB

NB,b,t−1PB,b +
∑
s∈ΠS

NS,s,t−1PS,s + Ct−1

where T = |NE,t −NE,t−1|PEτE +
∑
b∈ΠB∪ΠmktB

|NB,b,t −NB,b,t−1|PB,bτB,mb+∑
s∈ΠS∪ΠmktS

|NS,s,t −NS,s,t−1|PS,sτS,ms

return {NE,t, NB,t, NS,t, Ct}
end function

The first restriction sets the equity-to-total-asset-value ratio within bounds of the investment strategy.
The second equation establishes the appropriate hedge level per pillar of the term-structure. The third
equation takes care of the cash reserve. The fourth equation is the budget constraint.

When the fund satisfies its equity-to-total-asset-value ratio and holds enough cash, but the hedge
ratio is not met, it would be suboptimal to completely rebalance the portfolio. As swaps have zero net
present value initially, the fund can alter its interest risk exposure by entering new swap agreements
while preserving the equity-to-total-asset-value ratio. Only the cash reserves are reduced to pay for
the transaction/contract costs of the agreements. The fund enters new contracts in the market Πmkt

until it satisfies the hedge ratio again:

function AddSwaps(Π,Πmkt, h)

min
NS,t

∑
s∈ΠmktS

NS,s,tPS,sτS,ms

s.t.

1.
∑
b∈ΠB

NB,b,t∆B,b +
∑
s∈ΠS∪ΠmktS

NS,s,t∆S,s ≥ h∆L , ∀p ∈ P

2. Ct − T = Ct−1

where T =
∑
s∈ΠmktS

NS,s,tPS,sτS,ms

return {NS,t, Ct}
end function
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The modelled fund in is initialized as healthy: it is endowed with the amount of capital such that the
VEV is met. Letting funds start at a equal level of capital would bias the comparison. For instance,
the level of indexation would be much smaller for risky firms only because it would be much harder
to obtain the returns that are needed to grant full indexation. See the Assumptions section for the
calibrated parameters for the buffers required per risk factor. The VEV of a fund implementing hedge
ratio h and equity-to-total-asset-value ratio h is calculated with the function SquareRootFormula:

function SquareRootFormula(a, h,L, DF )
ρS1,S2 = 0.4; . calibrated by DNBa

ρS1,S5 = 0.4;
ρS2,S5 = 0.5;
f = 0; . initialize as zero
V EV = 105%; . initialize as MVEV
while f 6= V EV do . funding ratio should equal VEV

f = V EV ;
L =

∑
kDFkLk;

A = f × L; . value assets
AF = 0.5051×A;
E = a×A; . Equity
FI = (1− a)A; . Fixed Income

S1L =
∑
k kDFkLk

L ; . duration liabilities
S1B = h× S1L; . interest rate risk of investments
S1T = S1B − S1L; . total interest rate exposure
S2 = 0.3× E; . 30% potential loss in stocks
S3 = 0.095×AF ; . denomination risk of foreign assets
S4 = 0; . no commodities in model
S5 = 0; . no credit risk: AAA sovereign bonds onlyb

V EV = 1 +

√
S12

T + S22 + 2ρS1,S2S1S2 + S32

100
; . square-root formula (nFTK)

end while
return f ; . required funding ratio

end function

ahttp://www.toezicht.dnb.nl/2/50-202138.jsp
bhttp://www.toezicht.dnb.nl/2/50-202270.jsp

The main model is an algorithm that implements the aforementioned functions as follows. Initially the
fund is endowed with capital such that it satisfies its VEV in cash. The cash is used to form its initial
portfolio. When the fund arrives at a new time point, the portfolio is updated. In particular, prices
and values are updated, swap payments are exchanged, and the maturity of fixed income securities are
reduced by ∆t. Moreover, the fund recalculates its delta risks. All these steps are summarized by an
update of Π.

The available securities in the market are updated too. More specifically, the fund receives new
quotes it can buy the products for and information on the delta exposure of these products. This
information is renewed every timestep and captured by Πmkt.

At the arrival of a new time point the fund rebalances its portfolio if its current (realized) equity-
to-total-asset-value ratio deviates more than 3%-point from its target equity-to-total-asset-value ratio
(according to its investment strategy). Furthermore, when the fund’s cash reserves are less than 0.5%
of the total fund value, the fund is forced to sell of some assets to restore the cash reserves at 1%.
When the fund satisfies both the equity-to-total-asset-value ratio and cash reserves within bounds, but

30

http://www.toezicht.dnb.nl/2/50-202138.jsp
http://www.toezicht.dnb.nl/2/50-202270.jsp


the hedge ratio is not satisfied, the fund enters new swap contracts to satisfy the hedge ratio.

When a full year passed, the fund evaluates its position and its risks. Based on this scenario, the
fund tries to grant price level correction on the pension benefits. The maximum level of indexation is
calibrated at 2% as this is the ECB’s target of yearly inflation.

To compare the impact of hedging levels on a pension fund, I analyze a set of funds indexed by
their hedge ratio h ∈ H and equity-to-total-asset-value ratio a ∈ A. Thus a total of |H|× |A| different
types of funds are investigated. The interaction between the two parameters is interesting. A fund
that invests relatively more into equities but wants to maintain a high hedge ratio uses more swaps
than a fund that invests more in bonds, because of the natural hedge character of bonds. Naturally,
this procedure is repeated N times, where N is the number of simulations.

Amongst the results that are recorded are the value of both the assets and liabilities. By measuring
these statistics, we can evaluate the performance of the portfolio as well as the funding ratio of the
fund. Note that although the liabilities are assumed to be stationary, they are subject to potential
growth due to price level compensation. This level of possible indexation is stored. Furthermore, the
model records the transaction costs paid.
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Algorithm 4 Pension Fund

for n ∈ N do

for h ∈ H do

for a ∈ A do

Load
{
E ,Rrf ,RAAA

}
n

;

V EV =SquareRootFormula(a, h,L, DF rf0 );

L =
∑
kDF0,k × Lk; . present value liabilities

C = V EV × L; . initially portfolio is only cash

Update Π,Πmkt; . Update prices and delta’s

{NE,t, NB,t, NS,t, Ct} = Portfolio(Π,Πmkt, a, h);

Update Π; . Update quantities held

for t ∈ T do

Update Π,Πmkt; . Update prices and delta’s

Calculate â =
NE,tPE

NE,tPE +
∑
b∈ΠB

NB,b,tPB,b +
∑
s∈ΠS

NS,s,tPS,s
;

Calculate ĉ =
Ct

NE,tPE +
∑
b∈ΠB

NB,b,tPB,b +
∑
s∈ΠS

NS,s,tPS,s + Ct
;

Calculate ĥ =
∆L,p∑

b∈ΠB
∆B,b,t,pNB,b,t,p +

∑
s∈ΠS

∆S,b,t,pNS,s,t,p
;

if |â− a| > 0.03 ∨ ĉ < 0.05 then

{NE,t, NB,t, NS,t, Ct} = Portfolio(Π,Πmkt, a, h);

else if ĥ < h then

{NS,t, Ct} =AddSwaps(Π,Πmkt, h);

end if

Update Π; . Update quantities held

if t×∆t mod = 0 then

V EV =SquareRootFormula(a, h,L, DFt);

Calculate f =

∑
kDFt,k × Lk

NE,tPE +
∑
b∈ΠB

NB,b,tPB,b +
∑
s∈ΠS

NS,s,tPS,s + Ct
;

if f > V EV then

L = L × 1.02; . Full Indexation

else if 1.10 ≤ f ≤ V EV then

L = L ×
(

1 + 0.02
V EV−1.10 × f

)
; . Partial Indexation

end if

end if

end for

end for

end for

store results

end for
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4 Data

First, I discuss the data on which the Heston-Hull-White model is estimated: historical zero rates and
equity data. The analysis is performed on two different data sets. More specifically, one regime covers
the recent QE period, while the other ranges over a period of economic expansion (EE). Lastly, the
calibration of the transaction costs and pension benefits is discussed.

4.1 Interest Rates

The model uses interest rates for two purposes: discounting and pricing. Following the nFTK (2015),
liabilities of the pension fund are discounted using risk-free rates. As before the great financial crisis
of 2007 sovereign interest rates were considered risk-free, the discounting curve and the curve used
for prime grade government bond pricing coincide. The European debt crisis and the subsequent QE
period have proven that this no longer is the case. In that period the model uses swap curves for
discounting and a different for bond pricing.

4.1.1 Risk-free Rate

4.1.1.1 QE
Following the nFTK (2015), the risk-free rates are proxied by swap rates after the great financial crisis.
I use EONIA zero curves obtained from Bloomberg14. The zero curves range from the 11th of February
2014 until the 9th of September 2016. Every zero curve contains information on the yields of the 1 to 30
year maturity. This translates to a panel with 661 time observations and 30 cross-section observations,
totaling 19830 observations. Figure 5 below depicts the evolution of the EONIA term-structure over
time. The figure clearly depicts the downward trend of the interest rates due to QE.

Figure 5: Evolution of EONIA term-structure

14These curves are bootstrapped using EONIA swaps that are quoted on the Bloomberg terminal.
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Table 2 displays the summary statistics of the term-structure of the interest rates. Over the whole
sample the short end of the curve denotes negative values. The yield curve is upward sloping. From
the 10 year maturity almost all observations are positive as the 1%-percentile indicates. The statistics
show a clear trend in the volatility; the longer the horizon, the higher the volatility.

Table 2: Descriptive Statistics of the Term-Structure During QE

Maturity Mean Std. Dev. 1%-Perc. Median 99%-Perc.

1Y -0.001 0.002 -0.005 -0.001 0.001

2Y -0.001 0.002 -0.005 -0.001 0.002

3Y -0.001 0.002 -0.005 -0.001 0.004

5Y 0.001 0.003 -0.004 0.001 0.009

7Y 0.004 0.004 -0.003 0.004 0.013

10Y 0.008 0.005 0.000 0.007 0.019

15Y 0.012 0.005 0.004 0.012 0.024

20Y 0.014 0.006 0.005 0.014 0.026

25Y 0.015 0.006 0.006 0.014 0.026

30Y 0.015 0.006 0.006 0.014 0.026

Over the different years the mean declined consistently for all maturities, see Table 3. Furthermore,
the standard deviation of all maturities, except for the five and seven years, decreased consistently as
well. This finding is in line with the policy of the ECB to maintain lower and stable interest rates.

Table 3: Descriptives Statistics of the Term-Structure per Year During QE

Mean Std. Dev.

Maturity 2014 2015 2016 2014 2015 2016

1Y 0.001 -0.002 -0.004 0.001 0.001 0.004

2Y 0.001 -0.001 -0.004 0.001 0.001 0.004

3Y 0.002 -0.001 -0.004 0.001 0.001 0.001

5Y 0.004 0.001 -0.003 0.002 0.001 0.001

7Y 0.008 0.003 -0.001 0.003 0.002 0.002

10Y 0.012 0.006 0.003 0.004 0.002 0.002

15Y 0.017 0.010 0.007 0.004 0.003 0.002

20Y 0.020 0.012 0.009 0.004 0.003 0.003

25Y 0.021 0.013 0.009 0.003 0.003 0.003

30Y 0.021 0.013 0.009 0.003 0.003 0.003

4.1.1.2 EE
The course of EE is reflected by the run-up to the crisis. More specifically, the period starts at
September 6th 2004 and ends at December 29th 2006. Where post-crisis EONIA or LIBOR swap
curves are considered to be risk-free, sovereign yields were considered to be risk-free before the crisis.
Figure 6 depict the course of the average of European prime graded government bonds with a 3-month
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time to maturity15 (in blue) against the 3-month Libor (based on Euro) rate16(in orange). The yield
on prime graded government bonds was lower than the 3 month Libor rate over the whole course,
which supports the use of European prime graded government bond yields as risk-free rates.

Figure 6: AAA Sovereign (blue) versus Libor Yields (red)

The evolution of the term-structure of the European prime graded government bonds17 over the sample
period is given in 7. Every zero curve contains information on the yields of the 1 to 30 year maturity.
This translates to a panel with 597 time observations and 30 cross-section observations, totaling 17910
observations. Compared to the zero curves during the QE period the term-structure remains at a
higher level.

Figure 7: Evolution of European AAA Government Yield Curves

15Data is obtained at the ECB: http://sdw.ecb.europa.eu/browseExplanation.do?node=9689726
16Data is obtained at the FRED St. Louis: https://fred.stlouisfed.org/search?st=libor+euro
17Data is obtained at the ECB:http://sdw.ecb.europa.eu/browseExplanation.do?node=9689726
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Table 4 displays the summary statistics of the term-structure of the interest rates. The yield curve is
upward sloping with less volatility at the end of the curve. By comparing the mean and median one
sees that the distribution of the yields are quite symmetric for all maturities.

Table 4: Descriptive Statistics of the Term Structure in EE

Maturity Mean Sigma 1%-Perc. Median 99%-Perc.

1Y 2.644 0.557 1.952 2.409 3.700

2Y 2.809 0.536 2.015 2.646 3.758

3Y 2.940 0.478 2.173 2.833 3.757

5Y 3.181 0.374 2.534 3.118 3.799

7Y 3.389 0.313 2.800 3.383 3.914

10Y 3.626 0.278 3.095 3.649 4.130

15Y 3.865 0.281 3.402 3.830 4.500

20Y 3.996 0.297 3.515 3.927 4.708

25Y 4.076 0.311 3.572 3.991 4.838

30Y 4.129 0.322 3.609 4.032 4.925

4.1.2 Government Bond Spread

Following Zhu (2012), a spread is added to the simulated risk-free zero curves to create prime grade
bond pricing curves. As such, only one term-structure needs to be modelled. In the EE period, risk-
free rates and prime grade government bond yields coincide such that no spread needs to be added. In
the QE regime, I add the average spread between the prime grade government bond yield curves and
the EONIA term-structure18. Figure 8 depicts the spread between AAA European government bonds
and EONIA over the sample period.

Figure 8: Evolution of AAA Government-EONIA Spread

The spread hovers around zero as expected, reflecting that prime grade government bonds are close
to being risk-free. Although the spread is not constant, it remains relatively stable over the years.

18Again, the prime grade European government bonds data are from the ECB:https://sdw.ecb.europa.eu/

browseSelection.do?type=series&q=spot+rate+triple+A&node=SEARCHRESULTS&ec=&oc=&rc=&cv=&pb=&dc=&df=
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Moreover, there seems to be some structure in the spread curves. Since October 2014 - the start of
the Covered Bond Purchase Programme 3 (CBPP3) - the spread is declining due to the various asset
purchase programs of the ECB. The spread series depict its peak at 14 May 2015. This short increase
in the spread is, amongst other reasons, due to unexpected increased inflation (due to the increase in
oil prices) and the increased supply of government bonds on the secondary market (as the ECB was
willing to buy anything on the market)19. Because of these peculiarities I will use the 2014 sample to
set the constant spread, see Figure 9. The resulting spreads are in line with the spreads reported by
the ECB20. The negative short end can be explained by the results of QE.

Figure 9: Average of EONIA AAA Government Spread

4.2 Equity

Equity in the model is represented by the Euronext100, which is regarded as the blue-chip index of
Europe. This index includes national exchanges such as the AEX-index, BEL 20, CAC 40 and PSI 20.
Specifically, it includes stocks of firms with the highest market capitalization on Euronext. Moreover,
as a liquidity constraint, every stock on the Euronext 100 must reach a trade volume of at least 20%
of its issued shares per year.

4.2.1 QE

Figure 10 shows the course of the Euronext100 during the QE period, which ranges from the 11th
of February 2014 until the 9th of September 2016. The data is obtained from Yahoo Finance. The
sample contains 661 observations. The most negative return of −6.96% occurred at the 24th of June
2016 when the English population voted to leave the EU. The second most negative return was −5.31%
which happened on the 24th of August 2015 as a consequence of China’s worst trading days in history:
“China’s Black Monday”.

19http://www.investmenteurope.net/opinion/reasons-for-the-recent-bond-market-sell-off/
20https://www.ecb.europa.eu/pub/pdf/other/art1_mb201407_pp63-77en.pdf?0166cbc8f40410fb99cbcc51c1b07bf2
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Figure 10: Evolution Euronext100 During QE

The level of the Euronext100 in 2015 seems a lot higher than the level in 2014 and 2016. The decline
of crude oil prices initiating in 2014 probably had a positive effect on the Euronext100. Also, the
announcement and initiation of the ECB’s PSPP program (both in 2015) that tried to stimulate
economic growth with low interest rates had a positive effect on equity prices. Moreover, due to the
low interest rates fixed income markets were less attractive with the result of investors deviating to
the equity markets pushing up stock prices.

Table 5 displays the descriptive statistics of the Euronext100 and its return series, taken as the log
difference rt = log(Pt)− log(Pt−1), during QE. On average the Euronext realizes a basis point return
per day. The return series is skewed to the left as we can see from the mean and median. This is
in correspondence with heavy tails theory. From Table 6 two regimes stand out. In 2015 - with the
start of the PSPP - the Euronext100 switched to a different level and higher volatility. In 2016 the
Euronext100 reverted to it’s old mean, denoting negative returns on average. The volatility remained
relatively high.

Table 5: Descriptive Statistics of the Euronext100 During QE

Mean Std. Dev. 1%-Perc. Median 99%-Perc.

Euronext100 880.766 61.069 786.836 862.820 1016.718

Returns (%) 0.014 1.228 -3.407 0.076 3.176

Table 6: Descriptive Statistics of the Euronext100 per Year During QE

Mean Std. Dev.

2014 2015 2016 2014 2015 2016

Euronext100 829.383 941.742 859.230 20.299 49.981 23.856

Returns (%) 0.018 0.033 -0.0120 0.919 1.341 1.397
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4.2.2 EE

Figure 11 shows the course of the Euronext100 during the EE, which ranges from the September 6th
2004 until the December 29th 2016. The data is obtained from Yahoo Finance. The sample contains
597 observations. Compared to the QE sample, this period is characterized by a strong upward trend.

Figure 11: Evolution Euronext100 in EE

Table 7 displays the descriptive statistics of the Euronext100 and its return series in EE. On average
the Euronext realizes a tenth of a basis point return per day. The return series are relatively symmetric
as we can see from the mean and percentiles - especially when comparing to the returns during QE.
The average level of the Euronext100 is lower than the level during QE. A possible explanation is
the portfolio substitution effect of investors during QE. Investors resort to equities as fixed income
securities are less attractive, pushing up stock prices. The higher standard deviation of the series
stems from the strong upward trend in the series. When comparing to the QE sample, there is much
more variation in the level of the series. However, the volatility of the returns is much lower. Although
the returns are lower on average, the series slopes upwards steady and smooth. The 1%- and 99%-
percentiles of the returns show that there are no large swings in the returns, whereas during QE the
returns series denoted heavy negative and positive returns.

Table 7: Descriptive Statistics of the Euronext100 in EE

Mean Std. Dev. 1%-Perc. Median 99%-Perc.

Euronext100 780.939 97.525 625.301 770.740 958.217

Returns (%) 0.001 0.007 -0.022 0.001 0.019

4.3 Transaction Costs

Transaction costs are calibrated to estimates from the asset pricing literature. I consider three different
regimes of transaction costs to assess the sensitivity of the results to transaction cost: low, medium, and
high. The medium regime is the input in the main analysis. The other regimes form robustness tests.
For large institutional investors, such as pension funds, transaction costs might include costs associated
with slippage. Slippage costs are the costs that an investor incurs by spreading it’s investment over time
in order to minimize market impact. By analysing different regimes of transaction costs, I incorporate
different transaction cost factors in a general manner.

In the literature there is a vast amount of estimates for equity transaction costs for institutional
investors, see e.g. Mei et al. (2016) or Garleanu & Pedersen (2009). The transaction costs in the
literature are modelled as a fixed or variable costs, or a combination thereof. I stick to variable costs
for simplicity. Transaction costs for equity range from 20 to 30 bps of the size of the trade, see Table
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8.

Bond transactions costs are typically increasing in maturity. However, for government bonds this
effect is less pronounced, see Chakravarty and Sarkar (1999). Moreover, for investment grade bonds
this difference is relatively small for large trades, see Elkamhi et al. (2017) and references therein.
For liquid products the difference diminishes even further. In line with A study of the Rabobank that
estimates average trading costs of government bonds21, I opt to include a transaction costs that differ
over four maturity buckets. Again, I use three different transaction cost curves for the various regimes
that define the general costliness. The medium regime transaction curve is calibrated to the estimates
obtained by the Rabobank. The curves of the other regimes are obtained by adding (high regime) or
subtracting (low regime) a basis point to the whole curve. Bond trading cost are given in Table 8.

The ISDA Margin Survey (2011) reports that 78.6% of fixed income derivatives are subject to a
collateral agreement22. Allowed types of collateral are typically cash and government bonds. Pension
funds, typically with a large bond portfolio, specify their CSA in terms of government bonds23. In
my analysis I assume that the pension fund trades in swaps collateralized by government bonds.
Swaps specified with a CSA are subject to small transaction cost as indicated by the estimates by the
Rabobank report. Table 8 summarizes the transaction costs associated with swap trading.

Table 8: Transaction costs in basis points

Low Medium High

Equity 20 25 30

Fixed Income 0-2Y 0 0.5 1

3-7Y 0.5 1 1.5

8-12Y 1 1.5 2

>12Y 1.5 2 2.5

Swaps 0-5Y 0 0.5 1

6-10Y 0 0.5 1

>10Y 0.5 1 1.5

4.4 Pension Benefits

Data on the liabilities of the pension fund is, unfortunately, classified data. The data is obtained at
APG Asset Management NV. The shape of the pension benefits curve is similar to the one presented in
Figure 1 the Introduction. The actual size of the pension benefits do not matter for the results. Only
the relative size of the payouts compared to each other are relevant. This follows as the asset side of the
fund is initialized as a factor, being the VEV, times the present value of the liabilities. Moreover, the
results are presented as relative measures, making actual size unimportant. To conclude, the research
is replicable as long as pension benefits reflect the shape of Figure 1.

21https://www.rabobank.com/en/images/ex-ante-costs-and-charges-disclosure.pdf
22https://www.isda.org/a/neiDE/isda-margin-survey-2011-final.pdf
23Potter & Lansink, 2011, Meer waardering voor onderpand - Hoe onderpand de waarde van derivaten bepaalt, VBA

Journaal, 105, p. 12-15.
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5 Results

This chapter is organized as follows. First, I discuss the estimation results of the Heston-Hull-White
model. I first demonstrate the performance of the algorithm with the help of a simulation experiment.
Then, I apply the estimation algorithms to the two different data sets discussed in the previous section.
Second, I examine the results of the pension fund algorithm applied to the financial market simulations
generated by the Heston-Hull-White model.

5.1 Financial Market Estimation

5.1.1 Simulation Experiment

Following Aihara et al. (2012), the simulation parameters are set to:

1. (κr, σr) = (0.022, 0.009) for the Hull-White part of the model.

2. (µ, κV , θV , σV ) = (0.05, 1.8, 0.6, 2.1) for the Heston part of the model.

3.

 1 ρr,S ρr,V
ρr,S 1 ρS,V
ρr,V ρS,V 1

 =

 1 0.2 −0.1
0.2 1 −0.4
−0.1 −0.4 1

 for the correlation of the Wiener processes.

4. (r0, S0, V0) = (0.001, 1, 0.3) as initialisation.

5. ∆t = 1
250 and T = 1. The first parameter particles resampling is set after the first 20 evaluations.

6. (iNvol, iNpar) = (200, 200) as number of volatility and parameter vector particles for the Aihara-
Adapted algorithm. Therefore, a total number of 4000 particles are evaluated.

7. The initial term-structure taken to initialize the Hull White model is the EONIA spot curve of
February 11th of 2014. The simulated pillars are the 3, 5, 7, 10, 15, 20, and 25 year maturities.

Table 9 depicts the parameter estimates. Figure 12 shows the simulated short rate in green and the
estimated short rate in blue. Figure 13 displays the simulated and estimated zero curves in green and
blue, respectively. The two plots in both figures are indistinguishable as the Kalman Filter provides
an excellent estimate. It is not surprising that the Kalman filter performs very well; the short rate
dynamics are relatively simple as they are Gaussian and not heavily non-linear. The parameters and
short rate are estimated without any bias. The downward trend in the short rate is the effect of the
initial term-structure.
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Table 9: Simulation Experiment: Parameter Estimates

Parameter True Kalman Aihara-Adapted

κr 0.022 0.022 (0.001)

σr 0.009 0.009 (0.029)

µ 0.05 0.059 (0.025)

κV 1.8 1.689 (0.532)

θV 0.6 0.594 (0.164)

σV 2.1 2.642 (0.145)

ρr,S 0.2 0.197 (0.088)

ρr,V -0.1 -0.102 (0.044)

ρS,V -0.4 -0.407 (0.131)

MSE 1e-09 0.0280

T 250 250

N 7 1

standard errors reported in parentheses.

Figure 12: Simulation Experiment: Kalman Filtered Short Rate.
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Figure 13: Simulation Experiment: Kalman Fit of Zero Curves

The results of Table 9 and Figure 14 point out that the Aihara-Adapted particle filter performs very
well in volatility and parameter estimation. The only problematic parameter for the Aihara-Adapted
particle filter is the volatility of volatility parameter σV : the bias of the estimate such that the true
parameter lies outside the 95% confidence interval. In a lot of particle filters in the literature this
parameter seems to cause problems. The Aihara-Adapted particle filter provides very low standard
errors for the volatility estimates. This is a mechanical result of preselecting state variables based
on the observation weights. Of course one could increase the number of particles, but increasing the
number of volatility particles by a factor 10, increases the total particles by 10 times the number
of parameter vector particles. This is a trade-off between accuracy in terms of standard errors and
computing time. The particle filters are tested on a range of parameter values, time grids, and number
of particles. The results are robust against these different specifications.
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Figure 14: Simulation Experiment: Aihara-Adapted Particle Filter
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5.1.2 Model Estimation

In this section the algorithms are applied to the data discussed in the Section Data. First, I demonstrate
the model dynamics estimates during the QE episode. Second, model estimates in times of EE are
discussed.

5.1.2.1 QE
The dynamics estimates during the QE period from February 2th 2014 to September 9th 2016 are
shown in Table 10. The Kalman filter estimates are based on the 3, 5, 7, 10, 15, 20, and 25 year
maturities. The Aihara-Adapted particle filter is based on 200 volatility particles by 200 parameter
vector particles.

Table 10: Parameter Estimates During QE

Parameter Kalman Aihara-Adapted

κr 0.000 (0.000)

σr 0.003 (0.018)

µ 0.045 (0.019)

κV 1.345 (0.577)

θV 0.131 (0.056)

σV 0.753 (0.086)

ρr,S 0.298 (0.134)

ρr,V -0.152 (0.067)

ρS,V -0.352 (0.112)

T 661 661

N 7 1

standard errors reported in parentheses.

The Kalman filtered short rate and zero curves fit are displayed in Figure 15 and 16, respectively.
As expected during QE, the short rate appears to be mostly negative. The fit of the zero curves
is quite good overall. As the Hull-White model consists of one factor the short end of the curve is
estimated a bit too steep. The Kalman filter estimates the mean-reversion at 0.0002. Although a
low mean-reversion parameters is not uncommon in the literature, a possible explanation might be
that the initial term-structure that determines the long-term mean in the Hull-White model is not
representative in periods of unconventional monetary policy. To circumvent explosive behaviour in the
simulation (as the factor e−κr turns up in the variance term of the short rate) I set this parameter to
0.001.
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Figure 15: Kalman Filtered Short Rate During QE

Figure 16: Kalman Fit of Zero Curves During QE
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The parameter estimates obtained by the Aihara-Adapted particle filter are similar to those in the
literature, see e.g. Grzelak & Oosterlee (2011) or Kienitz & Kammeyer (2009). Although their
parameters are obtained through calibration, the Girsanov theorem states that when changing from
the risk-neutral measure Q to the real measure P only the diffusion term of the stochastic differential
equation changes, but the drift term remains. And indeed, comparing results show that the parameters
estimates are very alike for the drift term, and diverse for the diffusion parameter.

Figure 17: Aihara-Adapted Particle Filter Estimates During QE
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5.1.2.2 EE
The estimates of the dynamics during the period from September 6th 2004 to December 29th 2006 are
shown in Table 11.

Table 11: Parameter Estimates During EE

Parameter Kalman Aihara-Adapted

κr 0.000 (0.000)

σr 0.002 (0.003)

µ 0.130 (0.032)

κV 1.960 (0.470)

θV 0.065 (0.016)

σV 0.748 (0.114)

ρr,S 0.347 (0.119)

ρr,V -0.125 (0.059)

ρS,V -0.312 (0.100)

T 597 597

N 7 1

standard errors reported in parentheses.

The Kalman filtered short rate and fit of the zero curves are given in Figure 18 and 19, respectively.
The estimated short rate is mostly increasing over the interval, as expected during EE. The fit of the
zero curves is quite good overall. Again, the short end is estimated a bit to steep as the Hull-White
consist of one factor. The Kalman filter has estimated the mean-reversion practically at zero again.
To circumvent explosive behaviour in the simulation (as the factor e−κr turns up in the variance term
of the short rate) I set this parameter to 0.001.

Figure 18: Kalman Filtered Short Rate in EE
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Figure 19: Kalman Fit of Zero Curves in EE

The Heston parameter estimates are given in Table 11, and can be seen from Figure 20.
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Figure 20: Aihara-Adapted Particle Filter Estimates in EE

5.1.2.3 Differences Between Regimes
Comparing the estimation results in both regimes, a few observations stand out. First, the short rate
evolves systematically different during the QE episode: it is subject to a higher variance and remains
for a great deal in negative territory. These findings are congruent with the QE objective of keeping
interest rates and uncertainty in the interest rate market low. Although the real interest rate is bounded
below at the so-called Zero-Lower Bound (ZLB), the nominal interest rate is not. But interestingly,
there seems to exist a plateau that the nominal interest rate does not exceed: from Figure 15 it seems
that the nominal short rate is bounded below around -1.75%. This observation is shared by the IMF24.

Regarding the Heston part, the differences lie in the rate of return of the process and the long-
term volatility. The other parameters are quite similar in both regimes. The long-term volatility is
estimated lower during EE than QE. The summary statistics in Section Data pointed out that the
volatility of the returns was higher during the QE episode than in the period of EE. Moreover, implied
volatility indexes (VSTOXX for Europe and VIX for USA) show that volatility levels were lower in

24Viñals, Gray, and Eckhold:

https://blogs.imf.org/2016/04/10/the-broader-view-the-positive-effects-of-negative-nominal-interest-rates
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times of EE than during the recent QE episode, see Figure 21. The mean level during QE were 22.36
and 15.76 for the VSTOXX and VIX, respectively. While during EE the mean of the VSTOXX and
VIX were 15.39 and 12.94, respectively. The difference in volatility is larger in European data used
as input in the algorithms than the difference in USA volatility (a 31.2% decrease for Europe versus
17.9% for the USA). A possible explanation lies in the fact that European corporations use more debt
financing than equity compared to USA corporations, making them more susceptible to changes in
interest rates. These observations support the estimates of the model.

Figure 21: VSTOXX and VIX Over Sample Periods

Equity returns are typically very high in times of EE. Corporate expansion generally cause stock prices
to rise through an increase in expectation of future dividends. The model estimates an average annual
return of 12.9%. As described in Section Data the returns during QE were quite large, but went in
both directions. In contrast, the returns in times of EE were lower on average. The long run steadiness
of these returns creates a high annual return estimate.

Empirical evidence denotes a positive correlation between stock returns and QE, see e.g. Bernanke
& Kuttner (2005). Due to low interest rates safe fixed income securities are less attractive. Investors
prefer to hold relatively risky securities in order to secure some return pushing stock market prices
upward. Moreover, falling interest rates mean lower corporate borrowing costs. Companies have
greater incentive to invest and take on more leverage, see Bernanke et al. (1999). This translates to
an increase in investments and thus corporate expansion. However, this mechanism only applies if
the central bank is successful in convincing the public. If investors do not believe the asset purchase
program to be successful, QE will not have an effect on output, see Krugman (1998). Caballero et al.
(2015) advocate that the QE mechanism works through exchange rates. Increasing the monetary base
translates to an appreciated currency. This appreciated currency basically exports the recession abroad.
As such, QE is called a beggar-thy-neighbor policy by some, see Caballero et al. (2015). Although a
different mechanism, a beggar-thy-neighbor mechanism would also increase the stock price. Compared
to pre QE returns the mean return is higher, but compared to the level of EE it is much lower. The
explanation could be that higher uncertainty about the future (interest rate policy) induces lower stock
prices through similar mechanisms as described above. This explanation would be in line with the
lower volatility estimate of the model during EE.
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5.2 Pension Fund Algorithm

In this section I present the results of the pension fund model. First, I discuss the costs of hedging.
These costs can be decomposed into two parts: transaction costs and impact on fund performance.
Second, I address the benefits of hedging. In particular, I examine the stability of the funding ratio
and insolvency probabilities. The cost and benefits are aggregated into a measure to assess the optimal
hedging ratio from the perspective of the nFTK: the level of indexation. In presenting the results I
discriminate between the QE and EE regimes.

5.2.1 Transaction Costs

The estimated transaction costs are presented as the amount spent on transaction costs relative to
the value of the fund. As every fund starts with a funding ratio equal to its VEV, and the VEV is a
function of the hedge- and equity-to-total-asset-value ratio, riskier funds start relatively with a lot of
capital. Therefore, by correcting for the value of the fund, transaction costs become comparable. The
estimated relative expenditures on transaction costs cumulative over the simulation period are shown
in Figure 22. Panel (a) shows the estimates for for the QE, and Panel (b) for the EE period. The data
used to create the figures can be found in Table 12 and 13 in the Appendix.

(a) During QE (b) In EE

Figure 22: Cumulative Relative Transaction Costs

The first salient result is the large difference in transaction cost expenditures between periods of QE
and EE. As stated in the previous section, market volatility is higher in periods of QE. To comply
with the chosen investment strategy the fund must rebalance more frequently. For fully hedged funds,
expenditures become 4 to 5 times higher in periods of QE than in episodes of EE. A fully hedged
pension fund spends between 6 to 9 basis points of total fund value on transaction costs, while in EE
the costs would lie at a maximum of 1.5 basis point. To put these numbers into perspective, as the
value of the ABP pension fund’s assets are around e400 billion25 a basis point corresponds to e40
million.

Second, expenditures are increasing in the hedge ratio. During the QE episode the difference in
transaction costs expenditures can become 7-8 basis points of total fund value, which corresponds to
e280-320 million for the ABP fund. Whereas a typical fund with an equity-to-total-asset-value ratio
of 40% pays 0.5 bps for a zero hedge, the same fund pays 7.1 bps of total fund value for a full hedge.

25https://www.abp.nl/over-abp/financiele-situatie/actuele-financiele-situatie/
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In EE the difference is less pronounced: the maximum difference in expenditures is around 1 basis
point (0.3 bps for a zero hedge and 1.1 for a full hedge, based on a 40% equity-to-total-asset-value
ratio fund). There are two mechanisms that explain this result. First, if swap payments eat up cash
reserves, the fund needs to sell off some assets to replenish their 1% cash reserve, thus incurring some
transaction costs. Second, adding swaps to the portfolio translates to more interest risk exposure (rho)
of the portfolio. This could be beneficial for hedging purposes, but increases the portfolio volatility
with respect to interest rate movements. Adhering to the equity-to-total-asset-value ratio means more
frequent rebalancing. The increased market volatility during QE explains why this difference is larger
in such episodes than in moments of EE.

Moreover, during QE there seems to be a positive relation between transaction costs and the amount
invested in equities. This is a straightforward result as the transaction costs are highest for equities.
In EE the relation is not linear. The transaction costs are U-shaped in the equity-to-total-asset-value
ratio. The fact that intermediate values of the equity-to-total-asset-value ratio deliver lower transaction
costs on average might be the result of an interplay between diversification and transaction costs. If
interest rates are more volatile relative to equities, an investment strategy that invests less in fixed
income securities might deliver lower transaction costs. On the other hand, an investment strategy
that invests heavily in equities yields high transaction costs due to the aforementioned mechanism.

5.2.2 Fund Performance

The most straightforward measure to evaluate fund performance is the evolution of the fund value.
First, this measure is presented. Second, to correct for the overall risk of the investment strategy the
Sharpe ratio of the funds are discussed.

5.2.2.1 Fund Value
The estimates are presented as fund value relative to the initial fund value. As such, the presented
statistic is a basic measure of return. The measure eliminates differences due to higher initial capital
resulting from buffers required by the nFTK. Figure 23 and 24 depict the evolution of fund value
during QE and EE, respectively. The data underlying the figures can be found in Table 14 and 15 in
the Appendix. There is a clear relation between fund value and the amount invested in equities. This
is not surprising as equities yield higher returns on average. However, this high return comes at the
cost of a higher standard deviation. Obviously, as returns are higher in economic upturn, the pattern
is more pronounced.

Interestingly, a high hedge ratio delivers a lower return on average in the short run (5 years) and a
higher mean return in the long run (20 years) for the QE period. This pattern is present in the period
of the economic upswing, but much less pronounced, see Table 15 in the Appendix. Ceteris paribus,
a high hedge ratio means more intensive use of swap agreements. Then, swap payments and/or value
have a negative (positive) effect on the portfolio in the short (long) run on average. There are two
ways in which swaps have direct impact on the fund value. Indirect impact exists through increased
rebalancing due to more interest rate exposure and compliance to the investment strategy. The first
direct impact of swap agreements is the change in value. The second impact is the biannual payment.
The impact on the portfolio must be the effect of an opposing movement relative to the leg taken on
the swap agreement. For instance, pension funds are in general overexposed to interest rate movements
in the short-end and underexposed to movements in the long end of the yield curve (see the duration
mismatch between the liabilities and assets in both ends of the curve depicted in Figure 1). To
diminish the duration mismatch to the level of the chosen hedge ratio, funds enter fixed-for-floating
swap agreements in the short run and floating-for-fixed in the long run (note that I use the jargon of
Glasserman (2003) where a floating-for-fixed swap is an agreement where the holder pays a floating
rate and receives the fixed rate). Then, a decline in the short end of the curve decreases the value of
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Figure 23: Fund Value Relative to Initial Value During QE

the swap portfolio, while a decline at the long end increases the value.

However, note that, in contrast with Figure 1, in my model the fund is not necessarily overexposed to
interest rate risk at the short end of the curve. The market is perfectly liquid and the fund invests
according to the investment strategy. As such, to satisfy the equity-to-total-asset-value ratio, the
fund does not have to over-invest in bonds with a lower maturity due to market liquidity issues. The
consequence is that the model does not enter different swap agreements for the short and long end of
the curve systematically. The only exception is of course when it is cheaper, in terms of transaction
costs, to satisfy the constraints.

As the model produces both positive and negative interest rate movements in the near future, it
advices a modest hedge ratio in the short run. The difference is almost absent for funds with relatively
more bonds. This is intuitive as a large bond portfolio act as a natural hedge and hence translates
to a smaller usage of swaps. For equity intensive funds that invest more heavily in swaps to close the
duration gap, the difference is around 2 percent points. However, as the term-structure reverts to its
mean in the long run due to the shape of the initial term-structure, high hedge ratios become profitable
in the long run. As the swap contracts cannot be opted out, all fixed-for-floating agreements already
in the portfolio turn out profitable in the future. This result is stronger for funds that maintain high
hedge ratios as they make more use of these type of swaps. The differences can become as large as 14
percent point.

The effect of hedging on fund performance becomes smaller when the volatility of the term-structure
is smaller due to the ad hoc character of the hedging strategy: as pension funds continuously try to

54



maintain their hedge ratio, large swings in the term-structure translate to large impacts on the value
of the fund. However, as the period of EE does not experiences a shift from low rates to positive
rates (and thus experiences lower volatility), these results are absent. For this episode the fund value
is almost the same for a certain equity-to-total-asset-value ratio (thus similar over the hedge ratio
dimension)26. Only in the short run a hedge ratio of 20 percent seems to pay off. However, this
difference is very small and diminishes over time.

Figure 24: Fund Value Relative to Initial Value in EE

The results of the QE period show that the use of swaps can be beneficial in the short run, but also
have lasting effects in the long run due to the stickiness of the contract. In this period high hedge
ratios had a positive effect on fund value due to the positions in the fixed-for-floating swaps and the
mean-reversion of the term-structure. However, the validity of these long run results is questionable
as QE periods probably will not last for such an amount of time. Moreover, if the term-structure
would not revert to its mean, but instead experience a change from a regime of high rates to low rates
the long run effects on fund value of using swaps would have been negative. Therefore, it would be
interesting to incorporate unanticipated shocks to the term-structure. Not only would the long run
effects become more credible, also the hedging character of the swaps would stand out more clearly.

Interestingly, for both regimes, there are no clear differences in fund value over the hedge ratio
dimension around 10 to 15 years (for the 10 year horizon in QE a small inverted U-shape still is

26Note that this does not mean that it is beneficial to invest in a bond only portfolio with duration matching. There

is a substantial equity premium which can be seen from the upward slope in the equity-to-total-asset-value dimension.
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present). Thus, on average, adding swaps to the portfolio has no influence on the fund performance in
the medium run, irrespective of the movement of interest rates.

5.2.2.2 Sharpe Ratio
In order to correct the returns of the funds for their underlying uncertainty, Sharpe ratios are calculated.
Figure 25 and 26 depict the returns of the fund divided by the corresponding volatility for the QE and
EE period, respectively. The returns are calculated as the log difference of fund value over time. The
risk-free rate used in the Sharpe ratio is the rate which is used to discount the liabilities (simulated
interest rates). Data that lies at the basis of the figures can be found in Table 16 and 17 in the
Appendix. NOTA BENE: the axes are mirrored compared to the other figures. This is done to make
the pattern better visible.

In the short run, for both regimes, the highest Sharpe ratios can be found at funds with a modest
hedge ratio. In the previous paragraph it was shown that a high hedge ratio in times of QE for equity
intensive funds did worse relative to a similar fund with a lower hedge ratio in the short run. And
indeed, Figure 25 shows that the Sharpe ratios are highest for the funds that maintain a hedge ratio
around 40 percent. The fact that the results show the same pattern as the fund value measures means
that the portfolio volatility is similar over the hedge ratio dimension. However, fixed income intensive
funds have lower volatility in their portfolio. As a consequence, the differences in hedge ratio for such
funds are more pronounced.

Figure 25: Sharpe Ratio During QE
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In line with the previous paragraph, the hedge ratio does not seem to influence the Sharpe ratio for
the 10 and 15 year horizons for the QE period that much. The amount of extra volatility the swap
agreements bring into the portfolio exactly offset their possible return. For the EE period, higher
hedge ratios denote higher Sharpe ratios at these horizon due to the fact that interest rates do not
experience a shift from decline to growth, but rather tend to rise consistently. Again, the differences
in Sharpe ratio over the hedge ratio dimension are largest for the fixed-income intensive funds due to
their lower portfolio volatility.

In the long run, Sharpe ratios are highest for funds that maintain a full hedge. The mechanism
is the same as for the high fund value. Again the differences are more pronounced when comparing
funds with a low equity-to-total-asset-value ratio.

Figure 26: Sharpe Ratio in EE

For both regimes it holds that an intermediate hedge level is recommended. No hedging at all is
undesirable as the portfolio does not benefit from a decrease in interest rates. However, a full hedge is
not profitable either as this strategy might yield large negative returns when the yield curve experiences
a positive shift. Long run effects point out that a full hedge is preferred. However, the validity of these
results are again debatable as business cycles do not (all) last 20 years.
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5.2.3 Fund Stability

In this section I present the impact of swaps on the stability of the fund. First, I discuss the stability
of the funding ratio. Second, I turn to the insolvency probabilities.

5.2.3.1 Funding Ratio
The presented funds all start with the same liabilities. Moreover, not taking into account the indexation
granted on the pension benefits, the liabilities are equal for every fund. Therefore, the funding ratios
reflect the very same pattern as the pattern in fund value. The funding ratios for the QE and EE
period are shown in Figure 36 and 37 in the Appendix, respectively.

The stability of the funding ratio is more interesting. Figure 27 and 28 show the volatility in the
funding ratio for the QE and EE period, respectively. The data used to create the figures can be found
in Table 18 and 19 in the Appendix.

Figure 27: Volatility of Funding Ratio During QE

Unsurprisingly, the variability in the funding ratio is higher for funds that invest heavily into equities.
Comparing funds with an equity-to-total-asset-value ratio of 80 percent to those with a ratio of 20
percent, the difference in variability is roughly a factor five. This pattern holds for both regimes and
all horizons.

Interestingly, even though the volatility in funding ratio declines with the amount of hedging, the
differences are very small, negligible almost. Moreover, this consistency in volatility over the hedge
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ratio dimension holds at every horizon. Thus, speaking from a probability theory point of view, the
use of swaps shift the distribution to another epicentre, keeping the variance more or less constant.
Strictly speaking, the use of swaps does not create more certain fund results. The use of swaps just
generates a windfall gain that counters the movement in the present value of the liabilities.

Figure 28: Volatility of Funding Ratio in EE

5.2.3.2 Insolvency Probability
The two main solvency statistics DNB uses are the MVEV and the VEV. Therefore, I present the
probabilities that a fund is short to meet its MVEV and VEV.

Figure 29 and 29 depict the probabilities of a fund having a shortfall relative to their MVEV in
times of QE and EE, respectively. The data used to construct the figures can be found in Table 20
and 22 in the Appendix. Note the differences in scale for both figures. As the MVEV for all modelled
funds is the same (104.5%) the results are driven by the performance of the fund. Whereas in times
of QE funds have a significant probability (in the 20-40% range) of having a shortfall relative to the
MVEV, these probabilities do not exceed the 10% for the most risky funds in times of EE. Lower
shortage probabilities are found at funds that have more certain (read less volatile) returns on average.
And indeed, the figures are the mirror image of the fund value figures stated above. The mechanisms
that drive these results are the exact same as stated in the Fund Performance section.
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Figure 29: Probability Insolvency Relative to MVEV during QE

Figure 30: Probability Insolvency Relative to MVEV in EE
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More interesting are the probabilities of having less funds than the VEV prescribes. Note that funds
with a low equity-to-total-asset-value ratio (high fixed-income-to-equity ratio) have a lower VEV in the
model relative to reality. This is the consequence of the assumption that the bonds a fund can invest
in are prime grade government bonds for which extra buffers are not required by DNB. Figure 31 and
32 show the insolvency probabilities relative to the VEV for the QE and EE period, respectively. Note
that the scale for both figures is very different. Whereas in times of economic growth probabilities
of having a VEV shortage are very small, there is a substantial probability for such events in times
of economic downturn. For both regimes it holds that more equity-intensive funds have a higher
probability of having a shortage relative to their VEV. This result is intuitive as the VEV is relative
high (for equity intensive funds) and equities are relative risky. Furthermore, funds with higher hedge
ratios have a smaller probability of being short to meet their VEV. This is straightforward as funds
with higher hedge ratios are required to hold smaller buffers.

However, during the unstable QE period, for the shorter horizons (5 and 10 years), equity-intensive
funds that are highly hedged are insolvent more frequently, even though they are required to hold
smaller buffers compared to their less hedged counterparts. Equity-intensive funds have a smaller
natural hedge as they invest less into bonds. As such, their use of swaps is more intensive to maintain
their desired hedge level compared to fixed-income intensive funds. This result shows that swaps are
volatile and can have adverse effects to the portfolio value (due to transaction costs and returns on
the swap portfolio). This holds especially when interest rates increase. This result is in line with the
results presented in the Fund Performance section.

During the EE period the hedge ratio does not seem to alter the insolvency probabilities on the
shorter horizons. As the volatility of the market is relative low in this period the fund adapts its hedge
position less frequent relative to the more volatile QE period. As such, the effects are less pronounced
in the EE period than the QE period. Moreover, the modelled funds mainly invest in floating-for-fixed
agreements. Such contracts are of use when interest rates decline, but will have a negative effect on
the portfolio value when interest rates rise. Whereas in the previous paragraph it was shown that a
high hedge ratio can have negative effects on stability when the market is less stable, now the negative
effect on fund value of the swap portfolio is offset by the positive returns on other asset classes such
that insolvency probabilities remain similar.

Comparing the probabilities of having a shortage relative to MVEV and those relative to VEV, the
VEV probabilities are the amplified versions of the MVEV probabilities. This is not surprising, as the
VEV is a measure to bring stability into pension funds by setting buffers. However, a higher buffer
increases the probability of passing it.
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Figure 31: Probability Insolvency Relative to VEV during QE

Figure 32: Probability Insolvency Relative to VEV in EE
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5.2.4 Indexation

The price level correction that can be granted is determined by a piecewise linear function, see Section
3.1 on the assumptions regarding the liabilities. This function has as arguments the funding ratio and
the VEV. As such, the granted level of indexation is a function of performance and stability of the
fund. However, it is important to note that the stability is from a regulative point of view (as the
VEV is determined/approved by DNB). Thus, the funds that are able to grant a maximal price level
correction (of 2%, see section 3.1) are regarded most reliable by DNB.

Figure 33 and 34 depict the granted levels of indexation in times of QE and EE, respectively. The
data used to construct the figures can be found in Table 24 and 25 in the Appendix. Note that for
the EE period the indexation levels are almost indistinguishable over the hedge ratio dimension. The
general pattern in the short run is that the higher the hedge level and the more the fund invests in
fixed income securities, the higher the level of indexation. This is in line with the risk assessment of
pension funds by DNB: a higher hedge ratio and more fixed income relative to equities is less risky,
see the square root formula in Section 3.1. However, for the QE period, in the short run the level
of indexation takes a dip for higher hedge ratios. This is the consequence of the negative short run
returns of high hedge practices in episodes of low and declining interest rates.

Figure 33: Indexation during QE
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Figure 34: Indexation in EE

5.2.5 Robustness

The first robustness test I performed is to check how the results change under different constant spread
specifications. That is, instead of the average spread added to the zero curve, I added a spread S. The
robustness tests performed included a zero spread and a spread that was double as large.
The results were robust in the sense that the patterns presented remained the same. The results are
not presented for conciseness and can be requested at the author.

The second robustness check is an alternative transaction cost specification. Except for transaction
cost part of the results, the results are similar. The transaction costs still increased in the level of
hedging. However, the overall size of transaction costs expenditures inclined (declined) with an increase
(decrease) of transaction costs. Again, exact results can be obtained at the author.
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6 Conclusion

Interest rate hedging is paramount in DNB’s nFTK. Indisputably, swaps are useful for hedging
purposes, but the costs of using swaps for pension funds had not yet been investigated. As the
duration of the pension liabilities typically is 20 years the usefulness of swaps for pension funds might
disappear if the term-structure is mean reverting. In answering this main question I investigated
different important aspects of a typical pension fund.

On average, pension funds with a hedge ratio of at least 80% spend between 5-9 basis points (bps)
of total fund value on total transaction costs in periods of QE, while funds that do not hedge merely
spend a half basis point. In times of economic growth this difference diminishes. In such episodes,
highly hedged funds spend between 1-1.5 bps on transaction costs versus 0.1-0.5 bps for non hedged
funds. There are two mechanisms that explain this result. First, if swap payments eat up all cash
reserves, the fund needs to sell off some assets to replenish their 1% cash reserve and thus incur some
transaction costs. Second, adding swaps to the portfolio translates to more interest risk exposure
(rho) of the portfolio. Adhering to the fund’s investment strategy, e.g. the equity-to-total-asset-value
ratio, means more frequent rebalancing. The increased market volatility during QE explains why this
difference is larger in such episodes than in moments of EE. The results indicate a strong positive effect
between transaction costs expenditures and the hedge ratio.

During periods of QE, funds with higher hedge ratios perform less on average. In the long run
differences in fund performance over the hedge ratio dimension is almost non-existent. In the EE
period the fund value is almost the same over the hedge ratio dimension. Interestingly, for both
regimes, there are no clear differences in fund value over the hedge ratio dimension around 10 to 15
years. On average, adding swaps to the portfolio has no influence on the fund performance in the
medium run, irrespective of the movement of interest rates. Although there seems to be a negative
relationship between the volatility of the funding ratio and the hedge ratio, this relation is negligible.
This result holds for all horizons. Hence, the Sharpe ratios point towards the same conclusion as those
based on the fund performance results.

As a higher hedge ratio is regarded safer in the nFTK, DNB requires heavily hedged funds to maintain a
smaller buffer. Hence, funds with higher hedge ratios have a smaller probability of being short to meet
their MVEV. Whereas in times of economic growth probabilities of having a VEV shortage are very
small, there is a substantial probability for such events in times of economic downturn. However, during
the unstable QE period, equity-intensive funds that are highly hedged are more frequent insolvent on
the shorter horizons (5 and 10 years), even though they are required to hold smaller buffers compared
to their less hedged counterparts. Their use of swaps is relatively more intensive to maintain their
desired hedge level compared to fixed-income intensive funds. This result shows that swaps are volatile
and can have adverse effects to the portfolio value. During the EE period the hedge ratio does not
seem to alter the insolvency probabilities drastically. As the volatility of the market is relative low in
this period the fund adapts its hedge position less frequent relative to the more volatile QE period.
As such, the effects are less pronounced in the EE period than the QE period.

In times of economic upswing the indexation levels are almost indistinguishable over the hedge ratio
dimension. This is the result of the strong positive returns of the fund that enables it to grant full
indexation. The general pattern is that the higher the hedge level and the more the fund invests in
fixed income securities, the higher the level of indexation. This is in line with the risk assessment of
pension funds by DNB: a higher hedge ratio and more fixed income relative to equities is less risky.
However, for the QE period, in the short run the level of indexation takes a dip for higher hedge ratios.
This is the consequence of the negative short run returns of high hedge practices in episodes of low
and declining interest rates.
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The results constitute a Keynesian answer to the main research question. Even though the results did
not show a particular argument pro hedging in times of economic expansion, a modest hedge ratio
still is advisable: a reasonable hedge position does not alter transaction costs dramatically, nor does it
affect the fund performance. However, if a negative shock to interest rates occurs, the fund is partly
defended. There appears to exist an interior region on the hedge ratio dimension that turns out to be
a wise strategy. This non-linear (but inverted U-Shaped) relationship is not reflected in nFTK and can
be a point of improvement in Dutch pension fund regulation. On the other hand, maintaining a high
hedge position is very costly in the QE period. Not only do transaction costs expenditures increase
drastically in the hedge ratio, but a high hedge position also limits the profitability of the fund when
the economy experiences a transition to a regime with higher interest rates. Furthermore, as a lower
bound exists in the negative rate territory, hedging against a decline in the term-structure might seen
redundant: the costs of the hedge are too high compared to the potential windfall gain. Moreover,
adding swaps to the portfolio does not stabilize the funding ratio of the pension fund. At horizons
of 10 to 15 years, identical funds that differ in the hedge ratio only are indistinguishable in financial
performance and stability. Hence, in economic slump regulation might be eased.
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7 Discussion and Further Research

A first interesting avenue for further research is to test the robustness of the results under different
specifications of the financial market model. Allowing for more factors in the term-structure models
potentially better capture the correlation structure between the maturities. This would be particularly
interesting for the periods when correlations across the yield curve are not that large - periods of
economic upswing. A model that includes jumps could reveal the true usefulness of swaps for pension
funds. Although jumps do not occur frequently, it is interesting how the model processes the occurrence
of a jump. A multi-curve framework would relax the constant spread assumption and provide a valuable
generalization. Of course, this comes at the price of extra parameters and computing time.

DNB requires funds that do not meet their VEV to create a conditional restructuring plan. Such
conditional plans can consist of increased pension premiums, restriction on price level correction on
the pension benefits, changing investment behaviour, etc.. The restructuring is conditional on funds
being short to their VEV, and becomes unconditional when the fund does not meet the MVEV for
the fifth year in a row. Restructuring plans are designed to bring stability within funds, but have
consequences on society. If a fund proposes to stick to its investment strategy and change the pension
premiums and/or benefits and DNB agrees to the proposal, then the restructuring plan has a wealth
distributive (from the young generation to the old, or vice versa) character. Thus, the outcome has a
welfare effect on society. However, if the fund alters its investment strategy and keeps its operational
characteristics the same, funds that are regarded as unsafe disappear in the long run. In itself, this is
a desirable evolution.

But from another point of view, it is very likely that funds converge to an investment strategy that
is regarded safe by DNB. From the analysis above it seems that funds with a low to intermediate
equity-to-total-asset-value ratio (0.2-0.4) and intermediate to high hedge ratio (≥ 0.5) will remain in
the economy. And indeed, such type of funds are the norm in the Dutch pension sector2728. An
important point regarding this convergence of characteristics is the build up of systemic risk. One
could even advocate that this constitutes a volatility paradox as in Brunnermeier & Sannikov (2014).
Pension funds are the largest institutional investors in the Netherlands. With regulation, DNB tries to
stabilize the fund. However, if the result is that funds become comparable in investments and interest
rate exposure, they go sour simultaneously. Thus, idiosyncratic risk is exchanged for systemic risk.

Regulation that switches in strictness between the regimes might counter this convergence. Strict
regulation in economic boom limits idiosyncratic risk. However, as results point out, all funds where
able to grant almost full indexation. As such, convergence to a certain type of fund is prevented and
systemic risk is untouched. However, easing regulation in times of economic slump such that funds
restructure - but not all to a identical fund - can counter the aforementioned volatility paradox. This
is a point for further research.

27https://statistiek.dnb.nl/downloads/index.aspx#/details/derivatenposities-naar-type/dataset/

a02b1607-cc2c-4bdf-9887-2503608521bf/resource/1feee170-cf48-40cf-8b36-a09f82db9938
28https://www.dnb.nl/nieuws/nieuwsoverzicht-en-archief/dnbulletin-2013/dnb295970.jsp
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9 Appendix

9.1 Preliminaries

This section serves as a brief summary of the economic and mathematical theory the model rests upon
and can be skipped if the reader is familiar with the theory.

9.1.1 Economic Background

9.1.1.1 Interest rates, Compounding and Discounting
A fundamental economic concept in the framework of pension funds is the so-called time value of

money. This concept means that the present value of money will be less or equal than the future value
of this money due to the interest that can be earned on current money (at least when interest rates
are non-negative). Define the value of a bank savings account at time t by M (t). If one puts m at
time t = 0 in the account the initial value of the bank account is known, say M (0) = m0. Let us now
consider the most straightforward type of interest, namely the simple interest rate. If the annualized
interest rate for depositing money for a period of (0, t) year equals R (0, t), then after a period t years
the simple interest rate gained on the money deposited is defined by R (0, t) t. If the bank account
would grow according to simple interest then after t years the money in the bank account would equal:

M (t) = (1 +R (0, t) t)m0 (9.1)

The mechanism of compounding accounts for the fact that the interest gained on a deposit can be
reinvested and can gain interest on itself. If the annual interest rate for depositing your money for
a period of (0, t) equals R (0, t), the value of bank account after time t years, compounded annually,
corresponds to:

M (t) = (1 +R (0, t))
t
m0 (9.2)

Then, R (0, t) is called the zero or spot interest rate (short: zero or spot rate). Interest on bank accounts
often are paid more frequently than once a year. If interest is paid n times a year and the annual
interest rate for the holding period of (0, t) is R (0, t), the bank account after t years of investment
equals:

Mn (t) =

(
1 +

R (0, t)

n

)nt
m0 (9.3)

The subscript n in Mn denotes the compounding frequency per year. Taking the limit of Equation
(9.3) in the compounding frequency n to infinity, yields the value of the bank account after t years
with a continuously compounded spot interest rate:

lim
n→∞Mn (t) = lim

n→∞

(
1 +

R (0, t)

n

)nt
m0 = eR(0,t)tm0 (9.4)

Let us now consider the evolution of the bank account in continuous time. In this setup the bank
account accrues with interest paid continuously, the so-called short interest rate (short: short rate)
r (t). After a infinitesimal step dt the interest paid on the bank account equals:

dM (t) = M (t) r (t) dt (9.5)

The initial value put in the account is the initial condition for the ordinary differential equation. The
solution to this differential equation is:

M (t) = e
∫ t
0
r(s)dsm0 (9.6)
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Combining Equation (9.4) and (9.6) yields the relation between the continuously compounded spot
interest rate and the integral of the short rates over the same interval:

R (0, t) =
1

t

∫ t

0

r (s) ds (9.7)

In the calculation of interest rate swap prices forward interest rates (short: forward rate) play an
important feature. A forward rate f (t, T1, T2) is the interest rate that is paid over the period (T1, T2)
and is determined at time t, for t ≤ T1 ≤ T2. In order to make the forward rate clear consider the
following example. At time t you receive $1,−. You would like to put this money in a savings account
for two years. Denote by T1 and T2 one and two years from today respectively. Suppose there are
two different options to invest the money. Option one is putting the $1,− in an account for the full
two years paying a R (t, T2) continuous compounded interest. The second option is to save the money
for a year in an account gaining continuous compounded interest R (t, T1) after which the gross return
is invested again against the best rate available at different banks. The interest rate you will receive
for the second year is the forward interest rate that is determined now over the period from one year
from now until two years from today, f (t, T1, T2). Assume that this rate is continuously compounded
as well. This rate is unknown, but by the absence of arbitrage, the two different options should earn
the same. With first option the end result equals $1× eR(t,T2)(T2−t). By going with the second option
the terminal value of the investment is $1× eR(t,T1)(T1−t)ef(t,T1,T2)(T2−T1). Then the forward rate can
be expressed in terms of the other two zero rates:

ef(t,T1,T2)(T2−T1) =
eR(t,T2)(T2−t)

eR(t,T1)(T1−t)

f (t, T1, T2) =
R (t, T2) (T2 − t)−R (t, T1) (T1 − t)

(T2 − T1)

(9.8)

With Equation (9.7) the forward rate can be expressed in terms of short rate integrals. Letting T2 → T1,
the limit of the forward rate is the so-called instantaneous forward rate. The instantaneous forward
rate is the interest rate that is paid over a infinitesimal holding period somewhere in the future, say
T1 and is determined at time t:

f (t, T1) = lim
T2→T+

1

f (t, T1, T2) (9.9)

Note that lim
T→t+ f (t, T ) = r (t).

The concept of interest payments is closely related with the mechanism of discounting. Discounting is
the method of calculating the present value of a future cash flow. Because of the time value of money
(the possibility of earning interest), money now is less in quantity than it is in the future, if interest
rates are positive. Assuming that at time T the bank account is worth mT , then by discounting one
calculates the value of the account any time before T , mt ∀t ≤ T . The values mt can be found by
inverting the growth formulas of the bank account stated before. The list below gives the discount
factors for t years from now for every equation:

• simple interest (equation 9.1):

DF (0, t) = (1 +R (0, t) t)
−1

(9.10)

• annually compounded (equation 9.2):

DF (0, t) = (1 +R (0, t))
−t

(9.11)

• n times compounded (equation 9.3):

DF (0, t) =

(
1 +

R (0, t)

n

)−nt
(9.12)
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• continuously compounded (equation 9.4):

DF (0, t) = e−R(0,t)t (9.13)

• in terms of short rate (equation 9.6):

DF (0, t) = e−
∫ t
0
r(s)ds (9.14)

9.1.1.2 Bonds
A bond is a type of security sold by corporations and governments to raise funding today in exchange
for future payments. A bond is a form of debt. The point up until the payments are made is called
the maturity or expiration date of the bond. The remaining time to maturity is called the term of the
bond. There are two types of payment, namely coupon payments and the face value payment. The
face value (or principal) is the amount that is paid by the seller at the maturity date to the buyer of
the bond. Coupons are payments that are made periodically (e.g. quarterly, semi-annually, etc.) and
are constant over the lifespan of the bond. Each coupon payment is set by the coupon rate and is
calculated as:

Coupon payment =
Coupon Rate × Face Value

Number of Coupons per year

Denote the price of a bond at issue date with maturity T by P (0, T ). If this bond has face value N
and coupon payments c per period, all the cash flows of buying such a bond can be depicted as in
Figure 35.

−P (0, T )

t = 0

c

t = t1

c

t = t2

c

t = t3

. . .

. . .

c+N

t = T

Figure 35: Cash flows of a coupon-paying bond

Consider a bond with maturity T and face value N that pays a coupon of c. Fix a period δ for
the interval in between payments. Denote by M = T/δ the number of payments. Then, the set of
payment dates is defined by T = {Tn = nδ : n ∈ {1, 2, . . .M}}. Define by T0 = 0 the issue date of
the bond. The price of a bond with coupon payments of c and maturity T at time t, P (t, T ), equals
the discounted future cash flows. At time t the first upcoming coupon payment occurs at Tn, where
n = {n ∈ {1, 2, . . .M} : Tn−1 < t ≤ Tn}. Then, the bond price, maturing at T , at time t equals:

P (t, T ) =

M∑
n={n∈{1,2,...M}:Tn−1<t≤Tn}

DF (t, Tn) c+N ×DF (t, T ) (9.15)

A bond’s yield to maturity or yield is the interest rate such that the discounted cash flows equal the
observed market price. In case of continuous compounding the yield of a coupon-paying bond equals
the rate y such that Equation (9.15) equals the observed market price PM (t, T ):

PM (t, T ) =

M∑
n={n∈{1,2,...M}:Tn−1<t≤Tn}

e−y(Tn−t)c+N × e−y(T−t) (9.16)

Solving Equation (9.16) for y delivers the required result.

A bond with a coupon rate of zero, is called a zero-coupon bond. Denote the price of a zero-coupon
bond at time t that matures at time T with a face value of N by ZN (t, T ). The bond consist of one
cash flow at the maturity date. Therefore, the price of a zero-coupon bond equals the discounted value
of the face value paid at time T . Note that the cash flows of a zero-coupon bond are in fact similar to
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those of a savings bank account with corresponding initial and terminal date. With this in mind the
price of the zero-coupon bond should equal:

ZN (t, T ) = DF (t, T )N (9.17)

In the case of simple interest the price of the bond is:

ZN (t, T ) = (1 +R (t, T ) (T − t))−1
N (9.18)

Where R (t, T ) is the zero or spot rate for a holding period of (t, T ). The yield of a zero-coupon
coincides with the zero rate.

A coupon-paying bond can be decomposed in a batch of zero coupon bonds. Every coupon payment
is a zero-coupon bond with face value equal to the coupon payment and with maturity the date that
the coupon payment has to be made. The face value payment of the coupon-paying bond equals a
zero-coupon bond with same face value and maturity. Therefore, the price of the coupon-paying bond
can be expressed as:

P (t, T ) =

M∑
n={n∈{1,2,...M}:Tn−1<t≤Tn}

Zc (t, Tn) + ZN (t, T ) (9.19)

The last type of bond considered in this section is a so-called floating rate bond or floating rate note
(FRN). A FRN is a bond with a varying coupon rate. This coupon rate is determined by a certain
benchmark interest rate. Typical benchmarks include the US Treasury rates or the London Interbank
Offered Rates (LIBOR). At every coupon payment date the coupon rate for the next payment is set.
Therefore, in the context of a FRN a coupon date is also called a reset date. Denote the price of a
FRN with maturity T at time t by FRN (t, T ). Fix a period δ for the interval in between payment
dates. Denote by M = T/δ the number of payments. Then, the set of payment dates is defined by
T = {Tn = nδ : n ∈ {1, 2, . . .M}}. Define by T0 = 0 the issue date of the bond. First consider the
value of the FRN at the issue date. The first coupon payment at T1 is known, since the rate has been
fixed. The remaining coupon rates are yet unknown at the issue date. The unbiased estimates for
the remaining payments are the corresponding forward rates. Therefore, the coupon rate at time T2

equals f (0, T1, T2). Since the coupons do not compound interest, we should define the forwards based
on the simple interest rates. Then, by following the same approach in Equation (9.8):

(1 +R (0, T1)T1) (1 + f (0, T1, T2) (T2 − T1)) = (1 +R (0, T2)T2) ⇐⇒

f (0, T1, T2) (T2 − T1) =
1 +R (0, T2)T2

1 +R (0, T1)T1
− 1 ⇐⇒

f (0, T1, T2) =
R (0, T2)T2 −R (0, T1)T1

(1 +R (0, T1)T1) (T2 − T1)

(9.20)

The value of the FRN equals the discounted values of the coupons and the face value. The discount
factors used to calculate the present value should therefore also be based on the simple interest rate.
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All together:

FRN (0, T ) =

M∑
i=1

N × f (0, Ti−1, Ti) (Ti − Ti−1)DF (0, Ti) +N ×DF (0, T )

=
N ×R (0, T1)T1

1 +R (0, T1)T1
+N

[
M∑
i=2

(
1 +R (0, Ti)Ti

1 +R (0, Ti−1)Ti−1
− 1

)
1

1 +R (0, Ti)Ti

]
+

N

1 +R (0, T )T

=
N ×R (0, T1)T1

1 +R (0, T1)T1
+N

[
M∑
i=2

1

1 +R (0, Ti−1)Ti−1
− 1

1 +R (0, Ti)Ti

]
+

N

1 +R (0, T )T

=
N ×R (0, T1)T1

1 +R (0, T1)T1
+N

(
1

1 +R (0, T1)T1
− 1

1 +R (0, TN )TN

)
+

N

1 +R (0, T )T

=
N (1 +R (0, T1)T1)

1 +R (0, T1)T1
= N

(9.21)

In the second line we have used the fact that the first forward rate equals the spot rate, f (0, 0, T1)T1 =
R (0, T1)T1. From the third to the fourth line we have observed that the summation is a telescoping
series. The rest of the result is based on simple algebra.

From the derivation in Equation (9.21) it is clear that the value of the floating rate bond at the
issue date does not depend on the level of interest rates, but purely on the notional. This is due to
the fact that the coupon rate resets at every payment date. An increase in interest rates will result in
a higher coupon payment, but also in a lower discount factor. Hence, the effect of an increase in the
interest rates has no effect on the price.

Let us now turn to the price of the FRN at a time t ∈ (0, T ). At time t the first upcoming coupon
payment occurs at Tn, where n = {n ∈ {1, 2, . . .M} : Tn−1 < t ≤ Tn} is the index of the first upcoming
payment. At time t the coupon rate for the payment at Tn is already determined at Tn−1. This
coupon payment is equal to N × R (Tn−1, Tn) (Tn−1 − Tn). For the remaining payments at times
Tn+1, Tn+2, . . . , T the coupon rate is determined from the forward rates. The value of the FRN at
time t yields:

FRN (t, T ) = N ×R (Tn−1, Tn) (Tn − Tn−1)DF (t, Tn) +N

[
M∑

i=n+1

f (t, Ti−1, Ti) (Ti − Ti−1)DF (t, Ti)

]
+N ×DF (t, T )

=
N ×R (Tn−1, Tn) (Tn − Tn−1)

1 +R (t, Tn) (Tn − t)
+N

[
M∑

i=n+1

1

1 +R (t, Ti−1) (Ti−1 − t)
− 1

1 +R (t, Ti) (Ti − t)

]

+
N

1 +R (t, T ) (T − t)

=
N ×R (Tn−1, Tn) (Tn − Tn−1)

1 +R (t, Tn) (Tn − t)
+N

(
1

1 +R (t, Tn) (Tn − t)
− 1

1 +R (t, T ) (T − t)

)
+

N

1 +R (t, T ) (T − t)

=
N (1 +R (Tn−1, Tn) (Tn − Tn−1))

1 +R (t, Tn) (Tn − t)
(9.22)

In the derivation above the same line of reasoning is used as in the derivation of Equation (9.21). Note
that the result in 9.22 makes intuitively sense. Because of the reset characteristic of the FRN at a
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payment date, the FRN at any time t equals the discounted upcoming payment plus the discounted
face value at the same time of the upcoming payment. Furthermore, the result shows that a FRN
carries little interest rate risk as the value at t only depends on the discount rate for the upcoming
payment. After that time any changes in interest rates will not have any consequence on the price as
the coupon rate and discount factor cancel each other out.

9.1.1.3 Interest Rate Swaps
An interest rate swap (short: swap) is a contract between two parties to exchange interest rates for
a certain time period. More specifically, these parties exchange interest rate cash flows on a specified
amount, called the notional principal. The principal is called notional because this amount is never
exchanged, but only determines the size of the payments. One party receives a fixed interest rate, the
swap rate, over the agreed upon period in return for a floating rate. This party or side of the swap
is called the fixed leg. The other party receives the floating rate and pays the fixed rate. This side
is called the floating leg of the swap. In most cases the fixed coupon payments and floating coupon
payments are made annually and biannually respectively. At each floating coupon payment the floating
coupon rate for the next payment is determined. These dates are called the reset dates.

To value a swap, note that a swap is a combination of two bonds. Consider the value of the swap from
the receiver position. The fixed swap rate payments received can be represented by a long position in
a coupon-paying bond where the coupon rate equals the swap rate, the face value is the same amount
as the notional, and with the same maturity. The floating rate payments can be replicated by a short
position in a floating rate bond where again the face value is the same amount as the notional and
with the same maturity. Note that the face value exchange in the bond representation cancel each
other out. As such, a swap can be perfectly replicated by the two bonds.

In the following the superscripts R and L will represent the fixed and floating side, respectively.
Fix two periods δR and δL for the intervals in between fixed and floating payments, respectively.
Denote by T the maturity of the swap and by MR = T/δR and ML = T/δL the number of fixed and
floating payments respectively. Then, for a swap with maturity T , we define two sets of payment
dates TR =

{
TRn = nδR : n ∈ nR

}
, where nR =

{
1, 2, . . .MR

}
and TL =

{
TLn = nδL : n ∈ nL

}
,

where nL =
{

1, 2, . . .ML
}

. Define by TR0 = TL0 = 0 the issue date of the swap. Note that
TRMR = MRδR = T = MLδL = TLML being the maturity of the swap. Also notice that when fixed rate
payments are made annually and floating rate payments biannually that δR = 2δL and MR = 1

2M
L.

Moreover, note that simple interest rates are used as the payments are fixed and cannot be reinvested.
Denote by r the annualized swap rate and by LTLn−1

(
TLn
)

the annualized interest rate determined at

TLn−1 for the period
[
TLn−1, T

L
n

]
,∀n ∈ nL. Denote by N the notional value of the swap. The value of

the fixed rate bond at time t ∈ (0, T ) equals (see Equation (9.15)):

BR (t, T ) = NrδR
MR∑

n={n∈nR:TRn−1<t≤TRn }
DF

(
t, TRn

)
+N ×DF (t, T ) (9.23)

The argumentation for the valuation of the short position in the floating rate bond is similar to
argumentation of the FRN. Consider an upfront incoming payment of N at t = 0. This payment
can be used to save against a annualized rate of L0

(
TL1
)

over the period
[
0, TL1

]
, yielding a total

gain of NδLL0

(
TL1
)
. This gain exactly equals the coupon that has to be paid (since it is a short

position) to the buyer of the bond at TL1 . What is left is the initial endowment of N . For every period[
TLn , T

L
n+1

]
, 1 ≤ n < ML this procedure can be repeated. At TLML the last coupon and the face value

payment N is paid. Therefore, the value of this floating rate bond at t = 0 equals the upfront incoming
payment, so BL(0, T ) = −N . Since at every coupon payment the initial endowment is preserved, the
value will be −N at those points in time, ∀t ∈ TLn : BL(0, t) = −N . Now examine the value of a short
position in a floating bond in between reset dates. Consider a t ∈ (0, T )\

{
TL
}

. Then, the index of the
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upcoming coupon payment n =
{
n ∈ nL : TLn−1 < t < TLn

}
. At time t the upcoming coupon payment

at TLn is already determined at TLn−1, being −NδLLTLn−1

(
TLn
)
. At the point in time of the coupon

payment, TLn , the previous procedure of reinvesting can again be repeated. Therefore, the value of the
short floating bond equals −N at time TLn . The value of the short floating bond at t equals the sum
of the discounted value at time TLn and the discounted payment at time TLn . All together:

BL (t, T ) = DF
(
t, TLn

)
N
(
−1− δLLTLn−1

(
TLn
))

(9.24)

The value of the swap from the receiver’s perspective equals the sum of Equation (9.23) and (9.24):

V (t, T ) = NrδR
MR∑

n={n∈nR:TRn−1<t≤TRn }
DF

(
t, TRn

)
+N ×DF (t, T ) +DF

(
t, TLn

)
N
(
−1− δLLTLn−1

(
TLn
))

= N

rδR MR∑
n={n∈nR:TRn−1<t≤TRn }

DF
(
t, TRn

)
+DF (t, T )−DF

(
t, TLn

)
− δLLTLn−1

(
TLn
)

(9.25)

To determine the fixed swap rate r, consider the value of the swap at t = 0. Since t = 0 is a reset date
the value of the swap at t = 0 is the sum of Equation (9.23) and −N , :

V (0, T ) = N

rδR MR∑
n=1

DF
(
0, TRn

)
+DF (0, T )− 1

 (9.26)

The swap rate is the value for r that makes the value of the swap at time t = 0 equal to zero. For that
fixed rate both the receiving and paying party are willing to enter the contract. Equating Equation
(9.26) to zero and solving for r yields the swap rate:

r =
1−DF (0, T )

δR
∑MR

n=1DF (0, TRn )
(9.27)

As discussed earlier, floating rate bonds are very insensitive to interest rate changes relative to other
types of bonds due to the reset characteristic of the value. Fixed coupon-paying bonds on the contrary
are very sensitive to a change in the level of interest rates. Although a swap is the difference between
these two bonds, the sensitivity to changes in interest rates remains strong. Therefore, swaps are a
useful instrument to hedge interest rate risk. Another attractive feature of swaps is that the value of
the swap equals zero at issuance. Therefore, the two parties initiating the swap do not initially have to
withhold any capital in order to hedge any possible interest rate risk. The parties only have to reserve
cash to make the required payments.

As a last note on swaps: although swaps are very attractive to hedge interest rate risks due to the
features discussed above, the volatility of swaps with respect to interest rate changes create an extra
volatile component in the portfolio. When one has a strict investment strategy, adding swaps could end
up being rather costly. The added swaps to the portfolio could force the portfolio manager to rebalance
the portfolio more often, yielding transaction costs, to meet the requirements of the investment strategy.

9.1.2 Mathematical Background

The analysis in this thesis uses numerous mathematical definitions and results. This section is written
to provide a basis to the reader with little knowledge of stochastic calculus, and econometric techniques.
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9.1.2.1 Stochastic Calculus The stochastic calculus relies heavily on measure theory. As such,
this will be the starting point. For a more elaborate discussion on these topics, I refer to Shreve (2004).

Definition: σ-algebra
Let Ω be a non-empty set, and let F be a collection of subsets of Ω. We say that F is a σ-algebra
when:

(i) ∅ ∈ F

(ii) A ∈ F =⇒ Ac ∈ F

(iii) A1, A2, · · · ∈ F =⇒
⋃∞
n=1An ∈ F

Note that because of (i) and (ii) the whole sample space is also included in the σ-algebra. Furthermore
the σ-algebra is closed under intersection by applying DeMorgan’s laws to (iii).

Definition: Borel set and Borel-σ-algebra A Borel set is a set in a topological space that
is built with open sets through a countable union, countable intersection, relative complement or
any combination of these. Equivalently, a Borel set can be constructed with closed sets, since each
of the two can be expressed in terms of countable operations of the other. For instance (a, b) =⋃∞
i=1

[
a+ 1

i , b−
1
i

]
.

The collection of all Borel sets on a topological space X form a σ-algebra. The Borel-σ-algebra on X,
often denoted B (X), is the smallest collection of these sets such that the properties of a σ-algebra are
satisfied. Put differently, it is the intersection of all σ-algebra’s containing all subsets of X.

Definition: Stochastic variable
Let (Ω,F ,P) be a probability space. A stochastic variable X, or random variable X, is a function
that assigns to every outcome in the sample space Ω, a number on the real line R. More precisely,
X : Ω → R such that for all Borel subsets of R, ∀B ∈ B (R), the set {ω ∈ Ω|X (ω) ∈ B} ∈ F . Most
common is to write this set short-handedly as {X ∈ B}.

Definition: Probability space
A probability space is a mathematical space that translates an experiment to mathematics. More
precisely, a probability space is a tuple with three elements (Ω,F ,P):

1. Ω, the sample space, which contains all possible outcomes.

2. F , the set of events containing zero or more outcomes. This is a σ-algebra of subsets of Ω.

3. P, the probability measure, which a assigns a number between zero and one for every event in
F .

The collection F and probability measure P is not defined very precise above. In the next two definitions
both concepts are stated. The definition of the probability measure are also known as the Kolmogorov
axioms.

Definition: Probability measure
Let Ω be a non-empty set, and let F be a σ-algebra of subsets of Ω. A probability measure P is a
function that, to every set A ∈ F , assigns a number in [0, 1], called the probability of A and written
P (A). We require:

(i) P (Ω) = 1

(ii) countable additivity, whenever A1, A2, · · · is a sequence of disjoint sets in F , then P (
⋃∞
n=1An) =∑∞

n=1 P (An)
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At first glance the definition of a probability space might seen a bit abstract. Consider the experiment
of a coin toss. The coin can land on two sides, namely heads (H) or tails (T ). Therefore, the sample
space Ω = {H,T}. The σ-algebra F on Ω is the collection {∅,Ω, H, T}. This set captures all relevant
events in the experiment. Note that the event ∅ correspond to the event that the coin will not show
heads nor tails and the event Ω to the event that the coin will show heads or tails. The probability
space is completed by defining the probability measure P: P (∅) = 0, P (H) = P (T ) = 1

2 , P (Ω) = 1.

Definition: Filtration
Let Ω be non-empty and T > 0. Assume ∀t ∈ [0, T ] : ∃F(t), a σ-algebra. Further assume that
∀s ≤ t : F(s) ⊂ F (t). Then, the collection of σ-algebras {F(t), t ≥ 0} is called a filtration. In other
words, the filtration is the information set that is available at time t. One can infer at time t whether
or not the true event ω lies in each set in the filtration.

Definition: Stochastic process
Let (Ω,F ,P) be a probability space. Assume that the indexing set I ⊂ R is a set of infinite cardinality.
This indexing set typically represents time. Then, a stochastic process is a function X : Ω × I → R.
Formally the process is written as {Xi, i ∈ I}. We speak of a discrete process if the index is restricted
to the natural numbers, I = {N ∪ 0}. Then the stochastic process is the countable infinite collection
{Xn, n ∈ {N ∪ 0}}. A continuous process is a stochastic process where I = R+, {X(t), t ∈ R+}.

Definition: Measurability
Let (Ω,F ,P) be a probability space. Let X be a stochastic variable defined on the probability space.
X is F-measurable if σ(X) ∈ F .

Definition: Adapted process
Let (Ω,F ,P) be a probability space and F(t) a filtration. The stochastic process {Xi, i ∈ I} is a
F(t)-adapted process if ∀i ∈ I : Xi is F(t)-measurable.

Definition: Brownian Motion / Wiener process
The Brownian motion or Wiener process is a continuous stochastic process {W (t), t ∈ R+} with the
following properties:

1. W (0) = 0 almost surely.

2. Independent increments: for 0 ≤ s < t <∞ : W (t)−W (s) ⊥⊥W (s).

3. Gaussian increments: for 0 ≤ s < t <∞ : W (t)−W (s) ∼ N (0, t− s)

4. the sample paths t 7→W (t) are continuous almost surely.

Definition: Itô process
Let (Ω,F ,P) be a probability space. An Itô process {X(t), t ∈ R+} with drift function µ(Xs, s) an
diffusion function σ(Xs, s) is an adapted stochastic process that can be expressed as the sum of an
integral with respect to time and an integral with respect to Brownian motion:

Xt = X0 +

∫ t

0

µ(Xs, s)ds+

∫ t

0

σ(Xs, s)dWs

Lemma: Itô lemma
Let (Ω,F ,P) be a probability space. Let {X(t), t ∈ R+} an Itô process. Let f(Xt, t) be a measurable
function. Then the dynamics of f(·) are given by:

df(Xt, t) =
∂(Xt, t)

∂t
dt+

∂(Xt, t)

∂Xt
dXt +

1

2

∂2(Xt, t)

∂X2
t

d [X,X]t
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9.1.2.2 State Space Analysis Several economic time series are unobserved and have to be
estimated. A well-known example of such a series is the volatility of a certain time series (e.g. a
stock index). As one has only one observation per time point, the volatility at that point can not be
extracted by applying the standard techniques. State space analysis serves the purpose of identifying
the relation of such a state (the volatility) to its observation (stock price). Furthermore, state space
analysis enables one to extract the state, estimate the parameters, and to forecast. In this thesis state
space analysis is particularly useful for estimation. More specifically, as the short rate is an unobserved
entity, one needs to extract this state variable in order to estimate the parameters of the model. In
the case of the Heston model, the non-Gaussian nature of the model prevents the use of standard
likelihood methods. State space methods and their further developments serve this cause very well.

Almost any model can be formulated into a state space model. A state space model is a general
form that can be used for both linear and non-linear models. Define the state by αt and the series
of observations by yt, t ∈ {1, 2, · · · , n}. An important note is that both αt and yt can be scalars or
vectors. The most general form of the state space formulation looks like:

yt = ct + Zt (αt) + It (εt)

αt+1 = dt + Tt (αt) +Rt (ηt)
(9.28)

where ct, dt capture the levels of the series, the function Zt (·) defines the relation between the
observation and the state, the function Tt (·) identifies the progression of the state process and the
functions It (·) and Rt (·) capture the irregular parts of the series. Furthermore, It (·) ∼ (0, Ht) and
Rt (·) ∼ (0, Qt). Note that all functions above also include the standard linear matrix multiplication,
e.g. Ztαt ∈ Zt (αt). Moreover, all system functions or matrices have to be known ex-ante and will
typically depend on parameters. In other words, these entities are fixed in time. These system entities
do not depend on parameters when the series do not have a level (such that ct = 0 and/or dt = 0)
or follow a random walk (such that Z(·) = 1 and/or T (·) = 1 with the appropriate dimension). Now
I turn to the methods to extract the unobserved state αt,∀t, from the series yt. First, I treat the
method used for linear models, which is known as the Kalman filter. Then, I discuss the non-linear
particle filter.

9.1.2.3 Kalman Filter
The Kalman filter is a method to extract the state from the observation series when the model is
linear and the distribution of the irregular component are normal, and is developed by Rudolf Kalman
(1960). The state space formulation of the most general linear Gaussian model takes the form of:

yt = ct + Ztαt + εt

αt+1 = dt + Ttαt +Rtηt

where εt ∼ N (0, Ht) and ηt ∼ N (0, Qt) and t ∈ {1, 2, . . . , n}. The Kalman filter is an iterative
scheme and rests on two lemmata. These lemmata propose an update of the distribution when new
information comes into play. In other words, when new information is of significance, the expectation
of the state gets altered conditional on this new information.

Lemma 9.1. Let the stochastic vector (X,Y ) be jointly normally distributed with E [X] ≡ µX , E [Y ] ≡
µY , Var [X] ≡ ΣX , Var [Y ] ≡ ΣY and Cov [X,Y ] ≡ ΣXY . Then, the conditional distribution of X

given Y is normally distributed with mean and variance:

E [X|Y = y] = µX + ΣXY Σ−1
Y (y − µY ) and

Var [X|Y = y] = ΣX − ΣXY Σ−1
Y Σ′XY
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Proof. Transform (X,Y ) into (E, Y ) by E = X − ΣXY Σ−1
Y (Y − µY ). Since this transformation is

linear the vector (E, Y ) is normally distributed.

Moreover, E [E] = E [X]− E
[
ΣXY Σ−1

Y (Y − µY )
]

= µX and

Var [E] = E
[
(E − E [E]) (E − E [E])

′]
= E

[
(E − µX) (E − µX)

′]
=

E
[(
X − ΣXY Σ−1

Y (Y − µY )− µX
) (
X − ΣXY Σ−1

Y (Y − µY )− µX
)′]

=

E [XX ′ −Xµ′X − µXX ′ + µXµ
′
X ]− E

[
ΣXY Σ−1

Y (Y − µY )(Y − µY )′Σ−1
Y ΣXY

]
= ΣX − ΣXY Σ−1

Y Σ′XY .

Furthermore, Cov [E, Y ] = E
[
(E − µE) (Y − µY )

′]
= E

[(
X − ΣXY Σ−1

Y (Y − µY )− µX
)

(Y − µY )
′]

=

E
[
(X − µX) (Y − µY )

′]− ΣXY Σ−1
Y E

[
(Y − µY ) (Y − µY )

′]
= 0.

Since E and Y are normal and uncorrelated, they are independent. Hence, the conditional distribution

of E is the same as the unconditional distribution. But also E [E|Y = y] = E [X|Y = y]−ΣXY Σ−1
Y (y−

µY ). Then, µX = E [X|Y = y] − ΣXY Σ−1
Y (y − µY ), which yields the result for the conditional

expectation. The same argument applies to the conditional variance.

Lemma 9.2. Let the stochastic vector (X,Y, Z) be jointly normally distributed and suppose E [Z] = 0

and ΣY Z = 0. Then, the conditional distribution of X given (Y,Z) is normally distributed with mean

and variance:

E [X|Y = y, Z = z] = E [X|Y ] + ΣXZΣ−1
ZZz and

Var [X|Y = y, Z = z] = Var [X|Y ]− ΣXZΣ−1
ZZΣ′XZ

Proof. By applying Lemma 1 to X and Y ∗ ≡ (Y ′, Z ′)′ the result immediately follows.

With the two lemmata one can derive the Kalman filter. First, assume that the parameters are
known such that the system entities are known. Later, parameter estimation based on the Kalman
filter will be discussed. Let Yt = (y1, y2, . . . , yt)

′ be the set of observations up until time t or more
general Yt = (y′1, y

′
2, . . . , y

′
t)
′
. Define the one-step ahead estimate of the state by at ≡ E[αt|Yt−1] and

it’s variance by Pt ≡ Var[αt|Yt−1]. Furthermore, define the filtered state by at|t ≡ E[αt|Yt] and it’s
variance by Pt|t ≡ Var[αt|Yt]. Then:

vt ≡ yt − E[yt|Yt−1] = yt − E[Ztαt + εt|Yt−1] =︸︷︷︸
εt⊥⊥Yt−1

yt − Ztat = Zt (αt − at) + εt

E[vt|Yt−1] = ZtE[αt|Yt−1]− Ztat = 0 →︸︷︷︸
Law iterated expectation

E[vt] = 0

Ft ≡ Var[vt|Yt−1] = Var[Zt (αt − at) + εt|Yt−1] =︸︷︷︸
αt⊥⊥εt

Var[Zt (αt − at) |Yt−1] + Var[εt|Yt−1]

= ZtPtZ
′
t +Ht

First derive the covariance between αt and vt given Yt−1, which is needed when invoking Lemma 2 to
incorporate new information.

Cov[αt, vt|Yt−1] = E[αt (Zt (αt − at) + εt)
′ |Yt−1] = E[αtα

′
tZ
′
t|Yt−1] = PtZ

′
t
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Note that E[αt|Yt] = E[αt|Yt−1, vt], since this only entails a linear transformation of the data. Using
Lemma 2 to incorporate the new information yields:

at|t = E[αt|Yt] = E[αt|Yt−1, vt] =︸︷︷︸
Lemma 2

E[αt|Yt−1] + Cov[αt, vt|Yt−1]Var[vt|Yt−1]−1vt = at + PtZ
′
tF
−1
t vt

Pt|t = Var[αt|Yt] = Var[αt|Yt−1, vt] =︸︷︷︸
Lemma 2

Var[αt|Yt−1]− Cov[αt, vt|Yt−1]Var[vt|Yt−1]−1Cov[αt, vt|Yt−1]′

= Pt − PtZ ′tF−1
t Zt Pt︸︷︷︸

P ′t=Pt

The prediction of the state at time t+ 1 becomes:

at+1 = E[αt+1|Yt] = E[Ttαt +Rtηt|Yt] = TtE[αt|Yt] +RtE[ηt|Yt] = Ttat|t = Ttat +Ktvt

Where the Kalman gain matrix Kt ≡ TtPtZ ′tF−1
t

Pt+1 = Var[αt+1|Yt] = Var[Ttαt +Rtηt|Yt] = TtVar[αt|Yt]T ′t +RtQtR
′
t = TtPt|tT

′
t +RtQtR

′
t

= TtPt (Tt −KtZt)
′
+RtQtR

′
t

The only thing that rests is the initialization of the algorithm. To start up the iteration scheme, the
best guess is α1 ∼ N (a1, P1) for some a1 and P1. There are three different possibilities for a1 and P1.
Firstly, when one deals with a stationary model (such as a stationary ARMA model), the initial values
of a1 and P1 can be initialized as the unconditional mean and variance of the process. Secondly, when
it is known that the process is non-stationary, one has to incorporate an uninformative prior, that is,
a1 = 0 and P1 → ∞. Note that in this case the value of a1 does not really matter as the variance
approaches infinity. The third option is to estimate the initialization simultaneously with the other
parameters. In this scenario one treats the initial state estimate and variance as components of the
parameter vector.

The parameters of the linear Gaussian state space model can be estimated with maximum likelihood
by making use of the prediction error decomposition. Denote the vector of parameters by ψ. Then,
the joint density of the observations can be decomposed as follows:

p (y1, y2, . . . , yn|ψ) = p (y1|ψ)

n∏
i=2

p (yi|Yi−1ψ) =︸︷︷︸
Y0=∅

n∏
i=1

p (yi|Yi−1ψ)

log (p (y1, y2, . . . , yn|ψ)) =
n∑
i=1

log (p (yi|Yi−1ψ))

In the linear Gaussian model E[yt|Yt−1] = Ztat and Var[yt|Yt−1] = E[(yt − Ztat) (yt − Ztat)′ |Yt−1] =
E[vtv

′
t|Yt−1] = Ft. Then the log-likelihood function boils down to:

log (p (y1, y2, . . . , yn|ψ)) =

n∑
i=1

−|yt|
2

log (2π)− 1

2
log [det(Ft)]−

1

2
v′tF

−1
t vt

= −n|yt|
2

log (2π)−
n∑
i=1

1

2
log [det(Ft)]−

1

2
v′tF

−1
t vt

where | · | denotes the cardinality of the vector. The parameters of the model are obtained by
optimizing the log-likelihood with standard optimization algorithms such as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm.
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9.1.2.4 Importance Sampling and Particle Filter
This section discusses how to filter the signal when the model is non-linear and/or non-Gaussian.
Instead of the linear Gaussian case, where yt|αt ∼ N (ct + Ztαt, Qt) and αt+1|αt ∼ N (dt + Ttαt, RtHtR

′
t),

the model has now a very general form:

yt ∼ p(yt|αt)
αt ∼ p(αt|αt−1)

(9.29)

In the same spirit as the Kalman filter, E[αt|Yt] is still of main interest. Or more general, any
function of the state E[xt(αt)|Yt]. As in the most general case no analytical results exist for this
expression, such as in the Kalman filter, these expectations are obtained by means of simulation.
This method is justified as long as the number of samples at every time point t is large enough The
justification is established by the law of large numbers, which states that for N >> 0 independent
draws, the mean of the sample of realizations X(1), X(2), . . . , X(N), where e.g. X ∼ N (0, 1), will
be equal to the expectation of the stochastic variable X, E[X] almost surely. Mathematically, ∀ε >
0, limN→∞ P

(∥∥∥∑N
i=1X

(i)

N − E[X]
∥∥∥ > ε

)
= 0.

Importance sampling was originally developed for cases when sampling from the original distribution
was slow or even impossible. The basic idea is to find a distribution, the importance density and
denoted by g(·), that is as close as possible to the original distribution g(·) from which draws are
easily obtained, i.e. g(·) ' p(·). Importance sampling models the full posterior, i.e. p(α1:t|Yt), where
α1:t ≡ (α1, α2, . . . , αt), and properties of this posterior distribution. Rewriting E[xt (α1:t) |Yt] gives the
main idea behind importance sampling:

Ep[xt (α1:t) |Yt] =

∫
xt (α1:t) p (α1:t|Yt) dα1:t =

∫
xt (α1:t)

p (α1:t|Yt)
g (α1:t|Yt)

g (α1:t|Yt) dα1:t

= Eg
[
xt (α1:t)

p (α1:t|Yt)
g (α1:t|Yt)

|Yt
]

=
g (Yt)

p (Yt)
Eg
[
xt (α1:t)

p (α1:t, Yt)

g (α1:t, Yt)
|Yt
] (9.30)

When evaluating xt (α1:t) = 1,∀α1:t:

1 =
g (Yt)

p (Yt)
Eg
[
p (α1:t, Yt)

g (α1:t, Yt)
|Yt
]

(9.31)

Dividing equation (9.30) by (9.31):

Ep[xt (α1:t) |Yt] =
Eg [xt (α1:t)w (α1:t, Yt) |Yt]

Eg [w (α1:t, Yt) |Yt]
(9.32)

where w (α1:t, Yt) ≡ p(α1:t,Yt)
g(α1:t,Yt)

are the so-called importance weights. Thus, at the core of importance

sampling lies a change of measure, where the importance weight is basically the Radon-Nikodym
derivative. Equation (9.32) gives the basis for importance sampling and one can obtain a result for
the desired expectation with the help of the law of large numbers:

Eg [xt (α1:t)w (α1:t, Yt) |Yt]
Eg [w (α1:t, Yt) |Yt]

= plimN→∞

∑N
i=1 xt

(
α

(i)
1:t

)
w
(
α

(i)
1:t, Yt

)
∑N
i=1 w

(
α

(i)
1:t, Yt

) (9.33)

where α
(i)
1:t is a draw from the posterior density g (α1:t|Yt). Filtering by importance sampling is very

inefficient since draws have to be obtained from the full posterior. So one would obtain n estimates
for the first state, n − 1 for the second state, and so on. For long time series this would translate to
lots of unnecessary work.
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Whereas importance sampling estimates functions of the state from the full posterior
p(α1, α2, . . . , αt|y1, y2, . . . , Yt) for every t, a particle filter retains the sample from t − 1 and samples
conditional on this sample following the known transition density. Particle filtering boils down to

sampling α
(i)
t |α

(i)
1:t−1,∀i. The samples in the set

{
α

(1)
1:t , α

(2)
1:t , . . . α

(N)
1:t

}
are called particles and each

particle contains a realization of the hidden process until t. These draws should be consistent with the
distribution from the importance density:

g (α1:t|Yt) =
g (α1:t, Yt)

g (Yt)
=
g (αt|α1:t−1, Yt) g (α1:t−1, Yt)

g (Yt)
= g (αt|α1:t−1, Yt) g (α1:t−1|Yt) (9.34)

To obtain a recursion, the following assumption is needed. Suppose α1:t−1 depends only on information
contained in Yt−1. Furthermore, the latent process is already established and new information yt is
established by a different process which does not depend directly on α1:t−1. Therefore, one can assume
g (α1:t−1|Yt) ≡ g (α1:t−1|Yt−1). Then:

g (α1:t|Yt) = g (αt|α1:t−1, Yt) g (α1:t−1|Yt−1) (9.35)

This assumption and the recursion above lie at the heart of particle filtering. For more details, I refer
the interested reader to, e.g., Durbin & Koopman (2012) or Doucet, De Freitas and Gordon (2001,
paragraph 1.3).

The recursion of the importance weights is based on the second to last equality in equation (9.30):

Eg
[
xt (α1:t)

p (α1:t|Yt)
g (α1:t|Yt)

|Yt
]

=
1

p (Yt)
Eg
[
xt (α1:t)

p (α1:t, Yt)

g (α1:t|Yt)
|Yt
]

=
1

p (Yt)
Eg [xt (α1:t) w̃t|Yt] (9.36)

where w̃t = p(α1:t,Yt)
g(α1:t|Yt) . Now:

w̃t =
p (α1:t, Yt)

g (α1:t|Yt)
=
p (αt, yt|α1:t−1, Yt−1) p (α1:t−1, Yt−1)

g (αt|α1:t−1, Yt) g (α1:t−1|Yt−1)

eq. (9.29)
=

p (yt|αt) p (αt|αt−1) p (α1:t−1, Yt−1)

g (αt|α1:t−1, Yt) g (α1:t−1|Yt−1)

=
p (yt|αt) p (αt|αt−1)

g (αt|α1:t−1, Yt)
w̃t−1

(9.37)

Estimates are obtained by setting w̃
(i)
t = 1 for i = 1, 2, . . . , N and t = 1, 2, . . . , τ , for a certain burn-in

τ . At t = τ + 1 the recursions can be used to obtain the weights. By using the same approach as
in importance sampling, by setting xt (α1:t) = 1 and then dividing the two equations, starting from
equation (9.36):

Eg
[
xt (α1:t)

p (α1:t|Yt)
g (α1:t|Yt)

|Yt
]

=
1

p (Yt)
Eg [xt (α1:t) w̃t|Yt] =

Eg [xt (α1:t) w̃t|Yt]
Eg [w̃t|Yt]

(9.38)

Which is almost identical to the case of importance sampling with the only difference being the weights.

Particle filters sometimes suffer from degeneracy, which means that particle weights are becoming
small. It is computationally inefficient to retain particles with little weight as their impact on the
Monte Carlo estimate is small. To circumvent degeneracy, one can replace particles with little weight
by the particles with a large weight when the effective sample size (ESS) is below a certain threshold.
Before one obtains new draws for the state process, the particles should be re-sampled from the full

set of particles, with replacement, according to the normalized weights w
(i)
t =

w̃
(i)
t∑N

i=1 w̃
(i)
t

. The ESS is

defined as ESS = 1∑N
i=1 w̃

(i)2
t

and takes a value between zero and one. The threshold is normally set to

0.75 or 0.5. So when effectively only 75% or 50% percent of the particles are informative, re-sampling
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takes place.

Parameter estimates follow from maximizing the simulated log-likelihood numerically. When denoting
α = (α′1, α

′
1, . . . , α

′
n)
′
, the likelihood function is:

L(ψ) =

∫
p (α, Yn) dα =

∫
p (α, Yn)

g (α|Yn)
g (α|Yn) dα =

∫
w̃ng (α|Yn) dα = Eg [w̃n|Yn] (9.39)

One obtains the MLE by optimizing this function with standard optimization techniques. For a detailed
description see Durbin & Koopman (2012). The covariance matrix of the parameter estimates follow
by the standard formula:

Ω̂ =

[
−∂ logL (ψ)

∂ψ∂ψ′

]−1 ∣∣∣
ψ=ψ̂

(9.40)
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9.2 Proofs

9.2.1 Hull-White: Spot Rate Affine Formulation

In order to find expressions for α(t, T ) and β(t, T ),∀(t, T ), the first step is to find the dynamics of the
bond price process. By applying Itô’s Lemma one gets:

dP (t, T ) =
∂P (t, T )

∂t
dt+

∂P (t, T )

∂r(t)
dr(t) +

1

2

∂2P (t, T )

∂r(t)2
(dr(t))2 (9.41)

Plugging in equation 3.10 (the short rate dynamics), the quadratic variation, and the derivatives
obtained from equation 3.11 yields:

dP (t, T )

P (t, T )
=

(
∂α(t, T )

∂t
+
∂β(t, T )

∂t
r(t) + β(t, T )Θ(t)− β(t, T )κr(t) +

1

2
β2(t, T )σ2

)
dt+ β(t, T )σdW (t)

(9.42)
From the martingale representation theorem it follows that the zero-coupon bond process is not a
martingale (the drift coefficient can not be zero ∀t, r(t)). In order to create a martingale, the dynamics
need to be transformed into deflated bond dynamics. By using the money market account as numeráıre
or equivalently by applying Itô’s product rule to find the discounted bond dynamics, since the discount
factor equation (9.6) is the reciprocal of the money market account, one obtains:

d (DF (t)P (t, T )) = dDF (t)︸ ︷︷ ︸
−r(t)DF (t)dt

P (t, T ) +DF (t)dP (t, T ) + dDF (t, T )dP (t, T )︸ ︷︷ ︸
=0

= −r(t)DF (t)P (t, T )dt+DF (t)P (t, T )((
∂α(t, T )

∂t
+
∂β(t, T )

∂t
r(t) + β(t, T )Θ(t)− β(t, T )κr(t) +

σ2

2
β2(t, T )

)
dt+ β(t, T )σdW (t)

)
(9.43)

Rewriting yields:

d (DF (t)P (t, T ))

DF (t)P (t, T )
=

(
−r(t) +

∂α(t, T )

∂t
+
∂β(t, T )

∂t
r(t) + β(t, T )Θ(t)− β(t, T )κr(t) +

σ2

2
β2(t, T )

)
dt

+ β(t, T )σdW (t)

(9.44)

The only extra term in comparison with the normal bond dynamics is −r(t)dt. This correction is
intuitive as it corrects for the accumulation in the money market account, which has to be equal to the
value accrual of the bond under no-arbitrage. By the martingale representation theorem, the deflated
dynamics is a martingale if the drift term is zero, ∀(t, r(t)). The solutions to α(t, T ), β(t, T ),Θ(t)
follow from solving the equations imposed by the martingale representation theorem and the boundary
conditions:

∂α(t, T )

∂t
+ β(t, T )Θ(t) +

σ2

2
β2(t, T ) = 0

−r(t) +
∂β(t, T )

∂t
r(t)− β(t, T )κr(t) = 0 ⇐⇒ −1 +

∂β(t, T )

∂t
− β(t, T )κ = 0

α(T, T ) = 0

β(T, T ) = 0

(9.45)

From the second and fourth line from equation (9.45) the solution for β(t, T ) yields:

β(t, T ) =
1

κ

(
e−κ(T−t) − 1

)
(9.46)
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Integrating the first line of equation (9.45):

α(t, T ) =

∫ T

t

β(u, T )Θ(u)du+
σ2

2

∫ T

t

β2(u, T )du− α(T, T )︸ ︷︷ ︸
=0, eq.(9.45)

(9.47)

Plugging Θ(·) to match the initial curve:

∂α(0, T )

∂T

Leibniz
= β(T, T )︸ ︷︷ ︸

=0

Θ(T ) +
σ2

2
β2(T, T )︸ ︷︷ ︸

=0

+

∫ T

0

∂β(u, T )

∂T︸ ︷︷ ︸
=−e−κ(T−u)

Θ(u)du+ σ2

∫ T

0

β(u, T )
∂β(u, T )

∂T
du

eq.(9.45) & (9.46)
= −

∫ T

0

e−κ(T−u)Θ(u)du+ σ2

∫ T

0

e−κ(T−u) 1

κ
(e−κ(T−u) − 1)du

=−
∫ T

0

e−κ(T−u)Θ(u)du− σ2

κ2

[
1

2

(
1− e−2κT

)
−
(
1− e−κT

)]
(9.48)

Combining the fact that f(0, T ) = −∂ log(P (0,T ))
∂T = − ∂α(0, T )

∂T︸ ︷︷ ︸
eq. (9.48)

− ∂β(0, T )

∂T︸ ︷︷ ︸
eq. (9.46)

r(0) = −∂α(0,T )
∂T + e−κT r(0)

and equation (9.48) yields:

f(0, T ) =

∫ T

0

e−κ(T−u)Θ(u)du+
σ2

κ2

[
1

2

(
1− e−2κT

)
−
(
1− e−κT

)]
+ e−κT r(0) (9.49)

Using Leibniz’ rule to get an expression in Θ(T ):

∂f(0, T )

∂T
= Θ(T )− κ

∫ T

0

e−κ(T−u)Θ(u)du+
σ2

κ

[
e−2κT − e−κT

]
− κe−κT r(0) (9.50)

Using equation (9.49) to replace integral:

Θ(T ) =
∂f(0, T )

∂T
+ κ

[
f(0, T )− σ2

κ2

[
1

2

(
1− e−2κT

)
−
(
1− e−κT

)]
− e−κT r(0)

]
− σ2

κ

[
e−2κT − e−κT

]
+ κe−κT r(0)

=
∂f(0, T )

∂T
+ κf(0, T ) +

σ2

2κ

(
1− e−2κT

)
(9.51)
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The expression for α(t, T ) follow from plugging equation (9.51) into equation (9.48):

α(t, T ) =
1

κ

∫ T

t

(
e−κ(T−u) − 1

)(∂f(0, u)

∂u
+ κf(0, u) +

σ2

2κ

(
1− e−2κu

))
du+

σ2

2κ2

∫ T

t

(
e−κ(T−u) − 1

)2

du

=
1

κ

∫ T

t

e−κ(T−u) ∂f(0, u)

∂u
du︸ ︷︷ ︸

IBP : 1
κ [e−κ(T−u)f(0,u)]

T

u=t
−
∫ T
t
e−κ(T−u)f(0,u)du

+

∫ T

t

e−κ(T−u)f(0, u)du+
σ2

2κ2

∫ T

t

e−κ(T−u)
(
1− e−2κu

)
du

− 1

κ

∫ T

t

∂f(0, u)

∂u
du+

∫ T

t

f(0, u)du+
σ2

2κ2

∫ T

t

(
1− e−2κu

)
du+

σ2

2κ2

∫ T

t

(
e−κ(T−u) − 1

)2

du

=
1

κ
f(0, t)− 1

κ
e−κ(T−t)f(0, t)︸ ︷︷ ︸

=−β(t,T )f(0,t)

−
∫ T

t

f(0, u)du

+
σ2

2κ2

[∫ T

t

e−κ(T−u)
(
1− e−2κu

)
du−

∫ T

t

(
1− e−2κu

)
du+

∫ T

t

(
e−κ(T−u) − 1

)2

du

]

= −β(t, T )f(0, t)−
∫ T

t

f(0, u)du+
σ2

4κ
β2(t, T )

(
e−2κt − 1

)
= −β(t, T )f(0, t) + log

(
P (0, T )

P (0, t)

)
+
σ2

4κ
β2(t, T )

(
e−2κt − 1

)
(9.52)

Where in the last step the equation P (0, T ) = e−
∫ T
0
f(0,u)du is used.

9.2.2 Hull-White: Solution of the Stochastic Differential Equation

The first step to find the solution of the stochastic differential equation 3.10 is to find the dynamics of
the process eκtr(t). By applying Itô’s Lemma, this process is dictated by:

deκtr (t) = eκtdr (t) + κeκtr (t) dt+
1

2
κ2eκtr (t) (dt)

2︸ ︷︷ ︸
→0

+
1

2

∂2eκtr(t)

∂r(t)2︸ ︷︷ ︸
=0

(dr (t))
2

+ κeκt dr (t) dt︸ ︷︷ ︸
→0

= eκtdr (t) + κeκtr (t) dt

eq. (3.10)
= eκtΘ(t)dt+ eκtσdW (t)

(9.53)

Then taking the integral from s to t yields:

eκtr (t)− eκsr (s) =

∫ t

s

eκuΘ(u)du+ σ

∫ t

s

eκudW (u) (9.54)
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Rewriting gives:

r (t) = e−κ(t−s)r (s) +

∫ t

s

e−κ(t−u)Θ(u)du︸ ︷︷ ︸
=−

∫ t
s
∂β(u,t)
∂t Θ(u)du

+σ

∫ t

s

e−κ(t−u)dW (u)

= e−κ(t−s)r (s)−
∫ t

s

∂β(u, t)

∂t
Θ(u)du︸ ︷︷ ︸

Leibniz: ∂∂t
∫ t
s
β(u,t)Θ(u)du−β(t, t)︸ ︷︷ ︸

=0

Θ(t)

+σ

∫ t

s

e−κ(t−u)dW (u)

= e−κ(t−s)r (s)− ∂

∂t

∫ t

s

β(u, t)Θ(u)du+ σ

∫ t

s

e−κ(t−u)dW (u)

eq. (9.51)
= e−κ(t−s)r (s)− ∂

∂t

∫ t

s

β(u, t)

(
∂f(0, u)

∂u
+ κf(0, u) +

σ2

2κ

(
1− e−2κu

))
du+ σ

∫ t

s

e−κ(t−u)dW (u)

(9.55)

Note that by integration by parts (IBP):∫ t

s

β(u, t)
∂f(0, u)

∂u
du = β(t, t)︸ ︷︷ ︸

=0

f(0, t)− β(s, t)f(0, s)−
∫ t

s

∂β(u, t)

∂u
f(0, u)du

= −β(s, t)f(0, s)−
∫ t

s

(κβ(u, t) + 1) f(0, u)du

(9.56)

Hence,
∫ t
s
β(u, t)

(
∂f(0,u)
∂u + κf(0, u)

)
du = −β(s, t)f(0, s)−

∫ t
s
f(0, u)du such that:

r (t) = e−κ(t−s)r (s)− ∂

∂t

(
−f(0, s)β(s, t)−

∫ t

s

f(0, u)du+

σ2

2κ3

(
1− e−κ(t−s) +

1

2
e−2κt − e−κ(t+s) +

1

2
e−2κs

)
+

σ2

2κ2
(t− s)

)
+ σ

∫ t

s

e−κ(t−u)dW (u)

= e−κ(t−s)r (s) + f(0, t) +
σ2

2κ2

(
1− e−κt

)2 − e−κ(t−s)
(
f(0, s) +

σ2

2κ2

(
1− e−κs

)2)
+ σ

∫ t

s

e−κ(t−u)dW (u)

= e−κ(t−s)
(
r (s)−

(
f(0, s) +

σ2

2κ2

(
1− e−κs

)2))
+ f(0, t) +

σ2

2κ2

(
1− e−κt

)2
+ σ

∫ t

s

e−κ(t−u)dW (u)

(9.57)

The quadratic variation of the Itô integral equals
[
σ
∫ t
s
e−κ(t−u)dW (u), σ

∫ t
s
e−κ(t−u)dW (u)

]
=

σ2
∫ t
s
e−2κ(t−u)du =

σ2

2κ

(
1− e−2κ(t−s)). Now one can conclude that:

r(t)|r(s) ∼ N
(
e−κ(t−s) (r (s)− µ(s)) + µ(t),

σ2

2κ

(
1− e−2κ(t−s)

))
(9.58)

with µ(t) = f(0, t) +
σ2

2κ2
(1− e−κt)2

.
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9.3 Heston Model: Continuous Time

Although exact simulation schemes are developed, it appears that the literature does not make use of
the exact results in deriving a particle filter. An exception is the paper by Aihara et al. (2012). The
authors use the results of Broadie and Kaya (2006) to estimate the Bates model. However, I propose
to use the exact distribution for the variance process and the QE scheme for the asset process as in the
NCI scheme. An objection against using the results of Broadie and Kaya (2006) is that for small time
increment ∆t, the simulation of the integrated variance process is very unstable, see Van Haastrecht
and Pelsser (2008). Moreover, the NCI scheme performs very well for small time increments ∆t. From
these results one could argue that the exact scheme is desirable for simulating series on a grid with
higher granularity, but a hybrid method such as the NCI scheme should perform very comparable on
a fine grid and is computationally much cheaper.

The derivation for the continuous counterpart starts again from equation (3.3). In this derivation
I follow the approach of Aihara et al. (2013) combined with the method of drift interpolation method

of Andersen (2007). Plugging dW1(t) =
d logS(t)−

(
µ− 1

2V (t)
)
dt√

V (t)
into the variance process yields:

d logS (t) =

(
µ− 1

2
V (t)

)
dt+

√
V (t)dW1(t)

dV (t) = κ (θ − V (t)) dt+ σρ

(
d logS (t)−

(
µ− 1

2
V (t)

)
dt

)
+ σ

√
1− ρ2

√
V (t)dW2(t)

(9.59)

Collecting terms gives:

d logS (t) =

(
µ− 1

2
V (t)

)
dt+

√
V (t)dW1(t)

dV (t) = κ
(
θ −

(
1− σρ

2κ

)
V (t)

)
dt+ σρ (d logS (t)− µdt) + σ

√
1− ρ2

√
V (t)dW2(t)

(9.60)

Defining κ̃ = κ− σρ

2
and θ̃ =

θ

1− σρ

2κ

=
κθ

κ̃
the model can be written as:

d logS (t) =

(
µ− 1

2
V (t)

)
dt+

√
V (t)dW1(t)

dV (t) = κ̃
(
θ̃ − V (t)

)
dt+ σρ (d logS (t)− µdt) + σ

√
1− ρ2

√
V (t)dW2(t)

(9.61)

This representation forms the basis for the estimation of the Heston model. This is because the
conditional variance dynamics are written as a CIR process with extra drift. With the results of Cox,
Ingersoll and Ross (1985) the conditional transition distributions of the variance process can be derived
as a non-central chi squared distribution. The conditional transition density of the log asset dynamics
is a Gaussian distribution which can easily be seen from equation (9.61).

9.3.1 Estimation

Integration of the variance dynamics from equation (9.61) yields:

V (t+ ∆t) = Ṽ (t) +

∫ t+∆t

t

κ̃
(
θ̃ − V (u)

)
du+ σ

√
1− ρ2

∫ t+∆t

t

√
V (u)dW2(u)

where:

Ṽ (t) = V (t) + σρ (d logS (t)− µ∆t)

(9.62)
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The results of Cox, Ingersoll, and Ross (1985) state, conditional on Ṽ (t) > 0, that:

(V (t+ ∆t)| logS(t+ ∆t), logS(t), V (t)) ∼ cχ
′2
d (λ)

where:

c =
σ2
(
1− ρ2

) (
1− e−κ̃∆t

)
4κ̃

d =
4θ̃κ̃

σ2 (1− ρ2)

λ =
4κ̃e−κ̃∆t

σ2 (1− ρ2) (1− e−κ̃∆t)
Ṽ (t)

Ṽ (t) = V (t) + σρ (logS (t+ ∆t)− logS(t)− µ∆t)

(9.63)

This density is known and can easily be simulated from. As such, the optimal importance density can
be used in the particle filter. The only problem is that Ṽ (t) can become negative during simulations.
This is inconsistent with the definition of variance and problematic for the distribution as it is not
defined for such values. For computational speed, a negative value for Ṽ (t) is replaced with a arbitrarily
small number in my approach.

In similar vein the transition distribution for the variance process conditional on the previous variance
realization is a non-central chi-square distribution. This distribution is exactly the same transition
distribution as in Cox, Ingersoll, and Ross (1985). The intuition behind this distribution is that with
no information on the asset value, the best you can base your prediction on is the original dynamics.
Moreover, just as in equation (3.9), the dynamics with dW1(t) plugged in is mathematically equivalent
to the original dynamics in equation (3.1). As this is the original CIR process, the transition density
directly follows:

V (t+ ∆t)|V (t) ∼ cχ
′2
d (λ)

where:

c =
σ2
(
1− e−κ∆t

)
4κ

d =
4κθ

σ2

λ =
4κe−κ∆t

σ2 (1− e−κ∆t)
V (t)

(9.64)

For the derivation of the conditional observation density I use the drift interpolation method for the
integrated volatility and the integrated square root of volatility, see Andersen (2007). This method
entails: ∫ t+∆t

t

V (u)du = ∆t [γV (t) + (1− γ)V (t+ ∆t)]

where:

γ ∈ [0, 1]

(9.65)

Integration of the log asset dynamics yields:

logS(t+ ∆t) = logS(t) + µ∆t− 1

2

∫ t+∆t

t

V (u)du+

∫ t+∆t

t

√
V (t)dWu (9.66)
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As the quadratic variation of the process equals
∫ t+∆t

t
V (u)du, the conditional on V (t+∆t), V (t), S(t),

the observation distribution equals:

logS(t+ ∆t)|V (t+ ∆t), S(t), V (t) ∼ N

(
logS(t) + µ∆t− 1

2

∫ t+∆t

t

V (u)du,

∫ t+∆t

t

V (u)du

)
eq.(9.65)⇒

N
(

logS(t) + µ∆t− 1

2
∆t [γV (t) + (1− γ)V (t+ ∆t)] ,∆t [γV (t) + (1− γ)V (t+ ∆t)]

)
(9.67)

Now all distributions are defined to establish the particle filter.The continuous particle filter is just as
in Algorithm 1 if one replaces the discrete process distributions by the continuous counterpart. The
resulting particle filter an adaption of the algorithm of Aihara et al. (2012).

9.3.2 Simulation

The derivation of the simulation scheme of the continuous Heston model starts from a different Cholesky
decomposition. This is due to the simultaneity of the process in the conditional transition distributions.
As one can see the observation transition distribution depends on V (t + ∆t) and the state transition
distribution simultaneously depends on S(t+∆t). However, this problem disappears when decomposing
the original model as:

d logS (t) =

(
µ− 1

2
V (t)

)
dt+

√
V (t)

(
ρdW1(t) +

√
1− ρ2dW2(t)

)
dV (t) = κ (θ − V (t)) dt+ σ

√
V (t)dW2(t)

(9.68)

Plugging dW2(t) into the first equation - making the observation equation conditional on the current
volatility:

d logS (t) =

(
µ− κθ

√
1− ρ2

σ
+

(
κ
√

1− ρ2

σ
− 1

2

)
V (t)

)
dt+

√
1− ρ2

σ
dV (t) + ρ

√
V (t)dW1(t)

dV (t) = κ (θ − V (t)) dt+ σ
√
V (t)dW2(t)

(9.69)

The second equation is just a CIR process. The transition density is thus given by equation (9.64).
The observation transition distribution follow from integrating the equation:

logS(t+ ∆t) = logS(t) +

(
µ− κθ

√
1− ρ2

σ

)
∆t+

(
κ
√

1− ρ2

σ
− 1

2

)∫ t+∆t

t

V (u)du

+

√
1− ρ2

σ
(V (t+ ∆t)− V (t)) + ρ

∫ t+∆t

t

√
V (u)dW1(u)

(9.70)

Now by making use of the drift interpolation method from equation (9.65) and observing that the

quadratic variation equals ρ2
∫ t+∆t

t
V (u)du, the conditional transition distribution follows:

logS(t+ ∆t) ∼ N
([
µ− 1

2
(1 + θ)

]
∆t+

[
κ
√

1− ρ2

σ
− 1

2

]
∆t [γV (t) + (1− γ)V (t+ ∆t)− θ] ,

ρ2∆t [γV (t) + (1− γ)V (t+ ∆t)]
)

(9.71)

Then, for a fixed endpoint T , increment ∆t, initial asset price S0, initial variance V0, and parameter
set ψ, the simulating algorithm is given by:
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Algorithm 5 Simulation Continuous Heston Model

Set c =
σ2
(
1− e−κ∆t

)
4κ

Set d =
4κθ

σ2

for t = 1, 2, . . . , T do

Calculate λ(t) =
4κe−κ∆t

σ2 (1− e−κ∆t)
V (t− 1)

Draw
V (t)

c
∼ χ′2d (λ(t))

Draw logS(t) ∼ N
( [
µ− 1

2 (1 + θ)
]

∆t+

[
κ
√

1−ρ2
σ − 1

2

]
∆t [γV (t) + (1− γ)V (t+ ∆t)− θ] ,

ρ2∆t [γV (t) + (1− γ)V (t+ ∆t)]
)

end for
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9.4 Heston-Hull-White Model: a Continuous Time Solution?

The transition distributions of the short rate and log asset follow directly from Equation (3.18). Due
to the Cholesky ordering, the transition distribution of the short rate has remained the same as under
the Hull-White model. The conditional transition distribution of the log asset is Gaussian as we deal
with a composition of a Riemann and an Itô integral.

(log (S (t)) |F (t) , V (t) , r (t)) ∼ N
(
µ, σ2

)
where,

µ = µ (t− s)− 1

2

∫ t

s

V (u)du− l21

σr
κr

(∫ t

s

Θ (u)
√
V (u)du−

∫ t

s

r (u)
√
V (u)du

)
+
l21

σr

∫ t

s

√
V (u)dr (t)

σ2 = l222

∫ t

s

V (u)du

under drift interpolation, see Andersen (2007)

µ = µ (t− s)− 1

4
(V (s) + V (t))− l21

2σr
κr

((
Θ (s)

√
V (s) + Θ (t)

√
V (t)

)
−
(
r (u)

√
V (u) + r (t)

√
V (t)

))
+

l21

2σr

(√
V (u) +

√
V (u)

)
(r (t)− r (s))

σ2 =
l222

2
(V (s) + V (t))

(9.72)

Before I turn to the transitional conditional density of the variance process, I propose the following
Lemmata.

Lemma 9.3. Given the dynamics of the Ornstein-Uhlenbeck process:

dX(t) = κ (θ −X (t)) dt+ σdW (t)

The dynamics of the squared Ornstein-Uhlenbeck process, Y (t) = X(t)2, are defined by:

dY (t) = 2κ

(
σ2

2κ
+ θ
√
Y (t)− Y (t)

)
dt+ 2σ

√
Y (t)dW (t)

Proof. The result follows directly by application of Itô’s Lemma to Y (t) = X2(t). First note that:

∂Y (t)

∂t
= 0,

∂Y (t)

∂X(t)
= 2X(t),

∂2Y (t)

∂X(t)2
= 2, d [X,X] (t) = σ2dt

Then:

dY (t) =
∂Y (t)

∂t
dt+

∂Y (t)

∂X(t)
dX(t) +

1

2

∂2Y (t)

∂X(t)2
d [X,X] (t)

= 2X(t) (κ (θ −X (t)) dt+ σdW (t)) +
1

2
2σ2dt

= 2κ

(
σ2

2κ
+ θ
√
Y (t)− Y (t)

)
dt+ 2σ

√
Y (t)dW (t)

Lemma 9.4. The conditional transition density of the Ornstein-Uhlenbeck process is given by:

(X(t)|X(s) = x) ∼ N
(
xe−κ(t−s) + θ

(
1− e−κ(t−s)

)
,
σ2

2κ

(
1− e−2κ(t−s)

))
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Proof. Define f(t,X(t)) = eκtX(t). First note that:

∂f(t,X(t))

∂t
= κeκtX(t),

∂f(t,X(t))

∂X(t)
= eκt,

∂2f(t,X(t))

∂X(t)2
= 0, d [X,X] (t) = σ2dt

Then by Itô’s lemma:

df(t,X(t)) =
∂f(t,X(t))

∂t
dt+

∂f(t,X(t))

∂X(t)
dX(t) +

1

2

∂2f(t,X(t))

∂X(t)2
d [X,X] (t)

= κeκtX(t)dt+ eκt [κ (θ −X (t)) dt+ σdW (t)]

d
(
eκtX(t)

)
= κeκtθdt+ eκtσdW (t)

Then by integration from s to t one obtains:

eκtX(t) = eκsX(s) +

∫ t

s

κeκuθdu+

∫ t

s

eκuσdWu

X(t) = e−κ(t−s)X(s) + θ
(

1− e−κ(t−s)
)

+ e−κt
∫ t

s

eκuσdWu

The latter integral is an Itô integral; therefore it’s normally distributed with zero mean and variance:

e−2κt

∫ t

s

σ2e2κudt =
σ2

2κ

(
1− e−2κ(t−s)

)
Then, as the last integral is an Itô integral, it is clear that:

(X(t)|X(s) = x) ∼ N
(
xe−κ(t−s) + θ

(
1− e−κ(t−s)

)
,
σ2

2κ

(
1− e−2κ(t−s)

))

Corollary 9.4.1. The conditional transition distribution of the squared Ornstein-Uhlenbeck process is

a non-central chi-squared distribution:

(Y (t)|Y (s) = y) ∼ σ2

2κ

(
1− e−2κ(t−s)

)
χ2
d(λ)

where,

d = 1

λ =

(
ye−κ(t−s) + θ

(
1− e−κ(t−s)))2

σ2

2κ

(
1− e−2κ(t−s)

)
Proof. Since we know that (X(t)|X(s) = x) is Gaussian, the distribution of X̃(t) = X2(t)2κ

σ2(1−e−2κ(t−s))
conditional on X(s) = x is non-central chi-squared distributed with one degree of freedom and non-

centrality parameter λ =
(ye−κ(t−s)+θ(1−e−κ(t−s)))

2

σ2

2κ (1−e−2κ(t−s))
. Therefore, conditional on X(s) = x ≡ Y (s) =

√
y:(

Y (t)2κ

σ2
(
1− e−2κ(t−s)

) |Y (s) =
√
y

)
∼ χ2

d(λ)

where,

d = 1

λ =

(
ye−κ(t−s) + θ

(
1− e−κ(t−s)))2

σ2

2κ

(
1− e−2κ(t−s)

)
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Another proof to the same result:

Proof. Start by noting that:

P (Yt ≤ z|Ys = y) = P (X2
t ≤ z|Xs =

√
y ∨Xs = −√y)

= P (X2
t ≤ z|Xs =

√
y)p+ P (X2

t ≤ z|Xs = −√y)(1− p)

where p =
fXs(
√
y)

fXs(
√
y) + fXs(−

√
y)

and fXs the unconditional probability density function of Xs. As

limx→∞ E [Xs|X0 = x] = limx→∞ xe−κ(t−s) + θ
(
1− e−κ(t−s)) = θ and limx→∞Var [Xs|X0 = x] =

limx→∞
σ2

2κ

(
1− e−2κ(t−s)) = σ2

2κ , it follows that Xs ∼ N
(
θ, σ

2

2κ

)
. Then:

p =
φ
(√

y−θ
σ
2κ

)
φ
(√

y−θ
σ
2κ

)
+ φ

(
−√y−θ

σ
2κ

) =
e4κθ

√
y/σ2

e4κθ
√
y/σ2

+ 1

Define a1 ≡ E
[
Xt|Xs =

√
y
]

=
√
ye−κ(t−s)+θ

(
1− e−κ(t−s)), a2 ≡ E

[
Xt|Xs = −√y

]
= −√ye−κ(t−s)+

θ
(
1− e−κ(t−s)), and b = Var

[
Xt|Xs =

√
y
]

= Var
[
Xt|Xs = −√y

]
= σ2

2κ

(
1− e−2κ(t−s)). Then, we

can write:

P (−
√
z ≤ Xt ≤

√
z|Xs =

√
y)p+ P (−

√
z ≤ Xt ≤

√
z|Xs = −√y)(1− p) =

p

[
Φ

(√
z − a1√
b

)
− Φ

(
−
√
z − a1√
b

)]
+ (1− p)

[
Φ

(√
z − a2√
b

)
− Φ

(
−
√
z − a2√
b

)]
p

[
1

2
erf

(√
z − a1√

2b

)
− 1

2
erf

(
−
√
z − a1√
2b

)]
+ (1− p)

[
1

2
erf

(√
z − a2√

2b

)
− 1

2
erf

(
−
√
z − a2√
2b

)]
erf(−z)=−erf(z)

=

p

2

[
erf

(√
z − a1√

2b

)
+ erf

(√
z + a1√

2b

)]
+

(1− p)
2

[
erf

(√
z − a2√

2b

)
+ erf

(√
z + a2√

2b

)]

The conditional transition probability density function is obtained by differentiation of the cumulative

distribution function:

fYt|Ys=y(z) =
∂

∂z

(
p

2

[
erf

(√
z − a1√

2b

)
+ erf

(√
z + a1√

2b

)]
+

(1− p)
2

[
erf

(√
z − a2√

2b

)
+ erf

(√
z + a2√

2b

)])
=
p

2

[
2√
π

1

2
√

2bz

(
e
−
(√

z−a1√
2b

)2

+ e
−
(√

z+a1√
2b

)2
)]

+
1− p

2

[
2√
π

1

2
√

2bz

(
e
−
(√

z−a2√
2b

)2

+ e
−
(√

z+a2√
2b

)2
)]

=
p

2
√

2πbz

(
e−

(
√
z−a1)2

2b + e−
(
√
z+a1)2

2b

)
+

1− p
2
√

2πbz

(
e−

(
√
z−a2)2

2b + e−
(
√
z+a2)2

2b

)
Plugging p into the expression above yields:

fYt|Ys=y(z) =
e4κθ

√
y/σ2

e4κθ
√
y/σ2

+ 1

1

2
√

2πbz

(
e−

(
√
z−a1)2

2b + e−
(
√
z+a1)2

2b

)
+

1

e4κθ
√
y/σ2

+ 1

1

2
√

2πbz

(
e−

(
√
z−a2)2

2b + e−
(
√
z+a2)2

2b

)
=

1

e4κθ
√
y/σ2

+ 1

1

2
√

2πbz

[
e4κθ

√
y/σ2

(
e−

(
√
z−a1)2

2b + e−
(
√
z+a1)2

2b

)
+ e−

(
√
z−a2)2

2b + e−
(
√
z+a2)2

2b

]
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Note that by substituting b back in:

1

2
√

2πbz
=

√
κ

2σ
√
π(1− e−2κ(t−s))z

Now note that plugging a1, a2, and b:

e−
(
√
z−a1)2

2b + e−
(
√
z+a1)2

2b = e
− κ

σ2(1−e−2κ(t−s))
(z+ye−2κ(t−s)+θ2(1−e−κ(t−s))2−2

√
zθ(1−e−κ(t−s)))

×

e− 2κ
√
ye−κ(t−s)

σ2(1−e−2κ(t−s))
(θ(1−e−κ(t−s))−

√
z)

+ e
− 2κ

√
ye−κ(t−s)

σ2(1−e−2κ(t−s))
(−θ(1−e−κ(t−s))+

√
z)


But also (!):

= e−
(
√
z−a2)2

2b + e−
(
√
z+a2)2

2b

Factoring this term out yields:

fYt|Ys=y(z) =
1

e4κθ
√
y/σ2

+ 1

√
κ

2σ
√
π(1− e−2κ(t−s))z

(
e4κθ

√
y/σ2

+ 1
)

× e
− κ

σ2(1−e−2κ(t−s))
(z+ye−2κ(t−s)+θ2(1−e−κ(t−s))2−2

√
zθ(1−e−κ(t−s)))

×

e− 2κ
√
ye−κ(t−s)

σ2(1−e−2κ(t−s))
(θ(1−e−κ(t−s))−

√
z)

+ e
− 2κ

√
ye−κ(t−s)

σ2(1−e−2κ(t−s))
(−θ(1−e−κ(t−s))+

√
z)


=

√
κ

2σ
√
π(1− e−2κ(t−s))z

e
− κ

σ2(1−e−2κ(t−s))
(z+ye−2κ(t−s)+θ2(1−e−κ(t−s))2−2

√
zθ(1−e−κ(t−s)))

×

e− 2κ
√
ye−κ(t−s)

σ2(1−e−2κ(t−s))
(θ(1−e−κ(t−s))−

√
z)

+ e
− 2κ

√
ye−κ(t−s)

σ2(1−e−2κ(t−s))
(−θ(1−e−κ(t−s))+

√
z)


The term in brackets can be written as a hyperbolic cosine function as ex + e−x = 2 cosh(x):

fYt|Ys=y(z) =

√
κ

2σ
√
π(1− e−2κ(t−s))z

e
− κ

σ2(1−e−2κ(t−s))
(z+ye−2κ(t−s)+θ2(1−e−κ(t−s))2−2

√
zθ(1−e−κ(t−s)))

× 2 cosh

(
−

2κ
√
ye−κ(t−s)

σ2
(
1− e−2κ(t−s)

) (θ(1− e−κ(t−s))−
√
z)

)

=

√
κ

σ
√
π(1− e−2κ(t−s))z

e
− κ

σ2(1−e−2κ(t−s))
(z+ye−2κ(t−s)+θ2(1−e−κ(t−s))2−2

√
zθ(1−e−κ(t−s)))

× cosh

(
−

2κ
√
ye−κ(t−s)

σ2
(
1− e−2κ(t−s)

) (θ(1− e−κ(t−s))−
√
z)

)

Write the part in brackets in the exponent as:

− κ

σ2
(
1− e−2κ(t−s)

) (z + ye−2κ(t−s) + θ2(1− e−κ(t−s))2 − 2
√
zθ(1− e−κ(t−s))) =

e−2κ(t−s)
[(
−eκ(t−s)θ + eκ(t−s)√z + θ

)2

+ y

]
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Then:

fYt|Ys=y(z) =

√
κ

σ
√
π(1− e−2κ(t−s))z

e
− κ

σ2(1−e−2κ(t−s))

(
e−2κ(t−s)

[
(−eκ(t−s)θ+eκ(t−s)

√
z+θ)

2
+y
])

× cosh

(
−

2κ
√
ye−κ(t−s)

σ2
(
1− e−2κ(t−s)

) (θ(1− e−κ(t−s))−
√
z)

)

=

√
κ

σ
√
π(1− e−2κ(t−s))z

e
−
κ

(
(θ(1−eκ(t−s))+eκ(t−s)√z)

2
+y

)
σ2(e2κ(t−s)−1)

× cosh

(
−

2κ
√
ye−κ(t−s)

σ2
(
1− e−2κ(t−s)

) (θ(1− e−κ(t−s))−
√
z)

)

=

√
κ

σ
√
π(1− e−2κ(t−s))z

e
−
κ

(
(θ(1−eκ(t−s))+eκ(t−s)√z)

2
+y

)
σ2(e2κ(t−s)−1)

× cosh

(
−

2κ
√
ye−κ(t−s)

σ2
(
1− e−2κ(t−s)

) −1

eκ(t−s) (θ(1− eκ(t−s))− eκ(t−s)√z)

)

=

√
κ

σ
√
π(1− e−2κ(t−s))z

e
−
κ

(
(θ(1−eκ(t−s))+eκ(t−s)√z)

2
+y

)
σ2(e2κ(t−s)−1)

× cosh

(
−

2κ
√
ye−κ(t−s)

σ2
(
1− e−2κ(t−s)

) −1

eκ(t−s) (θ(1− eκ(t−s))− eκ(t−s)√z)

)

=

√
κeκ(t−s)

σ
√

(e2κ(t−s) − 1)πz
e
−
κ

(
(θ(1−eκ(t−s))+eκ(t−s)√z)

2
+y

)
σ2(e2κ(t−s)−1)

× cosh

(
2κ
√
y

σ2
(
e2κ(t−s) − 1

) (θ(1− eκ(t−s))− eκ(t−s)√z)

)

λ ≡ σ2

2κ (e2κ(t−s) − 1)

fYt|Ys=y(z) =
eκ(t−s)
√

2λ
√
πz
e−

(
(θ(1−eκ(t−s))+eκ(t−s)√z)

2
+y

)
2λ cosh

(√
y

λ
(θ(1− eκ(t−s))− eκ(t−s)√z)

)

The hyperbolic cosine is directly related with a specific modified Bessel function of the first kind.

Namely: √
2

πx
cosh(x) = I− 1

2
(x)
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Then:

fYt|Ys=y(z) =
eκ(t−s)
√

2λ
√
πz
e−

(
(θ(1−eκ(t−s))+eκ(t−s)√z)

2
+y

)
2λ

√
π
√
y

λ (θ(1− eκ(t−s))− eκ(t−s)√z)
2

× I− 1
2

(√
y

λ
(θ(1− eκ(t−s))− eκ(t−s)√z)

)
=

1

2

eκ(t−s)

λ
√
z
e−

(
(θ(1−eκ(t−s))+eκ(t−s)√z)

2
+y

)
2λ

√√
y(θ(1− eκ(t−s))− eκ(t−s)

√
z)

× I− 1
2

(√
y

λ
(θ(1− eκ(t−s))− eκ(t−s)√z)

)
From which we see that Y is a scaled non-central chi squared distribution with one degree of freedom.

More specifically,
Y (t)2κ

σ2
(
1− e−2κ(t−s)

) ∼ χ2
1(ν), with ν =

(√
ye−κ(t−s) + θ

(
1− e−κ(t−s)))2

σ2

2κ

(
1− e−2κ(t−s)

)
The dynamics of the volatility process in equation (3.18) have the form of a squared Ornstein-Uhlenbeck
process. Therefore, one can deduct that the conditional volatility transition distribution is a non-central
chi squared distribution. More specifically:

V (t)|V (s) ∼ χ2
1(λ)

λ =
2κ̃
(
V (s)e−κ̃(t−s) + θ̃

(
1− e−κ̃(t−s)))2

σ̃2
(
1− e−2κ̃(t−s)

)
κ̃ =

κV
2
− l32σV

4l22

σ̃ =
l33σV

2

θ̃ =

(
l31 − l21l32

l22

)
σV
σr

(
dr(t)
dt − κr (Θ (t)− r (t))

)
2κ̃

(9.73)

dV (t) =
(
κV θ +

l32σV
l22

(
d log (S (t))

dt
− µ

)
−
(
κV −

l32σV
2l22

)
V (t)

+

(
l31 −

l21l32

l22

)
σV
σr

(
dr(t)

dt
− κr (Θ (t)− r (t))

)√
V (t)

)
dt+ l33σV

√
V (t)dW3 (t)

dXt = κ(θ −Xt)dt+ σdWt = dXt = (κθ − κXt)dt+ σdWt

dY t = 2κ
(
σ2

2κ + θ
√
Y (t)− Y (t)

)
dt+ 2σ

√
Y (t)dW (t)

If true, it must also hold that
l233σ

2
V

4
= κV θ + l32σV

l22

(
d log(S(t))

dt − µ
)
≡ σ̃2

l233 = 1− ρ2
13 −

(ρ23−ρ13ρ12)2

1−ρ212
l32
l22

= ρ23−ρ12ρ13
1−ρ212

When one allows for full correlation one sees that there is some indeterminacy in the model. This is
not surprising. Once two processes are set, the third is for a part dictated through the correlations. A
solution is to set a correlation ρ1,3 to zero, then The hybrid model is dictated by:

dr (t) = κr (Θ (t)− r (t)) dt+ σrdWr (t)

d log (S (t)) =

(
µ− 1

2
V (t)

)
dt+

√
V (t)dWS(t)

dV (t) = κV (θ − V (t)) dt+ σV
√
V (t)dWV (t)

(9.74)
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where the Wiener processes are correlated by covariance matrix Σ =

 1 ρ12 0
ρ12 1 ρ23

0 ρ23 1

. A Cholesky

decomposition on Σ = LL′, yields L =

l11 0 0
l21 l22 0
l31 l32 l33

 =

 1 0 0

ρ12

√
1− ρ2

12 0

0 ρ23√
1−ρ212

√
1− ρ223

1−ρ212

. Then, by

using the general notation of the lower triangular matrix L for compactness, the model can be written
as:

dr (t) = κr (Θ (t)− r (t)) dt+ σrdW1 (t)

d log (S (t)) =

(
µ− 1

2
V (t)

)
dt+

√
V (t) (l21dW1 (t) + l22dW2 (t))

dV (t) = κV (θ − V (t)) dt+ σV
√
V (t) (l32dW2 (t) + l33dW3 (t))

(9.75)

dr (t) = κr (Θ (t)− r (t)) dt+ σrdW1 (t)

d log (S (t)) =

(
µ− 1

2
V (t)− l21

σr
κr (Θ (t)− r (t))

√
V (t)

)
dt+

l21

σr

√
V (t)dr (t) + l22

√
V (t)dW2 (t)

dV (t) =
(
κV θ +

l32σV
l22

(
d log (S (t))

dt
− µ

)
−
(
κV −

l32σV
2l22

)
V (t)

−
(
l21l32

l22

)
σV
σr

(
dr(t)

dt
− κr (Θ (t)− r (t))

)√
V (t)

)
dt+ l33σV

√
V (t)dW3 (t)

(9.76)

However, this specification does not reflect the true dynamics. Hence, we can conclude the dynamics
are not a squared-Ornstein-Uhlenbeck process and thus follows a different distribution, which is a point
for further research.
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9.5 Tables

9.5.1 Transaction Costs

Table 12: Cumulative Relative Transaction costs in bps During QE

E =0.2 0.4 0.6 0.8 σ̂0.2 σ̂0.4 σ̂0.6 σ̂0.8

H=0.0 0.615 0.533 0.454 0.357 0.144 0.330 0.582 0.929

0.2 1.470 1.664 2.502 2.936 0.611 1.398 11.440 6.315

0.4 2.661 3.040 3.607 4.937 1.116 2.777 4.162 13.782

0.6 3.911 4.561 5.294 6.005 1.654 8.164 6.484 7.921

0.8 5.159 5.638 7.749 8.545 2.372 4.295 29.425 45.963

1.0 6.889 7.156 8.226 8.835 15.124 5.917 10.628 24.343

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.

The left panel shows the mean of the simulation outcomes, the right panel the standard deviation.

Table 13: Cumulative Relative Transaction costs in bps in EE

E =0.2 0.4 0.6 0.8 σ̂0.2 σ̂0.4 σ̂0.6 σ̂0.8

H=0.0 0.458 0.333 0.214 0.103 0.065 0.079 0.082 0.067

0.2 0.476 0.374 0.299 0.252 0.113 0.155 0.202 0.296

0.4 0.699 0.557 0.466 0.441 0.190 0.258 0.339 0.532

0.6 0.948 0.750 0.642 0.634 0.270 0.353 0.484 0.747

0.8 1.200 0.946 0.815 0.831 0.342 0.443 0.615 0.944

1.0 1.449 1.135 0.992 1.037 0.406 0.526 0.737 1.154

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.

The left panel shows the mean of the simulation outcomes, the right panel the standard deviation.
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9.5.2 Fund Performance

Table 14: Fund Value corrected for initial size during QE

E =0.2 0.4 0.6 0.8 σ̂0.2 σ̂0.4 σ̂0.6 σ̂0.8

5 Years

H =0.0 1.017 1.049 1.061 1.082 0.133 0.265 0.406 0.544

0.2 1.022 1.051 1.066 1.085 0.126 0.260 0.405 0.541

0.4 1.027 1.054 1.070 1.081 0.125 0.257 0.404 0.538

0.6 1.025 1.053 1.065 1.078 0.127 0.256 0.399 0.537

0.8 1.022 1.046 1.056 1.066 0.131 0.256 0.394 0.526

1.0 1.016 1.040 1.047 1.063 0.138 0.258 0.389 0.524

10 Years

0.0 1.071 1.130 1.190 1.244 0.216 0.433 0.662 0.909

0.2 1.083 1.143 1.201 1.250 0.207 0.430 0.660 0.907

0.4 1.089 1.148 1.206 1.245 0.206 0.426 0.661 0.900

0.6 1.090 1.147 1.202 1.239 0.205 0.423 0.657 0.890

0.8 1.086 1.145 1.194 1.232 0.208 0.425 0.651 0.884

1.0 1.080 1.131 1.179 1.229 0.217 0.420 0.639 0.880

15 Years

0.0 1.168 1.272 1.382 1.457 0.314 0.625 0.987 1.357

0.2 1.174 1.284 1.386 1.468 0.295 0.619 0.977 1.366

0.4 1.178 1.289 1.390 1.464 0.286 0.613 0.968 1.345

0.6 1.179 1.291 1.385 1.468 0.284 0.606 0.958 1.340

0.8 1.182 1.283 1.381 1.460 0.286 0.594 0.948 1.321

1.0 1.183 1.274 1.379 1.464 0.286 0.587 0.933 1.306

20 Years

0.0 1.247 1.369 1.476 1.567 0.398 0.774 1.220 1.747

0.2 1.264 1.389 1.492 1.590 0.375 0.763 1.209 1.765

0.4 1.280 1.416 1.515 1.612 0.372 0.769 1.200 1.773

0.6 1.296 1.445 1.548 1.646 0.369 0.767 1.224 1.776

0.8 1.319 1.472 1.571 1.670 0.373 0.774 1.207 1.751

1.0 1.343 1.504 1.624 1.713 0.383 0.772 1.205 1.738

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.

The left panel shows the mean of the simulation outcomes, the right panel the standard deviation.
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Table 15: Fund Value corrected for initial size in EE

E =0.2 0.4 0.6 0.8 σ̂0.2 σ̂0.4 σ̂0.6 σ̂0.8

5 Years

H =0.0 1.289 1.390 1.488 1.591 0.125 0.260 0.424 0.596

0.2 1.327 1.419 1.506 1.593 0.124 0.261 0.424 0.593

0.4 1.313 1.405 1.494 1.594 0.120 0.256 0.418 0.594

0.6 1.303 1.395 1.491 1.592 0.118 0.251 0.413 0.591

0.8 1.295 1.392 1.490 1.593 0.115 0.248 0.410 0.588

1.0 1.291 1.391 1.490 1.592 0.115 0.247 0.406 0.586

10 Years

0.0 1.694 1.967 2.244 2.576 0.246 0.545 0.904 1.366

0.2 1.761 2.011 2.281 2.579 0.245 0.542 0.914 1.356

0.4 1.745 1.998 2.270 2.573 0.238 0.530 0.904 1.348

0.6 1.730 1.986 2.263 2.572 0.230 0.524 0.896 1.339

0.8 1.718 1.983 2.263 2.574 0.227 0.521 0.890 1.337

1.0 1.713 1.983 2.263 2.570 0.228 0.519 0.887 1.329

15 Years

0.0 2.271 2.866 3.579 4.414 0.430 1.011 1.817 2.911

0.2 2.386 2.963 3.649 4.429 0.428 1.014 1.824 2.901

0.4 2.376 2.962 3.641 4.441 0.413 0.999 1.800 2.909

0.6 2.375 2.948 3.627 4.444 0.407 0.980 1.782 2.894

0.8 2.359 2.950 3.649 4.448 0.398 0.976 1.787 2.886

1.0 2.356 2.970 3.652 4.442 0.396 0.977 1.772 2.864

20 Years

0.0 3.042 4.149 5.599 7.459 0.700 1.710 3.338 5.834

0.2 3.260 4.366 5.742 7.535 0.698 1.721 3.320 5.842

0.4 3.265 4.388 5.757 7.547 0.666 1.688 3.277 5.823

0.6 3.282 4.422 5.788 7.558 0.655 1.676 3.280 5.777

0.8 3.298 4.452 5.840 7.558 0.634 1.658 3.266 5.721

1.0 3.329 4.524 5.884 7.635 0.636 1.653 3.246 5.768

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.

The left panel shows the mean of the simulation outcomes, the right panel the standard deviation.
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Table 16: Sharpe Ratio during QE

E =0.2 E =0.4 E =0.6 E =0.8

5 Years

H =0.0 0.022 0.001 -0.046 -0.079

0.2 0.058 0.014 -0.037 -0.078

0.4 0.075 0.012 -0.042 -0.086

0.6 0.047 0.003 -0.051 -0.090

0.8 0.007 -0.013 -0.065 -0.103

1.0 -0.022 -0.028 -0.080 -0.103

10 Years

0.0 0.019 -0.012 -0.041 -0.071

0.2 0.006 -0.010 -0.041 -0.068

0.4 0.014 -0.010 -0.037 -0.066

0.6 0.011 -0.006 -0.030 -0.064

0.8 0.022 0.003 -0.027 -0.065

1.0 0.030 0.003 -0.025 -0.055

15 Years

0.0 0.093 0.062 0.027 -0.012

0.2 0.077 0.058 0.025 -0.012

0.4 0.078 0.061 0.028 -0.016

0.6 0.071 0.062 0.029 -0.000

0.8 0.074 0.065 0.033 0.010

1.0 0.093 0.075 0.031 0.001

20 Years

0.0 -0.035 -0.068 -0.109 -0.142

0.2 0.006 -0.047 -0.099 -0.124

0.4 0.038 -0.034 -0.065 -0.097

0.6 0.055 -0.015 -0.040 -0.069

0.8 0.086 0.032 -0.007 -0.046

1.0 0.124 0.068 0.019 -0.016

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.
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Table 17: Sharpe Ratio in EE

E =0.2 E =0.4 E =0.6 E =0.8

5 Years

H =0.0 0.326 0.295 0.250 0.206

0.2 0.451 0.338 0.266 0.209

0.4 0.399 0.322 0.260 0.210

0.6 0.380 0.314 0.270 0.211

0.8 0.359 0.311 0.268 0.210

1.0 0.360 0.312 0.264 0.210

10 Years

0.0 0.307 0.275 0.245 0.217

0.2 0.357 0.298 0.258 0.219

0.4 0.376 0.307 0.261 0.224

0.6 0.395 0.308 0.266 0.226

0.8 0.382 0.316 0.272 0.229

1.0 0.384 0.332 0.275 0.230

15 Years

0.0 0.335 0.320 0.297 0.272

0.2 0.423 0.371 0.327 0.280

0.4 0.473 0.393 0.336 0.289

0.6 0.506 0.401 0.337 0.294

0.8 0.506 0.407 0.351 0.301

1.0 0.515 0.424 0.364 0.307

20 Years

0.0 0.308 0.287 0.261 0.230

0.2 0.391 0.331 0.283 0.239

0.4 0.464 0.354 0.292 0.242

0.6 0.518 0.378 0.301 0.247

0.8 0.573 0.400 0.313 0.255

1.0 0.618 0.426 0.330 0.266

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.
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9.5.3 Funding Ratio

Table 18: Funding Ratio Volatility corrected for initial size during QE

E =0.2 0.4 0.6 0.8 σ̂0.2 σ̂0.4 σ̂0.6 σ̂0.8

5 Years

H =0.0 1.011 1.047 1.073 1.095 0.185 0.307 0.447 0.582

0.2 1.017 1.051 1.077 1.098 0.174 0.295 0.439 0.576

0.4 1.024 1.057 1.077 1.097 0.160 0.287 0.432 0.573

0.6 1.025 1.058 1.074 1.088 0.147 0.280 0.426 0.564

0.8 1.025 1.056 1.067 1.083 0.135 0.275 0.418 0.557

1.0 1.021 1.049 1.061 1.078 0.125 0.264 0.410 0.550

10 Years

0.0 1.043 1.115 1.178 1.243 0.279 0.474 0.692 0.944

0.2 1.053 1.123 1.184 1.239 0.256 0.460 0.682 0.925

0.4 1.054 1.118 1.189 1.222 0.238 0.440 0.680 0.902

0.6 1.052 1.116 1.183 1.216 0.220 0.429 0.671 0.893

0.8 1.049 1.109 1.170 1.206 0.200 0.417 0.656 0.879

1.0 1.044 1.096 1.158 1.193 0.188 0.403 0.644 0.859

15 Years

0.0 1.070 1.175 1.269 1.377 0.365 0.622 0.931 1.325

0.2 1.064 1.169 1.269 1.377 0.325 0.590 0.914 1.313

0.4 1.065 1.170 1.273 1.373 0.305 0.577 0.906 1.295

0.6 1.064 1.169 1.272 1.367 0.282 0.561 0.896 1.276

0.8 1.063 1.173 1.268 1.361 0.261 0.555 0.884 1.256

1.0 1.067 1.167 1.267 1.357 0.250 0.542 0.869 1.230

20 Years

0.0 1.079 1.195 1.293 1.407 0.434 0.730 1.098 1.628

0.2 1.081 1.208 1.308 1.431 0.396 0.709 1.091 1.657

0.4 1.093 1.222 1.329 1.429 0.386 0.699 1.083 1.617

0.6 1.101 1.246 1.344 1.450 0.372 0.696 1.072 1.599

0.8 1.116 1.267 1.373 1.482 0.359 0.689 1.072 1.579

1.0 1.135 1.301 1.420 1.531 0.361 0.698 1.072 1.589

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.

The left panel shows the mean of the simulation outcomes, the right panel the standard deviation.
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Table 19: Funding Ratio Volatility corrected for initial size in EE

E =0.2 0.4 0.6 0.8 σ̂0.2 σ̂0.4 σ̂0.6 σ̂0.8

5 Years

H =0.0 1.206 1.307 1.407 1.504 0.154 0.277 0.426 0.582

0.2 1.241 1.333 1.421 1.508 0.151 0.276 0.422 0.579

0.4 1.228 1.320 1.409 1.505 0.142 0.268 0.413 0.574

0.6 1.218 1.312 1.404 1.505 0.134 0.258 0.406 0.571

0.8 1.210 1.307 1.403 1.505 0.126 0.251 0.402 0.567

1.0 1.207 1.307 1.402 1.504 0.120 0.246 0.400 0.565

10 Years

0.0 1.466 1.715 1.980 2.281 0.278 0.522 0.842 1.245

0.2 1.519 1.752 2.008 2.284 0.274 0.517 0.839 1.235

0.4 1.503 1.739 1.998 2.276 0.260 0.501 0.830 1.223

0.6 1.491 1.726 1.991 2.280 0.247 0.487 0.819 1.223

0.8 1.479 1.723 1.991 2.280 0.233 0.482 0.813 1.218

1.0 1.474 1.725 1.990 2.272 0.226 0.474 0.807 1.206

15 Years

0.0 1.806 2.292 2.889 3.557 0.449 0.873 1.527 2.384

0.2 1.890 2.368 2.949 3.579 0.439 0.870 1.531 2.380

0.4 1.879 2.363 2.943 3.578 0.417 0.853 1.513 2.372

0.6 1.873 2.359 2.939 3.583 0.397 0.841 1.503 2.367

0.8 1.860 2.360 2.952 3.582 0.383 0.835 1.500 2.354

1.0 1.858 2.372 2.957 3.598 0.373 0.829 1.491 2.367

20 Years

0.0 2.227 3.077 4.189 5.658 0.665 1.394 2.627 4.613

0.2 2.378 3.231 4.301 5.706 0.664 1.402 2.625 4.608

0.4 2.382 3.252 4.316 5.727 0.637 1.386 2.612 4.615

0.6 2.397 3.275 4.321 5.759 0.619 1.373 2.584 4.629

0.8 2.399 3.300 4.364 5.751 0.592 1.366 2.583 4.583

1.0 2.416 3.326 4.397 5.787 0.584 1.328 2.569 4.588

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.

The left panel shows the mean of the simulation outcomes, the right panel the standard deviation.
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9.5.4 Insolvency Probabilities

Table 20: Insolvency Relative to MVEV probability estimates during QE

E =0.2 0.4 0.6 0.8 σ̂0.2 σ̂0.4 σ̂0.6 σ̂0.8

5 Years

H =0.0 0.095 0.173 0.224 0.256 0.293 0.378 0.417 0.437

0.2 0.090 0.171 0.230 0.266 0.286 0.377 0.421 0.442

0.4 0.090 0.175 0.238 0.273 0.286 0.380 0.426 0.446

0.6 0.096 0.187 0.244 0.291 0.295 0.390 0.430 0.454

0.8 0.101 0.205 0.258 0.305 0.301 0.404 0.438 0.461

1.0 0.105 0.219 0.274 0.310 0.307 0.414 0.446 0.463

10 Years

0.0 0.162 0.220 0.289 0.333 0.369 0.414 0.454 0.472

0.2 0.146 0.224 0.283 0.335 0.353 0.417 0.451 0.472

0.4 0.150 0.229 0.295 0.338 0.357 0.420 0.456 0.473

0.6 0.152 0.242 0.302 0.342 0.359 0.429 0.459 0.475

0.8 0.158 0.250 0.309 0.348 0.365 0.433 0.462 0.477

1.0 0.163 0.272 0.317 0.361 0.370 0.445 0.466 0.481

15 Years

0.0 0.195 0.255 0.317 0.386 0.396 0.436 0.466 0.487

0.2 0.181 0.258 0.320 0.385 0.385 0.438 0.467 0.487

0.4 0.181 0.259 0.327 0.390 0.385 0.438 0.469 0.488

0.6 0.183 0.260 0.337 0.392 0.387 0.439 0.473 0.488

0.8 0.186 0.267 0.343 0.397 0.389 0.443 0.475 0.490

1.0 0.186 0.277 0.348 0.394 0.389 0.448 0.477 0.489

20 Years

0.0 0.237 0.299 0.365 0.430 0.425 0.458 0.482 0.495

0.2 0.227 0.295 0.363 0.432 0.419 0.456 0.481 0.496

0.4 0.219 0.296 0.357 0.434 0.414 0.457 0.479 0.496

0.6 0.222 0.285 0.361 0.424 0.416 0.452 0.481 0.494

0.8 0.213 0.271 0.353 0.403 0.410 0.445 0.478 0.491

1.0 0.208 0.268 0.326 0.395 0.406 0.443 0.469 0.489

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.

The left panel shows the mean of the simulation outcomes, the right panel the standard deviation.
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Table 21: Insolvency Relative to VEV probability estimates during QE

E =0.2 0.4 0.6 0.8 σ̂0.2 σ̂0.4 σ̂0.6 σ̂0.8

5 Years

H =0.0 0.492 0.467 0.472 0.482 0.500 0.499 0.499 0.500

0.2 0.480 0.456 0.462 0.479 0.500 0.498 0.499 0.500

0.4 0.462 0.449 0.460 0.482 0.499 0.498 0.499 0.500

0.6 0.449 0.446 0.465 0.484 0.498 0.497 0.499 0.500

0.8 0.447 0.454 0.468 0.484 0.497 0.498 0.499 0.500

1.0 0.452 0.453 0.474 0.488 0.498 0.498 0.500 0.500

10 Years

0.0 0.464 0.442 0.455 0.478 0.499 0.497 0.498 0.500

0.2 0.436 0.424 0.450 0.478 0.496 0.494 0.498 0.500

0.4 0.423 0.419 0.448 0.480 0.494 0.494 0.498 0.500

0.6 0.423 0.415 0.443 0.489 0.494 0.493 0.497 0.500

0.8 0.423 0.418 0.454 0.492 0.494 0.493 0.498 0.500

1.0 0.418 0.428 0.462 0.501 0.493 0.495 0.499 0.500

15 Years

0.0 0.451 0.450 0.478 0.508 0.498 0.498 0.500 0.500

0.2 0.444 0.446 0.468 0.505 0.497 0.497 0.499 0.500

0.4 0.435 0.436 0.466 0.506 0.496 0.496 0.499 0.500

0.6 0.439 0.438 0.464 0.508 0.497 0.496 0.499 0.500

0.8 0.430 0.428 0.469 0.508 0.495 0.495 0.499 0.500

1.0 0.421 0.421 0.462 0.513 0.494 0.494 0.499 0.500

20 Years

0.0 0.472 0.470 0.504 0.556 0.499 0.499 0.500 0.497

0.2 0.456 0.451 0.491 0.553 0.498 0.498 0.500 0.497

0.4 0.444 0.439 0.482 0.552 0.497 0.497 0.500 0.498

0.6 0.425 0.429 0.483 0.542 0.495 0.495 0.500 0.498

0.8 0.408 0.414 0.457 0.519 0.492 0.493 0.498 0.500

1.0 0.389 0.379 0.431 0.500 0.488 0.485 0.495 0.500

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.

The left panel shows the mean of the simulation outcomes, the right panel the standard deviation.
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Table 22: Insolvency Relative to MVEV probability estimates in EE

E =0.2 0.4 0.6 0.8 σ̂0.2 σ̂0.4 σ̂0.6 σ̂0.8

5 Years

H =0.0 0.002 0.023 0.054 0.084 0.045 0.150 0.226 0.278

0.2 0.002 0.020 0.053 0.084 0.045 0.140 0.224 0.278

0.4 0.002 0.023 0.059 0.087 0.045 0.150 0.236 0.282

0.6 0.003 0.027 0.061 0.089 0.055 0.162 0.239 0.285

0.8 0.003 0.027 0.063 0.089 0.055 0.162 0.243 0.285

1.0 0.002 0.029 0.068 0.089 0.045 0.168 0.252 0.285

0.0 0.003 0.011 0.031 0.053 0.055 0.104 0.173 0.224

10 Years

0.2 0.002 0.011 0.028 0.053 0.045 0.104 0.165 0.224

0.4 0.002 0.011 0.027 0.056 0.045 0.104 0.162 0.230

0.6 0.002 0.010 0.028 0.057 0.045 0.100 0.165 0.232

0.8 0.002 0.010 0.030 0.055 0.045 0.100 0.171 0.228

1.0 0.002 0.009 0.031 0.055 0.045 0.094 0.173 0.228

15 Years

0.0 0.000 0.010 0.021 0.041 0.000 0.100 0.143 0.198

0.2 0.000 0.005 0.019 0.040 0.000 0.071 0.137 0.196

0.4 0.000 0.004 0.018 0.038 0.000 0.063 0.133 0.191

0.6 0.000 0.001 0.018 0.038 0.000 0.032 0.133 0.191

0.8 0.000 0.001 0.017 0.038 0.000 0.032 0.129 0.191

1.0 0.000 0.003 0.015 0.037 0.000 0.055 0.122 0.189

20 Years

0.0 0.000 0.005 0.016 0.028 0.000 0.071 0.126 0.165

0.2 0.000 0.003 0.010 0.026 0.000 0.055 0.100 0.159

0.4 0.000 0.002 0.009 0.026 0.000 0.045 0.094 0.159

0.6 0.000 0.003 0.010 0.024 0.000 0.055 0.100 0.153

0.8 0.000 0.002 0.008 0.023 0.000 0.045 0.089 0.150

1.0 0.000 0.001 0.005 0.018 0.000 0.032 0.071 0.133

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.

The left panel shows the mean of the simulation outcomes, the right panel the standard deviation.
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Table 23: Insolvency Relative to VEV probability estimates in EE

E =0.2 0.4 0.6 0.8 σ̂0.2 σ̂0.4 σ̂0.6 σ̂0.8

5 Years

H =0.0 0.092 0.142 0.169 0.200 0.289 0.349 0.375 0.400

0.2 0.061 0.129 0.159 0.195 0.239 0.335 0.366 0.396

0.4 0.058 0.134 0.162 0.192 0.234 0.341 0.369 0.394

0.6 0.056 0.130 0.161 0.187 0.230 0.336 0.368 0.390

0.8 0.047 0.125 0.157 0.186 0.212 0.331 0.364 0.389

1.0 0.043 0.119 0.154 0.185 0.203 0.324 0.361 0.388

10 Years

0.0 0.033 0.067 0.105 0.141 0.179 0.250 0.307 0.348

0.2 0.014 0.055 0.099 0.133 0.118 0.228 0.299 0.340

0.4 0.012 0.048 0.099 0.132 0.109 0.214 0.299 0.339

0.6 0.010 0.045 0.096 0.131 0.100 0.207 0.295 0.338

0.8 0.008 0.044 0.087 0.131 0.089 0.205 0.282 0.338

1.0 0.006 0.041 0.083 0.127 0.077 0.198 0.276 0.333

15 Years

0.0 0.014 0.036 0.069 0.102 0.118 0.186 0.254 0.303

0.2 0.008 0.025 0.059 0.096 0.089 0.156 0.236 0.295

0.4 0.004 0.022 0.050 0.092 0.063 0.147 0.218 0.289

0.6 0.003 0.015 0.047 0.089 0.055 0.122 0.212 0.285

0.8 0.002 0.016 0.041 0.086 0.045 0.126 0.198 0.281

1.0 0.000 0.014 0.039 0.085 0.000 0.118 0.194 0.279

20 Years

0.0 0.008 0.018 0.040 0.062 0.089 0.133 0.196 0.241

0.2 0.003 0.011 0.028 0.053 0.055 0.104 0.165 0.224

0.4 0.001 0.008 0.022 0.052 0.032 0.089 0.147 0.222

0.6 0.000 0.008 0.018 0.047 0.000 0.089 0.133 0.212

0.8 0.000 0.006 0.016 0.045 0.000 0.077 0.126 0.207

1.0 0.000 0.004 0.014 0.041 0.000 0.063 0.118 0.198

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.

The left panel shows the mean of the simulation outcomes, the right panel the standard deviation.

114



9.5.5 Indexation

Table 24: Indexation levels during QE, percentages

E =0.2 0.4 0.6 0.8 σ̂0.2 σ̂0.4 σ̂0.6 σ̂0.8

5 Years

H =0.0 1.319 1.292 1.246 1.198 0.834 0.878 0.902 0.921

0.2 1.329 1.295 1.244 1.193 0.842 0.885 0.907 0.926

0.4 1.344 1.291 1.235 1.181 0.851 0.891 0.914 0.932

0.6 1.323 1.270 1.215 1.167 0.871 0.902 0.925 0.937

0.8 1.291 1.242 1.194 1.151 0.893 0.918 0.934 0.943

1.0 1.236 1.208 1.172 1.137 0.922 0.935 0.943 0.950

10 Years

0.0 1.271 1.261 1.216 1.153 0.891 0.916 0.932 0.947

0.2 1.302 1.276 1.219 1.153 0.885 0.916 0.935 0.950

0.4 1.305 1.276 1.213 1.141 0.892 0.921 0.938 0.952

0.6 1.295 1.266 1.202 1.127 0.906 0.928 0.943 0.956

0.8 1.285 1.252 1.184 1.113 0.915 0.936 0.947 0.960

1.0 1.266 1.231 1.170 1.100 0.928 0.942 0.950 0.964

15 Years

0.0 1.272 1.237 1.157 1.077 0.899 0.917 0.949 0.968

0.2 1.280 1.242 1.155 1.073 0.897 0.920 0.955 0.968

0.4 1.276 1.237 1.152 1.069 0.903 0.929 0.957 0.969

0.6 1.267 1.234 1.146 1.064 0.911 0.936 0.961 0.970

0.8 1.261 1.232 1.142 1.057 0.921 0.943 0.962 0.973

1.0 1.265 1.232 1.152 1.054 0.929 0.949 0.961 0.973

20 Years

0.0 1.213 1.187 1.088 0.988 0.918 0.943 0.964 0.968

0.2 1.239 1.200 1.096 0.989 0.916 0.943 0.966 0.968

0.4 1.245 1.215 1.107 0.997 0.922 0.943 0.967 0.972

0.6 1.264 1.229 1.125 1.015 0.922 0.943 0.963 0.969

0.8 1.276 1.263 1.164 1.051 0.929 0.937 0.964 0.970

1.0 1.291 1.307 1.207 1.094 0.932 0.931 0.958 0.970

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.

The left panel shows the mean of the simulation outcomes, the right panel the standard deviation.
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Table 25: Indexation levels in EE

E =0.2 0.4 0.6 0.8 σ̂0.2 σ̂0.4 σ̂0.6 σ̂0.8

5 Years

H =0.0 1.972 1.928 1.752 1.707 0.134 0.277 0.616 0.662

0.2 1.987 1.938 1.757 1.708 0.088 0.255 0.614 0.664

0.4 1.988 1.946 1.752 1.706 0.087 0.239 0.623 0.668

0.6 1.990 1.952 1.750 1.705 0.078 0.223 0.628 0.671

0.8 1.992 1.954 1.750 1.705 0.071 0.220 0.632 0.673

1.0 1.992 1.963 1.750 1.705 0.076 0.193 0.634 0.675

10 Years

0.0 1.996 1.983 1.959 1.927 0.037 0.108 0.197 0.299

0.2 2.000 1.989 1.967 1.931 0.008 0.086 0.167 0.289

0.4 1.999 1.992 1.971 1.935 0.014 0.076 0.152 0.280

0.6 2.000 1.989 1.975 1.937 0.006 0.088 0.141 0.273

0.8 2.000 1.990 1.981 1.941 0.011 0.083 0.128 0.262

1.0 2.000 1.991 1.980 1.940 0.002 0.077 0.135 0.271

15 Years

0.0 2.000 1.996 1.982 1.963 0.007 0.046 0.111 0.205

0.2 2.000 1.998 1.987 1.968 0.002 0.035 0.092 0.185

0.4 2.000 1.999 1.990 1.970 0.000 0.018 0.085 0.178

0.6 2.000 2.000 1.990 1.972 0.000 0.000 0.084 0.173

0.8 2.000 2.000 1.994 1.970 0.000 0.006 0.065 0.181

1.0 2.000 1.999 1.995 1.974 0.000 0.016 0.052 0.166

20 Years

0.0 1.999 1.999 1.994 1.986 0.012 0.026 0.061 0.117

0.2 2.000 2.000 1.997 1.990 0.000 0.007 0.039 0.095

0.4 2.000 2.000 1.999 1.995 0.000 0.000 0.024 0.055

0.6 2.000 2.000 1.999 1.993 0.000 0.003 0.016 0.082

0.8 2.000 1.999 2.000 1.992 0.000 0.014 0.004 0.086

1.0 2.000 2.000 2.000 1.995 0.000 0.000 0.000 0.060

E denotes the equity-to-total-asset-value ratio, and H defines the hedge ratio.

The left panel shows the mean of the simulation outcomes, the right panel the standard deviation.
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9.6 Figures

9.6.1 Funding Ratio

Figure 36: Funding Ratio During QE

Figure 37: Funding Ratio in EE
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