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ABSTRACT 
This master thesis treats the question whether prices of book equity to market equity sorted stock 

portfolios follow a random walk. In the theoretical part of the thesis, the random walk model is derived as 

a testable expression of market informational efficiency assuming constant expected returns and its 

statistical tests, namely the regression beta and the variance ratio, are discussed. As alternatives to the 

random walk, the structural models of fads and time varying expected returns are presented. A new model 

which incorporates the characteristics of the previous two models is also proposed. In the empirical part, 

the random walk test statistics are estimated. The random walk is rejected for portfolios with low BE/ME 

ratio by the variance ratio. The observationally equivalent ARMA forms of the alternative models are 

estimated and an ARMA(2,2) process is found to fit better the data. Moreover, to measure the ability of 

the statistical tests to reject the random walk when the alternative models considered are true, the power 

of the variance ratio and regression beta is calculated. The power of the variance ratio is higher than the 

regression beta and it deteriorates exponentially with the return interval. 

 

 

Keywords: Mean reversion, random walk, market efficiency, permanent/transitory components, 

structural model. 
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CHAPTER 1 Introduction 

1.1 Introduction to univariate time series models 
In univariate time series analysis, there are two fundamental approaches of modeling [Kirchgässner and 

Wolters (2007, pp.3-4), Brockwell and Davis (2002, pp.23-24)]. The first approach assumes that time 

series are composed of different unobserved components; these are a trend, a seasonal, a cyclical1 

component and a noise residual. Seasonal components have a certain period, where the term period is the 

length of time to complete a full cycle, whereas cyclical components have a non-specific period. In this 

paper only cyclical components are considered. Early time series models used components which were 

deterministic functions of time. In particular, the models of economic time series simply used a 

deterministic time trend, plus noise. It has only been since the work of Nelson and Plosser (1982) that 

economic time series are modeled with a stochastic trend. Such models with stochastic components are 

also named structural, which obviously is because they impose structure to the examined time series. 

The types of components mentioned so far and considered in this paper are trend/cycle and 

stochastic/deterministic. Depending on the effect that a change of a component has on a time series, 

components can also be classified into permanent/transitory (or temporary). Naturally, deterministic 

components are permanent. Concerning stochastic components, trends are permanent (non-stationary) and 

cycles are transitory (stationary). In modern literature, since components are considered to be stochastic, 

the term permanent component refers to the stochastic trend and the transitory component refers to the 

stochastic cycle. 

The second modeling approach assumes that series are generated from a single stochastic process 

instead of a sum of processes. In short, the method is to difference the data until they become stationary 

and then fit an ARMA (autoregressive moving-average) process. Note that the two modeling approaches 

are related. The previously mentioned simple unobserved components models with either a deterministic 

or a stochastic trend, plus a residual noise, can be converted into stationary and have an ARMA 

representation. To do this the deterministic trend needs to be subtracted or first differences to be taken 

respectively. As a result, deterministic trend and stochastic trend processes are named trend stationary and 

difference stationary. 

Beveridge and Nelson (1981, pp.154-158) shown how the two modelling approaches under certain 

restrictions are interchangeable. An ARMA process has an unobserved components representation with a 

stochastic trend, given by a random walk, a cyclical component and perfect correlation between the 

components’ errors. Conversely, Nelson and Plosser (1982, p.155) proved that an unobserved 

components model of the previous form with arbitrary correlation between the two components’ residuals 

may have one or more ARMA representations. 

In financial economics, modeling stock prices as random walk used to be the convention. A good 

reasoning is that it can be derived under market informational efficiency assuming constant expected 

                                                 
1 The difference between the terms seasonal and cyclical is subtle and in some texts not pointed out properly. In this text the 
terms are used as in Chatfield (1995, p.9). 
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returns [Fama (1976, pp.133-151)]. Within the framework discussed previously a random walk is a 

stochastic trend component. A trend given by a random walk is a permanent (non-stationary) component 

due to a property of random walk, which is, shocks are incorporated in the price level permanently. The 

mean reversion literature tries to identify transitory (stationary) components in stock prices and model 

them accordingly. A transitory component has the property to revert to its mean. Transitory components 

are of interest since it is more or less expected that stocks have an upward (stochastic) trend to 

compensate their holders with a return. The question of transitory components is whether there are 

predictable fluctuations above and below the trend. 

 

1.2 The literature 

The estimated components of structural models show the magnitude of each component in the series. 

Early papers that perform maximum likelihood estimation of structural models using a state space 

representation are Harvey (1985), Watson (1986), Clark (1987) and Conrad and Kaul (1988). After the 

permanent and transitory components are estimated, Stock and Watson (1988, p.157) and Conrad and 

Kaul (1988, p.417) regress the original series on each component to calculate the proportion of variance 

that each explains. This is a measure of the magnitude of each component which is simply equivalent to 

the ratio of each component’s variance to the variance of the series. 

ARMA models have no obvious method to give an indication about any possible components’ 

magnitude. Campbell and Mankiw (1987a, 1987b) perform exact maximum likelihood estimation of 

ARMA models using a state space representation and measure the permanent effect of a shock using its 

impulse response function. This method can say if the permanent effect deviates from one, which would 

be its value under random walk, but it does not shed light to the issue of whether there is a transitory 

component and what its magnitude is. Still, using the Beveridge-Nelson decomposition, an ARMA can be 

converted into an unobserved components model. The impulse response function as measure of 

persistence is a parametric one and can be affected by a possible model misspecification. Poterba and 

Summers (1988, p.31) do not estimate ARMA processes because the estimated models can not be 

recovered when artificial data are generated by them. 

A non-parametric measure of persistence is of Cochrane (1988, p.898) who developed the variance of 

long differences of a series to reveal the variance of its permanent component. Then the ratio of the 

permanent component’s variance to the variance of the series indicates the magnitude of the permanent 

component. This ratio, called the variance ratio, was shown to be a function of sample autocorrelations. 

This latter interpretation of the variance ratio is used by Poterba and Summers (1988, p.30) as a statistic 

to test the random walk model, that is, whether sample autocorrelations are jointly different from zero. Lo 

and MacKinlay (1988, pp.45-50) derive a slightly different version of the variance ratio. Another test 

method of the random walk is of Fama and French (1988, p.249) who regress multiperiod returns on their 

first lag. Under the null hypothesis the regression coefficient should not be statistically different form 
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zero. Jegadeesh (1991, p.1429) generalises the regression test by assessing different number of periods for 

the multiperiod return regressand and regressor. 

Statistical tests might not be powerful enough to reject the random walk null hypothesis. Summers 

(1986, p.594) proposes the fads model as an alternative for which statistical tests lack power to accept 

when it is the true model. Among the tests some can be more powerful depending on the alternative 

hypothesis. Jegadeesh (1991, p.1430) and Richardson and Smith (1994, pp.384-392) perform asymptotic 

power comparisons, whereas Poterba and Summers (1988, pp.31-34), Lo and MacKinlay (1989, pp.425-

435) finite power comparisons. 

 

1.3 Motivation 

The research question of this master thesis is whether there are mean reverting components in the prices 

of BE/ME sorted portfolios. The issues related with mean reversion are addressed using linear univariate 

methods. Of course, real world relations are multivariate and possibly nonlinear. Yet, univariate models 

can serve as a benchmark to multivariate models, that is, they have to perform at least as well as the 

univariate ones. Evidence against the random walk model of both univariate and multivariate analysis is 

disputable, see for example Kaul (1996, pp.284-286) for a review. In addition, structural models are 

capable of capturing nonlinear behaviour of series by including time varying parameters, for example a 

time varying drift. 

To illustrate the foundation of the random walk model and why it can be considered as the null 

hypothesis when prices are modeled, it is derived as a testable expression of market efficiency. Other 

alternative models studied in the literature that imply a mean reverting behaviour for prices are the fads 

[Summers (1986, p.594)] and the time-varying expected returns models [Conrad and Kaul (1988, p.411)]. 

The thesis proposes a new composite model that incorporates the characteristics and tackles the problems 

of the aforementioned models. The problem related with the fads model is that it only implies negative 

first-order return autocorrelations for every return interval [Summers (1986, p.595), Jagadeesh (1991, 

p.1429)], whereas the observed first-order autocorrelations of short horizon returns are positive [Poterba 

and Summers (1988, p.37), Lo and MacKinlay (1988, p.52)]. It is shown that the theoretical return 

autocorrelation function of this composite model can account for the observed positive first order 

autocorrelations. Moreover, the fads and the time varying expected returns models are indistinguishable, 

with respect to which model is the true data generating process, since both models are observationally 

equivalent to an ARMA(1,1) process. The composite model has an ARMA(2,2) observationally 

equivalent process, which is shown to fit better the data than an ARMA(1,1). 

The variance ratio as a test statistic and a function of sample autocorrelations has been widely used to 

detect deviation from random walk. The original variance ratio derivation of Cochrane (1988) interpreted 

it as a measure of persistence, which apparently attracted less interest. In this study, the interpretation as a 

measure of persistence is shown not to be clear since under observationally equivalent processes the ratio 

has a different mathematical expression. The variance ratio version of Lo and MacKinlay (1988) and the 
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regression beta statistic of Fama and French (1988) are estimated for BE/ME sorted portfolios in 

comparison to the papers of Fama and French (1988), Lo and MacKinlay (1988), Conrad and Kaul 

(1988), Jagadeesh (1991) who apply their analyses to size sorted and industry portfolios. To consider the 

small sample properties of the test statistics, their sampling distribution under the null hypothesis of 

random walk is constructed using the resampling technique of randomisation applied in Kim, Nelson and 

Startz (1991, p.519). 

The statistical tests might not be able to detect mean reversion in the time series. Finite sample power 

calculations are used to examine whether the variance ratio and the regression test have the power to 

reject the null hypothesis when the considered alternative models are correct. Poterba and Summers 

(1988) and Lo and MacKinlay (1988) perform power calculations using returns simulated by ARMA(1,1) 

models with arbitrarily chosen parameters. In this study the simulated returns are generated from the 

estimated ARMA models by resampling the estimated residuals. To take into account the uncertainty 

about the estimated parameters, a sensitivity analysis of the power calculations for plus/minus half the 

standard errors of the estimates is conducted. 

Chapter 2 includes the theoretical analysis of the thesis. Section 2.1 derives the random walk model 

and illustrates its testable implications. In section 2.2, the concept of mean reverting component is 

presented and the properties of the alternative structural models are discussed. The random walk test 

statistics are presented in section 2.3. Chapter 3 includes the empirical analysis of the thesis. The dataset 

selection is discussed in section 3.1. Section 3.2 explains the methodology used, which includes bias 

corrections of the statistics, structural models estimation issues, diagnostics for model selection and the 

method of power calculation. In section 3.3, after the descriptive statistics of the series are analysed, the 

empirical results of the random walk tests, the alternative model estimation and the power calculations are 

presented. Chapter 4 summarises and concludes with respect to the findings of the empirical analysis. 
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CHAPTER 2 Theoretical models 

2.1 Foundation of the random walk model 

In this section the random walk model for prices is derived as a testable expression of informational 

market efficiency assuming constant expected returns. Efficiency is a sufficient condition for a testable 

expression that leads to the random walk model. The assumption of constant expected returns is necessary 

because expected returns are included in the testable expression and they are unobservable. Unavoidably 

the testable expression depends on a joint null hypothesis, that is, the market is efficient and expected 

returns are constant. After the random walk is derived, its implications are considered. Namely, returns 

are unpredictable and shocks have a permanent effect on prices. 

2.1.1 Definition of market efficiency 

Fama (1976, pp.133-151) provides a formulated and detailed definition of efficiency, which has become 

the standard definition in the literature, along with a testing methodology. To simplify the notation, the 

market efficiency is derived here for a single security, although the derived expressions would implicitly 

be valid for each security or portfolios of them. The complete information set available at time t-1 is 1tI −  

and the information set used by the market is 1
m
tI − , with the latter being a subset of the former 1 1

m
t tI I− −⊆ . 

For every point in time, each information set determines a conditional probability density function of 

future prices 1 1( )m
m t tf P Iτ+ − −  and 1 1( t t )f P Iτ+ − −  respectively, where 1tP τ+ −  is the price of the security τ 

periods (τ=1,2,…) ahead of t-1. Prices are considered to include reinvested dividends. Informational 

efficiency, that is, prices fully reflect available information, implies that the market fully uses the 

complete information set to assess the probability density function of future prices, and thus 

1 1
m
t tI I− −= . (1)

This in turn implies that the density functions under the two information sets are equal, 

1 1 1 1( ) ( )m
m t t t tf P I f P Iτ τ+ − − + − −= . (2)

It is now understood that the informational efficient market definition should be: future (expected) prices 

always fully reflect the complete current information. Efficiency is a necessary and sufficient condition 

for (2). Equality (2) implies that conditional on information at time t-1, expected values of the two 

densities are also equal, 

1 1 1 1( ) ( )m
m t t t tE P I E P Iτ τ+ − − + − −=  (3)

or if from both sides current prices are subtracted and also divided by them, then the equivalent 

expression for the special case of τ=1 is 

1 1( ) ( )m
t t m t tE R I E R I− −= . (4)

Where tR  denotes the return realized between t-1 and t. Efficiency is a sufficient condition for (3) but not 

a necessary one. If equality (3) is proved to be valid, (2) is not necessarily valid and the market is not 

necessarily efficient. If (3) is not valid, (2) is not valid and the market is inefficient. Within this setting, 
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the efficiency hypothesis cannot be proved to be valid. Efficiency is testable using expression (3) as long 

as efficiency is the null hypothesis. This means that efficiency holds unless proved otherwise. 

 

2.1.2 Testable expressions of market efficiency 

The formulated definition of efficiency is not directly testable. Expression (1) is not testable because the 

complete information set  is unobservable. Expression (2) is not testable as well, because both the 

probability density functions are unknown. Known are the prices observed in the market, which are 

generated by the true density 

1tI −

1 1( t t )f P Iτ+ − − . That is, the informational efficiency framework considers 

observed prices as indeed reflecting all available information. Still, the market-assessed density 

1 1( m
m t t )f P Iτ+ − −  and the prices generated by it are unknown. It is necessary to assume a specific 

equilibrium model to be valid, which will generate the market assessed future security prices or 

equivalently the market-assessed future security returns. The model used in the expected return 

predictability literature is the so-called martingale model with a constant drift2. Taking conditional 

expectations on both sides of the single period return definition (including dividends) yields the 

equilibrium model 

1 1
1

1

( )
( )

m
m m t t t

m t t
t

E P I P
E R I

P
− −

−

−

−
= . 

(5)

Its interpretation is that the market sets the expected value of the market assessed density, given current 

information, such as it satisfies the equilibrium condition. Assuming constant expected returns, the 

equilibrium becomes 

1( )m
m t tE R I R− = . (6)

From equations (4) and (6), if the assumption that the equilibrium model is valid is added to the null 

hypothesis of efficiency, the null hypothesis model in terms of returns is derived as 1( )t tE R I R− =  or as 

stochastic 

t tR R ε= + . (7)

The error term tε  needs only to be serially uncorrelated and mean stationary. Even though the martingale 

model with constant drift implies efficiency3, a joint null hypothesis is made, that is, the market is 

efficient and the chosen equilibrium model is correct. If the model with constant drift was the only one 

which can imply efficiency then the joint hypothesis would have reduced to a single hypothesis. 

                                                 
2 For an introduction to martingales see e.g. Cuthbertson (1996, pp.102-104) and Campbell, Lo and MacKinlay (1997, pp.30-31). 
3 To see this first examine the martingale without a drift 

1 1
( )m

m t t t
E P I P

− −
=

t

, which says that current information, as reflected in 

current prices, is already incorporated in expectations of future prices. Differently written as 
1t t

P P ε
−

= + , it means that there 
are changes in future prices only if new information arises and these changes are unpredictable. Thus, future prices fully reflect 
available current information. The problem is that the simple martingale does not account for risk. This is solved including a 
constant drift as in (1) and the model becomes 

t1
/ (1 )

t t
P R P+ ε

−
= + . The argument that future prices fully reflect available 

information is still valid. 

 10



However, there are also other models, such as martingale with time-varying drift or discounted dividend 

models which can imply efficiency. 

It was shown that the null hypothesis is that the true density 1( t t )f R I −  is mean stationary, i.e. its 

conditional expectation is constant for different 1tI −  and t. The alternative hypothesis is that conditional 

expected returns vary with , 1tI −

1 1( )t t tE R I a− −
′= + b I , (8)

where  is the coefficient vector of the independent variables ′b 1t−I  constituting the information set, 

which in univariate analysis includes historical returns.  A special case is when  includes only the 

return of the previous period, 

1t−I

1 1( )t t tE R I a bR− −= + . (9)

Writing the expression as stochastic leads to what Fama (1991, p.1576) defines as test of return 

predictability or test of weak form efficiency, according to Fama’s (1970, p.388) terminology, 

1t tR a bR tε−= + + . (10)

The error term tε  only needs to be serially uncorrelated and mean stationary. Under efficiency, the 

estimated coefficient b is expected to be zero. A zero coefficient indicates that past information, as 

perceived by historical returns, does not explain future returns. If coefficient α  is moved to the right hand 

side of equation (10), the interpretation of informational market efficiency is that past returns cannot 

predict abnormal returns. The testable expression (10) is an AR(1) model. If higher order lagged returns 

and error terms are added into (10) then the expression becomes an ARMA model. Again the coefficient 

estimates of the ARMA model, under the efficiency hypothesis, are not expected to be statistically 

different from zero. 

 

2.1.3 The random walk model 

The martingale model with constant expected returns can also lead to a testable expression of market 

efficiency formulated in terms of log prices, namely the random walk model. Equation (7) has an 

equivalent in terms of prices 

1 )(1t ttP P R ε−= ++ . (11)

Taking the natural logarithm of (11), setting * ln(1 )t tε ε= +  and ln(1 )r R= + , which is the continuously 

compounded return, and using lower case letters for prices to denote their natural logarithms leads to 
*

1t tp p r tε−= + + . (12)

The notation used for the error does not really matter. It can simply be written without the star 

superscript. The derived expression is the null hypothesis model in terms of log prices, which is a random 

walk with a drift r 
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1t tp p r tε−= + + . (13)

Depending on the properties of the error term two forms of random walk are mainly distinguished 

(Campbell, Lo and MacKinlay, 1997 pp.31-33). In the first form the error term is IID (independently and 

identically distributed) noise with zero mean and constant variance: 2IID(0, )t εε σ∼ . The second form 

has less restrictions, which are the same as those in (7), namely, errors are uncorrelated and mean 

stationary, i.e. white noise (WN): . The second form is more involved since it allows 

non-linear dependencies between errors and heteroskedasticity. Depending on the advances of the 

literature either the first or the second form will be considered. Expression (13) can be written as 

2
,WN(0, )t εε ∼ tσ

t tr r ε= + . (14)

Returns are stationary since the error term is stationary and the random walk model is named (first-order) 

difference stationary process. It is apparent that (14) and (7) are equivalent. The only difference is that the 

former is formulated in terms of continuously compounded returns. The expression simply implies that 

returns are uncorrelated at all leads and lags 

Equation (13) with recursive substitution becomes 

0 1

t

t ii
p p t r ε

=
= + +∑ . (15)

The current price level includes all past shocks, which makes the term 
1

t

ii
ε

=∑  a stochastic permanent 

(non-stationary) component. In addition, the long-term effect of a shock to the price is the shock’s value 

itself, which again means shocks are incorporated in the price level permanently. Hamilton (1994, p.439) 

proves this as follows. Write a future price at time t+τ as a sum of price first differences 

1 1 2 1( ( () ) ... )t t t t t t t tp p p p p p pτ τ τ τ τ+ + + − + − + − += p− + − + + − + .  

By taking the derivative of the conditional expectation of prices, it is shown that the long term sensitivity 

of future expected prices to a shock equals unity, 

lim lim ( ) 1t t
t

t t

E p
p rτ

τ τ
τ

ε ε
+

→∞ →∞

∂ ∂
= + =

∂ ∂
. 

(16)

The equation tt t p rE p τ τ+ +=  shows that any future expected price t tE p τ+  depends on the realised 

current price, plus a deterministic component which is function of time, and thus t tE p τ+  can be 

characterised as a trend. 

To make the aforementioned concepts of random walk and permanent effect clearer, the course of 

prices as a function of time is examined in figure 1. For t=0 the trend line is 0 0E p p rτ τ= + . The trend is 

a linear function of time with slope equal to t a n rω =  and vertical axis intercept 0p . From  to  the 

price increases by r to become 

0t 1t

1 0p p r= + . Suppose there is at time  an exogenous random innovation 1t

1ε , the price then becomes 1 0 1( )p p ε= + + r . From this new price value, it is seen that the axis intercept 

is changed to 0 1p ε+  although the slope remains constant. The same result applies for every subsequent 
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innovation . In general, the price level is determined by 2 3, ,. . .ε ε ( )0 1

t

t ii
p p rε

=
t= +∑ + . Thus, 

innovations add up each period to the price level and change the vertical-axis intercept. The price level 

does not revert back to its original trend but it rather has a random course since the sum of the innovations 

is random. After the 1ε  shock is realized, its long term effect on prices for any τ period ahead is 

( )1 1 0 1 1(1 )E p p r pτ rε τ+ = + + + = + τ , which is a new trend line parallel to the original one. Thus, the 

effect of innovation 1ε  is considered permanent in the sense that prices are expected to develop along the 

new trend line determined by the innovation. 

 

Figure 1 The course of prices under random walk 
The figure shows the course of prices following a random walk as a function of time. Prices develop on a trend line given by their 
conditional expectation. The slope of the trend equals the drift rate t a n rω = . The response of prices to exogenous shocks 

i
ε and the subsequent change of long term trend τ periods ahead are illustrated. 

 
 pt  E1p1+τ E0pτ   
  
 
 
  
 ε2  
 ε1    
    ε3  
 p0 ω  
 
  t  

 
 

Note that expression (14) is derived for single period returns. However, the uncorrelated returns 

implication can be generalised for multiperiod returns. Multiperiod returns will be examined throughout 

this paper since some transitory effects caused by factors like the business cycle may only be revealed in 

the long-run. Define a non-overlapping k period return of a prices sample (  and its τ 

period lead/lag using (13) as 

0 1 1, , ..., )Tp p p −

                                                

( 1)

( ) ( ) ( 1)

1

0

1
( )0

( )

( ) .

, 1,2,. . . , 1, 1,2,. . .t k t k t k

t k t k t k

k
t k ii

k
t k ii

r k p p

r k p p

r t T k

rτ τ ττ

−

+ + + −

−
−=

−
+ −=

= = −

= −

= − =

=

∑

∑
 

(17)

The complex subscript notation is necessary to distinguish between non-overlapping and overlapping 

multiperiod returns.4 For the random walk, the non-overlapping k period return and its τ period lead/lag 

are 

 

t
r

4 The reader should not be confused by the lack of an operator between (functions of) subscript variables since it implicitly is the 
multiplication operator. Within this notational framework single period returns for k=1 are written as usually, that is, 

1
(1)

t t t
r p p

τ τ τ τ
. 

+ + + − +
= − =
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( 1) 1

( )

( ) ( 1) 1

( )

( ) .

, 1,2,. . . , 1, 1,2,. . .t k

t k ii t k

t k

t k ii t k

r k k r

r k k r

t T k

τ

τ τ

ε

ε

= − +

+

+ = + − +

= +

= +

= − =∑

∑
 

(18)

The two expressions do not have common increments and thus multiperiod returns are uncorrelated for all 

leads and lags. Moreover, the expected value and variance of multiperiod returns are k times the single 

period returns. The problem with multiperiod returns is that the data observations become less as the 

number of periods increase. A solution to this is the use of overlapping data. The overlapping k period 

return equivalents are defined as 
1

0

1

0

( )

( ) .

t t t

t t

k
t ii

k
t ii

r k p p

r k p p

r

rτ ττ

−

+ +

−
+=

−
+ +=

= −

= −

=

=

∑

∑

k

t kτ+ −

 

(19)

For the random walk, the non-overlapping k period return and its τ period lead/lag are 

1

1

( )

( ) .

t

t ii t k

t

t ii t k

r k k r

r k k r τ

τ τ

ε

ε

= − +

+

+ = + − +

= +

= +

∑

∑
 

(20)

This time the two expressions do have common increments for 1kτ ≤ −  and thus overlapping 

multiperiod returns calculated from prices which follow a random walk are correlated. Using proper 

econometric techniques to take into account this correlation, overlapping observations have the advantage 

that the number of exploitable observations increases and thus the estimated sample statistics are more 

probable to converge to their asymptotic values. 

 

2.2 Alternative models 

In this section alternative models to the random walk are considered. A natural alternative to the random 

walk model is a model that includes shocks that have only a transitory stochastic effect. Such a model is a 

deterministic trend process. A more general model should include both a permanent and a transitory 

stochastic effect. Using the Beveridge-Nelson decomposition method it is shown that a general difference 

stationary process can be decomposed into a permanent and a transitory component. 

Structural models with an economic rationale that decompose prices into a permanent and a transitory 

component need to be considered. Such are the fads and time-varying expected returns models. A new 

composite model which incorporates the characteristics of the two aforementioned models is proposed as 

another alternative. 

2.2.1 Permanent and transitory components 

Regarding the random walk model, it was discussed that shocks have a permanent effect on the series. 

Alternative models would include transitory components. A transitory component is in fact a stationary 

process. All mean stationary with finite variance time series processes are mean reverting, in the sense 

that the process fluctuates within limited amplitude and will tend to revert back to its expected value. 
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Considering this reversion, stationary processes have only a transitory stochastic effect on series. The 

speed of mean reversion is determined by the covariance function of the process. IID noise processes, 

because of their zero autocovariance, are instantaneously mean reverting. The random walk model 

contains an IID noise process and thus generates single and multiperiod returns which are instantaneously 

mean reverting5. In the case of covariance non-stationarity, the speed of mean reversion is time varying. 

An AR(1) zero mean process is covariance stationary and a measure of its mean reversion speed is given 

by the half-life index 1H l n (0 . 5) / l n ( )φ= , where 1φ  is the autoregressive coefficient. The higher 1φ  is, 

the slower the mean reversion. This index measures how many periods will take for an effect of a shock 

to become half of its original value when there are no other shocks in the meanwhile. The half-life index 

can be generalised for higher order autoregressive processes [see e.g. Mark  (2001, p.42)]. 

An alternative to the random walk is a model with deterministic trend and a stochastic error part 

which has only a temporary effect on the process. Such a stochastic process is named trend stationary and 

is represented as 
2( ) , I I D(0, )t t tp t r L υψ υ υ σ= + ∼ . (21)

Where  is a lag polynomial of infinite order and L is is the lag 

operator with 

1 2 3
1 2 3( ) 1 ...L L L Lψ ψ ψ ψ= − − − −

i
t tL iυ υ −=  and i integer. In order for the variance of the process to take a finite value, the 

convergence condition  must be valid. This implies li . This particular 

deterministic time trend is linear, but more complex ones can be in a polynomial form.  The convergence 

condition implies 

2
1 ii
ψ

∞

=
< ∞∑ m 0ii

ψ
→∞

=

lim 0t t

t

E p τ

τ υ
+

→∞

∂
=

∂
. 

(22)

Thus the long-term effect sensitivity of a shock to the price is zero. This model with a deterministic trend 

and errors having a transitory effect is the other extreme compare to random walk, where errors have a 

permanent effect. More involved models which can incorporate both permanent and transitory 

components are considered in the next sub-section. 

A more general model is now considered which includes random walk as a special case for ( ) 1Lψ = , 

2
1 ( ) IID(0, ),t t t tp p r L υψ υ υ σ−= + + ∼ , (23)

with  and . In (23) the difference of prices is generated by a stationary MA(∞) 

process. The effect of a shock to the long-run expected level of a price is weighted by [Hamilton (1994, 

p.442)]

2
1 ii
ψ

∞

=
< ∞∑ lim 0ii

ψ
→∞

=

6

                                                 
5 There is a common misconception about whether the alternative hypothesis tested against the null of random walk is prices 
being mean reverting or returns being mean reverting. Having in mind that returns under random walk are (instantaneously) mean 
reverting the latter does not make sense. Mean reversion as an alternative to random walk should refer only to prices. 

6 It is proved like (16), [ ]
1 1 1 2 1

lim lim ( ... ) ( ... ) ... (1).t t

t t t

t t

E p
p rτ

τ τ τ τ
τ τ

τ ψ ψ ψ υ ψ ψ ψ υ ψ
υ υ

+

− + −
→∞ →∞

∂ ∂
= + + + + + + + + + + =

∂ ∂
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lim (1).t t

t

E p τ

τ
ψ

υ
+

→∞

∂
=

∂
 

(24)

In other words this is the cumulative response of prices to a unitary shock. The papers of Campbell and 

Mankiw (1987a p.112, 1987b p.861) use this measure to examine the permanence of a shock’s effect. 

 

2.2.2 Structural models 

Structural models constitute of stochastic components. A popular model of this kind is of Beveridge and 

Nelson (1981 pp.154-158) who show that an ARMA(p,q) model of returns 

1 0 1 1 p p 1 1 q... ...t t t t t t t tr p p r r qθ θ θ υ ζ υ ζ υ− − − −= − = + + + + − − − − ,  

which has a MA(∞) representation (21) with 0

1 p1 ...
r

θ
θ θ

=
− − −

 and q

p

( )
( )

( )

L
L

L

ζ
ψ

θ
=  , can be decomposed 

into a permanent and a transitory component (see appendix A): 

*
t t tp p u= +  (25)

* *
1 ,t t tp p r ε−= + + [ ] 2 2IID(0, (1) )t υε ψ σ∼   

2
0 1 1 ..., 1, IID(0, )t t t tu υφ υ φ υ φ υ σ−= + + < ∼ .  

Where *
tp  is the permanent component following a random walk and  is the transitory component 

following an MA(∞) process. Stock and Watson (1988, p.171), assuming 

tu

0 0, 0 for 0tp tυ= = ≤ , derive 

the transitory component as a finite-order MA process. 

A structural model of the form (25) decomposes an observable time series into two unobserved 

components. Thus it can be named unobserved components model. A major characteristic of the 

unobserved component model derived by the Beveridge-Nelson decomposition is that the shocks 

affecting the permanent and transitory compoents are perfectly correlated by derivation. The Beveridge-

Nelson decomposition leads to two interchangeable representations, i.e. ARMA and unobserved 

components. This one-to-one relationship between the two representations always exists. 

The Beveridge-Nelson decomposition is restrictive as far as the dependence between the shocks is 

concerned. To avoid this restriction, alternatively a time series can be explicitly modelled as a sum of a 

permanent component (random walk with drift) and a transitory component with zero correlation between 

their errors. Such a model is named UC-ARMA7. UC stands for unobserved components and the ARMA 

term refers to the process of the transitory component. Nelson and Plosser (1982 pp.153-155) show that a 

UC-ARMA model of the form (25) with uncorrelated errors and a finite-order MA process as transitory 

component has an econometrically identifiable ARMA representation. If the correlation of the shocks is a 

priori unspecified, then the ARMA representation in unidentifiable in the sense that its parameter values 

are not unique. 

                                                 
7 In this text, either this term or “unobserved components model with uncorrelated errors” shall be used to distinguish from 
unobserved components models with perfectly correlated errors. 
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The general case to transform an ARMA model to an unobserved components representation is for 

correlation values between zero and one, , excluding the value of 1 which is the case of the 

Beveridge-Nelson decomposition. Such transformation with arbitrary correlation between the errors is not 

guaranteed to exist

[0,1)ευρ ∈

8 [Nelson and Plosser (1982, p.155), Watson (1986, p.53)] but if it exists then it might 

have more than one representations because the parameters are not unique. Even so, the innovation 

variance of the permanent component is always the same [Cochrane (1988, p.904)] and the permanent 

and temporary components equal the ones of the Beveridge-Nelson decomposition [Morley, Nelson and 

Zivot (2003, p.237)]. 

 

2.2.3 The fads model 

Alternative models to the random walk need to be supported by a plausible economic interpretation. 

Summers (1986, p.594) proposed an alternative model for which correlation tests lack power to reject the 

random walk. Under this alternative model, actual prices deviate from the efficient market prices *
tp  by a 

pricing error term  which follows an AR(1) process. This process models the fads, i.e. a persistent 

pricing error that will decay slowly back to zero after some periods. 

tu

*
t t tp p u= +  (26)

* *
1 ,t t tp p r ε−= + + 2IID(0, )t εε σ∼   

2
1 1 1, 1, IID(0,t t t tu u )υφ υ φ υ σ−= + < ∼   

Model (26) assumes constant expected returns. Under the fads model, the autoregressive coefficient of the 

transitory component would be expected to be positive. This means positive (negative) pricing errors at a 

point of time are followed by subsequent positive (negative) pricing errors of a smaller magnitude. The 

state space representation of the model is 

[ ]
*

* * 2
1

2
1 1

1 1

1 0 0
, IID ,

00 0

t
t

t

t tt t

t tt t v

p
p

u

rp p
v vu u

ε ε

ε

ε ε σ σ
φ σ σ

−

−

=

= + + ∼

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠
,v

v

1t t

 

 

which can be estimated using exact maximum likelihood. 

Summers (1986, p.595) and Poterba and Summers (1988, p.32) show that the model (26) has the 

following reduced form 

1 1 1 1(1 )(1 ) (1 )t t tL L p rφ φ ε φ ε υ υ− −− − = − + − + − . (27)

The reduced form is not a regular ARMA process since the right-hand side is a sum of two different error 

processes. The sum of the two MA processes is however equivalent to a single MA process with order 
                                                 
8 This argument is used in Cochrane (1988, p.904) although it has only been proved for 0

ευ
ρ =  in Watson (1986, pp.52-53). In 

particular, only processes whose spectral density function has a global minimum at zero frequency have an unobserved 
components representation. For example, this restriction rules out processes with positive first-order autocorrelation at lag one. 
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equal to the bigger order of the two processes [see Hamilton (1994, p.106)]. Thus (27) has an 

observationally equivalent ARMA(1,1) representation 

0 1 11(1 )(1 ) , IID(0, )t t t tL L p ωφ φ ω ζ ω ω σ−− − = + − ∼ .  

The ARMA model can be estimated and then by equating the moments of the two equivalent processes 

the reduced form is identified. Notice that the autoregressive polynomials are the same and identifiable 

directly from the ARMA model. The unknowns of the reduced form are 2 2, , ,r ε υ εσ σ υσ , but there are 

only three equations to solve, namely the mean, the variance and the first-order autocovariance 

expressions. To overcome this identifiability problem Poterba and Summers (1988, p.32) assume 

. However, such an assumption restricts the autocovariance structure of the process (27) and as 

Lippi and Reichlin (1992, p.91) show it also restricts the cumulative response to 

0ευσ =

(1) 1ψ < . Morley, 

Nelson and Zivot (2003, p.237) show that there is still a way not to assume  and calculate the 

permanent and transitory components of model (26). It is shown that the Beveridge-Nelson 

decomposition can be performed to the estimated ARMA model and the permanent and transitory 

estimated components are actually the same with the ones form the state space representation estimates of 

(26). 

0ευσ =

Let us now illustrate the concepts of mean reverting and permanent components of the fads model. 

The reduced form of the fads model can be written as 1 1
1(1 ) (1 )t t tp p r L L tε φ−
−= + + −+ − υ . The long 

term effect sensitivities of the errors to prices are9

lim 1, lim 0t t t t

t t

E p E pτ τ

τ τε υ
+ +

→∞ →∞

∂ ∂
= =

∂ ∂
. 

(28) 

The course of prices as a function of time based on an example is examined in figure 2. Prices are a sum 

of a random walk, for which what was said in figure 1 is valid, and a mean reverting component, 

( *
0 1

t

t ii )tp p uε
=

= + + +∑ r t . Assuming the transitory component equals its unconditional mean at t=0, 

i.e. , the trend line is 0 0u = 0 0E p p rτ τ= + . From  to  the price increases by r to become 0t 1t

1 0p p r= + . Suppose there are at time  two positively correlated1t
10 random innovations 1 1,ε υ . The 

new price is ( *
1 0 1 1 )p p ε υ= + + + r . The long term effect on prices for several periods τ ahead is 

( ) ( ) ( )1 1 0 1 1 0 1 1 0 11(1 ) (1 ) (1 )E p p u r p r p rτ τ
τε τ ε φ υ τ ε+ += + + + + = + + + + ≈ + + +τ  

which is the trend line of the permanent component seen in the random walk course of figure 1. Notice 

that the term 11
τφ υ  converges to zero for large τ. In other words, the effect of the transitory component 

                                                 

9 Similarly to (16), 
1

1 1 1

2 1 0 1

1 1 1 1 1 1

( ...)(1 )
lim lim 1,

( ...)(1 ) ... ( ...)(1 )

t t tt t

t t t t t t

p r LE p

L L

τ τ

τ

τ ττ τ

τ φ υ φ υ

ε ε φ υ φ υ φ υ φ υ

−

++

− −→∞ →∞

+ −

+ + + + −∂ ∂
= =

∂ ∂ + + + − + + + + −

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and 

[ ]1 1 2 1 0

1 1 1 1 1 1 1 1
lim lim ( ) ( ) ... ( ) lim 0t t

t t t t t t t t

t t t

E p
p τ τ τ τ ττ

τ τ τ

φ υ φ υ φ υ φ υ φ υ φ υ φ υ
υ υ υ

− − −+

−
→∞ →∞ →∞

∂ ∂ ∂
= + − + − + + − =

∂ ∂ ∂
=  

10 The choice of the correlation sign does not really matter. 
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will gradually revert to its zero mean as time passes. Overall, the random walk error variance 2
εσ  

determines the amplitude of changes of the trend, the transitory component error variance 2
υσ  determines 

the amplitude of the transitory deviations from the trend and the autoregressive coefficient 1φ  determines 

the rate of mean reversion to the trend. 

 

Figure 2 The course of prices under the fads model 
The figure shows the course of prices following the fads model as a function of time. Prices develop on a trend line given by their 
conditional expectation. The slope of the trend equals the drift rate r. The response of prices to the net effect of exogenous shocks  
of the trend 

t
ε  and  of the cyclical component 

t
υ  at time t=1 is illustrated. The shock 

1
υ  is shown to have a transitory effect 

since prices converge to their long term trend several periods τ  ahead. 

 
 E1p1+τ  
 pt

 E0pt

  
 υ1  
 
 
 ε1  
 
 *

0p    
 t 

 
 

2.2.4 The univariate time-varying expected return model 

Conrad and Kaul (1988, p.411) suggest a model in which prices follow a random walk but with time-

varying expected returns. The time-varying expected returns are modelled as a non-zero mean AR(1). The 

non-zero mean in the autoregressive process is added by Kaul (1996, p.274) to take into account the 

return compensation required by investors to hold stocks. 

*
t tp p=  (29)

* *
1 1( ) ,t t t t tp p E r ε− −= + + 2IID(0, )t εε σ∼   

2
1 0 1 2 1 1 1( ) ( ) , 1, IID(0, )t t t t t tE r a a E r v a v νσ− − − −= + + < ∼   

The model already is in a state space representation and can be estimated using exact maximum 

likelihood. Note that the two errors may covary, i.e. 0vεσ ≠ . 

Model (29) implies that returns has the reduced form 

0 1 11(1 )(1 ) t t ta L p a aL ε ε 1tv− −− − = + − + . (30)

which again has an observationally equivalent ARMA(1,1). A problem related with the observationally 

equivalent representation is that both the fads and the time-varying returns models follow an ARMA(1,1), 

which in turn makes the two of them observationally equivalent. Even if the data do indeed follow an 
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ARMA(1,1), it can not be distinguished which of the two models, (26) and (29), is true. The reduced form 

is non-identifiable from the ARMA(1,1) model without assuming 0ενσ = , which imposes restriction to 

the autocovariance structure of the process (30). The model (29) is not in the form trend plus cycle and 

thus the result of Morley, Nelson and Zivot (2003, p.237) to estimate the components of the original 

model using the Beveridge-Nelson decomposition of the ARMA model is not applicable. 

Let us now illustrate the concepts of mean reverting and permanent components of the time varying 

expected returns model. The reduced form of the fads model can be written as 

10
1 1

1

(1 ) (1 )
1t t t t

a
p p a L L v

a
ε −

−= + + + − −
−

. The long term effect sensitivities of the error terms of the 

two components are derived similarly to (16)11

1

1
lim 1, lim , lim

1
0t t t t t t

t t

E p E p E r
v a v

τ τ

τ τ τε
+ +

→∞ →∞ →∞

∂ ∂ ∂

t

τ+= =
∂ ∂ − ∂

=  
(31) 

Interestingly, the long term effect sensitivity of error  for expected returns is zero, whereas for prices is 

either higher or lower than unity depending on the sign of . The course of prices as a function of time 

based on an example is examined in figure 3. Assuming the mean reverting drift equals its unconditional 

mean at time  the trend line is 

tv

1a

0t 0
0

1
0 1t

a
E p p

a
= +

−
t . From  to  the price increases by the drift to 

become 

0t 1t

1 0
0

11
p p

a
a

= +
−

.  Suppose there are at time  two positively correlated innovations . The 

new price at  is 

1t 1 1, vε

1t
0

1 0
11

a
p p

a 1ε= + +
−

 and the price at  will be 2t

0 0
2 0 1 1 1

1 11 1
a a

0p p a v
a a

ε= + + + + +
− −

⎛ ⎞
⎜ ⎟
⎝ ⎠

a . 

After innovation  materialises, the trend line of prices becomes mean reverting. The slope from  to 
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1v 1t

2t 0
2 3 2 1 0 1 1

1

( )
1

a
E r p p a a v

a
= − = + +

−
 and so on for the following time intervals. From τ  to 

1τ + , the long term slope is 

2 1 1 01
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1 1
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aa
E r a a a a a v

a a

τ
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τ τ
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− −
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1
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1
t t
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E p
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τ τ
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1
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E r E p p
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that is, it reverts back to its unconditional mean. Overall, the random walk error variance that is, it reverts back to its unconditional mean. Overall, the random walk error variance 22
εσ , the 

transitory component error variance 2
vσ  and the autoregressive coefficient  determine the amplitude of 

changes of the trend. The autoregressive coefficient  determines the rate of mean reversion of the drift. 

1a

1a

 

Figure 3 The course of prices under the time varying expected returns model 
The figure shows the course of prices following the time varying expected returns model as a function of time. Prices develop on 
a trend line given by their conditional expectation. The response of prices to the net effect of exogenous shocks of the trend 

t
ε  

and of the time varying drift  at time t=1 are illustrated. Shock  is shown to have a transitory effect on expected returns and 

shocks  and

t
v

1
v

1
v

1
ε  have a permanent effect on prices. 
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2.2.5 A composite model 

Since the fads and the time-varying returns interpretations are both plausible, consider a composite model 

that combines their characteristics, 

*
t t tp p u= +  (32)

* *
1 1( ) ,t t t t tp p E r ε− −= + + 2IID(0, )t εε σ∼   

2
1 0 1 1 2 1( ) ( ) , 1, IID(0, )t t t t t tE r a a E r v a v νσ− − −= + + < ∼   

2
1 1 1, 1, IID(0,t t t tu u )υφ υ φ υ σ−= + < ∼ .  

The state space representation of the model is 

[ ]

*
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which can be estimated using exact maximum likelihood. 

The two middle processes of model (32) can be combined to give 

* *
1t tp p −= 0

1 1
1

1(1 )
1 t t

a
a v

a
Lε −

−+ + −+
−

, 
 

which is observationally equivalent to a first-order difference MA(∞). In other words, the trend of model 

(32) has an observationally equivalent difference stationary process of the form (21). This means that 

model (32) allows the permanent component to be a more general difference stationary process rather 

than a random walk. It can be shown that the composite model has the reduced form 
2 2

1 1 1 1 1 0 1 1 1 1

2
1 1 1 1
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(33) 

which is observationally equivalent to an ARMA(2,2) process 
2

1 2 0 1 1 2 2(1 )(1 ) , IID(0, )t t t t tL L L p ωθ θ θ ω ζ ω ζ ω ω σ− −− − − = + − − ∼ .  

When the ARMA(2,2) is estimated the coefficients of the original AR polynomial can be found from 

1 1 1 2 1,a 1aθ φ θ φ= + = .  The reduced form is not identifiable since the autocovariances are non-zero up to 

the second order, which including the variance and mean implies four equations, but there are seven 

unknowns 2 2 2
0 , , , , , ,v e va ε υ υ ε υ υσ σ σ σ σ σ . Oh and Zivot (2006, p.10) propose to either impose three extra 

conditions, obviously , or modify the original model by increasing the lag order of the 

fads component so that the number of non-zero autocovariances suffices to solve for the unknowns. In 

this case the model has an observationally equivalent ARMA(5,5) process. 

,,v e vε υ υσ σ σ = 0

As suggested in Nelson and Plosser (1982, p.154), before adopting an unobserved components model, 

it should be examined whether the theoretical autocorrelation function coincides with the observed one. In 

what follows, Zhou and Qing (2000, pp.526-529) apply a similar analysis in a multivariate framework. 

The autocorrelation function of the composite model can be shown to be 

( )1 1
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(34)

and the first order autocorrelation is 

2 2 2 21 1
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1 1 1 1

1 1 2
(1)

1 1 1 1
a

a aν υ ν ε

φ 2
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(35)

An important issue concerning the observed first-order autocorrelations of short horizon returns (or single 

period returns) is that they are positive and the fads model is unable to explain them [Poterba and 

Summers (1988, p.37), Lo and MacKinlay (1988, p.56)]. For the composite model, the sign of the 

autocorrelation coefficient is assessed for 10 1φ< <  and 10 a 1< < . The motivation for this selection is as 

follows. Whether 1φ  is positive or negative is indifferent to the sign of the autocorrelation coefficient. So 

1φ  is assumed positive. Besides, a positive 1φ  characterizes the fads. If  is negative, then the 

autocorrelation coefficient is restricted to be always negative, which is of no interest since first order 

1a
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autocorrelation coefficients are observed to be positive. So  is also assumed positive. Now, notice that 

the denominator of (35) is always positive. To assess the sign of the numerator of (35) the conditions 

 and  are used to prove that the bounds of the numerator are

1a

10 1φ< < 10 a< <1 12

2 2 21 1
2
1 1 1

1 1
1 1 1v v

a
a aυ υ

φ 2σ σ σ
φ

−
− < − <

− + −
σ . 

The upper bound is positive and the lower bound is negative. The issue is when the numerator of (35) is 

positive and when negative. The factor 2
1 (1 )a a− 1  is positive and the factor 1(1 ) (1 )1φ φ− +−  is negative 

under the specifications of the model. Since the positive factor increases with , i.e. 1a

2
1 1

1

(1 ) 0
d

a a
da

− >⎡ ⎤⎣ ⎦ , and the negative factor decreases with 1φ , i.e. [ ]1 1(1 ) (1 ) 0
d

d
φ φ

φ
− + < , (1)ρ  

will be positive for sufficiently large  and 1a 1φ . The conclusion is that if the fads’ pricing errors and the 

time-varying returns are generated by slowly mean reverting processes, it would be expected to observe a 

positive fist-order single period return autocorrelation. 

 

2.3 Random walk tests 

In this section the random walk is tested exploiting the implication of the null hypothesis that returns are 

uncorrelated. The most obvious way to test this implication is to estimate the sample autocorrelations and 

see whether they are statistically different from zero. More elaborate test statistics like the regression beta 

coefficient and the variance ratio are joint tests of the sample autocorrelations. 

2.3.1 The regression beta coefficient 

The regression test of Fama and French (1988, p.249), which was initially developed to support the 

alternative of the fads model being true, exploits the fact that when prices follow a random walk 

multiperiod non-overlapping returns should be uncorrelated. A non-overlapping k period return is 

regressed on its first lag 

( 1)( )( ) ( ) , 2,3,. . . .t k t k tb kr k a r k kε−= + + =   

The ordinary least squares beta coefficient is given by  

[ ]
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For a sample of prices  the estimated coefficient is 0 1 1( , ,..., )Tp p p −

                                                 
12 Using  and   leads to the first inequality 

1
0 1a< < 2

1
0 1 1a< − < 1

2

1 1

1
0

1 1

a
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− − 2
1. Then  can be used to show 

the second inequality 
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. Multiply the first inequality with 2

v
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υ
σ  

and sum them. 
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(37)

If expression (36) is developed and the numerator and denominator divided by the sample variance, then 

the regression coefficient can be written as a function of sample autocorrelations of single period returns. 
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(38)

In small samples the statistic is biased and a finite sampling distribution under the null hypothesis is 

simulated to test its significance. 

Jegadeesh (1991, p.1429) generalises the regression test of Fama and French (1988, p.249) by 

assessing different number of periods for the multiperiod return regressand and regressor. In his paper it is 

suggested, using the approximate slope criterion of Geweke (1981), that single period return as a 

regressand produces a more powerful test asymptotically compare to tests with multiperiod return 

regressands. 

 

2.3.2 The variance ratio 

The variance ratio was initially developed by Cochrane (1988, p.898). His measure is the variance of long 

differences and it identifies the magnitude of the permanent component in a time series. The long 

differences of prices refer to their k-th order difference as k tends to infinity. The measure exploits the 

behaviour of the variance of multiperiod returns under models with stochastic trend and deterministic 

trend. Its algebraic form is 
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−
= = . 

(39)

The ratio of the variance of long differences to the variance of the series indicates the magnitude of the 

permanent component. 
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Under the random walk and using (18), the variance of long differences is 2var[ ( )]tkr k k εσ=  and thus 

2 2
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Under the trend stationary process (23), the variance of long differences is shown in appendix B (first 

derivation) to be given by [ ] 2 2var[ ( )] 2 ( )tkr k L υψ σ=  and thus in this case 

[ ] 2 22 ( )
( ) lim 0

var( )k
t

L
VR k

k r
υψ σ

→∞
= = . 

 

In the case of a first-order difference stationary process (21), the variance ratio is (see appendix B, second 

derivation) 
2 2
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It would be expected to find the same result for the observationally equivalent models of the difference 

stationary process. However, it is shown in appendix B (third derivation) that under the Beveridge-Nelson 

decomposition the variance ratio is 
2 2 2 2 2 2
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Similarly, it is shown in appendix B (fourth derivation) that under a structural model of the form (25) 

with arbitrary correlation between the errors, the variance ratio has not the same algebraic expression. 

Hence, the interpretation of the variance ratio as a measure of the magnitude of the permanent component 

is not clear. Cochrane proves that the variance ratio is a function of sample autocorrelations of single 

period returns. 
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This interpretation of variance ratio is which Poterba and Summers (1988, p.30) use as a statistic to test 

whether sample autocorrelations are jointly different from zero. 

Lo and MacKinlay (1988 pp.45-50) provide another derivation of the variance ratio statistic and 

derive its asymptotic properties. Their version of the variance ratio is defined as 
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The sample variance, when the sample size13 of prices is T , is 0 1 1( , ,..., )Tp p p −

( 1)/ 2
( 1)1
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(43)

where μ is the average single period return as in (37). The variance ratio statistic will follow 

asymptotically 

1 ( ) (1, 2( 1))T VR k N k− ∼ − .  

If overlapping returns are to be used and correct for the small sample bias, then the sample variance 

becomes 

                                                 
k13 Because  in the k period return variance must be integer, in practice the endpoints of the sample size T are adjusted 

accordingly during estimation. 
( 1) /T −
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In this case the variance ratio statistic will follow asymptotically 
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A heteroskedastic consistent variance of the sample statistic is derived using the fact that the variance 

ratio can be written as a function of sample autocorrelations. 
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(45)

For its detailed derivation see Lo and MacKinlay (1988, pp.48-50). 
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CHAPTER 3 Empirical analysis 

3.1 Data 

The dataset used is 5 BE/ME sorted portfolios’ monthly value weighted returns (including reinvested 

dividends) of NYSE-AMEX-NASDAQ stocks from the CRSP database, which are available online by K. 

French. The CRSP U.S. stock returns database contains high quality data that span the period 1926:07-

2008:07. A simple argument in favour of the choice of value weighted returns is stated in Fama and 

French (1993, p.10); value weighted portfolio returns correspond to realistic investment opportunities. 

Portfolios of stocks are examined because portfolio returns have lower variance than individual 

stocks, which means statistical tests have more power to detect deviations from random walk. This 

argument is brought forth in Hawawini and Keim (1994, p.31). Besides, individual stocks contain 

idiosyncratic noise [Lo and MacKinlay (1988, p.56)]. In particular, the choice of the BE/ME sorted 

portfolios is because so far the literature has tested size sorted and industry portfolios. The intention is to 

identify transitory components related to BE/ME. The choice of 5 sorted portfolios is made for no other 

reason than trying to keep the results as easily presentable as possible. 

A problem that comes with sorted portfolios is that their composition changes since stocks move 

across quantiles over time. An analysis which intends to identify mean reversion in such portfolios can be 

flawed [Fama and French (1988, p.252)]. However, the average cross-correlation of yearly BE/ME of the 

considered portfolios is 0.90 which means that the relative BE/ME of portfolios does not change much. It 

can be concluded that the composition of portfolios is relatively stable. It would have been ideal to 

examine mean reversion in size and BE/ME sorted portfolios so that the two possible factors, size and 

value, contributing to mean reversion are examined separately14. However, the compositions of double-

sorted portfolios show lower stability. The average cross-correlation of yearly size of the considered 

portfolios is 0.37. 

The minimum return period considered is a month. This return interval is chosen to avoid 

microstructure effects and noise of daily or weekly data.  From these monthly portfolio returns, longer 

period returns of overlapping observations are constructed. The reason for choosing longer periods rather 

than single is because the testable implications of the random walk model are also applicable to 

multiperiod returns. In addition, it might be the case that some transitory effects caused by factors like the 

business cycle may only be revealed in the long-run. A problem with multiperiod returns is that the data 

observations become less as the number of periods increase and thus estimates do not have the desirable 

asymptotic properties. To increase the asymptotic consistency of the estimates, overlapping observations 

are constructed. 

Returns that include reinvested dividends are used. If this is not the case, log prices do not follow a 

martingale [see Cuthbertson (1996, p.103)] and to derive the random walk model under informational 

efficiency prices are needed to follow a martingale. The original return data are converted into 

                                                 
14 The paper that examines size and BE/ME sorted portfolios is of Ho and Sears (2006) but no provision for the portfolio 
composition changes is taken. 
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continuously compounded returns. Equivalently, prices are converted into log prices15. Taking the log of 

prices is a standard method that makes exponential growth of prices linear and eliminates the increasing 

variability of prices [Tsay (2005, p.73)]. To explain the latter note that, although the variance of the data 

generating process may be stable, the magnitude of oscillations increases as the level of prices increase. 

Additionally, taking logs allows multiperiod returns to be sums of single year returns which simplifies the 

time series analysis [Campbell, Lo and MacKinlay (1997, p.11)]. 

 

3.2 Methodology 

The methodology to treat the question whether stock prices follow a random walk includes three parts. 

First, the regression beta and variance ratio statistics are estimated to test the null hypothesis of prices 

following a random walk against the alternative hypothesis of prices not following a random walk. 

Second, If the random walk model is rejected the next step would be to estimate alternative (not in the 

strict statistical sense of hypothesis testing) models and see whether they fit adequately the data. Even if 

the random walk is not rejected by the statistical tests, it is interesting to examine whether they actually 

are powerful enough to reject the null hypothesis. To do so, artificial data are generated by the so called 

alternative models and the percentage of random walk rejections by the statistical test is calculated. 

The first part of the methodology involves the random walk tests or, differently put, tests of whether 

autocorrelations are separately or jointly different from zero. The sample return autocorrelations are 

estimated with the usual simplified formula [see Chatfield (1995, pp.19-20)]. Under the random walk, the 

τ-th order standardised sample autocorrelation coefficient ρ(τ) should follow 
1( ) ( ) (0,1)T T Nρ τ τ −+ − ∼ .  

Note that the there is a negative bias since  1( )][ (E Tρ τ )τ −= − −  is different from zero. The regression 

beta and variance ratio are functions of return autocorrelations and thus this bias should be taken into 

account. To adjust for this bias regarding the regression beta, the expected value of the statistic calculated 

from (38) is added to the sample estimate. The bias correction of the variance ratio is already incorporated 

in (44). 

To avoid a finite sample bias, the significance of the sample estimates is tested using sampling 

distributions constructed by calculating 2000 times the statistics from randomised (shuffled) return series. 

A way to simulate the statistic distribution under random walk followed by Fama and French (1988) is by 

drawing random errors from a normal distribution and calculating returns with (14). This is problematic 

for two reasons. The parameters of the normal distribution are chosen arbitrarily and it is implied that 

returns follow a normal distribution. If returns do not actually follow a normal distribution, the calculated 

sampling distribution is wrong.  The method used in Kim, Nelson and Startz (1991) to construct the 

sample distribution is by the resampling technique of randomisation. With randomisation, the original 

data are shuffled to destroy any dependence between the observations. As a result, the data can be 

                                                 
15 The prices are constructed from the return series by arbitrarily setting the initial price equal to a monetary value of 10. 
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considered as if they were generated by a random walk. In our case, the construction of the sampling 

distribution is based on 2000 shuffles.  

The second part of the methodology involves the estimation of the alternative models. The alternative 

models were not possible to be estimated using the exact maximum likelihood method. Identification 

problems of state space models are usual [see e.g. Hamilton (1994, pp.387-388)].  The models are not 

identifiable even when the cross-covariances of errors are restricted to zero. The identification problem 

practically means that while the parameter values change, the log likelihood function cannot improve. In 

other words, different sets of parameter values produce the same log likelihood value and thus the 

optimisation algorithm cannot find the direction to converge to the maximum. The optimisation algorithm 

of Berndt, Hall, Hall, and Hausman, and that of Marquardt, available in EViews were both used. The 

initial parameters values were the ones specified by EViews since there is no prior information about their 

values. As a result, the ARMA models are estimated with the conditional maximum likelihood method 

and the structural models parameters are calculated by equating their covariances with those of the 

ARMA. The closed form solutions of the parameters for the fads model are 
2 2
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and for the time varying expected returns are 
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The composite model has two sets of closed form parameter solutions due to a quadratic equation. They 

are found using MATLAB but they are not reported due to their length. In some cases the estimated 

ARMA parameters imply a negative error variance for a structural model. When this happens, the ARMA 

model does not have an observationally equivalent structural model [Morley, Nelson and Zivot (2003, 

p.237)]. 

The diagnostics used to see which of the two ARMA processes fits the data best is the Schwarz 

criterion, the Q statistic and the autocorrelation function. The Schwarz criterion is chosen on the basis of 

its consistency and its formula is 

2( log log )c T L
SC

T
−

=  

where c is number of estimated parameters and L is the likelihood value. The smaller the criterion value, 

the better the fit. The Q statistic is a joint test of the significance up to the τ-th order of the residual 

autocorrelations and its finite sample adjusted version is given by 

2

1
( ) ( 2) ( ) / ( )

i
Q T T i T iττ ρ

=
= + −⎡ ⎤⎣ ⎦∑   

following asymptotically a 2
τχ  distribution. The Q statistic is estimated for arbitrarily chosen value of τ, 

which in practice is 12 or 15. The Jarque-Bera statistic is used to test the normality of the estimated 

residuals of the models.  The JB statistic follows asymptotically a 2
2χ  distribution and its formula is 
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where S is the skewness and K the kurtosis of the series. A limitation with the estimation of the alternative 

models is that diagnostics like the Schwarz criterion, the Q statistic and the autocorrelation function 

pattern can say which model fits better than another. However, unless the time series data have a clear 

pattern, it is difficult to accurately specify which the data generating process is. 

The third part of the methodology involves the calculation of the test statistics power when the true 

model is one of the alternatives. The alternative ARMA models simulate 2000 return series by 

randomising the estimated residuals. The randomisation method is chosen to avoid assuming the 

estimated residuals are normally distributed when they are actually not. After the returns are simulated 

and the statistics calculated, it is calculated in what percentage of the 2000 repetitions the statistical tests 

can actually reject the random walk. Since there is some uncertainty about the parameter estimates of the 

ARMA models, a sensitivity analysis of the power calculations with the original estimates plus/minus 0.5 

their standard error is conducted. Using the resampled residuals, the estimated standard error of the 

residuals is implicitly kept fixed. 

 

3.3 Empirical results 

3.3.1 Descriptive statistics 

The descriptive statistics of the data can be a preliminary guide towards the identification of the data 

generating process. The data can be analysed as returns or prices. When the data are in the form of returns 

their sample moments can describe the distribution which the realised returns have been drawn from. 

Table 1 exhibits the sample moments up to fourth order and the Jarque-Bera normality test statistic of the 

5 sorted portfolios. 

 

Table 1 Descriptive statistics of returns 
The table reports the sample moments up to fourth order and the Jarque-
Bera statistic (observed significance level in parenthesis) of the 5 BE/ME 
sorted portfolio return series. 
Portfolio 1 2 3 4 5 
Mean  0.009  0.009  0.010  0.012  0.013 
Variance 0.003 0.003 0.003 0.005 0.006 
Skewness -0.051 -0.034  0.938  2.023  1.530 
Kurtosis  8.264  8.918  18.171  26.175  18.783 
JB 
 

 1137 
(0.000)

 1437 
(0.000)

 9590 
(0.000)

 22714 
(0.000)

 10607 
(0.000) 

 

The 5 sorted portfolios are in ascending order of their BE/ME value. In other words, portfolio 1 includes 

stocks with the lowest BE/ME ratio which are named growth stocks and portfolio 5 includes the ones 

with the highest BE/ME ratio, named value stocks. The stocks in portfolios 2 and 4 can also be 

characterised as growth and value respectively, of course, at a lesser degree than the two extremes. The 
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most obvious characteristic to notice in table 1 is that all portfolios do not follow a normal distribution. 

The two growth portfolios have quite similar moments. They both are negatively skewed and have 

kurtosis. In comparison, the rest of the portfolios are positively skewed and have much higher kurtosis. 

The moments of the two value portfolios, although not similar, are close and certainly distinctive from the 

rest. The middle portfolio seems to resemble more to the growth stocks with respect to the mean and 

variance, and to the value stocks with respect to the skewness and kurtosis. 

The descriptive statistic used in univariate time series analysis to capture the linear dynamics of the 

data is the autocorrelation function. Panel A of figure 4 shows the autocorrelation functions of the 5 

sorted portfolios16. In general, when sample statistics are estimated, it is expected to find a percentage of 

them outside the imposed significance interval of the sampling distribution under the null hypothesis. For 

example, if 36 autocorrelations are estimated for a single portfolio, it would be expected to find on 

average 3.6 (rounded is 4) significant autocorrelations for a two-sided significance level of 10%. 

Moreover, not all significant autocorrelations are important. Usually those at low lead/lag are more 

important since they may be more meaningful by means of having an economic interpretation. For 

example, if returns have a significant autocorrelation at lead 15, an economic rationale would be difficult 

to find. If returns have a significant positive first order autocorrelation, it may be attributed to fads. In 

panel A, there is no clear seasonality in returns since series with seasonal fluctuations in regular fixed 

intervals are expected to show oscillations in the autocorrelation function at the corresponding regular 

lags. The autocorrelation function has resemblances across all portfolios but the similarities are more for 

portfolios with similar BE/ME value. All portfolios have a positive significant first order autocorrelation 

and for value portfolios it is higher than growth portfolios. At lead/lag three, the value portfolios have 

again more profoundly significant autocorrelations. For subsequent lead/lags the similarities within the 

two groups of portfolios, value and growth, continue. For all portfolios, more significant autocorrelations 

are found than it is expected for 10% and 5% double sided significance level. 

To describe the data in the form of prices, which are not stationary like their first difference, their 

course can be plotted. Panel B of figure 4 exhibits the course of prices along with the U.S. NBER 

(National Bureau of Economic Research) recession periods (gray shaded areas) measured from peak to 

trough of the business cycle. The prices of diversified portfolios, like the ones examined, should respond 

mainly to aggregate shocks related to new information concerning the point of the cycle. Inside the 

shaded areas representing recessions, informational shocks inflict a negative effect to prices. The patterns 

of prices explained in figures 1 to 3 may be present in the actual courses, but the actual courses are much 

more complex and a graphical examination is simply not feasible. What can be said is that the courses of 

all portfolio prices show a strong upward trend with small deviations around it. If prices follow a random 

walk then the innovations (shocks) should have small variability compared to the magnitude of the 

upward trend. 

 

 

                                                 
16 Throughout the empirical analysis figures within a single panel have identical axis scales to avoid visual misinterpretations. 
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Figure 4 Return autocorrelations and course of prices 
Panel A shows the sample autocorrelations and the autocorrelations implied by the estimated ARMA(1,1) and ARMA(2,2) as 
functions of lead/lag τ=1,…,36 (horizontal axis). For the ARMA(1,1), only the non-zero autocorrelations are depicted. The 
dashed lines are the 90% and 95% confidence intervals of the sampling distribution under random walk. Panel B shows the 
course of log prices as a function of time (horizontal axis). The shaded areas are the NBER recession periods. 
Portfolio Panel A: Return autocorrelations Panel B: Course of prices 
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3.3.2 Random walk tests 

Figure 5 shows the regression beta and the variance ratio sample statistics, the 90% and 95% confidence 

bounds of the sampling distribution and its mean. As it was shown in expressions (38) and (41), both 

statistics are a function of sample autocorrelations, albeit with different weights applied to them. Under 

random walk the expected value of the regression beta and the variance ratio would asymptotically (i.e. 

for an infinite sample) be zero and one respectively for all return periods k. It can be seen in both panels 

of figure 5 that the finite-sample expected value of the sampling distribution is positively biased. Based 

on (38) and (41), the factors which determine whether the statistics are above (below) their asymptotic 

expected value are the number of positive (negative) autocorrelations, their magnitude and the weights 

applied to them. This being said, the pattern of variance ratio can be explained. All portfolios have 

variance ratio higher than one for small k which can be mainly attributed to the magnitude of the positive 

first order autocorrelation observed in panel A of figure 4 and the weight applied to it. For subsequent k, 

the variance ratio of portfolios 4 and 5 becomes lower than one due to high negative autocorrelations at 

orders 20 and 21. The variance ratio of the rest portfolios becomes lower than one for larger k. Regarding 

the regression beta of the portfolios, its value is again positive for low k due to the significant first-order 

positive autocorrelation. For subsequent but still low k, the regression beta becomes negative, which is the 

pattern described to be captured by the variance ratio for larger k. The regression beta b(k) captures at 

smaller k the observed negative sample autocorrelations since it is a function of autocorrelations up to 

order 2k-1 whereas the variance ratio VR(k) is up to order k-1. 

All significance sample statistics are found for k lower than 25. The two value portfolios show no 

significance for both statistics. The middle portfolio has the most significant regression beta sample 

statistic values for values of k from 5 to 8, i.e. four significant. However, for 119 sample estimates of each 

portfolio and a two sided significance level of 10%, it is expected to find 12 significant. The variance 

ratio for the first three portfolios is significant for k from 2 to 4. It is also significant from 10 to 22, from 

10 to 18 and from 10 to 24 respectively for these three portfolios. As a conclusion, the random walk null 

hypothesis is rejected convincingly only for the first and third portfolios. 

The paper of Fama and French (1988) finds for size sorted and industry portfolios a U-shaped pattern 

of the regression beta which is negative up to k=96 and then it become positive. It also finds that the 

sample statistic is significant for values of k from 36 to 60. The significance can be attributed to the way 

the sampling distribution was constructed, which is by choosing an arbitrary generating process to 

simulate returns. The BE/ME sorted portfolios examined herein have positive regression beta for low 

values of k and the negative sort of U-shaped pattern turns positive at the region of k=60. Lo and 

MacKinlay (1988) estimate the variance ratio for weekly and monthly returns of size sorted portfolios and 

significant variance ratios, which are higher than one, are found for the weekly data when k<16. In their 

paper, the asymptotic sampling distribution of the statistic is used to conduct the tests. 
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Figure 5 Regression beta and variance ratio sample statistics 
The figure shows the sample regression beta (b), the variance ratio (VR), the 90% and 95% confidence bounds and the mean of 
their sampling distribution as functions of return interval k=2,…,120 (horizontal axis). 
Portfolio Panel A: Regression beta Panel B: Variance ratio 
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3.3.3 Alternative models estimation 

The estimated parameters of the ARMA(1,1) process are exhibited in table 2. There is not much 

confidence about the estimated parameter values since their standard errors are many times larger than the 

parameters themselves. The Schwarz criterion and the Q statistic show that the ARMA(1,1) process fits 

better the growth portfolios since they have lower SC values and higher p values for the Q statistic. In 

fact, the null hypothesis of uncorrelated residuals is not rejected for portfolio 1. The persistence of the 

effect of a unit shock is measured by the cumulative response (1)ψ  for a sufficient amount of periods 

ahead. Recall that the estimated ARMA(1,1) model can be written as a first order difference stationary 

(23) to which the cumulative response (1)ψ  applies. All portfolios have cumulative response higher than 

one. The growth portfolios show the lower shock effect persistence and the value stocks the higher. This 

practically means that the price of value portfolios will respond in the long run to a higher degree to the 

impact of new information. 

 

Table 2 ARMA(1,1) model estimated parameters 
The table reports the estimated parameters of the ARMA(1,1) and its 
diagnostics, the Schwarz criterion, the Q statistic, the JB statistic of 
residuals and the cumulative response (1)ψ  to a shock. In 
parenthesis are the standard errors of parameters and (1)ψ , and the 
observed significance levels of Q(12) and JB statistic. 
Portfolio 1 2 3 4 5 

0
2

1 1(1 ) (1 ) , IID(0, )t t tL r L ωφ φ ζ ω ω σ− = + − ∼  

0φ  0.009 
(0.002) 

0.009 
(0.002) 

0.010 
(0.002) 

0.011 
(0.002) 

0.013 
(0.003) 

      

1φ  -0.036 
(0.374) 

0.012 
(0.486) 

0.030 
(0.410) 

0.121 
(0.409) 

0.116 
(0.396) 

      

1ζ  0.139 
(0.401) 

0.076 
(0.526) 

0.118 
(0.462) 

0.044 
(0.493) 

0.029 
(0.461) 

      

2
ωσ  0.003 0.003 0.003 0.004 0.006 
      

SC -2.931 -3.015 -2.879 -2.571 -2.229 
      

Q(12) 16.833 23.027 46.503 55.180 43.749 
 (0.078) (0.011) (0.000) (0.000) (0.000) 
      

JB 1014 1272 6726 14338 8252 
 (0.000) (0.000) (0.000) (0.000) (0.000) 
      

(1)ψ  1.099 1.089 1.153 1.189 1.164 
  (0.047)  (0.048)  (0.068)  (0.083)  (0.080) 

 

Table 3 exhibits the parameter values of the fads and time-varying expected returns models 

corresponding to the ARMA(1,1) estimates. In some cases the structural model representation is not 

applicable since solving for the parameters leads to at least one negative error variance. Panel A of table 3 

shows that the trend variability 2
εσ  is multiple times larger than the variability of the transitory 

component 2
υσ . Panel B shows that the value portfolios has high autoregressive parameters , relatively 

low random walk error variance 

1a

2
εσ  and the variability of the time varying drift 2

vσ  is multiple times 
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larger than the variability of the random walk error. Thus, informational shocks are transmitted to the 

price level of value portfolio through changes in the drift, assuming the time varying expected returns 

model is valid. At the other extreme, portfolios 2 and 3 have small autoregressive coefficient and high 

random walk error variance.  

 

Table 3 Parameter values of the fads and the time varying expected returns models 
Panel A and B report the parameter values of the fads and the time varying expected return 
models corresponding to the estimated parameters of the ARMA(1,1). The cross covariance of 
the errors is set to zero. An NA is used to denote portfolios for which a valid structural 
representation is not applicable. Panel B also shows the cumulative response of the trend. 

Portfolio 1 2 3 4 5 
Panel A: Fads model 

2 2
1 1 1 1 1(1 ) (1 ) , IID(0, ), IID(0, )t t t t t t tL r r ε υφ φ ε φ ε υ υ ε σ υ σ− −− = − + − + − ∼ ∼  

r  0.0085 0.0093 0.0106 NA NA 
1φ  -0.0363 0.0118 0.0302 NA NA 
2
εσ  0.0021 0.0025 0.0027 NA NA 
2
υσ  0.0005 0.0002 0.0003 NA NA 
ευσ  0 0 0 0 0 

Panel B: Time varying expected return model 
2 2

1 0 1 1 1(1 ) , IID(0, ), IID(0, )t t t t t ta L r a a v vε νε ε ε σ− −− = + − + ∼ ∼ σ  

0a  NA 0.0092 0.0103 0.0115 0.0134 
1a  NA 0.0118 0.0302 0.1215 0.1158 
2
εσ  NA 0.0180 0.0126 0.0016 0.0015 
2
vσ  NA 0.0026 0.0029 0.0042 0.0060 
vεσ  0 0 0 0 0 

11 / (1 )a−  NA 1.0119 1.0311 1.1383 1.1310 
 

The estimated parameters of the ARMA(2,2) process are exhibited in table 4. Similarly to the 

ARMA(1,1), the growth portfolios have better diagnostics. In particular, they have a lower Schwarz 

criterion value and the null hypothesis of uncorrelated residuals is not rejected. The cumulative response 

(1)ψ  for the difference stationary representation of the ARMA(2,2) is higher than one for all portfolios, 

with the growth stocks showing the lower shock effect persistence and the value stocks the higher. The 

composite model parameter identification by using the ARMA(2,2) estimates is applicable for none of the 

portfolios since solving for the parameters leads to at least one negative error variance. 

A comparison of the ARMA(1,1) and ARMA(2,2) estimated processes can be done by comparing the 

Schwarz criterion a portfolio achieves under each process. Under the ARMA(2,2), for portfolio 1 and 2 

the criterion is marginally higher by 0.001 and for the rest portfolios is clearly lower. Thus, the 

ARMA(2,2) fits better the data. The other way to compare the two processes is by inspecting what 

autocorrelation function each of them implies and whether it can capture the dynamics of the data. In 

panel A of figure 4 the autocorrelations implied by the estimated ARMA processes are plotted against the 

sample autocorrelations of the data. The ARMA(1,1) model has a positive first order autocorrelation for 
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all portfolios which coincides with the value of the actual one, and a second order autocorrelation which 

does not come close to the actual one. The autocorrelations of the process for lead/lag three or higher are 

all zero. The ARMA(2,2) process has  richer autocorrelation function  and can capture better the 

dynamics of the actual data. Especially for portfolios 1 and 2, the autocorrelation function of the 

ARMA(2,2) process has values close to the sample autocorrelations for up to 6 leads/lags. As a 

conclusion, the ARMA(2,2) model fits better the data than the ARMA(1,1). 

 

Table 4 ARMA(2,2) model estimated parameters 
The table reports the estimated parameters of the ARMA(2,2) and its 
diagnostics Schwarz criterion, Q statistic, the JB statistic of residuals and 
cumulative response (1)ψ  to a shock. In parenthesis are the standard errors of 
parameters and (1)ψ , and the observed significance level of Q(12) and JB. 

Portfolio 1 2 3 4 5 
2 2

1 2 0 1 2(1 ) (1 ) , IID(0, )t t tL L r L L ωθ θ θ ζ ζ ω ω σ− − = + − − ∼  

0θ  0.009 
(0.002) 

0.009 
(0.002) 

0.010 
(0.002) 

0.011 
(0.002) 

0.013 
(0.003) 

      

1θ  -0.041 
(0.163) 

0.067 
(0.154) 

-0.006 
(0.098) 

-0.146 
(0.097) 

-0.147 
(0.111) 

      

2θ  -0.680 
(0.111) 

-0.699 
(0.108) 

-0.708 
(0.073) 

-0.620 
(0.080) 

-0.641 
(0.089) 

      

1ζ  0.155 
(0.164) 

0.042 
(0.157) 

0.164 
(0.096) 

0.320 
(0.089) 

0.290 
(0.104) 

      

2ζ  0.673 
(0.114) 

0.684 
(0.112) 

0.728 
(0.071) 

0.717 
(0.067) 

0.717 
(0.078) 

      

ωσ  0.003 0.003 0.003 0.004 0.006 
      

SC -2.930 -3.016 -2.892 -2.587 -2.234 
      

Q(12) 3.789 7.659 19.991 28.649 26.679 
  (0.876)  (0.467)  (0.010)  (0.000)  (0.001) 
      

JB 777 1034 5121 12714 6746 
 (0.000) (0.000) (0.000) (0.000) (0.000) 
      

(1)ψ  1.062 1.057 1.103 1.154 1.122 
 (0.029) (0.029) (0.028) (0.031) (0.029) 

 

3.3.4 Power calculations 

The regression beta and the variance ratio statistic did not reject the random walk null hypothesis for most 

of the portfolios. This might have been the case because the test statistics are not powerful enough, that is, 

their type II error was high against certain alternative hypotheses. Panel A of figure 6 shows the type II 

error of both statistics when the true models are the estimated ARMA(1,1) and ARMA(2,2). To calculate 

the type II error return series are simulated by randomizing the estimated residuals 2000 times for each 

ARMA model and the significance level (type I error) is set to 10%. Apart from the result that the 

variance ratio is less powerful for growth portfolios, the results have common characteristics across all 

portfolios. 
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Figure 6 Type II error of the regression beta and variance ratio test statistics 
Panel A shows the type II error of the regression beta (b) and variance ratio (VR) test statistics as functions of return interval 
k=2,…,120 (horizontal axis) when the true models are the estimated ARMA(1,1) and ARMA(2,2). Panels B and C report the type 
error calculations for estimated parameter values ±0.5 standard error. Calculations are based on 2000 randomisations of estimated 
errors and type I error 10%. 
 Panel A: Estimated parameters Panel B: Parameters +0.5se Panel C: Parameters -0.5se 
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The power of the regression beta is rather low for all k and roughly equals the 10% significance level, 

whereas the power of the variance ratio is high for low k but deteriorates exponentially as k increases. The 

variance ratio is strictly more powerful than the regression beta and the statistics are more powerful when 

the true model is an ARMA(1,1). The latter simple means that the statistics are more able to detect a 

 38



deviation from the random walk when the true model is an ARMA(1,1). But, as it was concluded from the 

comparison between the SC values and the autocorrelation function of ARMA(1,1) and ARMA(2,2), an 

ARMA(2,2) is actually more possible to be the true model. Moreover, the variance ratio has the least 

power for those portfolios which the alternatives are most meaningful, i.e. those which have better 

diagnostics.17 The two aforementioned facts are not encouraging for the effectiveness of the random walk 

test. Since there is uncertainty about the estimated ARMA models a sensitivity analysis of the power 

calculation is conducted with parameter values plus/minus half their standard error and their results are 

exhibited in panel B and C of figure 6. The power of the regression beta improves slightly only against 

the ARMA(1,1) and for very small values of k, whereas the power of the variance ratio improves 

significantly except for the case of minus the standard error when the true model is the ARMA(2,2) for 

portfolios 3, 4, 5. 

The papers of Poterba and Summers (1988) and Lo and MacKinlay (1988) find for returns simulated 

by an ARMA(1,1) with arbitrarily chosen parameters that the variance ratio is more powerful than the 

regression beta and the Q statistic respectively. As in Lo and MacKinlay (1989, p.228, 235) it is found 

that for specific return intervals, statistics are more powerful to detect deviations from random walk. This 

is the reason why joint tests of the significance of sample statistics across return intervals are not 

examined as proposed in Richardson (1992, p.5, 8). Joint tests would have been appropriate if rejections 

of the null hypothesis in individual return intervals are random and due to sampling error as suggested in 

Kim, Nelson and Startz (1991, p.520). 

A way to search for the reason why the test statistics are not powerful enough would include the 

inspection of the sample distribution of the statistic under the null and the alternative hypotheses. It is not 

however practically feasible to report all the sampling distributions. What is feasible to report is the first 

moment of the sampling distributions. Figure 7 exhibits the mean of the sampling distribution of the two 

test statistics under the different models and the sample estimates of the statistics. Under the random walk 

and the ARMA models, the first moment is almost the same for the regression beta but clearly different 

for the variance ratio. Then why the variance ratio has so low power? A hint can come from exhibiting 

the sampling distribution of the two statistics for one portfolio, take for example portfolio 3, and for 

selected values of k in panels A and B of figure 8. Regarding the variance ratio, although the sampling 

distributions have different moments, their range is fairly close. Even though the null hypothesis and an 

alternative may imply very different values for the statistic, if they have similar range, there is a very 

small chance the null will ever be rejected. Regarding the regression beta, it seems that not only is the 

first moment of the sampling distributions fairly close but also the higher moments. 

 

 

 

                                                 
17 Recall that portfolios 1 and 2 were concluded to have better diagnostics regarding the ARMA models based on comparisons 
between their SC and Q statistic values and the ones of the other portfolios. 
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Figure 7 First moment of the regression beta and variance ratio sampling distributions under the 
null and alternative hypotheses 

Figure 7 shows the first moment of the regression beta (b) and variance ratio (VR) sampling distributions under the null of 
random walk and the alternative hypotheses ARMA(1,1)-ARMA(2,2), and the sample statistic as a function of return interval 
k=2,…,120 (horizontal axis). The first moments under the ARMA models are calculated from simulated return series by 
randomizing 2000 times the estimated residuals and under the null from 2000 randomisations of the original return series. 
Portfolio Panel A: Regression beta Panel B: Variance ratio 
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Figure 8 Sampling distribution of the regression beta and variance ratio under the null and 
alternative hypotheses for portfolio 3 

Figure 8 shows the frequency distribution of the regression beta and variance ratio under random walk, ARMA(1,1) and 
ARMA(2,2) for return interval values k=2, 25, 50, 75, 100 for portfolio 3. The distributions under the ARMA models are 
calculated from simulated return series by randomizing 2000 times the estimated residuals and under the null from 2000 
randomisations of the original return series. 

k Panel A: Regression beta Panel B: Variance ratio 
 
 
 
 

2 

 
 
 
 

25 

 
 
 
 

50 

 
 
 
 

75 

 
 
 

100 

0.0

0.2

0.4

0.6

0.8

1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

ARMA(1,1)
ARMA(2,2)
null

0.0

0.2

0.4

0.6

0.8

1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

ARMA(1,1)
ARMA(2,2)
null

0.0

0.2

0.4

0.6

0.8

1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

ARMA(1,1)
ARMA(2,2)
null

0.0

0.2

0.4

0.6

0.8

1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

ARMA(1,1)
ARMA(2,2)
null

0.0

0.2

0.4

0.6

0.8

1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

ARMA(1,1)
ARMA(2,2)
null

 

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ARMA(1,1)
ARMA(2,2)
null

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ARMA(1,1)
ARMA(2,2)
null

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ARMA(1,1)
ARMA(2,2)
null

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ARMA(1,1)
ARMA(2,2)
null

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ARMA(1,1)
ARMA(2,2)
null

 
 

 41



CHAPTER 4 Summary and conclusions 

In section 2.1 the random walk model is derived as a testable expression of market informational 

efficiency assuming constant expected returns. If markets are efficient, prices follow a random walk. In 

section 2.3 the random walk test statistics, namely the regression beta and the variance ratio, are 

discussed. Both statistics are a function of sample autocorrelations, which simply makes them a test of 

whether sample autocorrelations are jointly different from zero. Subsection 3.3.2 estimates the sample 

statistics for overlapping monthly return interval k=2,...,120 and tests their significance. To construct their 

sampling distributions under the null hypothesis of random walk, the statistics are calculated 2000 times 

from shuffled return series. When the return interval k is small, the random walk model is rejected by the 

variance ratio for portfolios with low BE/ME ratio. 

Section 2.2 discusses the alternative structural models of fads and time varying expected returns. 

These structural models constitute of permanent/transitory components and are observationally equivalent 

to an ARMA(1,1) process. A new composite model, which has an ARMA(2,2) observationally 

equivalent, is also proposed to incorporate the characteristics of the previous two models. The 

structural models have a state space representation and their parameters can be estimated with 

exact maximum likelihood. This estimation however is problematic since the algorithms used to 

maximise the log likelihood function were not able to converge to a solution. A solution was not found 

even when the cross covariances of errors were restricted to zero. The method finally used in subsection 

3.3.3 is to estimate the observationally equivalent ARMA processes of the structural models and solve for 

the unknown parameters. For many cases the structural models do not have a valid representation. As a 

result, the estimation problems does not allow for conclusions to be made with respect to the magnitude 

of the permanent and transitory components. Comparing the structural models in terms of their 

observationally equivalent processes, the ARMA(2,2) fits better the data, i.e. has a lower Schwarz 

criterion, and has a richer autocorrelation function that can capture better the dynamics of the data. 

The ability of the statistics to detect deviations from random walk when one of the alternative models 

is true is examined in subsection 3.3.4 and is found to be low. The regression beta has large type II error 

which equals the significance level (type I error) for almost every return interval k. This would have been 

expected if the null and the alternative hypotheses implied the same sampling distribution for the statistic. 

Indeed, panel A of figure 7 and 8 actually support this expectation. The power of the test statistic does not 

improve (almost at all) even when returns are simulated from ARMA models with the estimated 

parameters plus/minus half their standard error. The variance ratio is strictly more powerful than the 

regression beta. However, there are two results that are not encouraging for the effectiveness of the 

variance ratio. When the true model is an ARMA(1,1) the statistic has a lower type II error than the 

ARMA(2,2) case. But, as it was shown, an ARMA(2,2) is more possible to be indeed the true model. 

Moreover, the variance ratio has the least power for those portfolios (growth) which the alternatives can 

be indeed the true. Overall, given the low power of the statistics, if the random walk is actually rejected, 

as with portfolios 1, 2 (marginally) and 3, this should be considered as a strong result. 
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The original intention for examining BE/ME sorted portfolios has been to identify transitory 

components related to the sorting variable. Indeed, some of the results show a distinction between growth 

and value portfolios. The random walk model is marginally rejected for the growth portfolios by the 

variance ratio test, but it is not rejected for value portfolios. The ARMA(1,1) and ARMA(2,2) processes 

fit better the growth portfolios and the variance ratio is less powerful for growth portfolios. 
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APPENDIX A The Beveridge-Nelson (1981) decomposition 

Consider an ARMA(p,q) model p 0 q( ) ( )tL r L tθ θ ζ υ= +  which can also be written as a MA(∞) process 

1 ( )t t tr p p r L tψ υ−− = += . The future expected price tp τ+  will only be affected by innovations 

incorporated in its level permanently. Innovations which cause a transitory effect have zero expected 

value. From the definition of returns at time t+τ we have 
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1

2 1

2 1
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... .

t t t

t t t t

t t t t t t t
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The expected values of returns can be found from the MA(∞) representation 
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which can be substituted in the previous expression to get 

( ) ( )1

11 2
...t t t i t i ti i

E p r p τ τ

τ τ ψ υ ψ υ+

+ −= =
= + + + +∑ ∑ .  

For τ → ∞  the expected price is 

( ) ( )1

11 2
...lim limt t t i t i ti i

E p r p τ τ

ττ τ
τ ψ υ ψ υ+

+ −= =→∞ →∞
= + + + +⎡ ⎤

⎣ ⎦∑ ∑ .  

The first product at the right-hand side is the deterministic trend and the rest is a stochastic permanent 

trend. Set the stochastic permanent trend equal to 

( ) ( ) ( )*
11 2

...limt t t t i t i ti i
p E p r pττ

τ ψ υ ψ υ∞ ∞

+ −= =→∞
= = + +− ∑ ∑ +

−

  

which also implies an expression for prices 

( ) ( )*
11 2

...t t i t i ti i
p p ψ υ ψ υ∞ ∞

−= =
= −− ∑ ∑ .  

The stochastic permanent trend *
tp  follows a random walk. To see this take its first difference 

( )* *
1 1 1 1 2 21
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∞
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Set (1)t tε ψ υ=  and it is derived that the stochastic permanent component follows a random walk 

* *
1t tp p r tε−= + + .  

Now take the previous expression for prices 
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( ) ( )*
11 2

...t t i t i ti i
p p ψ υ ψ υ∞ ∞

−= =
= −− ∑ ∑ −   

which decomposes prices into the permanent component *
tp  and a transitory component 

( ) ( ) 11 2
...i t i ti itu ψ υ ψ υ∞ ∞

−= =
− −= − ∑ ∑ .  

If 
1i j i jφ ψ∞

= +
= −∑ is set, the transitory component is written as 

10 1 ...t ttu υ υφ φ − += + .  
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APPENDIX B The variance ratio as a measure of persistence 

The mathematical expression of the variance ratio (40) is derived under different processes. In each case, 

using the subscript notation of multiperiod returns, the variance of long differences (the numerator) and 

the variance of the process (part of the denominator) are initially derived. First, the variance ratio is 

derived for a trend stationary process like (21). As a first step create the long differences of the process. 

( 1) ( 1)

( 1) ( 1)
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t k t k
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Then the variance of the long differences is 
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The variance of the trend stationary process is 
2 2var[ ] [ (1)]tr υψ σ= .  

The variance ratio is 
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Second, the variance ratio is derived for a first-order difference process like (23). Take the first-order 

difference stationary process and recursively substitute prices k-1 times.  
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Then the variance of the long differences is 
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The variance of the first-order difference process itself is 
2 2var[ ] [ (1)]tr υψ σ= .  

Now the variance ratio is 
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Third, the variance ratio is derived under the Beveridge-Nelson decomposition of a first-order 

difference stationary process 1 ( )tk tk tkp p r Lψ υ−= + + . The decomposed form (see appendix A) is 
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Take the k-th order difference of prices to get 
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The variance of the process is 
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And the variance ratio is 
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Fourth, the variance ratio is derived under a structural model of the form (25) with arbitrary 

correlation between the errors of the two components. 
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Take the k-th order difference of prices to get 
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The variance of the process is 
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