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1 Introduction

This paper studies optimal portfolio allocation under uncertainty for a life insurance company, in

this case Nationale-Nederlanden (NN). NN is a Dutch (life) insurer that invests capital received

from policyholders. The mix of assets in which they invest can be subdivided into strategic

classes, also referred to as the Strategic Asset Allocation (SAA). As the realized return on the

total portfolio contributes to the firm’s profit, NN puts effort into optimizing its allocation on a

long-term basis. The investment policy is subject to the European legislation that aims to unify

a single EU insurance market and to enhance policyholder protection. The legislation is mostly

captured in the Solvency Capital Requirement (SCR) as defined in the Solvency II directive

(European Commission, 2015). It serves as a prudence against the most extreme expected

losses over a year. In practice, the SCR plays a major part in determining the SAA. When NN

reconsiders its portfolio allocation, experts estimate the future return of the associated asset

classes. From here on, these estimates are assumed to be certain and the allocation is optimized

in a deterministic manner.

The main issue arising with the current allocation procedure is that uncertainty regarding

the returns is not considered. However, returns are uncertain. As a consequence, the chosen

allocation based on this deterministic approach might lead to suboptimal results in the light of

this uncertainty. Furthermore, the allocation is highly sensitive to the exact estimate done by

experts while they may only be sure of this estimate within a certain bandwidth. This causes

doubt about which estimate to use for the optimization. Moreover, if these estimates fluctuate

drastically over time, the allocation also changes substantially, which is undesirable for a long-

term investor such as an insurer. Criticism towards deterministic optimization approaches is also

outlined in the literature, by among others Broadie (1993), Chopra and Ziemba (1993), Jobson

and Korkie (1980) and Michaud (1989). They show that, for instance, returns’ sample moments

contain large estimation errors and ignoring this uncertainty leads to suboptimal results.

In this paper, we investigate the impact of uncertainty on portfolio allocation. Firstly, we

examine whether incorporating uncertainty in returns leads to different asset mixes and, as

a result, enhances portfolio performance. Secondly, we investigate the impact of including

parameter uncertainty. Next, we analyze in what way the given information set influences the

outcomes. And lastly, we want to know which constraints influence the optimal asset mix and

its performance the most.

To answer our research questions, we consider two stochastic approaches and compare these

to a deterministic benchmark that represents a simplified version of the current optimization
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within NN. The deterministic method is defined as a maximization of expected end-of-horizon

return under the SCR constraint, which is a quadratic optimization problem. The results are

used to put the outcomes of the stochastic methods into perspective. We introduce uncertainty

by using stochastic programming to optimize expected return under a Conditional Value-at-Risk

(CVaR) constraint. We use the linear approximation as introduced by Rockafellar and Uryasev

(2000) that ensures the problem is simplified such that it can be solved using linear programming.

The input for this method is a set of scenarios generated using Filtered Historical Simulation

(FHS), an algorithm to generate correlated paths for a set of risky assets, introduced by Barone-

Adesi, Giannopoulos, and Vosper (1999). The simulation is built on an ARMA-GARCH type

return model and uses historic standardized residuals to create a semiparametric distribution

around the (volatility of the) returns. Lastly, as robust method, we incorporate uncertainty

in the parameters of the ARMA-GARCH model. We again optimize expected return subject

to a CVaR constraint but under worst-case conditions. We simulate scenarios under shocked

realizations of the parameters and use the set with the worst objective value in our optimization.

The result is a min-max problem definition that can still be solved using linear programming.

To get a grasp of how the outcomes vary over time, we implement all three methods using the

rolling window approach as in line with both Diris, Palm and Schotman (2014) and DeMiguel,

Galappi and Uppal (2007). We use publicly available price and yield indices from March 2005

to May 2019 of the following strategic asset classes: Government Bond, Corporate Bond, Real

Estate, Equity, and Mortgages. We evaluate the methods based on four performance measures:

return, risk, the distributional dispersion of these two, and stability of the weights over time.

The measure of dispersion indicates the uncertainty around the outcomes and has, to the best

of our knowledge, not been used in the literature before. Lastly, we compare the results of using

an expanding window as opposed to a fixed window for parameter estimation. And, we analyze

the effect of excluding some of the constraints in the standard problem definition.

Our main finding is that, in our dataset, incorporating uncertainty leads to only slight im-

provements in the four performance measures. Moreover, adding parameter uncertainty to the

optimization only leads to better performance in a fixed window estimation. When using an ex-

panding window, the effect of incorporating uncertainty in returns disappears and the inclusion

of parameter uncertainty has a negative impact. Most importantly, we find that the managerial

and legislative restrictions have a much stronger impact on the outcomes than the risk constraint

itself. When we exclude these additional restrictions, incorporating uncertainty becomes more

effective.
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We find that the results of the SCR and CVaR methods are much alike and, in the expanding

window case, even equivalent. While the stochastic elements are only embodied in the risk

constraint and objective function of the optimization, we find that this constraint is not binding

in most cases. Instead, constraints that are added due to legal and managerial restrictions have

a much stronger impact on the optimal allocation. This explains why the outcomes of the SCR

and CVaR methods are so analogous and hence incorporating stochasticity in this way has little

impact. The Worst-Case method generally leads to the best performance, but only in the fixed

window case.

When an expanding window estimation is applied, the estimation errors of the volatility

model’s coefficients become smaller for most assets. The resulting optimal weights are fluctuat-

ing less over time, especially due to the more stable underlying scenarios. In this setting, the

Worst-Case method does not perform superior anymore. Overall, the SCR and CVaR methods

now obtain the best performance based on all four measures. This means that the effect of incor-

porating uncertainty is only of value in the fixed window case. However, implementation issues

might arise as, in this setting, the optimal weights are strongly concentrated in the Mortgage

asset class. All in all, we find that the effect of incorporating stochasticity into an optimization

method depends on which information set is applied. Furthermore, the choice of information

set has a substantial effect on the portfolio results and should thus be taken carefully.

Lastly, as the additional restrictions have such a strong impact on the results, we are inter-

ested in the behavior of the different methods with fewer constraints and the general impact of the

restrictions on the results. When eliminating constraints supplementary to the risk constraint,

we induce the optimal solution to depend stronger on the risk constraint itself. Consequently,

we find greater differences between the three methods and, generally, incorporating uncertainty

becomes more effective. Under these conditions, the CVaR method overall leads to the best

return, whereas the Worst-Case method generates asset mixes with the lowest return but also

the lowest risk. Comparing these results to the ones including the standard constraint set, the

SCR and CVaR methods generally improve in performance, especially in terms of return. The

Worst-Case method, on the other hand, performs worse with fewer constraints. Since, when

excluding constraints, the region of feasible asset allocations becomes broader, this method also

has more possibility to move into a position that is robust to worst-case circumstances. This

position is not necessarily one that performs well in the actual outcome. We notice that the

decision of which constraints to include in the problem definition has a strong impact on the

optimal asset mixes. We conclude that in practice, the impact of the risk constraint is not that

strong and that restrictions on regulative and management levels are more important.
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We contribute to the literature in several aspects. Most closely related are the papers that

implement uncertainty in the application of portfolio optimization. The bulk of papers within the

literature introduce uncertainty by using an explicit distribution (see Hellmich and Kassberger

(2011)), whereas we use the empirical return distribution directly. Other papers define a specific

uncertainty set around the model parameters, often in the form of a confidence interval around

the estimated value (Bertsimas, Brown & Caramanis, 2011; Garlappi, Uppal & Wang, 2006;

Hellmich & Kassberger, 2011). Our results are in contrast to those of Barberis (2000), who

found that incorporating parameter uncertainty changes the optimal allocation significantly.

The author also analyzes a portfolio strategy with optimal rebalancing. He, however, uses a

Bayesian approach to incorporate parameter uncertainty, focuses on the allocation to stocks

and uses a predictor variable to model returns. Zhu and Fukushima (2009) find that portfolio

selection using the worst-case CVaR as risk measure performs robustly in practice. To the best

of our knowledge, none of the papers apply the regulation on insurance as directly as we do.

This research is relevant both as an addition to the financial literature regarding portfolio

optimization under uncertainty, as well as for practitioners who are seeking to enhance invest-

ment performances. Starting with the latter, the choice of investments is one of the key elements

in the financial management of a life insurance company. Since nowadays, fixed income assets’

returns are declining and thus the traditional return of the insurer via this main asset class is

also declining. Therefore, it has become more important to optimize allocation over multiple,

alternative asset classes. Moreover, the volatile financial markets of the past few years have

induced financial institutions to become more cautious regarding their investments. We notice

however that overall, risk is not the leading factor in optimizing the portfolio. The managerial

and legislative restrictions have a much stronger impact on the results instead.

On an academic level, this research can be applied to any stochastic optimization problem

and is not limited to the practical circumstances here defined. This research adds to the litera-

ture by specifically focusing on the application of uncertainty to portfolio optimization for a life

insurance company, using the most recent set of asset return data, and taking the practical im-

plementation of the allocation strategy into account. The research includes a practical analysis

and implementation of the legislation on insurance policies and their risk management strategies.

The rest of this paper is structured as follows. Section 2 describes the related literature and

Section 3 discusses the data. Section 4 outlines the optimization problem definitions, the meth-

ods implemented to incorporate uncertainty, and the performance measures used to evaluate the
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outcomes. Section 5 presents and evaluates the results and Section 6 discusses the findings in a

broader context.

2 Literature

2.1 Traditional portfolio optimization

The theory of optimal portfolio selection was first developed by Markowitz (1952), which is

nowadays also known as mean-variance optimization. The method has since received much

criticism among both academics and practitioners, as discussed by for instance Cornuejols and

Tütüncü (2006), DeMiguel and Nogales (2009), Tütüncü and Koenig (2004) and Fliege and

Werner (2014). The main criticism is that mean-variance optimization is extremely sensitive

to errors in the estimates of the input parameters: the expected return and covariance matrix.

Traditionally, the sample mean and covariance matrix have been used to approximate the true

mean and covariance matrix. However, due to the estimation error caused using this estima-

tion method, policies constructed based on these estimators are extremely unstable. Moreover,

Chopra, Hensel, and Turner (1993) show that minor adjustments to the input parameters can

result in substantial changes in the composition of the optimal portfolio. This is especially un-

favorable from the perspective of a portfolio manager, who is reluctant to implement policies

that recommend such drastic changes in the portfolio composition. Moreover, mean-variance

optimization might even lead to suboptimal asset allocation, also referred to as error maximiza-

tion (Michaud, 1989), and performs poorly out-of-sample, as also shown by Chopra and Ziemba

(1993), and Broadie (1993).

Barberis (2000) discusses the relation between parameter uncertainty and the sensitivity

of the optimal allocation. He finds that, when parameter uncertainty is incorporated in the

optimization strategy, the asset mix becomes less sensitive to changes in the input. Therefore,

this strategy leads to more gradual shifts in the portfolio composition over time.

2.2 Risk measure: Conditional Value-at-Risk

To overcome the shortcomings that arise from using variance as a measure of risk, we use Con-

ditional Value-at-Risk (CVaR) instead. Variance is only a useful risk measure for normally (or

symmetrically) distributed losses. Since variance is measured in either direction, tail losses aris-

ing from skewed loss distributions are not taken into account (Kisiala, 2015).

CVaR, also known as Expected Shortfall, is defined as the expected value of the loss exceeding
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the Value-at-Risk (VaR). It is known to have better properties than VaR itself (Cornuejols &

Tütüncü, 2006). For example, CVaR is considered a more consistent measure of risk than VaR

(Rockafellar & Uryasev, 2000; Artzner, Delbaen, Eber & Heath, 1999). Most importantly, it is

considered a coherent and convex measure and, therefore, has a theoretical advantage as opposed

to VaR. Moreover, Uryasev (2000) shows that CVaR optimal portfolios are near-optimal in VaR

terms, and thus optimizing CVaR effectively takes both measures into account.

CVaR is, as opposed to variance, a measure that takes the entire left tail of the return

distribution into account. Government regulators already mandate that financial institutions

control their holdings in certain ways and place margin requirements for risky positions (Braun,

Schmeiser & Schreiber, 2017). Since these regulations become more based on such distributional

measures, it may be more applicable to also use these when optimizing the portfolio. Rockafellar

and Uryasev (2000), Krokhmal, Palmquist, and Uryasev (2002) and Uryasev (2000) all use CVaR

as a risk measure and show how a CVaR constrained problem can be rewritten as a linear, convex

problem. This definition also allows for handling portfolios with many instruments and/or

scenarios. For these reasons, this paper uses CVaR as risk measure and implements stochastic

programming to find a solution to the optimization problem.

2.3 Incorporating uncertainty: Stochastic Programming

Stochastic programming assumes that the uncertain parameters are random variables with

(known) probability distributions (Cornuejols & Tütüncü, 2006). This information is then used

to transform the stochastic program into a so-called deterministic equivalent. Scenario genera-

tion plays an important role within stochastic programming as it determines how accurately the

underlying stochastic situation is represented. It refers to the process of describing the actual

situation in the form of a set of possible scenarios. Herein, the trade-off between realism and

model simplicity should be considered when deciding on the number of scenarios. Once the

scenarios are generated in a representative manner, the rest of the problem is straightforward,

as shown by Rockafellar and Uryasev (2000). They demonstrate that the CVaR constraint can

be replaced by a simple linear approximation that assures that the CVaR values are properly

restricted.

Over time, multiple approaches to account for parameter uncertainty in mean and covariance of

returns have been examined. It has been shown that there is usually a greater estimation risk

in mean returns as opposed to the covariance of returns (Merton, 1980; Best & Grauer, 1991).

For this reason, researchers have focused on the minimum-variance portfolio, which ignores the
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estimation of the mean returns and is thus not as sensitive to estimation error (Chan, Karceski &

Lakonishok, 1999; Jagannathan & Ma, 2003). This portfolio however still seems quite vulnerable

to the impact of estimation error as discussed by DeMiguel and Nogales (2009). They notice

the fact that the sample covariance matrix is the maximum likelihood estimator based on the

assumption of normally distributed returns. The efficiency of these estimators is however highly

sensitive to deviations from this assumption (Huber, 2011). Extensive evidence shows that the

empirical distribution of returns usually deviates from the normal distribution and therefore

the maximum likelihood estimator suffers from estimation risk (DeMiguel & Nogales, 2009). As

an alternative, Maillard, Roncalli, and Teïletche (2008) propose equally weighted portfolios to

avoid relying on the expected average returns.

DeMiguel and Nogales (2009) show the advantages of using robust estimators. Robust es-

timators are less sensitive to deviations from the distribution assumption. Though they are

not as efficient as maximum likelihood estimators when the underlying distribution is correct.

Other researchers that used robust estimation techniques to account for parameter uncertainty

are Cavadini, Sbuelz, and Trojani (2001), Vaz-de Melo and Camara (2003), Perret-Gentil and

Victoria-Feser (2005), and Welsch and Zhou (2007).

Another way of dealing with parameter uncertainty is the use of Bayesian approaches. In a

Bayesian approach, one removes the dependence of the optimization problem on the unknown

parameters (Brandt, 2010). Bayesian portfolio policies use estimators that are generated by

combining the investor’s prior beliefs with the evidence obtained from historical return data;

see Jorion (1986), Black and Litterman (1992), and Pástor and Stambaugh (2000). For further

understanding of the available Bayesian approaches in portfolio optimization, Fabozzi, Huang,

and Zhou (2010) provide an overview.

Lastly, several methods to increase the performance of the traditional estimators in terms

of estimation error can be interpreted as shrinkage methods. DeMiguel, Garlappi, Nogales,

and Uppal (2009) propose to include an additional constraint in the minimum-variance problem

that restricts the norm of the weight vector. Ledoit and Wolf (2003) propose to estimate the

covariance matrix of returns by an optimally weighted average of the sample covariance matrix

and a single-index covariance matrix. Garlappi et al. (2006) recommend a multi-prior model that

can be interpreted as a shrinkage of the mean-variance portfolio towards either the risk-free asset

or the minimum-variance portfolio. They show that allowing for parameter uncertainty reduces

the fluctuation of portfolio weights over time and improves the out-of-sample performance.

Jagannathan and Ma (2003) show that imposing short-selling constraints can help to reduce the

impact of estimation error on the stability and performance of the minimum-variance portfolio.

7



2.4 Scenario generation: Filtered Historical Simulation

Barone-Adesi and Giannopoulos (2001) propose Filtered Historical Simulation (FHS) as an

alternative to Historical Simulation (HS) to overcome shortcomings such as a limited set of

outcomes and unresponsiveness to changes in market volatility. FHS is a generalized HS; it

has all the positive properties and overcomes most of its weaknesses. A major advantage of

FHS over HS is that it provides a systematic approach to generate extreme simulations that

are not present in the historical data, completing the tails of the return distribution. In other

words, the FHS algorithm creates a range of outcomes that is broader than the original set

of historical observations. As a result, FHS requires a shorter dataset to simulate the entire

return distribution. Giannopoulos and Tunaru (2005) specifically show how FHS can be used in

estimating CVaR. The proposed methodology is flexible in the sense that it can handle individual

securities as well as a portfolio of securities, provided that a robust conditional volatility model

is in place.

Barone-Adesi et al. (1999) introduce an FHS algorithm where, at each simulation trial, a

value for each asset is generated and all securities in the portfolio are re-priced. After running

many simulation trials, a set of portfolio values is generated that forms the empirical distribution

for the portfolio values at a certain horizon. FHS is based on a re-sampling approach of past

returns, thereby following a non-parametric methodology. Though unlike other methods, the

current market conditions are also considered through scaling the historical residuals by that

period’s conditional volatility forecast.

Many different methods to generate scenarios are used in the literature, we outline a few of

the alternatives and their drawbacks as opposed to the method implemented here. Kaut and

Wallace (2007) evaluate several scenario generation methods and propose approaches to test

their quality within a certain problem definition. As a test case, they discuss moment-matching

to generate the scenarios. This method generates scenario trees that match the given first four

moments of the marginal distribution and the correlation matrix. Høyland, Kaut and Wallace

(2003) present algorithms to produce scenarios according to the moment-matching method in

an efficient manner. The main drawback of this method, however, is that all higher moments

are completely ignored.

Kouwenberg (2001) uses event trees for scenario generation and compares the results for

three methods: random sampling, adjusted random sampling, and fitting the mean and the

covariance matrix. They benchmark with a simple fixed mix method for different values of risk

aversion. Cariño et al. (1994) generate scenarios in three possible ways: independent scenarios,
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events dependent over time (time-series), or user-specified outcomes of the stochastic elements.

They then use a modular structure including a scenario generator and solve a mean-variance

problem.

Hellmich and Kassberger (2011) discuss the fact that empirical asset return distributions are

non-normal and thus realistic modeling calls for alternative probability distributions. Recent

empirical studies conducted in a multivariate setting make a convincing case for the multivariate

generalized hyperbolic distribution and its subclasses (McNeil, Frey & Embrechts, 2005). Lastly,

Uryasev (2000) and Krokhmal et al. (2002) use historical portfolio instrument prices and use

these, after transforming them to returns, directly as scenarios for the stochastic programming

approach. They, however, do not account for current market conditions in their scenario model

but simply directly use historical values as scenarios.

2.5 Robust portfolio optimization: Worst-Case CVaR

Robust optimization is used when one wants a solution that behaves well in all possible realiza-

tions of the uncertain data (Cornuejols & Tütüncü, 2006). This approach explicitly recognizes

that the result of the estimation process is not a single-point estimate, but rather an uncer-

tainty set, where the true parameters lie within a certain confidence interval. The size of the

uncertainty set is determined by the level of desired robustness and can be formed in multiple

ways, for example by different opinions of future values of certain parameters or via statistical

techniques from historical data and/or Bayesian techniques.

We adjust a method as introduced by Hellmich and Kassberger (2011). They suggest a

robust optimization approach using Worst-Case Conditional Value-at-Risk (WCVaR) as a risk

measure. Zhu and Fukushima (2009) demonstrate that WCVaR inherits subadditivity, positive

homogeneity, monotonicity, and translation invariance from CVaR, and therefore - just as CVaR

- is a coherent risk measure. Moreover, the authors show that WCVaR is convex in the portfolio

weights. The solution to the mean-WCVaR problem will then be the allocation with optimal

worst-case properties.

Hellmich and Kassberger (2011) show a numerical example of a robust portfolio optimization

problem (R1” in their paper). They specify the uncertainty set by shifting the parameters from

the base case estimation either up or down by 10 percent. Thus, the worst-case returns will

have lower means, more pronounced negative skewness, and higher variances and covariances,

leading to lower expected returns and higher risk of efficient portfolios.

Since such conservatism may not be desirable in some situations, an alternative is to seek
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robustness in a relative sense, where decisions made by a portfolio manager are considered

successful in case the portfolio performs better than a certain benchmark (Cornuejols & Tütüncü,

2006). Gabrel, Murat, and Thiele (2014) also recognize the issues of over-conservatism in robust

optimization and emphasize the trade-off between system performance and protection against

uncertainty. Also, the Bayesian posterior distribution can be used to determine how likely a

certain scenario set is.

Robust optimization distinguishes between constraint robustness and objective robustness

(Cornuejols & Tütüncü, 2006; Gabrel et al., 2014). The first case refers to the possibility that

data uncertainty puts the feasibility of solutions at risk, whereas the second case concerns the

optimality of the generated solution. For more research on robust optimization, see among others

Tütüncü and Koenig (2004), Garlappi et al. (2006), Goldfarb and Iyengar (2003), Ben-Tal, El

Ghaoui and Nemirovski (2009), Ben-Tal and Nemirovski (2002), and also the overview given by

Gabrel et al. (2014).

2.6 Practical background

Lastly, we discuss some relevant aspects of the practical environment of NN as (life) insurer.

Currently, NN optimizes its asset allocation every three years. At the beginning of the three

years, experts estimate the future return of the associated asset classes. They use the Solvency

Capital Requirement (SCR) to determine the amount of risk a certain asset mix contains. The

SCR is the percentage of funds that insurance and reinsurance companies are required to hold

under the European Union’s Solvency II directive (European Commission, 2015). The percentage

is set such that the insurer’s own funds can absorb losses over a 1-year horizon with a probability

of at least 99.5% (Kouwenberg, 2018).

In practice, the Strategic Asset Allocation (SAA) is decided on keeping in mind the efficient

use of regulatory capital, stable solvency ratio, attractive earnings, well-managed liquidity re-

quirements, and diversification. Specific for the investment policy of an insurance company is the

structure of payment responsibilities to contractors. Cariño et al. (1994) account for decisions in

allocation strategies over time using a dynamic asset-liability model. They specifically integrate

the uncertainty and movement of the liabilities over time in their model. This research focuses

on the asset allocation part of the problem and thus not fully integrates asset-liability manage-

ment into the optimization methods. Though we include constraints that assure matching of

the maturity of liabilities with the timing of investment returns.
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3 Data

In this study, we focus on five of the asset classes that Nationale-Nederlanden (NN) usually

considers in its Strategic Asset Allocation (SAA), namely: Government Bond, Corporate Bond,

Real Estate, Equity, and Mortgages. These asset classes correspond to the character of NN

as a non-risky, long-term, buy-and-hold investor. We mostly use European indices from the

financial database Bloomberg as a reference for the multiple bonds or assets available in the

specific asset class. We use weekly data from 11 March 2005 to 25 May 2019, meaning that we

have 742 observations in total. This time frame is a result of the data availability over the most

important asset classes that are not too strongly correlated. We transform all indices to realized

weekly returns and hereafter refer to these series as (weekly) return. Table A.1 in the Appendix

shows an overview of the specifications of the data.

As sample set, we select the first five years of the data (260 observations), from 11 March 2005

to 26 February 2010, and use these observations for the selection of the appropriate volatility

models. Although we use the most recent data when optimizing over the parameters, it is still

important that the data in this sample set somehow is representative enough to decide on the

correct volatility model. However, an important factor leading to the decision of the sample size

is also the ability to estimate the volatility model correctly and thus the need for a large enough

sample set.

The summary statistics presented in Table 1 show that the mean return in the sample period

is rather different from the mean return in the full dataset, whereas the standard deviation is

relatively more comparable. We see that Equity, Mortgages, and especially Real Estate give

lower returns in the sample period, whereas Government Bonds and Corporate Bonds give

higher returns. The correlations as shown in Table 2 are rather low, except for the correlation

between Government Bonds and Corporate Bonds, and between Real Estate and Equity. The

strongest correlation in the full dataset is 0.76, which we still consider as acceptable. We thus

consider all five asset classes to be relevant to include in our model.

Table 1: Summary return statistics full and sample dataset
Full dataset Sample set

Asset Mean Median Std. Mean Median Std.
GOV 3.75 4.94 4.63 4.80 4.54 5.37
CB 3.82 4.53 3.29 5.03 5.90 4.08
RE 2.26 16.45 22.70 -5.66 15.22 29.80
EQ 5.90 22.01 20.78 3.35 14.27 24.04
MO 5.82 4.95 3.36 4.27 5.64 3.79
All statistics are annualized values of the weekly return data (in %).
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Table 2: Correlation matrix returns full and sample dataset
GOV CB RE EQ MO

GOV 1 0.78 -0.28 -0.35 0.01
CB 0.76 1 -0.11 -0.18 0.04
RE -0.15 0.02 1 0.77 0.04
EQ -0.31 -0.09 0.74 1 0.04
MO -0.01 0.01 0.05 0.05 1

The lower triangular shows the correlations in the full dataset and the upper triangular shows the
correlations in the sample dataset.

The plots in Figure 1 reveal the presence of heteroscedasticity. We observe periods of high

and low volatility that occur in clusters. Around 2007 to 2009 we see some more negative

returns as a result of the financial crisis. The sample set is chosen such that this period of

higher volatility is included. As a consequence, the sample statistics differ somewhat more from

the statistics of the full dataset, especially for Real Estate.

Figure 1: Weekly returns over time
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(b) Sample set

Table 3 shows the results of three statistical tests on the distribution of returns, performed on

the return series of both the full dataset and the sample set. For the full dataset, the Jarque-Bera

test rejects the null hypothesis of zero skewness and zero excess kurtosis, whereas, for one of the

five assets in the sample set, the null hypothesis cannot be rejected on a 5% significance level.

The results of the Ljung-Box-Pierce test shows that there is no clear presence of autocorrelation

in the data, except for the Corporate Bond and Equity classes in the full dataset. For all

classes except Mortgages, the Engle’s LM test rejects the null hypothesis that the returns form

a random sequence of normal disturbances, hence the presence of heteroscedasticity. Following

the features of the majority of the asset classes, we use an ARMA(p,q)-GARCH(1,1) type of

model to capture the time-varying volatility of returns.
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Table 3: Statistical tests full and sample dataset
Jarque-Bera test Ljung-Box Q Engle’s LM test
χ2 p-value χ2 p-value χ2 p-value

Full dataset
GOV 58.62 0.00 0.56 0.45 114.38 0.00
CB 148.85 0.00 11.17 0.00 153.12 0.00
RE 941.64 0.00 1.98 0.16 184.20 0.00
EQ 1209.76 0.00 10.29 0.00 114.35 0.00
MO 1881.33 0.00 2.14 0.14 10.94 0.53

Sample set
GOV 5.69 0.06 0.02 0.89 40.39 0.00
CB 22.61 0.00 6.33 0.01 61.92 0.00
RE 184.97 0.00 1.12 0.29 64.42 0.00
EQ 820.25 0.00 5.39 0.02 45.82 0.00
MO 417.39 0.00 1.16 0.28 9.61 0.65

4 Methods

4.1 Portfolio optimization methods

We formulate two problem definitions, one that represents a simplification of the current method

used by Nationale-Nederlanden (NN) and one that uses Conditional Value-at-Risk (CVaR) as

risk measure. In both cases, the objective of the optimization problem is to maximize the

total portfolio end-of-horizon return, as NN is a buy-and-hold investor that does not change

its portfolio weights during the horizon of the investment. We define xi,t as the proportion of

the total funds invested in security i and ri,t as the average simulated end-of-horizon return of

security i, at time t. We calculate ri,t by first taking the product over each simulated weekly

return (plus 1) within the investment horizon, and then averaging on all J scenarios at time t.

We then define xt and rt as the N × 1 vectors that contain the portfolio weights and returns

of all N assets respectively. In the same manner, we define µi,t as the realized end-of-horizon

return of security i at time t and µt the resulting N × 1 vector containing the values of all N

assets.

4.1.1 Current method

The problem definition currently used by NN is the maximization of future returns subject to

several constraints among which most importantly the restriction formed by the Solvency Capital

Requirement (SCR). At each time t, we calculate the optimal portfolio mix xt by solving the
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following problem definition:

maxxt xTt rt

s.t. At · SCR(xt) · (1 + λ) ≤ At − Lt

xt ∈ C.

(1)

Here, SCR(xt) is the required percentage of the assets’ value to be held as a buffer based on

the portfolio with weights xt, λ is the bandwidth to which we want to be close to the legally

required amount, At and Lt are the current assets’ and liabilities’ values respectively and C is

the set of feasible solutions of xt taking into account the appropriate constraints on regulations

and liquidity (these are explicitly described in Section B.1 in the Appendix). The right-hand

side of the constraint is also referred to as own funds, defined as the difference between the mar-

ket value of the assets and the liabilities. Therefore, it measures the capital that the company

owns to cover future losses and to pay out dividends. Here, At is determined by multiplying

the realized return over the previous period with the value of the assets in the previous period:

At = At−1(1+xTt−1µt−1) where xt−1 is the optimal allocation in the previous period and µt−1 are

the actual end-of-horizon returns in that period. We determine the value of the liabilities over

time in the same manner, correcting the previous value for the current interest rate. Assuming

that our Government Bond series are approximately risk-free and have the same duration as

our liabilities, we use this curve for adjusting the liabilities to the current market value. When

optimizing the allocation at time t, the values of At and Lt are fixed and hence xt is the only

variable vector in the problem definition in equation 1. Following the internal guidelines within

NN, we set λ equal to 1, such that the capital in own funds is at least 200% of the required

amount. We set A0 and L0 equal to 100 and 90 respectively.

Next, we define the calculation of SCR(xt) more closely. In practice, life insurers are subject to

several regulations to safeguard the financial solvency for its contractors, among which the SCR.

The SCR is defined as the percentage of own funds to be held to have a 99.5% confidence that

the insurer can survive the most extreme expected losses over a year, i.e. the 99.5% VaR level

(European Commission, 2015). The Solvency II regulation offers a standard calculation of the

SCR that should theoretically hold for all insurers within the EU. As NN is a very large player

in the European insurer market, it can use an internal calculation of the SCR (after approval

of the DNB). Nonetheless, to make this research more broadly applicable to insurers in general,

we apply the standard calculation.

The SCR is divided into modules corresponding to different risk types: non-life under-
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writing, life underwriting, health underwriting, market, counterparty default, intangible asset,

operational. Each module is again divided into multiple sub-modules and results in a stan-

dalone amount to be held in own funds to cover for the risk in each respective asset type. The

standalone amounts are determined by multiplying the SCR percentage with the total amount

of capital. The standalone SCR percentages are determined by the legislation, also referred to

as shocks. However, the total risk of a portfolio is lower than the sum of the separate assets’

risks thanks to the diversification effect. As this diversification effect is of substantial influence

on a portfolio’s total risk, the SCR calculation also takes this into account. Each SCR module

therefore corrects for the diversification advantage after calculating the standalone amounts of

the sub-modules by using a correlation matrix. This correlation matrix is again provided by the

supervisory authorities.

Following the reasoning as explained above, we approximate the SCR in two steps. First, the

standalone amounts per asset class are determined based on the shocks and duration of each

asset class and the absolute amount of capital invested in each respective asset class. We can thus

define a vector, SCRs, containing the standalone SCR percentages per asset class as follows:

SCRs(xt) = xt � s, (2)

where xt is the vector containing the portfolio weights per asset class and s the vector containing

the shocks per asset class. We use � to indicate element-wise multiplication, meaning that the

result is an N × 1 vector.

Second, we calculate the actual total percentage of capital to be held taking the diversification

advantage into account. We therefore pre- and post-multiply the correlation matrix with the

vector SCRs as defined above, and take the square root. The total SCR is thus defined as:

SCR(xt) =
√
SCRT

s ·R · SCRs

=
√
xTt Ωxt,

(3)

where R is the correlation matrix, and we define Ω = diag(s) ·R · diag(s), where · is used to

indicate (usual) matrix multiplication.
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This means that we can write the SCR constraint as follows:

At · SCR(xt) · (1 + λ) ≤ At − Lt

SCR(xt) ≤
At − Lt

(1 + λ)At

xTt Ωxt ≤
[
At − Lt

(1 + λ)At

]2
,

(4)

which is a quadratic inequality constraint of the portfolio weights xt. This is an important result

as this means that the problem given in equation 1 turns into a quadratic program and can be

solved analytically. The analytical solution to this problem definition including (only) the SCR

constraint is given in Section B.2 in the Appendix.

The values of the shocks as well as the correlation matrix are given in the implementing measures

of Solvency II regulation (European Commission, 2015). All asset classes except Mortgages fall

within the market risk module as described in Section 5 of this directive, whereas the Mortgages

fall within the counterparty default risk module. We find the following shocks for the five

considered asset classes:

• Government Bonds AAA: 0%, following Article 180.2. We assume that this class falls

within the class of bonds issued by the central government, funded in the domestic currency

of that central government, as described in Note a) of this article.

• Corporate Bond: 7.63%, following Article 176.3. Based on rating 2 and an average duration

of 5.9, we calculate the shock for this asset class as 7.0% + 0.7% · (5.9− 5) = 7.63%.

• Real Estate: 25%, following Article 174.

• Equity: 39%, following Article 169.1b and assuming our equity index falls within the Type

1 class as described in Article 168.6.

• Mortgages: 0.75%, following Article 189.3. We assume Mortgages fall within the Type 2

exposure within the counterparty default risk module. We calculate the loss-given-default

(LGD), following Article 192.4, as LGD = max(loan− 80% ·mortgage, 0). Assuming that

half of our Mortgages has a Loan-to-Value (LTV) lower than 80% and the other half has an

average LTV of 90%, our average LGD is 0.5 ·0+0.5 ·(90%−80%) = 5%. Following Article

202 for Type 2 exposures and ignoring the factor for receivables from intermediaries, we

calculate the appropriate percentage as 15% · 5% = 0.75%.

Next, we define the correlation matrix to be used to incorporate the diversification effect. Article

164.3 presents the standard correlations. Following Article 165 and assuming the risk of a
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decrease in the term structure of interest rates, we set parameter A equal to 0.5; this gives us

the following correlation matrix.

Table 4: Correlations within market risk module Solvency II directive
GOV CB RE EQ

GOV 1 0.5 0.5 0.5
CB 0.5 1 0.5 0.75
RE 0.5 0.5 1 0.75
EQ 0.5 0.75 0.75 1

Values taken from Article 164.3 (European Commission, 2015).

To calculate the SCR over the total portfolio, we use the correlation between the market

risk and counterparty default risk modules of 0.25 as given in Annex IV Article 1 to Directive

2009/128/EC (European Commission, 2009). Officially, the SCR is calculated via a two-step

procedure in which one first calculates the SCR based on the market risk, SCRmarket, using the

correlation matrix as shown above, and the standalone amount for the default risk module (hence

Mortgages), SCRdefault. One then calculates the total SCR as SCRtotal =
√
SCRT ·R · SCR,

where SCR is the vector containing SCRmarket and SCRdefault, and R contains the correlations

between all sub-modules and the default risk module separately. However, to ensure that the

SCR constraint remains a quadratic function of the portfolio weights, we simplify this multi-

plication. We set all correlations of the sub-modules within the market risk module with the

counterparty default risk module equal to the correlation between the modules itself, hence 0.25.

We thus use the following correlation matrix in our SCR constraint.

Table 5: Full correlation matrix SCR calculation
GOV CB RE EQ MO

GOV 1 0.5 0.5 0.5 0.25
CB 0.5 1 0.5 0.75 0.25
RE 0.5 0.5 1 0.75 0.25
EQ 0.5 0.75 0.75 1 0.25
MO 0.25 0.25 0.25 0.25 1

Values taken from Article 164.3 (European Commission, 2015) and Annex IV Article 1 (European
Commission, 2009).

4.1.2 Test method

To evaluate the effect of incorporating uncertainty into the optimization method, we define a test

problem definition. This problem takes the form of the traditional Markowitz formulation
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but using CVaR as risk measure instead of variance. We define the problem as follows:

maxxt xTt rt

s.t. CVaRβ(xt) ≤ Cβ

xt ∈ C,

(5)

where Cβ represents the maximum tolerable CVaR value at the confidence level β and C is the

same set of feasible solutions as used in equation 1. We set Cβ equal to 0.8 · (At−Lt)/At and β

equal to 99.5%, as these values are the confidence levels also used in the calculation of the SCR.

This implies that the average loss in the 0.5% worst cases cannot exceed 80% of the percentage

of own funds that we hold at the beginning of the investment period (i.e. (At - Lt)/At). The

80% is also chosen so that the CVaR constraint is most comparable to the SCR constraint. In

the SCR restriction, we multiplied the right-hand side with 50% (implied through the λ of 1).

However, the SCR is based on Value-at-Risk (VaR) and therefore, by definition, more restrictive

than the constraint based on CVaR. To account for this, we set the percentage higher than the

50% used in the SCR constraint.

CVaR is defined as the expected loss given that the loss exceeds VaR (Cornuejols & Tütüncü,

2006). The loss function f(x,µ) is defined as the negative of the return on a portfolio x,

which is the sum of the returns on the individual instruments in the portfolio, µi, scaled by the

proportions xi. The function is also defined as

f(x,µ) = −[x1µ1 + ...+ xNµN ] = −xTµ, (6)

where N is the number of instruments. We then use this function to define VaR. Given a

probability level β, the β-VaR of the loss function is given by

VaRβ(x) := min{γ : P (f(x,µ) ≥ γ) ≤ 1− β}. (7)

Using this definition of VaR, the β-CVaR of the portfolio with weights x can then be defined

as:

CVaRβ(x) := 1
1− β

∫
f(x,µ)≥VaRβ(x)

f(x,µ)p(µ)dµ, (8)

where p(µ) is the probability density function of the random return vector µ. It is clear that

the calculation of the CVaR is not a linear formula, therefore Section 4.2 shows how CVaR can

be approximated so that it can be solved with a linear program.
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Krokhmal et al. (2002) show that the problem as defined in equation 5 can be equivalently for-

mulated as minimizing CVaR subject to minimum total return, or maximizing CVaR adjusted

total return (see Theorem 3 in their article). Moreover, Rockafellar and Uryasev (2000) com-

pare three similar problem formulations: minimum β-CVaR, minimum β-VaR, and minimum

variance, all constrained with a maximum portfolio loss. They show that these problems give

the same optimal portfolio x∗t under the following conditions: the asset returns µ are normally

distributed, β ≥ 0.5 and the constraint on maximum portfolio loss is active (see the Proposition

and its proof in Rockafellar and Uryasev (2000)). They show that in case of normally distributed

asset returns, and β ≥ 0.5, both the formula for VaR and CVaR become a linear function of the

mean and variance of portfolio loss (see Section B.3 in the Appendix for the proof). If then also

the constraint on maximum portfolio loss is active, one can replace the inequality constraint

by the equality constraint l(xt) = −R and substitute the mean portfolio loss by the maximum

accepted loss. The formulas for VaR and CVaR then simplify to:

VaRβ(x) = −R+ c1(β)σ(x) and CVaRβ(x) = −R+ c2(β)σ(x), (9)

where the coefficients c1(β) and c2(β) are positive and σ(x) is the variance of the loss associated

with portfolio x. Thus, minimizing either of the expressions in equation 9 over x is the same as

minimizing σ(x) over x. Section B.4 in the Appendix shows how the problem definition in equa-

tion 5 is solved analytically under the normality assumption. These conditions indicate in what

case problem 1 and 5 are both equivalents to the traditional mean-variance formulation. This

also gives rise to the simplification made in the current problem definition used by NN, as asset

returns are in practice usually not normally distributed. The use of the definition given in equa-

tion 5 relaxes this assumption and is therefore expected to be a more realistic problem definition.

We refer to the Literature Review in Section 2 for more deficiencies in the use of VaR constraints.

From a statistical point of view, the SCR constraint, as used in the current problem definition

in equation 1, is equivalent to

x0 = inf
{
x : Pr

(
− At+1 − Lt+1

1 + rf
≤ x

)
= α

}
, (10)

where At − Lt are the own funds and rf the risk-free rate (Zhou, 2018). Hence, x0 is the VaR

of At+1 − Lt+1
1 + r

at the probability level α. Although the actual calculation of SCR is a more

complex calculation, it can be considered as a VaR constraint. This interpretation helps com-
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paring the current problem definition given in equation 1 to the test problem definition as given

in equation 5. Important to realize here is that the parameters in the current problem definition

are taken as a point estimate and therefore this method does not take uncertainty into account.

The optimization problem as shown in equation 5 is solved using both stochastic programming

and robust optimization to see the effect of using stochastic optimization methods. To sum up,

we compare the performance of two specific methods that take uncertainty into account with the

deterministic method currently used by NN. The problems that are to be solved and compared

are the following:

i. SCR method: deterministic method currently used by NN as specified in equation 1,

ii. CVaR method: problem defined in equation 5 solved using stochastic programming,

iii. Worst-Case method: problem defined in equation 5 solved using robust optimization.

By comparing the results of both stochastic methods with the performance of the benchmark,

we are able to evaluate the effect of taking uncertainty into account via the different methods.

4.2 Stochastic Programming

We use stochastic programming to incorporate uncertainty in returns and solve the problem

given in equation 5. Rockafellar and Uryasev (2000) made an important contribution to CVaR

optimization by proving that, in the problem definition as given in equation 5, CVaR can be

replaced by the approximating function:

F̃β(x, α) = α+ 1
J(1− β)

J∑
j=1

(−xTr(j) − α)+, (11)

where (x)+ = max{x, 0} and r(j) is the vector with returns in scenario j. This function converges

to the exact CVaR when the number of scenarios, J , approximates infinity. Rockafellar and

Uryasev (2000) show how the use of this approximation simplifies the problem to one that can

be solved using linear programming, namely

minx l(x) = J−1
J∑
j=1
−[x1r

(j)
1 + ...+ xNr

(j)
N ]

s.t. α+ 1
J(1− β)

J∑
j=1

u(j) ≤ Cβ

u(j) ≥ 0 and xTr(j) + α+ u(j) ≥ 0 for j = 1, ..., J

x ∈ C.

(12)
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Here, the terms (−xTr(j)−α)+ are replaced by auxiliary variables uj and additional constraints

are imposed. Moreover, they show how to use stochastic programming when there is no explicit

probability distribution function available for future returns. Section B.5 in the Appendix shows

the full derivation and explanation of this theory.

It is the generation of these J scenarios and their implementation in the constraints given

in equation 12 that makes the problem stochastic. The crux of the problem then lies in the

manner of scenario generation and the assumptions underlying this choice. The stochasticity is

however only embodied in the constraints and not in the objective function of this problem, as

the input in the objective function are the sample means of the respective asset classes.

4.3 Filtered Historical Simulation

We generate scenarios following the Filtered Historical Simulation (FHS) method. The main

reason for the use of this method is that we can exploit the historical data instead of making a

distributional assumption on the assets’ return movements. Barone-Adesi et al. (1999) introduce

an algorithm to generate correlated pathways for a set of risky assets using FHS. The main steps

in this algorithm are summarized below (Giannopoulos & Tunaru, 2005):

i. First, a conditional volatility model is selected based on the fit with the sample dataset.

The model should produce i.i.d. residuals and have strong forecasting power in predicting

volatility over the investment horizon. As conditional volatility models, we use ARMA(p,q)-

GARCH(1,1) types of specifications. The ARMA(0,0)-GARCH(1,1) model including mean

is specified as follows

rt = µ+ ηt ηt ∼ (0, ht)

ht = ω + αη2
t−1 + βht−1

with restrictions ω, α, β > 0 and α+ β < 1.

(13)

ii. The resulted model from step one is fitted on the historical data of each asset class separately

to generate volatilities for each day of the sample period. The realized residuals are then

standardized by dividing each one of them by the corresponding conditional volatility (et =

η̂t�
√
ĥt) and the standardized values should be i.i.d.. We gather the standardized residuals

for the entire sample set and all asset classes in a 260 × N matrix and use it together with

the estimated coefficients ω̂, α̂, β̂ and µ̂ to predict the volatilities and returns in step three

and four.

iii. The third step consists of using the last observed volatility ht and residual ηt from the

sample set to forecast the first volatility, in case of the GARCH(1,1) specification, by ĥt+1 =
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ω̂ + α̂η2
t + β̂ht. We then draw a random residual return e∗t from the set of standardized

residuals from the second step (semiparametric distribution implementation) and scale it

with the forecasted volatility to obtain η̂t+1 = e∗t �
√
ĥt+1. The correlation between the

asset classes is preserved by selecting one row (referred to as "strip" by Barone-Adesi et al.

(1999)) from the matrix of standardized residuals and use the corresponding values for all N

assets in this volatility prediction. This way, the pathways for the variance of the multiple

asset classes reflect the co-movements between asset returns. Finally we can calculate the

one-step-ahead return prediction, in the case of the ARMA(0,0) model, r̂t+1 = µ̂+ η̂t+1.

iv. To create the two-step-ahead return predictions (and further), we use the estimated values

from the previous draw to obtain a new volatility forecast, scaled random residual, and

return prediction, and repeat these steps throughout the investment horizon. This results

in a single return path simulation. We then transform this return path into a single end-of-

horizon return. We repeat steps three and four many times to generate a complete set of

scenarios at the given moment in time, where we still use the same matrix of standardized

residuals and estimated coefficients from step two.

v. Finally, for each moment in time on which we want to make an investment decision, we

repeat steps two to four to obtain a set of simulated return paths. We use these compound

end-of-horizon returns as input for the optimization algorithms.

In step one, we fit the ARMA(1,1), ARMA(1,0) and ARMA(0,0) (all combined with GARCH(1,1)

) models using the semiparametric distribution that directly uses the empirical distribution of

historical observations. We select one of these three return models by comparing the Akaike and

Bayes information criteria. Empirically, asset returns are proven not to be normally distributed,

however, the estimates based on the normal distribution would asymptotically still be valid,

whereas this would not be the case with other distributions. Thus, we test whether the normal

distribution assumption holds for this model.

4.4 Worst-Case CVaR

By using FHS, the stochastic programming method takes uncertainty around the returns into

account. However, the parameters in the GARCH model as described in equation 13 are still

taken as a fixed, deterministic point estimate.

As robust optimization, we incorporate, next to the uncertainty around the returns, also

parameter uncertainty. We create a distribution around the coefficient estimates by adding

a normal distributed shock with corresponding variance to the coefficients. For each set of

coefficients realizations we implement the FHS method and determine the objective value of
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the optimized asset mix. We then select the set of coefficients that corresponds to the lowest

objective value and use the corresponding scenario set as Worst-Case realization. The input

in the objective function is the mean return on all simulations in the scenario set and is thus

dependent on the distribution around the coefficient estimates in the GARCH model. This

way, this approach not only incorporates uncertainty in the CVaR constraint but indirectly also

in the objective function. At each moment in time, the optimization is implemented in the

same way as the standard CVaR optimization, using the approximation given in equation 12.

Mathematically written, for each optimization time t we solve the following problem:

minq
[
maxx xTrq

]
s.t. α+ 1

J(1− β)

J∑
j=1

u(j)
q ≤ Cβ

u(j)
q ≥ 0 and xTr(j)

q + α+ u(j)
q ≥ 0 for j = 1, ..., J

x ∈ C, q ∈ Q.

(14)

Here, rq is the vector with average returns of all N assets on the J scenarios in one specific

realization q, C contains the set of feasible asset mixes under the set of constraints as given in

equation B.1 and Q is the set of Q coefficient realizations with subsequent set of J scenarios.

Due to computational time limitations, we set Q equal to 25.

The results of this method show whether our outcomes are dependent on the specific coeffi-

cients’ point estimate used for the scenario generation. The optimal asset mixes are interpreted

as the mix that is robust to the worst realization of the asset returns. Therefore, we expect that

this method behaves better in years with lower realizations of returns.

4.5 Implementation

Following the methods as used by both Diris et al. (2014) and DeMiguel et al. (2007) we use a

rolling-window approach to create a time-series of optimal allocations. We start by fitting the

volatility model to a sample set to obtain the coefficient estimates and residuals. We use a fixed

window of size S instead of an expanding window as used by Diris et al. (2014). This way,

the differences between the resulting estimates are independent of the size of the data window

and can be fairly compared. As a sensitivity analysis we will also show the results of using an

expanding window. The sample size S is five years, this way we use 260 weekly observations

which gives us a dataset that is large enough to appropriately estimate the model. We then use

these estimates to forecast a series of J = 1000 return paths. The length of each path is equal

to the investment horizon (H) of one year, resulting in 52 weekly simulations or one end-of-
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horizon return. These return paths are the input for the allocation optimizations. Finally, we

repeat these steps with the same frequency as the investment horizon, thus every year, such that

the return paths are non-overlapping and we can interpret the time-series as a re-investment

procedure.

The full process is then as follows. Every year, starting from time t = S + 1, we use the

data in the previous S weeks to estimate the volatility model, generate J scenarios, and find

the optimal portfolio weights. We then use these weights to compute the end-of-horizon return

in week t+H. This process is continued by adding the return for the next year in the dataset

and dropping the earliest returns, until the moment at which we can still calculate the actual

return over the full investment horizon, thus T −H, where T is the total number of observations

in the dataset. The outcome of this rolling-window approach is a series of T − S −H
H

yearly

out-of-sample returns generated for each optimization method, as the frequency with which we

optimize is equal to H.

4.6 Evaluating performance

We evaluate portfolio performance based on return, risk, dispersion, and stability over time and

use various metrics to indicate these measures. We compare the SCR, CVaR and Worst-Case

methods based both on the average of these measures over time as well as on how the measures

evolve over time.

Return

After the optimal allocation x∗t at time t is determined, we compute the realized end-of-horizon

portfolio return as

Rt = xTt µt, (15)

where µt = (µ1,t, ..., µN,t) are the actual end-of-horizon returns within the current investment

period t for the N assets.

Risk

We use three metrics to measure risk. Firstly, the portfolio’s variance is calculated as Var[xTt µt] =

xTt Qtxt, where Qt is the covariance matrix over the actual (weekly) returns within the same

period. We then compute the Sharpe Ratio (SR) as

SRt := xTt µt√
xTt Qtxt

. (16)
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As we optimize our portfolios based on CVaR, we also calculate the SR based on CVaR (SRC).

We estimate CVaR by first taking the 99.5% VaR and then calculating the average over the

returns that are lower than the 99.5% VaR. We then calculate SRC as

SRC
t := xTt µt

CVaRβ(xt)
. (17)

Lastly, we compute the solvency II ratio as

SIIt = At,H − Lt,H
SCR(xt)At,H

, (18)

where At,H−Lt,H is the value of own funds at the end of the investment horizon H, and SCR(xt)

is the legally required capital to be held based on portfolio xt as defined in equation 3. Gener-

ally, insurers want this ratio to be at least larger than 2 so that we hold 200% of the required

amount in own funds.

Dispersion

To indicate how the portfolio return and risk would have behaved in different scenarios than

the reality we use two metrics to indicate dispersion. We generate a specific scenario set that

represents a hypothetical distribution around the five assets’ return and use it for all three

methods and its variations so that we can compare the results accordingly.

First, we use the optimal allocation vector x∗t to calculate the portfolio’s return distribution

as

R(j)
t = xTt r

(j)
t for j = 1, ..., J, (19)

where r(j)
t is the vector of end-of-horizon returns in scenario j within the investment period t.

We compute the portfolio’s horizon return on all J return scenarios and calculate the 0.5, 50,

and 99.5 percent quantiles. We use the same scenario set to calculate these quantiles for all three

methods (and variations made in the Sensitivity Analysis) so that we can compare the results

accordingly. These quantiles are useful to determine the uncertainty around the portfolio return.

They indicate whether the optimal portfolio mix is also performing well in scenarios worse than

reality and how robust the results are to changes in asset returns. We specifically evaluate the

range between the 99.5 and 0.5 percent quantiles.

Second, we compute the distribution around the SII ratio in the same manner,

SII(j)t =
A(j)
t,H − Lt,H

SCR(xt)A(j)
t,H

for j = 1, ..., J, (20)
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where A(j)
t,H is the asset value in return scenario j. For this ratio, we again calculate the value on

all return scenarios and calculate the quantiles. As insurers want this ratio to be larger than 2,

we specifically focus on the number of times the lowest quantile passes this requirement. This

way, we can determine whether we still satisfy the requirement also in scenarios worse than

reality.

Stability over time

Lastly, we also compare the change in allocations over the different asset classes over time using

portfolio turnover (TO) as defined by DeMiguel et al. (2007)

TOt := 1
2

N∑
i=1

(
|xi,t − xi,t− |

)
, (21)

where xi,t is the desired portfolio weight in asset i after rebalancing at time t, xi,t− the actual

weight in asset i at time t before rebalancing, and N is the number of assets. Note that xi,t−1

may be different from xi,t− due to changes in asset prices between time t − 1 and t. The 1
2 is

added as the wealth is traded from one asset to another and should not be counted to be traded

twice. The TO quantity can be interpreted as the average percentage of wealth traded in each

period. It thus indicates the transaction costs belonging to the investment strategy as well as

the stability of the weights over the investment period. In general, and especially for a long-term

investor such as NN, a low TO is preferred over a high TO.

To indicate stability, we also examine the optimal weights as such. The difference between

the optimal weights over time is purely caused by the use of a different information set and is

thus independent of the realized return and risk in that year. Therefore, the weights indicate

how stable the strategy is to the use of different information sets. We compare the optimal

weights over time and evaluate the difference when using an expanding window estimation in

the Sensitivity Analysis.

5 Results

The analysis of our results is split into two parts. We start with a discussion of the scenar-

ios generated using Filtered Historical Simulation (FHS), after which we discuss the optimal

portfolios resulting from the SCR, CVaR and Worst-Case methods. We end with a Sensitivity

Analysis in which we show and compare the results using alternative settings.
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5.1 Simulation results

We start the FHS method by selecting the most appropriate conditional volatility model from

the six considered options: ARMA(0,0)-GARCH(1,1)1 versus ARMA(1,0)-GARCH(1,1) ver-

sus ARMA(1,1)-GARCH(1,1) specification using either the normal distribution or the semi-

parametric distribution.

We first select the ARMA order based on the Akaike and the Bayes information criteria.

The results in Table 6 show that the ARMA(0,0) specification is the most appropriate model.

The values of the AIC are the same for all three specifications, meaning that the gain in log-

likelihood is evened out by the loss of using extra parameters in the return model. The BIC

penalizes the use of extra parameters more extremely, and therefore favors the model with the

least number of parameters, in this case, ARMA(0,0).

Table 6: Information criteria for different ARMA orders
GOV CB RE EQ MO Av.

AIC (0,0) -7.07 -7.70 -3.89 -4.22 -7.63 -6.10
(1,0) -7.06 -7.71 -3.88 -4.22 -7.63 -6.10
(1,1) -7.06 -7.71 -3.88 -4.22 -7.63 -6.10

BIC (0,0) -7.01 -7.65 -3.84 -4.17 -7.58 -6.05
(1,0) -6.99 -7.64 -3.81 -4.15 -7.56 -6.03
(1,1) -6.98 -7.62 -3.79 -4.14 -7.55 -6.02

Results are given for GARCH(1,1) order including mean, non-parametric estimation.

Based on the goodness of fit measures and the data statistics of the full dataset, as shown in

Table 7, the normal distribution assumption does not hold and we base our estimations on the

semi-parametric distribution. In the sample set, the Jarque-Bera test fails to reject the normal

assumption on a 5% significance level for Government bonds. However, the full dataset rejects

the normal assumption for all asset classes and we thus follow these directions in selecting our

model settings.

Table 7: Tests for normality
GOV CB RE EQ MO

Sample set
Shapiro stat. 0.99 0.98 0.93 0.91 0.66
Shapiro p-value 0.12 0.01 0.00 0.00 0.00
JB stat. 5.69 22.61 184.97 820.25 417.39
JB p-value 0.06 0.00 0.00 0.00 0.00

Full dataset
JB stat. 58.62 148.85 941.64 1209.76 1881.33
JB p-value 0.00 0.00 0.00 0.00 0.00

Results are given for ARMA(0,0)-GARCH(1,1) order including mean, non-parametric estimation. JB
refers to Jarque-Bera test.

1The models are implemented in R using the Rugarch package written by Ghalanos (2019), for more information
we refer to the CRAN documentation available via https://cran.r-project.org/package=rugarch.
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Table 8 shows the resulting GARCH coefficients’ estimates and standard errors over time. Over-

all, the ω̂ estimate is very small and β̂ is close to one. The constants ω̂ and µ̂ are varying the

most over the different assets. For the Real Estate and Equity classes, the constant ω̂ is higher

and more varying over time. Overall, the coefficients for the Mortgage class are most stable over

time and we thus expect these scenarios also to be relatively stable over time.

Table 8: Coefficient estimates GARCH model
1 2 3 4 5 6 7 8 9

GOV ω̂ 0.08 0.11 0.30 0.28 0.16 0.00 0.05 0.06 0.14
(0.36) (0.33) (0.59) (0.85) (0.31) (0.22) (0.27) (0.20) (0.05)

α̂ 0.77 0.85 0.88** 0.77** 0.72 0.66 0.88 0.68 0.53
(0.63) (0.58) (0.40) (0.39) (0.46) (0.47) (0.65) (0.49) (0.09)

β̂ 9.10*** 8.98*** 8.74*** 8.82*** 8.96*** 9.31*** 9.00*** 9.07*** 8.80***
(0.66) (0.62) (0.48) (0.52) (0.55) (0.42) (0.62) (0.50) (0.23)

µ̂ 0.45 0.51 0.98** 0.96* 0.64 1.07*** 0.92*** 0.68** 0.37
(0.40) (0.41) (0.50) (0.51) (0.42) (0.31) (0.32) (0.29) (0.28)

CB ω̂ 0.03 0.04 0.10 0.12 0.21* 0.00 0.02 0.04 0.04
(0.24) (0.18) (0.27) (0.30) (0.00) (0.20) (0.31) (0.26) (0.11)

α̂ 0.90 1.02** 1.03 0.93 1.08*** 0.80 1.33 1.43 0.80*
(0.62) (0.47) (0.64) (0.68) (0.23) (0.62) (1.49) (1.50) (0.42)

β̂ 9.01*** 8.88*** 8.76*** 8.73*** 8.05*** 9.17*** 8.66*** 8.40*** 8.84***
(0.60) (0.44) (0.66) (0.76) (0.44) (0.56) (1.27) (1.33) (0.40)

µ̂ 0.54* 0.62** 0.95*** 1.25*** 1.16*** 1.05*** 0.95*** 0.90*** 0.59***
(0.29) (0.28) (0.34) (0.34) (0.29) (0.19) (0.17) (0.17) (0.20)

RE ω̂ 3.70* 5.41* 8.53** 5.19* 5.04** 5.34** 5.68* 2.44 2.03
(1.97) (3.08) (4.27) (2.77) (2.35) (2.52) (3.26) (3.57) (2.02)

α̂ 1.70*** 1.26*** 1.27*** 2.06*** 1.17** 1.02** 1.06** 0.42 0.51
(0.48) (0.40) (0.47) (0.74) (0.49) (0.45) (0.48) (0.37) (0.33)

β̂ 8.20*** 8.44*** 8.30*** 7.80*** 8.21*** 8.20*** 8.20*** 9.14*** 9.11***
(0.44) (0.44) (0.53) (0.63) (0.59) (0.63) (0.74) (0.93) (0.57)

µ̂ 2.37 0.84 -1.05 2.30 2.93* 3.29** 2.42 2.26 1.51
(1.78) (2.08) (2.28) (1.79) (1.61) (1.46) (1.50) (1.41) (1.37)

EQ ω̂ 3.73 8.90 17.04** 17.95** 21.33** 15.66* 5.13 1.83 1.55***
(2.60) (5.80) (8.25) (8.31) (9.14) (8.33) (4.25) (1.82) (0.59)

α̂ 1.72** 1.41* 1.96* 1.88* 3.37*** 2.73** 1.20** 0.32 0.58***
(0.73) (0.85) (1.16) (1.11) (1.14) (1.26) (0.58) (0.24) (0.10)

β̂ 8.21*** 7.94*** 7.02*** 7.02*** 4.37*** 5.44*** 8.22*** 9.37*** 9.15***
(0.72) (1.07) (1.29) (1.23) (1.56) (1.86) (0.93) (0.39) (0.24)

µ̂ 3.16** 2.27 2.27 3.02 4.33*** 3.40** 1.83 2.17 2.03
(1.57) (1.94) (2.34) (2.38) (1.53) (1.48) (1.57) (1.49) (1.35)

MO ω̂ 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
(0.06) (0.04) (0.06) (0.06) (0.05) (0.05) (0.03) (0.05) (0.08)

α̂ 0.00 0.00 0.00 0.05** 0.00 0.00*** 0.00 0.00 0.00
(0.01) (0.01) (0.00) (0.02) (0.00) (0.00) (0.01) (0.01) (0.01)

β̂ 9.99*** 9.99*** 9.99*** 9.92*** 9.99*** 9.98*** 9.95*** 9.99*** 9.99***
(0.01) (0.01) (0.00) (0.03) (0.00) (0.00) (0.01) (0.01) (0.01)

µ̂ 0.80** 0.67** 0.97*** 1.29*** 1.53*** 1.63*** 1.68*** 1.57*** 1.42***
(0.33) (0.33) (0.33) (0.30) (0.27) (0.26) (0.24) (0.23) (0.25)

ω̂ × 105, α̂ × 10, β̂ × 10, µ̂ × 103. Coefficient estimates, standard errors in brackets. Superscripts *,
**, *** denote rejection of the null-hypothesis with a significance level of 10%, 5% , and 1%.

Using the coefficients as given in Table 8, we generate 1000 simulations per period. We generate

one scenario set to calculate the quantile performance measures, referred to as performance set,
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and another to be used as input for the SCR and CVaR methods, referred to as simulation set.

Table 9 shows the statistics of the simulation scenario set together with the real counterparts. We

see that the volatility of all asset classes except for Corporate Bond are matched quite accurately

with the real estimates. The volatility of the Corporate Bond is somewhat overestimated.

This is mostly caused by years four, five and nine in which the real standard deviation is also

high. However, in the other years, the volatility is matched quite accurately. Figure C.1 in the

Appendix plots the simulation scenario set and real compound returns over time. Except for

Corporate Bonds in 2015 and Mortgages in the last year, the real returns are captured within

the 0.5% to 99.5% quantiles of the simulations. Table C.1 and Figure C.2 in the Appendix show

the same results for the performance set. These results are very analogous and show the same

patterns as the simulation set discussed here.

Table 9: Statistics simulated versus real returns simulation set
1 2 3 4 5 6 7 8 9 av.

GOV std. real 4.61 3.09 20.05 20.84 4.02 7.41 4.49 26.94 29.35 13.42
sim 4.60 3.52 22.07 23.62 3.74 4.74 3.46 23.22 22.60 12.40

mean real 0.59 9.97 6.48 0.58 8.23 1.95 0.38 -2.92 3.11 3.15
sim 3.21 3.71 5.54 6.17 4.23 5.50 4.94 3.62 1.74 4.30

CB std. real 3.21 5.11 3.34 14.38 18.00 1.98 3.66 2.75 15.90 7.59
sim 3.84 6.21 4.40 27.24 24.81 3.62 5.53 3.75 22.19 11.29

mean real 0.86 8.24 6.27 2.99 6.78 -1.64 3.95 0.40 0.15 3.11
sim 3.30 3.78 5.32 6.62 6.56 5.37 3.53 3.48 2.43 4.49

RE std. real 15.24 2.97 2.04 1.20 16.08 17.60 2.85 4.13 2.91 7.22
sim 25.27 2.76 4.40 3.39 20.07 21.66 2.86 1.83 0.93 9.24

mean real 19.24 -11.59 15.87 15.34 31.48 -12.08 1.13 -0.94 -2.73 6.19
sim 0.53 -5.90 -14.79 -1.84 11.16 12.43 8.63 11.56 7.52 3.25

EQ std. real 21.46 21.84 2.62 2.99 2.23 16.91 16.61 2.62 3.21 10.06
sim 18.94 20.48 2.74 3.80 3.74 20.41 21.88 2.66 3.37 10.89

mean real 12.96 -12.36 8.08 22.60 14.51 -15.70 18.72 6.13 -2.81 5.79
sim -1.16 -2.29 -5.39 -2.65 8.80 7.62 4.58 9.71 8.35 3.06

MO std. real 2.02 12.78 12.65 3.43 2.16 1.54 12.81 13.62 2.72 7.08
sim 2.43 16.43 16.70 2.54 3.19 2.16 16.44 16.95 2.80 8.85

mean real 2.08 9.57 8.79 9.84 12.87 5.78 5.28 4.66 -0.47 6.49
sim 4.12 3.58 5.29 6.87 8.28 8.69 9.44 8.50 7.88 6.96

Std.: annualized standard deviation in weekly returns within the respective year. Mean: compound
end-of-horizon return over the respective year. Av.: arithmetic average value over the investment
period. All values in %, J = 1000.

To deal with uncertainty in the parameter estimates of the GARCH model, we implement the

Worst-Case method by generating multiple scenario sets. These are based on shocked realizations

of the coefficients, dependent on their estimates and standard errors from Table 8. To ensure

the appropriate restrictions in the GARCH model still hold, we first transform2 the coefficients
2To ensure ω, α, β > 0 and α+β < 1 also hold for the shocked realizations of the estimates, we first transform

the coefficients using ln(x) and ln(x) - ln(1 - x) and then add a shock to these altered estimates. The variances
of the transformed coefficients are determined using the Delta method.
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before adding the shock. Table C.2 in the Appendix shows the worst-case realizations of these

estimates. The estimates for ω̂, α̂ and β̂ all change in the positive as well as the negative

direction in comparison to the respective estimates from Table 8. The estimates for µ̂ however

almost always change in a negative direction. This is understandable as µ̂ has the most direct

influence on the objective value of the optimization and we used this as criteria for the selection

of the worst-case scenario set.

5.2 Portfolio optimization results

We now discuss the results of optimizing the portfolio allocation using the SCR, CVaR and

Worst-Case methods3 and use the outcomes to answer our research questions as were stated

in the Introduction. Table 10 shows the summarized results of the performance measures and

optimal weights for all three methods. Detailed results are given in Table 11.

5.2.1 The effect of incorporating uncertainty: SCR vs CVaR

To see how incorporating uncertainty around returns affects portfolio performance, we compare

the results of the SCR and CVaR method in Table 10. In terms of average realized return, the

two methods only differ by four basis points in favor of CVaR (4.32% as opposed to 4.28%). In

terms of risk measures, the CVaR method also performs slightly better than the SCR method.

The CVaR method attains values of 12.09, 2.96 and 6.19 for the SR, SRc, and SII respectively.

The SCR method reaches 11.97, 2.27 and 5.77 for the respective measures opposingly. Thus, even

though the differences are small, they all point into the direction of the method that incorporates

uncertainty. The dispersion in terms of return is somewhat smaller and at a higher level for CVaR

as opposed to SCR. In terms of solvency ratio, the range is smaller in the SCR method but also

at a lower level. We notice that for both methods, even in the 0.5% quantile, the SII ratio does

not fall below the desired minimum value of 2. Lastly, the turnover percentage is approximately

the same for both methods, 11.82% and 11.78% for the SCR and CVaR methods respectively,

yet again in favor of the CVaR method. This roughly means that we cannot distinguish the

two methods based on expected transaction costs. Also, the stochastic method does not lead to

significantly more stable weights over the investment period. In general, the optimal weights are

much alike and even equivalent in three of the five asset classes. The average asset mixes only
3The optimization problems are implemented using the ROI package written by Hornik, Meyer, Theussl

and Wuertz (2019), for more information we refer to the CRAN documentation available via https://cran.r-
project.org/package=ROI. The solver used for SCR optimization is the Augmented Lagrangian Adaptive Barrier
Minimization Algorithm (Alabama) written by Varadhan (2015), intended for optimizing smooth nonlinear ob-
jective functions with constraints, for more information we refer to https://cran.r-project.org/package=alabama.
The solver used for CVaR optimization is GNU Linear Programming Kit (GLPK) written by Theussl and Hornik
(2019), intended for solving large-scale linear programming, for more information we refer to https://cran.r-
project.org/package=Rglpk.
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differ by a maximum of 1%. This similarity can be explained by the fact that both methods use

the same input in the objective function, namely the average simulated return.

Overall, the results indicate strong similarity between the two methods. Yet, the differences

on all four measures are in favor of the CVaR method. Together, the results indicate that

incorporating uncertainty in returns only slightly enhances performance.

5.2.2 The effect of incorporating parameter uncertainty: CVaR vs Worst-Case

Next, we turn to the effect of incorporating parameter uncertainty on portfolio performance.

We compare the results of the CVaR and Worst-Case methods in Table 10. We find that

the Worst-Case method has an average realized return that is four basis points higher than

the CVaR method, 4.36% versus 4.32% respectively. In this comparison, the risk measures

indicate contradictory results. The Sharpe ratio for the Worst-Case method (15.47) is higher

than in the case of the CVaR method (12.09). However, in terms of the CVaR Sharpe ratio and

the solvency ratio, the CVaR method performs better (2.96 and 6.19 opposing 2.00 and 5.88

respectively). We had yet expected the Worst-Case method to perform better in terms of risk

as the method is based on worst-case realizations and should thus turn to safer asset classes to

meet its restrictions. The dispersion in returns in the Worst-Case method is approximately three

percent points smaller but also at a lower level respective to the CVaR method. For the solvency

ratios, the same trend is visible but the differences between the two methods are less strong. In

practice, the value of knowing the return and risk with more certainty could be important to a

risk-averse investor. Therefore, an investor might be willing to accept somewhat lower returns

if the results are more certain in that case. We notice that again none of the solvency ratios fall

below the desired minimum value of 2.

Next, we consider the stability of the weights over time. The Worst-Case method has a

turnover of 12.01% as opposed to 11.78% in the CVaR method. This means that the CVaR

method attains somewhat more stable weights over time. In general, the difference in optimal

asset mixes between these two methods is larger than the difference between the SCR and CVaR

methods. We specifically invest more in Corporate Bonds and less in the other classes in the

Worst-Case method as opposed to the CVaR method. The larger difference is explained by

the fact that in this comparison, the input in the objective functions is not equivalent. The

CVaR method uses the average returns in the standard simulation scenario set, whereas the

Worst-Case method uses another scenario set that is based on the worst-case realization of the

GARCH parameters.

Overall, the Worst-Case method leads to somewhat higher return, Sharpe ratio and smaller
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dispersion of return and solvency ratio. Though the SRc and SII are lower and the turnover

percentage is higher compared to the CVaR method.

Summarized, comparing all three methods in Table 10, the results indicate that the Worst-Case

method leads to the highest return. The average return is 4.36% as opposed to 4.28% and

4.32% for the SCR and CVaR method respectively. Based on the traditional Sharpe ratio, the

Worst-Case method outperforms the other two methods. And, in terms of dispersion, the ranges

of both the return and SII quantiles are the smallest and thus the results the most certain. On

average, all methods invest most capital in Mortgages and invest no capital in Equity. All in all,

incorporating uncertainty in returns as well as parameter uncertainty leads to slightly enhanced

performance.

Table 10: Summary portfolio results
SCR CVaR WC

Return R (%) 4.28 4.32 4.36
Risk SR 11.97 12.09 15.47

SRc 2.27 2.96 2.00
SII 5.77 6.19 5.88

Dispersion R0.5 (%) -1.76 -1.68 -1.90
R50 (%) 6.02 6.03 5.15
R95.5 (%) 14.69 14.66 11.64
SII0.5 4.03 4.44 3.50
SII50 6.48 6.96 6.00
SII95.5 8.84 9.41 8.04

Stability TO (%) 11.82 11.78 12.01
Weights wgov(%) 32 32 30

wcb (%) 24 23 28
wre (%) 4 4 2
weq (%) 0 0 0
wmo (%) 39 40 39

All values are the (arithmetic) average values over the investment period. The SRc is shown in positive
sense, according to the convention of displaying risk measures.

5.2.3 Detailed results

To get an idea of how consistent the results are over time, we present the outcomes of the

measures over the investment period in the detailed overview in Table 11. As each year uses a

different set of information as input for its scenarios and therefore the portfolio optimization,

these results also show how dependent the optimization is on its given input.

Table 11a shows the return and risk measures of all three methods over time. In general, we

see that the entire period has been fruitful as (almost) each decision leads to positive returns

and high SII ratios. The fifth year (February 2014 to February 2015) yields the best annual
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returns, where year nine (February 2018 to February 2019) yields the worst annual returns. We

notice that both the return and the risk measures fluctuate quite strongly over time for all three

methods. Nonetheless, also at each moment in time, the difference between the SCR and CVaR

methods is again very small and we see the same trends as were visible for the averages. In all

years, CVaR slightly outperforms (or equals) SCR in terms of return and risk measures.

Comparing the CVaR to the Worst-Case method, the results point towards different direc-

tions each year. In years one, three, four, and six, both the return and all three risk measures

point at the Worst-Case method. The Worst-Case method yields the lowest volatility within

all years. Furthermore, it is best able to cope with the lower returns in year nine, yielding a

return of 0.83%, whereas the other two methods yield a return of 0.37%. However, we had

expected the Worst-Case method to persistently outperform the other methods in years with

lower realizations of returns, which is not the case in year eight. In this year, the Worst-Case

method performs worse than both CVaR and SCR, and even results in negative realized return.

The Worst-Case method strongly decreased its weight in Mortgages and increased its weight in

Government Bonds in this year. The statistics in Table 9 show that exactly in this year, the

returns for these two asset classes were low relative to Mortgages.

The differences between the results over time can be explained by the fact that each year uses

a different set of information as input for its scenarios and therefore optimization. To determine

whether the results are more stable over time when using a more comparable information set,

we evaluate the results when using an expanding window estimation in the Sensitivity Analysis.

Overall, the results in Table 11a indicate that the influence of incorporating stochasticity into

an optimization method depends on which information set is used.

To see what influence the constraints had on the optimal portfolio mix, we report which con-

straints were binding in which cases in Table 11b. We notice that the risk constraint was never

binding in the SCR method and only once in the CVaR method. This explains even better why

the two methods generate such similar results, as the difference between the two is (only) in

the risk constraint. Instead, the duration constraint was binding five out of nine times in both

methods and the weight constraints were binding 32 and 31 times out of 90 in the SCR and

CVaR methods respectively. When we implement the worst-case realization of the scenarios,

the risk constraint is binding more often (four out of nine times). As a result, the duration and

weight constraints are binding in fewer cases.

We notice that for some years the weights in the Worst-Case method do not sum to 100%,

meaning that the imposed constraints do not lead to a feasible solution. This is the case in three
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Table 11: Detailed portfolio results
Time 1 2 3 4 5 6 7 8 9 av.

a) Measures over time
SCR R (%) 1.37 9.15 6.72 3.85 10.69 1.18 3.25 1.91 0.37 4.28

SR 3.51 16.38 14.45 10.97 45.59 2.52 8.37 4.81 1.17 11.97
Vol. (%) 0.39 0.56 0.47 0.35 0.23 0.47 0.39 0.40 0.32 0.40
SRc 0.24 2.02 0.89 0.84 11.33 10.25 0.84 -6.71 0.73 2.27
CVaR (%) 5.75 4.54 7.52 4.60 0.94 0.12 3.88 -0.28 0.51 3.06
SII 4.03 3.09 3.20 4.08 4.09 3.75 5.45 8.60 15.64 5.77

CVaR R (%) 1.37 9.15 6.75 3.93 10.76 1.26 3.27 1.98 0.37 4.32
SR 3.51 16.38 14.69 11.27 45.58 2.71 8.41 5.05 1.17 12.09
Vol. (%) 0.39 0.56 0.46 0.35 0.24 0.47 0.39 0.39 0.32 0.40
SRc 0.24 2.02 0.91 0.88 12.51 13.65 0.91 -5.31 0.86 2.96
CVaR (%) 5.75 4.54 7.43 4.47 0.86 0.09 3.60 -0.37 0.43 2.98
SII 4.03 3.09 3.30 4.22 4.23 3.87 5.63 9.33 17.99 6.19

WC R (%) 1.72 8.18 7.21 5.61 10.19 2.25 3.24 -0.02 0.83 4.36
SR 4.72 17.91 28.36 18.06 45.65 7.80 13.06 -0.05 3.77 15.47
Vol. (%) 0.37 0.46 0.25 0.31 0.22 0.29 0.25 0.34 0.22 0.30
SRc 0.35 2.15 1.58 2.67 11.52 -0.93 0.38 -0.01 0.30 2.00
CVaR (%) 4.90 3.80 4.56 2.10 0.88 -2.43 8.47 3.10 2.76 3.13
SII 4.50 3.06 6.47 5.54 7.33 5.69 6.81 6.61 6.95 5.88

b) Constraints and weights over time
SCR Risk no no no no no no no no no 0

Duration no no no no yes yes yes yes yes 5
Weights 5 4 4 4 3 3 3 3 3 32
wtotal (%) 100 100 100 100 100 100 100 100 100 100
wgov(%) 33 34 44 34 27 31 30 30 26 32
wcb (%) 32 42 41 41 31 20 9 0 0 24
wre (%) 1 0 0 0 5 11 10 9 4 4
weq (%) 0 0 0 0 1 0 0 0 0 0
wmo (%) 34 24 14 25 36 39 50 61 70 39

CVaR Risk no no yes no no no no no no 1
Duration no no no no yes yes yes yes yes 5
Weights 5 4 3 4 3 3 3 3 3 31
wtotal (%) 100 100 100 100 100 100 100 100 100 100
wgov(%) 33 34 44 34 27 31 30 29 25 32
wcb (%) 32 42 40 40 30 19 8 0 0 23
wre (%) 1 0 0 0 5 11 10 8 3 4
weq (%) 0 0 0 0 1 0 0 0 0 0
wmo (%) 34 24 15 26 37 40 52 63 72 40

WC Risk yes yes yes yes no no no no no 4
Duration no yes yes no no yes no no no 3
Weights 3 1 2 2 4 3 4 4 4 27
wtotal (%) 95 100 94 94 100 100 100 100 100 98
wgov(%) 33 26 27 32 23 22 32 41 30 30
wcb (%) 24 28 18 16 27 36 35 30 35 28
wre (%) 3 5 1 0 0 0 0 5 0 2
weq (%) 0 0 0 4 0 0 0 0 0 0
wmo (%) 34 41 48 42 51 42 33 24 35 39

SRc and CVaR are shown in positive sense, according to the convention of displaying risk measures.
Risk and duration indicate whether the respective constraints were binding in that year; weights
indicates how many of the five minimum and maximum weight constraints (thus 10 in total) were
binding in that year. For the average column, the presented (de)nominators do not divide to the
value of the ratios themselves, as the ratio is a nonlinear transformation. The best performance over
the three methods is printed in boldface. When two methods give equal results, we select the simplest
method (thus SCR over CVaR and CVaR over Worst-Case).
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out of the four instances in which the risk constraint was binding. This is not surprising as this

method is based on the worst-case realization of the GARCH parameters. Hence, the simulated

returns are also lower, making it more difficult to satisfy the CVaR constraint. In practice, a

total weight of less than 100% would imply that we would not fully invest our capital and hold

some of it as cash. As a result, we do not have to calculate a value for the SCR or other risk

measures over this capital, but we also do not earn any return.

When looking at the weights over time in Table 11b, we recognize a momentum strategy. The

objective in each optimization method is to maximize expected end-of-horizon return. The

expected return is calculated as the average over the 1000 simulations at that time. As the

simulations at each moment in time depend on the movements of the asset classes within the

given sample period, the strategies could also be interpreted as momentum. We recognize this

strategy in our results, as in case the returns of a specific asset class have been negative in the

previous period, the scenario returns in the next year are lower and the optimal weights tend to

not go into this asset class and vice versa. For now, we leave the reader with the note to keep

this facet in mind when drawing conclusions from the results. The question as to whether this

investment strategy is the most appropriate is left for other research.

Overall, we see that also in each separate year, the weights from the SCR and CVaR methods

are similar to one another. Both methods first decrease and then increase their weight in

Mortgages, while for Government Bonds and Corporate Bonds the trend is the opposite. The

Worst-Case method fluctuates its direction in the weight of all classes over the years. All three

methods only invest in Equity once, this can be explained by the fact that all constraints relate

negatively to this asset class. In particular, it has no duration, its maximum change respective

to the previous allocation is 5% and we start with a weight of 4%. In terms of risk constraint,

Equity has an SCR shock of 39% (the strongest shock among all asset classes) and the scenarios

are highly dispersed, making it harder to satisfy the CVaR constraint with much weight in

Equity. In practice, it would not be realistic to not invest in a certain asset class at all, as one

would want to diversify its assets over all possible classes.

5.3 Sensitivity analysis: The influence of the information set

In the analyses executed until now, we use a fixed rolling window approach to estimate the

GARCH model parameters over time. This choice was made so that we use the same number

of observations for each period and hence the estimation results can be compared over time.

However, in practice, one usually prefers to exploit all information available at that time instead
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of only a subset. Therefore, we evaluate here to what extent the simulation, as well as the

portfolio optimization results, change if we use an expanding rolling window approach for the

estimation of the GARCH model parameters.

5.3.1 Simulation results

We compare the coefficient estimates and standard errors in Table 8 to those using the ex-

panding window estimation in Table C.3 in the Appendix. The results for the first period are

naturally equivalent as, in this year, the same sample set is used for estimation. In general, we

see that the estimates of the expanding window estimation are rather stable over time. This

result is understandable, as the information set in the expanding window case is also more

comparable over time as you only add an extra year to the sample set (and not remove the

earliest year). Therefore, we expect more stable scenarios and thus asset mixes in this case as

well. For Government Bonds, the standard errors are generally larger than in the case of fixed

window estimation, whereas for the other four classes it is the other way around. This indicates

that for the other four classes, the model estimates still improve when adding information. For

Government Bonds, on the other hand, adding more years leads to more uncertainty around

these parameters. This observation could indicate model misspecification for this asset class.

Another notable result is the standard error of the α coefficient for Government Bonds in the

second year, which is approximately 15 times larger than its estimate. Consequently, we see in

Table C.5 in the Appendix that the respective Worst-Case realization is the most extreme value

among all realizations for α. The rest of the trends in these realizations are the same as in the

fixed window case.

Using the coefficients given in Table C.3, we again generate a so-called simulation scenario set.

The statistics are given in Table C.4 in the Appendix, which we compare to the results of the

simulation set based on fixed window estimation in Table 9. We see that the volatility match of

the Corporate Bond and Real Estate classes has improved, while for the other three classes the

simulated average volatilities have moved away from their real values. We notice that in terms of

mean return, the simulations of the Real Estate and Equity classes strongly underestimate their

real values and do not fluctuate as much. Figure C.3 in the Appendix shows that the scenarios

are more stable over time, as we had already expected based on the more stable coefficient

estimates. We foresee that this trend will again be visible in the optimal asset mixes.
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5.3.2 Portfolio optimization results

Next, we show the summary results of the portfolio optimization using an expanding window in

Table 12. Note that, to calculate the dispersion measures, we use the same performance scenario

set for both tables so that we can appropriately compare the results.

We first compare the three methods within the expanding window setting. We find that,

rounded to percentage points, the SCR and CVaR methods obtain equivalent optimal asset

mixes. This implies that when using an expanding window estimation, there is no effect of

including uncertainty in returns in the portfolio optimization. This observation contrasts with

both our expectations and findings in the fixed window case. Furthermore, the SCR and CVaR

methods outperform the Worst-Case method in all four measures. The dispersion in solvency

ratio is larger for the SCR and CVaR methods. However, the range lies, as a whole, far above

the range in the Worst-Case method (21.25-34.69 as opposed to 3.44-8.33) and thus favors the

SCR and CVaR results over the outcome of the Worst-Case method. All in all, these results

indicate that the effect of incorporating any uncertainty disappears when using an expanding

window estimation.

Next, to examine the effect of using an expanding versus a fixed window estimation, we compare

the results in Table 12 to the results in Table 10. We find that for the SCR and CVaR methods,

in terms of all measures except for the CVaR solvency ratio, the expanding window results are

better than their counterparts in the fixed window case. Even though the dispersion of the

solvency ratios is larger, the range lies again, as a whole, above the ranges in the fixed window

case (21.25-34.68 as opposed to 4.03-8.84 and 4.44-9.41). The higher solvency ratios indicate

that the mixes resulting from this method not only gave better returns but also had a lower risk.

We specifically notice that the weights are more stable over time, with a turnover percentage

of 8.08% as opposed to 11.82% and 11.78% in the fixed window case. This agrees with what

we had expected, as the information set that is used as input for the scenario generation is also

relatively similar over time. Overall, the weights move from Government Bonds and Corporate

Bonds to Mortgages, resulting in an average weight in Mortgages of 65%. In practice, this might

cause implementation issues as Mortgages are only limited available. We also notice that there

is almost no weight in Real Estate and Equity. This observation is in line with what we found

in the fixed window case as well as with our conclusions from the scenario statistics in Table

C.4. We saw that the simulations underestimated the actual returns for these two asset classes

and therefore make them unattractive in the optimization definition.

For the Worst-Case method, we again find contradictory results. We observe that in terms of
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realized return and SII, the expanding window performs better than its counterparts in the fixed

window case. However, in terms of both Sharpe ratios, dispersion in both return and solvency

ratio and stability, the expanding window performs worse than the fixed window case.

Table 12: Summary portfolio results using expanding window
SCR CVaR WC

Return R (%) 5.33 5.33 4.54
Risk SR 16.32 16.32 14.84

SRc 1.61 1.61 1.14
SII 26.87 26.87 6.11

Dispersion R0.5 (%) -0.62 -0.62 -1.82
R50 (%) 6.19 6.19 5.26
R95.5 (%) 13.48 13.48 12.26
SII0.5 21.25 21.25 3.44
SII50 28.25 28.25 5.99
SII95.5 34.68 34.68 8.33

Dispersion TO (%) 8.08 8.08 13.10
Weights wgov(%) 27 27 33

wcb (%) 8 8 28
wre (%) 1 1 1
weq (%) 0 0 1
wmo (%) 65 65 36

All values are the (arithmetic) average values over the investment period. The SRc is shown in positive
sense, according to the convention of displaying risk measures.

The results over time can be found in the detailed overview in Table C.6 in the Appendix. We

observe that in none of the nine years, the risk constraint in either the SCR or CVaR method

is binding. This explains why the two methods come to equivalent optimal asset mixes, as the

input in the objective function as well as all the other constraints are also equivalent. Further-

more, we notice that especially the SCR and CVaR methods have a lot of weight in Mortgages

in the last five years (up to 77%). The outcomes in the first year are logically equal to the results

in the fixed window case as we use the same information set in this year.

To sum up, we state that the choice of information set definitely influences the results. For all

asset classes except for Government Bonds, the coefficients have lower standard errors in the

expanding window case. For the Corporate Bond and Real Estate classes, it creates scenarios

with better-matched volatility. In the portfolio results, the direction of the influence depends

on what stochastic method you choose. In case you only include uncertainty in returns, the

outcomes improve when expanding the estimation window. Nonetheless, when also including

parameter uncertainty in the optimization method, the expanding window estimation does not

consistently enhance performance on all metrics.

Within the expanding window estimation, the SCR and CVaR methods come to the same
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optimal asset mixes. The risk constraints in both these methods are never binding, which

explains this equivalence. Together, these two methods outperform the Worst-Case method.

This outcome contrasts with what we found in the fixed window case, where the Worst-Case

method generally outperformed the SCR and CVaR methods.

5.4 Sensitivity analysis: The influence of the constraints

The optimization results so far showed that the constraints on weights and duration are often

binding while the risk constraint is not. However, the uncertainty in returns is only incorporated

in the risk constraint and not in the other restrictions. Hence, incorporating stochasticity in

this way has little impact on the outcomes. Moreover, the constraints on weights and duration

are not hard but rather a preference in practice. For these reasons, we are interested in the

behavior of the different methods with more binding risk constraints and the general impact of

the restrictions on the results. We expect that once the risk constraint is binding more often,

the difference between the three methods also becomes stronger.

To investigate this, we create five alternatives to the standard problem definition (referred

to as panel A here). All alternatives eliminate one or more constraints from the set as described

in equation B.1. The upper part of Table 13 shows the resulting panels and which constraints

they exclude. The full investment and risk constraint, in terms of either SCR or CVaR, are

included in all cases. The lower part of Table 13 gives an overview of the summary results of all

panels. We added the information about which constraints were binding in the optimization to

the summary results as these are particularly interesting in this analysis. The detailed results of

each panel are given in Tables C.7 to C.11 in the Appendix. The main goal of this paper was to

find the effect of incorporating (parameter) uncertainty in portfolio optimization. We therefore

compare the three different optimization methods within each panel. Nonetheless, we are also

interested to know what effect (ignoring) each constraint has on the outcome of a certain method

and, therefore, compare the results of each method in all panels.

We explicitly pay attention to the implementation of the Worst-Case method in this case.

Here, for all five panels, we use the same worst-case scenario set as was selected based on the

standard problem definition (thus including all constraints). Because leaving out constraints

usually also results in a larger feasible region; the objective values of the different scenario sets

could also be different. Therefore, if we would determine the worst-case scenario in each panel

separately, we could end up with a different set per panel. However, to ensure that the results

are comparable over the different panels, we use the same scenario set as was selected in the

standard case but optimize under fewer constraints.
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5.4.1 The influence on the effect of uncertainty: comparison methods

We start with a comparison of the three methods within the different panels. The summarized

results in Table 13 generally show that the Worst-Case method obtains the lowest realized re-

turn among the three methods. In three out of five panels, the CVaR has the highest realized

return, whereas, in the other two panels, the SCR method obtains the highest return. The risk

measures all give very contradictory results. In terms of dispersion in return, the Worst-Case

method has the smallest range in all five panels. However, we note that the levels of the quantiles

are overall also lower than in the other two methods. The Worst-Case method outperforms the

SCR and CVaR methods on stability over time. This result is even stronger in the more extreme

cases, such as in panels D and F. Besides, in these two panels, the risk constraint is binding in

most cases. As a result, as was anticipated, the performances also differ most between the three

methods in these two panels. However, since panels D and F allow short-selling, the resulting

weights become unrealistic in practice. We therefore focus on panels B, C, and E from here on.

Overall, within panel B, the CVaR method leads to the asset mixes with the highest return,

whereas the Worst-Case method leads to the lowest risk. The CVaR method leads to a realized

average return of 4.60% as opposed to 4.56% and 2.99% for the SCR and Worst-Case methods

respectively. Even though all three risk ratios are highest for the CVaR method, the Worst-

Case has lower risk in terms of volatility and CVaR as such. The Worst-Case method has a

volatility and CVaR of 0.30% and 3.13%, whereas the SCR and CVaR methods come to values

of 0.52% and 4.28%, and 0.49% and 3.84% for volatility and CVaR respectively. The dispersion

in both returns and solvency ratios is smaller but also at a lower level in the Worst-Case method

compared to the CVaR method. The asset mixes in the SCR and CVaR methods are rather

similar, whereas the Worst-Case method clearly has lower weight in Mortgages and more in

Corporate Bonds. This is not surprising, because in the Worst-Case method the risk constraint

is always binding, whereas, in the SCR and CVaR methods it is only binding once and three

times respectively. As a consequence, when leaving out the constraint on weight changes, the

risk constraint has a stronger effect on the outcomes in the Worst-Case method.

Within panel C, all measures except for the realized average return point into the direction

of the Worst-Case method. The realized return is highest for the CVaR method, with a return

of 4.32% as opposed to 4.29% and 3.87% for the SCR and Worst-Case methods respectively.

The risk ratios, as well as the risk values as such, are superior for the Worst-Case method in

comparison to the other two methods. Moreover, the dispersion in return and solvency ratio

is smaller and/or at a higher level for the Worst-Case method. Overall, this means that when
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excluding the restriction on average duration, incorporating parameter uncertainty reduces the

risk and dispersion of the results. Comparing the weights independently, the Worst-Case method

specifically places more weight in Government Bonds and less in the other four classes compared

to the other two methods. In general, panel C has the least number of binding risk constraints

and, as a result, the weights are most comparable between the three methods.

Lastly, we compare the three methods when excluding both the constraints on weights and

duration (panel E). We find that in this case, the SCR method has the highest realized return

(5.45% as opposed to 5.29% and 3.23% for the CVaR and Worst-Case methods). However, the

Worst-Case method leads to lower risk, since almost all risk ratios and risks values as such are

enhanced compared to the other two methods. Especially the dispersion in returns is also smaller

for the Worst-Case method. On top of that, the turnover percentage is lower for the Worst-Case

method (43.24% as opposed to 60.10% and 60.81% for SCR and CVaR respectively). The weights

alone are rather different comparing the three methods. Furthermore, compared to panels B

and C, the differences between the three methods are the largest. This panel also has the most

binding risk constraints relative to the other panels, thus this result is not surprising. The Worst-

Case method clearly invests less in Mortgages and Real Estate, and more in Corporate Bonds

compared to the other two methods. All in all, these results indicate that when loosening the

supplementary constraints, incorporating uncertainty in portfolio optimization becomes more

effective.

5.4.2 The influence on portfolio optimization: comparison panels

Next, we turn to comparing the five panels within each method. As mentioned above, the results

for panels D and F are less realistic and hence less comparable over the different panels. Thus,

for these panels, we mostly focus on the differences in the number of binding constraints and the

weights as such. We see that panels B and C still do not have many binding risk constraints.

Also, the asset mixes are relatively similar to those in the standard case. In panels D, E and

F the differences are larger. We notice that again the weights in the Worst-Case method do

not always sum to 100%. As ignoring restrictions generally broadens the feasible region of the

optimization problem, we had expected the sum of the weights to go closer to 100% over the

different panels. However, the opposite trend is found in the results. Naturally, the turnover is

higher in panels B to F in comparison to the standard case, as the weights are less restricted.

Therefore, even though in some cases the realized return is higher, the transaction costs using

these strategies will be higher as well. Hence, the net return might still be lower than in the

standard case in the end.
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For the return and risk measures, we focus on comparing panels A, B, C and E. In terms of

realized return, the SCR and CVaR methods perform best in panel E, whereas the Worst-Case

method performs best in the standard panel. The latter result can be explained by the fact

that, over the different panels, the region of feasible asset allocations becomes broader. As a

consequence, this method tends to move stronger into a position that is robust to worst-case

circumstances. This allocation, however, is not necessarily one that performs well in the actual

situation. Next, based on the risk measures, the SCR method mainly performs best in panel A.

The CVaR method also performs best in panel A based on the CVaR Sharpe ratio but turns out

better in panel B for the other two measures. The measures for the Worst-Case method point

to different panels.

Comparing panel B to the standard case, in terms of average realized returns, the optimiza-

tion without constraint on weight changes is only performing better for the SCR and CVaR

method. The constraints on weight changes lead to asset mixes with better realized returns

for the Worst-Case method. The risk measures are rather comparable to the standard case and

including the constraint on weight changes enhances performance for some cases. The dispersion

is larger in all methods for the case without constraint on weight changes. The strongest differ-

ence between the two panels is in the turnover percentage, as excluding the constraint on weight

changes leads to more volatile asset mixes over time (32.40% to 45.58% as opposed to 11.78% to

12.01%). This result is not surprising as this is exactly the intention of this particular constraint.

The weights are mostly different for the SCR and CVaR methods, where the weight is moved

from Corporate Bonds to Mortgages when comparing panel A to panel B. It is remarkable that

for the Worst-Case method, even though the risk constraint has become binding nine instead of

four cases, the asset mixes are so similar between panel A and B. We had expected the optimal

weights to differ more relatively to panel A.

Next, we compare the results of panel C to those of panel A. The average realized returns

are only substantially different for the Worst-Case method, in which it is 3.87% without the

constraint on duration while it was 4.36% in the standard case. However, the dispersion in

returns is somewhat smaller in the case without constraint on duration. The risk measures are

rather different compared to the standard case, and for the SCR and CVaR method they are

better including the constraint on duration. In the Worst-Case method, the CVaR and solvency

measures are better for panel C relative to panel A. This means that the restriction on average

duration leads to less risky asset mixes when only including uncertainty in returns. The turnover

is somewhat higher relative to panel A and is similar for all three methods. Overall, the weights
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of panel C are most similar to those in the standard case. This means that the restriction on

average duration broadly has the least impact on the optimization outcomes. This is somewhat

striking since the duration constraint was binding in quite some cases within panel A.

To evaluate the effect of ignoring both the constraints on weight changes and duration, we

compare the results of panel E to those in panel A. For the SCR and CVaR methods, the realized

return increases while for the Worst-Case method, the return decreases when excluding both

these restrictions. Based on the risk measures, all methods perform better when the restrictions

are included. This implies that leaving out both the constraints on weights and duration does

not enhance performance in terms of risk for any of the three methods. This is not surprising as

the restrictions generally limit risk. The same holds for dispersion in return and solvency ratio,

the ranges become larger comparing panel E to panel A. Relative to panels B and C, the weights

in panel E are most different from those in panel A. The mixes are especially more diversified

over all five asset classes. Naturally, this also results in higher turnover percentages. We notice,

when comparing the weights of panels B and E, that once the constraint on weight changes is

left out, the duration restriction has a stronger impact on the optimization outcomes.

Tables C.7 to C.11 in the Appendix show the detailed results of panels B to F. We shortly discuss

the most striking results within these tables. Both panels B and E contain a period in which

they obtain an optimal asset mix that invests 100% in Government Bonds. As a result, since

the SCR charge for Government Bonds is zero, the total SCR value for these periods is equal to

zero as well. Because this value is the denominator in the solvency ratio, it causes the ratio to

explode. The solvency ratios for these two panels are therefore not correctly interpretable. In all

panels except for panel C, the weights are often concentrated in only two or three asset classes.

In practice, this would not be desirable as one would prefer to diversify over multiple asset classes.

Summarizing, we state that when excluding additional constraints, the effect of incorporating

uncertainty indeed becomes clearer. When ignoring the restrictions on weight changes and/or

duration, incorporating uncertainty reduces risk and in some cases also enhances return. Overall,

the constraint on weight changes has the greatest impact on the optimization outcomes.
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Table 13: Overview of summary results panels constraint sensitivities
Panel A (standard) B C D E F

weight dur. short weight dur. short weight dur. short weight dur. short weight dur. short weight dur. short
Incl. × × × × × × × × ×

SCR CVaR WC SCR CVaR WC SCR CVaR WC SCR CVaR WC SCR CVaR WC SCR CVaR WC
R (%) 4.28 4.32 4.36 4.56 4.60 2.99 4.29 4.32 3.87 8.04 11.85 1.98 5.45 5.29 3.23 13.18 11.33 2.58
SR 11.97 12.09 15.47 11.81 12.49 11.81 10.62 10.70 13.62 8.00 10.46 11.06 9.48 10.40 13.92 7.32 9.57 9.18
Vol. (%) 0.40 0.40 0.30 0.52 0.49 0.30 0.49 0.49 0.31 1.43 2.09 0.25 0.75 0.76 0.33 2.20 2.08 0.41
SRc 2.27 2.96 2.00 2.35 2.40 2.25 1.76 1.90 12.47 0.62 0.87 1.11 0.47 0.53 0.55 0.55 0.80 0.54
CVaR (%) 3.06 2.98 3.13 4.28 3.84 3.13 5.05 5.00 2.42 19.91 22.66 4.91 9.50 10.20 5.46 31.41 22.42 9.58
SII 5.77 6.19 5.88 - 26.63 16.20 3.02 3.07 7.26 2.49 1.82 1.07 - 14.67 5.73 2.67 1.73 1.81
R0.5 (%) -1.76 -1.68 -1.90 -3.13 -2.72 -2.86 -3.28 -3.25 -1.39 -15.72 -17.35 -3.56 -7.51 -8.15 -4.03 -25.92 -17.14 -7.08
R50 (%) 6.02 6.03 5.15 6.44 6.41 4.04 6.47 6.49 4.97 13.29 25.33 2.59 7.46 7.47 4.95 19.37 25.50 4.35
R95.5 (%) 14.69 14.66 11.64 17.27 16.66 10.21 18.74 18.72 11.33 49.10 78.21 7.73 25.90 26.97 13.58 75.01 78.16 13.97
SII0.5 4.03 4.44 3.50 - 14.68 6.93 1.30 1.34 4.16 -1.80 -0.10 -2.57 - 4.23 2.16 -2.22 0.07 0.07
SII50 6.48 6.96 6.00 - 27.59 17.36 3.19 3.25 7.61 2.68 1.74 0.63 - 14.36 6.23 2.62 1.84 2.08
SII95.5 8.84 9.41 8.04 - 39.84 27.37 5.06 5.12 10.68 5.28 2.98 3.51 - 24.00 9.81 5.13 3.00 3.56
TO (%) 11.82 11.78 12.01 45.58 42.95 32.40 14.70 14.56 14.59 142.06 236.18 51.54 60.10 60.81 43.24 225.00 247.98 105.06
Risk 0 1 4 1 3 9 0 1 7 8 9 6 5 7 8 9 9 8
Dur. 5 5 3 7 8 1 0 0 0 7 6 4 0 0 0 7 3 2
Weights 32 31 27 28 25 17 39 38 31 0 0 0 35 33 25 0 0 0
wtotal (%) 100 100 98 100 100 82 100 100 88 100 100 58 100 100 94 100 100 89
wgov(%) 32 32 30 35 31 27 22 22 35 85 74 28 14 8 8 23 21 -24
wcb (%) 24 23 28 8 8 27 24 23 11 -131 -400 17 8 10 48 -210 -344 91
wre (%) 4 4 2 4 4 1 7 7 4 -14 26 -3 15 16 4 -18 25 0
weq (%) 0 0 0 0 0 0 5 5 0 20 -14 1 4 7 0 32 -15 -5
wmo (%) 39 40 39 53 56 27 42 43 39 140 415 15 59 59 34 274 413 27

All values are the (arithmetic) average values over the investment period. The results of panel A are the same as in Table 10 but included here for ease of
comparison. Excluding the duration constraint implies a minimum duration of zero. Excluding the constraint on weight changes implies that the weights
are bound by a minimum of zero and a maximum of one. Excluding the short-selling constraint implies that the weights are not bound at all. The risk
and full investment constraints are always included. SRc and CVaR are shown in positive sense, according to the convention of displaying risk measures.
Risk and duration indicate whether the respective constraints were binding in that year; weights indicates how many of the five minimum and maximum
weight constraints (thus 10 in total) were binding in that year. For the average column, the presented (de)nominators do not divide to the value of the ratios
themselves, as the ratio is a nonlinear transformation. In two cases the SII ratios are removed, as in one period, the denominator of the ratio is zero and
therefore the ratio explodes.
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6 Conclusion

In this paper, we investigate the impact of uncertainty on portfolio allocation. To incorporate

uncertainty in returns, we use stochastic programming and solve a Conditional Value-at-Risk

(CVaR) constrained optimization problem (CVaR method). As input, we generate scenarios

using Filtered Historical Simulation (FHS) based on an ARMA-GARCH volatility model. We

implement a worst-case variant to the CVaR method to also capture parameter uncertainty

(Worst-Case method). We compare the results of these two stochastic methods to a determinis-

tic benchmark (SCR method) which represents a simplification of the current allocation strategy

at Nationale-Nederlanden (NN). The European legislation on insurance plays an important part

in this research. To compare performances, we measure realized return, risk, the dispersion of

these two and stability of the weights over time.

Our main finding is that, as opposed to what is stated in the literature, the loss of ignoring

uncertainty in returns is not substantial in our dataset. Moreover, adding parameter uncertainty

to the optimization method only leads to better performance in a fixed window estimation.

When using an expanding window, the SCR and CVaR methods obtain the same asset mixes

and generally outperform the Worst-Case method. This means that the effect of incorporating

uncertainty is only of value in the fixed window case. We conclude that the choice of information

set has a substantial effect on the portfolio results and should thus be taken carefully.

Most importantly, we find that the managerial and legislative restrictions have a much

stronger impact on the outcomes than the risk constraint itself. This explains why incorpo-

rating stochasticity in this way has little impact on the outcomes. When we exclude these

supplementary restrictions, incorporating uncertainty becomes more effective.

For future research, it may be beneficial to implement more in-depth studies regarding modeling

of returns as such. This paper focuses on the prediction of volatility and does not model returns

itself. Moreover, with our data, the GARCH model including an asymmetric component had

issues converging. Nonetheless, the asymmetric GARCH is probably more appropriate for some

classes, especially for the more volatile assets such as Equity. The optimization outcomes are

strongly dependent on the scenarios that are drawn from the applied prediction model and hence

it plays an important role in the outcomes of this research.

Furthermore, this paper implements two specific methods to include stochasticity in portfolio

optimization. However, many alternative approaches have been introduced in the literature

that might lead to different conclusions than the ones drawn here. Specifically, the results and
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interpretation of the robust optimization method are strongly dependent on the criterium used

to select the worst-case realization among a set of scenarios. The current method might be too

conservative, and one might come to different conclusions when using another criterium.

In the practice of investing insurance capital, the timing of liabilities plays an important role.

This research indirectly embodies matching the timing of assets and liabilities via the minimum

constraint on duration. However, implementing asset-liability management more actively may

be of great interest to investors within insurance. Lastly, the use of scenarios generated via FHS

indirectly induces a momentum investment strategy. It may be beneficial to further analyze the

influence of uncertainty under different, possibly more appropriate investment policies.
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A Data

Table A.1: Data specifics
Name Short Available

from
Bloomberg
Index

Proxy Data type Duration

Government
Bond AAA

GOV 31-12-99 let8yw index - Yield 13.5

Corporate
Bond

CB 29-03-02 lecfyw index EU non-
financial
(includes
Snr + Subs)

Yield 5.9

Real Estate RE 31-12-99 MXEU0RE
Index

MSCI Eu-
rope ex UK
Real Estate
Net Total
Return
index

Last index
price

-

Equity EQ 31-12-99 SX5T Index Eurostoxx50 Last index
price

-

Mortgages MO 03-03-05 - NN Bank
mortgage
rate (non-
NHG ≤ 90%
LTV)

Yield 5.7

Data type yield indicates the market priced expected return on the indicated asset (index); data type
last price indicates the level of the index at the end of the trading day. Yield is transformed to realized
weekly returns by the following formula: - delta yield * duration / 100 + accrued interest over past
week = -(current yield - previous yield) * duration / 100 + (previous yield / 100) * (7/365). Last
index price is transformed by the following formula: (current yield - previous yield)/previous yield.
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B Methods

B.1 Constraint set C

The set C represents the feasible solutions of xt taking into account the appropriate constraints

on regulations and liquidity. It concerns constraints based on legal requirements as well as

availability in practice and managerial preferences. The set of constraints is defined as follows:

xt ∈ C : for all t ∈ R

1Txt = 1 full investment,

dTxt ≥ Dmin minimum duration,

xt− −∆x ≤ xt ≤ xt− + ∆x maximum weight changes,

0 ≤ xt ≤ 1 no short-selling.

(B.1)

Here, R is the set of moments in time on which we optimize our asset allocation, which is in our

case equal to once a year starting after the sample set of five years. The vector d contains the

duration of the different assets and Dmin is the minimum required duration to be able to match

the assets with the liabilities. In our case, d = (13.5, 5.9, 0, 0, 5.7)T , where the Real Estate and

Equity classes do not have a duration and are thus not included in this constraint, and Dmin is

equal to 7.5. The vector ∆x contains the values with which the weights can change respective to

its previous weight per asset class, which we set equal to (10, 10, 5, 5, 10)T (in %). We define xt−

as the actual weights before rebalancing at time t and xt as the desired portfolio weights at time

t after rebalancing. Note that xt− may be different from xt−1 due to the realized returns in the

period t − 1. We start the optimizations with the current allocation at Nationale-Nederlanden

(NN), which is equal to x0 = (43, 22, 6, 4, 24)T (in %). We define 0 and 1 as the N × 1 vectors

containing only zeros and ones respectively. This set of constraints is added to each of the

problem definitions as discussed in Section 4.

B.2 Solution SCR optimization

When ignoring the additional set of constraints given by the set C, the optimization problem in

equation 1 becomes
maxxt xTt rt

s.t. xTt Ωxt ≤
[
At − Lt

(1 + λ)At

]2
= CSCR.

(B.2)
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To solve this optimization problem analytically, we set up the Lagrange function and the neces-

sary and sufficient conditions for optimality (we remove the subscript t for clearer notation):

L = xTr − κ(xTΩx− CSCR)
∂L

∂x
= r − 2κΩx = 0

∂L

∂κ
= xTΩx− CSCR = 0.

(B.3)

Solving the first equation for x gives

x = 1
2κΩ

−1r. (B.4)

Substituting this value for x in the second equation and solving for κ gives

( 1
2κΩ

−1r
)T
Ω
( 1

2κΩ
−1r

)
= CSCR

1
4κ2r

TΩ−1r = CSCR

κ =

√
rTΩ−1r

4CSCR
= 1

2

√
rTΩ−1r

CSCR
.

(B.5)

Substituting this value for κ in the first equation gives

x∗ = 1

2 · 1
2

√
rTΩ−1r

CSCR

Ω−1r = Ω−1r√
rTΩ−1r

CSCR

, (B.6)

where x∗ is the optimal solution under the SCR constraint as given in equation B.2.

B.3 VaR and CVaR under distributional assumptions

Let L represent the loss of a portfolio and suppose L ∼ N(µ, σ2). We then calculate Value-at-

Risk (VaR) by

α = Pr(L ≤ VaRα) = Pr
(
L− µ
σ
≤ VaRα − µ

σ

)
. (B.7)

The quantile of a standard normal distribution is Φ−1(α). Hence, under the assumption that L

is normally distributed, we have that

VaRα = µ+ σΦ−1(α). (B.8)
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Alternatively, suppose L ∼ t(ν, µ, σ2), which means that L− µ
σ

∼ t(ν). Similar to the case of

the normal distribution, we have that

VaRα = µ+ σt−1
ν (α). (B.9)

See example 2.14 in the book of McNeil et al. (2005).

We show the same for Conditional Value-at-Risk (CVaR), or Expected Shortfall (ES). If

L ∼ N(µ, σ2), we calculate ES by

ESα = µ+ σES0
α where ES0

α = φ(Φ−1(α))
1− α . (B.10)

And if L ∼ t(ν, µ, σ2), we have

ESα = µ+ σ
gν(t−1

ν (α))
1− α

(
ν + (t−1

ν (α))2

ν − 1

)
, (B.11)

where gν and tν are the PDF and CDF of the standard t(ν) distribution respectively. See

examples 2.18 and 2.19 in the book of McNeil et al. (2005). The equations above show that

under the assumption of normal or Student’s t-distributions, both VaR and CVaR simplify to a

linear function of mean and variance of portfolio losses.

B.4 Solution CVaR optimization under normality

We assume that xTt µt = xTt mt and σ2(xt) = xTt V xt, where mt is the vector with normally

distributed variables. We can then re-formulate the problem given in equation 5 when we assume

normality of the asset returns as:

maxxt xTt mt

s.t. − xTt mt + c2(β)
√
xTt V xt ≤ Cβ

xt ∈ C.

(B.12)
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To solve this optimization problem analytically, we set up the Lagrange function and the neces-

sary and sufficient conditions for optimality (we remove the subscript t for clearer notation):

L = xTm− λ(−xTm+ c2(β)
√
xTV x− Cβ)

∂L

∂x
= m− λ(−m+ c2(β) 1√

xTV x
V x)

= m+ λm− λc2(β) 1√
xTV x

V x = 0

∂L

∂λ
= xTm− c2(β)

√
xTV x+ Cβ = 0

(B.13)

These equations should then be solved for x numerically.

B.5 CVaR optimization according to Rockafellar and Uryasev (2000)

The problem given in equation 5 could be viewed from the perspective of the problem given by

Rockafellar and Uryasev (2000). Key to their approach is that the formulation of CVaR, defined

by

φβ(x) = (1− β)−1
∫
f(x,y)≥α(x,β)

f(x,y)p(y)dy, (B.14)

can be replaced by a much simpler function

Fβ(x, α) = α+ (1− β)−1
∫
y∈RN

[f(x,y)− α]+p(y)dy. (B.15)

Note that here α(x, β) is the VaR function of portfolio x with confidence level β and y is the

vector of uncertain prices. This notation is similar as in the paper by Rockafellar and Uryasev

(2000) while the rest of the notation is adjusted to fit with the notation used in this paper (i.e.

mean loss is referred to with l(x) instead of µ(x) to prevent confusion with mean return).

We define p(y) as the probability density function of the random vector y. In case this

function is not available in analytical form, but rather in the form of many scenarios represented

by, for example, historical observations, then the function Fβ(x, α) can be approximated by

F̃β(x, α) = α+ 1
J(1− β)

J∑
j=1

(f(x,y(j))− α)+. (B.16)

Here, J represents the previous days/months for which we have historical data and y(j) is the

vector containing the observations for all instruments on day j. The mean loss can now be

approximated by

l(x) = E[f(x,y)] = J−1
J∑
j=1

f(x,y(j)) = J−1
J∑
j=1
−[x1y

(j)
1 + ...+ xNy

(j)
N ]. (B.17)
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Uryasev (2000) shows that now, the problem of minimizing the mean loss subject to some

balance constraints x ∈ Z and a CVaR constraint with a constant Cβ at confidence level β can

be formulated as

min l(x) = J−1
J∑
j=1
−[x1y

(j)
1 + ...+ xNy

(j)
N ]

s.t. F̃β(x, α) ≤ Cβ

x ∈ Z,

(B.18)

which can then be equivalently represented by

min l(x) = J−1
J∑
j=1
−[x1y

(j)
1 + ...+ xNy

(j)
N ]

s.t. α+ 1
J(1− β)

J∑
j=1

u(j) ≤ Cβ

u(j) ≥ 0 and xTy(j) + α+ u(j) ≥ 0 for j = 1, ..., J

x ∈ Z.

(B.19)

Here, the terms (f(x,y(j)) − α)+ are replaced by auxiliary variables u(j) and additional con-

straints are imposed. It is the generation of these J scenarios and their implementation in the

constraints given in equation B.19 that makes the problem stochastic. For the proof of the

equivalence of the last two problems, see Uryasev (2000) and Rockafellar and Uryasev (2000).

As minimizing the mean loss is equivalent to maximizing the mean return, the problem given by

equation B.19 is equivalent to the problem given by equation 5. The result is that these prob-

lems are linear functions subject to linear constraints w.r.t. x and can be solved using linear

programming techniques. Alternatively, we can also formulate the problem above by minimizing

CVaR while requiring a minimum expected return (Krokhmal et al., 2002). These are equivalent

formulations of the same optimization problem in the sense that they produce the same efficient

frontier, which is traced by varying the parameter Cβ.

The above formulated problem could be compared to the standard mean-variance optimiza-

tion problem (Markowitz, 1952):

maxx µTx

s.t. xTΣx ≤ CΣ

x ∈ Z.

(B.20)

Here, µ and Σ are the sample expected return and covariance over the historical returns as also

used for the scenario generation in the CVaR optimization method.
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C Results

C.1 Simulation results

Table C.1: Statistics simulated versus real returns performance set
1 2 3 4 5 6 7 8 9 av.

GOV std. real 4.61 3.09 20.05 20.84 4.02 7.41 4.49 26.94 29.35 13.42
sim 4.53 3.44 21.80 22.71 3.72 4.70 3.47 22.47 22.01 12.10

mean real 0.59 9.97 6.48 0.58 8.23 1.95 0.38 -2.92 3.11 3.15
sim 3.53 3.78 6.21 6.21 4.28 5.59 4.70 3.46 1.66 4.38

CB std. real 3.21 5.11 3.34 14.38 18.00 1.98 3.66 2.75 15.90 7.59
sim 3.80 6.25 4.46 27.96 26.36 3.64 5.53 3.82 21.73 11.51

mean real 0.86 8.24 6.27 2.99 6.78 -1.64 3.95 0.40 0.15 3.11
sim 3.54 3.85 5.47 6.41 6.58 5.45 3.15 3.45 2.33 4.47

RE std. real 15.24 2.97 2.04 1.20 16.08 17.60 2.85 4.13 2.91 7.22
sim 25.24 2.77 4.36 3.36 19.68 21.43 2.86 1.78 0.92 9.15

mean real 19.24 -11.59 15.87 15.34 31.48 -12.08 1.13 -0.94 -2.73 6.19
sim 1.39 -4.45 -15.26 -2.07 12.35 13.80 8.19 11.71 7.76 3.71

EQ std. real 21.46 21.84 2.62 2.99 2.23 16.91 16.61 2.62 3.21 10.06
sim 18.21 19.76 2.75 3.95 3.93 20.89 22.38 2.68 3.38 10.88

mean real 12.96 -12.36 8.08 22.60 14.51 -15.70 18.72 6.13 -2.81 5.79
sim -0.31 -1.21 -6.81 -2.42 10.71 7.68 3.39 11.04 9.72 3.53

MO std. real 2.02 12.78 12.65 3.43 2.16 1.54 12.81 13.62 2.72 7.08
sim 2.50 16.55 16.80 2.56 3.18 2.16 16.24 16.76 2.82 8.84

mean real 2.08 9.57 8.79 9.84 12.87 5.78 5.28 4.66 -0.47 6.49
sim 4.32 3.57 5.15 6.88 8.09 8.56 9.40 8.63 7.52 6.90

Std.: annualized standard deviation in weekly returns within the respective year. Mean: compound
end-of-horizon return over the respective year. Av.: arithmetic average value over the investment
period. All values in %, J = 1000.
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Figure C.1: Simulated versus real returns over time simulation set
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Figure C.2: Simulated versus real returns over time performance set
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Table C.2: Coefficient realizations Worst-Case method
1 2 3 4 5 6 7 8 9

GOV ω̂ 0.18 0.00 0.26 0.06 0.27 0.15 0.01 0.41 0.15
α̂ 0.60 0.38 1.18 0.92 0.74 0.89 1.96 0.07 0.43
β̂ 9.09 9.36 7.66 8.89 9.03 8.91 7.96 9.67 8.95
µ̂ -0.39 -1.42 -0.74 -0.46 -0.79 -0.45 -0.15 -0.27 -0.46

CB ω̂ 0.02 0.12 0.30 0.21 0.36 0.00 0.04 0.27 0.09
α̂ 0.85 0.74 0.48 0.76 1.05 1.06 0.63 0.53 0.69
β̂ 9.13 9.14 9.43 8.67 7.91 8.60 0.00 0.18 9.04
µ̂ 0.06 -0.09 -0.63 0.28 -0.06 -0.18 -0.17 -0.17 -0.17

RE ω̂ 1.20 6.10 14.04 9.00 0.61 5.72 9.33 3.20 5.32
α̂ 2.06 1.24 1.22 2.02 1.60 1.42 0.88 0.97 0.59
β̂ 6.52 8.35 8.59 7.98 7.84 7.91 8.57 7.48 8.28
µ̂ -2.17 1.69 1.70 1.20 -0.52 0.44 -1.35 0.20 -0.58

EQ ω̂ 3.07 9.16 18.57 5.71 43.31 11.31 10.11 4.63 2.69
α̂ 1.61 1.36 2.17 2.28 3.52 2.73 1.88 0.21 0.41
β̂ 8.08 8.51 7.08 6.69 3.76 4.96 7.72 9.26 9.39
µ̂ -1.12 1.62 -3.24 0.83 -0.58 -0.08 0.88 -1.02 -0.42

MO ω̂ 0.04 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.06
α̂ 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01
β̂ 9.99 10.00 9.99 9.97 9.99 9.99 9.95 9.98 9.98
µ̂ -0.31 0.30 -0.01 -0.37 -0.33 -0.58 -0.36 -0.44 -0.09

ω̂ × 105, α̂× 10, β̂ × 10, µ̂× 103.

61



C.2 Sensitivity analysis: The effect of the information set

Table C.3: Coefficient estimates GARCH model using expanding window
1 2 3 4 5 6 7 8 9

GOV ω̂ 0.08 0.08 0.09 0.11 0.09 0.01 0.05 0.05 0.05
(0.36) (6.15) (0.55) (0.30) (0.49) (0.44) (0.35) (0.24) (0.28)

α̂ 0.77 0.72 0.84 0.75 0.75 0.78 0.82 0.80 0.75
(0.63) (11.32) (1.00) (0.48) (0.86) (0.94) (0.76) (0.54) (0.61)

β̂ 9.10*** 9.13 9.05*** 9.07*** 9.09*** 9.21*** 9.09*** 9.11*** 9.14***
(0.66) (12.09) (1.06) (0.53) (0.92) (0.88) (0.75) (0.53) (0.61)

µ̂ 0.45 0.41 0.51 0.55 0.48 0.84*** 0.72*** 0.62*** 0.47***
(0.40) (0.27) (0.36) (0.34) (0.31) (0.25) (0.24) (0.22) (0.21)

CB ω̂ 0.03 0.04 0.04 0.05 0.04 0.00 0.02 0.02 0.02
(0.24) (0.20) (0.29) (0.30) (0.00) (0.20) (0.31) (0.18) (0.28)

α̂ 0.90 0.86* 0.90 0.83 0.85 0.89 1.02 0.97 0.86
(0.62) (0.49) (0.75) (0.76) (0.62) (0.56) (1.06) (0.61) (0.87)

β̂ 9.01*** 9.01*** 9.02*** 9.01*** 8.98*** 9.10*** 8.94*** 8.96*** 9.05***
(0.60) (0.48) (0.73) (0.76) (0.63) (0.53) (0.96) (0.57) (0.81)

µ̂ 0.54* 0.50* 0.58** 0.67*** 0.65*** 0.91*** 0.75*** 0.73*** 0.62***
(0.29) (0.26) (0.25) (0.23) (0.21) (0.17) (0.11) (0.14) (0.17)

RE ω̂ 3.70* 3.51* 5.04** 4.17** 4.00*** 3.70*** 3.64*** 3.74*** 3.29***
(1.97) (1.83) (2.08) (1.64) (1.48) (1.33) (1.31) (1.31) (1.13)

α̂ 1.70*** 1.57*** 1.60*** 1.58*** 1.52*** 1.40*** 1.32*** 1.24*** 1.24***
(0.48) (0.45) (0.47) (0.41) (0.38) (0.33) (0.31) (0.29) (0.28)

β̂ 8.20*** 8.30*** 8.17*** 8.19*** 8.21*** 8.33*** 8.40*** 8.42*** 8.45***
(0.44) (0.42) (0.45) (0.39) (0.37) (0.34) (0.32) (0.32) (0.30)

µ̂ 2.37 2.90* 2.67* 2.71** 2.89** 3.03*** 2.71** 2.44** 2.19**
(1.78) (1.58) (1.54) (1.33) (1.21) (1.11) (1.08) (1.03) (0.95)

EQ ω̂ 3.73 4.34 7.71* 7.06* 6.04* 4.95* 4.25** 4.13** 3.19 *
(2.60) (2.95) (4.00) (3.81) (3.52) (2.70) (2.13) (1.99) (1.49)

α̂ 1.72** 1.59** 2.53** 2.17** 1.82** 1.52*** 1.30*** 1.20*** 1.21***
(0.73) (0.72) (1.05) (0.90) (0.77) (0.55) (0.40) (0.36) (0.33)

β̂ 8.21*** 8.18*** 7.13*** 7.40*** 7.72*** 8.07*** 8.34*** 8.40*** 8.49***
(0.72) (0.78) (1.06) (0.99) (0.94) (0.70) (0.50) (0.47) (0.40)

µ̂ 3.16** 3.20** 3.59** 3.36** 3.31*** 2.93*** 2.49** 2.58** 2.48***
(1.57) (1.48) (1.40) (1.34) (1.23) (1.12) (1.07) (1.02) (0.93)

MO ω̂ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
(0.06) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03)

α̂ 0.00 0.00 0.00*** 0.01*** 0.00*** 0.03*** 0.03*** 0.04*** 0.04***
(0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01)

β̂ 9.99*** 9.99*** 9.98*** 9.97*** 9.99*** 9.94*** 9.96*** 9.94*** 9.93***
(0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01)

µ̂ 0.80** 0.74** 0.82*** 0.84*** 1.11*** 1.19*** 1.28*** 1.22*** 1.19***
(0.33) (0.30) (0.27) (0.24) (0.22) (0.21) (0.19) (0.18) (0.18)

ω̂ × 105, α̂ × 10, β̂ × 10, µ̂ × 103. Coefficient estimates, standard errors in brackets. Superscripts *,
**, *** denote rejection of the null-hypothesis with a significance level of 10%, 5% , and 1%.
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Table C.4: Statistics simulated versus real returns simulation set using expanding window
1 2 3 4 5 6 7 8 9 av.

GOV std. real 4.61 3.09 20.05 20.84 4.02 7.41 4.49 26.94 29.35 13.42
sim 4.53 3.44 21.80 22.71 3.72 4.59 3.35 20.28 19.66 11.56

mean real 0.59 9.97 6.48 0.58 8.23 1.95 0.38 -2.92 3.11 3.15
sim 3.53 3.00 3.93 4.23 3.33 4.37 3.86 3.70 3.01 3.66

CB std. real 3.21 5.11 3.34 14.38 18.00 1.98 3.66 2.75 15.90 7.59
sim 3.77 6.50 4.50 24.16 21.52 3.66 4.89 3.30 20.08 10.26

mean real 0.86 8.24 6.27 2.99 6.78 -1.64 3.95 0.40 0.15 3.11
sim 3.54 3.05 3.74 4.00 3.68 4.59 3.26 3.53 3.16 3.62

RE std. real 15.24 2.97 2.04 1.20 16.08 17.60 2.85 4.13 2.91 7.22
sim 20.59 3.29 4.08 2.85 20.51 20.60 3.22 2.35 1.15 8.74

mean real 19.24 -11.59 15.87 15.34 31.48 -12.08 1.13 -0.94 -2.73 6.19
sim 1.39 3.37 0.36 2.51 4.80 6.29 4.32 5.54 4.10 3.63

EQ std. real 21.46 21.84 2.62 2.99 2.23 16.91 16.61 2.62 3.21 10.06
sim 21.80 20.64 3.08 4.02 3.51 24.11 23.43 2.89 3.59 11.90

mean real 12.96 -12.36 8.08 22.60 14.51 -15.70 18.72 6.13 -2.81 5.79
sim -0.31 2.31 1.63 2.48 3.07 4.60 0.80 5.27 4.22 2.67

MO std. real 2.02 12.78 12.65 3.43 2.16 1.54 12.81 13.62 2.72 7.08
sim 2.47 19.25 18.26 2.82 3.46 2.35 19.88 20.36 3.01 10.21

mean real 2.08 9.57 8.79 9.84 12.87 5.78 5.28 4.66 -0.47 6.49
sim 4.32 3.84 4.76 5.24 5.80 6.52 6.66 6.43 6.16 5.53

Std.: annualized standard deviation in weekly returns within the respective year. Mean: compound
end-of-horizon return over the respective year. Av.: arithmetic average value over the investment
period. All values in %, J = 1000.
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Figure C.3: Simulated versus real returns over time simulation set using expanding window
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Table C.5: Coefficient realizations Worst-Case method using expanding window
1 2 3 4 5 6 7 8 9

GOV ω̂ 0.18 0.70 0.00 0.28 0.00 0.00 0.52 0.42 0.01
α̂ 0.60 4.57 0.57 1.15 0.38 1.06 0.64 0.45 1.44
β̂ 9.09 0.00 0.00 8.69 9.01 0.00 9.35 0.00 8.51
µ̂ -0.39 -0.15 -0.20 -0.43 -0.37 -0.38 0.12 -0.18 -0.29

CB ω̂ 0.02 0.00 0.00 0.01 0.01 0.00 0.42 0.09 0.00
α̂ 0.85 0.15 0.85 1.49 0.69 1.72 0.10 0.01 0.26
β̂ 9.13 9.64 8.89 8.35 7.69 8.04 9.90 9.99 9.64
µ̂ 0.06 -0.60 0.03 0.07 -0.05 0.15 -0.07 0.02 -0.19

RE ω̂ 1.20 2.88 2.82 5.32 3.50 5.51 3.01 2.86 4.78
α̂ 2.06 1.27 1.92 1.90 1.44 1.14 1.30 1.30 1.33
β̂ 6.52 8.63 7.99 7.49 8.39 8.66 8.57 8.01 8.48
µ̂ -2.17 0.11 -1.17 0.73 0.32 -0.26 -2.39 -0.69 -0.75

EQ ω̂ 3.07 10.70 5.95 11.23 5.40 11.76 7.86 2.53 2.37
α̂ 1.61 2.09 2.54 1.55 0.77 1.46 0.98 1.30 1.34
β̂ 8.08 2.49 7.28 6.33 8.30 8.32 8.20 8.32 8.41
µ̂ -1.12 -2.64 0.16 2.59 -2.28 0.65 0.08 -0.84 -0.60

MO ω̂ 0.04 0.00 0.07 0.00 0.00 0.01 0.06 0.03 0.00
α̂ 0.00 0.00 0.00 0.01 0.00 0.06 0.03 0.04 0.02
β̂ 9.99 9.99 9.99 9.97 9.99 9.91 9.92 9.94 9.95
µ̂ -0.31 -0.53 -0.38 -0.36 -0.29 -0.25 -0.02 -0.40 -0.15

ω̂ × 105, α̂× 10, β̂ × 10, µ̂× 103.

65



Table C.6: Detailed portfolio results using expanding window
Time 1 2 3 4 5 6 7 8 9 av.

a) Measures over time
SCR R (%) 1.37 8.07 7.72 6.69 11.80 4.89 4.15 2.91 0.36 5.33

SR 3.51 17.66 28.42 19.87 38.09 16.47 14.13 7.61 1.14 16.32
Vol. (%) 0.39 0.46 0.27 0.34 0.31 0.30 0.29 0.38 0.31 0.34
SRc 0.24 2.01 1.57 3.42 18.66 -6.86 -3.06 -3.02 1.51 1.61
CVaR (%) 5.75 4.01 4.91 1.95 0.63 -0.71 -1.36 -0.97 0.24 1.61
SII 4.03 3.10 8.89 27.04 31.24 35.23 40.22 47.76 44.31 26.87

CVaR R (%) 1.37 8.07 7.72 6.69 11.80 4.89 4.15 2.91 0.36 5.33
SR 3.51 17.66 28.42 19.87 38.09 16.47 14.13 7.61 1.14 16.32
Vol. (%) 0.39 0.46 0.27 0.34 0.31 0.30 0.29 0.38 0.31 0.34
SRc 0.24 2.01 1.57 3.42 18.66 -6.86 -3.06 -3.02 1.51 1.61
CVaR (%) 5.75 4.01 4.91 1.95 0.63 -0.71 -1.36 -0.97 0.24 1.61
SII 4.03 3.10 8.89 27.04 31.24 35.23 40.22 47.76 44.31 26.87

WC R (%) 1.72 9.54 7.12 5.93 9.23 1.74 4.17 0.88 0.53 4.54
SR 4.72 17.62 18.02 16.85 48.34 5.54 17.06 3.09 2.31 14.84
Vol. (%) 0.37 0.54 0.39 0.35 0.19 0.31 0.24 0.29 0.23 0.32
SRc 0.35 2.80 1.08 1.71 3.61 -0.83 0.72 0.45 0.34 1.14
CVaR (%) 4.90 3.41 6.57 3.47 2.55 -2.09 5.77 1.95 1.56 3.12
SII 4.50 8.24 5.59 4.32 6.29 5.27 5.55 7.48 7.74 6.11

b) Constraints and weights over time
SCR Risk no no no no no no no no no 0

Duration no yes no no yes yes yes yes yes 6
Weights 5 3 4 4 3 3 3 3 3 31
wtotal (%) 100 100 100 100 100 100 100 100 100 100
wgov(%) 33 27 32 32 23 23 23 23 23 27
wcb (%) 32 23 13 2 0 0 0 0 0 8
wre (%) 1 6 0 0 0 0 0 0 0 1
weq (%) 0 0 0 0 0 0 0 0 0 0
wmo (%) 34 44 55 65 77 77 77 77 77 65

CVaR Risk no no no no no no no no no 0
Duration no yes no no yes yes yes yes yes 6
Weights 5 3 4 4 3 3 3 3 3 31
wtotal (%) 100 100 100 100 100 100 100 100 100 100
wgov(%) 33 27 32 32 23 23 23 23 23 27
wcb (%) 32 23 13 2 0 0 0 0 0 8
wre (%) 1 6 0 0 0 0 0 0 0 1
weq (%) 0 0 0 0 0 0 0 0 0 0
wmo (%) 34 44 55 65 77 77 77 77 77 65

WC Risk yes no no yes no no yes no no 3
Duration no no no no no no yes no yes 2
Weights 3 4 4 2 4 4 3 4 3 31
wtotal (%) 95 100 100 100 100 100 100 100 100 99
wgov(%) 33 44 45 34 39 29 25 28 22 33
wcb (%) 24 16 25 21 30 40 28 38 33 28
wre (%) 3 0 0 1 0 0 0 0 0 1
weq (%) 0 0 0 5 1 0 4 0 0 1
wmo (%) 34 40 30 38 30 32 43 33 45 36

SRc and CVaR are shown in positive sense, according to the convention of displaying risk measures.
Risk and duration indicate whether the respective constraints were binding in that year; weights
indicates how many of the five minimum and maximum weight constraints (thus 10 in total) were
binding in that year. For the average column, the presented (de)nominators do not divide to the
value of the ratios themselves, as the ratio is a nonlinear transformation. The best performance over
the three methods is printed in boldface. When two methods give equal results, we select the simplest
method (thus SCR over CVaR and CVaR over Worst-Case).
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C.3 Sensitivity analysis: The impact of constraints

Table C.7: Detailed portfolio results panel B
Time 1 2 3 4 5 6 7 8 9

a) Measures over time
SCR R (%) 1.73 8.72 6.48 7.70 11.80 -2.78 4.15 2.91 0.36

SR 3.76 12.86 9.18 21.95 38.09 -2.42 14.13 7.61 1.14
Vol. (%) 0.46 0.68 0.71 0.35 0.31 1.15 0.29 0.38 0.31
SRc 0.32 1.13 0.53 5.31 18.67 -0.21 -3.06 -3.02 1.51
CVaR (%) 5.43 7.72 12.26 1.45 0.63 13.09 -1.36 -0.97 0.24
SII 19.08 1.82 - 27.63 32.29 1.57 30.77 38.85 35.16

CVaR R (%) 1.73 8.65 7.13 7.70 11.80 -3.01 4.15 2.91 0.36
SR 3.76 13.67 14.56 21.95 38.09 -2.55 14.13 7.61 1.14
Vol. (%) 0.46 0.63 0.49 0.35 0.31 1.18 0.29 0.38 0.31
SRc 0.32 1.18 0.88 5.31 18.66 -0.22 -3.06 -3.02 1.51
CVaR (%) 5.43 7.32 8.12 1.45 0.63 13.66 -1.36 -0.97 0.24
SII 19.08 1.73 49.69 28.43 33.06 1.56 31.22 39.27 35.59

WC R (%) 0.86 7.17 5.34 1.45 7.05 -0.12 3.60 0.75 0.81
SR 2.80 15.15 22.80 7.44 41.12 -0.35 11.69 2.78 2.83
Vol. (%) 0.31 0.47 0.23 0.19 0.17 0.35 0.31 0.27 0.29
SRc 0.19 1.84 1.28 0.46 14.78 0.11 0.17 0.17 1.22
CVaR (%) 4.52 3.90 4.16 3.14 0.48 -1.12 21.16 4.48 0.67
SII 32.29 2.91 21.60 48.04 17.90 0.87 1.18 2.19 18.83

b) Constraints and weights over time
SCR Risk no no no no no yes no no no

Duration yes no no yes yes yes yes yes yes
Weights 3 3 5 3 3 2 3 3 3
wtotal (%) 100 100 100 100 100 100 100 100 100
wgov(%) 23 28 100 23 23 50 23 23 23
wcb (%) 0 72 0 0 0 0 0 0 0
wre (%) 0 0 0 0 0 37 0 0 0
weq (%) 0 0 0 0 0 0 0 0 0
wmo (%) 77 0 0 77 77 13 77 77 77

CVaR Risk no yes yes no no yes no no no
Duration yes yes no yes yes yes yes yes yes
Weights 3 2 3 3 3 2 3 3 3
wtotal (%) 100 100 100 100 100 100 100 100 100
wgov(%) 23 21 72 23 23 51 23 23 23
wcb (%) 0 75 0 0 0 0 0 0 0
wre (%) 0 0 0 0 0 38 0 0 0
weq (%) 0 0 0 0 0 0 0 0 0
wmo (%) 77 4 28 77 77 11 77 77 77

WC Risk yes yes yes yes yes yes yes yes yes
Duration no yes no no no no no no no
Weights 2 0 2 2 2 2 2 2 3
wtotal (%) 68 90 70 47 63 100 100 100 100
wgov(%) 41 35 35 35 20 16 11 15 36
wcb (%) 0 18 0 0 2 71 86 66 0
wre (%) 0 5 1 0 0 0 0 0 0
weq (%) 1 1 0 0 0 0 0 0 0
wmo (%) 27 31 34 12 41 13 4 20 64

SRc and CVaR are shown in positive sense, according to the convention of displaying risk measures.
Risk and duration indicate whether the respective constraints were binding in that year; weights
indicates how many of the five minimum and maximum weight constraints (thus 10 in total) were
binding in that year. For the average column, the presented (de)nominators do not divide to the
value of the ratios themselves, as the ratio is a nonlinear transformation. The best performance
over the three methods is printed in boldface. When two methods give equal results, we select the
simplest method (thus SCR over CVaR and CVaR over Worst-Case). This optimization excludes the
constraint on maximum weight changes. In one case, the SII ratio is removed as the denominator of
the ratio is zero and therefore the ratio explodes.
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Table C.8: Detailed portfolio results panel C
Time 1 2 3 4 5 6 7 8 9

a) Measures over time
SCR R (%) 1.37 9.15 6.72 3.85 10.93 -0.30 4.40 3.55 -1.10

SR 3.51 16.38 14.45 10.97 37.92 -0.44 8.59 6.15 -1.91
Vol. (%) 0.39 0.56 0.47 0.35 0.29 0.68 0.51 0.58 0.58
SRc 0.24 2.02 0.89 0.84 10.42 -0.05 0.84 0.85 -0.17
CVaR (%) 5.75 4.54 7.52 4.60 1.05 5.94 5.24 4.19 6.63
SII 4.03 3.09 3.20 4.08 3.02 1.77 3.07 2.74 2.16

CVaR R (%) 1.37 9.15 6.75 3.93 11.00 -0.21 4.42 3.55 -1.10
SR 3.51 16.38 14.69 11.27 37.93 -0.31 8.62 6.16 -1.91
Vol. (%) 0.39 0.56 0.46 0.35 0.29 0.68 0.51 0.58 0.58
SRc 0.24 2.02 0.91 0.88 11.50 -0.04 0.87 0.85 -0.17
CVaR (%) 5.75 4.54 7.43 4.47 0.96 5.96 5.08 4.18 6.62
SII 4.03 3.09 3.30 4.22 3.09 1.81 3.15 2.77 2.19

WC R (%) 1.14 7.29 5.18 4.13 10.70 2.36 3.00 0.08 0.94
SR 3.83 14.71 23.46 17.07 42.75 5.85 10.94 0.21 3.74
Vol. (%) 0.30 0.50 0.22 0.24 0.25 0.40 0.27 0.37 0.25
SRc 0.27 1.66 1.33 2.34 108.16 -2.74 0.67 0.04 0.48
CVaR (%) 4.19 4.39 3.89 1.77 0.10 -0.86 4.46 1.89 1.96
SII 7.70 2.82 6.99 7.80 8.78 4.68 9.34 7.43 9.83

b) Constraints and weights over time
SCR Risk no no no no no no no no no

Duration no no no no no no no no no
Weights 5 4 4 4 5 5 4 4 4
wtotal (%) 100 100 100 100 100 100 100 100 100
wgov(%) 33 34 44 34 23 12 13 2 0
wcb (%) 32 42 41 41 31 20 10 0 0
wre (%) 1 0 0 0 5 11 15 19 13
weq (%) 0 0 0 0 5 10 4 9 14
wmo (%) 34 24 14 25 36 47 60 70 72

CVaR Risk no no yes no no no no no no
Duration no no no no no no no no no
Weights 5 4 3 4 5 5 4 4 4
wtotal (%) 100 100 100 100 100 100 100 100 100
wgov(%) 33 34 44 34 23 12 13 2 0
wcb (%) 32 42 40 40 30 19 8 0 0
wre (%) 1 0 0 0 5 11 15 19 13
weq (%) 0 0 0 0 5 10 4 9 14
wmo (%) 34 24 15 26 37 48 61 70 72

WC Risk yes yes yes yes yes yes yes no no
Duration no no no no no no no no no
Weights 3 2 4 3 4 3 4 4 4
wtotal (%) 74 93 69 72 86 100 100 100 100
wgov(%) 33 34 28 30 29 31 41 50 38
wcb (%) 12 19 11 7 0 10 15 10 15
wre (%) 1 7 1 0 5 8 2 7 2
weq (%) 1 0 0 2 0 0 0 0 0
wmo (%) 27 33 30 34 52 51 42 33 45

SRc and CVaR are shown in positive sense, according to the convention of displaying risk measures.
Risk and duration indicate whether the respective constraints were binding in that year; weights
indicates how many of the five minimum and maximum weight constraints (thus 10 in total) were
binding in that year. For the average column, the presented (de)nominators do not divide to the
value of the ratios themselves, as the ratio is a nonlinear transformation. The best performance
over the three methods is printed in boldface. When two methods give equal results, we select the
simplest method (thus SCR over CVaR and CVaR over Worst-Case). This optimization excludes the
constraint on minimum duration.
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Table C.9: Detailed portfolio results panel D
Time 1 2 3 4 5 6 7 8 9

a) Measures over time
SCR R (%) -1.09 13.80 -0.26 5.88 17.89 11.35 11.31 15.27 -1.82

SR -1.29 5.06 -0.11 14.19 26.54 11.30 8.64 8.71 -0.99
Vol. (%) 0.84 2.73 2.29 0.41 0.67 1.00 1.31 1.75 1.83
SRc -0.09 0.38 -0.01 0.83 2.06 0.86 0.47 1.16 -0.09
CVaR (%) 12.26 36.06 44.17 7.10 8.68 13.26 24.01 13.19 20.42
SII 1.69 2.73 0.96 3.70 3.43 2.79 2.60 2.67 1.87

CVaR R (%) 0.47 11.45 6.19 7.07 22.82 39.81 -9.19 34.28 -6.29
SR 0.70 19.82 13.03 9.90 27.65 18.58 -2.22 7.93 -1.27
Vol. (%) 0.67 0.58 0.48 0.71 0.83 2.14 4.13 4.32 4.97
SRc 0.05 1.87 0.59 0.52 1.88 1.93 -0.16 1.26 -0.13
CVaR (%) 9.38 6.12 10.42 13.49 12.15 20.61 56.56 27.16 48.03
SII 2.76 4.34 2.34 1.87 2.05 0.88 0.57 0.99 0.63

WC R (%) -0.61 5.39 3.80 0.54 2.53 0.38 3.83 0.93 1.00
SR -1.54 10.68 14.01 8.42 38.66 1.12 14.17 3.66 10.41
Vol. (%) 0.39 0.50 0.27 0.06 0.07 0.34 0.27 0.26 0.10
SRc -0.08 1.31 0.75 0.41 6.92 -0.32 0.20 0.14 0.66
CVaR (%) 7.56 4.11 5.08 1.33 0.37 -1.21 18.98 6.47 1.50
SII 4.58 5.72 1.06 6.31 -7.74 -0.96 -0.18 0.46 0.41

b) Constraints and weights over time
SCR Risk yes no yes yes yes yes yes yes yes

Duration yes no no yes yes yes yes yes yes
Weights 0 0 0 0 0 0 0 0 0
wtotal (%) 100 100 100 100 100 100 100 100 100
wgov(%) 9 230 274 13 34 45 44 58 57
wcb (%) -1 26 20 26 -97 -166 -242 -321 -421
wre (%) -15 -21 -31 -10 3 9 -13 -11 -43
weq (%) -4 3 8 -4 9 15 33 48 75
wmo (%) 111 -138 -172 75 150 195 276 326 432

CVaR Risk yes yes yes yes yes yes yes yes yes
Duration yes yes yes yes yes no no no yes
Weights 0 0 0 0 0 0 0 0 0
wtotal (%) 100 100 100 100 100 100 100 100 100
wgov(%) 15 14 10 8 28 226 142 93 125
wcb (%) -6 32 14 -10 -127 -577 -745 -869 -1312
wre (%) -5 -10 -27 0 20 65 117 13 61
weq (%) -6 0 10 -21 -18 -54 -94 22 33
wmo (%) 102 64 92 123 197 439 680 842 1193

WC Risk yes yes yes yes yes no no no yes
Duration yes no no no no yes yes yes no
Weights 0 0 0 0 0 0 0 0 0
wtotal (%) 62 60 47 14 21 100 100 100 17
wgov(%) 47 54 39 17 7 21 19 15 34
wcb (%) -10 -12 -16 -7 -1 64 75 79 -24
wre (%) -12 3 2 -1 1 0 -5 -12 -2
weq (%) 7 0 -5 2 -1 -1 2 4 1
wmo (%) 30 14 25 4 16 16 8 15 8

SRc and CVaR are shown in positive sense, according to the convention of displaying risk measures.
Risk and duration indicate whether the respective constraints were binding in that year; weights
indicates how many of the five minimum and maximum weight constraints (thus 10 in total) were
binding in that year. For the average column, the presented (de)nominators do not divide to the
value of the ratios themselves, as the ratio is a nonlinear transformation. The best performance
over the three methods is printed in boldface. When two methods give equal results, we select the
simplest method (thus SCR over CVaR and CVaR over Worst-Case). This optimization excludes the
constraint on maximum weight changes and short-selling.
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Table C.10: Detailed portfolio results panel E
Time 1 2 3 4 5 6 7 8 9

a) Measures over time
SCR R (%) 2.08 8.69 6.48 9.84 19.41 -3.27 5.28 1.86 -1.32

SR 3.73 12.93 9.18 23.88 23.07 -2.21 14.50 1.99 -1.77
Vol. (%) 0.56 0.67 0.71 0.41 0.84 1.48 0.36 0.93 0.74
SRc 0.32 1.12 0.53 4.87 1.23 -0.17 -3.72 0.15 -0.12
CVaR (%) 6.50 7.77 12.26 2.02 15.73 19.62 -1.42 12.19 10.81
SII 15.08 1.82 - 23.77 2.86 1.69 33.54 2.28 1.78

CVaR R (%) 2.08 8.32 7.13 9.84 18.40 -2.62 5.28 1.14 -1.95
SR 3.73 14.46 14.53 23.88 25.00 -1.90 14.50 1.00 -1.61
Vol. (%) 0.56 0.58 0.49 0.41 0.74 1.38 0.36 1.13 1.21
SRc 0.32 1.07 0.88 4.87 1.53 -0.15 -3.72 0.07 -0.09
CVaR (%) 6.50 7.77 8.14 2.02 12.00 17.84 -1.42 16.94 22.03
SII 15.08 1.39 50.00 24.06 3.31 1.82 33.62 1.79 0.99

WC R (%) 1.47 8.17 6.69 4.55 7.50 -1.64 2.77 0.06 -0.47
SR 4.89 21.05 29.69 17.80 48.57 -4.26 8.69 0.11 -1.24
Vol. (%) 0.30 0.39 0.23 0.26 0.15 0.38 0.32 0.57 0.38
SRc 0.39 1.50 1.61 1.80 1.53 4.67 0.14 0.01 -6.66
CVaR (%) 3.77 5.45 4.16 2.53 4.91 -0.35 19.34 9.26 0.07
SII 2.88 3.43 21.19 3.10 1.82 1.20 2.20 1.34 14.37

b) Constraints and weights over time
SCR Risk no yes no no yes yes no yes yes

Duration no no no no no no no no no
Weights 5 3 5 5 3 3 5 3 3
wtotal (%) 100 100 100 100 100 100 100 100 100
wgov(%) 0 26 100 0 0 0 0 0 0
wcb (%) 0 74 0 0 0 0 0 0 0
wre (%) 0 0 0 0 35 51 0 50 0
weq (%) 0 0 0 0 0 0 0 0 36
wmo (%) 100 0 0 100 65 49 100 50 64

CVaR Risk yes yes yes no yes yes no yes yes
Duration no no no no no no no no no
Weights 5 3 3 5 3 3 5 3 3
wtotal (%) 100 100 100 100 100 100 100 100 100
wgov(%) 0 0 72 0 0 0 0 0 0
wcb (%) 0 94 0 0 0 0 0 0 0
wre (%) 0 0 0 0 30 47 0 63 0
weq (%) 0 0 0 0 0 0 0 0 63
wmo (%) 100 6 28 100 70 53 100 37 37

WC Risk yes yes yes yes yes yes yes yes no
Duration no no no no no no no no no
Weights 1 2 2 1 3 5 3 3 5
wtotal (%) 89 100 84 77 100 100 100 100 100
wgov(%) 0 0 32 10 0 0 33 0 0
wcb (%) 46 20 0 38 88 100 67 75 0
wre (%) 1 5 1 0 0 0 0 25 0
weq (%) 0 0 0 4 0 0 0 0 0
wmo (%) 42 74 51 26 12 0 0 0 100

SRc and CVaR are shown in positive sense, according to the convention of displaying risk measures.
Risk and duration indicate whether the respective constraints were binding in that year; weights
indicates how many of the five minimum and maximum weight constraints (thus 10 in total) were
binding in that year. For the average column, the presented (de)nominators do not divide to the
value of the ratios themselves, as the ratio is a nonlinear transformation. The best performance
over the three methods is printed in boldface. When two methods give equal results, we select the
simplest method (thus SCR over CVaR and CVaR over Worst-Case). This optimization excludes the
constraint on maximum weight changes and minimum duration. In one case, the SII ratio is removed
as the denominator of the ratio is zero and therefore the ratio explodes.
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Table C.11: Detailed portfolio results panel F
Time 1 2 3 4 5 6 7 8 9

a) Measures over time
SCR R (%) 0.34 14.39 -1.11 14.55 26.85 19.60 20.59 29.65 -6.28

SR 0.26 4.74 -0.45 17.23 19.31 9.39 8.26 9.31 -2.14
Vol. (%) 1.34 3.04 2.48 0.84 1.39 2.09 2.49 3.19 2.93
SRc 0.02 0.35 -0.02 1.49 1.11 0.65 0.43 1.12 -0.18
CVaR (%) 20.29 41.07 47.94 9.76 24.26 29.95 47.38 26.53 35.52
SII 1.96 2.71 1.00 5.45 3.34 2.69 2.49 2.50 1.88

CVaR R (%) 0.64 10.52 5.76 8.20 21.98 39.15 -9.02 33.85 -9.14
SR 1.02 13.62 12.60 13.40 23.04 18.59 -2.21 7.93 -1.88
Vol. (%) 0.63 0.77 0.46 0.61 0.95 2.11 4.08 4.27 4.85
SRc 0.08 1.14 0.54 0.76 1.80 1.94 -0.16 1.26 -0.19
CVaR (%) 8.42 9.23 10.60 10.78 12.22 20.20 55.80 26.77 47.72
SII 3.48 1.34 1.61 3.25 2.81 0.89 0.56 0.99 0.66

WC R (%) -0.14 8.84 7.90 4.73 4.70 -8.72 4.13 0.70 1.09
SR -0.29 14.06 22.15 18.28 14.96 -9.06 12.77 3.67 6.05
Vol. (%) 0.47 0.63 0.36 0.26 0.31 0.96 0.32 0.19 0.18
SRc -0.02 1.06 1.08 1.66 0.48 -0.45 0.17 0.13 0.78
CVaR (%) 7.14 8.37 7.33 2.84 9.86 19.48 24.43 5.43 1.39
SII 1.69 1.41 2.49 2.89 0.94 -0.01 0.43 1.26 5.16

b) Constraints and weights over time
SCR Risk yes yes yes yes yes yes yes yes yes

Duration yes no no yes yes yes yes yes yes
Weights 0 0 0 0 0 0 0 0 0
wtotal (%) 100 100 100 100 100 100 100 100 100
wgov(%) -87 253 293 -85 -54 -35 -38 -18 -23
wcb (%) -1 30 23 29 -168 -282 -396 -505 -619
wre (%) -15 -24 -35 -11 5 16 -21 -18 -63
weq (%) -4 4 10 -5 15 26 54 76 110
wmo (%) 207 -163 -190 172 301 375 501 565 696

CVaR Risk yes yes yes yes yes yes yes yes yes
Duration no yes no no yes no no no yes
Weights 0 0 0 0 0 0 0 0 0
wtotal (%) 100 100 100 100 100 100 100 100 100
wgov(%) -42 -86 -20 -60 -76 222 140 93 19
wcb (%) 50 122 62 69 -43 -566 -736 -859 -1195
wre (%) -4 -11 -26 -1 18 64 115 12 53
weq (%) -7 -3 9 -19 -24 -53 -93 22 31
wmo (%) 103 78 75 111 225 432 673 832 1191

WC Risk yes yes yes yes yes yes no yes yes
Duration no yes no no yes no no no no
Weights 0 0 0 0 0 0 0 0 0
wtotal (%) 93 100 92 79 100 100 100 71 64
wgov(%) -48 -78 36 9 -88 -74 -4 -9 38
wcb (%) 85 92 -13 40 169 275 105 73 -6
wre (%) -10 2 4 -1 -10 20 -1 2 -5
weq (%) -1 -6 -10 5 -4 -31 0 -1 2
wmo (%) 68 89 75 26 33 -90 0 6 35

SRc and CVaR are shown in positive sense, according to the convention of displaying risk measures.
Risk and duration indicate whether the respective constraints were binding in that year; weights
indicates how many of the five minimum and maximum weight constraints (thus 10 in total) were
binding in that year. For the average column, the presented (de)nominators do not divide to the
value of the ratios themselves, as the ratio is a nonlinear transformation. The best performance
over the three methods is printed in boldface. When two methods give equal results, we select the
simplest method (thus SCR over CVaR and CVaR over Worst-Case). This optimization excludes the
constraint on minimum duration, maximum weight changes, and short-selling.
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