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Abstract

This study develops a model that incorporates covariates to the parameters de-

scribing the tail of the distribution of asset loss returns. The informative covariates

are selected by Machine Learning algorithms. We derive Value-at-Risk depending

on covariates and compare the predictive ability with classical risk models such as

Historical Simulation and GARCH(1,1). The methodology is applied on two major

world stock indics: S&P 500 and FTSE 100. We find that Dow Jones, NASDAQ

and VIX are the most influential covariates to describe the left tail behavior for

S&P 500. Furthermore, CAC40, AEX and DAX are the top three important covari-

ates to explain the extreme negative returns of FTSE 100. Finally, our proposed

models generate low VaR estimates without having more violations than expected.

Keywords— Extreme Value Theory, Machine Learning, Value-at-Risk, Market Risk



Contents

1 Introduction 3

2 Data 7

3 Methodology 10

3.1 Peak-over-Threshold approach with covariates . . . . . . . . . . . . . . . 10

3.1.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Parameters depends on covariates . . . . . . . . . . . . . . . . . . 11

3.2 Variable selection based on Machine Learning algorithms and parameters

estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Model comparion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Alternative models . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Empirical Results 24

4.1 Variable selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Parameter estimates . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.2 Variable importance . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.3 Individual covariate . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Choice of threshold u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 VaR Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusion 43

References 45

Appendix A Tables 48

A.1 Summary statistics of covariates . . . . . . . . . . . . . . . . . . . . . . . 48

A.2 Top three covariates VaR Forecasting for S&P 500 . . . . . . . . . . . . . 54

A.3 Top three covariates VaR Forecasting for FTSE 100 . . . . . . . . . . . . 55

1



Appendix B Graphs 56

B.1 Variable importance of g(x) estimation for S&P 500 . . . . . . . . . . . . 56

B.2 Variable importance of g(x) estimation for FTSE 100 . . . . . . . . . . . 59

B.3 Variable importance of ξ(x) estimation for S&P 500 . . . . . . . . . . . . 62

B.4 Variable importance of ξ(x) estimation for FTSE 100 . . . . . . . . . . . 65

B.5 VaR Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2



1 Introduction

Tail risk refers to the risk of having an extreme event which occurs with low probability,

but once occurs has high (adverse) impact. It can be measured by famous risk measures

such as the Value-at-Risk (VaR). The Basel Committee on Banking Supervision (BCBS)

requires banks to calculate the VaR for market risk in order to meet the minimum capital

requirement. Extreme Value Theory (EVT) motivates statistical methods for estimating

risk measures. For example, Gilli and Këllezi (2006) measures the financial risk with

several major stock market indices using EVT model. Dowd and Blake (2006) applies

EVT for insurance risk. In our research, we focus on the modeling of market risk using

EVT. More specifically, we model the extreme negative returns or the left tail of stock

returns distribution. Generally, there are two different ways to identify the extremes.

First, the Block Maxima approach divides the observations into blocks. Then the maxi-

mum of each block represents the Block Maxima and these observations are considered as

extremes which are usually modeled by Generalized Extreme Value (GEV) distribution.

Second, the Peak-over-Threshold (POT) approach focuses on the exceedances beyond a

given threshold. Balkema and de Haan (1974) theorem states that the excesses follow

approximately the Generalized Pareto Distribution (GPD) when threshold is high. In

this paper, we focus on the second approach because this technique obtains extremes

more efficiently.

The assumptions in conventional EVT is that the observations are independent and

identically distributed (i.i.d.). In practice, however, the observations often violate the

identically distributed condition. Consequently, for modeling the excesses above a high

threshold, the parameters of GPD may also depend on a number of covariates. In our

research, we focus on the market risk by modeling the extreme losses in major stock

indices. Because the financial returns might depend on many explanatory variables, we

have to work with a high dimensional covariates. Rigby and Stasinopoulos (2005) con-

sider a covariate model for the GPD in which the number of covariates are limited, for

example, no more than four. To handle high dimensional covariates, Machine Learn-

ing (ML) algorithm is an efficient technique for dimensional reduction and it allows

capturing the relation between variables in a non-parametric way. To the best of my
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knowledge, combing Machine Learning techniques with Extreme Value Analysis has not

been explored. This research aims at implementing the ML techniques into parameters

estimation procedure in Extreme Value Analysis. In this way, we are able to examine

how the covariates are related with the tail distribution and possibly improve the es-

timation of risk measures such as VaR. Additionally, the selection of threshold in the

POT approach is a typical issue in Extreme Value Analysis. A high threshold decreases

the bias in the estimation but increases the variance, while a low threshold increases

the estimation bias. Therefore, as an extension for our research, we study the impact of

different threshold on model estimation. In this paper, we consider the following research

questions when using ML techniques to select covariates:

• Which covariates should be included to explain the left tail?

• Can the Value-at-Risk estimates be improved compared to the classical risk mod-

els?

• How to choose threshold in the Peak-over-Threshold approach?

We tackle these research questions in four steps. First, we follow the methodology of the

basic POT approach with covariates as in Chavez-Demoulin et al. (2015). In this step,

we introduce two group parameters in the model: the intensity λ which counts the loss

frequency and the GPD parameters ξ and β that explain the loss severity. Then, we let

the parameters be a function of some covariates and derive the estimation of VaR. Here-

after, we use Q-Q plots to check whether the observations in the tail follow approximately

the correct probability distribution. Second, we explain how to estimate parameters de-

pends on covariates with two ML techniques Random Forests (RF) and Support Vector

Machines (SVM). This techniques allow us to select the informative covariates only. In

the third step, we study the impact of the procedure with different thresholds. Finally,

the VaRs are calculated. We evaluate the VaR estimation using a binomial test and an

Interval forecasts evaluation test established by Christoffersen (1998). Also, we compare

the performance with other models such as Historical Simulation (HS) and Dynamic HS

GARCH(1,1).

We apply our methodology on a real dataset and study the market risk in the U.S. and

U.K. stock markets. We use daily returns of two stock indices S&P 500 and FTSE 100.
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Since we study the left tail of stock returns, we look at the negative returns. We use

covariates to explain the tail of the stock index returns and it contains 63 potential co-

variates.

Literature Review

The idea of letting parameters of the Generalized Extreme Value (GEV) distribution de-

pends on covariates in a parametric way is first developed by Coles et al. (2001). Later,

Chavez-Demoulin et al. (2015) model operational risk depending on two pre-selected co-

variates in a semi-parametric way. There are two sets of parameters introduced. First,

the intensity λ follows a non-homogeneous Poisson process with a rate function. The rate

function is related to the covariates by a standard Generalized Additive Model (GAD).

The parameter can be estimated via a penalized maximum likelihood estimator with

a smoothing spline. Second, the loss severity follows a GPD with shape parameter ξ

and scaling β. Since these parameters have to be orthogonal with respect to the Fisher

information metric, reparametrize technique is used. The reparameterized parameters

are related to the covariates via some smooth functions. They develop a backfitting

algorithm and maximize the penalized likelihood function to estimate the parameters in

the model. Then, the corresponding risk measures such as VaR and ES can be computed

by simulation. Embrechts et al. (2018) apply the same method on modeling operational

losses, but include firm-specific covariates associated with Internal Control Weaknesses

(ICWs). By constrast, we study the market risk from the financial markets using EVT

and implement a covariates selection procedure based on two ML algorithms, namely

Random Forests and Support Vector Machines. Very few available literature pay at-

tention to high dimensional covariates when fitting the tail distribution. Hambuckers

et al. (2018) add a LASSO based L1− penalty term on the log-likelihood function when

estimate the parameters of the tail distribution. This approach allows one to select in-

formative covariates from a big dataset, based on Generalized Pareto (GP) Regression

concept. Moreover, Mayr et al. (2012) establish a boosting algorithm to choose infor-

mative covariates from high dimensional covariates. Their method considers more as a

regression model with multiple covariates in the gradient boosting framework. Beyond

the regression models, Machine Learning algorithms allow capturing the relation between

variables in a non-parametric way. These techniques are advantageous when one works
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with high dimensional data and it is almost impossible with the traditional regression

models because the number of covariates included in the model are generally limited. To

our knowledge, combining ML techniques and EVT has never been explored before.

The structure of the paper is as follows. Section 2 introduces the data and provides

potential covariates. Section 3.1 gives the model setup and derive the parameters depend

on covariates. Section 3.2 discusses the Machine Learning algorithms and parameters

estimation procedure. Section 3.3 shows the methods for evaluating VaR forecasting.

Section 4 presents the empirical results and we conclude the research with Section 5.
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2 Data

In this research, we study the market risk in the U.S. and U.K. stock markets. We use

daily returns of S&P 500 and FTSE 100 indices. The sample period starts from August

2001 to March 2019 which includes 4518 trading days. Our sample period covers several

extreme events: stock market downturn of 2002, August 2011 stock markets fall and the

Global financial crisis of 2007-2008.

Due to the dynamic characters of equity market, there are plenty of potential variables

related to the left tail of stock returns. Most of the covariates is pre-selected based on

the available literature which is related to the (negative) extreme equity returns and

others are created based on our own intuitions. For example, Hilliard (1979) researches

the relation between the 10 major world exchanges during the global financial crisis.

He investigates that the intra-continental equity indices move simultaneously in hourly

fluctuation. Equivalently, Zhong and Enke (2017) uses 7 major world indices to forecast

the stock returns. Combing these literature and the availability of data, we obtain 9

world major indices in our research covariates. We exclude the Australian S&P\ASX

200 and Italian FTSE MIB indices since they are not ranked at the top 10 Global Stock

Exchanges by market capitalization as of November 30, 2018, while these stock indices

are studied by Hilliard (1979).

Also, many studies focus on the effect of financial variables on the stock market. For

instance, Sadorsky (1999) examines the impact of oil price shocks on equity market, Baur

and McDermott (2010) shows that the gold price is negatively related to the share price

in the developed market and Flannery and James (1984) proves that the interest rate

changes are correlated with the common stock returns in the financial institutions. These

covariates are selected as our research covariates, we measure the interest rate changes

with Moody’s Seasoned Corporate Bond Yield and London Interbank Offered Rate (LI-

BOR). Additionally, we include the silver, platinum and CBOE Volatility Index (VIX)

as our potential covariates. For example, VIX is a sensitive indicator to the (extreme)

equity market movements. Trading volume is earlier used by Zhong and Enke (2017) to

forecast stock returns. We include 12 financial variables as our potential covariates.
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Furthermore, Campbell (1987) examines the relationship between stock returns and term

structure. Fama (1990), Domian and Reichenstein (1998) and Gupta et al. (2019) show

the role of term and default spreads in stock returns prediction. Ma and Kao (1990)

and Ajayi et al. (1998) identify the impact of currency changes on the stock market.

Brock et al. (1992) and Campbell et al. (1993) analyze the correlation between financial

returns and technical indicators such as moving averages and lagged variables. Based

on the literature review, we obtain 7 T-bill rates of different maturities, 9 term spreads,

8 default spreads, 8 macroeconomics variables and 10 technical indicators as our candi-

date covariates. Hereby we create two dummy covariates which measures the period of

expansion or recession and the presence of an inverted yield curve.

Finally, we obtain 63 potential covariates to explain the left tail of the daily returns. All

the covariates are given in daily frequency. A list of 63 covariates candidates and the

summary statistics are shown in Appendix A.1.

We use Jarque-Bera to test the normality of all variables used and the results are shown

in the last column. All covariates are rejected for normality. The world major indices

have negative skwness and excess kurtosis, which indicates a higher probability to obtain

a negative daily returns and extreme events than the normal distribution. This reflects

the fat-tailedness in the left tail. We plot the daily prices and losses returns for S&P 500

and FTSE 100 in Figure 1 and 2, respectively.

We deal with missing data in our dataset as follows. The world ten major indices contain

the most missing values, since each Stock Exchange has their own opening hours and

public holiday days. To solve this problem, we use linear interpolation technique to fill

in the missing values. We replace the missing data by taking the mean of the last non-

missing and the next non-missing value within the variable, one of the disadvantage is

that the observations become less extreme.
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3 Methodology

In this section, we first introduce the basic Peak-over-Threshold model in Section 3.1.1.

Then, we let the conditional probability of exceedances over threshold depends on some

covariates and express it as a function g(x) of covariates x. Afterwards, we derive the

estimation of shape parameters ξ(x) by transforming distributions. Also, we compute the

risk measure VaR. Subsequently, we check whether the exceedances indeed follows the

correct probability distribution with Q-Q plots. This is done in Section 3.1.2. Secondly,

we describe the procedure of parameters estimation using Random Forests and Support

Vector Machines in Section 3.2.1 and 3.2.2, respectively. Thirdly, we compare the VaR

forecasting depends on covariates with other classical risk models and evaluate the model

performance in Section 3.3.

3.1 Peak-over-Threshold approach with covariates

3.1.1 Model setup

We introduce the Peak-over-Threshold (POT) approach following the step in Embrechts

et al. (1997). The key idea of this approach is to approximate the distribution of ex-

ceedances over a certain threshold. Let Z be a sequence of financial losses with marginal

distribution F . Given a high threshold u, denote the threshold exceedances Y = Z − u.

The excess distribution of Z is called conditional excess distribution function and given

by

Fu(y) = P (Z − u ≤ y|Z > u), 0 ≤ y ≤ zF − u

where zF ≤ ∞ is the right endpoint of F .

Under the i.i.d. assumption, the following two properties hold

1. S counts the number of exceedances over threshold u for a given period and it follows

a non-homogeneous Poisson process with intensity λ. In the figure below, observation z2,

z3, z5, z6, z8 and z9 are considered as exceedances. In this particular case, the number

of exceedances S is 6.
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Figure 3: An example of POT approach

2. The excess over a high threshold u is approximated by the Generalized Pareto Dis-

tribution (GPD):

Fu(y) ≈ Gξ,β(y), as u→∞,

where β = β(u) depends on the threshold u, and

Gξ,β(y) =

1− (1 + ξ
β
y)−1/ξ if ξ 6= 0

1− exp(− y
β
) if ξ = 0

,

for y ∈ D(ξ, β) where

D(ξ, β) =

[0,+∞) if ξ ≥ 0

[0,−β
ξ
] if ξ < 0

3.1.2 Parameters depends on covariates

Since the aim of our research is to model the tail distribution depending on multiple

covariates, we let the number of excessdances S with intensity function λ and the GPD

parameters depends on covariates x. First, the number of exceedances S with intensity

function λ(x) does not follow a homogeneous Poisson point process anymore. A non-

homogenous Poisson process is defined as a Poisson process with a time-varying arrival
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rate λ(t). In our case, the intensity function is not time-varying, but it consists of 63

different covariates. Instead of model the number of excessdances S, we calculate the

conditional probability of Z excess threshold u given covariates x:

g(x) = P(Z > u|X = x) = E(IZ>u|X = x) (1)

where I[·] is an indicator function that equals to 1 when Z > u and otherwise 0. In the

last term we use the fact that the probability of an event is the expectation of an indi-

cator function for an event. Because the dependent variable IZ>u has a binary outcome

and we can compute the conditional expectation using classification. Therefore, we can

estimate the function g(x) for any set of covarites x with Machine Learning techniques.

Second, we let the GPD parameters depend on covariates x, denote as Gξ(x),β(x)(y).

Since we study the financial losses from the stock market, assume ξ(x) > 0 (See Chavez-

Demoulin et al. (2015)). Then the scaling parameter β(x) = ξ(x)u. In other words, we

do not need to estimate β(x) anymore. It follows that
Z

u

∣∣∣Z > u,X = x is approximately

Pareto distributed with a shape parameter
1

ξ(x)
:

Z

u

∣∣∣ Z > u,X = x
d
≈ PD

(
1

ξ(x)

)

P
(
Z

u
≤ y

∣∣∣ Z > u,X = x

)
→ 1− y−1/ξ(x)

Take the log-transformation and define L = log
(
Z
u

∣∣∣ Z > u
)
,

L
∣∣∣X = x

d
≈ Exp

(
1

ξ(x)

)
, (2)

and it follows that

E(L
∣∣∣X = x) = E

(
log
(
Z

u

∣∣∣ Z > u,X = x

))
≈ ξ(x) (3)

In the last equation, ξ(x) is written as a function of covariates x and it is approximately

equal to the conditional expectation of L given x are known. In other words, we can

estimate ξ(x) for any given covariates set by a regression analysis. For example, we can
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estimate the parameter ξ(x) using Random Forests regression tree and Support Vector

Machines.

We compute the risk measure VaR depends on covariates as follows. Define V aRα(Z|X =

x) = f(x), which satisfies P(Z ≤ f(x)|X = x) = α. Approximate

P(Z > f(x)|X = x)

P(Z > u|X = x)
≈
(
f(x)

u

)−1/ξ(x)
1− α
g(x)

≈
(
f(x)

u

)−1/ξ(x)
Finally, the estimation of VaR depends on covariates is

V̂ aRα(Z|X = x) = f̂(x) = u

(
1− α
ĝ(x)

)−ξ̂(x)
(4)

After estimation of the parameters, we check with Q-Q plots whether the exceedances

indeed follows PD
(

1

ξ(x)

)
for ξ(x) > 0. This is done by examine whether

L

ξ(x)

∣∣∣X = x

follows approximately the standard exponential distribution.
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3.2 Variable selection based on Machine Learning algorithms

and parameters estimation

3.2.1 Random Forests

As follows we use Random Forests algorithms to estimate the parameter g(x) by classi-

fication and ξ(x) by regression. Random forests is a famous machine learning technique

and the idea is to build an ensemble of decision trees. Each decision tree is build by

drawing a bootstrap sample from the original training data. Subsequently, select ran-

domly a subset of all covariates and pick the best covariate to split at each node until

the maximum number of nodes to split is reached. Then, a prediction is made for each

decision tree. The final predicted response variable is calculated by taking the class

with the most votes in case of classification and averaging the predicted values over all

decision trees in case of regression.

The advantage of random forests is easy to implement and can handle the high dimen-

sional of predictor variables. Additionally, random forests technique reduces the variance

of prediction without increasing the bias by drawing randomly different sample from the

original data, which improves the accuracy of predictions. The disadvantage is the com-

plexity of random forests which means that the results are difficult to interpret. Since

the popularity of random forests algorithm, there are many open source implementations

available in different programming languages. In this paper, we use the randomForest

package in R and Algorithm 1 shows the estimation procedure on next page.
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Algorithm 1.

1. We choose a confidence level α, threshold u, then we split the data into training

data of size M and test data of size N . Each parameter is computed based on an

estimation window of size M .

2. For each estimation window, we do the following steps:

(a) For classification, create a dummy variable D which takes D = 1 when Z > u

and D = 0 when Z ≤ u. We train the RF model with dummy variable D and

covariates x as follows.

i. Draw ntree bootstrap sample from the original training sample of size M,

where ntree defines as the number of trees in the random forests. Oshiro

et al. (2012) show that the model performance will not increase after 128

trees and they suggest that the optimal number of trees in the random

forests lies between 64-128. Therefore, we set ntree = 128.

ii. For each decision tree in the random forests, select randomly √p predic-

tors of all covariates, where p is the number of covariates in the dataset

and this number is rounded down. Then, we choose the best covariate to

split at each node until the maximum number of nodes is reached. After-

wards, a prediction is made for each tree in the random forests and the

outcome is 0 or 1.

iii. Use the trained RF model to make prediction for new covariates in the

testing sample. For a new set of covariates x, estimate g(x) in Equation

(1) by counting the number of trees in the random forests which predicts 1

and then dividing by ntree = 128. The estimation of g(x) is the predicted

probability of Z excess threshold u with random forests classifier.

(b) For regression, create a new variable L = log
(
Z
u

∣∣∣ Z > u
)
. This variable is

observed only for Z > u, thus results in a smaller size of training sample. We

fit the model with generated variable L and covariates x as follows.

i. Draw ntree = 128 bootstrap sample from the training sample of size M as

for classification.
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ii. Select randomly p/3 predictors of all covariates, where p is the number of

covariates and this number is rounded down. Subsequently, we pick the

best covariate to split at each node until the maximum number of nodes is

reached in the same manner as for classification. Afterwards, a prediction

is made for each tree in the random forests and the outcome is a numeric

value.

iii. Use the trained RF model to make prediction for new covariates in the

testing sample. For a new group of covariates, estimate ξ(x) in Equation

(3) by averaging the prediction over ntree = 128 decision trees in the

random forests. The shape parameter depending on multiple covariates is

approximately equal to the predicted mean of L, thus ξ(x) is automatically

estimated by RF algorithm.

(c) When we obtain the estimation for g(x) and ξ(x) in step 2.a and 2.b, re-

spectively. We compute the VaR depends on covariates stated in Equation

(4).
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3.2.2 Support Vector Machines

The second Machine Learning algorithm we use is Support Vector Machines (SVM).

Similar to Random Forests, we estimate g(x) using classification and ξ(x) using regres-

sion technique.

SVM is widely used for classification, the goal is to find an optimal hyperplane which

can separate the two classes correctly. In general, we deal with three issues. First, many

hyperplanes can be found. In order to choose which hyperplane to use, we select hyper-

plane based on Maximal Margin Classifier. Margin is the distance between the nearest

data point of each class to the hyperplane and these data points are also called support

vectors. Maximal Margin Classifier is to find a hyperplane which maximizes the margin.

Second, when a hyperplane separates the classes correctly without any errors or outliers,

we call it hard margin classifier. However, in practice this is not always the case. For this

reason, we need to use a soft margin classifier. Soft margin classifier includes some mis-

classified observations, make a trade-off between maximizing the margin and minimizing

the misclassified data points. Third, in general case the data are not linearly separable

and more complex functions are needed. Therefore, we use different kernel functions. A

kernel function maps the data into high dimensional space in such a way that the data

points are more (linearly) separable, which means that the data can be better classified.

In this paper, we handle three different kernel functions which are linear, polynomial

and radial. SVM is considered as an optimization problem and the optimal hyperplane

can be found by Lagrangian multipliers.

SVM can also be used for regression, the idea is similar but the goals are different. Rather

than find a hyperplane which separates the classes correctly, the goal for regression is to

find an optimal hyperplane which minimizes the distance of the data points to it. The

cost function for regression is based on epsilon-insensitive loss function, the idea is that

the small amounts of errors are not count and errors greater than the epsilon range are

needed to be minimize. As for classification, we use three different kernel functions to

seperate the non-linear data, which are linear, polynomial and radial. Again, we use

an open source statistical package e1071 in R and a roadmap of parameter estimation

procedure for SVM is given in Algorithm 2.
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Algorithm 2.

1. We choose a kernel function K, confidence level α, threshold u and split the data

into training sample with sizeM and test sample with size N . Again each parameter

is computed based on an estimation window of size M .

2. For each estimation window, we do the following steps:

(a) For classification, we create a dummy variable D in the same way as for RF.

We train the model with dummy variable D and covariates x as follows.

i. Find an optimal hyperplane based on Maximal Margin Classifier, which

means that we maximize the distance between the nearest observation of

each class to the hyperplane. This is an standard optimization problem

and can be solved by Lagrangian multiplier.

ii. In case that some data points are classified incorrectly in the separate

hyperplane, we use SVM with soft margin technique. Hereby we introduce

a cost parameter in the objective function of SVM which makes the trade-

off between maximizing margin and minimizing misclassified data points.

Until now, this is an optimization problem with a linear kernel.

iii. When the data points are not separable with linear classifier, we use two

different non-linear kernel functions to make the data linearly separable.

Beforehand, we need to decide the hyper-parameters. We use a grid search

to find the following optimal hype-parameters for two non-linear kernel

function:

SVM Polynomial: gamma=0.01,cost=0.01,degree = 3,coef0 = 1

SVM Radial: cost=0.01

iv. Next, we use the hype-parameters identified in the previous step and non-

linear kernel function to find the optimal hyperplane.

v. Finally, use the trained SVM to make prediction for new covariates in the

testing sample. For a new set of covariates x, estimate g(x) in Equation

(1) by predicting the mean of D.

(b) For regression, create a new variable L = log
(
Z
u

∣∣∣ Z > u
)
in the same manner

as for RF. Notice that the number of observations in the training sample
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becomes smaller. We fit the SVM with generated variable L and covariates x

as follows. The steps are similar as for classification.

i. Find an optimal hyperplane based on Maximal Margin Classifier by solving

optimization problem.

ii. Introduce a SVM with soft margin when some data points are classified

incorrectly in the separate hyperplane. Again, this is considered as opti-

mization problem with linear kernel.

iii. Use non-linear kernel functions to make the data linearly separable. The

optimal hyper-parameters for polynomial and radial kernels are the same

as for classification.

iv. Finally, use the trained SVM to make prediction for new covariates in

the testing sample. For a new group of covariates, use the fitted SVM

to estimate ξ(x) in Equation (3) by predicting the mean of L. Again,

the shape parameter depends on covariates is automatically estimated by

SVM algorithm.

(c) When we obtain the estimation for g(x) and ξ(x) in step 2.a and 2.b, re-

spectively. We compute the VaR depends on covariates stated in Equation

(4).
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3.3 Model comparion

In this section, we discuss how to forecast the Value-at-Risk depending on covariates

and compare the model performance with other classical risk models such as Historical

Simulation (HS) and dynamic HS with GARCH(1,1) model. To evaluate the model

performance, we employ an unconditional binomial test mentioned by Jorion et al. (2010)

and a conditional Interval forecasts evaluation test introduced by Christoffersen (1998).

3.3.1 Alternative models

Historical Simulation

The Historical Simulation is a classic and easy to implement method for estimating VaR.

The idea is based on empirical distribution function and no assumptions are made on

the parameters distribution. Consider a training sample with size M and testing sample

with size N , again each prediction in the testing sample is calculated based on a moving

window of M trading days. Consider the negative log-returns Z and take the order

statistics such that Z(1) ≤ Z(2) ≤ ... ≤ Z(M). The estimation of VaR based on a moving

window of size M is given by

V̂ aR
HS

α = Z(dMαe)

where M is number of observations in the training sample and α is the confidence level.

Dynamic HS with GARCH(1,1)

The second approach is called dynamic HS with GARCH(1,1) model. The difference

with the first approach is that we obtain a GARCH(1,1) model as an immediate step

to forecast volatility, afterwards we use it to compute the VaR. An advantageous of this

method is that we can capture the volatility clustering in the time series since almost all

stock returns presents autocorrelations. The data is again divided into training sample

of size M and testing sample of size N . Consider t = 1, ...,M and the GARCH(1,1)

model defines as

Zt − µ = σtεt, σ2
t = α0 + α1Z

2
t−1 + β1σ

2
t−1

where Zt is the negative log-return as mentioned before, µ is the estimates of the mean
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of Zt, εt ∼ N(0, 1) , α0 > 0, α1, β1 ≥ 0 and α1 + β1 < 1 for stationary. The coefficients

in the model can be estimated with Quasi Maximum Likelihood and we obtain α̂0, α̂1, β̂1

and the mean µ̂. Then, we use a start value σ1 and estimate the in-sample volatility σ̂t

for t = 2, ...,M . Subsequently, we forecast the volatility at M + 1,

σ̂2
M+1 = α̂0 + α̂1Z

2
M + β̂1σ̂

2
M

and the VaR estimate is given by

V̂ aR
HS−GARCH
α = µ̂+ σ̂M+1V̂ aR

FHS

α

where V̂ aR
FHS

α is the VaR estimation of filtered εt using HS simulation and filtered εt is

computed by Zt/σ̂t.

3.3.2 Performance evaluation

Binomial Test

The binomial test is standard backtesting method for VaR estimates. The concept is

based on counting the number of violations for a testing period of N and V =
∑N

i=1 Ii(α),

where

Ii(α) =

1 if Zi > V̂ aRα

0 if Zi ≤ V̂ aRα

If the number of violations V follow a binomial distribution B(N, 1−α), the test statis-

tics is given by

V −N(1− α)√
Nα(1− α)

which follows approximately the standard normal distribution as N →∞.

Interval forecasts evaluation

Christoffersen (1998) introduces an Interval forecasts evaluation method to test the model

performance on VaR estimates. Christoffersen (1998) tests the following two hypotheses:

1. The unconditional coverage hypothesis states that the probability of a violation

must equal to the coverage rate, in this case is 1 − α. Denote π = P[Ii(α) = 1] and we
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test the null hypothesis H0 : π = 1− α. The likelihood function of all Ii(α) is given by:

L =
N∏
i=1

πIi(α)(1− π)1−Ii(α) = πV (1− π)N−V

where α is the confidence level, N is the testing period and V is the number of vio-

lations as defined before. Since the maximum likelihood estimate of π is π̂ = V
N
, the

unconditional coverage likelihood ratio statistic equals to:

LRUC = −2log

 (1− α)V αN−V(
1− V

N

)N−V (
V

N

)V
 ∼ χ2(1)

2. The independence hypothesis states that the VaR violations are independent

from each others. The idea is inspired by the property of Markov chain, denote a matrix

of transition probabilities:

Π =

π00 π01

π10 π11


where πj,k = P[Ii(α) = k|Ii−1(α) = j], 0 represents no violation and 1 represents a viola-

tion occurred. Denote nj,k is a random variable which counts the number of times event

j followed by event k and an outcome table is illustrated below:

Table 1: Outcome of Christoffersen’s test

Ii−1(α) = 0 Ii−1(α) = 1
Ii(α) = 0 n00 n10 n00 + n10

Ii(α) = 1 n01 n11 n01 + n11

n00+n01 n10+n11 N

π01 and π11 are random variables. The maximum likelihood estimates are equals to:

π̂01 =
n01

n00 + n01

π̂11 =
n11

n10 + n11
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The likelihood ratio test statistics of independence is given by:

LRIND = −2log


(

1− V

N

)N−V (
V

N

)V
(1− π̂01)n00(π̂01)n01(1− π̂11)n10(π̂11)n11

 ∼ χ2(1)

Since Christoffersen (1998)’s method is a jointly test of unconditional coverage and in-

dependence, the likelihood ratio statistics of Conditional Coverage Independence (CCI)

test is computed by:

LRCCI = LRUC + LRIND = −2log

(
(1− α)V αN−V

(1− π̂01)n00(π̂01)n01(1− π̂11)n10(π̂11)n11

)
∼ χ2(2)
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4 Empirical Results

The empirical results consist of three parts. First, we perform a covariate selection

analysis in Section 4.1. Second, Section 4.2 tests the sensitivity of threshold u on the

model performance. Finally, we compare the VaR forecasting with 6 different models in

Section 4.3.

4.1 Variable selection

In this subsection, we perform a variable selection analysis and attempt to answer our

main research question - Which covariates should be included to explain the left tail?

We apply the methodology on dataset S&P 500 and FTSE 100, the aim is to find

economically meaningful covariates to explain the tail behavior. We work out in the

following three steps. First, we present the results of parameter estimates with RF and

SVM, namely the estimation of g(x) and ξ(x). Afterwards, we investigate whether the

exceedances indeed follow approximately Pareto distribution using Q-Q plots. Second,

we rank the variable importance and detect which covariates give the most predictive

power on estimating parameters of the left tail distribution. Lastly, we examine the

relation between an individual covariate and predicted parameters with scatter plots. In

other words, we research how does an individual covariate affects tail behavior and give

economic interpretation.

4.1.1 Parameter estimates

In this paragraph, we follow the parameter estimation procedure described in Algorithm

1 and 2. First, we examine the predictive ability of g(x) which estimates the probability

of exceedances above threshold u in terms of Area Under the Receiver Operating Char-

acteristic curve (AUROC). Receiver Operating Characteristic curves are a useful tool to

classifies binary outcomes, it plots the True Positive Rate (Sensitivity) on the y-axis and

1 - False Positive Rate (Specificity) on the x-axis for a number of different thresholds.

In our case, True Positive Rate calculates the percentage of correct predictions for g(x)

when in fact there is exceedances above threshold u. False Positive Rate computes the

percentage of incorrect prediction for g(x) when there is no exceedances above threshold

in reality. Therefore, a high True Positive Rate and low False Positive Rate are desired.
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Which means we prefer high values of Sensitivity and Specificity. An example of the

ROC curve is illustrated in Figure 4.
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Figure 4: An example of ROC curve. The 45-degree straight line has an AUROC of 0.5
which represents random guess on the binary outcome. The black line has an AUROC
of 0.993 which is calculated by the RF model and indicates an excellent classifier.

As the name itself says, AUROC computes the area under the ROC curve which ranges

between 0 and 1. An AUROC of score 0.5 indicates that the model is equivalent to

random guess and 1 denotes a perfect classifier. We calculate the AUROC with datasets

S&P 500 and FTSE 100 using RF, SVM Linear, SVM Polynomial and SVM Radial. The

results are shown in Table 2.

Table 2: AUROC Comparison

RF SVM Linear SVM Polynomial SVM Radial
S&P 500 0.993 0.991 0.957 0.975
FTSE 100 0.919 0.916 0.897 0.911

In general, we find that both 4 models are an excellent classifier with AUROC > 0.90.

The predictive power has the following ranking: RF > SVM Linear > SVM Radial >

SVM Polynomial. One explanation of high score of AUROC is that we apply a mov-

ing window to train the ML models each time, which allows the models learn the most
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recent information till day t − 1 to predict day t. Another explanation is that we use

large amounts of data which includes 63 covariates. Last but not least, we illustrate the

estimation of g(x) with RF using indices S&P 500 and FTSE 100 in Figure 5. From

the graph, we observe that the predicted probabilities g(x) are high when there is ex-

ceedances which meets our expectations.

Second, we estimate the parameter ξ(x) which is the shape parameter of the Pareto dis-

tribution and it is an important parameter since it determines the tail behavior. As the

shape parameter measures the heaviness of the tail, we expect a higher value of shape

parameter when the losses are large. We identify the relation between these variables

with scatter plots. Figure 6 and 7 display the scatter plots using RF, SVM Linear, SVM

Polynomial, SVM Radial and applied on datasets S&P 500 and FTSE 100, respectively.

Overall, we examine a positive relation between the estimate ξ(x) and the losses. For

example, we detect a strong positive linear relationship between the predicted shape

parameter and S&P 500 losses when using RF model. Also, SVM Linear and SVM

Polynomial show a similar pattern in the scatter plots. However, SVM Radial leads to

a non-linear relation between ξ̂(x) and the losses.

Finally, Figure 8 illustrates the Q-Q plots for S&P 500 using 4 ML algorithms, these

results are created with a fixed threshold of 0.7-quantile. Overall, RF shows a bad model

fitting and SVM Radial is more appropriate fitted. In Section 4.2, we perform a thresh-

old sensitivity test and investigate whether the model with a different threshold is better

fitted. Figure 9 displays the Q-Q plots for FTSE 100 using 4 models and this set of

results are based on a 0.75-quantile. In general, we observe a better fitted quantile line

in all methods.
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Figure 5: The predicted probabilities of g(x) over time using Random Forests for S&P
500 in the upper graph and FTSE 100 in the bottom graph. The black line presents the
predicted g(x) over time which lies between 0 and 1. The background is shaded with
grey when there is exceed over threshold u.
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Figure 6: Scatter plots which shows the relationship between the predicted shape pa-
rameter and the S&P 500 losses. The x-axis represents the predicted ξ(x) depends on
multiple covariates and the y-axis shows the losses. The results for four models are
displayed. From top to bottom and left to right: Random Forest, SVM Linear, SVM
Polynomial and SVM Radial basis.
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Figure 7: Scatter plots which shows the relationship between the predicted shape pa-
rameter and the FTSE 100 losses. The x-axis represents the predicted ξ(x) depends
on multiple covariates and the y-axis shows the losses. The results are shown for four
models. From top to bottom and left to right: Random Forest, SVM Linear, SVM
Polynomial and SVM Radial basis.
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Figure 8: Q-Q Plots to check whether large S&P 500 losses are approximately Pareto
distributed. The x-axis plots the quantiles of the standard exponential distribution and
the y-axis plots the quantiles of the generated variable L defined in Equation (2). Note
that when the models are correctly fitted, a 45-degree straight line should be present in
the Q-Q Plots. The results are shown for four models. From top to bottom and left to
right: Random Forest, SVM Linear, SVM Polynomial and SVM Radial basis.
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Figure 9: Q-Q Plots to check whether large FTSE 100 losses are approximately Pareto
distributed. The x-axis plots the quantiles of the standard exponential distribution and
the y-axis plots the quantiles of the generated variable L defined in Equation (2). Note
that when the models are correctly fitted, a 45-degree straight line should be present in
the Q-Q Plots. The results are shown for four models. From top to bottom and left to
right: Random Forest, SVM Linear, SVM Polynomial and SVM Radial basis.
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4.1.2 Variable importance

In this subsection, we rank the variable importance to explain the left tail behavior for

S&P 500 and FTSE 100 using ML algorithms. The calculation methods to determine

the variable importance are different for RF and SVM. First, we explain these techniques

separately. Second, we detect the most informative covariates for the estimation on g(x)

and ξ(x) with both algorithms.

The variable importance using RF algorithm can be determined in two ways: impor-

tance based on accuracy or importance based on impurity. First, variable importance

based on accuracy measures how much the accuracy of the model decreases when a

variable is excluded. In case of classification, variable importance is measured by calcu-

lating the percentage of observations that are incorrectly classified in % when excluding

a given variable in the model. In case of regression, variable importance measures the

increases of Mean Squared Errors (MSE) in % when a variable is excluded from the

model. Therefore, a higher score indicates a more important variable. Second, variable

importance based on impurity measures the homogeneity of the dataset by node splitting

of a variable. In case of classification, variable importance measures the homogeneity

with decrease of Gini Impurity in % when splitting node of a variable. Gini Impurity

defines as the probability of labeling an observation incorrectly. In case of regression,

variable importance measures the homogeneity with increase of Sum of Squared Errors

(SSE) in % when splitting node of a variable. Therefore, a higher value indicates a

more influential variable. The variable importance using both methods with RF can be

automatically computed by function varImpPlot() in R.

The variable importance using SVM algorithm is calculated in a different way. Guyon

and Elisseeff (2003) suggest that the weight of each variable in the SVM model can be

used to interpret the variable importance. We determine the importance in the follow-

ing two steps. First, we calculate the weighted sum of all variables by multiplying the

estimated coefficients and the support vectors computed by SVM. These results are the

output value of the SVM algorithm described in Algorithm 2. Second, we take the ab-

solute value of the weighted sum vectors of all variables in the previous step and rank

them in descending order.
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Notice that the above-mentioned method is only applied for one model of unique datasets.

Since we use a moving window of 1500 days and each forecast is based on a different

sample data, we need to compare the covariates importance with same dependent vari-

able but different datasets. However, we find that the variation of covariates importance

across different sample period is not much and the top three variable importance is stable

over different runs.

Now we can determine the variable importance for the estimation on g(x) and ξ(x) with

both RF and SVM algorithms.

The function g(x) predicts the probability of excess over a fixed threshold u given a

sets of covariates are known. Appendix B.1 plots a list of variable importance for S&P

500 using RF, SVM Linear, SVM Polynomial and SVM Radial. Equivalently, Appendix

B.2 illustrates a list of variable importance for FTSE 100 using RF, SVM Linear, SVM

Polynomial and SVM Radial. For S&P 500, DJA, NASDAQ and VIX are the top three

predictive variables for the estimation of g(x) in most models except for SVM Linear.

We find that the covariate VIX is the 10th important variable with SVM Linear model

and the 3rd informative covariate is 12-month LIBOR in US. Dollar. This result is con-

sistent with our expectations. As mentioned before in the data section, the major world

indices move simultaneously with each other, specially in an extreme case. Furthermore,

Giot (2005) reveals a negative relationship between the implied volatility index VIX and

returns of S&P 500. For FTSE 100, CAC40, AEX and DAX are the top three influential

variables on the g(x) estimates in most methods except for SVM Linear. The 10-day

moving average of FTSE 100 also predicts the excess probability when using SVM with

linear kernel.

The shape parameter ξ(x) plays a dominant role in the tail-fitting procedure and they

determine mostly the shape of the tail distribution. Appendix B.3 represents the variable

importance plot for S&P 500 using RF, SVM Linear, SVM Polynomial and SVM Radial.

We find that DJA, NASDAQ and VIX are the most three informative covariates for

almost all methods. AEX is the 3th significant important variable using RF measured
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with increase of SSE in % by node splitting of a variable, the covariate VIX is the 6th

influential covariate. Note that the top three important covariates which predicts g(x)

and ξ(x) are the excatly the same. We conclude that they explain the tail behavior for

S&P 500. Similarly, Appendix B.4 shows the variable importance plot for FTSE 100

using RF, SVM Linear, SVM Polynomial and SVM Radial. CAC40, AEX and DAX are

the three significant covariates to describe the shape of tail distribution for FTSE 100.

Again, these covariates are the same as for estimating g(x).
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4.1.3 Individual covariate

From the previous section, we discover the covariates with most predictive ability for

g(x) and ξ(x). In this section, we examine the relation between the individual covariate

and predicted parameters in the form of scatter plots. It provides us insight how an

individual covariate affects the outcome of response variable in ML algorithms.

Figure 10 shows the scatter plots of the top three most informative covariates for

S&P 500. Overall, we observe a positive relation between covariates Dow Jones, NAS-

DAQ and predicted g(x). For example, we examine a monotonically increasing ĝ(x)

when the negative log-returns of Dow Jones lie between 0.50%(= exp(−0.005)− 1) and

1.49%(= exp(−0.015) − 1), which indicates losses in Dow Jones Index leads to higher

probability of S&P 500 crash. When the negative log-returns of Dow Jones become

greater than 1.49%, the probabilities approach to 1. The relationship between individual

covariate NASDAQ and predicted g(x) can be interpreted in a similar way. Additionally,

we find a linear positive relationship between covariates DJA, NASDAQ and ξ̂(x). The

predicted shape parameter increases when the negative log-returns of DJA and NAS-

DAQ increases, the function ξ̂(x) depends on covariates does not converge. For covariate

VIX, we detect a negative relation with ĝ(x) and ξ̂(x). If the positive log-returns of

fear index VIX get larger, which means there is more risk exists and investors have less

confidence on the financial market, the probabilities of exceedances over threshold raise

up as well. However, we examine that there is no clear association between VIX and ξ̂(x).

Equivalently, Figure 11 displays the scatter plots of top three informative covariates

for FTSE 100 versus ĝ(x) and ξ̂(x). Overall, we observe a positive relation between

covariates CAC40, AEX, DAX and predicted probability ĝ(x). Additioanlly, there is a

monotonic non-linear relationship among CAC40, AEX, DAX and the predicted shape

parameter ξ̂(x).
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Figure 10: Scatter plots which shows the relationship between the top three covariates
(DJA, NASDAQ, VIX) for S&P 500 and the predicted parameters. Left graphs display
the scatter plots for ĝ(x) and right graphs display the scatter plots for ξ̂(x). The x-axis
represents the log-returns of an individual covariate in % and y-axis shows the predicted
parameters.
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Figure 11: Scatter plots which shows the relationship between the top three covariates
(CAC40, AEX, DAX) for FTSE 100 and the predicted parameters. Left graphs display
the scatter plots for ĝ(x) and right graphs display the scatter plots for ξ̂(x). The x-axis
represents the log-returns of an individual covariate in % and y-axis shows the predicted
parameters.
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4.2 Choice of threshold u

In this section, we test a sets of threshold and examine the effect of model fitting with

Q-Q plots. Based on the results for S&P 500 in Figure 8, we use a threshold of 0.65,

0.75-quantile of the sample data and compare the model performance with pre-selected

threshold which is 0.70-quantile of the sample data. Since SVM Radial has the best

model fitting in the Q-Q plot, we perform a threshold sensitivity test with this model.

The results are illustrated in Figure 12. We find the difference is not much across var-

ious thresholds. For FTSE 100, we try a threshold of 0.70, 0.80-quantile using SVM

Linear model and we compare the results with 0.75-quantile threshold. The Q-Q plots

are shown in Figure 13. Overall, we find that we select an appropriate threshold and

other threshold has rarely impact on the model performance. In our further analysis, we

use a fixed threshold of 0.70-quantile for S&P 500 and 0.75-quantile for FTSE 100.
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Figure 12: Q-Q Plots with 0.65, 0.70, 0.75-quantile threshold using SVM Radial for S&P
500
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Figure 13: Q-Q Plots with 0.70, 0.75, 0.80-quantile threshold using SVM Linear for
FTSE 100
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4.3 VaR Forecasting

In this section, we execute an out-of-sample VaR forecasting with 4 proposed models

depending on covariates and 2 classical risk models. For each model, we predict the VaR

based on a moving window of 1500 days and use a confidence level of 0.90, 0.95, 0.99.

The out-of-sample period for S&P 500 and FTSE 100 contains 476 and 571 trading days,

respectively. We compare the performance of VaR Forecasting across different models

in terms of Binomial test and Conditional Coverage Independence (CCI) test invent by

Christoffersen (1998).

Table 3 shows the results of out-of-sample 90%, 95%, 99% VaR forecasting for S&P 500

using RF, SVM Linear, SVM Polynomial, SVM Radial, HS and GARCH(1.1) models.

We use a significance level of 5% for both evaluation tests and reject the null hypothesis

when the p-value is smaller than 5%. Overall, both the binomial test and CCI test by

Christoffersen (1998) show a consistent conclusion. We reject all models for both 90%

and 95% VaR levels. For 99% VaR level, we accept the SVM Linear, SVM Polyno-

mial and GARCH(1.1) models. The models show poorer performance than expected.

However, we examine that the observed number of violations is lower than the expected

number of violations for all models except RF. For example, we expect VaR violations

of 1%, 5%, 10% for 99%, 95%, 90% VaR levels, respectively. A lower percentage of VaR

violations than expected indicates that the models overestimate risk. For the regulatory

purpose, overestimating risk is better than underestimating risk since they are more con-

servative. Additionally, we observe that the average VaR for ML models are low without

having more violation than expected. This results is desirable as banks reporting such

VaR estimates would comply with regulation with having a lower capital requirments.

Table 4 shows the results of out-of-sample 90%, 95%, 99% VaR forecasting for FTSE 100

using RF, SVM Linear, SVM Polynomial, SVM Radial, HS and GARCH(1.1) models.

Again, both evaluation test leads to the same conclusion. Besides, the models perform

better than for S&P 500. For 90% VaR level, we accept RF, SVM Linear and SVM

Radial models. For 95% VaR level, only SVM Linear and SVM Radial are accepted. For

99% VaR, we accept SVM Linear, SVM Polynomial and HS models. We observe a simi-

lar results as for S&P 500, the average VaR estimates are low while the observed number
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of violations is smaller than expected. For illustration purpose, we plot the 90% VaR

Forecasting with RF, SVM Linear, SVM Polynomial, SVM Radial, Historial Simulation

and Dynamic HS GARCH(1,1) for S&P 500 and FTSE 100 in Appendix B.5.

Finally, as a robustness check, we perform an out-of-sample VaR forecasting with top

three covariates which is found in Section 4.1.2. Appendix A.2 shows the results of

out-of-sample VaR forecasting with top three covariates (DJA, NASDAQ, VIX) for S&P

500 using RF, SVM Linear, SVM Polynomial, SVM Radial. We accept SVM Radial for

90% VaR level and SVM Polynomial model for 95% VaR with both evaluation tests.

For 99% VaR level, all models are rejected. When we compare the results with Table 3

which all 63 covariates are obtained for the VaR forecasting, the models using only top

three covariates perform better with 90%, 95% VaR level, but worse with 99% VaR level.

Equivalently, Appendix A.3 shows the results of out-of-sample VaR forecasting with top

three covariates (CAC40,AEX,DAX) for FTSE 100 using RF, SVM Linear, SVM Poly-

nomial, SVM Radial. For 90% and 95% VaR level, we accept both SVM Linear and

SVM Polynomial models for binomial and Christoffersen (1998)’s test. For 99% VaR

level, only SVM Radial model is accepted. When we compare the results obtained from

Table 4, we do not observe that the models using top three covariates perform better

than using 63 covariates for VaR forecasting. Overall, we observe that the ML models

with top three covariates only does not perform better for VaR forecasting than using

63 covariates.
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Table 3: Performance Evaluation S&P 500

a) α = 0.90

Binomial Test CCI by Christoffersen

Model Average VaR # Violations (%) P-value (Decision) Test statistics P-value (Decision)

RF 1.412 75 (15.756) 0.000 (Reject) 65.839 0.000 (Reject)

SVM Linear 1.316 13 (2.731) 0.000 (Reject) 38.852 0.000 (Reject)

SVM Polynomial 1.258 11 (2.311) 0.000 (Reject) 45.364 0.000 (Reject)

SVM Radial Basis 1.100 32 (6.723) 0.014 (Reject) 7.845 0.020 (Reject)

Historial Simulation 1.900 30 (6.303) 0.006 (Reject) 18.341 0.000 (Reject)

Dynamic HS GARCH(1,1) 2.235 15 (3.151) 0.000 (Reject) 39.948 0.000 (Reject)

b) α = 0.95

Binomial Test CCI by Christoffersen

Model Average VaR # Violations (%) P-value (Decision) Test statistics P-value (Decision)

RF 2.267 72 (15.126) 0.000 (Reject) 116.932 0.000 (Reject)

SVM Linear 1.913 2 (0.420) 0.000 (Reject) 34.745 0.000 (Reject)

SVM Polynomial 1.734 2 (0.420) 0.000 (Reject) 34.745 0.000 (Reject)

SVM Radial Basis 1.553 8 (1.681) 0.000 (Reject) 14.976 0.001 (Reject)

Historial Simulation 2.606 11 (2.311) 0.004 (Reject) 10.331 0.006 (Reject)

Dynamic HS GARCH(1,1) 2.694 9 (1.891) 0.001 (Reject) 14.616 0.001 (Reject)

c) α = 0.99

Binomial Test CCI by Christoffersen

Model Average VaR # Violations (%) P-value (Decision) Test statistics P-value (Decision)

RF 10.032 72 (15.126) 0.000 (Reject) 315.367 0.000 (Reject)

SVM Linear 6.577 1 (0.210) 0.101 (Accept) 4.434 0.109 (Accept)

SVM Polynomial 3.990 2 (0.420) 0.348 (Accept) 2.085 0.353 (Accept)

SVM Radial Basis 3.469 0 (0.000) 0.018 (Reject) 9.568 0.008 (Reject)

Historial Simulation 4.828 0 (0.000) 0.018 (Reject) 9.568 0.008 (Reject)

Dynamic HS GARCH(1,1) 3.560 2 (0.420) 0.348 (Accept) 2.085 0.353 (Accept)

Note: Out-of-sample VaR forecasting for S&P 500. This table shows from column left to right: the
average VaR over a testing period, the number of violations and their percentage is expressed in paren-
theses, then a two-sided binomial test is executed with null hypothesis of correct number of expected
violations and we calculate the p-value, followed by Christoffersen (1998)’ s jointly test with null hy-
pothesis of independent violations and the test statistics with p-value is computed. We reject the null
hypothesis when the p-value is smaller than 5% significance level and the decision results are expressed
in parentheses.
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Table 4: Performance Evaluation FTSE 100

a) α = 0.90

Binomial Test CCI by Christoffersen

Model Average VaR # Violations (%) P-value (Decision) Test statistics P-value (Decision)

RF 1.333 71 (12.434) 0.059 (Accept) 4.167 0.124 (Accept)

SVM Linear 1.114 59 (10.333) 0.780 (Accept) 0.072 0.965 (Accept)

SVM Polynomial 1.255 41 (7.180) 0.025 (Reject) 6.949 0.031 (Reject)

SVM Radial Basis 1.184 59 (10.333) 0.780 (Accept) 0.226 0.893 (Accept)

Historial Simulation 1.838 35 (6.130) 0.001 (Reject) 11.221 0.004 (Reject)

Dynamic HS GARCH(1,1) 2.194 18 (3.152) 0.000 (Reject) 39.831 0.000 (Reject)

b) α = 0.95

Binomial Test CCI by Christoffersen

Model Average VaR # Violations (%) P-value (Decision) Test statistics P-value (Decision)

RF 1.772 58 (10.158) 0.000 (Reject) 25.799 0.000 (Reject)

SVM Linear 1.452 19 (3.327) 0.068 (Accept) 5.871 0.053 (Accept)

SVM Polynomial 1.611 16 (2.802) 0.012 (Reject) 14.049 0.001 (Reject)

SVM Radial Basis 1.559 19 (3.327) 0.068 (Accept) 5.871 0.053 (Accept)

Historial Simulation 2.516 14 (2.452) 0.004 (Reject) 13.688 0.001 (Reject)

Dynamic HS GARCH(1,1) 2.612 12 (2.102) 0.001 (Reject) 14.153 0.001 (Reject)

c) α = 0.99

Binomial Test CCI by Christoffersen

Model Average VaR # Violations (%) P-value (Decision) Test statistics P-value (Decision)

RF 4.402 41 (7.180) 0.000 (Reject) 100.643 0.000 (Reject)

SVM Linear 2.698 1 (0.175) 0.053 (Accept) 5.978 0.050 (Accept)

SVM Polynomial 3.030 1 (0.175) 0.053 (Accept) 5.978 0.050 (Accept)

SVM Radial Basis 2.952 0 (0.000) 0.005 (Reject) 11.477 0.003 (Reject)

Historial Simulation 4.617 1 (0.175) 0.053 (Accept) 5.978 0.050 (Accept)

Dynamic HS GARCH(1,1) 3.574 0 (0.000) 0.005 (Reject) 11.477 0.003 (Reject)

Note: Out-of-sample VaR forecasting for FTSE 100. This table shows from column left to right:
the average VaR over a testing period, the number of violations and their percentage is expressed
in parentheses, then a two-sided binomial test is executed with null hypothesis of correct number of
expected violations and we calculate the p-value, followed by Christoffersen (1998)’ s jointly test with
null hypothesis of independent violations and the test statistics with p-value is computed. We reject
the null hypothesis when the p-value is smaller than 5% significance level and the decision results are
expressed in parentheses.
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5 Conclusion

In this study, we implement the Machine Learning techniques into parameters estima-

tion procedure in Extreme Value Analysis. We derive parameters depend on multiple

covariates to describe the tail of the Pareto distribution. The informative covariates

to explain the left tail behavior are automatically chosen by Random Forests and Sup-

port Vector Machines algorithms. We apply the methodology on two empirical datasets:

world major indices S&P 500 and FTSE 100. We conclude this paper by answering the

three main research questions.

First, we identify covariates that explains two major parameters g(x) and ξ(x) describing

the tail of a Pareto distribution. We find that DJA, NASDAQ and VIX are the most

informative covariates to explain tail behavior for S&P 500. More specifically, DJA and

NASDAQ have positive relation with the tails and fear index VIX is negatively corre-

lated with the tails. Correspondingly, three European stock indices CAC40, AEX and

DAX are the influential covariates for losses of FTSE100. Furthermore, the covariates

are positively related with the financial losses of FTSE 100.

Second, we compare the out-of-sample VaR forecasting between our proposed models de-

pends on covariates and two classical risk models. We find that our implemented models

which combining ML and EVT perform better for 99% VaR forecasting than 90%, 95%

VaR level. Due to the fact that EVT is superior only for the estimation of tail probabil-

ities or high quantiles, the 99% VaR forecasting is accepted by the evaluation tests for

both S&P 500 and FTSE 100 datasets but not for 90%, 95% VaR levels. Additionally, we

find that our proposed models perform better when applied on empirical dataset FTSE

100 than S&P 500. A possible explaination is the choice of threshold for S&P 500. We

observe before from the Q-Q plots that the S&P 500 losses are not very good approxi-

mated by the Pareto distribution with a threshold of 0.70-quantile, while the FTSE 100

losses are better fitted in the model. Therefore, the 90%, 95% VaR forecasting using ML

models for S&P 500 are both rejected by the null hypothesis, while few ML models (RF,

SVM Linear, SVM Radial) are accepted by the null hypothesis for FTSE 100. Overall,

we do not find evidence to show that our proposed models outperform the Historical

43



Simulation and GARCH(1,1) risk models. However, the ML models produce low VaR

estimates without having more violations than expected. This is favorable results since

low VaR estimates can help banks to hold capital more efficiently.

Third, we find that varying from other candidate thresholds have rarely impact on the

model performance.

For this research, we work out with two basic Random Forests and Support Vector

Machines algorithms. One possible extension is to use Deep Learning techniques such

as Artificial Neural Networks, which allows to model the complex relation between the

covariates and parameter estimates. Additionally, research on a longer sample period or

other major world indices could be interesting.
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A Tables

A.1 Summary statistics of covariates

Table 5: Summary statistics of covariates

Name Description Mean Min. Max. Std. Dev. Skewness Kurtosis Jarque-Bera(Pr.)

World major indices

S&P500 (Excluded when consider the

U.S. Markets)

Log returns of S&P 500 in % 0.019 −9.470 10.957 1.165 −0.209 10.058 19095.721(0.000)

FTSE100 (Excluded when consider the

UK Markets)

Log returns of FTSE 100 in % 0.006 −9.266 9.384 1.152 −0.136 7.210 9809.590(0.000)

DJA Log returns of Dow Jones Industrial Average in % 0.022 −8.695 10.089 1.109 −0.163 7.843 11612.491(0.000)

NASDAQ Log returns of NASDAQ in % 0.029 −9.588 11.159 1.345 −0.095 5.406 5514.062(0.000)

AEX Log returns of AEX in % 0.000 −9.590 10.028 1.412 −0.110 6.901 8983.750(0.000)

DAX Log returns of DAX in % 0.015 −7.442 10.797 1.460 −0.048 4.883 4495.631(0.000)

CAC40 Log returns of CAC40 in % 0.001 −9.472 10.595 1.423 −0.013 5.587 5883.911(0.000)

NIKKEI225 Log returns of Nikkei225 in % 0.013 −12.111 9.494 1.425 −0.645 6.458 8172.529(0.000)

HANGSENG Log returns of Hang Seng Composite Index in % 0.019 −13.582 13.407 1.388 −0.013 9.750 17912.834(0.000)

SHANGHAI Log returns of Shanghai Stock Exchange Composite

Index in %

0.010 −9.256 9.401 1.552 −0.323 5.279 5330.130 (0.000)

Financial variables

Crude oil Log returns of crude oil in % 0.018 −17.092 19.144 2.365 −0.015 5.439 5574.689(0.000)

Gold Log returns of gold in % 0.035 −8.913 9.554 1.104 −0.376 6.469 7992.935(0.000)

Silver Log returns of silver in % 0.028 −21.955 10.642 1.877 −1.207 11.494 25989.694(0.000)

Platinum Log returns of platinum in % 0.013 −9.734 8.761 0.863 −0.167 14.676 40600.048(0.000)

VIX Log returns of CBOE volatiltiy index VIX in % −0.009 −35.059 76.825 6.856 0.949 7.387 10961.485(0.000)

DAAA Log returns of Moody’s Seasoned Aaa Corporate Bond

Yield in %

4.858 3.180 7.400 0.955 0.209 −0.927 194.529(0.000)

Table 5 – Continued on next page
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Table 5 – Continued from previous page

Name Description Mean Min. Max. Std. Dev. Skewness Kurtosis Jarque-Bera(Pr.)

DBAA Log returns of Moody’s Seasoned Baa Corporate Bond

Yield in %

5.931 4.150 9.540 1.126 0.490 −0.429 215.276(0.000)

U.S. Markets

Trading Volume of S&P500 Log returns of trading volume of S&P500 0.023 −143.194 144.329 18.032 0.017 9.497 16995.243(0.000)

LIBOR 1MUSD Log returns of 1-Month London Interbank Offered

Rate (LIBOR), based on U.S. Dollar in %

1.555 0.000 5.824 1.635 1.163 0.196 1025.639(0.000)

LIBOR 3MUSD Log returns of 3-Month London Interbank Offered

Rate (LIBOR), based on U.S. Dollar in %

1.689 0.000 5.725 1.625 1.111 0.086 931.055(0.000)

LIBOR 6MUSD Log returns of 6-Month London Interbank Offered

Rate (LIBOR), based on U.S. Dollar in %

1.846 0.000 5.640 1.580 1.061 −0.002 847.315(0.000)

LIBOR 12MUSD Log returns of 12-Month London Interbank Offered

Rate (LIBOR), based on U.S. Dollar in %

2.088 0.000 5.766 1.486 0.982 −0.111 729.212(0.000)

UK Markets

Trading Volume of FTSE100 Log returns of trading volume of FTSE100 −0.005 −910.982 988.034 35.616 0.855 227.489 9749347.787(0.000)

LIBOR 1MGBP Log returns of 1-Month London Interbank Offered

Rate (LIBOR), based on British Pound in %

2.247 0.000 6.750 2.105 0.503 −1.503 615.184(0.000)

LIBOR 3MGBP Log returns of 3-Month London Interbank Offered

Rate (LIBOR), based on British Pound in %

2.368 0.000 6.904 2.105 0.502 −1.449 585.157(0.000)

LIBOR 6MGBP Log returns of 6-Month London Interbank Offered

Rate (LIBOR), based on British Pound in %

2.493 0.000 6.799 2.056 0.493 −1.438 572.007(0.000)

LIBOR 12MGBP Log returns of 12-Month London Interbank Offered

Rate (LIBOR), based on British Pound in %

2.721 0.000 6.654 1.968 0.466 −1.426 545.760(0.000)

T-bill rates

TBILL 1M Log returns of 1-month Treasury constant maturity

rate in %

1.266 0.000 5.270 1.506 1.238 0.483 1199.209(0.000)

TBILL 3M Log returns of 3-month Treasury constant maturity

rate in %

1.325 0.000 5.190 1.531 1.194 0.343 1096.881(0.000)

TBILL 6M Log returns of 6-month Treasury constant maturity

rate in %

1.443 0.020 5.330 1.561 1.136 0.181 978.850(0.000)

Table 5 – Continued on next page
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Table 5 – Continued from previous page

Name Description Mean Min. Max. Std. Dev. Skewness Kurtosis Jarque-Bera(Pr.)

TBILL 1Y Log returns of 1-year Treasury constant maturity rate

in %

1.563 0.080 5.300 1.526 1.000 −0.110 755.394(0.000)

TBILL 5Y Log returns of 5-year Treasury constant maturity rate

in %

2.565 0.560 5.230 1.237 0.364 −0.996 286.353(0.000)

TBILL 10Y Log returns of 10-year Treasury constant maturity rate

in %

3.288 1.370 5.420 1.062 0.099 −1.266 308.702(0.000)

TBILL 20Y Log returns of 20-year Treasury constant maturity rate

in %

3.864 1.690 6.050 1.093 −0.033 −1.369 353.128(0.000)

Term spreads

TS10Y1M Log returns of Term spread between 10-year and 1-

month treasury rate

2.022 −0.780 4.010 1.054 −0.446 −0.421 183.359(0.000)

TS10Y3M Log returns of Term spread between 10-year and 3-

month treasury rate

1.963 −0.640 3.850 1.068 −0.429 −0.594 204.742(0.000)

TS10Y6M Log returns of Term spread between 10-year and 6-

month treasury rate

1.845 −0.640 3.720 1.084 −0.425 −0.719 233.359(0.000)

TS20Y1M Log returns of Term spread between 20-year and 1-

month treasury rate

2.598 −0.570 4.730 1.272 −0.458 −0.691 247.689(0.000)

TS20Y3M Log returns of Term spread between 20-year and 3-

month treasury rate

2.539 −0.410 4.610 1.291 −0.446 −0.808 272.817(0.000)

TS20Y6M Log returns of Term spread between 20-year and 6-

month treasury rate

2.421 −0.440 4.510 1.310 −0.438 −0.897 295.654(0.000)

TS5Y1M Log returns of Term spread between 5-year and 1-

month treasury rate

1.299 −0.820 3.150 0.766 −0.184 −0.145 29.415(0.000)

TS6M1M Log returns of Term spread between 6-month and 1-

month treasury rate

0.177 −0.430 1.700 0.197 1.517 4.246 5130.974(0.000)

TS3M1M Log returns of Term spread between 3-month and 1-

month treasury rate

0.059 −0.520 0.780 0.110 1.139 5.778 7270.569(0.000)

Default spreads

DSBAAAAA Log returns of Default spread between Moody’s sea-

soned Aaa and Baa corporate bond yield

1.073 0.530 3.500 0.443 2.912 10.587 27506.566(0.000)
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Table 5 – Continued from previous page

Name Description Mean Min. Max. Std. Dev. Skewness Kurtosis Jarque-Bera(Pr.)

DSBAA20Y Log returns of Default spread between Moody’s sea-

soned Baa and 20-year treasury yield

2.067 1.110 5.380 0.657 2.166 6.860 12400.213(0.000)

DSBAA10Y Log returns of Default spread between Moody’s sea-

soned Baa and 10-year treasury yield

2.643 1.480 6.160 0.786 1.561 4.259 5253.998(0.000)

DSBAA5Y Log returns of Default spread between Moody’s sea-

soned Baa and 5-year treasury yield

3.366 1.540 7.200 1.072 0.517 0.909 357.236(0.000)

DSBAA1Y Log returns of Default spread between Moody’s sea-

soned Baa and 1-year treasury yield

4.368 1.120 8.260 1.558 −0.263 −0.486 96.370(0.000)

DSBAA6M Log returns of Default spread between Moody’s sea-

soned Baa and 6-month treasury yield

4.488 0.990 8.670 1.617 −0.295 −0.406 96.560(0.000)

DSBAA3M Log returns of Default spread between Moody’s sea-

soned Baa and 3-month treasury yield

4.606 0.950 9.160 1.605 −0.225 −0.185 44.504(0.000)

DSBAA1M Log returns of Default spread between Moody’s sea-

soned Baa and 1-month treasury yield

4.665 0.860 9.420 1.584 −0.193 0.001 28.155(0.000)

Macroeconomics variables

Dummy expansion A dummy variable that takes 1 to indicate expansion

and 0 for recession

0.103 0.000 1.000 0.305 2.604 4.784 9424.095(0.000)

Dummy Inverted Yield Curve A dummy variable that indicates 1 when it is an in-

verted yield curve, otherwise 0

0.056 0.000 1.000 0.229 3.883 13.089 43637.892(0.000)

U.S. Markets

USDCAD Log returns of exchange rate between U.S. Dollar and

Canadian Dollar in %

−0.003 −5.072 3.807 0.572 −0.128 5.491 5695.325(0.000)

USDCNY Log returns of exchange rate between U.S. Dollar and

Chinese Yuan in %

−0.005 −2.019 1.816 0.138 −0.151 26.246 129792.585(0.000)

USDYEN Log returns of exchange rate between U.S. Dollar and

Japanese Yen in %

−0.003 −5.216 3.343 0.620 −0.330 4.599 4069.271(0.000)

USDEUR Log returns of exchange rate between U.S. Dollar and

Euro in %

−0.005 −3.444 2.542 0.485 −0.132 2.481 1174.048(0.000)

USDGBP Log returns of exchange rate between U.S. Dollar and

British Pound in %

0.002 −2.993 5.752 0.380 0.847 15.786 47491.890(0.000)
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Table 5 – Continued from previous page

Name Description Mean Min. Max. Std. Dev. Skewness Kurtosis Jarque-Bera(Pr.)

USDCHF Log returns of exchange rate between U.S. Dollar and

Swiss Franc in %

−0.012 −13.022 4.544 0.667 −1.742 35.461 239187.985(0.000)

UK Markets

GBPCAD Log returns of exchange rate between British Pound

and Canadian Dollar in %

−0.005 −7.498 2.997 0.608 −0.546 6.779 8886.050(0.000)

GBPCNY Log returns of exchange rate between British Pound

and Chinese Yuan in %

−0.007 −6.274 6.113 0.827 −0.285 6.966 9205.399(0.000)

GBPYEN Log returns of exchange rate between British Pound

and Japanese Yen in %

−0.005 −13.640 8.346 0.818 −1.442 24.845 117855.539(0.000)

GBPEUR Log returns of exchange rate between British Pound

and Euro in %

−0.007 −6.556 3.068 0.513 −0.551 8.147 12734.845(0.000)

GBPUSD Log returns of exchange rate between British Pound

and U.S. Dollar in %

−0.002 −9.505 3.130 0.594 −1.136 16.573 52718.184(0.000)

GBPCHF Log returns of exchange rate between British Pound

and Swiss Franc in %

−0.014 −17.375 8.075 0.679 −3.837 107.081 2171133.731(0.000)

Technical indicators

U.S. Markets

SP500MA10 The 10-day moving average of S&P 500 log returns in

%

0.019 −2.995 1.959 0.323 −1.256 7.756 12499.896(0.000)

SP500MA20 The 20-day moving average of S&P 500 log returns in

%

0.019 −1.654 1.055 0.224 −1.369 6.281 8809.620(0.000)

SP500MA50 The 50-day moving average of S&P 500 log returns in

%

0.020 −1.014 0.571 0.139 −1.615 6.538 9912.341(0.000)

SP500MA100 The 100-day moving average of S&P 500 log returns

in %

0.020 −0.518 0.377 0.101 −1.701 5.202 7120.161(0.000)

SP500MA200 The 200-day moving average of S&P 500 log returns

in %

0.021 −0.360 0.242 0.075 −1.649 3.823 4591.255(0.000)

SP500LAG1 1-day lag log returns of S&P 500 in % 0.012 −9.470 10.957 1.165 −0.208 10.057 19086.838(0.000)

SP500LAG2 2-day lag log returns of S&P 500 in % 0.019 −9.470 10.957 1.165 −0.208 10.055 19073.250(0.000)

SP500LAG3 3-day lag log returns of S&P 500 in % 0.019 −9.470 10.957 1.165 −0.208 10.053 19062.204(0.000)

SP500LAG4 4-day lag log returns of S&P 500 in % 0.018 −9.470 10.957 1.165 −0.208 10.052 19054.243(0.000)
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Name Description Mean Min. Max. Std. Dev. Skewness Kurtosis Jarque-Bera(Pr.)

SP500LAG5 5-day lag log returns of S&P 500 in % 0.018 −9.470 10.957 1.165 −0.208 10.049 19039.322(0.000)

UK Markets

FTSE100MA10 The 10-day moving average of FTSE 100 log returns

in %

0.006 −2.578 1.432 0.326 −0.995 4.724 4942.340(0.000)

FTSE100MA20 The 20-day moving average of FTSE 100 log returns

in %

0.006 −1.602 0.805 0.220 −1.071 3.842 3630.986(0.000)

FTSE100MA50 The 50-day moving average of FTSE 100 log returns

in %

0.007 −0.719 0.478 0.130 −1.077 3.291 2883.727(0.000)

FTSE100MA100 The 100-day moving average of FTSE 100 log returns

in %

0.007 −0.452 0.268 0.090 −1.059 2.521 1999.016(0.000)

FTSE100MA200 The 200-day moving average of FTSE 100 log returns

in %

0.008 −0.283 0.205 0.068 −1.064 1.765 1377.010(0.000)

FTSE100LAG1 1-day lag log returns of FTSE 100 in % 0.006 −9.266 9.383 1.152 −0.135 7.209 9804.459(0.000)

FTSE100LAG2 2-day lag log returns of FTSE 100 in % 0.006 −9.266 9.384 1.152 −0.135 7.207 9798.706(0.000)

FTSE100LAG3 3-day lag log returns of FTSE 100 in % 0.006 −9.266 9.384 1.153 −0.135 7.205 9790.423(0.000)

FTSE100LAG4 4-day lag log returns of FTSE 100 in % 0.006 −9.266 9.384 1.153 −0.135 7.203 9782.616(0.000)

FTSE100LAG5 5-day lag log returns of FTSE 100 in % 0.006 −9.266 9.384 1.153 −0.135 7.202 9776.123(0.000)

Note: This table shows the name, description, mean, minimum, maximum, skweness, kurtosis and Jarque-Bera test for normality with probability in brackets

of 63 potential covaraites. Some of the covariates are exclusive for U.S. or UK Markets and these variables are indicated separately, otherwise are the common

variables for both markets.
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A.2 Top three covariates VaR Forecasting for S&P 500

Table 6: Performance Evaluation with top three covariates for S&P 500

a) α = 0.90

Binomial Test CCI by Christoffersen

Model Average VaR # Violations (%) P-value (Decision) Test statistics P-value (Decision)

RF 1.359 228 (47.899) 0.000 (Reject) 444.878 0.000 (Reject)

SVM Linear 1.244 8 (1.681) 0.000 (Reject) 54.458 0.000 (Reject)

SVM Polynomial 1.203 35 (7.353) 0.056 (Accept) 9.452 0.009 (Reject)

SVM Radial Basis 1.170 36 (7.563) 0.079 (Accept) 3.603 0.165 (Accept)

b) α = 0.95

Binomial Test CCI by Christoffersen

Model Average VaR # Violations (%) P-value (Decision) Test statistics P-value (Decision)

RF 2.543 224 (47.059) 0.000 (Reject) 712.997 0.000 (Reject)

SVM Linear 1.882 2 (0.420) 0.000 (Reject) 34.737 0.000 (Reject)

SVM Polynomial 1.696 29 (6.092) 0.291 (Accept) 4.895 0.086 (Accept)

SVM Radial Basis 1.742 8 (1.681) 0.000 (Reject) 14.941 0.001 (Reject)

c) α = 0.99

Binomial Test CCI by Christoffersen

Model Average VaR # Violations (%) P-value (Decision) Test statistics P-value (Decision)

RF 15.389 223 (46.849) 0.000 (Reject) Inf 0.000 (Reject)

SVM Linear 6.199 0 (0.000) 0.018 (Reject) 9.568 0.008 (Reject)

SVM Polynomial 3.830 12 (2.521) 0.004 (Reject) 8.446 0.015 (Reject)

SVM Radial Basis 4.734 0 (0.000) 0.018 (Reject) 9.568 0.008 (Reject)

Note: Out-of-sample VaR forecasting with top three covariates (DJA,NASDAQ,VIX) for S&P 500.
This table shows from column left to right: the average VaR over a testing period, the number of
violations and their percentage is expressed in parentheses, then a two-sided binomial test is executed
with null hypothesis of correct number of expected violations and we calculate the p-value, followed by
Christoffersen (1998)’ s jointly test with null hypothesis of independent violations and the test statistics
with p-value is computed. We reject the null hypothesis when the p-value is smaller than 5% significance
level and the decision results are expressed in parentheses.
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A.3 Top three covariates VaR Forecasting for FTSE 100

Table 7: Performance Evaluation with top three covariates for FTSE 100

a) α = 0.90

Binomial Test CCI by Christoffersen

Model Average VaR # Violations (%) P-value (Decision) Test statistics P-value (Decision)

RF 1.305 203 (35.552) 0.000 (Reject) 271.912 0.000 (Reject)

SVM Linear 1.155 62 (10.858) 0.485 (Accept) 0.738 0.692 (Accept)

SVM Polynomial 1.214 54 (9.457) 0.727 (Accept) 3.256 0.196 (Accept)

SVM Radial Basis 1.355 41 (7.180) 0.025 (Reject) 5.539 0.063 (Accept)

b) α = 0.95

Binomial Test CCI by Christoffersen

Model Average VaR # Violations (%) P-value (Decision) Test statistics P-value (Decision)

RF 2.135 184 (32.224) 0.000 (Reject) 430.383 0.000 (Reject)

SVM Linear 1.529 26(4.553) 0.701 (Accept) 0.764 0.682 (Accept)

SVM Polynomial 1.587 24 (4.203) 0.442 (Accept) 3.717 0.156 (Accept)

SVM Radial Basis 1.785 17 (2.977) 0.027 (Reject) 6.120 0.047 (Reject)

c) α = 0.99

Binomial Test CCI by Christoffersen

Model Average VaR # Violations (%) P-value (Decision) Test statistics P-value (Decision)

RF 14.764 167 (29.247) 0.000 (Reject) Inf 0.000 (Reject)

SVM Linear 2.937 0 (0.000) 0.005 (Reject) 11.477 0.003 (Reject)

SVM Polynomial 2.979 0 (0.000) 0.005 (Reject) 11.477 0.003 (Reject)

SVM Radial Basis 3.477 1 (0.175) 0.053 (Accept) 5.978 0.050 (Accept)

Note: Out-of-sample VaR forecasting with top three covariates (CAC40,AEX,DAX) for FTSE 100.
This table shows from column left to right: the average VaR over a testing period, the number of
violations and their percentage is expressed in parentheses, then a two-sided binomial test is executed
with null hypothesis of correct number of expected violations and we calculate the p-value, followed by
Christoffersen (1998)’ s jointly test with null hypothesis of independent violations and the test statistics
with p-value is computed. We reject the null hypothesis when the p-value is smaller than 5% significance
level and the decision results are expressed in parentheses.
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B Graphs

B.1 Variable importance of g(x) estimation for S&P 500
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(a) Variable importance using RF
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(b) Variable importance using SVM Linear

Figure 14: Variable importance of g(x) estimation for S&P 500. Graph (a) displays
the variable importance using RF. Left panel of graph (a) represents the percentage of
observations that are incorrectly classified in % when excluding a variable in the model.
Right panel of graph (a) represents the decrease of Gini Impurity in % when splitting
node of a variable. A higher value indicates a more important variable. Graph (b)
represents the importance measured by weights using SVM Linear. The covariates are
sorted by their importance in descending order.
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Figure 15: Variable importance of g(x) estimation for S&P 500. Upper graph represents
the importance measured by weights using SVM Polynomial. Bottom graph represents
the importance measured by weights using SVM Radial. The covariates are sorted by
their importance in descending order.
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B.2 Variable importance of g(x) estimation for FTSE 100
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(a) Variable importance using RF
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(b) Variable importance using SVM Linear

Figure 16: Variable importance of g(x) estimation for FTSE 100. Graph (a) displays
the variable importance using RF. Left panel of graph (a) represents the percentage of
observations that are incorrectly classified in % when excluding a variable in the model.
Right panel of graph (a) represents the decrease of Gini Impurity in % when splitting
node of a variable. A higher value indicates a more important variable. Graph (b)
represents the importance measured by weights using SVM Linear. The covariates are
sorted by their importance in descending order.
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Figure 17: Variable importance of g(x) estimation for FTSE 100. Upper graph represents
the importance measured by weights using SVM Polynomial. Bottom graph represents
the importance measured by weights using SVM Radial. The covariates are sorted by
their importance in descending order.
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B.3 Variable importance of ξ(x) estimation for S&P 500
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(a) Variable importance using RF
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(b) Variable importance using SVM Linear

Figure 18: Variable importance of ξ(x) estimation for S&P 500. Graph (a) displays the
importance using RF. Left panel of graph (a) represents the increase of MSE in % when
a variable is excluded from the model. Right panel of graph (a) represents the increase
of SSE in % by node splitting of a variable. A higher value indicates a more important
variable. Graph (b) represents the importance measured by weights using SVM Linear.
The covariates are sorted by their importance in descending order.

63



DS_BAA_6M
DAAA
LIBOR_USD12M
LIBOR_USD6M
DS_BAA_3M
DS_BAA_1M
USDYEN
TS_6M_1M
DS_BAA_5Y
USDEUR
USDGBP
DS_BAA_10Y
DBAA
Dummy_expansion
DS_BAA_20Y
DS_BAA_AAA
CRUDE_OIL
SP500_MA20
SP500_MA10
USDCAD
SP500_MA200
SP500_MA50
SP500_MA100
AEX
CAC40
FTSE100
DAX
VIX
NASDAQ
DJA

0.5 1.0 1.5 2.0 2.5

Weights

DS_BAA_6M
DAAA
LIBOR_USD12M
LIBOR_USD6M
DS_BAA_3M
DS_BAA_1M
USDYEN
TS_6M_1M
DS_BAA_5Y
USDEUR
USDGBP
DS_BAA_10Y
DBAA
Dummy_expansion
DS_BAA_20Y
DS_BAA_AAA
CRUDE_OIL
SP500_MA20
SP500_MA10
USDCAD
SP500_MA200
SP500_MA50
SP500_MA100
AEX
CAC40
FTSE100
DAX
VIX
NASDAQ
DJA

0.5 1.0 1.5 2.0 2.5

Weights

Figure 19: Variable importance of ξ(x) estimation for S&P 500. Upper graph represents
the importance measured by weights using SVM Polynomial. Bottom graph represents
the importance measured by weights using SVM Radial. The covariates are sorted by
their importance in descending order.
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B.4 Variable importance of ξ(x) estimation for FTSE 100
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(a) Variable importance using RF

65



VIX
SHANGHAI
LIBOR_GBP12M
GBPUSD
DAAA
GBPYEN
TS_6M_1M
DS_BAA_6M
DS_BAA_1Y
Dummy_expansion
DS_BAA_3M
DS_BAA_1M
HANGSENG
NASDAQ
DJA
SP500
DS_BAA_5Y
DBAA
FTSE100_MA20
DS_BAA_10Y
FTSE100_MA50
FTSE100_MA10
DS_BAA_20Y
DS_BAA_AAA
FTSE100_MA100
CRUDE_OIL
FTSE100_MA200
DAX
CAC40
AEX

0.005 0.010 0.015 0.020

Weights
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Figure 20: Variable importance of ξ(x) estimation for FTSE 100. Graph (a) displays the
importance using RF. Left panel of graph (a) represents the increase of MSE in % when
a variable is excluded from the model. Right panel of graph (a) represents the increase
of SSE in % by node splitting of a variable. A higher value indicates a more important
variable. Graph (b) represents the importance measured by weights using SVM Linear.
The covariates are sorted by their importance in descending order.
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Figure 21: Variable importance of ξ(x) estimation for FTSE 100. Upper graph represents
the importance measured by weights using SVM Polynomial. Bottom graph represents
the importance measured by weights using SVM Radial. The covariates are sorted by
their importance in descending order.
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B.5 VaR Forecasting
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Figure 22: VaR Forecasting with 6 different models for S&P 500 and α = 90
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Figure 22: (Continued) VaR Forecasting with 6 different models for S&P 500 and α = 90

69



2015 2016 2017 2018 2019

0
5

1
0

1
5

VaR Forecasting with RF

Date

FTSE100

VaR

2015 2016 2017 2018 2019

0
2

4
6

VaR Forecasting with SVM Linear

Date

FTSE100

VaR

2015 2016 2017 2018 2019

0
4

8
1

2

VaR Forecasting with SVM Polynomial

Date

FTSE100

VaR

Figure 23: VaR Forecasting with 6 different models for FTSE100 and α = 90
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Figure 23: (Continued) VaR Forecasting with 6 different models for FTSE100 and α = 90
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