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Abstract

This paper tackles the problem of estimating a high-dimensional vector autoregression (VAR).

The estimation of these high-dimensional systems is done via regularization procedures that

select the model and estimates the parameters simultaneously and is particularly useful in

vector autoregressive context. This paper builds on the penalized least square procedures

proposed by Nicholson et al. (2018). All procedures consist of penalty functions that are

made up of hierarchically nested Euclidean norms of the model-coefficients. I augment these

regularization models with a function that increases with the variables’ lag, incorporating the

temporal dependence of the VAR more accurately. Moreover, I propose a new regularization

model that is able to estimate high-dimensional VARs. The efficacy of the procedures, both in

terms of forecasting and model discovery, is demonstrated in a simulation study as well as an

empirical study. In addition, I show that high-dimensional VARs estimated by the proposed

regularization methods produce credible impulse responses and are suitable for structural analysis.
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1 Introduction

VARs, introduced by Sims (1980), are linear multivariate time series models able to capture the

joint dynamics of multiple time series. The VAR is a useful tool by which out-of-sample forecasts

in macroeconomics can be constructed. VARs are especially useful for impulse response analysis,

which is a structural analysis technique that forecasts how the variables change after a shock to one

variable while holding all other shocks constant. As of now, the VAR is the workhorse model for

macroeconomic data. In contrast to many macroeconomic models used prior to the seminal work of

Sims (1980), VARs do not impose strict identifying restrictions on the parameters, resulting in a very

general representation that is able to capture complex temporal and cross-sectional relationships

among the time series. A drawback of this high level of flexibility is that it necessitates a large number

of parameters, even for moderate-dimensional systems, which is an obstacle plaguing contemporary

real-world practitioners in their application of VARs.

A VARk(p) model is a stationary k-dimensional vector time series that is modeled in terms of its

previous p values. A straightforward way of estimating this system is via least squares. It can quite

handily be shown that applying the least squares on a VAR is equivalent to applying least squares

separately to each equation of the VAR, which makes it a very convenient and computation-efficient

method. In low-dimensional settings, in which pk, the amount of variables in each equation, is small

relative to the sample length T , the parameters may be accurately estimated using least squares.

However, in the case that pk is nearly equal but still smaller than T , there will be a lot of variability

in the least squares estimates, resulting in an unreliable estimated model. Moreover, in the case

that pk ≥ T , least squares is not even feasible as the solutions are not unique anymore. Alternative

estimation methods that are able to deal with the case pk ≥ T will often run into computation

cost issues as pk2, the total amount of parameters in a VAR, grows too large. Hence, building a

high-dimensional VAR that features a large number of variables in any case poses a great challenge.

This phenomenon of encountering difficulties as the dimensionality of a problem increases has been

termed the ’curse of dimensionality’ (Keogh and Mueen, 2017). This curse expeditiously occurs in

VARs as an addition of a single variable to the system leads to a quadratic increase of the dimension

of the parameter space. As a consequence of this dimensionality issue, a lot of research has conducted

regarding estimation methods that identify a subset of predictors and their corresponding lags in a

vector autoregressive context.
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This thesis builds on that ongoing research of reducing dimensionality of a VAR in order to obtain

a reliable estimated model and the ability to construct accurate forecasts. Recent developments in

the literature have produced methodologies that incorporate regularized estimation techniques for

variable selection in VARs. It is via this approach that I estimate high-dimensional VARs. Specifically,

the regularization models developed by Nicholson et al. (2018) are used. These models incorporate

relevant information (temporal dynamics and spatial dependence) that VARs inherently provide.

To capture the temporal aspect of VARs better, I augment the models by including a lag-function

that increases with the parameters’ lag. Moreover, I propose a new regularization model, not found

in Nicholson et al. (2018). The predictive strength of each regularization procedure is compared

to one another in an extensive Monte Carlo analysis. In addition to studying the predictive power

of each procedure, their capacity in uncovering the true model is also analyzed. The procedures

are estimated for various time series length. The regularization procedures are also applied on the

empirical macroeconomic dataset introduced by Stock and Watson (2005). In this empirical study

the predictive performance of the various procedures are again compared, and via structural analysis

I examine if economically sound interpretations can be derived from the estimated models.

Modeling VARs for macroeconomic data is particularly challenging as macroeconomic data is

usually measured exclusively in low frequencies. An example of this is the dataset used in this paper,

namely the dataset found in Stock and Watson (2005), which contains 168 macroeconomic variables

measured over 193 quarters. In such contexts high-dimensional VARs are more susceptible to the

curse of dimensionality. It is for this reason that researchers were forced to limit the size of their

VARs for macroeconomic applications by excluding variables from the system. This typically led to

an omitted variables bias. Omitting (relevant) variables in a VAR has adverse consequences for both

forecasting and structural analysis. On top of that, jointly estimating high-dimensional time series is

increasingly more important in an ever-globalizing world, where economic developments in different

regions often propagate and affect one another, substantiating the necessity for viable estimation

techniques for high-dimensional VARs. The importance of incorporating relevant variables in order to

obtain accurate inference and out-of-sample forecasts in a statistical model, is quite straightforward.

However, its importance in structural analysis may seem a bit less obvious.

By omitting variables from a VAR, impulse responses will often become distorted and as a

consequence be worthless for structural analysis. A popular example of the importance of not

excluding relevant variables in structural analysis has been the issue surrounding the ‘price puzzle’,
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which is a term coined by Eichenbaum (1992) describing a phenomenon in which there is a rise

in the aggregate price level in response to a contractionary monetary policy. The price-puzzle is

often found in low dimensional VARs, as exhibited in Christiano et al. (1999). The literature has

often argued that this is as a result of omitting forward looking variables, like the commodity price

index, in a VAR. However, later literature, like Hanson (2004), have disputed on whether adding

variables – including commodity prices – solves the prize-puzzle. Regardless, this phenomenon is

briefly examined in this work.

Other than regularization, a number of methods have been proposed for reducing the dimension-

ality of the VAR models. These methods include canonical analysis (Box and Tiao, 1977), scalar

component models or canonical correlation analysis (Tiao and Tsay, 1989), principal component

analysis (Stock and Watson, 2002), dynamic orthogonal components analysis (Matteson and Tsay,

2011), Bayesian VARs (Banbura et al., 2010), and dynamic factor models (Forni et al., 2000, Barigozzi

et al., 2016).

A particular challenge that has been scantly researched in VAR literature is to reduce dimension-

ality of VARs taking in consideration both forecast accuracy and intrepatability of the estimated

model. Interpretability in the context of this thesis means that the estimated model itself should

give information about the joint dynamics of the dependent variables, and that the sparsity in the

parameter space is induced in a structured way – allowing for economic interpretation. This translates

to applying a method that will both reduce the dimensionality of the VAR, while also performing

automatic lag selection, which is the most natural way of inducing structured sparsity in a VAR.

Specifying an appropriate lag length is crucial in time series, as including too many lags of the

dependent variables can easily lead to overfitting, which in turn results in a decrease in prediction

power of the estimated model. In contrary, selecting a lower order lag length than the true lag length,

may result in serial correlation in the error terms, and consequently result in an underestimation of

the standard errors of the least square parameter estimates. Currently, most VARs are estimated

using symmetric lag choice procedures (see, among others, Lütkepohl, 1985, Gonzalo and Pitarakis,

2002), i.e. the same lag length is used for all variables in all equations of the model. Implicitly, these

approaches rely on the restrictive assumption of one lag order that applies across all components.

However, there is no compelling economic nor statistical justification for such a strong assumption.

In fact, there is evidence to the contrary. Asymmetric lags are often more suitable for macroeconomic

analysis, in particular in a high dimensional setting. Hsiao (1981) was the first who examined
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the possibility of asymmetric lag VAR models by proposing an extensive iterative procedure to

appropriately specify a lag structure. Later on, Keating (1993) introduced asymmetries in the lag

lengths of the variables in the VAR and termed this as the asymmetric VAR. More recently, Bayesian

methods (see Ding and Karlsson, 2014, Albis and Mapa, 2014), and regularized regressions have been

applied to identify the lag structure of a VAR, where the latter of the two approaches is the central

theme of this paper.

The regularized regression that can achieve the goal of asymmetric lag length selection is the least

absolute shrinkage and selection operator (lasso) method introduced by Tibshirani (1996). As the

name of the method implies, the lasso is a regression analysis method that simultaneously performs

both variable selection and parameter shrinkage. Hsu et al. (2008) derives theoretical properties of

the lasso under a vector autoregressive process and shows in both a simulation study as well as an

empirical study the lasso’s superior forecast performance compared to using statistical information

criteria for model selection and forecasting. Later work by Song and Bickel (2011) applies the lasso

on VARs too, but they adjust the penalty function of the lasso as introduced by Tibshirani (1996),

and postulate a regularization term that is VAR-specific, thereby making use of the information that

the structure of a VAR provides. The VAR-specific lasso result in an improvement in forecasting

and variable selection relative to the traditional lasso. As modeling with (structured) sparsity has

become an increasingly important topic in many fields in recent years, a very useful book by Hastie

et al. (2015) summarizes and explains much of the recent literature regarding the lasso and modeling

with sparsity in general.

As stated earlier, this thesis’ methodology builds on the paper by Nicholson et al. (2018), which

in turn is primarily built on the works of Song and Bickel (2011) and Nicholson et al. (2017). They

introduce the concept of hierarchical lag structures (HLag), which is a class of regularizes specifically

designed for VARs. The HLag structures conveniently embed the notion of lag order selection

in their penalty functions which produces estimated models with low lag orders. Nicholson et al.

(2018) show that the traditional lasso estimator often selects too many higher order parameters and

results in difficult to interpret estimated models. They thusly conclude that the HLag structures

are advantageous in a (high-dimensional) time series context compared to other tried regularization

procedures.

The results obtained in this paper corroborate much of the results obtained Nicholson et al.

(2018). In the empirical application, the most robust – robust in the sense of widely applicable –
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performing HLag structure, with mean squared forecast error (MSFE) as the performance measure,

is a structure that consider a component’s own lag separately from the lag of other variables. The

lag-function that I add into the HLag structures, in both the simulation and empirical study, does

little in improving the out-of-sample forecasts compared to incorporating that lag-function. However,

the sparsity, i.e., the amount of parameters that are set to zero in the estimated model, increases if a

lag-function is present. This implies that there is no strict relationship between how much sparsity is

generated into an estimated regression model and how accurate an estimated model’s out-of-sample

forecasts is. In the simulation study the procedures are estimated using various time series length.

In particular if T is small, there are some discrepancies across the procedures. As T increases, such

that T � kp, these discrepancies fade away. The parameter estimates do not converge towards their

true values, i.e., they are inconsistent. The parameter inconsistency of the lasso-based methods is

not a surprise and is extensively discussed in Zou (2006). The results of empirical study show that

the impulse response function of each of the HLag methods are observed to be roughly the same

across the different HLag structures. Despite the parameter inconsistency of the lasso methods, the

economic interpretation that can be derived from the impulse responses is mostly sound. However,

the price-puzzle does exhibit for all procedures. Adding more variables to the system does decrease

the prize-puzzle effect but it does not fade away completely.

The road map of this thesis is as follows: In Section 2 I explain my proposed methodology.

The specification of weighting penalty parameter is detailed in Section 2.1. The explanation of

the hierarchical lasso, the key modeling tool of the HLag structures, is detailed in Section 2.2. In

Section 2.3 the motivation and theoretical suitability of each weighted HLag procedure is elaborated

upon. The optimization algorithm, with which all regularization problems in thesis are solved with, is

explained in Section 2.4, and in Section 2.5 the procedure that selects the optimal tuning parameters

is explained. With an understanding of the weighted HLag procedures and how they are to be solved,

a simulation study in Section 3 enables comparison of each HLag method in various simulation

set-ups. In Section 4 an empirical analysis takes place, allowing for examination in the weighted

HLags’ performance in real-world applications. Finally, in Section 5 the thesis is concluded and

suggestions for researcher in future work regarding this topic are proposed.
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2 Methodology

Prior to describing the weighed HLag structures, it is necessary to formally define the VAR and

some notation that is used in this paper. Consider a VARk(p) model, with k ∈ N+ the amount of

dependent variables and p ∈ N+ the lag length. This model may be expressed as

yt = c +

p∑
`=1

Φ(`)yt−` + ut, with ut
wn∼ (0,Σu) for t = 1, . . . , T, (2.1)

where {yt ∈ Rk}Tt=1 are the dependent variables, c ∈ Rk is a vector of intercepts, {Φ(`) ∈ Rk×k}p`=1

are the coefficient matrices, and {ut ∈ Rk}Tt=1 are the error terms.

In describing the regularization structures later on, I will use the notational convention found in

Nicholson et al. (2018): for 1 ≤ ` ≤ p, let

Φ = (Φ(1), . . . ,Φ(p)) ∈ Rk×kp

Φ(`:p) = (Φ(`), . . . ,Φ(p)) ∈ Rk×k(p−`+1)

Φ
(`:p)
i = (Φ

(`)
i , . . . ,Φ

(p)
i ) ∈ R1×k(p−`+1)

Φ
(`:p)
ij = (Φ

(`)
ij , . . . ,Φ

(p)
ij ) ∈ R1×(p−`+1)

Φ
(`:p)
i,−i = (Φ

(`)
i,−i, . . . ,Φ

(p)
i,−i) ∈ R1×(k−1)(p−`+1),

(2.2)

with Φ
(`)
i,−i = (Φ

(`)
i1 , . . . ,Φ

(`)
i,i−1,Φ

(`)
i,i+1, . . . ,Φ

(`)
ik ) ∈ R1×(k−1).

In describing the HLag methods, it is useful to introduce the lag matrix

Lij = max{` : Φ
(`)
ij 6= 0},

in which Lij = 0 if Φ
(`)
ij = 0 for all ` = 1, . . . , p. The integer Lij denotes the maximal parameter lag

for independent variable j in the equation of dependent variable i.

Finally, the Lq-norm for matrices is defined as

‖Φ‖q =

∑
ij

|Φij |q
 1

q

for q = 1, 2, . . . .

The Lq-norm is defined analogously for vectors, except the summation is taking over all elements of

the vector.
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2.1 Lag-Weighted Lasso

A general representation of regularized least squares of a VAR is given by

Φ̂, ĉ = arg min
Φ,c

{
T∑
t=1

‖yt − c−
p∑
`=1

Φ(`)yt−`‖22 + P(Φ;λ, γ)

}
, (2.3)

where P(Φ;λ, γ) is a penalty function for the coefficients, and λ and γ are tuning parameters that

control the strength of the penalty term. In regularization problems, the intercept ĉ is typically

not regularized, as it can be derived separately. I omit this derivation, however using basic vector

calculus it can be acquired that

ĉ = ȳ −
p∑
`=1

Φ̂(`)ȳ`, (2.4)

where ȳ = 1
T

∑T
t=1 yt and ȳl = 1

T

∑T−`
t=1 yt. The penalty function P(Φ;λ, γ) determines the solution

space of Φ̂, and depending on its postulation, may produce a vastly different estimated model.

A basic lasso penalty function takes the form

P(Φ;λ, γ) = λ

p∑
`=1

f(`; γ)‖Φ(`)‖1, (2.5)

where f(`; γ) > 0 is function determining the lag-effects. This specification is a lag-weighted variation

of the traditional L1-norm penalty function. The lasso penalty function expressed in (2.5) will

generate sparsity in Φ by setting individual parameters to zero. The obvious downside to this penalty

function is the fact that the sparsity induced will be completely unstructured. On the other hand, the

lasso term is augmented with a weighting specification, therefore incorporating the time dependence

that is embedded in VARs. Under assumption of stationarity, the magnitude of previous variables will

reduce to zero with increasing lag length. Hence, by incorporating a function of ` into the regularizer

should improve forecast accuracy and model selection. The concept of a lag-weighted lasso method

predates this paper. For example, Song and Bickel (2011) incorporated weights that geometrically

increase with lag order, and Park and Sakaori (2013) propose a lag weighted lasso routine with

weights that relate both to the magnitude of the parameters and the lag effect of univariate time

series model.

A desirable property of the lag-function for time series that do not exhibit seasonality is that

f(`; γ) increases as ` increases. This means that recent lags are penalized less relative to distant

lag, which corresponds to intuitive belief that recent information is more important than distant

information. In the weighted lasso setting, the weights are used to control the strength of the penalty
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of each variable by simply postulating a functional form. The two downsides to this approach are

the addition of another tuning parameter that needs to be determined (therefore resulting in an

increase in computation time), and that one assumes a particular functional form. However, the

latter downside is quite benign, as imposing a functional form, instead of estimating f(`) for each `

from the data, may prevent overfitting.

In this paper a functional form will be assumed. This functional form is the same one that was

postulated by Song and Bickel (2011) and is it specified as

f(`; γ) = `γ with γ ∈ [0, 1]. (2.6)

The tuning parameter γ governs the relative importance of distant lags with respect to the more

recent ones. As stated, other (more complex) approaches may be interesting to explore, however,

as the lag-function in (2.6) has been tried and tested in an earlier work – and good results were

achieved with it – I decide on this lag-function.

2.2 Hierarchical Lasso

The HLag framework is based on the hierarchical lasso as introduced by Zhao et al. (2009). The

hierarchical lasso is an extension of the standard group lasso, which was introduced some time earlier

by Yuan and Lin (2006). To fully appreciate the hierarchical lasso, it is useful to be familiar with the

group lasso.

The group lasso assumes the existence of a group structure of the independent variables and that

it is desirable to shrink all parameters of that group simultaneously. All parameters within a group

will either be set to zero or it will be ’active’ and all parameters will be shrunk but not equal to zero.

A general representation of a lag-weighted group lasso is specified by

P(Φ;λ, γ) = λ

p∑
`=1

`γ‖Φ
g`‖2, (2.7)

where the superscript g` specifies the group structure of Φ at each `. The reason why the group

lasso sets groups of parameters to zero (or have them remain non-zero) can be derived from the

formulation above, namely the L2-norm of a matrix (or vector) is zero if and only if all of its element

are zero. Specifying the regularizer in this manner may not only help with obtaining more accurate

parameter estimates, but it may also improve the interpretability of the model. The group lasso

is closely related to the famous ridge regression introduced by Hoerl and Kennard (1970). Both
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apply the L2-norm in their regularizers. The difference lies in that group lasso is a sum over several

L2-norms, with each norm containing a subset of the parameters in the model. Ridge regression,

which was never intended for parameter selection, takes the L2-norm over every parameter, resulting

in an estimated model with shrunk parameters but without sparsity.

Song and Bickel (2011) apply the group lasso in a VAR context, and group the parameters by

which lag they correspond to, i.e., they simply create groups of Φ by setting

Φg1 = Φ(1), . . . ,Φgp = Φ(p). (2.8)

While this structure is advantageous for applications in which all component series tend to exhibit

comparable dynamics, it fails to take the temporal structure of stationary time series in account, i.e.,

it neglects the fact that as the lag order increases the parameter magnitude (usually) decreases in a

time series context.

The HLag structures, in contrary to the group lasso, do take the temporal structure of the VAR

in account. They embed this structure into their penalty functions by creating nested groups out

of Φ. Nested groups imply regularization constraints in which one group of coefficients being zero

necessitates that another group of coefficients is zero. An application of this would be to let

Φgp ⊆ · · · ⊆ Φg1 . (2.9)

This nested structure implies that if Φg`′ = 0 it would necessarily follow that Φg` = 0 for any `′ > `.

In contrary, if Φg` = 0 it would not imply that Φg`′ = 0. Such a structure guarantees that the

sparsity pattern of lag parameters honors the VAR’s ordered temporal structure. This is in contrast

with grouping the variables as in (2.8). In that case it is entirely possible that, for `′ > `, Φg`′ 6= 0

even if Φg` = 0. The downside to a nested grouping structure is that seasonal patterns in time series

are not able to be captured. Regardless, as many economic time series do not exhibit significant

seasonal patterns, and seasonal patters can be adjusted for, the HLag structures will have many

use cases in practice. Moreover, if one encounters seasonality in their time series and wishes not to

correct for it, one can decide to not impose a hierarchical structure on the penalty functions, i.e,

instead of a nested structure as in (2.9) apply a structure that is a sum of non-overlapping L2-norms

of the coefficients as in (2.8).

9



2.3 Weighted HLag Structures

Table 1: Penalty Functions
The different penalty functions, that are applied in the simulation and empirical analysis of this paper, are summarized in this

table. All penalty functions are HLag structures, except for the basic lasso penalty function. To recall the meaning of the matrix

notations, refer back to (2.2).

Name P(Φ;λ, γ)

(2.5) Lasso λ
∑p

`=1 `
γ‖Φ(`)‖1

(2.10) Lagwise λ
∑p

`=1 `
γ‖Φ(`:p)‖2

(2.11) Componentwise λ
∑k

i=1

∑p
`=1 `

γ‖Φ(`:p)
i ‖2

(2.12) Elementwise λ
∑k

j=1

∑k
i=1

∑p
`=1 `

γ‖Φ(`:p)
ij ‖2

(2.13) Own-Other λ
∑k

i=1

∑p
`=1 `

γ
(
`‖Φ(`:p)

ii ‖2 + `(k − 1)‖Φ(`:p)
i,−i ‖2

)

For convenience of the reader, all penalty functions that are applied in this paper are summarized

in Table 1. The paper by Nicholson et al. (2018) introduces the framework of the HLag penalty

structures that incorporate automatic lag selection into their regularizes. This paper builds on their

framework by postulating a new HLag structure and augmenting all the HLag structures with the

lag-function postulated in (2.6).

The first weighted HLag structure is the lagwise HLag, which is a nested modification of (2.8)

and is specified as

P(Φ;λ, γ) = λ

p∑
`=1

`γ‖Φ(`:p)‖2. (2.10)

This is the HLag only structure that is not found in the paper by Nicholson et al. (2018) and is an

addition by me. It relates to (2.9) by setting

Φgp = Φ(p:p) ⊂ Φgp−1 = Φ(p−1:p) ⊂ · · · ⊂ Φg1 = Φ(1:p).

Because of the lag-function `γ , greater regularization is applied to higher order lags. The weighted

lagwise HLag is a straightforward extension of the group lasso penalty function found in Song and

Bickel (2011), who group their matrices as specified in (2.8), i.e., without a nested hierarchical

structure. For the weighted lagwise HLag it holds that Φ`′ = 0 if Φ` = 0 for any `′ > `. The lag

matrix produced by this penalty function will be of the form of L = LJk, where Jk is k × k matrix

consisting of only ones and L the selected lag of all the components. Such a lag matrix implies that

all variables are chosen to have the same lag, corresponding to symmetric lag choice procedures,
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such as lag selection via information criteria. Unlike information criteria procedures, this symmetric

HLag will also shrink the active coefficients in addition to selecting a symmetric lag order across all

components. This structure is advantageous for applications in which all components exhibit very

similar temporal dynamics.

Estimating a VAR with the restriction of a symmetric lag order across all components may

not be most appropriate for VARs. To presume that all series have the exact same lag for a high

dimensional VAR is more than often too limiting of a presumption of the true temporal dynamics of

set of macroeconomic and or financial series. Thus, to be able to estimate varying lags for different

series, the weighted compenentwise HLag is postulated as

P(Φ;λ, γ) = λ

k∑
i=1

p∑
`=1

`γ‖Φ(`:p)
i ‖2. (2.11)

In this case, it holds that Φ`′
i = 0 if Φ`

i = 0 for any `′ > ` for i = 1, . . . , k. This penalty function

will produce lag matrices of the form of Li = Liιk for i = 1, . . . , k, with ιk ∈ R1×k being a vector of

ones, and Li is the selected lag for all the variables of component i. The lag lengths differs across the

components but is the same for a particular component in each equation. This structure identifies

the various lag lengths on different variables, an idea proposed by Keating (1993), and therefore is

expected to give more a parsimonious estimated model relative to the lagwise HLag.

The componentwise HLag structure is still quite inflexible, and may perform badly if, within one

equation, some variables are informative and other variables are uninformative. To allow for more

flexibility, and capacity to select lags of each individual variable within an equation, the weighted

elementwise hierarchical lag structure is formulated

P(Φ;λ, γ) = λ
k∑
j=1

k∑
i=1

p∑
`=1

`γ‖Φ(`:p)
ij ‖2 (2.12)

In this case it holds that Φ`′
ij = 0 if Φ`

ij = 0 for any `′ > ` and for every i, j = 1, . . . , k. The lag

matrix in this case takes the form of Lij = Lij , with Lij the selected lag for component i and variable

j. The lag lengths not only differs across the variables but also differs for a particular variable in

each equation. Therefore, as long as the assumption of equal lag length for each equation breaks, the

elementwise HLag could provide a sparser model and likely result in more precise estimations.

In many settings, it may not be appropriate to give equal consideration to every entry in a

coefficient matrix Φ. Diagonal entries are often in macroeconomic application more likely to be

higher in magnitude than off-diagonal entries. This idea is substantiated by Litterman (1986), who
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in a Bayesian setting presented the traditional Minnesota prior. The prior covariance is set-up such

that a variables’ own lags are more informative than other lags. A parameter own’s lag is therefore

shrunk by a smaller factor than the parameters corresponding to other variables. The weighted

own-other HLag is specified as

P(Φ;λ, γ) = λ
k∑
i=1

p∑
`=1

`γ
(
`‖Φ(`:p)

ii ‖2 + `(k − 1)‖Φ(`:p)
i,−i ‖2

)
(2.13)

This penalty function is a slightly modified version from the own-other HLag structure found in

Nicholson et al. (2018). Unlike the previous penalty functions, the groups in this function differ

in cardinality. Hence, weighting the the regularizer to avoid favoring larger groups is required. At

each lag ` the terms are multiplied with their respective cardinalities, in case of the ’own’ terms

this equals to ` and in case of the ’other’ terms this equals to `(k − 1). This structure implies that

for `′ > `, Φ`′
ii = 0 implies Φ`

ii = 0 and Φ`′
i,−i = 0 implies Φ`

i,−i = 0 for every i = 1, . . . , k. The lag

matrix that will be produced will be of the form Lii = Lii and Li,−i = Lother
i ιk−1, with Lother

i a scalar

corresponding to the selected lag of component i, excluding the lag of the variable corresponding to

component i itself.

The different penalty functions will result in different sparsity patterns. To be able to graphically

discern the different sparsity patterns, consider the example of a VAR4(4). In Figure 1 possible

sparsity patterns induced by the different HLag structures are depicted.

Figure 1: Sparsity Patterns of the HLag Structures
Illustrations of the sparsity patterns that may be induced by each of the four HLag penalty functions applied on a VAR4(4). For

each illustration, the corresponding lag matrix is displayed next to it. From top to bottom, the HLag structures are: lagwise,

componentwise, elementwise, own-other.
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2.4 Optimization

Prior to describing the optimization algorithms for the regularization procedures, it is convenient to

do away with the intercept term in (2.3). To this end, ĉ, as specified in (2.4), is plugged in the least

squares equation (2.3), obtaining the following:

arg min
Φ

{
T∑
t=1

‖yt − ȳ +

p∑
`=1

Φ̂(`)ȳ` −
p∑
`=1

Φ(`)yt−`‖22

}
=

arg min
Φ

{
T∑
t=1

‖(yt − ȳ)−
p∑
`=1

Φ̂(`)(yt−` − ȳ`)‖22

}
. (2.14)

The result above shows that by temporally demeaning yt the intercept term can be left out.

For the analysis of this section the dependent variables are assumed to be demeaned and the
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intercept term is consequently omitted. It is also convenient to express the least squares equation

in ’compact’ notation. Define Y = (y1, . . . ,yT ) ∈ Rk×T , Zt = (Y′t−1, . . . ,Y
′
t−p)

′ ∈ Rkp×1, and let

Z = (Z1, . . . ,ZT ) ∈ Rkp×T .

The regularized least squares in compact form solves the following convex problem

arg min
Φ

{
‖Y −ΦZ‖22 + P(Φ;λ, γ)

}
. (2.15)

This minimization problem can be decomposed as a sum of two components. The first component is

the loss function L(Φ) = ‖Y −ΦZ‖22 and the second component is the penalty function P(Φ;λ, γ).

The loss function L(Φ) is clearly convex and differentiable. The penalty term P(Φ;λ, γ), in thesis,

can take any of the forms as reported Table 1. The basic lasso penalty function is a sum of L1-norms.

The four HLag structures are all sums of nested L2-norms. All these functions are convex but

nondifferentiable. Therefore, (2.15) is sum of a convex and differentiable component and a convex

but nondifferentiable component. This problem cannot be solved by a gradient-type algorithms

because they are not able to deal with the nondifferentiable component. Fortunately, this class of

optimization problems can be solved via proximal gradient descent. Define the proximal map of

P(Φ;λ, γ) as

proxν,P(Φ;λ,γ)(x) = arg min
x̃

{
1

2
‖x− x̃‖22 + νP(Φ;λ, γ)

}
, (2.16)

where ν is the step-size parameter calculated as ν = 1
Lc
, and Lc is the Lipschitz constant of

∇L(Φ) = −(Y −ΦZ)Z′, which corresponds to the largest eigenvalue of ZZ′. The proximal operator

does not depend on the loss function L(Φ), rather it depends on the penalty function P(Φ;λ, γ)

is included. A convenient property of the proximal operator is that it can be evaluated efficiently

for many popular nondifferentiable (penalty) functions. The proximal operator is evaluated at the

gradient step that would have been taken if L(Φ) alone were to be minimized. For m = 1, 2, . . . , its

updates are given by

Φ̂[m] = proxν,P(Φ;λ,γ)

(
Φ̂[m− 1]− ν∇L(Φ̂[m− 1])

)
.

This algorithm is called ISTA (Iterative Shrinkage-Thresholding Algorithm) and has a convergence

rate of O( 1k ) (for more information regarding ISTA, refer to Chambolle et al., 1998, Daubechies

et al., 2004). Of course, the solutions to (2.16) depend very much on P(Φ;λ, γ). This algorithm is

performing a proximal descent and can be accelerated by a Nesterov accelerated scheme.

The algorithm including this Nesterov step is called FISTA (Fast Iterative Shrinkage–Thresholding

Algorithm) introduced by Beck and Teboulle (2009). The FISTA algorithm for the problem in (2.15)
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is computed by

Φ̂∗ = Φ̂[m− 1] +
m− 2

m+ 1
(Φ̂[m− 1]− Φ̂[m− 2])

Φ̂[m] = proxν,P(Φ;λ,γ)

(
Φ̂∗ − ν∇L(Φ̂∗)

)
. (2.17)

This algorithm converges at rate O( 1
k2

), which is a significant improvement compared to the unaccel-

erated proximal gradient method’s O( 1k ) rate. It is thusly this algorithm that is used to solve all

the regularization problems encountered in this paper. Algorithm 1 depicts how FISTA works in

pseudocode.

Algorithm 1: FISTA

Require: Y, Z, Φ̂[0], λ, γ, ε;

ν ← maxλ(ZZ′);

for m = 3, 4, . . . do

Φ̂∗ ← Φ̂[m− 1] + m−2
m+1(Φ̂[m− 1]− Φ̂[m− 2]);

Φ̂[m]← proxν,P(Φ;λ,γ)

(
Φ̂∗ − ν∇L(Φ̂∗)

)
;

if ‖Φ̂[m]− Φ̂∗‖∞ < ε then
break

end

end

return Φ̂[m]

Before demonstrating the solutions to the proximal operators, there is one important observation

that needs to be made. All procedures, except for the lagwise HLag, can be broken down across rows

of Φ. Therefore, in these cases one can concentrate on solving the one-row subproblem:

arg min
Φi

{
‖Yi −ΦiZ‖22 + P(Φ;λ, γ)

}
for i = 1, . . . , k, (2.18)

and evaluate the proximal operater row-wise

Φ̂i[m] = proxν,P(Φ;λ,γ)

(
Φ̂∗i − ν∇Li(Φ̂∗i )

)
for i = 1, . . . , k. (2.19)

In this one-row subproblem case Algorithm 1 alters a bit. This altered form is presented in Algorithm

2. Solving the problems row-wise results in a significantly faster computation time.

Evaluating the proximal operator for all procedures is remarkably efficient. As a matter of fact,

they all have essentially a closed form solution. The solution to (2.16) for the L1-norm lasso is
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Algorithm 2: Row-Wise FISTA

Require: Y, Z, Φ̂[0], λ, γ, ε;

ν ← maxλ(ZZ′);

for k = 1, . . . , k do

for m = 3, 4, . . . do

Φ̂∗i ← Φ̂i[m− 1] + m−2
m+1(Φ̂i[m− 1]− Φ̂i[m− 2]);

Φ̂i[m]← proxν,P(Φ;λ,γ)

(
Φ̂∗i − ν∇Li(Φ̂∗i )

)
;

if ‖Φ̂i[m]− Φ̂∗i ‖∞ < ε then
break

end

end

end

return Φ̂[m]

just elementwise soft-thresholding. The HLag penalty functions have an equivalently simple form.

Jenatton et al. (2011) show that if the regularization term is a sum of nested L2-norms, the dual

of its proximal operater can be solved exactly in a single pass of blockwise coordinate descent. By

strong duality, this solution to the dual provides us with an analytical solution to the problem (2.16)

for the HLag structures. For sake of brevity, the solutions are not displayed here, rather they are

placed in Appendix A.

2.5 Tuning Parameter Choice

The performance of the regularization procedures discussed in Section 2 depend critically on the

tuning parameters γ and λ. The tuning parameters are unknown in practice but can be determined

via statistical model validation routines. The rolling cross-validation, as used by Song and Bickel

(2011), is applied in this paper to determine the optimal γ and λ combination. Applying rolling

cross-validation in vector autoregressive context is well-advised, as this method directly incorporates

the inherent temporal ordering of time series data. The motivation behind rolling cross-validation is

that ostensibly traditional n-fold cross validation is not suitable for a time-dependent model because

time series data cannot adhere to the principle that training and validation datasets should be

independent. However, n-fold cross-validation may still be appropriate in certain circumstances.

Bergmeir et al. (2017) show that n-fold cross-validation remains valid in a purely autoregressive
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model, given that it is assumed that the errors are uncorrelated. Regardless, as the performance of

n-fold cross-validation is scantly researched in a vector autoregressive context, nor is tuning parameter

selection the central theme in this thesis, I persist in using rolling cross-validation to determine the

optimal tuning parameters1.

The tuning parameter λ is selected from the grid λ = (λ1, . . . , λGλ), and γ is selected from

γ = (γ1, . . . , γGγ ), where Gλ and Gγ denote the amount of grid-points for λ and γ, respectively.

Unless stated otherwise, all applications, for all regularization algorithms, have the γ-grid set as

γ = (1, 0.5, 0). This is a rather restrictive grid, however it is set that way as increasing the amount

of grid-points will significantly increase computation time. Moreover, the results marginally improve

if the amount of grid-points is increased. The λ-grid is not fixed, rather it is procedure- and data-

dependent. The first element of the grid, λ1, is set to the smallest value such that for any λ ≥ λ1 it

follows that Φ̂ is always equal to 0. This value is found by a line-search algorithm. The values in

λ decrease in log-linear increments to λ1
d , where d is the depth of the grid. The depth of the grid

determines how small the values in λ will be. A deep grid, i.e, if d is set to a large number, will result

in a significant increase in computation cost. For most applications I let Gλ = 10 and d = 1
25λ1.

Generally speaking, I have found good model selection and forecasting performance by setting up

the λ-grid in this way.

Like in Song and Bickel (2011), the data is split three periods: The first period from 1 to T1− 1 is

used for model estimation, based on the second period from T1 to T2− 1 different penalty parameters

are assessed, and the third period from T2 to the end of the sample is used for forecast evaluation.

Unless stated otherwise, the time indices in this thesis are set as T1 = bT3 c and T2 = b2T3 c. The

validation procedure is started by fitting a model using all data up to time T1 and forecasting ŷ
λi,γj
T1+h|T1

for i = 1, . . . , Gλ and j = 1, . . . , Gγ . This process is repeated until T2 − h, whereby at each new

iteration one observation is added and another h-step point forecast is estimated. Figure 2 depicts

the rolling cross-validation procedure for a fixed λi and γj .

To quantify the regularization procedure’s performance for each λi and γj , the h-step-ahead

MSFE is used as a cross-validation score:

L̂CVh (λi, γj) =
1

T2 − T1 − h+ 1

T2−h∑
t=T1

‖yt+h − ŷ
λi,γj
t+h|t‖

2
2. (2.20)

1One may also opt for different methods other than rolling cross-validation and n-fold cross-validation. A recent

paper by Na (2017) uses the generalized information criteria to determine the tuning parameters for autoregressive

models and found good performance.
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Figure 2: Rolling Cross-validation
Rolling h-step-ahead cross-validation with expanding training window for a fixed λi and γj . ’T’ and ’V’ denote that the

observation is included in the training and validation sample, respectively. A hyphen (’-’) indicates that an observation is

excluded from both training and validation sample. The figure on the left depicts rolling cross-validation for h = 1, and the

figure on the right for h = 2.
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A natural choice for selecting the optimal λ and γ from their respective grids, is selecting them such

that they minimize the validation score in (2.20). However, the interest in this work lies not just

in an estimated model that is able to forecast well, but also in a model that is parsimonious and

interpretable. To realize this interest the ’one-standard error rule’ is applied. As to limit the increase

in bias, which will typically be a consequence of the one-standard error rule, it is only applied for γ

whilst λ is selected such that it minimizes the validation-score and remains fixed throughout the

process. Prior to formally explaining the rule, denote the standard deviation of cross-validation

scores over gamma

SD
∧

(γ) =

√
L̂CVh (λi, γ1) + · · ·+ L̂CVh (λi, γGγ ),

and the corresponding standard error

SE
∧

(γ) =
SD
∧

(γ)√
Gγ

.

The procedure starts by selecting λ̂ and γ̂ such that they minimize the cross-validation score (2.20).

The lag-parameter γ is then moved in the direction of increasing regularization until the following

inequality is violated:

L̂CVh (λ̂, γj) ≤ L̂CVh (λ̂, γ̂) + SE
∧

(λ̂, γ̂).
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In words, the most regularized model whose error is within one standard error of the minimal

cross-validation score is chosen rather than the model with a minimal validation-score. The choice

of one standard error is entirely heuristic. One standard error typically is not large relative to the

range of values.

Two dimensional rolling cross-validation can be computationally expensive, in particular when

k is large. To reduce computation time, rolling cross-validation is applied such that it uses the

result from the previous period as initialization for the current period. In practice, this substantially

decreases computation time.

3 Monte Carlo Study

To evaluate the performance of all regularization procedures in a finite sample, I will focus on the

problem of obtaining accurate point forecasts, the ability to uncover the correct sparsity pattern, and

the consistency of the parameter estimates in various simulation set-ups. In the simulation study

only one-step-ahead forecasts are constructed. The accuracy of the proposed procedures will be

quantified by several evaluative metrics that are described in the following section.

3.1 Performance Measures

Several performance measures are considered. These measures aim to give an insight in the HLag

structures’ forecasting and parameter selection performance. A way to gauge the predictive power

of each method is to compare the MSFE obtained by forecasts constructed with regularization

procedures relative to the MSFE obtained by forecasts that are constructed by a benchmark method

1

N

N∑
n=1

‖yt+1 − ŷ[n]‖22
‖yt+1 − ȳ[n]‖22

,

whereby ȳ corresponds to the sample mean model – which in this case is the benchmark method –

specified as

ȳT+h =
1

T

T∑
t=1

yt, (3.1)

and the superscript [n] denotes the constructed forecasts for the nth simulation.

To assess the accuracy of the estimated parameter values of each procedure, the mean squared
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error of the parameter estimates is computed

1

Npk2

N∑
n=1

‖Φ− Φ̂[n]‖22.

As in this thesis there is a heavy focus on lag selection, a performance measure regarding it is

also be designed. First, define the estimated lag matrix as L̂ij = max{` : Φ̂
(`)
ij 6= 0}. A procedure’s

lag order selection accuracy is measured based on the L1-norm of the difference between L and L̂,

relative the difference between L and 0 (where 0 is the ’selected’ lag order by the sample mean

procedure)
1

N

N∑
n=1

‖L− L̂[n]‖1
‖L‖1

.

This performance measure coincides to comparing the the lag matrices produced by the regularization

procedures to always selecting zero lags for all variables.

Sparsity recognition is assessed by looking at the true positive rate (TPR) and the true negative

rate (TNR),

1

N

N∑
n=1

#{i, j : Φij = 0 ∧ Φ̂
[n]
ij = 0}

#{i, j : Φij = 0}
and

1

N

N∑
n=1

#{i, j : Φij 6= 0 ∧ Φ̂
[n]
ij 6= 0}

#{i, j : Φij 6= 0}
,

respectively. The TPR gives the rate of correctly estimating an inactive parameter as inactive,

whereas the TNR gives the rate of correctly excluding an inactive parameter. Both should be as

large as possible for reliable parameter selection.

3.2 Simulation Scenarios

All the proposed procedures operate on a VAR20(4). Here p = 4 entails that 4 is the maximal lag

order. The maximal lag order is the largest order considered in the model fitting procedures. The

choice of p = 4 is selected because it represents one year of dependence for quarterly data, which is a

common frequency of macroeconomic data. Formally, each method is performed on the following

specification

yt =
4∑
`=1

Φ(`)yt−` + ut, with ut ∼ N (0, 0.01I20) for t = 1, . . . , T, (3.2)

and 100 simulations are performed (N = 100) for every method. I do not include a constant term in

(3.2) because, as shown in (2.14), by temporally demeaning the variables one may omit the intercept in
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any scenario. To get an insight in the asymptotic performance of the proposed methods, all methods

will be performed with varying amount of temporal observation, namely for T ∈ {50, 100, 200}.

Finally, in order to test the applicability of every specification, different coefficient matrices (i.e.

scenarios) are generated. An explanation and motivation of each of these scenarios follows.

Figure 3: DGP1

Φ
(1)

Φ
(2)

Φ
(3)

Φ
(4)

In the first scenario Φ(1) and Φ(2) are dense with coefficients. All other coefficents are set to zero.

Such a design simulates a scenario in which all components have very similar temporal behavior.

Under such a design, one should expect superior performance from the lagwise HLag structure. The

coefficients are distributed as Φ
(`)
ij ∼ U(−0.4

` ,
0.4
` ) for ` = 1, 2 and for i, j = 1, . . . , k. The relative

magnitude of the coefficients are depicted in Figure 3.

Figure 4: DGP2

Φ
(1)

Φ
(2)

Φ
(3)

Φ
(4)

The second design is set-up such that it simulates a perfectly asymmetric (in equations) VAR.

With each increment in `, Φ` becomes (approximately) 50% more sparse. Under such a design, one

should expect the componentwise HLag structure to perform the best. The active coefficients are

distributed as Φ
(`)
ij ∼ U(−0.4` , 0.4` ) for ` = 1, . . . , p. The relative magnitude of the coefficients are

depicted in Figure 4.
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Figure 5: DGP3
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The third scenario simulates a coefficient matrix that has no spatial structure, but does have

temporal structure, in the sense that if Φ`′
ij = 0 then Φ`

ij = 0 for `′ > `. Each dependent variable has

a 5% chance of having four lags, 25% chance of either having three lags, 30% chance of having two

lags, 30% chance of having one lag, and a 10% chance of having no lag of for every variable. Under

such a design, one should expect superior performance from the elementwise HLag structure. The

active coefficients are drawn as Φ
(`)
ij ∼ U(−0.4

` ,
0.4
` ) for ` = 1, . . . , p. The relative magnitude of the

coefficients are depicted in Figure 5.

Figure 6: DGP4

Φ
(1)

Φ
(2)

Φ
(3)

Φ
(4)

In this scenario a diagonal dominant structure is generated. For ` > 2, all except the diagonal

elements are set to zero. Under such a design, one should expect superior performance from the

own-other structure. The active non-diagonal parameters are drawn as Φ`
ij ∼ U(−0.352` , 0.352` ) for

` = 1, 2 for every i 6= j. The diagonal elements are drawn as Φ`
ii ∼ U(−0.35` , 0.35` ) for ` = 1, . . . , p and

i = 1, . . . , k. To ensure the large magnitude of the diagonal elements relative to the non-diagonal

elements, the draws of the diagonal elements are only ’accepted’ if they are larger in magnitude than

a certain threshold, whereby the threshold itself decreases as ` increases. If a draw does not meet the

threshold, the diagonal parameter is redrawn until that threshold is met. The relative magnitude of

the coefficients are depicted in Figure 6.

22



Figure 7: DGP5
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This final scenario considers a dense matrix Φ, in which there is no sparsity whatsoever in the

coefficient matrix. This scenario is primarily to assess if the penalty methods are able to deal which

such a dense matrix and how accurate the parameter estimates are without wrongfully excluding any

parameter. All coefficients are drawn as Φ
(`)
ij ∼ U(−0.35

` , 0.35` ) for ` = 1, . . . , p and for i, j = 1, . . . , k.

The relative magnitude of the coefficients are depicted in Figure 7.

Each simulation scenario was generated such that they produced a stationary coefficient matrix.

The conditions of stationary VARs and how they were generated is explained in Appendix B.1. On

a last note, the performance of the regularization procedures are not only compared against one

another, rather they are also compared against OLS. The OLS is of course only possible when kp ≤ T .

If k = 20, p = 4 and T = 50 this inequality is clearly violated. In that case the VAR20(1) is estimated

by least squares:

Φ̂, ĉ = arg min
Φ,c

{
T∑
t=1

‖yt − c−Φyt−1‖22

}
.

3.3 Simulation Results

In Table 2 the numerical results for T ∈ {50, 100, 200} are reported. Figure 8 depicts densities of

the estimates over the 100 Monte Carlo replications of the first parameter in the first equation. To

examine the consistency of a coefficient’s estimate the true value of the first parameter is manually

set 0.3 for each generated coefficient matrix. For convenience that value is depicted with a vertical

black line in each density plot. Table 2 report some quite surprising and counter-intuitive results.

One of them is that lag selection accuracy does not necessarily increase as sample size increases.

This hold in particular for the first three DGPs. Moreover, the TPR mostly worsens (i.e., decreases)

as sample size increases. This entails that, surprisingly, correct sparsity in Φ is less likely to be

identified as T increases, across all DGPs and across all procedures. In contrary, TNR increases with
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sample size, across all DGPs and across all procedures. Thus, from these two dynamics it seems

that can derive that with an increase in sample size, more parameters are included in the estimated

model regardless whether they should actually be included. Most importantly though, the MSFE

for all methods, across all scenarios, always decreases as T increases. Thus, in terms of minimizing

MSFE, not correctly identifying sparsity seems to be less detrimental than incorrectly excluding

parameters. Finally, the results of the MSE of the parameter estimates behaves as expected: As T

increases the parameter MSE, generally speaking, decreases. There is one exception to this and it is

in the case of DGP4, the diagonally dominant scenario, where an increase in T causes the MSE to

increase slightly or remain roughly the same. Table 6 in Appendix B.4 report the standard errors

(expressed in percentages) of the results. The standard errors are well-behaved in the sense that as T

increases the standard errors decrease for every performance measure. A more intriguing observation,

however, is that the lagwise HLag has a standard error of 0 for the TPR across all DGPs. This

means that for all 100 simulations, for every DGP, it fails to set a group of parameters to 0 even

once. This includes for DGP1, which is a particularly favorable set-up for the lagwise HLag.

Several things can be derived from the density plots displayed in Figure 8. Firstly, an increase in

sample size centers the densities more towards the true parameter. Also, as T increases the density

of the various procedures converge to each other. In small sample size, in particular if T = 50, the

compenentwise and lagwise HLag have narrower density plots relative. The density plots, across all

procedures, are (usually) biased to the left of the true parameter value, which is expected from a

lasso based method. Methods based on the lasso are always biased as it shrinks the parameters to

zero. This phenomenon is extensively discussed in Zou (2006). Interestingly though, DGP5, the

dense scenario, is biased to the right of the true parameter value, i.e, it estimates the parameter

higher than its actual magnitude. Of course, as there is no sparsity in this scenario, the shrinkage

terms λ and γ are selected to be very small such that the regularization procedures barely shrink the

parameters. Three figures depicting the relative magnitude of the estimated parameters for DGP1 are

placed in Appendix B.3. For each plot, the N = 100 estimated coefficient matrices are averaged and

then plotted. As T = 200 it starts resembling Figure 3, however, here too the estimated parameters’

magnitude values tend to be smaller than the true parameter values.

Table 7 in Appendix B.5 reports the results with γ fixed to zero. The TNR that results from

procedures without a lag-function parameter is always better than with a lag-function. In complete

opposite, the TPR that results from procedures with is always better than without a lag-function.
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Figure 8: Density Plots
Density plots of the first parameter in the first equation for T ∈ {50, 100, 200}, and for various simulation set-ups that were

explained in Section 3.2. The true value of the first parameter of the first equation is illustrated by a vertical black line.
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Lasso Lagwise Compenentwise Elementwise Own−Other

All methods exhibit an improvement in terms of MSFE and MSE (of the parameter estimates) if a

lag-function is incorporated, however only for the basic lasso is this improvement really substantial.

Including a lag-function results, in most cases, in sparser solution, and the forecasting performance

(slightly) improves. Finally, lag selection accuracy is, by and large, better if a lag-function is present.

In Figure 11 density plots are again depicted, except now γ is fixed to zero. There is no substantial

difference between the asymptotic behaviors of the estimates with a weighting specification compared

to without. This lack of difference become increasingly visible as T increases. However, when T = 50
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one does see more ’erratic’ behavior of the densities that were estimated without a lag-function.

In terms of MSFE, the own-other, lagwise, and componentwise HLags perform the best. However,

this difference is only substantial in case T = 50. As T increases the results of each method seems to

converge to one another. OLS always under performs compared to the regularization procedures,

even for T = 200. Of course, as T increase one should expect a superior performance of OLS. After

all, it is proven to be asymptotically efficient and consistent given certain assumptions, all of which

hold for the simulation set-up in (3.2). In terms of lag selection accuracy, the elementwise HLag

and the lasso perform the best. These two methods are the least constrained in terms of variable

selection, which is why they are superior in uncovering the true sparsity for different DGPs. Finally,

while each of the five different simulations scenarios were set-up such that one method theoretically

should be preferred above all others, in practice it did not really matter in terms of performance

of each procedure. Rather, as stated, the best performing procedures in terms of MSFE are the

own-other, lagwise, and componentwise HLags, regardless of the simulation scenario.

4 Empirical Study

The procedures are evaluated on the dataset compiled by Stock and Watson (2005) and augmented

by Koop (2013). This dataset is a popular choice for researchers in the VAR literature. The full

dataset is publicly available at The Journal of Applied Econometrics Data Archive2. The dataset

contains 168 quarterly macroeconomic variables in the time span of Quarter 4, 1959 to Quarter 4,

2007, amounting to 193 temporal observations. The macroeconomic indicators represent various

informative aspects about the economy of the United States. Among them being income, industrial

production, capacity, stock prices, interest rates for different maturities, exchange rates, and so forth.

All variables, expect for the financial ones, are seasonally adjusted. Koop (2013) partitions the series

into four nested groups. The motivation and exact composition of each partition is given in Koop

(2013). However, for convenience of the reader, the mnemonics, descriptions, and to which partition

each variable belongs, are all displayed in Table 8 in Appendix C.1.

In this paper three of the four partitions are considered, namely a partition that incorporates 20

macroeconomic variables (medium-small, k = 20), a partition that incorporates the medium-small

group and twenty other macroeconomic variables (medium-large, k = 40), and finally partition
2link: http://qed.econ.queensu.ca/jae/2013-v28.2/koop/
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that incorporates the medium-large group and 128 other macroeconomic variables (large, k = 168).

Before estimating the model-parameters, monthly series are transformed to quarterly series by taking

the sample average over every three months. Each series is then transformed to (approximately)

stationarity following the transformation codes reported in Stock and Watson (2005). Finally, all

time series are then standardized by subtracting their respective sample means and dividing by

their respective sample standard deviations. In the following subsection, the forecast performance of

the weighted HLag structures are compared for each data-partition. Following that, the structural

analysis of the effect of a monetary policy shock is examined.

4.1 Forecasting

A comparative analysis of the forecasting performance is set-up for the medium-small, medium-large,

and large partitions. The period from Quarter 3, 1975 to Quarter 3, 1991 is used for penalty

parameter selection, while Quarter 4, 1992 to Quarter 4, 2007 is used for expanding-window forecast

comparisons. The penalty parameters are selected using rolling cross-validation as elaborated in

Section 2.5.

The regularization procedures will not only be compared to one another, but also to several

popular methods often applied in literature. A standard method is to select a lag order using Akaike’s

information criterion (AIC) or Bayesian information criterion (BIC), introduced by Akaike (1974)

and Schwarz (1978), respectively. The AIC and BIC of a VARk(p) are defined as

AIC(`) = log det(Σ̂`
u) +

2k2`

T

BIC(`) = log det(Σ̂`
u) +

log(T )k2`

T
,

where Σ̂`
u is the estimated residual sample covariance matrix resulting from using least squares to fit

the VARk(p). The lag order ` that minimizes AIC(`) or BIC(`) is selected. Since log T > 2 for any

T > 7, the BIC statistic virtually always places a heavier penalty on models with many variables,

resulting in the selection of smaller models than AIC. This method of lag order selection is only

possible when k` ≤ T since otherwise least squares is not well-defined. For the large partition, AIC

and BIC are overparameterized and therefore not included in the analysis. For more information on

the use of model selection criteria in VARs consult Lütkepohl (2007). In addition to information

criteria, two naive benchmarks are included that can be used for any high-dimensional system. One

of them being the unconditional sample mean model as specified in (3.1). The second of them is the
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random walk model, which makes h-step-ahead forecast based upon the most recent realization, i.e,

ŷt+h = yt.

The maximal lag order for all procedures is set to p = 4. The out-of-sample h-step-ahead mean

MSFE with cross-validated selected forecast over the forecast evaluation period from T1 to T2 equals

to L̂CVh (λ̂, γ̂), where L̂CVh is defined in equation (2.20). The MSFEs for each group is displayed will

not only be computed for forecast horizon h = 1, but for the horizons h ∈ {1, 2, 4}. As inducing

sparsity is among the central themes of the paper, the amount of sparsity resulting from each method

is also compared. To measure the amount of sparsity generated by each method, the following metric

is used
#{i, j : Φ̂ij = 0}

pk2
.

4.1.1 Forecast Results

The forecasting results with a lag-function are reported in Table 3. For comparison’s sake, the results

without a lag-function (i.e., where γ is fixed to 0) are reported in Table 9. The greatest improvements

in forecast performance occurred with the medium-large VAR. This was also the outcome in the paper

by Nicholson et al. (2018). It is therefore this partition that captures the most useful information.

The regularization procedures outperform the benchmark methods across all datasets and across all

forecast horizons. AIC in particular performs poorly. AIC imposes weaker penalty for higher lags

and has a tendency to overfit, whereas BIC has a tendency to underfit. AIC, in most cases, selects

the maximum lag order of four. BIC, all in except one case, simply degenerates to the unconditional

sample mean model. It is also these two models, the BIC and sample mean model, that are the

closest competitors to the regularization procedures.

The lasso and the elementwise HLags result in the most parsimonious models. This follows from

the fact that both procedures are very flexible in variable selection. On the other hand, the lagwise

HLag produces the least sparse estimated models. As a matter of fact, for h = 1 and h = 2, with a

maximum lag order of four, it does not produce any sparsity whatsoever. It is after all the most

restrictive HLag structure possible, and the maximum lag order of four is quite low. The own-other

and componentwise HLags generate a moderate amount of sparsity. The own-other HLag is however

more suitable for VARs than the compenentwise HLag since it makes use of the fact that in most

economic applications a variable’s own lags are more informative than the lags of other variables.

The predictive power of the procedures that include a lag-function is roughly the same as the
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Table 3: Forecast Results
(Absolute) MSFE and sparsity percentage for each partition and for the horizons h ∈ {1, 2, 4}.

Group h = 1 h = 2 h = 4

k = 20 Method MSFE Sp. (%) MSFE Sp. (%) MSFE Sp. (%)

Lasso 0.736 79.75 0.759 89.12 0.806 92.75

Lagwise 0.721 0 0.785 0 0.828 0

Componentwise 0.759 45.00 0.770 15.00 0.816 68.75

Elementwise 0.726 72.69 0.760 87.62 0.806 92.88

Own-Other 0.694 21.62 0.756 47.00 0.807 77.75

AIC 1.446 0 1.709 75.00 1.776 75.00

BIC 0.893 75.00 0.843 100 0.847 100

Sample Mean 0.843 - 0.847 - 0.847 -

Random Walk 1.798 - 1.435 - 1.640 -

k = 40 Method MSFE Sp. (%) MSFE Sp. (%) MSFE Sp. (%)

Lasso 0.563 90.02 0.610 95.84 0.676 95.88

Lagwise 0.573 0 0.633 0 0.691 25.00

Componentwise 0.569 5.620 0.622 23.75 0.682 74.38

Elementwise 0.558 81.75 0.610 95.88 0.676 95.92

Own-Other 0.537 20.97 0.606 17.25 0.675 74.56

AIC 3.074 0 3.161 0 3.430 0

BIC 0.703 100 0.704 100 0.708 100

Sample Mean 0.703 - 0.704 - 0.708 -

Random Walk 1.266 - 1.103 - 1.326 -

k = 168 Method MSFE Sp. (%) MSFE Sp. (%) MSFE Sp. (%)

Lasso 0.559 96.23 0.643 97.90 0.697 97.90

Lagwise 0.594 0 0.660 0 0.710 50.00

Componentwise 0.598 0.300 0.657 8.630 0.709 75.00

Elementwise 0.552 94.56 0.642 97.33 0.698 97.90

Own-Other 0.543 15.45 0.632 74.90 0.686 74.90

Sample Mean 0.729 - 0.730 - 0.733 -

Random Walk 1.302 - 1.207 - 1.283 -
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procedures without a lag-function. To statistically examine this two-sided Diebold-Mariano (Diebold

and Mariano, 1995) tests are conducted. The distance between the forecast errors of the model with

and without a lag-function are measured via squared loss. The p-values of these tests are reported

in Table 10 in Appendix C.3. If a significance level of α = 0.05 is upheld then the null hypothesis

of equal predictive ability cannot be rejected in most cases. An exception to this is when k = 168

and h = 4. In this case, all HLag methods seems to give statistically better predictions without a

lag-function included, even though numerically in this case the MSFEs are also very similar. The

penalty functions that include a lag-function tend to produce sparser models. If the forecast horizon

increases the generated sparsity becomes much larger (approximately by 60% for some procedures).

When h increases the belief that recent information is more important than distant information

becomes more relevant. It is in that case γ is more often selected to be 1 (maximum lag penalization)

and rarely 0. This implies that not including a lag-function in the penalty functions results in

variables being over-selected, and doing away with those variables does not result in a deterioration

of the accuracy of the out-of-sample forecasts.

4.1.2 Evaluating Model Performance with Model Confidence Sets

In addition to simply evaluating a model’s forecast performance based on their MSFEs, the model

confidence set (MCS) proposed by Hansen et al. (2011) is also used. The reason why the Diebold-

Mariano test – the equivalence-test that was used in Section 4.1.1 – is not conducted, is because

it is not designed to deal with a lot of different competing models simultaneously. If one wants

to rank the models without a particular interest in choosing a specific benchmark then the MCS

framework is a more appropriate method. In this subsection a concise description is given about the

MCS procedure. For a comprehensive explanation regarding the MCS approach consult Hansen et al.

(2011) and Bernardi and Catania (2014).

The objective of the MCS procedure is to determine the set of models that consists of the best

model(s),M∗, from a set of models,M, with a given probability. To determine the set of superior

models several significance tests are sequentially conducted. Models that are found to be significantly

inferior to to other models are deleted fromM, resulting in set of superior modelsM∗, within which

the null hypothesis of equal predictive ability cannot be rejected. The MCS procedure starts by

computing the sum of squared forecast error (SSFE) for each model over the period T2 + 1 to T .
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The SSFE for model i at time t is defined as SSFEi,t = ‖yt − ŷ
(i)
t ‖22. Formally, let

dij,t = SSFEi,t − SSFEj,t, for i, j ∈M,

denote the loss differential between models i and j, and let

d̄ij =
1

T − T2

T∑
T2+1

dij,t for i, j ∈M,

denote the relative sample loss between models i and j model. Finally, define the test static

vij =
d̄ij√

var
∧

(d̄ij)
for i, j ∈M,

where var
∧

(d̄ij) is obtained via block bootstrap. The asymptotic distributions of the test statistic

is non-standard. The distribution under the null hypothesis is therefore also estimated using a

bootstrap procedure.

The test statistic

VR,M = max
i,j∈M

|vij |

is used to sequentially test for equal predictive ability. The model with largest pairwise differential

is deleted fromM if equal predictive ability is rejected at a confidence level of 1− α. Thereafter,

the procedure is restarted on the subset of models. The procedure stops only when equal predictive

ability for a set of models cannot be rejected. For the experiment I create 5000 bootstrap samples

and set α = 0.15. The results are displayed in Table 4.

None of the regularization procedures outperform each other if k = 20. It is only as k increases to

40 or 168 that the cardinality ofM∗ decreases. The weighted own-other HLag is an element ofM∗

in all except one case, namely for the medium-large dataset and forecast horizon h = 4. In case of

the large dataset,M∗ constitutes (for every forecast horizon) only of the own-other HLag. This gives

statistical significance to the result of the robust and superior forecast performance of the own-other

HLag.
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Table 4: Model Confidence Set Results
Model sets M∗ of equal predictive ability (α = 0.15) for each dataset and across forecast horizons h ∈ {1, 2, 4}. Within each

set of models, the null hypothesis of equal predictive ability can not be rejected, though they achieve superior forecasting

performances relative to all excluded models.

Data MCS for 1-step forecasts MCS for 2-step forecasts MCS for 4-step forecasts

Medium-Small (k = 20) Lasso Lasso Lasso

Lagwise Lagwise Lagwise

Componentwise Componentwise Componentwise

Elementwise Elementwise Elementwise

Own-Other Own-Other Own-Other

BIC BIC BIC

Sample Mean Sample Mean

Medium-Large (k = 40) Own-Other Lasso Lasso

Elementwise

Own-Other

Large (k = 168) Own-Other Own-Other Own-Other

4.2 Lag Order Selection and Structural Analysis

In the previous subsection it was shown that the own-other HLag generally performs the best across

all datasets. Recall however, the goal of this thesis was to consider an estimator that is both strong

in forecasting power and interpretable. In the following sections the latter is examined in order to

determine which HLag structure satisfies both accurate predictability and interpretability.

4.2.1 Lag Order Selection

As reported in Table 3, in case of h = 1, out of all the four HLag structures only the elementwise

HLag structure generates a lot of sparsity. Moreover, it is the most natural HLag structure in terms

of extracting information from the estimated lag matrix L̂. Hence, following Nicholson et al. (2018),

it is this HLag that will be used to derive economic interpretations from the estimated lag matrix.

The partition that results in the lowest MSFE is the medium-small partition, which means that this

partition captures the most useful information of the variables. For sake of brevity, only the first
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twenty rows of the estimated lag matrix are depicted in Figure 9.

Figure 9: Estimated Lag Matrix
Estimated lag matrix L̂, where, for sake of brevity, only the medium-small macroeconomic variables’ estimated lags are depicted.

The model was estimated on the medium-small dataset.
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Prior to examining the lag matrix, it should be noted that having a coefficient to set to zero

does not mean that a variable is completely useless in explaining its respective dependent variable.

Rather, the HLag procedure simply found that in a specific system setting excluding those variables

minimized the empirical loss function. This is substantiated by observing Figure 15 and Figure 16 in

Appendix C.4 where two estimated lag matrices resulted from applying the elementwise HLag on

the medium-small and large partition, respectively. Each figure gives a different picture of which

variables are explanatory and which are not. Regardless, there is still useful economic interpretation

that one can derive from the estimated lag matrices. As this is not an economics paper, the theory

behind each and every variable will not be discussed. Rather, only three variables will be analyzed:

real economic activity (GDP251), consumer price index (CPIUACSL), and the federal funds rate (FYFF).

The first thing to note is that GDP251 does not depend on itself. Real economic activity is driven

by many variables, many of which are included in the regression model, making the variable GDP251

redundant. The relationship between GDP251 and FYFF is a well-studied one. When a country goes
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into recession the government attempts to reduce unemployment by boosting economic growth. They

primarily do this by an expansionary monetary policy. Reducing the federal funds rate incentives

businesses and consumers to borrow money, increasing the economic activity of a country. This

relationship is detailed in the paper by Bernanke and Blinder (1992). One of the most reliable leading

indicators for assessing the state of the U.S. economy is the purchasing managers’ index (PMI). Despite

that, it has an estimated lag of 0. This is caused by the fact that PMI is a composite index of various

sub-indices, several of which are included in the equation of GDP251. supplier deliveries (PMDEL) and

commodity index (PMCP) seems to be the primary drives of PMI, as they have an estimated lag of 4

and 3, respectively.

In the equation of CPIUACSL maximum lag order order is estimated for real personal consumption

expenditure (GDP252). Naturally, consumer expenditure itself is directly affected by the the federal

funds rate. This may also explain the estimated lag order of 1 for FYFF as most of the effect is

already captured by GDP252. Maximum lag order was also selected for the US exchange rate (EXRUS).

Exchange rate is one of the foremost macroeconomic variables that affect inflation (Edwards, 2006).

Moreover, for many emerging economies inflation-targeting is typically done by intervening in the

foreign exchange market.

The only maximum lag order selection for the FYFF equation is the unemployment rate (UTL11).

Prag (1994) suggest there is a response of the interest rate to announcements of unexpected changes

in the unemployment rate. Specifically, in response to an unexpectedly low unemployment rate

announcement, interest rates rise are expected to rise. This indicates that the real rate is responding

to these announcements in general. By this theory it is sensible that the past four quarters of

unemployment is able to explain changes in the interest rate.

4.2.2 Impulse Response Analysis and Innovation Accounting

A very popular method that enables macroeconomists to conduct policy analysis is impulse response

analysis. The HLag methods were initially designed to construct accurate forecasts in high-dimensional

VARs. However, they are also suitable for structural analysis. The responses to a shock in the system

are heavily dependent on which variables are included in the estimated model, and as the different

procedures result in different models, one may expect discrepancy in the impulse responses across

procedures.

Before explaining how the impulses responses are constructed it is important to recall the VAR
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specification in (2.1) and to note that impulse response analysis relies on the assumption that a shock

occurs only in one variable at a time. Such an assumption may be reasonable if the structural shocks

in different variables are independent. However, in many applications, in particular economic ones,

the shocks in different variables are correlated with one another. This is the reason why impulse

response analysis is often performed in terms of the moving-average (MA) representation

yt =

p∑
i=1

Ψ(i)wt−i, (4.1)

where the components of wt are uncorrelated and have unit variance, Σw = Ik. The constant term is

dropped in the present analysis as all the datasets are standardized. The MA representation in (4.1)

is obtained by the Choleski decomposition of Σu as Σu = PP′, where P is a lower triangular matrix,

and defining Ψ(i) = Φ(i)P and wt = P−1ut. A change in one component of wt has no effect on the

other components because the components in this specification are uncorrelated. The assumption

that impulse response analysis rests on, namely uncorrelated shocks, holds true for (4.1).

The goal of the current analysis is to trace out the response to a monetary policy shock. With

that end in view, there remains one important point to note, namely the fact that because P is

lower triangular, it implies that the ordering of the variables is of importance. To this purpose, the

macroeconomic variables will be placed into two categories: slow- and fast-moving variables. Such

an ordering is often used in VAR literature to trace out the effect of monetary policy innovations

on the economy (see, among others, Bernanke and Eliasz, 2005, Christiano et al., 1999, Banbura

et al., 2010). To concisely describe this identifying assumption, consider kt = (st, rt, ft), where st

contains the k1 slowly moving variables, rt is the monetary policy instrument, and ft contains the k2

fast moving variables. A slow-moving variable – think of a real variable – is assumed to not react

contemporaneously to a monetary policy shock, while a fast-moving variable – think of a financial

variable – is assumed to react contemporaneously to monetary policy shocks. The classification of

which variables are categorized as slow and which are categorized as fast is provided in Table 8 in

Appendix C.1.

Following Banbura et al. (2010), The experiment consists of increasing the federal funds rate by

one hundred basis points. In Figure 10 the impulse responses that are generated as the result of a

100 basis point increase to the federal funds rate are displayed. The IRF plots in Figure 10 were

estimated on the medium-small dataset. In Appendix C.5 IRF plots estimated on the medium-large

dataset and large dataset are depicted in Figure 17 and Figure 18, respectively.

The responses are generally speaking well-behaved. First of all, a monetary contraction has a
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Figure 10: Impulse Responses to a Monetary Policy Shock
Impulse response functions for to monetary policy shock of the medium-small variables. The model is estimated on the medium-

small dataset. The impulse responses are generated as the result of a 100 basis point increase to the federal funds rate (FYFF).
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negative effect on real economic activity (GDP251), consumption (GDP252), industrial production

(IPS10), and capacity utilization (UTL11). In contrary, unemployment (LHUR) increases. All these

phenomena can be intuitively explained: When the interest rate is increased, demand for goods

and services tend to decrease, which in turn decreases wages and other costs, resulting in the lower
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demand for workers and materials that are necessary for production.

As the model contains more than the standard nominal and real variables, the effect of monetary

shocks on housing starts, stock prices and exchange rated can also be studied. The impact on

housing starts (HSFR), and the effect on stock prices (FSPIN) are significantly negative. These two

responses result from the general decrease in investment, whether that is investing in housing or

stocks. Following a contractionary monetary policy shock, real activity measures decline, prices

eventually go down and (FM1) and (FM2) have an initial negative shock, whereafter they increase

steeply. The dividend yields (FYGT10) initially jump above the steady state, but go down quite quickly.

The US exchange rate (EXRUS) appreciates which substantiates the main finding of Eichenbaum and

Evans (1995). Overall these results seem to provide theoretical-consistent and sensible interpretations

of the effect of monetary policy.

The two inflationary measures in our economy, the consumer price index (CPIUACSL) and the

producer price index (PWFSA), do exhibit the price puzzle, in particular if the model is estimated on

the medium-small dataset. As more variables are added (see Figure 17 and Figure 18 in Appendix

C.5) the price-puzzle does decrease, but does not fade away completely. In case the model is estimated

on the large dataset, the prize-puzzle exhibits the least. However, in that case all responses seem to

decrease greatly in their magnitude.

Another popular tool for gaining insight in an estimated VAR is variance decomposition. Variance

decomposition is a way to quantify how important each shock is in explaining the variation in each

of the variables in the system. The variance decomposition indicates what portion of the variance of

the forecast error in predicting yi,T+h is due to the structural shock wj for j = 1, . . . , k. In Table 5

the forecast variance decomposition results of the monetary policy shock are reported.

The variance decompositions give similar results across procedures, which should not come as a

surprise considering that the impulse responses across procedures resemble each other. An increase

in the amount of variables in the model causes the size of the monetary shock to decrease. This is

particularly visible in the dataset with 168 macroeconomic indicators. If variables are added (or

deleted) to a VAR, the forecast error variance components will change as a consequence. After all,

the forecast errors are conditional on the estimated model.
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Table 5: Variance Decomposition
Table reports the percentage share of the monetary policy shock in the forecast error variance for h ∈ {1, 3, 6, 12, 24}

Group Horizon Lasso Lagwise Componentwise Elementwise Own-Other

Medium-Small (k = 20) 1 83.18 84.06 84.38 82.35 83.26

3 57.06 57.95 55.70 56.46 59/75

6 54.86 56.08 53.47 52.20 57.68

12 54.08 55.79 53.08 53.42 56.94

24 53.92 55.77 53.03 53.28 56.86

Medium-Large (k = 40) 1 76.68 74.37 75.78 76.53 77.08

3 52.32 50.26 51.49 52.42 52.77

6 51.06 48.95 50.30 51.01 51.24

12 50.79 48.77 50.10 50.70 50.18

24 50.67 48.69 50.05 50.58 50.74

Large (k = 168) 1 15.52 13.44 15.51 16.10 18.19

3 10.41 9.16 9.53 10.85 11.43

6 10.22 8.90 9.18 10.64 11.04

12 10.19 8.85 9.10 10.61 10.95

24 10.19 8.85 9.09 10.60 10.95

5 Conclusion and Future Work

This paper assesses the performance of the weighted HLag structures in both a simulation study and

an empirical application. The weighted HLag procedures outperform popular existing methods in

VAR literature. Throughout the simulation scenarios, the asymptotic behavior of the procedures

is studied. As one should expect from lasso-based methods, the parameter estimates were biased,

(usually) to a smaller value than the true parameter value. The parameter estimates of the various

procedures move closer to each other as the sample size increases. Moreover, the simulation results

show that there is marginal improvement in forecasting if the weighted HLag structures are used to

estimate the model-parameters compared to using their unweighted counterparts. The weighted HLag

structures do substantially increase the generated sparsity in an estimated model. The empirical study
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highlighted again the marginal difference (in terms of forecasting performance) between the weighted

and unweighted HLags. However, as observed in the simulation study, there is a significant difference

in the amount of generated sparsity, in particular as the forecast horizon increases. Via impulse

responses the effect of a monetary policy shock on the various variables in the system is studied. The

impulse response result in (largely) economically valid interpretations. The prize-puzzle did exhibit

in the impulse responses, especially if the system consisted of a small number of macroeconomic

indicators. As the amount of indicators increases, the prize-puzzle decreases, but it does not fade

away completely.

The work in this paper has considerable room for extensions. Perhaps the most interesting of

them is both improving on the functional form of the lag-weighted function, and improving the

HLag structures themselves. The weighting function that is used in this work is very simple, and

postulating a more suitable weighting function for VARs may significantly improve forecasting and

parameter selection. The same improvement may be witnessed if more suitable HLag structures are

constructed. In particular, considering application specific HLag structures, in contrast to the ’fixed’

HLag structures described in this thesis, would be an interesting study. A way to do this could be by

grouping variables based on the correlation they have between them.

A big problem with high-dimensional VARs is that bootstrap inference for structural analysis

is often not viable. This means that structural VARs cannot be validly estimated. The reason for

this problem is that bootstrap requires re-estimating the the model B number of times, with B

the amount of bootstrap samples. If the system is high-dimensional and or if there are multiple

tuning parameters in the regularization model, re-estimating the VAR on bootstrapped values is

computationally intractable. Researching if there are other ways to validly estimate structural VARs

that do not require re-estimating a model B amount of times is definitely a topic worth researching

into.
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A Algorithms

In case the penalty function is the lag-weighted lasso P(Φ;λ, γ) = λ
∑p

`=1 `
γ‖Φ(`)‖1, solving the

row-wise proximal problem is done as follows

Algorithm 3: Solution to the lasso proximal operater in Algorithm 2

Require: x, λ, γ, ν;

for ` = 1, . . . , p do

x(`) ← ST (x(`), νλ`γ);

end

return x

Here ST represents the soft-threshold operator

ST (x, φ) = sgn(x)(|x| − φ)+,

sgn denotes the signum function and (|x| − φ)+ = max(|x| − φ, 0).

In case the penalty function is the lagwise HLag P(Φ;λ, γ) = λ
∑p
`=1 `

γ‖Φ(`:p)‖2, solving the proximal

problem is done as follows

Algorithm 4: Solution to the lagwise HLag proximal operater in Algorithm 1

Require: x, λ, γ, ν;

for ` = p, . . . , 1 do

x(`:p) ←
(

1− νλ`γ

‖x(`:p)‖2

)
+

x(`:p);

end

return x

In case the penalty function is the componentwise HLag P(Φ;λ, γ) =
∑k
i=1

∑p
`=1 `

γ‖Φ(`:p)
i ‖2, solving the

row-wise proximal problem is done as follows

Algorithm 5: Solution to the componentwise HLag proximal operator in Algorithm 2

Require: x, λ, γ, ν;

for ` = p, . . . , 1 do

x(`:p) ←
(

1− νλ`γ

‖x(`:p)‖2

)
+

x(`:p);

end

return x

In case the penalty function is the elementwise HLag P(Φ;λ, γ) = λ
∑k
j=1

∑k
i=1

∑p
`=1 `

γ‖Φ(`:p)
ij ‖2, solving
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the row-wise proximal problem is done as follows

Algorithm 6: Solution to the elementwise HLag proximal operator in Algorithm 2

Require: x, λ, γ, ν;

for j = 1, . . . , k do

for ` = p, . . . , 1 do

x
(`:p)
j ←

(
1− νλ`γ

‖x(`:p)
j ‖2

)
+

x
(`:p)
j ;

end

end

return x

In case the penalty function is the own-other HLag P(Φ;λ, γ) = λ
∑k
i=1

∑p
`=1 `

γ
(
`‖Φ(`:p)

ii ‖2 + `(k − 1)‖Φ(`:p)
i,−i ‖2

)
,

solving the row-wise proximal problem is done as follows

Algorithm 7: Solution to the own-other HLag proximal operator in Algorithm 2

Require: x, λ, γ, ν, i;

for ` = p, . . . , 1 do

xi
(`:p) ←

(
1− `νλ`γ

‖x(`:p)
i ‖2

)
+

x
(`:p)
i ;

x
(`:p)
−i ←

(
1− `(k−1)νλ`γ

‖x(`:p)
−i ‖2

)
+

x
(`:p)
−i ;

end

return x
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B Simulation

B.1 Stationary VARs

Any VARk(p) with p > 1 can be written as a VARk(1) model. The resulting VARk(1) is often known as the

companion form of VARk(p). The exact specification of this companion form is unnecessary for the present

analysis. Rather, only the coefficient matrix of this companion form is of interest and it is denoted by

Θ =



Φ(1) Φ(2) . . . Φ(p−1) Φ(p)

Ik 0 . . . 0 0

0 Ik 0 0
...

. . .
...

...

0 0 . . . Ik 0


∈ Rkp×kp.

Since VARs are dynamical models, it is imperative to establish conditions under which the VAR is stable.

A condition for the stability of a VARk(p) is that it requires that all the eigenvalues of Θ are smaller than

one in modulus or all the roots larger than one. Therefore it holds that a VAR(p) is called stable if

det(Ikp −Θz) = det(Ik −Φ(1)z,Φ(2)z2, . . . ,Φ(p)zp) 6= 0 for |z| ≤ 1.

This polynomial is termed the reverse characteristic polynomial of the VAR(p) process. Hence, the process

(2.1) is stable if its reverse characteristic polynomial has no roots in and on the complex unit circle. An

important fact is that stability implies stationarity – thus it is sufficient to test for stability to ensure that a

VAR is stationary.

To generate stationary VARs, Φ needs to be generated such that the eigenvalues Θ are smaller than

one in modulus. There is no algorithmic procedure that results in matrix coefficient matrices that are both

stationary and structured. Instead, I generate structured random parameter matrices until a stationary matrix

is acquired.
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B.2 Simulation

Figure 11: Density Plots
Density plots of the first parameter in the first equation for T ∈ {50, 100, 200}, and for various simulation set-ups that were

explained in Section 3.2. The true value of the first parameter of the first equation is illustrated by a vertical black line. The

plots resulted from the procedures without a weighting parameter.
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B.3 Relative Magnitude Plots

Figure 12: Magnitude Plots
Plots of the relative magnitudes of the averaged estimates, where the estimations were done on a simple size of T = 50. The

average is taken of the N = 100 estimated Φ̂s.
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Figure 13: Magnitude Plots
Plots of the relative magnitudes of the averaged estimates, where the estimations were done on a simple size of T = 100. The

average is taken of the N = 100 estimated Φ̂s.
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Figure 14: Magnitude Plots
Plots of the relative magnitudes of the averaged estimates, where the estimations were done on a simple size of T = 200. The

average is taken of the N = 100 estimated Φ̂s.
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C Empirical

C.1 Data Description

Table 8: Dataset Description
An overview of the complete dataset used in this paper. The mnemonic, description, to which partition they belong, and whether

the variable reacts fast to a monetary shock or not, are all described in this table.

Mnemonic Description Group(s) Fast or Slow?

GDP251 Real GDP, Quantity Index (2000=100) MS/ML/L S

CIPUACSL CPI All Items MS/ML/L S

GDP252 Real Personal Cons. Exp., Quantity Index MS/ML/L S

IPS10 Industrial production index: total MS/ML/L S

UTL11 Capacity utilization: manufacturing (SIC) MS/ML/L S

LHUR Unemp. rate: All workers, 16 and over (%) MS/ML/L S

HFSR Housing starts: Total (thousands) MS/ML/L S

PWFSA Producer price index: finished goods MS/ML/L S

GDP273 Personal Consumption Exp.: price index MS/ML/L S

CES275R Real avg hrly earnings, non-farm prod. workers MS/ML/L S

CES002 Employees, nonfarm: total private MS/ML/L S

PMI Purchasing managers’ index ML/L S

PMDEL NAPM vendor deliveries index (%) ML/L S

PMCP NAPM commodity price index (%) ML/L S

GDP256 Real gross private domestic investment ML/L S

LBOUT Output per hr: all persons, business sec ML/L S

PMNV NAPM inventories index (%) ML/L S

GDP263 Real exports ML/L S

GDP264 Real imports ML/L S

GDP265 Real govt cons expenditures & gross investment ML/L S

LBMNU Hrs of all persons: nonfarm business sector ML/L S

PMNO NAPM new orders index (%) ML/L S

PMP NAPM production index (%) ML/L S

GDP276_1 Housing price index ML/L S

GDP270 Real final sales to domestic purchasers ML/L S

GDP253 Real personal cons expenditures: Durable goods ML/L S

LHEL Index of help-wanted ads in newspapers ML/L S

GDP254 Real personal consumption exp: nondur goods L S

GDP255 Real personal consumption exp: services L S

GDP257 Real gross priv domestic inv: fixed inv L S

GDP258 Real gross priv domestic inv: nonresidential L S

GDP259 Real gross priv domestic inv: nonres structures L S

GDP260 Real gross priv domestic inv: nonres equip L S

GDP261 Real gross priv domestic inv: residential L S
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Table 8 – continued from previous page

Mnemonic Description Group(s) Fast or Slow?

GDP266 Real gov cons exp & gross inv: federal L S

GDP267 Real gov cons exp & gross inv: state and local L S

GDP268 Real final sales of domestic product L S

GDP269 Real gross domestic purchases L S

GDP271 Real gross national product L S

GDP272 Gross domestic product, price index L S

GDP274 Personal cons exp: durable goods, price index L S

GDP275 Personal cons exp: nondur goods, price index L S

GDP276 Personal cons exp: services, price index L S

GDP277 Gross private domestic investment, price index L S

GDP278 Gross priv dom inv: fixed inv, price index L S

GDP279 Gross priv dom inv: nonresidential, price index L S

GDP280 Gross priv dom inv: nonres structures, price index L S

GDP281 Gross priv dom inv: nonres equipment, price index L S

GDP282 Gross priv dom inv: residential, price index L S

GDP284 Exports, price index L S

GDP285 Imports, price index L S

GDP286 Government cons exp & gross inv, price index L S

GDP287 Gov cons exp & gross inv: federal, price index L S

GDP288 Gov cons exp & gross inv: state & local, price index L S

GDP289 Final sales of domestic product, price index L S

GDP290 Gross domestic purchases, price index L S

GDP291 Final sales to domestic purchasers, price index L S

GDP292 Gross national product, price index L S

LBPUR7 Real comp per hour: employees, nonfarm business L S

LBLCPU Unit labor cost: nonfarm business sector L S

GDP274_1 Motor vehicles and parts, price index L S

GDP274_2 Furniture and household equipment, price index L S

GDP274_3 Other durables, price index L S

GDP275_1 Food, price index L S

GDP275_2 Clothing and shoes, price index L S

GDP275_3 Gas, fuel oil, and other energy goods, price index L S

GDP275_4 Other nondurables, price index L S

GDP276_2 Household operation, price index L S

GDP276_3 Electricity and gas, price index L S

GDP276_4 Other household operation, price index L S

GDP276_5 Transportation, price index L S

GDP276_6 Medical care, price index L S

GDP276_7 Recreation, price index L S

GDP276_8 Other services, price index L S

GDP284_1 Exports of goods, price index L S

GDP284_2 Exports of services, price index L S
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Table 8 – continued from previous page

Mnemonic Description Group(s) Fast or Slow?

GDP285_1 Imports of goods, price index L S

GDP285_2 Imports of services, price index L S

IPS11 Industrial production index: products total L S

IPS299 Industrial production index: final products L S

IPS12 Industrial production index: consumer goods L S

IPS13 Industrial production index: consumer durable L S

IPS18 Industrial production index: consumer nondur L S

IPS25 Industrial production index: business equipment L S

IPS32 Industrial production index: materials L S

IPS34 Industrial production index: dur goods materials L S

IPS38 Industrial production index: nondur goods materials L S

IPS43 Industrial production index: manufacturing L S

IPS307 Industrial production index: residential utilities L S

IPS306 Industrial production index: fuels L S

CES275 Avg hrly earnings, prod wrkrs, nonfarm-goods prod L S

CES277 Avg hrly earnings, prod wrkrs, nonfarm-construction L S

CES278 Avg hrly earnings, prod wrkrs, nonfarm-manufacturing L S

CES277R Real avg hrly earnings, prod wrkrs, nonfarm-const L S

CES278R Real avg hrly earnings, prod wrkrs, nonfarm-manuf L S

CES003 Employees, nonfarm: goods-producing L S

CES006 Employees, nonfarm: mining L S

CES011 Employees, nonfarm: construction L S

CES015 Employees, nonfarm: manufacturing L S

CES017 Employees, nonfarm: durable goods L S

CES033 Employees, nonfarm: nondurable goods L S

CES046 Employees, nonfarm: service providing L S

CES048 Employees, nonfarm: trade, transport and utilities L S

CES049 Employees, nonfarm: wholesale trade L S

CES053 Employees, nonfarm: retail trade L S

CES088 Employees, nonfarm: financial activities L S

CES140 Employees, nonfarm: government L S

LHELX Ratio: Help-wanted ads to number unemployed L S

LHEM Civilian labor force employed, total L S

LHHAG Civilian labor force employed, nonagric ind. L S

LHU680 Average unemployment duration (weeks) L S

LHU5 Unemp by duration, persons unemp less than 5 wks L S

LHU14 Unemp by duration, persons unemp btwn 5 and 14 wks L S

LHU15 Unemp by duration, persons unemp 15 wks or more L S

LHU26 Unemp by duration, persons unemp btwn 15 and 26 wks L S

LHU27 Unemp by duration, persons unemp 27 wks or more L S

CES151 Avg wkly hours, prod wrks, nonfarm goods-producing L S

CES155 Avg weekly overtime hrs, prod wrkrs, nonfarm, manuf L S
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Table 8 – continued from previous page

Mnemonic Description Group(s) Fast or Slow?

HSBR Housing authorized: total new private housing units L S

HSNE Housing starts: Northeast L S

HSMW Housing starts: Midwest L S

HSSOU Housing starts: South L S

HSWST Housing starts: West L S

CPILFESL CPI less food and energy L S

PCEPILFE PCE price index less food and energy L S

PWFCSA Producer price index: finished consumer goods L S

PWIMSA Producer price index: interm mat supplies & components L S

PWCMSA Producer price index: crude materials L S

PWCMSAR Real prod price index: crude mat (PWCMSA/PCEPILFE) L S

PW561 Producer price index: crude petroleum L S

PW561R PPI crude (relative to core PCE) (PW561/PCEPILFE) L S

MOCMQ New orders (net): consumer goods and materials L S

MSONDQ New orders: nondefense capital goods L S

FYFF Interest rate: Federal funds (effective) (% per annum) MS/ML/L R

PSCCOMR Real spot market price index: all commodities MS/ML/L F

FRMNBA Depository inst reserves: nonborrowed (mil$) MS/ML/L F

FMRRA Depository inst reserves: total (mil$) MS/ML/L F

FM2 Money stock: M2 (bil$) MS/ML/L F

FM1 Money stock: M1 (bil$) MS/ML/L F

FSPIN S&P’s common stock price index: industrials MS/ML/L F

FYGT10 Interest rate: US treasury const. mat., 10-yr MS/ML/L F

EXRUS US effective exchange rate: index number MS/ML/L F

SFYGT10 Spread btwn 10 year and 3 month T-bill rates ML/L F

HHSNTN Univ of Mich index of consumer expectations ML/L F

CCINRV Consumer credit outstanding: nonrevolving ML/L F

BUSLOANS Comm. and industrial loans at all comm. banks ML/L F

FYGM3 Interest rate: US T-bills, sec mkt, 3-month L F

FYGM6 Interest rate: US T-bills, sec mkt, 6-month L F

FYGT1 Interest rate: US T-bills const maturities 1-yr L F

FYGT5 Interest rate: US T-bills const maturities 5-yr L F

FYGT10 Interest rate: US T-bills const maturities 10-yr L F

FYAAAC Bond yield: Moody’s AAA corporate L F

FYBAAC Bond yield: Moody’s BAA corporate L F

SFYGM6 Spread: 6 month minus 3 month T-bill L F

SYGT1 Spread: 1 year minus 3 month T-bill L F

SFYAAAC Spread: AAA corporate minus 10 yr T-bill L F

SFYBAAC Spread: BAA corporate minus 10 yr T-bill L F

MZMSL MZM FRB St. Louis L F

FMFBA Monetary base, adj for res requirement changes L F

PSCCOM Spot market price index: all commodities L F
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Table 8 – continued from previous page

Mnemonic Description Group(s) Fast or Slow?

EXRSW Swiss francs per US$ L F

EXRJAN Japanese yen per US$ L F

EXRUK Cents per pound L F

EXRCAN Canadian $ per US$ L F

FSPCOM S&P’s common stock price index: composite L F

FSDXP S&P’s composite common stock: dividend yield L F

FSPXE S&P’s composite common stock: price-earnings ratio L F

FSDJ Dow Jones industrial average common stock price L F

C.2 Unweighted

Table 9: Forecast Results
(Absolute) MSFE and sparsity percentage for each partition and for the horizons h ∈ {1, 2, 4}. The procedures in this table did

not incorporate a weighting parameter.

Group h = 1 h = 2 h = 4

k = 20 Method MSFE Sp. (%) MSFE Sp. (%) MSFE Sp. (%)

Lasso 0.706 80.44 0.760 89.00 0.806 89.00

Lagwise 0.725 0 0.785 0 0.828 0

Componentwise 0.730 0 0.770 15.00 0.815 15.00

Elementwise 0.725 58.75 0.758 83.75 0.806 89.88

Own-Other 0.702 4.69 0.758 15.96 0.807 37.44

k = 40 Method MSFE Sp. (%) MSFE Sp. (%) MSFE Sp. (%)

Lasso 0.557 87.70 0.617 93.22 0.681 93.23

Lagwise 0.573 0 0.638 0 0.690 0

Componentwise 0.569 5.620 0.622 23.75 0.681 23.75

Elementwise 0.558 81.75 0.609 94.52 0.675 94.56

Own-Other 0.544 2.48 0.606 17.25 0.678 17.30

k = 168 Method MSFE Sp. (%) MSFE Sp. (%) MSFE Sp. (%)

Lasso 0.560 96.10 0.649 98.34 0.695 98.34

Lagwise 0.594 0 0.660 0 0.708 0

Componentwise 0.598 0.30 0.657 8.63 0.706 10.86

Elementwise 0.552 94.56 0.642 97.33 0.696 97.34

Own-Other 0.543 1.04 0.628 7.86 0.683 7.87
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C.3 Diebold-Mariano

Table 10: Results Forecasts
The p-values resulting from the Diebold-Mariano test applied to each procedure, for every h and k.

Group h = 1 h = 2 h = 4

k = 20 Method

Lasso 0.316 0.837 0.892

Lagwise 0.399 - -

Componentwise 0.099 - 0.831

Own-Other 0.213 0.513 0.832

Elementwise 0.832 0.347 0.695

k = 40 Method

Lasso 0.482 0.095 0.176

Lagwise - - 0.141

Componentwise - - 0.476

Own-Other 0.002 - 0.236

Elementwise - 0.297 0.176

k = 168 Method

Lasso 0.738 0.016 0.546

Lagwise - - 0.000

Componentwise - - 0.000

Own-Other 0.748 0.002 0.006

Elementwise - - 0.050

59



C.4 Lag Matrices

Figure 15: Estimated Lag Matrix
Estimated lag matrix L̂. The complete matrix is depicted. The model is estimated on the medium-small dataset.
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Figure 16: Estimated Lag Matrix
Estimated lag matrix L̂, where, for sake of brevity, only the medium-small macroeconomic variables’ estimated lags of only the

medium-small variables are depicted. The model is estimated on the large dataset.
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C.5 Impulse Responses

Figure 17: Impulse Responses to a Monetary Policy Shock
Impulse response functions for to monetary policy shock of the medium-small variables. The model is estimated on the medium-

large dataset. The Impulse responses are generated as the result of a 100 basis point increase to the federal funds rate (FYFF).
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Figure 18: Impulse Responses to a Monetary Policy Shock
Impulse response functions for to monetary policy shock of the medium-small variables. The model is estimated on the large

dataset. The Impulse responses are generated as the result of a 100 basis point increase to the federal funds rate (FYFF).
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