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4 An Econometric Approach

1 Introduction

Before the emergence of electronic trading technology, traders participated in a visually, and often
chaotic, live securities auction process, known as an open outcry. Buyers and sellers of certain securities
assembled on the trading floor before the opening of the market and evolved an accurate idea of
securities’ opening prices. The trading world sustained leading developments ever since due to the rise
of new technologies. The most prominent change has been the switch from physical to online trading,
where market participants, nowadays, enter orders through an online platform. Although it has the
advantage of matching buyers and sellers globally, which is assumed to increase market efficiency, it
also raises the problem of inaccurate openings prices at the market open. Without having market
participants gathering on trading floors, before actual transactions start, sentient price discovery has

disappeared.

Nowadays, the majority of exchanges offer an electronic call auction prior to the market open.
In contrast with continuous trading, it is an order-driven platform that batches numerous orders for
simultaneous execution at a single price. The actual execution, also referred to as the uncrossing phase,
occurs at a predetermined point in time, utilised by a predetermined matching algorithm. Market
openings are important in particular, as the fundamental prices must be discovered, preferably before
trading resumes, after the overnight close. However, the number of auction participants is rather
low and market prices fluctuate heavily shortly after market open. Hence, it is questionable whether

auction algorithms perform adequately in serving its main goal of realising stable opening prices.

In this paper, we examine the efficiency of two types of auction mechanisms, which are utilised by
the Johannesburg Stock Exchange (JSE) and the Australian Securities Exchange (ASX). In particular,
we study to which extent the determined auction price accurately reflects the underlying market price
and whether existing call designs realise sufficient pre-open price discovery and opening price stability.
We define an efficient auction as a platform that attracts sufficient active participants, where a stable
equilibrium price is determined prior to the opening of the market, which represents the true security’s
value. Analytically, an efficient call produces opening prices that (i) have no significant increase in
early market open price volatility, (ii) absorbed a large proportion of daily price discovery during the
auction time span, and (iii) accurately reflect the underlying market price. In addition, we analyse
which of the two auction procedures is superior in all three targets. Knowledge about the performance
of auction mechanisms on opening price efficiency would benefit any market participant concerned with
price informativeness. This also includes traders and policymakers exploring determinants of efficient
price processes. Moreover, many financial institutions, such as market makers, hedge funds, and

exchanges, opt for “fair” prices for their customers. Insight in opening auctions and their efficiency
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would shed more light on the fairness of opening prices and whether these indeed maximise the trades

in a supply and demand equilibrium.

We exploit the price volatility that arises at the market open by building a flexible model that
enables us to fit the complexities that characterise high-frequent intraday data. We propose an Ex-
tended Unobserved Components model including stochastic diffusion terms, which are often present
in intraday return data. This model captures two important features; (i) the the underlying latent
price evolution and (ii) the increase in price volatility during the market open. We use the first to
test whether the observed stock prices converge to fundamental values before the market opens. The

second we use to test the opening price stability. Both provide us with evidence of auction efficiency.

Our study focuses on stocks listed on either the FTSE or S&P/ASX 200 index. The first sample
summarises the Johannesburg Stock Exchange, while the second encompasses the Australian Security
Exchange. We find strong evidence of multiple volatility components and complicated shocks. Fitting
the model on our sample data gives a few striking results. Existing auction designs are not sufficient
in realising accurate and stable consensus opening prices. The volatility shortly after market open
increases by 18 and 25 percent for the ASX and JSE, respectively, implying opening price instability.
Second, over-weekend effects significantly increases price uncertainty. Lastly, not all necessary infor-
mation is incorporated in the opening price and the auction price does, on average, not converge to
the true underlying market price. We, however, find that the ASX auction process is superior in (i)
finding a more stable opening price, (ii) discovering a larger proportion of total price discover before

the opening of the market, and (iii) accurately reflecting the true underlying market price.

Since markets implement call auction designs to determine opening and/or closing prices, re-
searchers examined the benefits of a call auction relatively to continuous markets. Pagano and
Schwartz (2003) show that a call auction mechanism may benefit conform reducing trading costs
and would enhance price discovery. Corresponding to this study, Ellul et al. (2005) and Barclay and
Hendershott (2008) show that pre-open trading contributes to the efficiency of opening prices. However
exchanges opt for volume maximisation, Mccormick (2001) shows that this might not be appropriate,
as only a small percentage of all orders entered during the pre-open phase execute. He relates these
depressing execution numbers to rising frustrations of traders, such that the price discovery process is

rather meaningless.

Additionally to the matching algorithm of the auction process, transparency is another important
feature in call auction designs and may influence opening price efficiency. Economides and Schwartz
(1995), Pagano and Réell (1996), and Domowitz and Madhavan (2001) discuss the impact of trans-
parency and argue that deficiency in transparency may attract cognisant traders, which could reduce

liquidity and increase price volatility. Moreover, they argue that redundant price transparency would
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diminish opening call auction efficiency, as market participants have the anxiety of revealing their
information by placing orders. This arises as a trade-off between encouraging liquidity by increasing

transparency and preventing traders from deterring by doing the opposite.

Although the majority of exchanges utilise similar call auction designs, small differences could
have a significant impact on price efficiency. Market participants seek for nimble trading strategies
and could misrepresent their true supply and demand to influence the opening price in their favour.
Therefore, strategic entering of orders may obscure price discovery and reduce the accuracy of opening

prices (see e.g. Rustichini et al., 1994, Biais et al., 1999, and Medrano and Vives, 2001).

Existing literature has frequently exploited variance ratios and standard unbiasedness regressions to
test the impact of auction algorithms on return volatility and opening price efficiency, respectively (see
for example Comerton-Forde and Rydge, 2006 and Amihud and Mendelson, 1991). These analyses are
convenient to examine the effect of changes in auction mechanisms within a specific market. Compared
to these studies, we argue that our method is more robust for auction efficiency tests and comparisons

across markets.

While several papers examined the efficiency of call auctions or studied the impact of changes in
opening auctions designs on price discovery within specific markets, there are no published papers that
empirically examine the dissimilarities in auction mechanisms across different exchanges. We propose
an efficient framework which can be used by analysts to test auction performances. We do not assume
that observed exchange prices converge to their true underlying market price, which is assumed for
conveniences in other studies. Second, our framework enables researchers and practitioners to analyse
market heterogeneity in terms of auction processes. The main difficulty of matching distinctive markets
is that their securities are often not listed on multiple exchanges. The aforementioned studies make
use of simple, but generally strong, price efficiency testing methods. These can not be applied for our

purpose in comparing unique call designs.

Studies by Bates (2000), Duffie et al. (2000), Eraker et al. (2003), and Todorov (2011) highlight the
importance of considering stochastic volatility and stochastic jumps, in both observed security prices
and its volatility. Systematic Markov Chain Monte Carlo simulations are established for stochastic
volatility models (see e.g. Omori et al., 2007, Nakajima and Omori, 2009, and Stroud and Johannes,
2014). We extend these methods by including latent price processes. Moreover, we adopt such an
extensive model to test the efficiency of opening auctions. We, therefore, extend the current literature
not only by introducing an improved method to measure efficiency discrepancies across markets but
also by giving a detailed description of sampling procedures for our extended stochastic volatility

model.

The remainder layout of this paper is as follows. In Section 2 we describe the different auction
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processes we study in this paper and summarise institutional details of the JSE and ASX. In Section
3 we discuss the data. Section 4 gives a detailed description of our proposed model, its estimation
algorithm, and prove its validation by a simulation study. Section 5 tests and compares the auction
design efficiencies. These tests are subdivided into three main categories: opening price stability,
pre-open price discovery, and auction price efficiency. All three pin down to the performance of call

designs. Lastly, Section 6 concludes.

2 Preliminaries and Institutional Backgrounds

In the recent ten to twenty years, the single price batch auction, more generally referred to as a
call auction, is a trading mechanism that has been implemented by, to our knowledge, almost all
exchanges around the globe. During the pre-open of the market, orders can be entered or modified,
but no matching or physical trading occurs. Market participants quote different prices for all types of
securities listed on the exchange and enter such orders before the market open. The exchange uses the
order book to set an auction price on which the security will open. The main goal is to find a fair and
stable opening price and to reduce the chance that a single order could raise or lower the opening price
exceedingly, which enables a market participant to be the arbitrator of the price. In this research, we
examine whether the determined opening valuation is indeed a good reflection of the true underlying
market price. Economides and Schwartz (1995) already shows that the use of a call auction enhances
price discovery and reduces price volatility after a non-trading period. However, their research is in
comparison with alternative auction mechanisms, but it does not examine the contrast within the

class of call auction designs.

Due to its efficiency, relative to other mechanisms, call auctions are implemented by exchanges all
around the world and are argued to attract a large proportion of intraday trading activities. Biais
et al. (1999) and Madhavan and Panchapagesan (2000) show that one-tenth of the average daily trade
value is traded at the market open for the Paris Bourse and New York Stock Exchange (NYSE),
respectively. Therefore, the opening price is important for many financial institutions. Given that
call auctions are more effective than alternative structures, it raises the question whether there are
efficiency differences within the class of call auction designs. In this study, we consider the opening
price settlement algorithms of the ASX and JSE. Both differ in call auction procedures, which could
lead to disparities in the opening price evolution. We expect the Australian exchange to have a
superior auction algorithm, which is more likely to produce efficient opening prices. However, we also
believe that call designs are not sufficient in finding stable and accurate opening prices. To underpin

our hypothesises, we describe both auction algorithms in more detail.
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In 1997, the ASX was one of the first markets to incorporate a call auction to determine opening
and closing prices. Since then, the process has undergone some substantial changes. Nowadays, its
price-setting process follows four basic principles. Principle 1 determines the maximum trading value.
If more than one price maximises the matching quantity of the order book, the process considers
principle 2. Principle 2 considers the prices that maximise the trading volume and picks the price,
within this range, that minimises the order imbalances. That is the price where the difference between
the cumulative sum of bids and offers, sorted on price, is minimised. If there is more than one price in
the order book that minimises the non-matching quantity, principle 3 is included. Principle 3 considers
the prices within the range of trading value maximisation and order-imbalances minimisation and sets
the auction price at the highest of these prices if the order imbalances attract buy volume, and vice
versa. Hence, if there are more cumulative bids than offers in the subset, then the highest price is
chosen and vice versa. If an equivalent buy and sell surplus are present at the aforementioned range,
principle 4 is considered. Principle 4 settles the opening price that is closest to the reference price,
which is the previous closing price. If the reference price is within the range of these considered prices,
the auction price is set to the reference price. An example of the full procedure is given in Appendix

A and considers all four principles for more clarity.

Similar to the ASX, the JSE conducts a volume maximising algorithm to determine the opening
price. However, the details are quite different from the aforementioned basic principles. As there could
be multiple price levels that maximise the trading volume, the JSE auction process seeks multiple price
equilibria. The ASX solves this difficulty by including the remaining three principles. Alternatively,
the JSE utilises a time ordering priority. The first entered bid (offer) will be filled if an entered offer
(bid) crosses the subset of prices that maximise trading volume. An example of the JSE’s opening price
settlement algorithm is given in Appendix B. Time priority in the auction process could speed up the
price discovery process. Market participants are encouraged to place orders rather sooner than later
because their placed orders will have a higher probability of getting actual filled for their prespecified
market price. However, this opening price could be rather biased. Consider a security that has two
price equilibria during its auction process. The order of the lower price has been entered prior to the
higher price, but the latter one has a large bid order imbalance. The security opening is set with a
low valuation, such that many buy orders are remaining at the market open for a higher price. This
could lead to an aggressive price increase shortly after the market open. The ASX partially solves this
problem by including principle 2. Therefore, one could expect that the ASX produces more stable

opening valuations.

One could predict that the ASX’ matching algorithm is expected to contribute to enhancing

opening auction efficiency. The four principles jointly maximise trading volume and minimise supply
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and demand imbalances. Similar to the JSE, the first principle reduces the price impact of individual
orders as the auction price moves towards the valuation where the plurality of orders is executed. At
the Johannesburg’s stock market, a large and biased order has the capacity to move the auction price
substantially if it is submitted on time, decreasing stable price evolution shortly after the market open.

The ASX on the other hand, adjusts prices towards the order imbalance, enhancing price efficiency.

The above principles are established to discover a true consensus opening price, conditioning on
having sufficient auction participants. The consistent existence of many auction traders is, however,
doubtful. The call can only promise to be an efficient price discovery environment when attracting
adequate volume. Therefore, it is important to identify which auction details withhold traders to
participate or which incentives could encourage participation. We discuss the three main technicalities:

Type of orders, transparency, and order amendment rules during the opening auction.

Both the ASX and JSE accept Limit Orders (LO) and Market Orders (MO) during the opening
auction. An LO contains a specific quantity and price, while an MO contains a quantity only. Such
orders do not contain information regarding price discovery processes and are, therefore, not valuable
for the auction process. Moreover, it could even lead to an unsuccessful auction process. Market
Orders accept to buy or sell the security against any price level. For explanatory purposes, consider a
situation where the book is filled with multiple sell orders, for which at least one is aggressive, and a
market order arrives with a volume that exceeds the aggregated contra-side volume. According to the
first principle, the clearing price is set to the most aggressively priced offer, which can be fallacious
high. This would lead to an inefficient opening price and a deficit of the auction mechanism. However,
both the ASX and JSE reside MOs during the call session until the uncrossing phases. These type of
orders can, therefore, not influence the clearing price. However, it does affect the depth of the order

book and, hence, could cause price instability.

Second, both exchanges publish an indicative auction price (IAP) and the corresponding surplus
volume real-time. This implies high transparency, which permits price discovery to evolve during the
pre-open phase. As the auction process matures, merging liquidity attracts order flow from both the
buy- and sell-side. In a virtuous circle, additional liquidity and competitive order prices are in turn
attracted. Transparency allows participants to observe order imbalances and to respond accordingly
to offset it. Hence, one could expect that this level of transparency attracts traders to participate in

the auction process.

Nevertheless, the lack of opacity hatches the possibility of increasing market impact. Particular
participants, especially big institutions, are reluctant to post orders, as it exposes their trading infor-
mation and intentions when the topic is thin. Moreover, aggressively priced orders, especially during

the early stage of pre-open book building, could induce market manipulation. This brings us to the
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third point, where order amendments and cancellations are allowed throughout the entire auction
process for both markets. An aggressive buy order could lead other auction participants to raise their
prices and, subsequently, produce a higher opening price. On the contrary, an aggressively priced sell
order could generate the opposite effect. As a consequence, a participant could bluff such an aggres-
sive order to either make the auction price rise or fall, which he cancels and replaces with an inverse
order just before the opening of the market. A similar analysis is conducted by Madhavan (1992),
who argues that high transparency is associated with the increasing visibility of noise. This problem

discourages big institutions and fundamental traders to participate and delays order revelation.

The Australian exchange undertakes this problem by randomising the uncrossing phase. Order
cancellation or amendments just before market open puts the aggressive trader at risk of his orders
being executed. Additionally, if you wait too long, you can lose out entirely. Therefore, noise should
diminish closing to the market open and informative orders, that are intended to trade, dominate
the auction order book and facilitate price discovery. Adopting a random open, therefore, gets true
auction orders in an earlier stage. We, therefore, expect that the ASX attracts more order volume

during the pre-open phase than the JSE.

All things considered, one could expect that both matching algorithms find an adequate consensus
price, conditional on sufficient auction participants. Second, we expect that the ASX produces more
stable and efficient consensus opening prices than the JSE. This holds if (i) there is no larger increase
in price volatility during the start of actual trading, (ii) a larger proportion of true price discovery
appears before the market open, and (iii) if the opening price reflects the underlying market price more
accurately. This hypothesis relies on the basis that the three principles might increase market depth,
which preserves price stability, and that the ASX* design encourages more parties to participate in
their auction. The latter should increase market depth through the book-building phase and increase
pre-open price discovery and efficiency. For both auctions, we do not expect participation to be
populous, as the auctions lack incentives to participate in the first place. This could cause overall
auction inefficiency. Nevertheless, we do expect that the size of auction participation is greater in the
Australian market, as the random open excludes the existence of a gaming environment. This may
deter strategic traders from entering unrepresentative orders a few minutes before the open, improving

true price evolution.

3 Data

This paper uses two datasets for our analysis. The first dataset contains the 40 most liquid stocks listed

on the Johannesburg Stock Exchange FTSE index. Second, we consider the top 40 stocks included in
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the S&P/ASX 200 index, which are stocks listed on the Australian Securities Exchange. Both datasets
encompass stocks with the highest market-capitalisation within the Exchange. We obtain 5-minute
intraday data from the Bloomberg intraday history database, covering a period from January 3, 2019,
through July 17, 2019. The datasets consist of 562,338 and 488,605 observations over 134 and 135
trading days for the JSE and ASX, respectively. Each observation includes the Bloomberg Ticker,
date, timestamp, traded closing price, traded volume, closing bid price, closing ask price, and their

corresponding bid and ask volumes.

A regular trading week consists of five tradings days from Monday to Friday. Each trading day can
be divided into three main time periods: Pre-open hours, continuous trading hours, and the closing
hours. The pre-open hours can again be subdivided into two subdivisions, a pre-open phase and an
opening auction. Similarly, the closing hours are subdivided into the closing auction and the post-close.
For the JSE, the pre-open phase runs from 07:00 through 08:30 (local time), which is followed up by a
30-minute opening auction. During the pre-open hours, incoming orders enter the order book, but no
actual trading happens until the uncrossing phase, which starts at 09:00. The uncrossing algorithm
carries out the execution of all orders in the current order book at the opening price. Consecutive to
the opening auction, the continuous trading period starts, which concludes at 16:45. The closure of
the market at 17:00 is preceded by a 15-minute enduring closing auction. During the closing auction,
orders can be submitted, but no instant trading is realised. If buy and sell offers are crossed, a similar
uncrossing algorithm to the opening auction executes all orders in the order book at 17:00 at the
settlement. The final post-closing phase runs from 17:00 up to 18:15. Non-executed orders that were
entered during the trading day can be cancelled and orders that are validated and approved roll on to

the next trading day.

Similar to the JSE exchange, the ASX opens in the morning with a pre-open phase at 07:00 (local
time) through 09:30, which is followed up by a 30 minutes opening auction. At the uncrossing, the
market opens in five batches of stocks between 10:00 and 10:09. Each batch opens randomly with a
range of approximately 15 seconds from its prespecified opening time. The opening price is determined
by the uncrossing algorithm of the ASX, based on the current order book. From the random open up
to 16:00, continuous trading takes place. Preceded to the random close, which occurs between 16:05
and 16:11, a closing auction is included, where orders may be entered, amended, and cancelled without
restrictions. Similar to the JSE, an uncrossing phase determines the closing price based on the current

order book. Subsequently, the post-closing phase runs from the random close through 18:50.

In order to account for the changing and random opening across the ASX stocks, each time interval
is measured as if the actual opening starts at 10:00 exact. Due to dissimilar opening times, stocks

across the ASX have unequal lengths in the continuous trading session and differ for various trading
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days. For our analyses and parameter estimation, we need equal lengths of traded price observations
within a particular security. To save informative information, we avoid truncation of tradings days
which have the majority of data points. We do so by forcing the opening time at 10:00 and the
closing time at 16:10 and to interpolate additional traded closing prices between 12:30-12:35 and/or
14:00-14:05. Desirably, this preserves the volatility structure at the start and end of the trading day

and it marginally reduces the volatility in the middle, for which we already expect low price dynamics.

A general trading day at the JSE consists of 95 traded price observations, considering the continu-
ous session from 09:00 through 17:00, excluding the closing auction between 16:45 and 17:00. Similarly,
the ASX’ continuous session runs from 10:00 through 16:10, excluding the closing auction between
16:00 and 16:10, providing 74 intraday transaction prices. We eliminate all tradings days that miss
over 95% of daily trade price observations, such that we carry a sufficient amount of 5-minute data
points inter-day. Subsequently, we maintain all stocks that cover at least 85% of its original number
of trading days. This results in 413,869 observations over 30 stocks for the JSE, containing 116 to 133
tradings day, including at least 23 Monday opens. For the ASX, we retain 487,880 observations over
all 40 stocks, containing 133 to 135 tradings day from which at least 24 are Monday opens. Appendix

C gives an overview of all considered stocks in our sample.

The combined JSE stocks in our sample have an average trading value of ZAR 5.62 trillion (around
$382 billion), while the ASX stocks average a total trading value of AUD 10.2 billion (around $7.11
billion).! On average, the JSE executes 2.34% of its 129 million incoming orders on a daily basis. The
ASX stocks only average 5.70 million transactions per day from a daily 467 million incoming orders,
which is around 1.22%. Table 1 shows the average daily incoming orders of both the JSE and ASX in
Panel A and Panel B, respectively. The panels are divided into three main time periods, as specified
in Section 2: Pre-open hours, normal trading hours, and the closing hours. The pre-open hours are
further divided into the pre-open and the opening auction. Likewise, the closing hours includes the
closing auction and the post-close. In addition, we subdivide the normal trading hours into the first
30 minutes after the market open and the remainder of the continuous trading session. Each panel
and time subdivision is branched into three tertiles based on relative order entering. For each stock
and trading day, we compute the total incoming orders during the pre-open hours, divided by the
remainder of the total incoming orders that day. Within a particular exchange, we sort all stocks
on the relatively incoming order flow median, which is subtracted over all considered trading days.
Consequently, the tertile “high” contains stocks that are relatively active during the opening auction

)

for the majority of trading days. Similarly, the tertile “low” includes stocks that have relatively low

order flows before the market open. The tertiles are equal-sized, such that the three tertiles consists

!Converting local currencies to dollars is based on the average of exchange rates over our sample period. This is
approximately 0.068 ZAR/USD and 0.70 AUD/USD for the South African Rand and Australian Dollar, respectively.
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of 10 stocks each for the JSE sample and is 13-14-13 distributed for the ASX. Appendix C reports all
stocks, sorted on the relative incoming order flow median. Separating the total sample in these three
segments enables us to test the efficiency of auctions conditional on the fact that there are relative

many participants in the opening auction in contrast to few auction participants.

Table 1: Summary of Incoming Orders

Pre-open volume Pre-open hours Normal trading hours Closing hours
tertile Pre-open  Auction open  Market open  Intermediate  Auction close  Post-close
Panel A: JSE

High 6,112 716,780 2,493,000 43,500,620 22,784,135 252,492
Middle 4,960 395,858 1,507,725 26,434,360 34,384,868 82,990
Low 28,908 1,285,802 5,090,033 125,688,139 121,696,244 906,109
Panel B: ASX

High 97,157 2,036,946 8,968,181 159,179,128 1,053,797 457,019
Middle 144,939 3,978,125 25,264,982 428,149,480 1,380,277 420,653
Low 218,834 5,357,052 30,795,163 730,941,213 2,722,414 1,321,069

NOTE: This table presents incoming order activity during a full trading day. Panel A and B report the average number
of the conjoint incoming bid and ask orders between the 3rd of January 2019 and 17th July 2019 for the JSE and ASX,
respectively. Both panels, the sample stocks are sorted and ranked into three different tertiles. Tertile high contains one-
third of all stocks with the highest number of relative incoming orders during the pre-open hours and tertile low contains
the same amount of lowest relative incoming order flow during the pre-open hours. The panels are also divided into three
main periods: pre-open hours, normal trading hours, and the closing hours. Each time division is again subdivided into
two subdivisions. The pre-open consists of the pre-open, from 07:00-08:30 (JSE) or 07:00-09:30 (ASX), and the opening
auction from 08:30-09:00 (JSE) or 09:30-10:00(+4/-10min) (ASX). The normal trading hours includes the market open,
during 09:00-09:30 (JSE) or 10:00(+/-10min)-10:30 (ASX), and the intermediate phase 09:30-16:45 (JSE) or 10:30-16:00
(ASX). The closing hours phase is divided into the closing auction, from 16:45-17:00 (JSE) or 16:00-16:05(4/-5min)
(ASX), and the post-close running from 17:00-18:15 (JSE) or 16:05(4/-5min)-18:50 (ASX).

Both panels show that the high tertile stocks average at least two times fewer incoming orders
across a whole trading day than low tertile stocks, for each time segment. The combined daily number
of incoming orders for the high tertile stocks is 4.35 and 4.49 times larger than the low tertile stocks
for the JSE and ASX, respectively. Further, a large amount of the total daily orders occur during the
closing auction for JSE listed stocks. Approximately 46.19% appears during the 15-minute closing
auction. In contrast, this only yields 0.37% for the ASX stocks, while 98.63% of the intraday orders
are being entered during the continuous trading phase. This implies that the majority of market

participants try to transact JSE listed stocks at the settlement.

Table 2 reports the number of daily realised transactions for each tertile and time segment. The
auction open and auction close realised trades are the crossed orders that are executed during the
uncrossing phase. Generally, a larger amount of incoming orders for a particular sub-sample is followed
by more actual executions. However, considering the proportions of executed orders across time
divisions show quite interesting, but yet consistent, results. Although the proportions of incoming

orders during the continuous sessions and closing hours are substantially different across the two
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exchanges, it does not apply to the actual transactions. In contrast to the aforementioned percentages
of incoming orders during the closing auction, 21.56% and 24.98% of the daily trades are executed
on the closing settlement price for the JSE and ASX, respectively. For the JSE, this suggests that
the majority of entered closing auction orders will not be executed, while the opposite applies for
the Australian Exchange. During the opening auction, proportional executions are rather different
across the two markets. Considering the ASX, the relative number of actual trades during the opening
uncrossing phase is at least 6 times as large as for the JSE, regardless of the tertile. The disparity
in proportional incoming orders during the pre-open hours is of a much lower degree. Therefore,
relatively more orders are filled at the uncrossing phase. This points to the direction that the ASX

opening auction is superior in finding a fair price before market open.

Table 2: Summary of Realised Transactions

Pre-open volume Pre-open hours Normal trading hours Closing hours
tertile Pre-open  Auction open  Market open  Intermediate  Auction close  Post-close
Panel A: JSE

High - 10,311 66,503 1,100,898 248,515 -
Middle - 9,302 87,280 1,314,940 372,618 -
Low - 34,226 273,296 4,203,730 1,330,380 -
Panel B: ASX

High - 144,742 237,648 1,624,915 832,240 -
Middle - 308,256 673,043 4,244,576 1,554,472 -
Low - 248,051 585,878 4,398,360 1,764,822 -

NOTE: This table presents average daily trading activity. Panel A and B report the average number of realised trades
between the 3rd of January 2019 and 17th July 2019 for the JSE and ASX, respectively. Both panels, the sample stocks
are sorted and ranked into three different tertiles and subdivided into six different time segments. For further details,
we refer to the notes in Table 1.

Figure 2 plots the relative trade size per 5-minute interval for the ASX (upper figure) and JSE
(lower figure), considering the three relative incoming order flow tertiles. We exclude the closing
auction transactions because these relative trade size values are rather high and would clutter the
figure. All ASX stocks show a large relative trade size during the opening of the market. The high
tertile stocks average a market open relative trade size of approximately 3.8, while this yields around
2.6 for the low tertile stocks. These values decline quickly during the first 20 minutes and decrease
towards 0.75 after an hour for all ASX stocks. This suggests that many market participants respond
to the opening price shortly after the market open. After 20 minutes, a stable price is found and the
relative number of executions has decreased sharply, implying that a large proportion of daily price
discovery occurs during the pre-open phase and first 20 minutes of normal trading hours. Additionally,
the sharp increase in executions during the final minutes represents the desire of traders to execute

their orders before the closure of the market.
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The shape of the average relative number of trades during a trading day is considerably different
for JSE listed stocks. There is no significant difference across the three tertiles during the market open.
Moreover, the vast minority of executions during a trading day occur along with the first half-hour.
There is a small spike at 10:00 where the number of relative trades increases. This can be explained by
the fact that during winter periods the South-African exchange and alternative (European) exchanges
open by an hour difference. These traders place orders at their local exchange opening, such that there
is an increase of orders for JSE listed stocks at 10:00. Around two hours before market closure, the
trades size starts increasing. The average relative trade volume rises sharply when approaching the
closing auction. One could, therefore, expect that price discovery is shifted from the opening auction

towards the continuous trading session.
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Figure 2: This figure shows the relative daily trading volume per 5 minutes. The average number of transaction,
relatively to the rest of the trading day, is computed for each 5-minute interval and tertile. The upper panel corresponds
to the ASX and the lower panel with the JSE listed stocks. The time covered is from the market open up to the start
of the closing auction.

The trend in traded volume provides an indication for a U-shaped trend in volatility. Barclay
and Hendershott (2003) shows that there is a high level of correlation between the trade size volume
and volatility during NASDAQ intraday trading. Similar to what we find for the ASX listed stocks,
they record the largest trading volume for the first half-hour at the open and the final 30 minutes of
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the trading day. However, all orders entered during the pre-open phase are executed at the opening
price. A condition of a successful auction inhabits the determination of a stable and fair opening
price. Hence, the volatility during the first 30-minutes market open should not show contrast with

the remainder of the trading day, disregarding the magnitude of relative trade sizes.

A supplementary requirement for an efficient auction process is the existence of sufficient partici-
pants concerning order entering. More participants imply quicker price discovery, as more information
is included in the price evolution process. Table 3 presents opening call auction descriptive statistics
for the considered ASX and JSE stocks. The table distinguishes non-Monday and Monday-only trad-
ing days for each of the three order entry tertiles. Panel A indicates that the overall relative order
entry is 1.38 and 1.02 per cent for the ASX and JSE listed stocks, respectively. The difference of 0.36
per cent is significant at the 0.01 level. This large difference is mainly caused by high tertile stocks.
The ASX high tertile stocks average a relative order entry of 2.27, while this yields 1.27 per cent for
the JSE stocks, a significant difference at the 0.01 level. The low tertile ASX stocks, on the other
hand, have an average of 0.06 per cent (insignificant) lower than the low tertile JSE stocks. If the
call auction process operates during Monday opens, the relative order entry declines for the ASX, but
increases for the JSE listed stocks. Hence, ASX market participants rather delay a larger portion of
their total order entries than fully participate in the auction process after a weekend. The contrary

holds for the JSE stocks.

Table 3: Opening Call Auction Descriptive Statistics

Relative Non-Monday trading days Monday trading days

volume JSE ASX Diff. t-stat. JSE ASX Diff. t-stat.
Panel A: Relative order entry

Overall 1.02 1.38 0.36 4.34** 1.16 1.31 0.15 1.18
High 1.27 2.27 1.00 6.94** 1.52 2.26 0.74 2.45*
Middle 0.95 1.13 0.18 2.41* 1.12 0.99 —0.12 —-1.15
Low 0.83 0.77 —0.06 —0.94 0.83 0.69 -0.14 —1.88
Panel B: Relative trading volume

Overall 0.61 4.81 4.20 8.26** 0.64 3.66 3.02 17.28**
High 0.68 5.40 4.72 8.20** 0.75 4.13 3.38 17.73**
Middle 0.53 5.04 4.51 9.24** 0.52 3.83 3.31 15.24**
Low 0.63 3.98 3.35 7.12** 0.65 3.01 2.37 14.39**

NOTE: This table presents relative order entry and relative trading volume descriptive statistics for non-Monday and
Monday trading days. Panel A reports the total volume of orders entered during the pre-open phase, divided by the total
daily incoming orders (excluding the pre-open phase) in percentages. Panel B presents the total volume of executions
at the opening uncrossing phase, divided by the total trades executed over the day (excluding the pre-open phase) in
percentages. The first two columns (both non-Monday and Monday trading days only) report the relative order entry
and relative trade volume for the JSE and ASX| respectively. The third column presents the difference between the two
and column four presents a t-statistic to test for significant differences in relative order entry and trading volume across
the JSE and ASX. The sign "indicates significance at the 0.05 level and **at 0.01. The analysis is performed separately
for each quintile and jointly over all stocks.
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The more orders are executed at the opening uncrossing phase, the more participants are aligned
to trade on the consensus price. This implies that true consensus price discovery has occurred during
the auction process. Panel B indicates that relative trading volume is significantly higher for, and
therefore in favour of, the ASX market. The relative trading volume is measured by using the total
orders that are filled during the opening auction uncrossing phase divided by the total number of
orders executed during the remainder of the trading day. For each tertile, the ASX’ relative trading
size is at least 6 times larger than the JSE. All differences are highly significant, both for the non-
Monday and Monday opening auctions. This implies that the ASX executes significantly more, in
proportion to the rest of the trading day, at the opening price than the JSE. This is in line with
Figure 2. Analogously to the relative order entry pattern, the relative trading volume decreases for
the ASX stocks on Monday opening auctions, while increasing for the JSE stocks. However, the ASX

remains superior in opening call auction trade volume across all tertiles.

Figure 3 shows the relative order entry per 5 minutes for each tertile. The upper panel corresponds
to the ASX, while the lower panel resembles the JSE listed stocks. We exclude the pre-open period
from 07:00 to the opening auction start because order cancellation and amendment activities over this
pre-market open time produce minimal changes in the order book volume. For the same reasoning
as before, we again omit the closing hours from this analysis. For all stocks, some order entries are
registered for the first 20 minutes of the opening auction. However, compared to the rest of the
trading day, these orders are rather negligible. Approximately 10 minutes prior to the market open,
the relative order size increases sharply for all stocks, up to (a few minutes after) the opening of
the market. Considering the ASX stocks, there is a small bump at the uncrossing phase for the high
tertile. However, this increase is comparatively small and all other stock entries are relatively constant
over time, with a value close to 1. Then the relative order flow increases towards 6 and 4, for the low

and high tertile stocks respectively, when approaching the closing auction.

The lower panel of Figure 3 shows that, shortly after the market open, order size starts decreasing.
As shown earlier, there is a spike at 10:00, which explains the fast increase in order execution in
Figure 2. Subsequently, the relative order entry shows a decreasing trend over an average intraday.
This trend preserves until closing the final auction, for which the trend increases sharply. The ASX’
opening auction participation, based on order entry volume which is used to determine the opening
price, is substantially larger than of the JSE stocks. We could, therefore, expect that the opening
prices for ASX stocks (at least the high tertile stocks) have superior price discovery during the pre-open
phase, as more information is included in the price determination process. However, even ASX listed
stocks have poor auction participation, relatively to the number of order entries during the remainder

of the trading day. There is a small favour for the high tertile ASX stocks, but conjointly, we expect
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Figure 3: This figure shows the relative order flow per 5 minutes. The average number of incoming orders, relatively
to the rest of the trading day, is computed for each 5-minute interval and across all three tertiles. The upper panel
corresponds to the ASX and the lower panel with the JSE listed stocks. The time covered is from the opening auction
start to the start of the closing auction.

deficiencies in opening price determination during the auction process.

In order to test the efficiency of opening auction processes, we analyse the accuracy of opening
prices relative to the true underlying market price and the stability of observed opening prices. For
this framework, which is explained in the next section, we make use of actual traded prices. We deal
with (scarce) missing traded prices during the continuous trading session by linear interpolation. One
could argue that no trading activity during a 5-minute interval would not change the actual stock
price. Therefore, one could set a missing price on the previous traded price. However, we assume that

the underlying stock price flows gradually over time.?

We join the two closest discrete data points
by a straight line segment. The missing traded price is set to the value of the linear polynomial,
corresponding to its specific date-time. Second, we examine the price discovery process during the
pre-open. For this purpose, we need indicative opening prices. As our data sets do not contain

individual order entries, amendments and cancellations, including market and limit order prices, we

2For robustness check, we tried both methods for our analyses. There are no occurrences of significant differences in
results or alterations in further conclusions.
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can not determine the true indicative auction price (IAP). Alternatively, we compute the TAP by
taking the average between the bid and ask price, which, unlike linear interpolation, also preserves
the price volatility.®> We define and underpin our method to test auction inefficiency in the following
section. For model estimation, we delete the pre-open hours, as such prices are rather inefficient and
biased. Moreover, we exclude the post-close period from model evaluation, except for the traded
closing price, determined by the closing auction. The reasoning for that is similar to these of the
pre-open phase. By construction, these prices are noisy. However, we observe the settlement price,
which is informative as we have shown earlier. Therefore, we use the closing auction price as the final

price during a trading day.

4 Methodology

In this section, we describe our methodology to measure auction efficiency. The call’s main goal
is to find a stable consensus price preceding the market open after the overnight, or over-weekend,
close. Throughout the rest of this paper, an efficient auction process contains the three following main
conditions: (i) The observed prices after the market open are stable, (ii) a large proportion of the
daily price discovery process occurs during the auction period, and (iii) the determined opening price
(approximately) corresponds to the true underlying market price. The second condition implies that

there is no increase in price volatility during the early stage of continuous trading.

We propose an extended stochastic volatility model to model the underlying security price and price
volatility. In this framework, we assume that the observed exchange prices equal the true underlying

market price plus an error term and jump a component. That is, for each security and time stamp,
Observed Price = True Price + Diffusion + Jump. (1)

The first condition of auction efficiency suggests that the observed opening price should be close to
the true price, or put differently, that the diffusion and jump terms are close to zero at the market
open. We analyse the speed of price convergence to fundamental values. That is, the time that elapses
until the observed price reaches the underlying market price. We test for both auction mechanisms

the speed of, and the accuracy of, its price discovery process.

We assume that the diffusion term in Equation (1) is stochastic because empirical price volatility
shows dynamic features. We define a volatility model that enables us to capture such dynamics.

Second, we add a daily pattern component to capture consistent daily volatility segments. Third, we

3The reasoning why a similar approach is not conducted for the missing prices during normal trading hours is
because these bid and ask spreads are rather very noisy during continuous trading hours. This leads to very noisy price
estimations, which would blur the underlying price volatility.
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are interested in the functionality of the auction mechanism when the market has been closed for a
longer amount of time than overnight. This period could lead to additional price uncertainty and
increase volatility. Therefore, we analyse the impact on price volatility when the market opens on

Monday, after being out of business for the weekend. Henceforth, volatility is described by

Stochastic Volatility = Dynamic Volatility + Daily Pattern + Monday Open Effect. (2)

As the opening auction participation is rather low, the market’s depth becomes shallow. Only a few
unexecuted orders structure no solid foundation for price stability. Therefore, we expect that the call
is unable to offer stability in intraday price formation shortly after the market open. In addition,
preceding the market closing, traders seek opportunities to close their positions, which increases price
volatility. Hence, we expect that the daily pattern follows a ’U’-shape over a single trading day.
The second condition of auction efficiency suggests, however, that high volatility levels should not
persistently occur at the market open. This is satisfied when the daily pattern is close to flat during
this time. We refer to the daily pattern as seasonality. The seasonal shapes signify the persistent
differences in volatility levels across a trading day. Therefore, we test, and compare, the second
auction condition for both the ASX and JSE, by considering the seasonal patterns. Monday open

effects are modelled and tested in a similar manner.

The model aids in our auction efficiency analyses as follows. Section 5.1 uses the daily pattern and
Monday open effect to find consistent volatility increases in stock prices after the overnight and over-
weekend close, respectively. A significant increase would imply unstable opening prices and, therefore,
an insufficient auction process. Second, Section 5.2 computes weighted price contributions to display
the fraction of daily price evolution explained during the auction phase. A higher value indicates
a superior price discovery process, which is an auction’s main goal. The measure is model-free and
explained in Section 5.2 in more detail. Lastly, we analyse the accuracy of the opening price relatively
to the true market price in Section 5.3. We regress the observed opening prices on the model-based
true stock prices, which provides us a measure for opening price efficiency. If the opening price does
not converge to fundamental values, then the auction price discovery process does not find a true
consensus price, implying an insufficient auction procedure. The results of the three analyses are
presented in Section 5. Subsections 4.1-4.4 underpin and explain in more detail the definition of our

model, describe the estimation procedure, and proof the validation of the model by a simulation study.
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4.1 Modeling the Security Prices

In order to evaluate opening price efficiency, we need to study price volatility and deviations from the
“true” underlying market price. In our framework, all observed prices, based on a particular security,
are driven by a latent efficient price process. This price process represents the unknown underlying
market price of its corresponding security. The true market price at time t is defined as the end-of-
period value of a security conditional on all publicly available information at time ¢t. We assume that
all public information is incorporated into the market price. Then a security’s latent price can be
modelled as a random walk with stationary innovations {r;};" ;. The observed security price deviates
from this latent price as follows. The underlying market price does not make abundant movements in
the absence of essential public information. However, observed security price movements are, relatively
to the rest of the day, substantially larger around the opening and closing of the market. Therefore,
we assume that observed asset prices deviate from underlying latent prices with stochastic error terms.
Furthermore, discontinuities, also known as jumps, are proved to be essential in explaining asset prices.
For example, Eraker et al. (2003) and Andersen et al. (2002) show that jumps are characteristic in
daily S&P500 and/or Nasdaql100 index returns, and Masset (2008) provide strong evidence for intraday

jumps in DAX returns.

Mathematically, for each security, our proposed Extended Unobserved Components Model defines

the logarithmic observed security price p¢, for each time period t, as

pe = p; +exp(h/2)e; + J1 27, t=1,...,n (3)

P:ﬂ:l):‘l'ar?“t, t=1,...,n—1 (4)

where py is the log latent efficient market price, h; denotes the total non-jump log-volatility, J; is a jump
indicator, which equals one if a jump occurs at time ¢ and zero otherwise, Z¥ denote the price jump at
time ¢, r; are the latent price process stationary error terms and are i.i.d. standard normal distributed,

Tt S (0,1), with o, its standard deviation, and €} is assumed to follow a standardised heavy-tailed

Student-t distribution with v unknown degrees of freedom, that is €; A »(0,1). In more detail, the
jump flag J; is defined as a Bernoulli random variable such that P[J; = 1] = k and P[J; = 0] =1 — k.
The price jumps are assumed to be stochastic and follow a normal distribution with constant mean p,
and volatility 012), which are unknown and to be estimated, that is Z! EOY (tp, O'g). The measurement
error €; can be decomposed such that € = /Ae;, where €; ESIY (0,1) and At " 1g (5, %). Moreover,
for simplicity, we assume that p} ~ N(0, c,x02), where ¢, is set to some large constant.

The dynamics of the unobserved log-volatility is modelled by a stochastic linear model with slow

and fast volatility factors. We assume that price volatility can partly be explained by previous volatil-
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ity levels and that it is driven by intraday seasonality and additional Monday open uncertainty.

Mathematically, h; is defined by
hi = 241 + 242 + 8¢ + ag, (5)

where x;1 and x;9 are slow and fast stochastic volatility (SV) processes, respectively, and s; and a;
are seasonal and Monday open components, respectively. The dynamic equations of the SV processes

are defined by

-Tt+1,1:M+¢1(93t,1_/$)+0177t,17 t=1,...,n—1 (6)

Tip12 = Paxr 2 + ooy + 27, t=1,...,n—1 (7)

where 7, 1 and 7, 2 are i.i.d and standard normal distributed error terms, Z¢ id N (i, ag) are stochastic
jump sizes in the log volatility, and p is a constant. By definition, the slow volatility is more per-
sistent and relatively flat over time, whereas the fast volatility has quick mean-reverting properties.
Therefore, we assume that 0 < ¢o < ¢1 < 1, such that both processes are stationary. Furthermore, we
assume that 211 ~ N (u,0%/(1 — ¢?)) and x12 ~ N (0,03 /(1 — ¢3)). Note that the volatility jump oc-
currences coincident with those in the security prices. This can be understood by the fact that market
participants respond on price jump movements, which fluctuates the exchange price and increase the
short-term volatility. We capture additional empirical relations between the security price dynamics
and its volatility via correlated shocks in security prices and fast volatility, that is p = corr(es, n2).
This is also known as the diffusive leverage effect. For further model specifications, we do not assume

cross-sectional dependence across ¢, Ji, rt, me1, 27, and Z}.

We model s; and a; in Equation (5) by cubic smoothing splines. The seasonal element captures a
smooth U-shaped pattern due to intermittent changes in intraday volatility at primary market opening
and closing times. We define the periodic component by s; = Zszl Hyi. 01, where K is the number
of periods within a trading day, Hy; is an indicator function that equals one if time ¢ corresponds to

period k and zero otherwise, and [ denotes the intraday seasonal effect at period k.

The Monday open factors are modelled similarly. After the market close on Friday evening, the
market opens only on Monday morning again. This protracted time in the absence of market trading
increases price uncertainty by market participants. Generally, this is likely to generate larger price
movements than at regular opening times, which increases volatility. After the Monday open, prices
are expected to stabilise expeditiously, because price uncertainty abates during actual market trading.
We, therefore, assume that weekly market inaugurations have a short-term impact only, increasing

a security’s volatility for 5 periods after the new week open. The total time’s ¢ Monday open effect
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is defined by oy = 215:1 Iy, where Iy is an indicator function that equals one if the Monday open
occurred at period ¢ — [ + 1 and zero otherwise, and «a; denotes the week initiation effect, [ periods
after the Monday open. Similarly to the seasonal components, we make use of cubic smoothing splines

to filter and smooth the parameters o = (a1, ..., a5)".

Our proposed model aims to capture the main characteristics in observed exchange prices and is
more sophisticated than “traditional” stochastic volatility models. Bedendo and Hodges (2004) shows
that, by means of daily and 5-minute return autocorrelograms, the stochastic volatility factor has two
major features: i) A fast mean-reverting component intraday and ii) a more persistent component,
for which its slow decay can be modelled by the sum of AR(1) processes. Our model captures these
components by x¢ 1 and ;2. Other than Andersen and Bollerslev (1997), we do not make the assump-
tion of constant intraday stochastic volatility, since both the slow and fast SV factors are affected by
intraday shocks through the innovation terms ;1 and 7 2, respectively. Without jumps, seasonal and
Monday open segments, and underlying latent price dynamics, this can be seen as a superposition
model. These types of models are becoming popular and are argued to be flexible in the SV literature
(see e.g. Omori et al., 2007). In contrary to the original superposition model, we restrict to the
case that the correlation between €; and 7 is zero, that is corr(e;, n:,1) = 0. Our reasoning for this
condition is as follows. Foremost, we assume that such price shocks only affect short-term volatility
and do not lead to changes in the long-term volatility pattern. This also makes identification of the
two volatility dynamics (6) and (7) easier. Second, the estimation of the additional parameter would
increase the computational burden substantially. The estimation procedure for all 80 stocks would

become considerably slower and rather infeasible.

Our model adds common price and volatility jumps in intraday prices. Price jumps are accompa-
nied with jumps in the short-term volatility, as market participants respond on such price movements,
resulting in price instability. Correlated-jump SV models have gained more attention in the recent
literature (see e.g. Eraker et al., 2003, Kobayashi, 2005, and Nakajima and Omori, 2009), consider-
ing simultaneous jumps in returns and volatilities. Moreover, this model is more flexible in allowing
fat-tailed errors terms, instead of assuming normally distributed innovations. Estimation procedures
for leveraged, heavy-tailed, and correlated jumped SV models are scarcely developed (see e.g. Omori
et al., 2007, and Nakajima and Omori, 2009). We illustrate our sampling approach that conjointly
includes these characteristics in Section 4.3.

Similar to Andersen and Bollerslev (1997), Andersen and Bollerslev (1998), Martens et al. (2002),
and Engle and Sokalska (2012), we incorporate intraday seasonal effects in our model. Existing studies
make either use of an iterative two-step procedure or third-party interday volatility estimates. The first

method estimates the daily volatility, assuming volatility to be constant intraday, and subsequently,
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estimates the seasonal component. By contrast, our algorithm estimates all parameters and latent
states simultaneously in a similar manner to Stroud and Johannes (2014). This avoids the requirement
of an inefficient two-step estimation procedure and it makes assumptions conform normally distributed

shocks or the absence of jumps nonessential.

Both the seasonal effects and Monday open realisations are modelled by cubic smoothing splines. A
similar approach is done by Weinberg et al. (2007) who try to smooth within-day Poisson arrival rates
to predict future US commercial bank’s call centre calls. As in their approach, 8 = {51@}sz1 and « are
density functions, such that the sum over all elements, within the two series, should equal one. We
adopt an efficient estimation procedure, following the methodology of Kohn and Ansley (1987). They
proposed a state-space representation for the coefficients S, for k =1,..., K, and oy, for I =1,...,5,
including a cubic smoothing spline prior. The full procedure for filtering and smoothing the seasonal

and Monday open cubic splines is explained in Section 4.3.2.

As mentioned before, this model captures many important characteristics of intraday price data.
This underpins the need for this model to measure auction efficiency because it enables us to filter
out the underlying latent market price and the latent price volatility that is (approximately) solely
due to the opening and closing of the market. Our proposed model, therefore, facilitates us with two
important measures for our efficiency analyses: (i) a ”"true” opening valuation and (ii) a consistent
increase in price volatility during the early stage of continuous trading. In case of an efficient auction
mechanism, the first should approximately be equal to the observed opening price and the latter should

be close to zero.

The full auction efficiency analysis is carried out is Section 5. First, we examine the impact of
the call mechanisms on price volatility. Not all market participants that trade during the start of
the continuous session participate in the opening auction. The clearing price may, therefore, not
equal the consensus price across all traders. When this happens, it triggers traders to enter orders,
which heightens accentuated volatility. This indicates opening auction inefficiency. Our model defines
volatility as the dispersion between the observed log price and true log security value. More specifically,
it provides the intraday volatility free from individual stock dynamics or volatility jumps through 3.
This measure determines the consistent increase in volatility during early continuous trading hours
compared to its baseline level. We estimate our proposed model for each individual stock. To make
it auction specific, instead of stock characteristic, we take a joined 8 measure within an exchange.
We could keep the seasonal pattern equivalent within a market, but this would exclude the possibility
of parallel programming across all stocks, making the estimation procedure infeasible. Therefore,
we model the intraday pattern individually for each stock and average out within each exchange.

This provides us with a robust price volatility measure, which consistently occurs during the specific
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market open. We use this method to test the differences in price volatility across the ASX and JSE
as a consequence of auction price inefficiency. We take a Bayesian approach, which means that we get
many simulated 3 vectors, for both the ASX and JSE. For each sample, we take the difference between
Br,asx and By jsg, for k= 1,...,24, where 3 asx and i jsg correspond to the average beta factor
for the ASX and JSE, respectively. We compute the standard deviation, that is S = exp(Br,diff/2)
where Sy, 4y correspond to Sk ssE — Br,asx. Hence, we get a posterior distribution for the difference
in B, across the ASX and JSE, on standard deviation scale. A posterior mean significantly higher
than one implies that the average volatility increase at time k is significantly higher for the average
JSE listed stocks and vice versa. These so-called variance ratios are computed from market open to
two hours after, which enables us to test two important features: the difference in (i) opening price
stability and (ii) the speed of convergence to a stable equilibrium price. For the first, we test for
significant differences for k¥ = 1. For the second, we analyse for which k, S = exp(Brdiff/2) is not

significantly different from one anymore.

Second, to see the performance of the auction mechanisms while the market has been closed for a
longer amount of time, we use a similar approach for the ¢ series. A longer time span of market closure
increases price uncertainty, which may result in an opening price volatility increase if true consensus
price discovery is frittered away during the auction. The variable oy, for [ = 1,...,5, represents the
increase in volatility, during the first 20 minutes of continuous trading, due to the market being closed

for the weekend. Hence, we compute the difference in a; 45x and oy jsg, for I =1,...,5.

Third, in Section 5.2, we evaluate the price discovery process during the auction phase. For the
opening call, it is of great importance that overnight information is absorbed into security prices before
the opening of the market. If so, participants have come to a consensus price for which the majority

is willing to trade.

Lastly, we compare and test the efficiency of auction prices, produced by the call design of the ASX
and JSE, in Section 5.3. We use a price efficiency test where we regress the observed price series on
the current true value. The main difficulty is the impossibility of observing the true latent value of any
asset. For this purpose, we assume p; to be the best quote prevailing at time ¢. We perform analogous
analyses for high and low tertile stocks. This enables us to examine dissimilarities in opening price
volatility, pre-open price discovery, and opening price efficiency given the relative number of auction

participants. Details of the auction efficiency evaluations are discussed in Section 5.

Additional to this unique method to measure auction efficiency, this paper contributes by devel-
oping an efficient MCMC parameter estimation and latent state smoothing method for our proposed
model. This includes a multidimensional stochastic volatility model with leverage, correlated jumps,

heavy-tailed Student-t errors, intraday seasonal patterns, Monday open effects, and a latent efficient
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price process. This is an extension to Nakajima and Omori (2009), Chib et al. (2002), and Stroud and
Johannes (2014). The full estimation approach and a simulation study are considered in the following

subsections.

4.2 Auxiliary Mixture Sampler

Discrete-time stochastic volatility models, such as our extended framework, bear the difficulty that its
likelihood function is not easily derived. A well-known likelihood computation method is established
by Del Moral (1996), called a particle filter. However, such a method requires an extensive amount
of repetitions to evaluate the likelihood for each set of parameters until a maximum is reached. To
overcome such a computational difficulty, we make use of a Bayesian estimation approach including
Markov chain Monte Carlo (MCMC) methods to evaluate our proposed model.

For likelihood evaluation, lets define d; = I(e; > 0) —I(e; < 0) and p; = log(p; — pf — J1 ZF)? —log\;.
Nelson (1988) and Harvey et al. (1994) show that the observed price process in Equation (3) can be
rewritten as py = hy+(;, where (; = log(e?), such that we have the map p; = div/Arexp(pt/2)+p;+Je 27 .
Note that ¢; is log x? distributed and inhibits direct and simple inference. Kim et al. (1998) introduces
a key idea to approximate the distribution of {; by matching a mixture of normal distributions, which
they show to be accurate and efficient in MCMC algorithms. Following Omori et al. (2007), we approx-
imate the bivariate conditional density ((t, 7 2)|d¢, which are correlated through the leverage effect
p, by a 10-components mixture of bivariate Gaussian densities (see Appendix D for the reformulation

steps). That is,

10
s
9(Cesne2 | de, p,02) = ZijN(Ct |mj, v} )N 02 | dipos eXP<7J> (@} + b5(C¢ —my)),05(1 = p*)|, (8)
j=1
where a;, bj, prj, mj;, and vj2- are prespecified values that are chosen to minimise the mean square
norm to accurately match the log x? distribution. In addition, we define a set of mixture component
indicators w; € {1,...,10}. The main principle of this approach is that we can accurately approximate
P and the models (6)-(7), conditional on the indicators, by means of a linear Gaussian state space

model:

Pt = Tyl + T2 + My, + VU1, 9)
Tey11 = B+ o1(xe1 — p) + oruse, (10)
Ter12 = Paveo + oa(diplag, + by, vw,ut1)X

exp(my, /2) + oo/ 1—pus) + JiZ7, (11)
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where p; = Py — st — ag, and (ug 1, ur2,ur3) ~ N(0,I). Omori et al. (2007) computed the probabilities
pr; and the mixture component parameters a;, b;, m;, and VJZ, for j = 1,...,10, which we reproduced in
Table 4. This representation allows us to block-sample the latent volatility states x; = (1,4, ..., Zn ),
for ¢ = 1,2, through the linear Gaussian state space simulation smoother of De Jong and Shephard

(1995), and Durbin and Koopman (2002).

Table 4: Mixture component parameters (pr;, m;, v]2-, a;, b;k)

Index j r; m; 1}]2- aj b3

1 0.00609 1.92677 0.11265 1.01418 0.50710
2 0.04775 1.34744 0.17788 1.02248 0.51125
3 0.13057 0.73504 0.26768 1.03403 0.51701
4 0.20674 0.02266 0.40611 1.05207 0.52604
5 0.22715 -0.85173 0.62699 1.08153 0.54076
6 0.18842 -1.97278 0.98583 1.13114 0.56557
7 0.12047 -3.46788 1.57469 1.21754 0.60877
8 0.05591 -5.55246 2.54498 1.37454 0.68728
9 0.01575 -8.68384 4.16591 1.68327 0.84163
10 0.00115 -14.65000 7.33342 2.50097 1.25049
NOTE: This table lists the selection of pr; = Pr(ws = j), where w; is the mixture indicator at time ¢, and the
mixture component parameters (mj,v;,a;,b;) for j =1,...,10 from Omori et al. (2007), which are used to accurately

approximate the bivariate density (¢, 1,2 | dt, p, o2.

4.3 MCMC Algorithm

For notational conveniences, denote, for each security, p = {p:};-1, p* = {pi}io1, P = {Pt}i1,
d = {d}y,, Z° = {ZP}0,, 2" = {ZP} ), I = {J}y, X = {\}}, all unknown parameters
in a vector @ = (¢1, ¢2, 01, 02, p, Wy Op, V, K, Hp, Op, Hvs Ou, Ts, Ta)y B = (B1,..., K,
a = (of,...,ay)’, and denote the prior probability density function for variable « as m(+). The variables
7s and 7, correspond to the smoothing parameters, which determine the spline’s smoothness for the
seasonal and Monday open volatility effects, respectively. We take a Bayesian approach and use an

MCMC algorithm to simulate from the posterior distribution

T
(0, z, B, a, | p) x Hw(pt | 2z, B, o, 0) w(z | ze—1, 0) (B | 0) (x| B) 7(O), (12)

t=1
where 2z = (z11, @2, A, Ji, 28, Z7, 0f), z = {2}, and where 7(b | a) denotes the probability
density function of b conditional on a. We make use of conjugate priors where possible or, in all
other cases, proper, but not too strong, prior distributions. An overview of our proposed Extended
Unobserved Components model and the details of its priors can be found in Appendix E. The model is

estimated by means of the following MCMC algorithm, where the starting values are set to the prior



28 An Econometric Approach

mean or mode:
1. Initialise 0, x1, X2, w, A\, J, ZP, Z¥, o, B and p*.
2. Sample (¢17¢27017027P7/’L7X17X2) |w7f)7d7/67a by

(a) Samphng (¢17¢2a015027p) |w7137d7/37aa and

(b) Sampling (k, x1,%2) | ¢1, ¢2,01,02,p,w, P, d, B, cv.
3. Sample (3,72) | p,w, X1, X2, @, 0, p*.
4. Sample (o, 72) | P, w,X1,X2, 3,0, p*.
5. Sample w | p, 0,x1,x2, o, 3,J,ZP, ZY A\, p*.
6. Sample (\,v)|0,p,x1,x2,J,2ZP,Z", 3, o, w, p* by

(a) Sampling v |0, p,v,x1,%x2,J,ZP,Z", 3, o, w, p*, and

(b) Alv,0,p,v,x1,%x2,J,ZP, Z" B, o, w, p*.
7. Sample (J,ZP,Z") | p,x1,X2, X, K, fip, fv; Op, Oy, P*.
8. Sample (K, fip, flv, Op, 0v) | I, Z.
9. Sample p* | p,x1,X2, 0., p, A, J, ZP, Z", 3, x.

*

10. Sample o2 | p*.

Note that we sample from the approximated models (9)-(11) through the approximation of the

true density 7((,m¢2|ds, p, 02) by a mixture of ten normal distributions, as in Equation (8). Although
the differences are rather small, we re-weight the drawn samples to obtain estimated parameters of the
true SV model discussed in Section 4.1, as we will show in Section 4.3.5. In the following subsections,

we briefly discuss the above-mentioned sampling steps separately (see Appendix F for the details).

4.3.1 Sampling Volatility Parameters and Latent States

For notational conveniences, let us define 9 = (¢1,¢2,01,02,p). The conditional distribution of

(9, 1, x1,%2) |w, P,d, B, a is given by

(9, p,x1, %9 |rest) oc (3| rest) x w(p,x1,x2 |9, rest),
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where

m(@ |rest) o< f(p |9, w,d, B, a)m(9),

(1, x1,%X2 | 9, rest) o< w(w |9, rest)m(x1,x2 | u, 9, rest),

and f(-) denotes the conditional likelihood function of the approximated models (9)-(11). Throughout
the remainder of this paper, we use rest for the full conditional parameters as stated in each of the
MCMC steps. The posterior distribution (1, u,x1, X2 | rest) is marginalised over p, which supports
fast convergence of the full procedure. Consequently, we can determine the conditional likelihood
f(P|Y w,d,B,a) by means of an Augmented Kalman Filter, proposed by De Jong (1991), applied
on the models (9)-(11) (see Appendix G for the details). To sample the volatility parameters 1, we
make use of a Metropolis-Hastings algorithm with a truncated Gaussian approximation of m(¥|rest)
as proposal density, proposed by Chib and Greenberg (1994). We define 9 as the volatility estimates
that maximises the posterior density 7 (9 | rest), and draw a candidate 9" from the truncated normal

distribution on region R, TN r(9., X.), where

5. Olog (9 | rest) ’ $-1_ _3210g (| rest)

oY . o 090’ .
9=D 9=0

(13)

and R = {v: |#1],|p2| < 1,02 < ¢1,0%,05 > 0,|p| < 1}. This candidate 9* is accepted or rejected
according to the Metropolis-Hastings accepting probabilities. To ensure, or increase the speed of,
convergence towards the posterior mode we manipulate the optimisation algorithm to find 9. The
first (approximately) 50 MCMC iterations maximise the likelihood function until the change in like-
lihood is small in an absolute and relative sense. For the following MCMC draws, we compute 9 by
decreasing the number of optimisation iterations and function calls. This reduces the accuracy of 9
and “increases” its variance parameters 3,. This enables the algorithm to re-position its volatility
parameter estimates if the posterior mode is distant from the current “optimal” 9. This algorithm is
robust to find the posterior mode and decreases the path and time of the MCMC algorithm to reach
it.

Sampling 7(u, X1, X2 |9, rest) is rather straightforward. The parameter u can be sampled from
the normal distribution with mean and variance that are associated with the Augmented Kalman
filter in Appendix G. Furthermore, we can sample the volatility states from its full conditional
m(x1, X2 | p, ¥, rest) by means of the Gaussian simulation smoother, implemented by Frithwirth-Schnatter

(1994), Carter and Kohn (1994), and Durbin and Koopman (2002) to cite only the earliest papers.
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4.3.2 Sampling Seasonal and Monday Open States

To sample the seasonal and Monday open effects, we use a state space framework for polynomial
smoothing splines, following the theory of Kohn and Ansley (1987). Define g = (g1, ...,gx)" as the
latent coefficients B or a, where K equals the number of periods within a trading day or K = 5,
respectively. We assume that the components in g follow a modified cubic smoothing spline prior of
the form V2g; ~ N(0, CkT 2), where V2 is the second difference operator, 7' is the smoothing parameter
with j equal to s or « for either season or Monday open effect consideration, respectively, and ¢’s are
prespecified scale factors, given by
100 ifk=1,K
cp = (14)
1 otherwise,
if the seasonal components 3 are considered and ¢, = 1 for all K = 1, ..., 5 if the « effects are considered.

We observe the following data series:

-1
i = 0} Z (Pt — Tt) — T2 — ar — mw)v_f and 0 = ( Z U;E) ) (15)

t:Hy=1

if seasonal components g = B are considered and

—1
g1 = 0} Z (Bt — Te1 — Teo — St — My, )V, and 0 = ( Z ”wf) ) (16)

t:[tlzl t:[tlzl

if Monday open effects g = « are considered. For notational conveniences, we denote both data series
by 9k ~ N(gk,2) for k = 1,..., K, where K = 5 for a. Following Weinberg et al. (2007), we define
the latent state vector zx = (gg, Ogr/0k)’, which enables us to write the entire model in the following
Gaussian state space form:

0 = Wz + ek,  €rp1 ~N(0, 02 1 1 1 1/3 1/2
Yk k kol kol ( k) , where h = , F= , U= / / ,

Zhir = Fap +epp,  ena ~ N(0,77U) 0 0 1 1/2 1

er.1 and g5 2 are, both serial and mutual, independent, and z; ~ N(0, ¢3I), with ¢; sufficient large and
I being a (2 x 2) identity matrix. To draw the states and smoothing parameter, we sample from the

following posterior bivariate distribution:

K
w(z,7°|9) = [ [ 7@k | 26)7 (241 | 20, 72),
k=1
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where z = {z,}}* | and y = {J,}1,. We jointly generate the coefficients z and 72 by means of a
Metropolis step. Consider 72() as 72 at i-th step of the MCMC algorithm, we then draw a proposal
estimate 72(*) from the Normal distribution with mean 72() and variance w, which we accept with

probability

rly | 20)n(r0) )

i1 [T )

and where w = ZkK:Q(zk — Fz_1)'U (21, — Fzp—1)/c3. Both m(y|7%) and z in w are obtained by
the Kalman filter. If the proposal coefficient is accepted, set 7201 = 72() and sample z(t1) from
7r(z]7'2(i+1), ¥) by means of the simulation smoother. Then, g is directly obtained from z by definition.
A zero-sum constraint on the seasonal parameters is imposed by re-normalising the draws, instead of

constraining the Gaussian state space model, which would become infeasible.

4.3.3 Sampling the Scale Mixture Components and Degrees of Freedom

To sample (A, v) jointly from its posterior, we follow the sampling scheme of Stroud and Johannes
(2014). Note that the conditional posterior can be written as m(X, v |rest) = w(v|rest)m(X|v, rest).
We define wy = (pi—pj—J1 Z7) /exp(hi/2), such that (w; | v, rest) ~ t,(0,1). Under the discrete uniform
prior distribution for v ~ DU(a,,b,), the posterior distribution follows a multinomial (v |w,rest) ~

M(lg,, ...y b, ), where w = {w; }}* ¢, and with probabilities

n

I, x le,(wt), V=ay,..by,
t=1
where we denote p, (w;) as the Student-t probability density function with v degrees of freedom. As the
computation of all individual multinomial probabilities is computational heavy, Stroud and Johannes
(2014) propose a Metropolis step to draw a new v coefficient. We define the width parameters as §
and, given the current value v, we draw a candidate value v*) ~ DU (V(i) — 6,0 + 9), which is

accepted with probability

min{l iz Py (1) } (18)

Ty Py (wy)

The width ¢ is determined by allowing the acceptance probability to vary between 20% and 50%.
Subsequently, given the degrees of freedom, we can draw the scale factors. Note that € = (p; — p; —
JiZF) Jexp(ht/2), which is, given v, normally distributed with mean zero and variance \;, that is,

(e | A\, v, rest) ~ N (0, Ar). Assuming the conjugate prior (M |v) ~ ZG(v/2,v/2), it is straightforward
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to see that the full conditional follows

v+1 I/—i-( ))

(At |v,rest) ~ IQ( 5

4.3.4 Sampling of Remainder

Throughout the rest of the sampling algorithm, the steps are rather straightforward. More details
about means and variances for the upcoming distributions are given in Appendix F. Sampling the jump
states and parameters is simple if we assume conjugate priors J; ~ Bern(k) and Z; ~ N(p,, X.),
where p, = (pp, fty) and X, = diag(ag, 02). The jump indicators .J;, given the other parameters, are
Bernoulli distributed. Furthermore, the size parameters Z¥ and Z; can be drawn from a joint normal

distribution.

For the jump parameters (k, p, 0p, fy, 0y), conjugate priors are available. We assume that x ~
B(ax,bs) and (pj,0 ) NZIG(mj,cj,a4,bj), for j = p,v, such that we can draw (k|rest) from the

beta distribution, and (i, ap | rest) and (py, 02 | rest) from the normal-inverse Gamma distribution.

We sample the mixture indicators w; for ¢ = 1, ..., n, from its discrete conditional posterior distri-

bution. We perform the inverse transform method to sample the conditional indicators.

Given all other parameters and mixture components, equations (3)-(4) can be seen as a traditional
Gaussian state space model. Therefore, the latent states p; can be sampled by means of the simulation
smoother of Durbin and Koopman (2002). Moreover, conditional on the remaining parameters and
the states p;, the parameter o, can be sampled from the inverse gamma distribution if we assume a

conjugate prior o, ~ ZG(a,/2,b,/2).

4.3.5 Auxiliary Re-weighting Approximated Samples

Omori et al. (2007) show that the mixture of normal distributions is an accurate approximation of the
true distribution of (;. However, minor errors are still made, which we correct to obtain samples from

the true distribution. Let us denote
¢ =5 —h" ) =@y~ n®) = o8 @) — u D) — 30 27D )ol),

where () denotes the i-th sample from the MCMC algorithm, for i = 1, ..., M, where M is the number

of MCMC draws. In order to re-sample the obtained approximated samples, we compute the weights

n

dy, 9,9 ;
H 77715 | tH R ) w; = Wi , fori=1,....M.

t=19 Ctz 77715 ‘dl‘: 719(Z)) Zk 1w;:
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We can now require a sample from 7(0,z, 3, a| p) by re-weighting the sampled coefficients and states

proportional to the weights w;.

4.4 Simulation Study

In this subsection, we present a simulation study to validate our proposed model and estimation
algorithm. This also shows that our Extended Unobserved Components model is identifiable under
informative, but weak priors. We illustrate our estimation procedure and its performance by simulating
from our model given by (3)-(7). We generate 74 data points per day over a sample of 130 days,
resulting in a total of 9620 observations, which is similar to the ASX sample data. The true parameters
are given in the second column of Table 5, which are a combination of multiple empirical studies (see
e.g. Omori et al., 2007 and Stroud and Johannes, 2014). Additionally, we simulate o and 3 by means

of cubic smoothing splines.
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Figure 4: This figure plots the simulated data. The upper panel illustrates the noisy price dynamics with its underlying
market price. The lower panel shows the true unobserved volatility states.

Figure 4 plots the simulated data for the 7 days, where the dashed-dotted lines indicate the first
observation of the day. The third day corresponds to the Monday open. The upper panel shows the
price dynamics with its true underlying log spot price. The lower panel displays the volatility states.
By construction, the long-term volatility variable is more consistent over time than the short-term
volatility. Moreover, the total volatility state h; shows an obvious daily pattern and an increase in
Monday open volatility. For evaluation, we draw 10,500 samples from our full estimation algorithm

and regard 500 of the MCMC draws as burn-in sample. We efficiently program our sampling algorithm
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from scratch in base SAS and proc IML SAS. The biggest burden arises due to the optimisation of
the likelihood function in the second step of the algorithm (Section 4.3.1), for which we use standard
non-linear optimisation packages. This, however, reduces as we decrease the number of iterations and

function calls.

The results are based on the priors given in Appendix E. Table 5 reports the true values, posterior
means, standard deviations, 95% credible intervals, and inefficiency factors. The inefficiency factor
is defined as 1+ 2> 7, p;, where p; denotes the sample autocorrelation at lag ¢. This quantity can
be interpreted as the ratio of the numerical variance of the posterior mean from our MCMC chain to
the hypothetical variance of the posterior mean based on independent draws. Theoretically, it is the

inverse of the relative numerical efficiency defined in Geweke et al. (1991).

Table 5: Simulation Results

Parameter True value Mean St. dev. 95% interval Inefficiency
D1 0.97 0.9771 0.0060 [0.9665, 0.9858] 1.8408
2 0 0.0182 0.0691 [-0.0949, 0.1341] 1.4375
o1 0.05 0.0453 0.0053 [0.0373, 0.0544] 1.0771
P 0.25 0.2566 0.0200 [0.2234, 0.2899] 1.7397
P -0.20 —0.1466 0.0382 [-0.2096, -0.0845] 1.1229
exp(u/2) 0.45 0.4528 0.0057 [0.4434, 0.4621] 1.0718
v 20 23.4979 3.7779 [18, 30] 18.7476
K 0.008 0.0099 0.0016 [0.0076, 0.0128] 2.0284
oy -1.5 —1.5382 0.1224 [-1.7299, -1.3271] 5.4892
oy 1.1 0.9894 0.0886 [0.8542, 1.1249] 1.2935
Op 0.85 0.8715 0.0902 [0.7300, 1.0268] 4.5355
Oy 0.80 0.7673 0.0528 [0.6847, 0.8562] 1.8357
or 0.20 0.2053 0.0051 [0.1971, 0.2140] 12.0544

NOTE: This table presents summary statistics for our simulation experiment using our sampling algorithm on models
(3)-(7). The table reports the true parameter values, posterior means, standard deviations, 95% credible intervals, and
inefficiency factors. The sample size included a total of 9620 observations over 130 trading days. The results are based
on 10,000 MCMC draws, after discarding the first 500.

All posterior means are relatively close to their true values and their standard deviations are small.
Moreover, the true values are contained in the 95% credible intervals. The inefficiency factors take
low values, except for v and o,. For v, this is possibly caused by the Metropolis step. Its acceptance
probability is quite low, resulting in a highly-correlated sample. The variable o,, on the other hand,
does not depend on a Metropolis step. However, it only depends on the underlying latent price
process p;, which remains very consistent over all draws. Therefore, it results in a highly-correlated
sample. Appendix H illustrates the sampled draws and posterior distributions. Moreover, it reports
the autocorrelation of the draws over 20 lags for all parameters. The first lag is significantly positive
for all coefficients. However, this decays sharply over the lags (except for v and o, as mentioned

before). All things considered, it suggests that we are successful in efficiently sampling from the true
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posterior distributions.

For illustrative purposes, Figure 5 plots the posterior mean and true 8 and « series, including
95% confidence intervals. The sampled means are close to the true values and the true values are
encompassed in their corresponding 95% credible intervals. The remaining volatility states show
similar results. Therefore, we conclude that our estimation algorithm efficiently samples from the true

posterior distributions.

Figure 5: This figure presents the true simulated values, posterior means, and 95% confidence intervals for the seasonal
effects B = (B1, ..., B74) (left panel) and the Monday open effects @ = (au, ..., as) (right panel). Results are illustrated
on a standard deviation scale, that is S = exp(3/2) and S = exp(a/2), respectively. For example, $ = 2 means that the
underlying volatility is twice its original baseline.

4.5 Empirical Analysis

We apply the same approach to the intraday log prices for each stock in our sample. We record
10,000 samples, after we discard the first 500 MCMC iterations, for each parameter and state across
all stocks. We are interested in average volatility dynamics within each exchange and, therefore, we
compute average posteriors. For each draw, we take the average across all stocks within the specific
market. Throughout the remainder of this paper, each aforementioned parameter now denotes the
average posterior distribution. For example, 3 denotes the average posterior distribution for the daily

volatility pattern across all sample stocks within either the ASX or JSE.

Table 6 summarises the average posterior distributions and reports inefficiency factors for both the
Australian and South-African markets. The SV factors indeed correspond to a slow-moving intraday
factor and a fast-moving interday determinant. The mean of ¢ is 0.9985 and 0.9981, corresponding
to a day-to-day AR(1) coefficient of 0.89 and 0.83 for the ASX and JSE, respectively. These estimates
imply a half-life, log(0.5)/ log(¢1), between approximately 4 and 7 days, relatively lower than other

studies that examine daily returns. The rapidly moving intraday factor x; 2 has mean coefficients of
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0.9810 and 0.9848, generating a daily AR(1) coefficient of 0.24 and 0.23, both consistent with a half-life
of around half their trading day, for the ASX and JSE, respectively. Note that both ¢ and o9 are
significantly different from zero, giving evidence for high-frequency shocks in volatility and supports

the use of a two-factor SV model.

Table 6: Estimation Results ASX and JSE

Parameter Mean St. dev. 95% interval
ASX JSE ASX JSE ASX JSE

b1 0.9985 0.9981 0.0010 0.0011 [0.9964, 0.9999] [0.9955, 0.9999]
103 0.9810 0.9848 0.0056 0.0036 [0.9680, 0.9900] [0.9769, 0.9906]
o1 0.0469 0.0446 0.0264 0.0217 [0.0266, 0.1277] [0.0262, 0.1214]
o9 0.0511 0.0454 0.0043 0.0088 [0.0336, 0.1152] [0.0345, 0.0661]
P —0.0004 0.0045 0.0525 0.0423 [-0.1046, 0.1026] [-0.0784, 0.0873]
exp(p/2) 0.6333 0.5122 8.1982 0.0913 [0.3998, 0.6405] [0.3788, 0.6759]
v 52.5912 46.6473 4.9731 4.3378 [41.422, 57.261] [37.988, 50.992]
K 0.0112 0.0132 0.0173 0.0186 [0.0001, 0.0472] [0.0001, 0.0513]
p —1.4838 —1.3207 6.7119 5.4608 [-14.475, 11.618] [-10.268, 7.8402]
Iy 0.4551 0.4573 0.2200 0.1806 [0.0987, 0.8171] [0.1560, 0.7579]
op 0.2796 0.2931 0.2983 0.3104 [0.1813, 0.6447] [0.2021, 0.6831]
Oy 0.3349 0.3171 0.3667 0.3301 [0.3018, 0.3827] [0.3331, 0.3986]
oy 0.0020 0.0021 0.0001 0.0001 [0.0019, 0.0021] [0.0020, 0.0022]

NOTE: This table presents the posterior means, standard deviations, and 95% credible intervals for the average ASX
and JSE sample stocks. The results are based on 10,000 MCMC draws, after the first 500 are discarded.

Estimations of p are small negative, indicating that the leverage effect is weak. Estimates of v are
about 52 and 46 for the ASX and JSE, respectively. This indicates rather mild non-normal price shocks
and implying very modest higher probabilities of larger shocks in our samples. Note that abundant
price shocks are also captured by J;ZF. Moreover, this result is based on the average of all considered
stocks. Individual price series display divergent estimates. Few stocks show the importance of using
heavy-tailed error distributions, while others can be modelled by a normal model. For consistency
and robustness, we use the ¢-distributed errors for all stock prices. Mean price jumps p, are not
significantly different from zero, but do have a large 95% range, indicating that both large positive
and negative jump sizes occur. The arrivals of such jumps occur with x = 0.0112 and k = 0.0132,
which is equal to a daily rate of 0.83 and 1.25 for the ASX and JSE, respectively. The price jumps
are relatively small as o, is approximately 0.28, which is considerably smaller than the modal non-
jump volatility of exp(u/2) ~ 0.63 (ASX) and 0.51 (JSE). Similarly, volatility jumps are quite high,
increasing the volatility by a factor exp(u,/2) = 1.40 and 1.37, that is an increase of around 40% and
37%, for the ASX and JSE, respectively. The inefficiency factor of the slowest mixing parameters ¢;
is around 60. Although it is considerably higher than for the simulated data, our sampling algorithm

still works reasonably well for empirical researches.
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5 The Efficiency of Auction Mechanisms

In this section, we test the auction efficiency. We first analyse the opening price stability, by imple-
menting variance ratios, measured by our model-based volatility patterns. Second, we examine price
discovery during the auction process by conducting weighted price ratios. Lastly, we consider auction
price efficiency by measuring how accurate the determined opening price reflects the true underlying
market price. All three things considered encompass a measure for the efficiency of opening auctions.
A sufficient operative mechanism (i) obviates an increase in opening price volatility, (ii) covers a large
proportion of price discovery during the pre-open session, and (iii) produces efficient opening prices.

In addition, we test which of the two call designs is superior in the three auction efficiency targets.

5.1 Opening Price Stability

We obtain an average measure that defines the consistent increase in price volatility at the market open
through the posterior mean of 3. Note again that 8 now denotes the average posterior distribution
across all stocks, within a particular exchange, for each k = 1,..., K. By definition, 81 corresponds to
the opening price volatility increase relative to the basis level of a trading day. We link a significant
increase to the deficiency of market depth during the auction book-building phase. Au contraire, no
significant increase would imply that the opening price absorbed all necessary overnight information,

such that the call preserved price stability.

We denote B,9x and B ;g5 as the average beta posterior for the ASX and JSE sample stocks,
respectively. Note that the daily volatility pattern is imposed by the density zero-sum constraint.
Therefore, the ASX and JSE average seasonal dynamics are of the same scale, which makes comparisons
between the two simple. For statistical inference, we compute the difference posterior distribution
for k = 1,...,36 and k = K —12,..., K. That is, Barrr = Bisexr — Basx,k, for each MCMC
draw, during the first three hours and the final hour of continuous trading. We repeat the above
analysis for high and low tertile stocks. That is, within a particular exchange, we compute the
difference posterior distribution between high and low tertile stocks. Mathematically, we then denote
Baiffk = Biowk — Brighk for all k = 1,..., K, for either the ASX or JSE listed stocks. Furthermore,
we use similar volatility difference distributions, based on the Monday open series ¢, and compute
statistical tests analogously.

Our method enables us to evaluate the differences in price volatility across different markets. In
addition, we try to capture the increased volatility that is exclusively caused by (inefficient) auction
processes through 3. By contrast, existing literature has frequently exploited variance ratios to test the

impact of auction mechanisms on price or return volatility within specific markets, see for example



38 An Econometric Approach

Comerton-Forde and Rydge (2006) and Amihud and Mendelson (1991). In their approach, they
calculate the open-to-same day 11:00 returns, which is the log of the midpoint price at 11:00 minus
the log of the openings price on the same day.* The variance of these returns can be analysed and
compared across different periods for the same security, which is convenient to examine the effect of
changes in auction mechanisms within a specific market. Compared to these studies, we argue that

our method is more robust for auction efficiency tests and comparisons across markets.
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Figure 6: This figure shows the posterior means and 95% intervals for the daily intraday patterns. Results are presented
on a standard deviation scale, that is S = exp(B/2). The upper panels summarise S, for k = 1,..., K, considering
the ASX (left) and the JSE (right). The lower panel charts the posterior mean for exp(Bi,airs/2), where Br aifr =
Br,usE — Br,asx. The variable k includes two subsets. The first runs for 3 hours from market opening and the second
contains the last hour of continuous trading.

Figure 6 summarises the posterior distribution of S’k, where S’k = exp(fk/2) denotes the standard
deviation scale of 8. So, Sp=1 corresponds to the average b-minute volatility and, therefore, S =2
would imply that the volatility is approximately twice its baseline level. The left and right upper panel
corresponds to the ASX and JSE market, respectively. There is a clear “U”-shaped pattern present in
the intraday volatility. Both figures show the importance of including a daily pattern component in
price volatility models, as S fluctuates by a factor 1.3. At the market open, S spikes to roughly 1.18
and 1.25 for the ASX and JSE, respectively. Both are highly significant, implying that the average

opening price volatility is substantially higher than the remainder of the trading day. Similar results

“The price at 11:00 is assumed to be the security’s true value, as suggested by Ciccotello and Hatheway (2000)
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are found for the closing price, which, however, is rather due to market participants willing to trade
at this price to beat benchmarks, increasing price fluctuations. This is in line with the relative high

trading volumes closing the market closure.
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Figure 7: This figure shows the posterior means and 95% intervals for the daily intraday patterns. Results are presented
on a standard deviation scale, that is S = exp(B/2). The left panels correspond to the ASX and the right panels to the
JSE. The upper panels denote the high tertile stocks, while the middle figures correspond to the low tertile stocks. The
lower panels chart the difference between low and high tertile daily pattern estimates.

The lower panel of Figure 6 charts the posterior distribution of the standard deviation scale of
Baitfk- The average opening price volatility is significantly higher for the South-African market. This
significant increase remains during the first 10 minutes of the continuous session. The Australian
market needs approximately one hour to find a stable consensus price, while the JSE needs roughly

one hour and a half. Hence, the ASX has a significant 7% lower opening price volatility than the JSE
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and its convergence to price stability is around 30 minutes faster. At the market close, there is again
a substantial volatility discrepancy, which is conform to the large increase in closing price benchmark

traders participating at the Johannesburg Stock Exchange.

Figure 7 reports the posterior distributions for 3 for the low and high tertiles and its difference,
for each market. There is a small, however not significant, improvement in reducing opening price
volatility and increasing price stability speed if auction participation is higher. The lack of significant
evidence for volatility reduction and the increase in price stability speed could occur due to two
reasons. First, the lack of data considering many auction participants reduces the strength in tertile
differences. Although the ASX high tertile stocks contain almost 3 times more volume than low tertile
stocks during the auction phase, it has only a relative value of 2.27. Second, our tertiles are based on
incoming order volume rather than the number of participants. Therefore, the auction could have a
relatively high order volume, but which is all entered by only a few active participants. A deficit of

price informativeness occurs and price stability delays.
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Figure 8: This figure shows the posterior means and 95% intervals for the Monday open effects, @ = (a1, ..., as).

Results are presented on a standard deviation scale, that is A= exp(a/2). The left and middle panel correspond to the
ASX and JSE Monday open effects, respectively. The last panel summarises the posterior distribution of exp(aairs/2),
where agiff = oujsE — AsX.

The Monday open effects posterior means and 95% confidence intervals are given in Figure 8. Note
that the results are shown on the standard deviation scale, that is, A = exp(a/2). We report our
distribution summary for both the ASX and JSE, as well as JSE’s A divided into ASX’ A posterior
distribution outline. The over-weekend uncertainty significantly increases the opening price volatility,
intensifying the uncertainty by a factor 1.05 and 1.11 for the ASX and JSE, respectively. However, the
Monday open effect fades away within five minutes and, therefore, only increases the opening price

volatility. The Monday opening price volatility increases significantly higher for the JSE listed stocks
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than those of the ASX.

As for 3, Figure 9 reports the posterior distributions for a, considering the low and high tertiles
and its difference on standard deviations scale, for each market. An interesting result occurs with
this analysis. Conditional on relatively high market participation, the ASX market does, on average,
not suffer from an increase in opening price volatility after the weekend-closure. This implies that
increasing auction participants diminishes long market closure uncertainty. Relevant information over

the weekend is incorporated by the participants and does not increase price instability at the market

open.
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Figure 9: This figure shows the posterior means and 95% intervals for the daily intraday patterns. Results are presented
on a standard deviation scale, that is A = exp(e/2). The upper panels correspond to the JSE and the lower panels to
the ASX. The left panels denote the high tertile stocks, while the middle figures correspond to the low tertile stocks.
The right panels chart the difference between low and high tertile Monday open effects.

The high tertile stocks perform (slightly) better than the low tertile stocks in both markets in
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means of opening price stability. That is, increasing auction participants decreases price volatility
shortly after the market open and diminishes Monday open price uncertainty. However, the relative
difference is insignificant. The rate of decrease for the Monday open effects is similar across the two

tertiles, consistent with equal digestion times.

5.2 Price Discovery

Additional to the dispatch of market price stabilisation, measured by the variance ratios, we compare
the level of information absorbency in security prices around the open. Since we are mainly interested
in information efficiency of price discovery at the market open, we examine the intraday price discovery
process during the full trading day by making use of weighted price contributions (WPC). We estimate
the fraction of close-to-close price evolution ascertained for different periods within a trading day. The
intraday periods for which we estimate the percentage of close-to-close price discovery are the following.
The first period runs from 07:00 up to the opening auction start-off. From there, we include 10-minute
periods up to the first hour in the normal trading session. We then add a block from 10:00 to 16:00
and 11:00 to 15:00 for the JSE and ASX, respectively. Subsequently, we divide the extent of time until
15 minutes and 30 minutes prior to the start of the closing auction into 10-minute intervals for the
JSE and ASX, respectively. We then include the last period until the closing auction and the auction
process itself. A clear overview of all intraday time periods for the JSE listed stocks is given in Table

7. For each trading day, exchange, and above mentioned period 7, we define the WPC statistic as

2 || Trs
wee, =3 (F25) - () )
where g denotes the close-to-close log return for stock s and 7 4 corresponds to the logarithmic return
for period 7 for stock s. Hence, r; defines the daily return of stock s, that is the log closing price of
today minus the closed log price of yesterday. Likewise, 7., denotes the difference between the log
price at time t + 7 and time ¢ for stock s. Note that we consider S stocks, where S is the number
of sample stocks for either the ASX or JSE sample. The second term in Equation (20) measures the
relative proportion of the day’s return for stock s. A value close to one implies that the day’s return,
for stock s, is almost fully discovered in period 7. The latter fraction of Equation (20) is standardised
by the first component, which weights each stock proportionally to the absolute value of rs. Hence,
smaller weights are given to stocks that have absolute smaller day returns rs, which assumes that large

close-to-close returns are more informative.

We compute the WPCs for each day and exchange. In a similar manner as Fama and MacBeth

(1973), we obtain statistical inference by the Fama-Macbeth procedure. That is, we average the cross-
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sectional computed WPCs across time and employ the time-series standard errors for significance
testing procedures. The weighted price contribution is a model-free and well-documented measure to
evaluate period by period price discovery. A similar approach is done by Cao et al., 2000 and Ibikunle,
2015, where they compute the proportion of close-to-close price discovery of each 10-minute-period.
A major advantage of the statistic is its simplicity and non-model based structure, which avoids any
assumptions on the sample data. Statistical validation of its performance is done by Van Bommel

(2011) and Wang and Yang (2015).

Table 7: Price Discovery per Time Period

Time periods High Low Overall

JSE ASX JSE ASX JSE ASX Diff.
Pre-open/opening auction
07:00-08:30 0.036 0.052 0.006 0.003 0.026 0.060* 0.034
08:30-08:40 —0.038 0.004 0.011 0.000 —0.023 0.019 0.042
08:40-08:50 0.042 0.010 0.038 0.094* 0.060 0.046 —0.014
08:50-09:00 0.186* 0.416* 0.149* 0.283* 0.139* 0.322* 0.183*
Total 0.225* 0.481* 0.205* 0.380* 0.202* 0.446* 0.244*
Continuous session
09:00-09:10 0.065* 0.082* 0.037* 0.082* 0.058* 0.077* 0.019
09:10-09:20 0.031* 0.056* 0.050* 0.063* 0.042* 0.053* 0.011
09:20-09:30 0.030* 0.024* 0.035* 0.025* 0.033* 0.024* —0.009
09:30-09:40 0.036* 0.020* 0.024* 0.028* 0.035* 0.024* —0.012
09:40-09:50 0.041* 0.010 0.038* 0.022* 0.039* 0.015* —0.024*
09:50-10:00 0.034* 0.024* 0.026* 0.022* 0.027* 0.024* —0.003
10:00-16:00 0.466* 0.266* 0.495* 0.325* 0.475* 0.289* —0.186*
16:00-16:10 0.013* 0.004 0.004 0.002 0.007 0.007 0.000
16:10-16:20 0.006 0.005 0.006 0.014* 0.004 0.011* 0.007
16:20-16:30 0.021* 0.009* 0.024* 0.007 0.025* 0.005* —0.020*
16:30-16:45 0.020* 0.033* 0.038* 0.031* 0.026* 0.031* 0.005
Total 0.763* 0.532* 0.774* 0.621* 0.770* 0.560* —0.210*
Closing auction
16:45-17:00 0.012 —0.012 0.021* —0.001 0.027* —0.006 —0.033*

NOTE: This table presents the average weighted price contribution (WPC) for both the JSE and ASX listed stocks.
Additional to WPC computations based on all stocks within an exchange, the WPCs for both the high and low pre-open
order entry quintiles are computed. The last column shows the difference between the ASX and JSE computed WPCs,
based on all stocks. The time periods in the first column are based on the JSE opening times. For the ASX, the first
period runs from 07:00 to 09:30. From there, we add one hour to all periods up to 10:00-16:00. This period is replaced
by 11:00-15:00. Subsequently, the periods afterwards follow: 15:00-15:10, 15:10-15:20, 15:20-15:30, 15:30-16:00, and the
closing auction from 16:00 to 16:10. The data covers all trading days between 3rd January 2019 and 17th July 2019.
The symbol *indicates the WPCs that are significantly different from zero at the 0.05 level.

Table 7 reports the WPCs for the high and low order flow entry tertiles and all stocks combined
within one of the two markets. The last column presents the difference between the ASX and JSE,
considering all stocks. Approximately 20 and 45 per cent of the daily price discovery occurs during the
pre-open market phase for all JSE and ASX listed stocks, respectively. This presents that information

assembled overnight, for example, due to major American market opening hours, is reasonably incor-
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porated into the stock price evolution during the opening auction. In addition, corporate-information
released overnight also shows an impact on the after-hours trading session, see for example Jiang et al.
(2012). Well-informed traders use the first opportunity to incorporate new information into the stock

prices, which is during the opening auction.

The ASX is superior in relative price discovery during the pre-open hours. Before the market
opens, the ASX discovers a significant 24.4% more of the total daily price evolution than the JSE. A
considerable 18.8 per cent occurs during the final 10 minutes of the opening auction. Approximately 80
per cent of total JSE listed stocks price discovery still does not occur before market open. Therefore,
a large proportion of, approximately, 77% and 3% shifts to the continuous trading session and closing
auction, respectively. Both fractions are significantly larger than the ASX listed stocks. This suggests
that the call design of the ASX aids better in discovering a consensus price before actual trading

starts.

Additionally, four side results arise from this analysis. First, there is a vast disparity between
the high and low tertile stocks in the fraction of price evolution discovered during the total pre-open
phase. This difference is most compelling during the final 10 minutes of the opening auction and for
the ASX listed stocks. The contrast equals 3.7% for the JSE listed stocks and even 13.3% for the
ASX stocks. This clearly illustrates that more participants during an opening auction are favoured
to enhance price discovery before the market opens. The general lack of price informativeness, due
to a scarce amount of active participants, results in opening prices that poorly discovers daily price

evolution.

Although the absolute pre-open phase runs for several hours, the largest proportion of price dis-
covery is exposed during the final 10 minutes of the closing auction (13.9% and 32.2% for the JSE and
ASX, respectively). This leads to our second noticeable result, there is no significant price discovery
until 10 minutes prior to market open. This refers back to the point that some market participants are
suspicious about entered orders, which can still be amended or cancelled until a few minutes prior to
market open. Approaching the market opening increases price information and more market partici-
pants feel at ease to place orders based on the indicative opening price. Furthermore, the first 10 to 20
minutes in continuous trading also contains a large, and significant, part of the total price discovery
process. Approximately 10% and 13% is discovered through the first 20 minutes, for the JSE and
ASX, respectively. This reflects the phenomenon that some market participants withhold information
during the auction process to benefit from mispriced stocks. Their information gets included in the
stock price once they start trading at the market open, resulting in a large proportion of total price

discovery during these first minutes.

Lastly, there is a low average price discovery during the closing auction. For the ASX listed stocks,
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the proportion of price discovery is even negative, while for the JSE stocks a small, but significant, 2.7
per cent. This result is rather striking, as we have seen in our earlier analysis of Section 3, that the
largest relative order flow entry occurs during this period. Figure 6 shows that there is an increase of
15% and 23% in price volatility during the closing auction for the ASX and JSE, respectively. There
is, however, no consensus price discovery during this phase, which supports the claim that traders
prefer to execute against the closing price to achieve benchmark results. The negative value for the
ASX listed stocks records that a small correction of prices involves during the closing auction. After
the normal trading hours, market participants have the opportunity to revise the valuation of stocks
downwards, especially for the high tertile stocks.

Table 8: Price Discovery per Time Period for Mondays

Time periods High Low Overall

JSE ASX JSE ASX JSE ASX Diff.
Pre-open/opening auction
07:00-08:30 0.116 0.097 0.049 0.067 0.024 0.111 0.087
08:30-08:40 —0.065 0.066 —0.038 0.040 —0.023 0.046* 0.070
08:40-08:50 0.139* 0.013 0.043 0.085 0.196* 0.024 —0.172
08:50-09:00 0.048* 0.329* 0.170* 0.268* —0.026 0.318* 0.344*
Total 0.238* 0.505* 0.224* 0.460* 0.171* 0.499* 0.328*
Continuous session
09:00-09:10 0.041 0.099* —0.041 0.104* 0.019 0.083* 0.064*
09:10-09:20 0.031 0.049* 0.112* 0.054* 0.078* 0.053* —0.025
09:20-09:30 0.065* 0.037* 0.029 0.050* 0.046* 0.033* —0.013
09:30-09:40 0.024 0.007 0.003 0.023 0.038* 0.017 —0.021
09:40-09:50 0.030 0.025 0.019 0.018 0.022 0.019* —0.003
09:50-10:00 0.026 0.015 0.050* 0.010 0.022 0.026 0.004
10:00-16:00 0.460* 0.205* 0.527* 0.246* 0.494* 0.232* —0.262*
16:00-16:10 0.006 0.004 —0.005 —0.009 0.010 —0.001 —0.011
16:10-16:20 0.002 —0.010 0.000 0.014 0.003 0.007 0.004
16:20-16:30 0.017 0.013 0.001 0.011 0.023* 0.008 —0.016
16:30-16:45 0.010 0.068* 0.046* 0.029 0.028* 0.040* 0.012
Total 0.709* 0.510* 0.740* 0.549* 0.783* 0.517* —0.266*
Closing auction
16:45-17:00 0.053 —0.015 0.036 —0.009 0.046* —0.016 —0.062

NOTE: This table presents the average weighted price contribution (WPC) for both the JSE and ASX listed stocks.
Additional to WPC computations based on all stocks within an exchange, the WPCs for both the high and low pre-open
order entry tertiles are computed. The last column shows the difference between the ASX and JSE computed WPCs,
based on all stocks. The time periods in the first column are based on the JSE opening times. The data covers Monday
trading days only between the 3rd of January 2019 and 17th July 2019. The symbol "indicates the WPCs that are
significantly different from zero at the 0.05 level.

We conduct an identical analysis for Monday trading days only. Prior to the Monday open, there
is a large time frame where price-sensitive revelations can take place. On the other hand, there is
no preceding price discovery by large American exchanges, such as the New York Stock Exchange

(NYSE) or the NASDAQ, who open several hours postliminary the ASX and JSE open. Table 8
reports the average WPC statistic, similarly structured as Table 7, but for Monday trading days only.
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The main and side results from the previous analysis still apply overall. There are two specifics worth
mentioning. The key aspect is that the superior price discovery during the ASX’ opening auction is
rather due to its auction mechanism than the available price information on other exchanges. On
Mondays, there is still a large percentage of price discovery explained by the opening auction. Despite
both exchanges have no current information from other large exchanges (especially the ASX, which is
one of the first markets to open), approximately 50% and 17% of the ASX and JSE stock daily prices
are discovered before the market open. Second, a large proportion of JSE’s price discovery during the
opening auction is shifted to a 10-minute earlier period. This appearance might be the consequence of
its time ordering priority during the opening auction. Market participants bear a higher probability

of getting their orders filled if entered betimes.

The analyses show that a large proportion of the daily return is revealed during the opening call.
The question that remains is whether it is due to the appearance that individual pre-open orders reveal
more information than orders entered during normal trading hours on the one hand, or if the number
of orders (participants) causes the large price evolution revelation. As shown in Section 3, the relative
order flow is reasonably constant over an average trading day (except for periods that approach the
market close). Therefore, one could expect that individual orders reveal more information for stocks
in the pre-open phase than during the continuous session. On the other hand, low tertile stocks
contain half of the relative pre-open order entry, but the proportion of price discovery for these stocks
is not half the fraction of the high tertile stocks. To examine this we construct the weighted price
contribution per order entry (WPCO), which measures the amount of periodic price return per ratio
of incoming orders in that specific period. We compute the WPCO by dividing each WPC, for all
7, by the weighted ratio of incoming orders during that interval. We define i0o, s as the number of
incoming orders during time period 7 for stock s, and 7o, as the total orders entered during the full

trading day. Then we define WPCO,, as:

S (Insl/ S8 Il ) x (e /)
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By definition, the measure approximates one if all orders include similar information levels. Table
9 reports the WPCO statistic for each period. The table shows that not all available information is
incorporated into the auction price for both the ASX and JSE. The orders entered during the final
10 minutes of the call are very informative and all significantly different from zero. However, the first
20 to 40 minutes into the continuous session are quite informative too, for which the individual order
informativeness diminishes afterwards. This implies that, as the day progresses, orders become less

informative after the accumulated information from the previous day’s close gets incorporated during
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Table 9: Price Discovery per Incoming Order and per Time Period

Time periods High Low Overall

JSE ASX JSE ASX JSE ASX Diff.
Pre-open/opening auction
07:00-08:30 331.91 78.79 —510.21 134.44 155.40 156.76* 1.36
08:30-08:40 —720.06 79.63 1028.62 —106.81 —695.70 19.00 714.70
08:40-08:50 —98.64 —58.77 4087.48 984.08* 1128.13 108.79 —1019.34
08:50-09:00 27.50* 28.05* 20.79* 37.12* 30.27* 34.44* 4.17
Total —459.29 127.70 4626.68 1048.83 618.10 318.99* —299.11
Continuous session
09:00-09:10 8.24* 2.51% 5.21 5.78* 7.45* 3.62* —-3.83
09:10-09:20 3.06% 2.24* 7.81% 4.06% 5.53* 2.57* —2.96*
09:20-09:30 2.36 1.09* 4.06* 1.47* 3.13* 1.20* —1.93*
09:30-09:40 3.37* 0.91* 4.06 1.70* 4.45* 1.24* —-3.21%
09:40-09:50 4.01* 0.52 6.38* 1.31* 4.55* 0.81* —3.73*
09:50-10:00 2.60* 0.95* 2.05 1.18* 2.08* 1.13* —0.95
10:00-16:00 1.16* 0.50* 1.40* 0.58* 1.33* 0.52* —0.81*
16:00-16:10 1.00* 0.08 1.11 0.06 1.33 0.19 —-1.14
16:10-16:20 0.08 0.17 0.07 0.39* —0.17 0.30* 0.46
16:20-16:30 0.88 0.20* 1.23* 0.15 1.39* 0.13* —1.26*
16:30-16:45 0.46 0.17* 1.04* 0.14* 0.70* 0.15* —0.55*
Total 27.21* 9.35* 34.47* 16.81* 31.77* 11.87* —19.90*
Closing auction
16:45-17:00 0.04 —3.56 0.05 —0.08 0.08* —1.74 —1.81

NOTE: This table presents the average weighted price contribution per incoming order (WPCO) for both the JSE and
ASX listed stocks. Additional to WPCO computations based on all stocks within an exchange, the WPCOs for both the
high and low pre-open order entry tertiles are computed. The last column shows the difference between the ASX and
JSE computed WPCOs, based on all stocks. The time periods in the first column are based on the JSE opening times.
The data covers all trading days between 3rd January 2019 and 17th July 2019. The symbol *indicates the WPCOs that
are significantly different from zero at the 0.05 level.

the pre-open and early trading sessions. Still, orders shortly after the market open are very informative
and, hence, not all information was absorbed into the opening price. Perhaps traders avoid trading
in an environment which is dominated by informed traders. Some market participants prefer to wait

until they know at which the market price opens and to respond on the subsequent dynamics.

Second, it is most likely that the ASX’ superior price discovery process during the pre-open hours
is since market participants find it more appealing to participate in their auction. None of the pre-
open periods shows evidence that individual orders are more informative for either the ASX or JSE.

Therefore, ASX pre-open orders are not significantly more informed than these of the JSE.

Lastly, enhanced price discovery in pre-open sessions mainly occurs due to the rise in auction
participation. During the pre-open, there is no clear pattern or significant difference between high
and low tertile stocks within one of the two exchanges. This rejects that individual orders of low
tertile stocks are more informative than high tertile stocks. Surprisingly is that low tertile stock

orders, through the total pre-open hours, have a large, but very noisy, informativeness level. The
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WPCO statistic is roughly 10 times larger than for high tertile stock orders. In combination with
its large spread, it suggests that when there are relatively few auction orders, the impact on price
efficiency is large but inconsistent. Hence, a market participant could influence the opening price
fairly easy, which can be truly price discovering or obscuring. Curiously, the informativeness of the
opening auction orders improves, at least on average, the level of price discovery according to Table
7. Despite their wide spreads, these are informative driven orders. In the short term, these prices are
unlikely to be reversed and the wide spreads during the auction is a result of market makers responding
to the impact of these auction orders. Hence, enticing auction participants shows its importance in
consistent price discovery after the overnight close. To avoid cluttering the reader with many tables,

we exclude Monday tradings days only WPCQO’s, as results are very similar to our full sample analysis.

5.3 Price Discovery Efficiency

Although the previous section shows that price discovery is relatively large during the pre-open and the
start of normal trading, we also expect that the spreads around these periods are large as well. This
implies the existence of price reversals, such that prices at the end have negative price contributions.
Potential price reversals and non-convergence of observed prices could cause noisy prices and, hence,
inefficiency. In order to evaluate the efficiency of security prices in specific inter-day periods, we
compute unbiasedness regressions. That is, for each stock s, intraday period 7, and each day in our

sample period, we estimate the following regression:

T;k =a+bruosemsr + €close—T> (22)

where 7} denotes the log observed close-to- underlying one hour after market open return for stock s.
That is the difference between the previous’ day log closing price (observed) and the log of today’s true
underlying price at open time + 01:00 (model-based). The parameter a corresponds to the regression
intercept, b defines the slope coefficient and measures the ratio of signal to noise, r¢yse_s> denotes the
observed logarithmic return from previous’ market close to today’s end of period 7, and €.pse—s+ 1S the
corresponding noise term. We consider periods 7 for each day up to one hour after the opening of the
market. A regression slope b different from 1 implies that the period’s price is biased and does not
converge to fundamental values. Different from existing studies, we do not assume that the observed
exchange prices converge to fundamental values. We do so by using r} in the regression, which is
based on the true underlying market price, instead of observed returns r,. For the true market price,

we make use of p;, which we assume to be the best quote available.

Analogously to Biais et al. (1999), we compute confidence intervals by using the time series’ stan-
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Figure 10: This figure shows the auction and one hour after market open price efficiency by time periods. The
signal to noise ratio is computed by estimating the following regression for each stock and each time interval: r; =
a~+ b Telose—sr + €close—sr- The upper panel corresponds to the mean of the ASX listed stocks and the lower panel to the
average JSE listed stocks. A coefficient less (greater) than one implies an underestimated (overestimated) average price.

dard errors of the average slope coefficient estimates. Figure 10 charts the mean coefficient estimates
across all stocks, within a specific market, along with the 95% confidence bands. The upper panel
corresponds to the ASX, while the lower panel corresponds to the JSE listed stocks. Additionally, the
average b estimates are presented for the low and high relative pre-open order volume tertiles. Two
main results emerge from this analysis. The first main aspect is that the average opening price is
inefficient for both the ASX and JSE and, therefore, does not accurately reflect the true underlying
security price. The informational efficiency in stock prices is particularly low during the first phase of
the call auction. During the last 10 minutes prior to market open, it rises dramatically. An average
increase from 0.2 to 0.75 and from 0.15 to 0.6 is registered for the ASX and JSE listed stocks, re-

spectively. However, both estimates are significantly different from one at the market open, implying
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inefficient opening prices. Second, the clearing price efficiency is higher for the Australian market.
The average bagx coefficient is significantly higher than b;5g at the market open. Moreover, the level
of price efficiency becomes satisfactory between 15 and 30 minutes after the open for the ASX, while
this is only after approximately 45 minutes for the JSE. Therefore, in means of opening price efficiency

and its convergence speed to fundamental values, the ASX auction process is superior.

There are two additional results worth mentioning. First, note that the observed one hour after
market open returns are significantly different from the true underlying returns. This suggests that
there is still a considerable amount of noise in security prices while continuous trading has already
proceeded for one hour. Second, increasing auction participants shows to increase opening price
efficiency. Although this effect seems rather negligible for the JSE listed stocks, which could be
due to the lack in sufficient discrepancies of auction participants involvement across the two tertiles,
it is significant for the ASX listed stocks. Hence, expanding participation increases opening price

informativeness and efficiency.

6 Conclusion

This paper examined the auction efficiency of two important call designs implemented by, among
others, the Australian Stock Exchange and the Johannesburg Securities Exchange. Although a call
auction is a time-disciplined approach to price evolution, it has certain dynamics that are different
from the continuous market. During the pre-open process, there is an interplay of active participants
who compete for primacy in the order book. Its main goal is to find a true and stable consensus price
before the normal trading hours start. We analysed opening price variances, price discovery during

the pre-open session, and auction price efficiency.

In order to measure price stability and to test price efficiency, we developed a multi-factor stochastic
volatility model of intraday stock prices. We presented direct usage of Markov chain Monte Carlo
methods for parameter and state estimation. We find evidence for multi-scale volatility dynamics,
where we distinct fast and slow factors, and for correlated jumps (both in prices and volatility).
The proposed model in this article is key in extracting the true underlying market price, to derive
a consistent intraday volatility pattern, and to model Monday opening effects. The first is used to
test whether auction prices converge to fundamental values. The second as a measure of opening
price stability, as it reveals the increased volatility during the market opening session, relatively to
the remainder of the trading day. The latter is used in a similar fashion, which enables us to analyse

the increased volatility after the market being closed for the weekend.

Our analysis indicates that auction algorithms are important, but not sufficient in producing stable
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and efficient opening prices. First, price volatility during the market open increases between 18 and
25 per cent, relative to the normal baseline level. Second, over-weekend price uncertainty increases the
opening price instability significantly. Third, still a large proportion of daily price discovery occurs
during the first phase of continuous trading, which suggests that not all available information is
incorporated into the opening price. Lastly, we showed that the call’s determined opening price does
not converge to fundamental values, which suggests an inaccurate reflection of the true underlying

market price. All of these aspects claim current auction processes to be inefficient.

The instability and inefficiency of opening prices are due to the lack of market depth. If all active
participants would compete during the call, then all relevant information would be absorbed in the
auction price, suggesting the discovery of a true consensus price. Moreover, unexecuted orders roll
over to the continuous session, leaving a deep order book. Accordingly, new incoming orders would

not excessively impact the exchange prices, which preserves price stability.

Our analyses showed that increasing auction participants significantly enhance the pre-open price
discovery process and price efficiency. Moreover, it decreases the opening price volatility and, for the
ASX, it ceases the Monday open effect. Relatively many auction participants may be key, along with
the basic principles of the ASX, in producing an efficient auction process. The relative high pre-open
incoming orders tertile for the ASX already covers approximately 50 per cent of the total daily price

discovery during the call period.

The Australian Securities Exchange auction process is superior above the call of the Johannesburg
Stock Exchange. The ASX encourages more active participants to build the pre-open order book. The
pre-open relative order flow and relative volume traded at the auction price are significantly higher.
This results in an enhanced price discovery process, a decrease in opening price volatility, a decrease

on Monday open effect, and an increase in auction price efficiency.

Although the ASX runs the superior call design, it is still unsuccessfully in producing stable and
efficient opening prices, which implies that current auction mechanisms are still not sufficient. The
key improvement in call designs is getting the book building started in a more timely fashion and to
create additional market depth. Enticing active participants, which increases natural order matching,
aids in aligning a true consensus price. This is, stimulating a broad public to participate. One could,
therefore, consider reducing commission rates for early order entry, delay the random open if still a
sufficient stream of orders is entered, prohibit market orders and order cancellation during the auction

process, and restrict order amending.

This study finds that including the latter three basic principles and introducing a random open,
conducted by the ASX, slightly improves price stability and increases price efficiency. More sophisti-

cated research can be done if one has access to a more detailed data sample. For example, if individual
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buy and sell orders are obtained, a true distinction between all principles for opening price determina-
tion could be made. This would enable the researcher to examine the effect on opening price efficiency
for each of the four principles. Second, it would enable the analyst to compute more accurate auction
participation divisions, without the assumption that volume during the pre-open is an indicator for
the number of participants. One could then test auction performances, conditional on the number of
auction participants, more accurately. This paper has, however, shown sufficient evidence suggesting
the inefficiency of current call auction designs. This anomaly does not necessarily involve the execution

algorithm, but rather the encouragement of broad and active auction participation.
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A Example of the ASX Opening Price Settlement Process

In this appendix, we give a detailed, but very simple, example of the ASX opening price settlement
procedure. We make use of the four principles that the ASX uses to determine the opening price

during the auction process. Note that observation times are given in GMT time.

Situation 1: Principle 1 can determine the opening price.

Consider the following order book:

Table A.1: Situation 1

Time Stamp Buy/Sell Quantity Price Time Stamp Buy/Sell Quantity Price

23:50.00 Buy 40 48 23:56.33 Sell 1 49
23:50.23 Buy 30 49 23:57.21 Sell 100 46
23:51.02 Sell 90 45 23:58.11 Sell 100 50
23:51.05 Sell 25 48 23:58.57 Buy 100 45
23:52.55 Buy 10 o1 23:59.21 Buy 70 46
23:54.12 Buy 50 47 23:59.44 Sell 1 47

NOTE: This table illustrates an example of a pre-market order book. Before the ASX opens at 00:00.00, orders can be
placed. This table exemplify such incoming orders. Time Stamp denotes the time of the incoming order and the flag
Buy/Sell shows whether the incoming order was a bid or offer. The table also includes the quantity and the desired
price of the incoming orders. Based on these bids and offers, the exchange determines an opening price. Note that this
example is fabricated to describe principal 1.

We compute a bid/offer box, such that we order the price in decreasing order. We include the

cumulative sum of bids and offers. Hence, we get:

Table A.2: Maximum Volume Matching

Time Stamp Sum Bids Bid Quantity Price Ask Quantity Sum Offers Time stamp

23:52.55 10 10 o1 0 317 -
- 10 0 50 100 317 23:58.11
23:50.23 40 30 49 1 217 23:56.33
23:50.00 80 40 48 25 216 23:51.05
23:54.12 130 50 47 1 191 23:59.44
23:59.21 200 70 46 100 190 23:57.21
23:58.57 300 100 45 90 90 23:51.02

NOTE: This table reproduces the price settlement procedure, based on principle 1. Sum Bids and Sum Offers denote
the cumulative sum of buy and sell orders, respectively. We sort all the order book data in decreasing price level. Note
that, therefore, cumulative bids are increasing and cumulative offers decreasing.

The largest cumulative quantity of bids and offers that can be executed is at a price level of 46.
The 190 offers can be matched with the 200 bids that are available at the price of 46, providing the

greatest number of securities matched of 190. Hence, the opening price is 46. If principle 1 can not
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produce a single opening price, then principle 2 is included.

Situation 2: Principle 2 can determine the opening price.

Consider the following order book:

Table A.3: Situation 2

Time Stamp Buy/Sell Quantity Price Time Stamp Buy/Sell Quantity Price

23:50.00 Buy 40 48 23:56.33 Sell 1 49
23:50.23 Buy 30 49 23:57.21 Sell 100 46
23:51.02 Sell 90 45 23:58.11 Sell 100 50
23:51.05 Sell 25 48 23:58.57 Buy 100 45
23:52.55 Buy 10 51 23:59.21 Buy 110 47
23:54.12 Buy 10 46 23:59.44 Sell 10 451

NOTE: This table illustrates an example of a pre-market order book. Before the ASX opens at 00:00.00, orders can be
placed. This table exemplify such incoming orders. Time Stamp denotes the time of the incoming order and the flag
Buy/Sell shows whether the incoming order was a bid or offer. The table also includes the quantity and the desired
price of the incoming orders. Based on these bids and offers, the exchange determines an opening price. Note that this
example is fabricated to describe principal 2.

We compute a bid/offer box, such that we order the price in decreasing order. We include the

cumulative sum of bids and offers. Hence, we get:

Table A.4: Minimum Non-Matching Quantity

Time Stamp Sum Bids Bid Quantity Price Ask Quantity Sum Offers Time stamp

23:52.55 10 10 51 10 336 23:59.44
- 10 0 50 100 326 23:58.11
23:50.23 40 30 49 1 226 23:56.33
23:50.00 80 40 48 25 225 23:51.05
23:59.21 190 110 47 0 190 -
23:54.12 200 10 46 100 190 23:57.21
23:58.57 300 100 45 90 90 23:51.02

NOTE: This table reproduces the price settlement procedure, based on principle 2. Sum Bids and Sum Offers denote
the cumulative sum of buy and sell orders, respectively. We sort all the order book data in decreasing price level. Note
that, therefore, cumulative bids are increasing and cumulative offers decreasing.

In this situation, there are multiple prices that maximise the trading volume. At the price levels
46 and 47 there is an equal number of securities that can match, 190 at both price levels. At a price
level of 47, the non-matching quantity equals 190 bids - 190 offers = 0. At a price level of 46, the
non-matching quantity equals 200 bids - 190 offers = 10. Hence, the opening price is 47, where the
the least number of order imbalances take place. If neither principle 1 or principle 2 produce a single

opening price, then principle 3 is included.
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Situation 3: Principle 3 can determine the opening price.

In this example, we consider an order book that the order-imbalance is on the buy side. There-
fore, the price is set on the highest price. In case of an order-imbalance on the sell side, the price

would be set on the lowest price. Consider the following order book:

Table A.5: Situation 3

Time Stamp Buy/Sell Quantity Price Time Stamp Buy/Sell Quantity Price

23:50.00 Buy 40 48 23:56.33 Sell 1 49
23:50.23 Buy 30 49 23:57.21 Sell 100 46
23:51.02 Sell 90 45 23:58.11 Sell 100 50
23:51.05 Sell 25 48 23:58.57 Buy 100 45
23:52.55 Buy 10 o1 23:59.21 Buy 10 50
23:54.12 Buy 110 47 23:59.44 Sell 10 451

NOTE: This table illustrates an example of a pre-market order book. Before the ASX opens at 00:00.00, orders can be
placed. This table exemplify such incoming orders. Time Stamp denotes the time of the incoming order and the flag
Buy/Sell shows whether the incoming order was a bid or offer. The table also includes the quantity and the desired
price of the incoming orders. Based on these bids and offers, the exchange determines an opening price. Note that this
example is fabricated to describe principal 3.

We compute a bid/offer box, such that we order the price in decreasing order. We include the

cumulative sum of bids and offers. Hence, we get:

Table A.6: Highest Price

Time Stamp Sum Bids Bid Quantity Price Ask Quantity Sum Offers Time stamp

23:52.55 10 10 51 10 336 23:59.44
23:59.21 20 10 50 100 326 23:58.11
23:50.23 50 30 49 1 226 23:56.33
23:50.00 90 40 48 25 225 23:51.05
23:54.12 200 110 47 0 190 -
- 200 0 46 100 190 23:57.21
23:58.57 300 100 45 90 90 23:51.02

NOTE: This table reproduces the price settlement procedure, based on principle 3. Sum Bids and Sum Offers denote
the cumulative sum of buy and sell orders, respectively. We sort all the order book data in decreasing price level. Note
that, therefore, cumulative bids are increasing and cumulative offers decreasing.

In this situation, both the price levels 46 and 47 maximise the trading volume with a matching
quantity of 190. Moreover, both have an order imbalance of 200 bids - 190 offers = 10. Under these
circumstances, there is a surplus in buy order. Therefore, the price is set on the highest price by
means of principle 3. Hence, the opening price is 47, because the unmatched securities are bid se-

curities. If principles 1 to 3 are insufficient in determining a single opening price, principle 4 is included.
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Situation 4: Principle 4 can determine the opening price.

In this situation, the previous closing price is 45. Therefore, 45 is considered as the reference price.

Consider the following order book:

Table A.7: Situation 4

Time Stamp Buy/Sell Quantity Price Time Stamp Buy/Sell Quantity Price

23:50.00 Buy 40 48 23:56.33 Sell 1 49
23:50.23 Buy 30 49 23:57.21 Sell 110 46
23:51.02 Sell 90 45 23:58.11 Sell 100 50
23:51.05 Sell 25 48 23:58.57 Buy 100 45
23:52.55 Buy 10 o1 23:59.21 Buy 10 50
23:54.12 Buy 110 47 23:59.44 Sell 10 451

NOTE: This table illustrates an example of a pre-market order book. Before the ASX opens at 00:00.00, orders can be
placed. This table exemplify such incoming orders. Time Stamp denotes the time of the incoming order and the flag
Buy/Sell shows whether the incoming order was a bid or offer. The table also includes the quantity and the desired
price of the incoming orders. Based on these bids and offers, the exchange determines an opening price. Note that this
example is fabricated to describe principal 4.

We compute a bid/offer box, such that we order the price in decreasing order. We include the

cumulative sum of bids and offers. Hence, we get:

Table A.8: Reference Price

Time Stamp Sum Bids Bid Quantity Price Ask Quantity Sum Offers Time stamp

23:52.55 10 10 o1 10 336 23:59.44
23:59.21 20 10 50 100 326 23:58.11
23:50.23 50 30 49 1 226 23:56.33
23:50.00 90 40 48 25 225 23:51.05
23:54.12 200 110 47 0 200 -
- 200 0 46 110 200 23:57.21
23:58.57 300 100 45 90 90 23:51.02

NOTE: This table reproduces the price settlement procedure, based on principle 4. Sum Bids and Sum Offers denote
the cumulative sum of buy and sell orders, respectively. We sort all the order book data in decreasing price level. Note
that, therefore, cumulative bids are increasing and cumulative offers decreasing.

Note that, in this situation, both the price levels 46 and 47 (i) maximise the trading volume, (ii)
minimise the non-matching quantity, and (iii) have an equivalent bid and offer surplus of 0. Therefore,
the price is settled by principle 4, which sets the price on the one in the subset closest to the reference

price of 45. Hence, the opening price is 46.
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B Example of the JSE Opening Price Settlement Process

In this appendix, we give a simple example of the HSE opening price settlement procedure. We skip
the first principle, which is given in Appendix A. Consider again situation 2 of Appendix A. This
order book gives us two price equilibria by maximising trading volume. The bid and offer box is given

in Table B.1. Note that, both the price levels 46 and 47 maximise the trading volume. The buy order

Table B.1: JSE’s Time Priority

Time Stamp Sum Bids Bid Quantity Price Ask Quantity Sum Offers Time stamp

23:52.55 10 10 o1 10 336 23:59.44
- 10 0 50 100 326 23:58.11
23:50.23 40 30 49 1 226 23:56.33
23:50.00 80 40 48 25 225 23:51.05
23:59.21 190 110 47 0 190 -
23:54.12 200 10 46 100 190 23:57.21
23:58.57 300 100 45 90 90 23:51.02

NOTE: This table reproduces the price settlement procedure, based on the time priority procedure of the JSE. Sum
Bids and Sum Offers denote the cumulative sum of buy and sell orders, respectively. We sort all the order book data
in decreasing price level. Note that, therefore, cumulative bids are increasing and cumulative offers decreasing. Note
that the Time Stamp is rather different in GMT time for the Johannesburg Stock Exchange. However, for comparison
conveniences, we pretend similar Time Stamps between the ASX and JSE.

of 10 instruments for 46 has been the first order in the auction process in this subset. Therefore, the
JSE‘s auction process sets the opening price on 46. Note that this is different from the ASX, whom

includes the second principle and would set its price on 47.
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C Individual Stock Summary Statistics

Table C.1: Summary Statistics JSE Stocks

Pre-open orders Volume traded 9:00-9:30
Category Ticker Median Mean Rel. (%) Median Mean Rel. (%)
NPN 402.22 557.82 1.17 80.265 91.228 9.80
EXX 238.24 360.84 1.11 25.970 40.200 3.22
BTI 387.70 575.81 0.97 24.233 35.008 3.11
APN 296.40 420.68 0.94 59.572 103.02 5.42
Large BID 180.02 217.89 0.93 26.280 33.540 4.21
CFR 2603.5 3372.6 0.91 145.43 221.19 4.48
MRP 272.70 336.52 0.86 41.394 72.593 4.14
AMS 63.850 82.515 0.84 8.9750 11.202 3.34
AGL 666.28 879.65 0.82 75.720 87.984 5.20
DSY 261.41 320.44 0.79 40.349 61.428 3.71
NED 252.21 293.17 0.79 62.430 81.475 5.35
SHP 324.04 384.74 0.79 119.35 69.469 4.66
ABG 540.83 591.62 0.78 100.50 159.11 4.60
SBK 680.02 739.56 0.77 156.62 194.80 5.44
Middle SOL 284.66 381.19 0.77 60.979 104.25 5.51
TBS 120.07 185.69 0.75 18.018 25.707 3.59
BVT 199.47 268.84 0.75 42.622 56.463 5.18
RMH 430.88 511.93 0.74 70.404 84.589 4.39
VOD 307.35 394.70 0.69 63.915 100.34 4.64
REM 185.63 251.39 0.67 31.203 37.914 3.69
FSR 1728.3 2043.6 0.65 601.47 721.79 6.66
MTN 765.67 979.66 0.63 161.19 258.97 4.10
GRT 1312.6 1566.7 0.61 234.94 280.32 3.67
BHP 680.80 1334.6 0.60 80.883 89.167 5.61
Small SLM 711.05 790.31 0.58 178.26 260.03 4.82
CPI 43.773 71.891 0.58 6.4610 9.3869 3.54
OMU 2183.1 2725.6 0.51 545.25 755.47 5.05
MNP 268.67 331.55 0.46 19.312 27.605 4.15
RDF 2448.2 2780.3 0.46 461.99 603.11 4.01
INP 283.35 462.14 0.38 37.723 47.978 4.38

NOTE: This table presents summary statistics for pre-open order volume and volume traded during the first 30 minutes
of the continuous trading session for the JSE listed stocks. We report the Median, mean and relative percentage of
incoming orders or volume traded. We divide the sample in three subsets, based on its relative incoming order median.
The relative order entering is computed by dividing the total incoming orders during the pre-open hours by the remainder
of total incoming orders that day.
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Table C.2: Summary Statistics ASX Stocks

Pre-open orders Volume traded 10:00-10:30
Category Ticker Median Mean Rel. (%) Median Mean Rel. (%)
MQG 229.06 331.91 3.38 84.472 115.85 14.23
RIO 400.67 517.89 2.23 183.44 236.77 15.61
RHC 66.658 89.793 2.03 32.929 42.636 10.68
CSL 109.71 157.42 1.88 79.557 98.039 13.49
COH 27.582 45.416 1.83 19.208 23.875 14.26
ASX 54.015 79.017 1.66 28.206 36.815 9.59
Large GMG 1532.0 1850.4 1.16 368.79 463.18 11.96
WES 675.70 1023.7 1.15 243.08 312.51 13.23
WPL 680.75 859.16 1.14 255.71 304.60 14.63
WOW 694.93 1007.0 1.05 273.14 385.05 12.13
SHL 294.06 363.05 1.04 104.78 126.58 12.29
BHP 2102.4 3466.2 1.03 907.77 1027.3 17.94
MGR 13386 18070 1.00 1447.1 1808.4 13.08
WBC 2259.1 3756.3 1.00 715.28 1038.3 14.31
TCL 1868.8 2314.3 0.99 497.83 592.87 11.67
TWE 860.74 1029.6 0.99 321.46 409.40 12.91
NCM 805.66 1068.7 0.96 399.83 459.17 18.27
CBA 431.15 780.80 0.93 313.69 415.62 13.88
AMC 1281.9 1961.8 0.92 400.03 579.12 12.68
Middle ALL 379.51 449.89 0.82 185.51 230.91 10.87
NAB 1940.0 2500.6 0.78 725.65 945.84 14.07
AGL 467.85 586.69 0.73 219.42 262.31 13.29
ANZ 1107.6 17914 0.73 532.70 737.77 12.48
S32 20046 25220 0.73 2648.0 3183.1 17.27
FMG 8822.9 10016 0.72 2818.7 3511.7 19.84
GPT 2641.9 3389.8 0.72 527.32 680.10 9.89
SYD 2057.8 2813.8 0.71 533.56 684.04 11.81
APA 478.87 680.16 0.69 158.09 209.65 9.07
TLS 33464 47330 0.66 3264.2 4260.1 14.13
STO 2084.6 2810.4 0.65 618.05 714.94 13.28
SUN 723.89 978.38 0.64 249.18 327.74 10.17
BXB 814.60 1148.7 0.62 343.56 439.37 11.05
QBE 870.50 1332.8 0.62 350.37 422.55 11.05
Small DXS 586.80 913.00 0.61 294.10 391.09 11.01
SCG 6641.8 9647.0 0.54 1178.6 1505.4 9.69
IAG 1275.4 1755.6 0.52 382.38 488.22 9.34
OSH 1035.0 1359.2 0.51 364.60 478.54 11.02
COL 429.53 658.28 0.48 270.08 370.82 12.35
ORG 1234.7 1515.9 0.40 533.37 608.77 10.76
A7) 16274 2288.4 0.30 452.82 590.32 7.59

NOTE: This table presents summary statistics for pre-open order volume and volume traded during the first 30 minutes
of the continuous trading session for the ASX listed stocks. We report the Median, mean and relative percentage of
incoming orders or volume traded. We divide the sample in three subsets, based on its relative incoming order median.
The relative order entering is computed by dividing the total incoming orders during the pre-open hours by the remainder
of total incoming orders that day.
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D Reformulation Steps of Bivariate Conditional Density

To motivate our technique, recall that we have the following observations:

dt :I(Gt ZO)—I(Et <O)
G = log(e})

pr = log(pe — py — Jth)2 — loght = ht + (.

Alternatively, we have the map p; = dyv/Aiexp(p;/2) + pi + J;ZF. The variable (; is log x? distributed.

The main idea is to approximate (; by a mixture of normals. That is

ZP’"J (Gelmy, v )

Furthermore, 7¢5 ~ N(0,03). Given €, we use the Lemma of conditional distributions to show that
n¢,2|€¢ is normally distributed with mean poge; and variance o3 — (po)? = 0%(1 — p?). Note that ¢; =

log(e?) and hence, ¢; = sign(e;)exp((;/2) = dyexp(¢;/2). Thus, M2lde, Gy py 0 ~ N (dipoaexp(Ce/2), a%(l—

p%)). By Bayes’ theorem we have that

[ (Gtyne2lde, p,o2) = f(Gelde) f(ne2]Ces ps 02)

= f(Ce) f(me,2lGt, p, 02)

So using the normal mixture approximation for f(()t), this yields:

9(G, s Py 02) ZPT’J (Gt |my, v3 )N |t | dipoa exp(Gi/2), 05(1 — p )]

Now we follow Omori et al. (2007), where they approximate exp((:/2) by exp(m;/2)(a} + b (G —
m;)), which is argued that it does not depend upon p. Inserting this expression in the above stated

formula gives the desired expression for the bivariate conditional density.
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E Extended Unobserved Components Model

Our total proposed Extended Unobserved Components Model, for each security s, can be written as:

Log prices: pt=p; + exp(%) Ve + Ji ZP
Latent prices: i = Di_1 + 0rri—1

Total volatility: he=x1 + 210+ HB+ It

Slow volatility: e =+ o1(xp—11 — p) + o1u—1,1
Fast volatility: Tt = Qaxi—12 + 02(per—1 + ﬂut,m) + i1 2y
Seasonal: B~ N(0,72U,) - 1(//B = 0)
Announcements: a; ~ N(0,72U,,)

Scale factor: Ap ~ IQ(%, g)

Jump times: Ji ~ Bernoulli(k)

Price jumps: Z0 ~ N (pp, 03)

Volatility jumps: ZP ~ Ny, 02)

where Hy = (Hy1,..., Hi i)', It = (I, o, 10, Iy = (Tyas oy Inx)'s @ = (&, ..., o), 72 and 72 are
smoothing parameters used for the cubic smoothing splines (see Section 4.3) for the seasonal and
announcements components, respectively, and, similarly, Us; and U, are matrices implied by the cubic
smoothing spline priors, explained in Section 4.3. For identification purposes, a zero-sum restriction is
imposed on the seasonal coefficients, noted by 1(¢/3 = 0), where ¢ denotes a column vector containing
ones. Similar to Weinberg et al. (2007), who do not find problems with parameter convergence,
we consider the following prior distributions: o, ~ ZG(0.001,0.001), u ~ N(—6.2,1), <$> ~
Beta(20,1.5), for j = 1,2 and ¢1 > ¢ > 0.5, as proposed by Chib et al. (2002). Furthermore,
o3 ~ IG(0.001,0.001), for j = 1,2, v ~ DU(2,128), p ~ U(-1,1), Kk ~ Beta(1,1000), (up, o) ~
NZG(0.50,10,10,1), (i, 02) ~ NZG(0.50,10,10,1), and 7; ~ ZG(0.001,0.001), for j = s,a, where

DU is the discrete uniform distribution, ZG is the inverse gamma distribution, and NZG is denoted

as the normal-inverse gamma distribution.
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F Full MCMC Algorithm for the EUC Model

In this appendix, we show additional details of the sampling scheme discussed in Section 4.3. The

sampling procedure applies on the Extended Unobserved Components model, for which a full outline

is given in Appendix E. The algorithm is as fvfollows.

1. Initialise 0, x1, X2, w, A\, J, ZP, Z°, ., B and p*.

2. Samphng (797/1'7X17X2) ‘w7f)7d767a by

(a)

Sampling ¢ | w, p,d, 3, .

We sample 9 from its conditional posterior 7(¢ | rest) < f(p | ¥, w,d, 3, a)7(¥) by means
of a Metropolis-Hastings algorithm. We compute the likelihood function f(p | ¥, w,d, 3, &)
by making use of the Augmented Kalman filter in Appendix G. We estimate 9. and X,
as in Equation (13) and propose the estimator 9¥* from the truncated normal distribution
TN ROy, Zy), where R = {1 |1], 2| < 1,62 < ¢1,0%,05 > 0,|p| < 1}. However, evaluating
the marginal likelihood is computational excessive due the inclusion of six heavy constraints.
We, therefore, generate a proposal coefficient from the normal distribution N (9, X,) after
transforming the parameters 91 = log(1 + ¢1) — log(1 — ¢1), J2 = log(1 + ¢2) — log(p1 — ¢2),
V3 = log(a?), 94 = log(o3), U5 = log(1 + p) — log(1 — p), to impose the restrictions on the
parameters. Let 9% be the current point in the algorithm. We accept the proposal ¥* with
probability (9@ 9*|rest), where

4 9 |rest 9|9, %,

(99, 9*|rest) = min{ 1, m( ,|T€S )frn (070, %) )
(9D |rest) frn (994, )

The function fry(s|+) implies the truncated normal density for the proposal estimator 9¥,. If

the proposal candidate is rejected, we pick the current point 9% as the next draw.

Sampling (u,x1,%2) |9, w,p,d, 3, a.

We first sample 7(u|d, rest) ~ N(Q;}rlqnﬂ, Q;}rl), where the variables Q,4+1 and ¢,+1 are
outputs from the augmented Kalman filter, described in Appendix G. Subsequently, we block
sample from 7(x1, X2|p, ¥, rest) using the simulation smoother of Durbin and Koopman (2002),
based on the Gaussian state space model in equations (9) - (11). Additional variable selection

for the Kalman filter recursion is explicated in Appendix G.

3. Sampling ([3,7'82) | P, w, x1, X2, x, 0, p*.

Given the states and parameters, we shape the seasonal coefficients in a Gaussian state space form.

Accordingly, we define a state vector 35 = (S, Bk)’, where Bk is by definition the derivative of S,
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and write
0. = N Br +er1, ex1~N(0,02 1 11 1/3 1/2
Ge =WB+en, eea ~NO) (M) F e = MRV
Bis1 =FBp+er2, era~N(0,72cUy) 0 0 1 /2 1

for k = 1,..., K;, where ¢ and 9,3, and ¢ are given in Equation (15) and (14), respectively. We
then take the Metropolis step in Equation (17) and sample B by means of the simulation smoother.
Hence, we sample (3,7'82) as a block from its unconstrained posterior. To impose the density
zero-sum constraint, we set 8, = By, — (fo:l Br) /K.

4. Sampling (o, 72) | p,w, X1, %2, 3,0, p*.

We shape the Monday open coefficients in a Gaussian state-space form. We define the state vector

af = (o, &y)’, where & is the derivative of a;, by definition. We write

g =hai+¢e1, €1 ~N(0, D02 1 11 1/3 1/2
u ! 1 1 (0.77) , where h = , F = , Uy = / / ,
af = Faj +¢e12, €~ N(0,72U,) 0 0 1 1/2 1

for I =1,...,5, where ¢; and ﬁl2 are given in Equation (16). We then use the Metropolis algorithm
from Section 4.3.2 to sample (a,72) as a block from its posterior.

5. Sampling w | p, 0,x1, %2, ¢, 3,J,ZP, Z", \, p*.
For the purpose to sample w;, we compute the following posterior distributions:

]2

(e — w1 — T2 — my)? }exp{ @12 — p) = da(2 — p) — R

. Py
m(wy = jlrest) —exp{ — }
: 205(1 — p?)

2
v; 2v;

for j = 1,...,10 mixture distributions, where p; = py — s¢ — az and R;; = dposaj + bj(pr — xe1 —
xo —myj)lexp(m;/2). We sample the discrete coefficients w; by the inverse transformation method,
implied on the above stated equation, for ¢ = 1,...,n — 1. For the case of ¢ = n, we replace the

second exponential term by one.
6. Samphng ()‘7 V) | 07 b, X1, X2, J7 Zp7 ZU; 187 a,w, p* by

(a) Sampling v |0, v,x1,%x2,J,ZP, Z", B, o, w, p*.
We use the Metropolis step of Stroud and Johannes (2014) to sample from 7 (v|rest), given in
Equation (18).

(b) A|v,0,v,%x1,x9,J,2ZP, 2", B, o, w, p*.
Given v and the rest of the parameters and states, we can individually sample the scale mixture

components from w(A\|v, rest) for t = 1,...,n. We draw (A\¢|v, rest) directly from its posterior,
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which is inverse gamma distributed, as given in Equation (19).

7. Sampling (J,ZP,Z") | p, X1, X2, A, K, [ip; [lv;, Tp, T, P

Conditional on the other states and parameters, we could write that (wy | J, Zy, rest) ~ N (JpZy, 3¢),

where
Pt — Pi z? Acexp(hy) poav/Aexp(hy/2)
we = 9 Zt = 5 Et =
Typ12 — b — G222 — 1) Zy poav/Aexp(hy/2) (1-p*)o3

We use conjugate priors for J; and Z;, as specified in Section 4.3.4. The entire conditional for jump

indicators J; and the jumps sizes Z; are

k(W iz, Xy + 22)
(1 = K)p(we; 0,5¢) + kp(we; pz, Be + X))

(Ze | Iy =1,rest) ~ N((S7H+ 2207 S o + 57 ), (B0 + 22070,

Pr(Jy=1]rest) =

8. Sampling (k, tp, ftv, 0p, 0v) | J, Z.

To draw from 7(k, pp, ftv, 0p, 0y | J,Z), we assume conjugate priors, as specified in Section 4.3.4.

The full conditional for the aforementioned jump parameters are

(k| J,2Z) ~ Blag, b),

(py 03 | 3, Z) ~ NIG(my, ¢, ap, by),

(o, 02 | J,Z) ~ NIG(m}, ¢t al, bY),

vy vy vy v

where, for j either p or v for notational conveniences,

n n n
a,’g:aK+ZJt, b,*{:b,{—i-n—ZJt c’;:cj—l—ZJt,
=1 t=1 t=1
n . n n .
cym; = cjm; + Z 71, a; = aj + Z Ji, b; = bj + qm? + Z(JtZg)Q — c;k»m;-‘2.
t=1 t=1 t=1

9. Samphng p* |p7X17X27 Or, Wy A7']-7 Zpa Z,UwB? o

Given all the other states and parameters, we can write equations (3)-(4) as a Gaussian linear state

space model. We can write the model as

U =p; +uga, w1 ~N(0,Ty),

2
p:;+1 = p: + ut,27 Ut72 ~ N(Oyo-r)7
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where ¢, = pi—J; ZF, Ty = exp(ht) ¢, and o2 is fixed. We, therefore, can use the simulation smoother
of Durbin and Koopman (2002) to sample the latent market price p; from its full conditional. For

this purpose, we initialise pj ~ N (0, ¢, 02), where cp is a large constant.

10. Sampling o2 | p*.

For 02, we assume the conjugate prior 02 ~ ZG(a,/2,b,/2). We can sample from the full posterior

distribution 7(co2|p*) by retrieving a draw from
n—1
o2 ~ TG (ap +1/2, [be + clpi + > i — 9i)?]/2).
t=1

G Augmented Kalman Filter

In order to find ¥ that maximises the conditional posterior 7(9 | rest), we require to evaluate the
likelihood function f(p | ¢, w,d, 3, a). For this purpose, we make use of an Augmented Kalman Filter
and perform likelihood computations, based on the study of De Jong (1991). Interim, assume fixed

parameters ¥ = (¢1, ¢2, 02,02, p)" and consider the state space model

Yt :XtA+Z£§t+Gtut, for t= 1,...,71,

£t+1 = WtA+Tt€t+HtUt, for t= 07]-5"‘7”)

where X;, Z;, Wy, Ty, Gy, Hy, for t =1, ...,n, Xo, Hy are constants, and where
- AZl_"L/Ja IU’NN(Cvc)v
oy N(0,1) for t =0,1,...,n,

— a9 =0, and p is uncorrelated with the innovation terms u;’s.

In our approximated linear Gaussian state space model, given by equations (9)-(11), we fix Z, = (1, 1)/,

¢1 0 0 o1 0

Gt = (1, 0,0), Ty = , Hi= , l:(l,l,O)/,
0 ¢ o2di b}, Vi, exp(me, /2) 0 02v/1 — p?
0 0 0 ,
Wy = , Xt =(my,,0,0), L=1(0,0,1—¢3) fort=1,...,nand, as

S Zy  oadipal, exp(my, /2) 1

0 0 0
initialisation, Wy = . Moreover, pu ~ N (o, O'ZO), where the priors pp and 0;240

0 0 1/(1—¢2)
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are hyperparameters. Also note that y; corresponds to p; and & = (x41,22). When we fix u, we
can apply the standard Kalman filter. We initialise é1|0 = WoA and Pyp = HyH{. The Kalman filter

recursion follows

Dy = Z{Pyy_1Zs + G4GY, Ky = (TiPy—1 2 + HGH)D;!
L =T, — K Zj, Py = TyPye 1 Ly + Hy(H, — K,Gy)'
er =y — XeA — Ziy, i1 = Wil + Ti&y 1 + Kuey,

for t = 1,...,n. Additionally, we consider the following equations to extent towards the Augmented

Kalman filter:

Jt =y — Xel — Zéf;jt_la Eipape = Wil + Ty + Kefe
Ft == XtL - ZéE:\t—D E:—i—l\t - —WtL + TtE:\t—l + KtFt,

for t =1,...,n, where fﬁo = Wyl and E’{‘O = —WyL. It is computational efficient to note that
et = fr — Fip, Sev1lt = Stpape — Srpaph

In order to find the parameters ¢ that optimise the posterior density 7(® | rest), we have to maximise

the (log) likelihood function. Note that the the log likelihood function, given p, can be written as

logf(y | 1) = —%{nlog?w + ) log|Dy| + > fiDife — 2(2 Ft/Dt_lft>,H + u’(z Ft/Dt_lFt>N}'
t=1 t=1 t=1 t=1

Furthermore, the posterior distribution of u, conditionally on y, is normally distributed with mean

Q;}rlqnﬂ and variance Q;}rl, so that is p ~ N(Q;}rlqnﬂ, Q;il), where
G =a+FD fi, qn=C""e, Qui=Q+FD'F, Qi =C"",
for t = 1,...,n. Hence, to obtain the full likelihood of y, we can write

logf(y) =logf(y|p) +logm(u) — logm(u|y)

1 n n 3 B 3
= constant — 5{ Z log| Dy| + Z fiD; L+ dC7 e +10g|Qni| — q;HQnilan}.
t=1 t=1
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Figure 11: This figure presents samples from the posterior distributions, based on our simulation study. For each pa-
rameters, we report the sample paths (top), sample autocorrelations (middle), and posterior density functions (bottom).
The red line in the top and bottom figures represents the true parameter value. The red lines in the autocorrelograms
correspond to the 95% confidence intervals.




