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Abstract
This paper provides a comparative analysis of techniques used to improve the quality
of multifactor attributions on constrained long-only portfolios. Our research includes a
Weighted Least Squares (WLS) approach, the derivation of constrained factor mimick-
ing portfolios as well as a time series- and a non-linear adjustment approach. Based on
the multiperiod attribution of a representative portfolio over the timeframe from 1997
to 2019, we find that significant improvements can be achieved by applying both adjust-
ment methods since these better align the attribution with the constrained investment
process. In addition, using a shrinkage estimator in the WLS approach enhances the

widely used market cap weighting scheme by adding further statistical robustness.
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1 Introduction

The Quantitative Equities Team of APG Asset Management applies the multifactor attribu-
tion methodology to explain the return of their portfolios. By doing so, the aim is to obtain
more insights what the main drivers of the past portfolios’ performances are. This is espe-
cially relevant to APG for monitoring and reporting about the realized portfolio performance
as well as for identifying promising directions for further research. With the rising popularity
of passive products such as Exchange Traded Funds (ETFs) it becomes increasingly impor-
tant for active managers like APG to attribute their portfolio performance properly. Using
the multifactor attribution approach, active quant managers are able to show the outcome
of their systematic strategies and can demonstrate their added value to clients. Moreover,
the recent increasing impact of ESG (Environmental, Social and Governance) policies on the
investment portfolios has additionally stressed the need for good performance attribution.
In general, conducting the multifactor attribution technique on the realized returns of a
portfolio results in a decomposition thereof into a part which is explained by different factors
of the used linear risk model (factor contribution) and an unexplained part which represents
idiosyncratic returns (residual contribution). Put into a different perspective, we implicitly
aim to explain the attributed portfolio as a linear combination of Factor Mimicking Portfolios
(FMPs). These are implicitly constructed unconstrained portfolios which replicate and earn
the returns of the corresponding factors in the factor model. For the explanation of the
performance of unrestricted long-short portfolios this methodology already results in a clean
decomposition of the returns, leaving only an insignificant residual portion unexplained if
the risk model is correctly specified. However, pension funds like APG usually construct
their portfolios subject to different restrictions such as long-only, turnover, liquidity or ESG
constraints due to regulations or client related reasons. Since such a restricted portfolio
is naturally less diversified than an unrestricted one, a larger residual contribution as a
result of the multifactor attribution is in this case to some extend expected. Nevertheless,
we usually observe in the attribution of a constrained long-only portfolio a systematical
negative residual contribution of a sizeable magnitude which cannot be fully justified by

stock-specific returns and hence, must be related to the portfolio construction itself. As an



incorrectly overestimated residual contribution reduces the informativeness and quality of
the attribution, this represents a significant issue in practice.

In this paper, we investigate and compare different methods that can be used to improve
the multifactor attribution when the examined portfolio is constructed subject to real-world
constraints. We apply these methods on a portfolio based on a comprehensive dataset which
includes stock-level data from January 1997 to February 2019.

Firstly, we investigate the usage of Weighted Least Squares (WLS) instead of OLS in the
estimation of the factor returns in the attribution. As described in Litterman (2003) and
Barra (2008), this is a commonly known improvement which aims to correct for heteroscedas-
ticity in asset returns in order to obtain more accurately estimated factor returns. In this
approach, we examine the costs and benefits of using whether statistically robust or represen-
tative regression weights. We find that using the representative market capitalization weights
implicitly results in more realistic FMPs which also translates to an on average 10% lower
residual contribution. However, our results suggest that by using the shrinkage estimator by
Ledoit and Wolf (2003a) we can add favourable statistical properties to this weighting scheme
and conclude that this estimator constitutes an improvement on the widely used market cap
weights. Our research contributes thereby to the existing academic literature by proposing
this enhanced weighting scheme as well as by conducting an in-depth analysis of the implicit
FMPs in order to obtain a better understanding of how different regression weights affect the
attribution.

Moreover, we investigate an approach in which we directly derive the FMPs subject
to real-world constraints in order to obtain more realistic factor returns. As argued in
Vandenbussche and Stubbs (2018), the unconstrained standard FMPs are not well able to
explain a constrained long-only portfolio which is one reason for the excessively large residual
contribution that we observe in practice. Hence, we examine if we can obtain more realistic
FMPs with this approach that represent the opportunity set of a constrained long-only in-
vestor better than the unconstrained FMPs which we use in the standard attribution. Also,
we assess whether the application of these restricted FMPs thereby translates to more in-
formative attribution results. We find that using tight constraints that exactly represent

real-world restrictions indeed result in highly realistic FMPs which, however, lead to inaccu-



rate factor estimates and offset the benefits of the more feasible FMPs. We detect significant
improvements when using strongly relaxed constraints which suggests a trade-off between
deriving the FMPs as realistic as possible by using tight constraints and ensuring that the
underlying optimization problem still leads to reasonable solutions close to the standard
FMPs by relaxing the constraints strong enough. This leads us to the conclusion that this
approach already yields promising results but is still subject to further research in order to
find a balance in the mentioned trade-off. With this analysis, we extend the work of Melas,
Suryanarayanan, and Cavaglia (2010) by explicitly formulating and investigating real-world
constraints as conditions in an optimization problem and by investigating the effect of relax-
ing them.

A further issue that we analyze is the observation of a large negative correlation between
the time series of the residual and factor contributions in the attribution of constrained
portfolios. As a large correlation contradicts the property that true idiosyncratic returns are
unsystematic, we investigate a time series regression based approach as proposed by Stubbs
and Jeet (2016) which aims to mitigate this correlation and to adjust the factor contributions
accordingly. Applying this approach in the attribution of our example portfolio, we find that
the adjustment indeed results in a substantial decrease of the correlation towards zero, while
also reducing the residual contribution itself. In addition to that, we refine this approach by
conducting the time series regression over a rolling window and thereby allowing for a time-
varying adjustment. This refinement leads to further improvements in terms of a reduction of
the magnitude of the residual contribution by 8% and is therefore preferable to the standard
adjustment.

Moreover, we study problems that arise with the assumption of linearity of the applied
factor models. In general, the linear model is not well able to capture non-linear properties
of asset returns which is as stated in De Boer (2019) another source of the overestimated
residual contribution. Consequently, he proposes an adjustment approach which re-attributes
the residual contribution based on the squared magnitude of each stock’s exposure to each
factor. In our analysis, we find that this approach only provides little insights into the real
drivers of the residual contribution which is why we propose a refinement of this approach by

adding further conditions to the adjustment. We conclude that the refined method in which



we only take the 10% largest and smallest factor exposures (« = 0.1) for the adjustment into
account, results in the most substantial improvements, i.e. a reduction of the magnitude of
the residual contribution by 35% on average.

In general, we find that combinations of the investigated approaches lead to further im-
provements in the quality of the attribution in comparison to their single applications. We
conclude that the regression with the WLS shrinkage estimator with the consecutive us-
age of the refined Non-Linear Adjustment (« = 0.1) results in the overall smallest residual
contribution and the best representation of the properties of true idiosyncratic returns.

Finally, we conduct a simulation study in which we run the attribution based on simu-
lated return data with different empirical characteristics such as heteroscedasticity or non-
linearties. We use this study to obtain a more precise evaluation of the attribution results
and to identify possible reasons for the issues that we encounter in the attribution of empir-
ical data. We find that omitted factors in the linear model as well as non-linear properties
of asset returns are possible sources for these issues. Moreover, we justify the usage of the
investigated approaches by showing their ability to increase the estimation accuracy in the
attribution and hence, to increase the quality of the results.

The outcomes of this paper are beneficial for the Quantitative Equities Team of APG
in various ways. First of all, the proposed metrics provide an easy and extendable way to
measure the quality of an attribution and to assess the improvements obtained by applying
different enhancement methods. Furthermore, our research on the FMPs enables APG to get
a deeper understanding of how these can be better aligned with the underlying investment
process of the attributed portfolio in order to obtain more realistic results in the attribution.
The generality of these analyses also facilitates further extensions of the research and the
application on different portfolios. Finally, our results show how the examined approaches
can improve the attribution on APG’s portfolios significantly. This allows a more accurate
identification of the main drivers of past portfolio returns which is amongst others essential
for performance reviews and for research purposes with the aim to enhance the portfolios’
future performances.

The remainder of this paper is organized as follows. We begin with a description of

our datasets that we use in the analyses in Section 2. In Section 3 we elaborate on the



methodology of the multifactor attribution and the approaches to improve it. Moreover,
we describe the setup of the simulation study in Section 4. Afterwards, we analyze the
attribution results based on simulated asset return data in Section 5 and on empirical return

data in Section 6. Finally, Section 7 concludes.

2 Data

This section describes the data used in the research. The main dataset analyzed in this paper
is provided by APG, including a variety of comprehensive stock-level historical datasets of
the constituents of the MSCI World Index!. This is a broad global equity index that includes
approximately 1600 large- and mid-cap constituents of 23 developed markets at each point
in time. The available datasets cover a 22-year period of monthly data from January 1997 to
February 2019 (overall 266 data points). In the remainder of this section, we described the

different types of data that are used in the research paper.

2.1 Return data and market capitalization

Firstly, we utilize monthly return and market capitalization data of the members of the MSCI
World. Table 1 shows the time series averages of the cross-sectional summary statistics of
these data over the entire period. Here, the separation of the return statistics for larger and
smaller cap stocks shows a higher average return volatility and dispersion among small cap

returns.

IMSCI World Index: https://www.msci.com/world



Table 1: Summary Statistics

Mean SD P25 Median P75

Returns small caps (in %) 0.76  9.78 -4.66  0.51 5.82
Returns large caps (in %) 0.73 7.74 -3.79  0.62 5.13
Size (in bn USD) 1230 25.35 2.33 4.82 11.29

Notes: This table shows the average summary statistics of the MSCI World dataset including the monthly returns and market
capitalizations of the constituents across the time period from January 1997 to February 2019. The monthly return statistics

are shown separately for the companies with the 50% smallest and 50% largest cross-sectional market capitalizations.

The market capitalization data of each stock is given in US-Dollars. It indicates a strong
positive skewness caused by several index constituents with extremely large market capi-
talizations. Amongst others, this data is used to calculate the weight of each asset in the
capitalization weighted MSCI World Index at each point in time. This index constitutes the

benchmark in this research paper to which the considered portfolio is compared.

2.2 Factor Exposures

In order to estimate the factor returns in the first step of the attribution, we use numerical
factor exposure data on stock-level which are available in APG’s database. These exposures
are constructed from financial stock attributes following the standardized definitions in Barra
(2008) of the Barra GEM2 and include the commonly used World, Volatility, Momentum,
Size, Value, Growth, Liquidity and Leverage factor. Each stock has a unit exposure to the
World factor, which economically represents the aggregate up-and-down movement of the
global equity market. As shown in Table 2, the exposures to all other factors are standardized
to have a mean of 0 and a standard deviation of 1 in order to provide comparability between
different factors. Moreover, the cross-sectional exposures are nearly symmetric distributed
around the mean as indicated by the 10th and 90th Percentile (Pyp and Pyy). Looking further
in the tails of the distributions, we find especially for the Volatility and Leverage factor fat
right tails.



Table 2: Summary Statistics

Mean SD P1 P2_5 P5 PIO Median Pgo P95 P97<5 ng

World 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Volatility 0.00 0.86 -1.55 -1.39 -1.23 -1.02 -0.10 1.16 1.63 2.01 243
Size 0.00 0.75 -147 -1.28 -1.11 -091 -0.08 1.10 1.40 1.52 1.68
Growth 0.00 084 -2.09 -1.61 -1.25 -0.90 -0.07 1.01 1.55 2.07 2.55

Liquidity 0.00 069 -1.73 -1.35 -1.08 -0.81 -0.01 085 1.15 143 1.78
Leverage 0.00 09 -1.36 -1.20 -1.12 -1.00 -0.27 1.53 2.08 232 2.56
Value 0.00 082 -1.81 -145 -1.19 -0.93 -0.07 1.04 145 1.84 2.29
Momentum 0.00 0.76 -2.16 -1.67 -1.29 -0.92 0.04 0.88 1.16 1.44 1.81

Notes: This table shows the time series average of the cross-sectional mean, standard deviation, i-th Percentile (P;) and
median of the numerical Factor Exposures of the MSCI World constituents in the time period from January 1997 to February

2019.

2.3 Portfolios

A central role in this research paper plays the portfolio on which the attribution is conducted.
As common in academic literature, we consider the active weights of each asset in the portfolio
which are obtained from a backtest of the portfolio strategy on the given dataset. Here,
the active weight is calculated as the difference between the portfolio and the benchmark
weight which is in our analysis represented by the MSCI World Index. We investigate a
stylized long-only portfolio that is constructed based on a trading signal combining the Barra
Momentum and Value factor (Barra, 2008) and whose investable universe covers the point-
in-time constituents of the MSCI World Index. This portfolio is rebalanced monthly and is

optimized for the following strategy, including several real-world constraints:



min expected trading costs
s.t.  Long Only
Target Active Exposure of 22% to a composite signal consisting of
Barra GEM2L Momentum and Value

Active Weight Limit of 0.5%

Active Region, Country, Sector and Industry Limits of 2%

Active Beta Exposure Limit of 2%

Active Volatility Exposure Limit of 5%

Trade Limits of 50% of the Average Daily Volume

in order to resemble the same challenges which are faced in the performance attribution

as for the real APG portfolios. Note that due to the country and industry constraints the
contribution of these groups on the portfolio’s active return are likely to be limited. Therefore,
we exclude these groups from the factor model in the later attribution analyses which allows
an easier interpretation of the obtained results due to the model’s parsimonious structure.
As the portfolio is tilted towards the Momentum and Value factor, we denote these in the
further analyses as ‘Alpha Factors‘, whereas the others are summed up as ‘Risk Factors‘.
Figure 1 shows the factor exposures of the active portfolio across the entire time period.
It is apparent that the portfolio has its largest exposures to the Alpha factors, but also to
Liquidity and Leverage. Also, the active exposures can be strongly time-varying, as it can
be seen at the Momentum factor. Furthermore, the negative exposure to the Size factor
suggests that the portfolio takes many active long positions in small cap stocks as well as

short positions in large cap stocks.



Figure 1: Active Portfolio’s Exposure to Factors
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Notes: This figures shows the exposure of the active portfolio to each of the factors of the risk model over the time period

from January 1997 to February 2019.

3 Methodology

In this section, we elaborate on the multifactor attribution technique which is used by APG
to attribute their portfolio performance and explain the issue that arises with it. Moreover,

we describe the investigated methods used to obtain a more informative attribution.

3.1 Multifactor Attribution

The central technique which is used in this study is the standard multifactor attribution
method. This method aims to measure in each single period the effect of the portfolio’s
exposure to certain factors, such as momentum or value, or groups, such as industries or
countries, on the portfolio’s realized returns. After specifying a set of factors that are used
to explain the cross-section of stock returns in the n dimensional vector ry, we can formulate

a linear factor model as
ry = tht + & with E¢ ~ (O, U?In) . (].)

9



Here, X; denotes a n x m matrix with factor exposures of each of the n stocks to the m
factors of the model at time ¢ and I,, represents the identity matrix of size n. Moreover, f;
is a m dimensional vector of factor returns and &; denotes a n dimensional vector of residual
asset returns with a constant variance o2. In the first step of the attribution, we estimate

the factor returns with a cross-sectional ordinary least squares (OLS) regression as
fLons = (XIX,) ' Xir, (2)

In order to achieve a realistic estimation that reflects the investment opportunities of the
investor at each time ¢ we only include stocks in the regression which have been in the index
universe at that point in time. Furthermore, the estimated factor returns depend on the
selected factor model as well as the estimation universe. Hence, it is crucial to use a correctly
specified factor model and a representative estimation universe in order to obtain informative
attribution results. Each of the estimated factor returns can be interpreted as the return of
an unconstrained long-short portfolio that has a unit exposure to the corresponding factor
and zero exposure to all other factors. These are called factor mimicking portfolios (FMPs)

which implicitly consist of each asset with the weights
WP < (XIX) K] 3)

As shown in Melas et al. (2010), the FMPs also have the property of being minimum
variance portfolios with a minimized stock specific risk.
After having estimated the factor returns, we calculate the m dimensional vector E; which

includes the active portfolio’s aggregated exposure to each factor with
E, = X/w} . (4)

Here, w# denotes the active weights of the portfolio in which the investor’s positions differ
from the benchmark weights in each asset. Hence w4 is calculated as the difference between

the portfolio weights w? and the benchmark weights w?
wi=w -—w’ . (5)

We use the active weights in order to explain the additional performance obtained through

actively taking diverging positions in comparison to the benchmark. With the obtained

10



active portfolio’s factor exposures E; and the estimated factor returns f,, we compute the m

dimensional vector of factor contributions as the point-wise product
FCON, -E,of, . (6)

The factor contributions FCON; represent the parts of the portfolio return that can be
explained by each of the m factors of the model. Moreover, we denote the difference between

the active portfolio return and the sum of the factor contributions as the residual contribution

RCONt Wt I't E,’:ft
= W?Irt ?Itht

= Wt (I‘t tht)

Ala
=W, & o,

which results in the decomposition of the active portfolio return
wi'r, = Eif, + RCON, . (8)

All calculations are repeated for each time ¢t over the entire period and in the end, the
results are compounded for the final attribution results.

In this decomposition, RCON; represents the stock specific portfolio return which is left
unexplained by the attribution model. Alternatively, RCON; can also be represented as the

return of a residual portfolio wj*® rather than with the active portfolio weights:

RCONt Wt I't E;ft
_Wt rt E/ FMP,I‘t

= (w;' — Eyw{M)r,

= (W?, - E;Wf]\"[P,)(tht + f‘ft) (9)
— W:es/tht +W:65’€At
—_——
-0
— W;eslgt ’

with we’ = wi’ — E/wI™F’ denoting the weights in which the active portfolio differs from

the optimal portfolio as assumed by the FMPs of the underlying factor strategies. This

11



formulation of RCON; also makes the origin of the large residual we obtain in the attribution
of constrained portfolios clearer. If we add more constraints as well as a different optimization
objective in the construction process of the active portfolio, it naturally leads to significantly
differing positions from an unconstrained minimum variance portfolio such as the FMPs.
However, in the multifactor attribution, we try to implicitly explain the active portfolio w!
as a linear combination of the unconstrained FMPs. Therefore, we obtain for a long-only
portfolio with real-world constraints a wj*® with much larger weights and a larger RCON;
than in the attribution of an unconstrained long-short portfolio as mentioned in Section 1.
As described in Clarke, de Silva, and Thorley (2002), RCON, can be interpreted as a
combination of stock specific noise (¢;) and weights which could not be taken by the investor
due to investment constraints (w}). To obtain more informative attribution results with
lower RCONy, it is therefore crucial to investigate the representativity of the FMPs for a
restricted investor as well as the two components of the RC'ON; which consists of the residual
portfolio and the estimated residuals from the cross-sectional regression. For that, we examine

different approaches that aim to align the attribution method better with the underlying

construction process of the active portfolio and which are described in the following sections.

3.2 Weighted Least Squares

Instead of estimating the factor returns in cross-sectional OLS regressions, it is common in
practice to use a Weighted Least Squares (WLS) approach in order to be able to account
for heteroscedasticity and thereby obtaining more robust estimates. Using WLS, we assume
that the errors e, of stock i are independently distributed with E[e;;] =0 and Var(e;) = 02

and we estimate the transformed regression model

1 1 1
Wir, = WX, + Wie, with W, = diag(wig, wat, ..., Wit ) (10)
10
r; =X/ +¢;
where w;; denotes the regression weight on each observation at time ¢. This transformation

in turn leads to the estimated factor return
fowes = (X7'X)) ' X ey

(11)
= (X;WtXt)_IXQWtI't

12



Consequently, the FMPs implied by the WLS regression are given as
Wf]\/jpl = (XQWtXt)_lXQWt . (12)

As derived in Greene (2003), using the inverse of the residual variances as regression
weights leads hereby to the most robust estimates of the factor returns ft,WLS with the

estimation error

) , L o111
Var(fwrs) = (X{W X;)™!  with W, = diag(—, =5 =) - (13)
01 O3t Ont

For this approach it is necessary to estimate the variance of the errors e; of which the
inverses are then used as regression weights. While the standard estimation method as
described in Amemiya (1985) is a statistically consistent procedure, one can also use other
data such as the market capitalization as a proxy for the error variance in order to put
more emphasis on more certain observations. Using company size data has the advantage of
obtaining FMPs that better reflect the opportunity set of a restricted investor but comes at
the cost of less accurate estimates of the factor returns. Applying WLS therefore leads to the
objective to find a weighting scheme that constitutes the best balance in the trade-off between
estimation accuracy and representativity. In order to compare the benefits and shortcomings
of different regression weights on the multifactor attribution, we examine various statistical
values resulting from the estimation. As it is crucial for an informative attribution that
the estimated factor model has a high explanatory power for the asset returns, we firstly
investigate the R? of the cross-sectional regression as a measure of the model fit. Moreover,
we also analyze measures to gain more insights in the implied FMPs such as the effective
number of stocks ENF of a portfolio P which is defined in Brandes (2004) as
1

Z?ﬂ(wft)z

The value of this measure ranges between 1 and the number of stocks n in the estimation

ENY = (14)

universe, where a low EN/ refers to a high level of concentration. A high concentration means
that a few assets have extremely large positive or negative weights in the portfolio, which
suggests a low investability of the FMP in practice due to several restrictions. Furthermore,

we also investigate the correlation between the market capitalization of companies and the

13



absolute value of their weights in each FMP. Here, a positive correlation would be more in line
with a realistic portfolio, since large-cap companies can typically be stronger underweighted
in an active long-only portfolio than small-cap companies.

We examine and compare two commonly used regression weights as well as a combination

of both, which are described in the remainder of this section.

3.2.1 Robust estimation

In order to obtain a consistent estimate of the diagonal residual variance matrix, we firstly
follow the standard two-stage regression approach as described in Amemiya (1985). In the
first step, we obtain the residual returns &; of each stock ¢ from the cross-sectional OLS
regressions of the linear factor model in Equation 1 at each time ¢. Afterwards, we estimate
the residual variances o2 for each stock with the squared residual €4 and use their inverse as

regression weights

1 1 1
W, =diag( 5= =) - (15)
& &5 Ent

As observations which are estimated with a low residual &;; would receive extremely large
weights in this approach, we apply a cut-off rule to avoid possible outliers. For that, we firstly
define the Interquartile range I(Q); as the difference between the third and the first quartile

of the estimated weights in ¢
1Q: = Q3(Wy) = Qu(Wy) . (16)
We then limit the weights to an upper (ub) and a lower (Ib) bound, given as
ub, = Q3(W,) +2-1Q, and Ib=Q(W,)-2-1Q, . (17)

The shortcoming of this standard approach is that it only takes the residuals of the
considered point in time ¢ into account. However, as we conduct the factor attribution over
several periods, we obtain time series of the residuals which we can use to get more accurate
estimates of the residual variances oZ. As volatility clustering is one of the stylized facts
of financial time series (Mandelbrot, 1963), we assume that these variances are only slowly
time-varying for each stock. Therefore, we estimate them as the variance of the residuals in

a rolling window of the past 60 months. This approach leads to a better incorporation of

14



the relevant information available at each point in time and also has the advantage of only

slowly varying regression weights in comparison to the single period estimation approach.

3.2.2 Market Capitalization Weights

As described in Barra (2008), it is common in practice to use the square root of the market
capitalization C'ap; of the companies in the estimation universe as a proxy for the inverse of

the error variances:

W, = dmg(\/caplt, \/CGP% oV Capy) (18)

This weighting scheme reflects the phenomenon that small-cap stocks tend to have larger
error volatilities than large-cap stocks and therefore, should obtain less weight in the cross-
sectional regressions. Also, the overweighting of large-cap company returns in the cross-
sectional regression leads implicitly to correspondingly larger weights of these companies in
the FMPs which is more representative for what restricted investors can implement. Since we
consider active portfolios with regards to a capitalization weighted benchmark, a long-only
investor can only underweight stocks to the extend in which these stocks are hold in the
benchmark portfolio. In addition, large cap stocks tend to be more liquid. Therefore, for a
long-only investor who is taking trading costs and liquidity constraints into account, larger
long and short positions can be taken in large-cap stocks which is better reflected in the

FMPs by using the market capitalizations as regression weights.

3.2.3 Shrinkage Estimator

The previously described regression weights incorporating robust weights and market capi-
talization data constitute both extremes in the trade-off between statistical consistency and
representativity of the portfolio in the estimation of the error covariance matrix. Therefore,
we consider a weighting scheme which represents a mixture of these extremes in order to
include the favourable properties of both. As the variances in Section 3.2.1 are estimated
with an only small sample of residuals at each time ¢ we expect large estimation errors using

this approach. In order to overcome this issue, we use the shrinkage estimator proposed by
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Ledoit and Wolf (2003a) which is defined as

Sygrink - fETareet (1 §ysisample (19)

Sample
Et

Here denotes the diagonal covariance matrix estimated from the residuals £ and

Target . . . . .
3, "9 represents the shrinkage target towards which we shrink our covariance matrix. As
shrinkage target we use the diagonal covariance matrix containing the inverse of the square

roots of market capitalizations as it is implied by the weighting scheme in Section 3.2.2

1 1 1
\/Cﬁlplt’ \/C'apzt T \/CCZPnt

& denotes the shrinkage constant which represents the intensity with which we shrink the

gfarget _ d’LCLg(

(20)

covariance matrix towards the shrinkage target. A detailed description of the calculation of
§ can be found in Appendix A.1. As the shrinkage intensity has a value between 0 and 1,
the resulting shrinkage estimator ﬁ)fh”"k can be interpreted as a ‘compromise‘ between both
extremes, leading to regression weights that incorporate a balance between the benefits and
short comings of both. Finally, we obtain the corresponding regression weights as the inverse

of the diagonal shrinkage estimator

Wt — 229h’rink’1 ] (21)

3.3 Restricted Factor Mimicking Portfolios

As already mentioned in previous sections, one of the issues that might lead to large RCON
in the attribution of constrained portfolios are the implied FMPs. As these typically hold
large positions in single assets, they are not representative for what investors with real-world
constraints can invest in. Therefore, we investigate an approach, in which we derive the
FMPs as realistic portfolios satisfying real-world constraints. As shown in De Boer (2019),
each FMP is the solution to a variance optimization problem that minimizes the total risk

fMP,k,VWfMP,k

, Where

V =Cov(ry) = XeXp i Xy + Xey (22)

is the estimated asset covariance matrix, ¥4, is the covariance matrix of the factors included

in the linear factor model and >, ; is the matrix of stock-specific variances which is implicitly
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given as the inverse of the used regression weights 3., = W;1. Melas et al. (2010) showed
that the minimization of the total risk is equivalent to the minimization of the stock-specific

risk so that we can derive the FMPs with the optimization problem

. FMPkgr-1, FMPk
min -~ w;, VW tw, D

FMP,k
e (23)
s.t. Xiw MEE —

with wf MPik being a n dimensional vector with FMP weights of the k-st factor and e; denot-

ing a vector with a one at the k-st position and zeros elsewhere. Also, the equality constraint
ensures that each FMP has a unit exposure to the corresponding factor k and zero to all
others. Moreover, this optimization problem emphasizes the fact that the Wf MPE can be
calculated separately in single optimizations for each factor k as their dependency among
each other is fully described by the exposure condition. As shown in Appendix A.2, without
further constraints, this minimization problem leads to equivalent results as the WLS esti-
mation in Section 3.2 with the regression weights W;. In the case of W, = 1,,, we obtain the
standard OLS FMPs from Section 3.1.

In order to obtain more realistic FMPs, we impose further constraints to the minimization
problem in 23. Here, we firstly examine the long-only (LO) constraint in which the FMP
weights have to be larger than the negative corresponding weights of each asset in the bench-

mark, namely

wi VPR WP k=1,...,m. (24)

This constraint reflects the negative active positions a long-only investor is able to take
in the assets in the FMPs.
Secondly, as one of the real-world constraints under which portfolios are constructed is a
maximum weight (MW) limit w™ = 0.5% for each asset, we incorporate this restriction in

the optimization constraint

FMPk

2,0

U

<wm™ k=1,....m;i=1,...,n. (25)

By imposing both constraints separately as well as concurrently to the minimization
problem, we obtain more realistic FMPs and factor returns with which we can conduct the

attribution. Comparing the resulting FCON}, of the constrained cases with the standard
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estimation opens the opportunity to analyze which factors were most affected by the LO and
the MW constraint, respectively. Thereby, we also obtain additional information by which
factors the RCON in the standard case was mostly driven.

Thirdly, we also investigate the imposition of a symmetric upper and lower bound given

by a multiple of the benchmark weights w?
—d-wP<wiMPR cd. WP k=1,...,m. (26)

This constraint represents first of all the circumstance that an investor with liquidity
constraints is also heavier restricted in the possible long positions she can take in small cap
stocks. In addition to that, by using a multiple d of the benchmark weights in the constraint,
we take into account that the active portfolio is explained by a linear combination of the
FMPs. Therefore, restrictions such as the long-only constraint do not have to hold exactly
for each of the FMPs. In the further analyses, this constraint is denoted as Sym 1.

The last examined constraint combines the aforementioned ones by setting a multiple of

the benchmark weights w? as a symmetric upper and lower bound which is capped by the

MW limit of £0.5%, i.e.
max{-d-wP, -05%} < w/ M <min{d-wP 05%}, k=1,...,m. (27)

This restriction incorporates the same considerations as stated before and besides that,
ensures that the FMPs are still limited in their position they can take in extreme large cap

stocks. In the further analyses, this constraint is denoted as Sym 2.

3.4 Adjusted Multifactor Attribution

As RCON represents the unsystematic stock specific part of the active portfolio’s return, it
is expected to be uncorrelated to the component explained by the factors (FCON). Never-
theless, when using regression weights in the cross-sectional regressions which do not exactly
coincide with the inverse of the error covariance matrix, we already find ex-ante a factor and
residual component of the portfolio whose returns are correlated, as derived in Appendix A.3
and shown in Table B.14. As the true error covariance is usually unknown, this is nearly

always the case in practice. The correlation is ex-post even stronger apparent and suggests
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possible inaccuracies or biases in the estimation of RCON. Hence, Stubbs and Jeet (2016)
propose an adjustment approach which aims to mitigate this correlation and thereby reducing
the residual contribution by its systematic component.

For this purpose, we assume a time-constant linear dependency of the residual contribu-

tion on the contributions of each factor

RCON, = f/FCON, + RCON, (28)
— weg, = f(Xiwh) o ft) + W, g,
with RCON, denoting the new uncorrelated residual contribution and 8 being a m dimen-

sional vector with coefficients estimated in a time series regression. Afterwards, we replace

RCON; in the slightly reformulated standard attribution Equation 8

Wt I't 1/ FCONt + BIFCONt + RCONt
= (1’ + ' )FCON, + RCON, (29)
= (1, + B)((Xiwi) o fy) + Wie'g,

with 1,, denoting a m dimensional vector of ones. Here, g is referred to as an absolute
adjustment to the factor exposures. This representation leads to the interpretation that the
negative correlation (i.e. negative ) between RCON and FCON that we usually observe ex-
ante and ex-post (Table B.14) is the result of the portfolio’s factor exposure being overstated
in the attribution. Due to investment constraints, the real exposure of the portfolio to the
factors is actually lower which justifies the adjustment.

In the adjusted multifactor attribution, the m dimensional vector § is estimated in a
time series regression over the entire time frame following the model in Equation 28. In
order to avoid insignificant adjustments, we use an iterative procedure starting with a time
series regression of RCON on the factor contributions FCONy including all factors k. In
each iteration, factors with a p-value for the estimated fj-coefficient above a threshold 7 are
removed until only factors with significant 3; estimates are left. Afterwards, we conduct a
reentry procedure, in which each rejected factor is added to the regression one at a time. In
case, the reentered factor has a significant 3 estimate and does not raise the other p-values
above 7, this factor is added back to the selection. After the reentry procedure is finished,

we conduct a final time series regression and use the obtained 5* estimates for the relative
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adjustment. For each factor k with a significant 3; estimate, the adjusted factor contribution

FCON, ,f fj at each time ¢ is calculated as

FCON7 = FCON (1 + ;)

. (30)
= ((Xiwi) o f)r(1+5)

where the subscript k& denotes the k-st element of each vector. The adjusted residual contri-
bution is then correspondingly computed as
RCON{Y = wi'r, - B'FCON;Y
. (31)
=wi'r, - f((Xiw]') o)

The shortcoming of this approach is the assumption of a time-constant linear relationship
measured with g between RCON and FCON;. In order to drop this assumption, we
propose to estimate [, as time-varying coefficients over a rolling window of the past 60
months at each time ¢, so that we regress RCON;_59; on FCONy,;_59. of each factor k. We
apply the same selection procedure as in the standard approach in each period in order to
avoid insignificant adjustments and obtain time series of the significant ; ; coefficients. This
has also the advantage that linear dependencies, which are only observed over a shorter time
period rather than over the entire time frame, are captured in the adjustment. Moreover, in
order to obtain less noisy estimates of the f;, coeflicients, we model them in a local level
model which we then estimate with the Kalman Filter as described in Hamilton (1985).
Finally, we use this time series of estimated [} , coefficients for the adjustments of the factor
contributions in Equation 30. We refer to this approach as Time Series Adjustment in the

following analysis in this paper.

3.5 Non-Linear Factor Attribution

One of the main assumptions of the attribution method in this paper is the linearity of the
underlying factor model in Equation 1. As described in De Boer and Jeet (2015), in cases
when the returns to a certain factor were particularly strong in its tails, this assumption
would lead to the issue that stocks with a large positive exposure to that factor performed

much better than the linear factor model would have estimated, leading to a positive residual

20



return £;; for these stocks. Correspondingly, this would also cause large negative residuals
for stocks with a strong negative factor exposure. In addition to that, long-only constraints
would prevent the investor of being fully able to underweight stocks with large negative
exposure as she would like to as assumed by the FMP, leading to positive weights in w”es.
Similarly, maximum weight constraints restrain her from taking correspondingly large active
positions in stocks with large positive exposure which results in negative weights in w’es.
Overall, these restrictions and assumptions would finally lead to larger negative RCON in
the attribution as it is calculated as the vector product of w™* and the estimated residual €.
However, part of the negative RCON can be reasonably re-attributed to the correspondingly
overestimated FCON, for which De Boer (2019) proposes a non-linear adjustment approach.

He defines a n x m dimensional classification matrix X<essif with the elements

2
classif _ Xi,k,t

: =——>-— with ie{l,...,n} and ke{l,...m}, (32)
okt kel X?,k,t

which can be interpreted as the relative importance of each considered factor k£ for each
stock 7 at time t. Correspondingly to this classification matrix we can then re-attribute the
RCON,, = éi,tw{js of each stock to the factors by which it is most characterized with the
adjustment

A} = gdiag(wie) X (33)

This leads to the adjusted contribution of factor k
FCON[ = FCONg, + A}, (34)

where the subscript k£ denotes the k-st entry of each vector at time t. Analogously, we obtain

the adjusted residual contribution

RCON/Y = RCON, - 3" A}, . (35)

k=1
Depending on which factors are finally included in the re-attribution, we can obtain
different interpretations. If we only adjust the contributions of factors that are used in the
portfolio construction, we can identify to which extend we could not exploit their return

potential due to portfolio constraints. However, as the rows of Xcssif sum up to one, we

can theoretically also use the non-linear attribution to re-attribute the whole RCON by
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including all factors of the underlying factor model in the adjustment. Through that, we
can obtain a clean decomposition of RCON and identify the factors by which it was most
driven.

Nevertheless, this method has the shortcoming that it does not fully reflect the underlying
reasoning that large positive (negative) factor exposures of a stock lead to a negative (positive)
residual weight. As it re-attributes RCON independently of the magnitude of the factor
exposures of each stock and the signs of residual weights and factor exposures, we propose
two refinements of the method in order to conduct the adjustments more in line with the
aforementioned reasoning. Hence, we firstly include only factor exposures in the calculation
of X551/ which are larger (smaller) than the 1 - a (a)-th percentile of the cross-sectional
exposures for each factor at time t. By doing so, we only consider factor exposures of stocks
with a comparatively large absolute magnitude and which are more likely to be the driver
of the residual contributions. Moreover, we only conduct the adjustments, if the weight of
a stock 7 in wj® has the opposite sign as the exposure X, of the stock to the considered
factor k. These refinements aim to provide a better distinction between non-linear effects
and stock-specific noise in RCON in the adjustment. Moreover, by varying the threshold «

we can ascertain to what extend the RCON is driven by the ’tails’ of each factor.

3.6 Quality Measures for the Multifactor Attribution

In order to assess the quality of the attribution results obtained by applying each of the
aforementioned approaches, we analyze the corresponding RCON which is the main indicator
for the informativeness of the attribution. As it is common in related literature such as
Vandenbussche and Stubbs (2018), we use different metrics to quantify the quality of the

attribution. These include

1) the R? of the cross-sectional regression as a measure for the estimation accuracy. As
only the WLS estimation in Section 3.2 and the derivation of restricted FMPs in 3.3

affect the factor returns, the R? is only relevant for these approaches;

2) the mean absolute RCON, the annualized cumulative RCON and the volatility of the

RCON time series as measures for the magnitude of the stock-specific contribution;
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3) the ratio of the absolute values of RCON and the active portfolio return r4, i.e. |%|
t

as a measure for the relative magnitude of the residual contributions. As we noticed

that this measure occasionally takes on extremely large values in cases when the active

A

return r# is near zero, we report the time series median to avoid possible distortions

by these outliers;

4) the correlation between the time series of RCON and the aggregated FCON, since a
large correlation suggests a systematic component in RCON which is not caused by

stock-specific risk and which is therefore likely to be wrongly attributed.

4 Simulation Study Setup

In order to compare the different aforementioned approaches and their ability to improve the
informativeness of the attribution, we conduct our analyses on simulated return data next
to the empirical return data. For that, we use the underlying linear factor model as data
generating process

ry = tht + & y (36)

where we estimate the factor returns f;, in the first step in cross-sectional OLS regressions
for each period t based on the real return data. Afterwards, we use the time series of the

residuals € of these regressions to obtain an estimate of the n x n residual covariance matrix

/\2 A A~
01y 012 ** O1n
A /\2 A

~ 021 0y 0 O2p

~al

Y.=¢é= ) (37)
~ A /\2
O-Tll UnQ ot o’n

2
%

with the estimated variances &; and covariances 0;;. Afterwards, we sample new errors
£, with different characteracteristics as described later in this section, and generate the
simulated asset returns based on these.

The advantage of using the simulated return data in our attribution is that we know ex
ante what portion of the active portfolio’s return is driven by the exposure to certain factors

or by stock specific return. By analyzing the deviation of the estimated FCON and RCON
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from the actual values over time, we therefore obtain more insights on which of the considered
attribution approaches leads to the most accurate attribution results. Also, investigating the
deviation of the estimated factor returns with the real factor returns in the approaches in
Sections 3.2 and 3.3 provides a measure for the accuracy of the cross-sectional regressions
and is used as an indicator for the quality of the corresponding attribution.

Moreover, by separately analyzing different error and asset return characteristics, we
obtain more insights into which of these properties cause the issues in the attribution that
we face in practice and by which of the investigated approaches these issues can be solved.

For the simulation of the return data we consider four different settings which are de-

scribed in this section.

4.1 Homoscedastic Errors

In the base simulation we draw the new errors £; from a normal distribution with E[£;] =0
and a stock- and time constant variance Var(€;) = Yty %2 = & with no correlation between
the residuals (Cov(€;,€5,) =0 V4,5, # j). Subsequently, we obtain the simulated returns
calculated as

f‘t = tht + gt . (38)

This case represents a scenario in which the data generating process of the asset returns
exactly coincides with the assumptions of the cross-sectional OLS regressions in the attribu-

tion and enables us to filter purely portfolio construction related issues.

4.2 Heteroscedastic Errors

Secondly, we consider the case when the errors of the stocks are heteroscedastic and uncor-

related, i.e. Var(é;) = 67 and Cov(é;,&;1) =0 Vi,j,4 # j. Using the corresponding asset
returns generated from Equation 38 especially allows for a more accurate analysis of the
implications of applying the different regression weights in Section 3.2 on the attribution and

on the accuracy of the estimated factor returns.
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4.3 Correlated Errors

As it is aimed in the attribution to use a factor risk model which sufficiently describes asset
returns without running the risk of overfitting, it is possible that co-movements of returns are
not fully captured by the model. This in turn leads to the estimated residuals exhibiting non-
zero correlations between each other which violates one of the Gauss Markov assumptions
in the cross-sectional regressions. Therefore, we consider the case in which the errors &, are

drawn from a Multivariate Normal Distribution with E[£;] = 0 and the variance-covariance

matrix - -
0 012 =+ Oin
091 O = 0o
.= , (39)
Lanl Op2 g

where we again imply a constant variance for each stock’s residual in order to isolate the

effects of the correlation on the attribution.

4.4 Non-Linear Asset Returns

Finally, we investigate the impact of having a non-linear dependency of the asset returns on
the alpha factors instead of the linear relationship as assumed in the factor model. Here,
we only include the non-linearities for the alpha factors in order to assess how well the
investigated techniques are able to identify which factors are affected. We model these non-
linearities as quadratic dependencies so that the influence of the alpha factors on asset returns
are especially pronounced for stocks with factor exposures of a large absolute value. However,
we do not want to assume a specific ”direction” of the non-linearities, i.e. the returns of stocks
with a large positive exposure can be whether significantly higher or lower than in a linear
dependency. By doing so, we isolate the effect of having non-linearities from a possible bias
in one direction which however, may be observable in real return data as described in Section
3.5.

In order to model these non-linearities in the simulated data, we firstly randomly draw
from a Bernoulli Distribution with parameter p = 0.5 a value d which represents the direction.

Depending on the drawn value for d, we then transform the stocks’ exposures to the alpha
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factors as

X2, if Xiy >0
Ifd=0 X/ =
_Xi2,t7 if Xi,t <0
(40)
_Xi2t7 if Xi,t >0
fd=1 X[ =
Xi2,t7 if Xi,t<0-

Subsequently, we use the transformed exposures to calculate the simulated returns as

previously described.

5 Attribution on Simulated Data

In this section, we show the results of the analyses based on simulated return data in order
to provide an overview over the issues that we encounter in the performance attribution
of constraint portfolios. We investigate different return characteristics to identify possible

causes of these issues and show to what extend the examined techniques solve these problems.

5.1 Homoscedastic Errors

Firstly, we consider the standard case with homoscedatistic errors in which all Gauss-Markov
conditions are met. Panel A in Table 3 summarizes the obtained results averaged over 25
simulations for each of the applied attribution techniques in this setting. It shows selected
quality measures (annualized cumulative RCON and correlation between RCON and ag-
gregated FCON) as well as the average RMSE of the estimated alpha factor returns and
contributions with respect to the true factor returns and contributions. Moreover, the table
includes the corresponding statistics of the actual simulated data which depicts how the at-
tributed RCON should look like in the ideal case. The complete results as shown in Table
B.15 indicate that we obtain in this scenario for all WLS and restricted FMP approaches
RCON with a magnitude and volatility close to the true values. Using market cap regression
weights (WLS Cap) results in the lowest unexplained RCON on average, which stresses the
main advantage of using more representative weights. Moreover, we obtain values near zero

for the correlation between RCON and the aggregated FCON when using OLS and WLS
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as shown in Table 3. This is in line with the ex ante expected correlation shown in Table
B.14.

This is not the case when applying the two restricted FMP approaches LO & MW and

Sym 1 as we observe negative correlations of —0.23 and —0.29. Appendix A.3 gives more
insights in the causes for these larger magnitudes in the correlation.
Regarding the Time Series Adjustments (TS Adj and TS Adj 2), we do not obtain improve-
ments since the standard OLS approach already leads to very low correlations. Therefore,
the selection procedure in this approach only rarely results in a significant adjustment so
that the obtained quality measures are nearly unchanged from that in the OLS estimation.
When applying the standard Non-Linear Adjustment (NL Adj), we find as expected Quality
Measures with zero values since this approach re-attributes the entire RCON to the factor
contributions.

Looking at the average RMSE of the estimated factor returns in Panel A of Table 3 it
becomes clear that the standard OLS estimation leads to the most accurate estimates. This is
not surprising as OLS uses equal regression weights, which exactly correspond to the inverse
of the error covariance matrix. On average, the estimated factor returns are per period only
33bp off from the true values for the alpha factors. For WLS Cap we observe a 7bp larger
RMSE, which makes the trade-off between representativeness and estimation accuracy clear.
Note, that the factor returns in TS Adj and NL Adj do not differ from those obtained by
OLS since these adjustments only affect the factor contributions and leave the factor returns
unchanged.

We also find a large difference in the alpha factor contributions when applying the NL
Adjustments. This is due to the fact that we generated the asset returns from the linear
factor model and hence, do not have any non-linearities in the returns which could cause
issues. This highlights that the re-attributions in the absence of non-linearities are rather
random and do not result in more accurate factor contributions.

In conclusion, if the underlying assumptions of OLS hold, we do not face any issues in
the attribution of a constrained long-only portfolio as we do in practice. In this case, the
standard attribution with cross-sectional OLS regressions lead to the most accurate results.

Nevertheless, by using a WLS approach with market cap weights one can achieve a generally
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lower RCON which allows a better interpretation of the attribution results at the costs of a

lower estimation accuracy.

5.2 Heteroscedastic Errors

When adding heteroscedasticity in the distribution of the errors we obtain in general similar
results for the Quality Measures as in the aforementioned case of constant error variances
(Panel B in Table 3). The main difference can be found in the RMSE of the alpha factor
returns, which suggests that the WLS RW estimation leads to the most accurately estimated
factor returns. This stresses the benefit of using WLS weights in the attribution as they take
the varying stock specific risk among stocks into account which is a common property of
asset returns. Moreover, it is apparent that the correlations between RCON and aggregated
FCON are in these cases on average still near zero. This suggests that in this setting
the multifactor attribution method is still well able to properly separate the idiosyncratic

contribution from that caused by the portfolio’s active exposure to the factors.

5.3 Correlated Errors

When adding correlation among the stock-specific errors, we observe two major differences
in Panel C in Table 3 in comparison to the previous cases. Firstly, we obtain on average a
negative annualized cumulative RCON in the OLS and WLS estimations, which suggests a
bias that overestimates the factor returns and FCON on average. As the correlation between
residuals would occur in practice if relevant factors are left out in the factor model, this might
be a result of an omitted variable bias (OVB). The OVB also explains partly the up to three
times larger RMSE of the estimated factor returns of the Alpha factors in comparison to
the results in Panels A and B. Therefore, one of the reasons why we obtain a systematically
trending RCON in practice can be found in the misspecification of the factor model.

The second difference is the larger negative correlation between RCON and the aggre-
gated FCON of -0.20 to -0.24 when using OLS and WLS. This can also be seen in connection
with the negatively biased RCON, as RCON and FCON have to add up to the active port-

folio’s return and hence, trend in the long-run in opposite directions.
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Moreover, the negative correlation is an issue which specifically occurs in the attribution
of a constrained long-only portfolio since it does not appear for an unconstrained long-short
portfolio, as the measures in Table B.19 show. This suggests that the multifactor attribution
approach is not fully able to identify idiosyncratic return contributions in this case which
leaves room for improvement. Thus, it becomes beneficial to apply the Time Series Adjust-
ment by Stubbs and Jeet (2016) in order to mitigate a large part of the correlation. This also
leads to a lower RMSE for the contribution of the alpha factors so that the adjustment also
results in more accurate attributions in the case of correlated errors. The need for such an
adjustment in the attribution based on real return data can also be seen in the correlations
shown in Table B.14. When using regression weights which do not exactly correspond to the
inverse of the error covariance, we already find ex ante a certain level of correlation as it is
also described in Stubbs and Jeet (2016). In addition to that, further estimation errors in the
actual attribution lead to an even higher level of correlation as the ex post values indicate.

Finally, we also find that using the constraint Sym 2 with d = 10 to derive the FMP
weights leads to the overall most accurately estimated factor returns and the most informative
attributions as indicated by the low values of the quality measures. This rather relaxed
constraint with multiplier d = 10 is less restrictive than the other investigated constraints
MW & LO and Sym 1 (d = 3) and appears to constitute a good balance between restricting
the FMPs and preserving the properties of the statistically correct OLS/WLS estimator.

5.4 Non-Linear Asset Returns

As shown in Panel D of Table 3, a non-linear relationship between the asset and alpha
factor returns constitutes another characteristic which causes a negative correlation between
RCON and aggregated FCON. A reason for that is the impact of the factor covariance as
described in Appendix A.3 which already results ex-ante in an expected negative correlation
(Table B.14). The more negative observed ex-post correlation can further be explained by
larger inaccuracies in the estimation of the alpha factor returns.

Also in this case, the Time Series Adjustment leads to a significant improvement in terms
of a lower magnitude and volatility of RCON and a reduced correlation. The lower RMSE of
the estimated Alpha FFCON of 0.18 indicates that with this adjustment we are also able to
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correctly identify the factors which caused the larger RCON in the OLS and to re-attribute
it accordingly.

We can observe a similar effect when using the Non-Linear Adjustment with o = 0.1 (NL
Adj 2), for which we also obtain a significant reduction of the correlation and the inaccuracy
of the alpha FCON on average. However, this improvement is not as pronounced as for the
Time Series Adjustment which may be due to the fact that we only consider one form of a
Non-Linearity in this setting, i.e. only a quadratic dependency of the asset returns on the
alpha factor returns. This may not be fully representative for real asset returns as the non-
linear dependencies can take different functional forms which might be better captured by the
Non-Linear Adjustment in practice. However, we do not investigate the further functional
forms in this paper as this is out of the scope of our research.

To conclude, this simulation study reveals possible issues we expect to encounter in the
attribution based on real return data such as a negatively trending RCON or a highly
negative correlation between the time series of RCON and FCON. The analyses indicate,
that the main drivers for these issues can be found in non-linear properties of asset returns
as well as in co-movements of stock returns which are not captured by the factor model.
Moreover, the results establish the expectation that the Time Series Adjustment by Stubbs

and Jeet is among the investigated approaches best able to correct for these problems.

6 Attribution on Empirical Data

In this section, we describe the results of the attribution based on real asset return data.
Moreover, we provide in-depth analyses of the effect the investigated approaches have on the

attribution.

6.1 Weighted Least Squares

In order to assess how the usage of different regression weights influences the multifactor
attribution, we firstly analyze the corresponding properties of the implied FMPs. Table 4
includes statistics for the FMPs of the alpha factors Momentum and Value. Those of the

risk factors are very similar and therefore, not shown in the table. To allow for a comparison
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with a realistic portfolio, we also display the corresponding statistics of the attributed active
portfolio.

The results shown in Panel A firstly suggest that using the square root of market capital-
izations as regression weights lead to FMPs which generally take larger absolute positions in
stocks with larger market capitalizations as indicated by the correlation of 0.42. This shift
of weights towards large cap companies is also detectable in the portion of absolute FMP
weights in the 50% largest companies in Panel B which is 24 percentage points (pp) larger
in comparison to the OLS base case. For the statistically robust regression weights WLS SP
and WLS RW this shift is significantly weaker which suggests that the assumption that large
cap companies have less volatile returns only holds to a limited extend in our data set.

Considering the effective number of stocks of the FMPs in Panel C, it is apparent that
the standard OLS estimation leads to the most diversified FMPs which stands in contrast to
the rather strongly concentrated active portfolio. Although the active portfolio holds at each
point in time stocks of approximately 1600 companies, it has on average the same level of
concentration as an equally weighted portfolio with 309 stocks. By using WLS we generally
obtain more concentrated FMPs than with OLS, especially for the single period estimation
WLS SP. In WLS SP, we face the issue that in cases when single returns are estimated
with a low residual €;; in the cross-sectional OLS regression in the first stage, they receive
correspondingly large weights in the consecutive second-stage WLS regression. This results
in these stocks being overrepresented in the FMPs and therefore, also in highly concentrated
FMPs. Nevertheless, we overcome this issue with the rolling window estimation in WLS RW
which leads to less extreme regression weights as this method incorporates information of
several periods instead of just a single one and is therefore less influenced by outliers and

estimation inaccuracies.
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Table 4: Summary of Statistics of the FMPs

Active PF OLS  WLS SP WLS RW WLS Cap WLS Shrink

Panel A: Correlation Market Cap and absolute FMP Weight

Value 0.56 -0.08 -0.01 0.02 0.42 0.26
(0.03) (0.03) (0.03) (0.05) (0.06) (0.06)
Momentum 0.56 -0.07 0.00 0.03 0.44 0.28
(0.03) (0.03) (0.02) (0.04) (0.06) (0.05)

Panel B: Portion of absolute FMP weights in the 50% largest companies

Value 0.93 0.45 0.49 0.51 0.69 0.64
(0.02)  (0.03)  (0.05)  (0.03) (0.02) (0.02)
Momentum  0.93 0.46 0.50 0.52 0.69 0.64
0.02)  (0.02)  (0.03)  (0.03) (0.04) (0.03)

Panel C: Effective Number of Stocks

Value 3000 8734 2311 555.2 585.7 659.3
(43.3)  (1589) (46.1)  (113.9)  (138.8) (142.1)
Momentum  309.0 7338  179.3 458.3 489.3 564.7
(43.3)  (150.4) (39.6)  (105.3)  (123.0) (132.0)

Panel D: Active Share

Value 0.61 0.51 0.55 0.57 0.57 0.57
(0.05) (0.03) (0.05) (0.04) (0.07) (0.06)
Momentum 0.61 0.57 0.64 0.66 0.61 0.62
(0.05) (0.05) (0.06) (0.06) (0.05) (0.05)

Panel E: 99th percentile of weights in the 50% smallest companies (in %)

Value 0.13 0.25 0.63 0.34 0.17 0.19
0.05)  (0.05) (0.15)  (0.07) (0.03) (0.03)
Momentum  0.13 024 0.6 0.33 0.15 0.18
0.05)  (0.04) (0.14)  (0.08) (0.02) (0.03)

Panel F: 1st percentile of weights in the 50% smallest companies (in %)

Value -0.01 027 -0.62 -0.31 0.17 -0.19
0.00)  (0.06) (0.15)  (0.09) (0.04) (0.04)
Momentum  -0.01 028 075 -0.31 -0.17 -0.19
0.00)  (0.05) (0.16)  (0.08) (0.03) (0.03)

Notes: This table shows several statistics of the implied FMPs when using different weighting schemes in the cross-sectional
regressions. It shows the average value as well as the standard deviation in parentheses of each statistic over the time period
from January 1997 to February 2019. We only include the FMPs for the alpha factors Momentum and Value for reasons of
clarity. For the purpose of comparison, we include the corresponding statistics of the attributed active portfolio.
Abbreviations: SP - Single Period Estimation, RW - Rolling Window Estimation, Cap - Market Capitalization Weights,
Shrink - Shrinkage Estimation.

Finally, when considering the 1st and the 99th percentile of FMP weights among small
cap stocks in Panel E and F, respectively, we notice that using WLS Cap results in FMP
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weights with the generally smallest magnitude. For the long positions, this corresponds most
to what an restricted investor can take in small cap stocks. However, concerning the possible
short positions, small cap stocks are in practice much more restricted, which becomes clear
in Panel F. In this case, the FMPs take much larger short positions than practically feasible
as it can be seen for instance when using WLS Cap in which case the FMP’s 1st percentile
short position is 17 times larger than for the real active portfolio. Therefore, the long-only
restriction can be considered as the constraint which leads to the largest discrepancy between
the active portfolio and the implied FMPs.

Regarding the Shrinkage estimator, it can be seen that for most of the analyzed statistics
we indeed obtain results with values between those of WLS Cap and WLS RW. However,
these values tend to be nearer to the FMPs obtained when using WLS Cap which is due
to the estimated Shrinkage Intensity 6 with values around 0.75 as depicted in Figure 2. As
described in Ledoit and Wolf (2003b), this indicates that there is about three times more
estimation error in the sample covariance matrix as there is bias in the target covariance

matrix implied by the market capitalization weights.

Figure 2: Estimated Shrinkage Intensity & over time

In general, using market cap weights in the cross-sectional regressions leads to more
realistic FMPs which come closest to the properties of the active portfolio. The corresponding
FMPs do not only show a high concentration with most of their weight in large cap stocks
but also the least extreme positions in small cap stocks. The results of applying the different

regression weights in the attribution of the active portfolio are shown in Table 5. Panel
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A depicts the decomposition of the realized active return into contributions of each factor
and the unexplained residual contribution. Regarding these return attributions we obtain
relatively similar annualized cumulative contributions of the factors across the different WLS
approaches. In all cases, a large positive part of the return is, not surprisingly, attributed
to the alpha factors Momentum and Value, towards which the portfolio is tilted. However,
we find in the OLS estimation that the sum of positive contributions significantly exceeds
the portfolio’s active return without being offset by negative return contributions of other
factors. This leads to the significantly negative annualized cumulative RCON of -0.65%
which suggests that the positive FCON were likely to be systematically overestimated in
each period.

In comparison, applying WLS Cap leads to generally lower contributions of all factors
especially of the alpha factors. This can be seen as a result of implicitly using FMPs in the
attribution which are more in line with a constrained portfolio and therefore earn on average
lower factor returns.

Considering the investigated quality measures in Panel B, we see that, although using
the square root of the market capitalizations as regression weights is statistically incorrect, it
does not lead to factor returns with a significantly lower explanatory power than when using
statistically correct weights as with WLS RW (both with R? of 0.09). Moreover, the obtained
RCON for WLS Cap is also of lower magnitude and volatility than for other weighting
schemes. This can again be explained by the more realistic FMPs and factor returns which
are used in this attribution and which lead to factor contributions that better reflect the
investment possibilities of restricted long-only investors. Overall, using WLS Cap leads to a
reduction of around 10% (4bp) in comparison to the initial average absolute RCON obtained
with OLS. However, as already shown in Stubbs and Jeet (2016), this weighting scheme leads
to a larger negative correlation than WLS RW on average which suggests a larger systematic
component in RCON additional to the uncorrelated idiosyncratic returns.

Furthermore, WLS Shrink results in quality measures which again constitute a balance
between the statistically correct WLS RW and the representative WLS Cap. Not only does
it lead to RCON with a magnitude and volatility as low as for WLS Cap, but also it results
in having a correlation between RCON and FCON which is nearer to the level of WLS RW
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and therefore, nearer to zero. Hence, we can conclude in this example that the Shrinkage
Estimator for the regression weights indeed incorporates the beneficial properties of the both
extremes WLS RW and WLS Cap and can be seen as an improvement on the widely used

market cap weighting scheme.

Table 5: Summary Attribution Results

OLS WLSSP WLSRW WLS Cap WLS Shrink

Panel A: Summary Performance Attribution (annualized values in %)

Active Return 1.27 1.27 1.27 1.27 1.27
World 0.00 0.00 0.00 0.00 0.00
Volatility -0.05 -0.05 -0.03 -0.06 -0.05
Size 0.49 0.48 0.20 0.45 0.40
Growth -0.02 -0.02 -0.03 -0.04 -0.01
Liquidity 0.13 0.14 0.09 0.12 0.08
Leverage -0.10 -0.10 -0.13 -0.14 -0.14
Value 0.81 0.87 0.67 0.71 0.79
Momentum 0.65 0.66 0.97 0.58 0.69
RCON -0.65 -0.71 -0.46 -0.36 -0.48

Panel B: Summary Quality Measures

R? 0.10 0.10 0.09 0.09 0.09
0.08)  (0.08)  (0.08) (0.08) (0.08)
Ratio RCON/r4 0.75 0.78 0.70 0.67 0.65
(14.18)  (14.80)  (16.26)  (13.45) (14.75)
Mean abs. RCON (in %)  0.41 0.41 0.41 0.37 0.38
Std RCON (in %) 0.54 0.53 0.52 0.47 0.48
Corr RCON/FCON -0.28 -0.26 -0.22 -0.28 -0.22

Notes: This table shows the summary of the annualized attribution results in % as well as of the Quality Measures for the
attributions (corresponding standard deviations of the time series are shown in parentheses). Abbreviations: SP - Single

Period Estimation, RW - Rolling Window Estimation, Cap - Market Capitalization Weights, Shrink - Shrinkage Estimation.

6.2 Restricted Factor Mimicking Portfolios

In the derivation of the FMPs subject to real-world constraints, we firstly investigate the
effect of imposing a maximum active weight constraint (MW) of 0.5% as well as the long-only
constraint (LO) on these portfolios. The results in Table 6 firstly show that the imposition of

the maximum active weight constraint has only little effect on the FMPs. This is due to the
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fact that the FMPs only rarely assign weights with a magnitude larger than 0.5% to single

stocks so that this constraint alone does not constitute a considerable restriction.

Table 6: Summary of Statistics of the FMPs

Active PF OLS MW LO MW&LO Syml Sym?2

Panel A: Correlation Market Cap and absolute FMP Weight

Value 0.56 -0.08 -0.08 0.38 0.61 068  0.16
(0.03) (0.03)  (0.03) (0.04)  (0.08)  (0.15)  (0.05)
Momentum  0.56 007 007 037 0.60 069  0.17

(0.03) (0.03)  (0.03) (0.05)  (0.06)  (0.10) (0.06)

Panel B: Portion of absolute FMP weights in the 50% largest companies

Value 0.93 0.45 0.45 0.81 0.78 0.88 0.72
(0.02) (0.03) (0.03)  (0.04) (0.04) (0.03)  (0.05)
Momentum 0.93 0.46 0.46 0.81 0.76 0.88 0.71

(0.02) (0.02)  (0.02) (0.06)  (0.03)  (0.03) (0.06)

Panel C: Effective Number of Stocks

Value 309.0 8734 8733 1894 18938 1986  568.7
(43.3)  (158.90) (158.9) (83.6)  (59.0)  (102.8) (186.8)
Momentum  309.0 733.8 7337 1095 1442 152.7 4913

(433)  (150.4) (150.6) (57.0)  (224)  (63.0) (131.5)

Panel D: Active Share

Value 0.61 0.51 051  0.63 0.79 0.94  0.64
(0.05) (0.03)  (0.04) (0.09)  (0.13)  (0.32)  (0.15)
Momentum  0.61 057 057 072 0.95 096  0.67

(0.05)  (0.05)  (0.05) (0.08)  (0.10)  (0.19)  (0.09)

Panel E: 99th percentile of weights in the 50% smallest companies (in %)

Value 0.13 0.25 0.25 0.69 0.51 0.06 0.15
(0.05) (0.05) (0.05)  (0.27) (0.01) (0.01)  (0.02)
Momentum 0.13 0.24 0.23 0.73 0.52 0.06 0.15

(0.05) (0.04)  (0.04) (0.37)  (0.01)  (0.01) (0.02)

Panel F:1st percentile of weights in the 50% smallest companies (in %)

Value -0.01 -0.27 -0.27  -0.02 -0.03 -0.06 -0.15
(0.00) (0.06) (0.06)  (0.00) (0.01) (0.01)  (0.02)
Momentum -0.01 -0.28 -0.28  -0.02 -0.04 -0.06 -0.16

(0.00) (0.05)  (0.05) (0.00)  (0.01)  (0.01) (0.02)

Notes: This table shows several statistics of the implied FMPs when using different weighting schemes in the cross-sectional
regressions. It shows the average value of each statistic over the time period from January 1997 to February 2019
(corresponding standard deviations of the time series are shown in parentheses). We only include the FMPs for the factors
Momentum and Value as these are the factors the portfolio is most exposed to. For the purpose of comparison, we include the
corresponding statistics of the attributed active portfolio. Abbreviations: MW - Maximum Weight Constraint, LO - Long
Only Constraint, MW & LO - MW and LO constraint, Sym I - Symmetric Constraint based on Benchmark weights (d = 3),
Sym 2 - Relaxed Symmetric Constraint based on Benchmark weights (d = 10) and MW.
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Using the LO constraint on the other hand leads to a significant change in the positions
of the alpha factor FMPs. It is noticeable that these FMPs shift a large portion of their
short positions towards larger cap stocks in order to satisfy the constraint for the strongly
restricted small cap stocks. This is indicated by the larger positive correlation in Panel A
of 0.38 for the Value FMP in comparison to the -0.08 in the standard OLS estimation as
well as the larger portion of weights in large companies in Panel B (45% in OLS and 81%
with LO constraint). Furthermore, as the short positions in unattractive stocks are strongly
restricted, the FMPs take sizable long positions in single attractive assets independently of
their market cap in order to maximize the exposure to the corresponding factor. This results
in a high portfolio concentration as shown in Panel C as well as at the large long positions
in small cap stocks of more than 0.73%.

By imposing both constraints at once as well as by using a symmetric upper and lower
bound in Sym 1 (d = 3), the mentioned large long position in small cap stocks are distributed
to larger cap stocks, which can be seen at the larger correlation in Panel A. In their properties,
the obtained FMPs in these cases come very close to the realistic active portfolio which
generally confirms the feasibility of deriving realistic FMPs with this approach.

Finally, when strongly relaxing the symmetric constraints while still limiting the maxi-
mum active weight of each stock in the FMPs with Sym 2 (d = 10), we obtain FMP statistics
with values between those obtained in OLS and Sym 1. These statistics are still close to those
of the active portfolio, although taking much larger short positions in small cap companies.

The corresponding attribution results in Panel A of Table 7 firstly show that the single
MW constraint only has a minimal effect as it was already suggested by the properties
of the FMPs. On the contrary, imposing the LO constraint translates into a significant
reduction of the return contributions of the Size and the Momentum factor by 32 bp and
23 bp, respectively. This indicates that these factors were much weaker drivers of the active
portfolio’s returns than assumed by the standard attribution method due to the infeasibility
of taking many of their assumed short-positions in practice. Using both constraints at once
(MW & LO) shows similar results considering the FCON.

When looking at the corresponding quality measures in Panel B we find for all constraints

except of Sym 2 inferior values in comparison to the standard OLS case. Imposing strict con-
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straints such as in MW & LO and Sym 1 lead to larger and more volatile RCON which
suggests that the issue of having a less accurate factor return estimate and thereby larger
estimation errors outweighs the benefits of having more realistic FMPs in these cases. How-
ever, loosening the constraints in Sym 2 improves on the OLS estimation as we obtain a
smaller unexplained RCON while only sacrificing explanatory power of the estimated model
to a small extend (R? of 0.09). Also, with this constraint we do not obtain a significantly

larger negative correlation such as in the other cases which is another favourable property of

the obtain RCON.

Table 7: Summary Attribution Results

OLS MW LO MW&LO Sym1l Sym?2

Panel A: Summary Performance Attribution (annualized values in %)

Active Return 1.27 1.27 1.27 1.27 1.27 1.27
World 0.00 0.00 0.00 0.00 0.00 0.00
Volatility -0.05 -0.05 -0.05 -0.04 -0.07 -0.06
Size 0.49 0.49 0.17 0.24 0.32 0.43
Growth -0.02 -0.02 -0.02 0.05 -0.04 0.00
Liquidity 0.13 0.13 0.27 0.15 0.03 0.08
Leverage -0.10 -0.10 -0.07 -0.11 -0.25 -0.13
Value 0.81 0.81 0.72 0.69 0.91 0.71
Momentum 0.65 0.65 0.42 0.43 0.43 0.61
RCON -0.65 -0.64 -0.31 -0.17 -0.10 -0.38

Panel B: Summary Quality Measures

R 010 010  -0.04 0.06 006  0.09
(0.08) (0.08) (0.17)  (0.09)  (0.09)  (0.08)
Ratio RCON /74 075 075  1.23 0.96 081  0.70
(14.18) (14.18) (2347)  (1553)  (12.87) (15.23)
Mean abs. RCON 041 041  0.76 0.52 044  0.38
Std RCON 054 054 110 0.70 059  0.49
Corr RCON/FCON 028  -028  -0.78 -0.61 2058 -0.29

Notes: This table shows the summary of the annualized attribution results in % as well as of the Quality Measures for the
attributions (corresponding standard deviations of the time series are shown in parentheses). Abbreviations: MW - Maximum
Weight Constraint, LO - Long Only Constraint, MW & LO - MW and LO constraint, 2 * (MW & LO) - Relaxed MW and
LO constraint, Sym 1 - Symmetric Constraint based on Benchmark weights (d = 3), Sym 2 - Relaxed Symmetric Constraint
based on Benchmark weights (d = 10) and MW.
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In conclusion, we are indeed able to derive more realistic FMPs by solving a constrained
optimization problem. This enables us to identify factors which are most restricted by the
long-only constraint, such as Size and Momentum. However, the imposition of strict con-
straints (MW & LO and Sym 1) on the FMPs do not directly translate into more informative
regression results as the obtained quality measures indicate. Nevertheless, by using more re-
laxed constraints, we incorporate the circumstance that the active portfolio is explained by a
linear combination of FMPs and therefore, that each FMP by itself does not have to strictly
satisfy each constraint. This approach leads to an improvement of the obtained quality mea-
sures and indicates that the derivation of constrained FMPs can indeed result in a more
informative attribution. All in all, this approach leads to promising results but raises the
challenge to balance the tightening of the constraints to obtain more realistic FMPs, and
the feasibility of the optimization problem in order to ensure that the FMPs still represent

reasonable solutions.

6.3 Adjusted Multifactor Attribution

As seen in the previous sections, in all cases the multifactor attribution results in a time
series of RCON which shows a negative correlation to the aggregated FCON over time. As
this implies that there might still be a significant systematic driver in the RCON apart from
stock-specific noise, we apply the adjusted multifactor attribution by Stubbs and Jeet (2016)
in the standard OLS attribution to mitigate the correlation.

In Table 8 we show the factors and their beta coefficients as determined by the selection
process of the standard Adjusted Multifactor Attribution. The FFCON of both alpha factors
Value and Momentum towards which the attributed portfolio is tilted as well as the risk
factors Liquidity and Leverage are here determined to be significantly able to explain the
RCON time series. The negative estimated [-coefficients also support the reasoning that
the portfolio’s actual exposure to certain factors is lower than assumed in the attribution
due to the investment constraints and therefore, has to be adjusted to the downside. For
example, the 3 of —0.31 for Momentum means that the assumed exposure of the portfolio to

this factor was too large and should only be 69% of its original values shown in Figure 1.
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Table 8: Beta Coefficients as determined by the standard Adjusted Multifactor Attribution

[-Coeflicient

Standard Error

Liquidity

Leverage

Value

Momentum

-0.63
-0.76
-0.17
-0.31

0.22
0.27
0.07
0.09

t-Stat  p-value
-2.79 0.01
-2.83 0.00
-2.35 0.02
-3.52 0.00

Notes: This table shows the time series regression results including the found significant factors with threshold = = 0.05.

The corresponding adjustments on the active portfolio’s factor exposures as well as the re-

sulting effect on the correlation between the RCON and FCON are presented in Table 9.

They show that the standard adjustment method by Stubbs and Jeet (2016) significantly

decreases the estimated correlation of the selected factors in Table 8 towards zero.

Table 9: Active Portfolio’s Factor Exposures and Correlation between RCON and FCON

using Standard (OLS) and Adjusted Attribution

Active Exposures

Correlation RCON/FCON

Standard TS Adj TS Adj 2 Standard TS Adj TS Adj 2
World 0.00 0.00 0.00 0.00 0.00 0.00
Volatility 0.00 0.00 0.00 -0.05 0.00 0.06
Size -0.23 -0.23 -0.22 -0.10 -0.01 0.06
Growth -0.14 -0.14 -0.10 -0.05 -0.07 0.03
Leverage 0.13 0.05 0.12 -0.18 0.00 -0.13
Value 0.18 0.04 0.10 -0.18 0.00 0.03
Momentum 0.49 0.41 0.45 -0.08 0.01 -0.04
RCON 0.17 0.12 0.15 -0.21 0.01 0.02

Notes: This table shows the active portfolio’s factor exposures and the correlation between the time series of Residual and

Factor Contributions before and after applying the Time Series Adjustments with the threshold = = 0.05.

Using the adjustment method which allows for time-varying S;, we also obtain a large,

although less clean mitigation of the negative correlation towards zero. This difference can

partly be explained by the circumstance that the second approach uses a rolling window

of the last available 60 months to estimate the [;-coefficients so that especially in the first
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months of the attribution period this approach leads to less accurate adjustments due to the
lack of data.

Comparing the results from the adjusted attributions with the standard results in Panel B
of Table 10, we see that both adjustments lead to a significant reduction of the correlation of
RCON with the aggregated FCON close to zero. In addition, the adjustments also decrease
the average magnitude and volatility which suggests a better alignment of attribution results
with the underlying constrained investment process. This is most apparent when using the
adjustment with time-varying [;-coefficients. In comparison to the standard adjustment,
the time-varying adjustment leads to a further reduction of the average absolute RCON
of around 8% (3bp). A reason for this can be that the correlation between RCON and
the contribution of certain factors is dependent on the portfolio’s exposure to these factors.
As this exposure is usually strongly varying over time, the resulting correlation is also not
constant across the considered time frame. As shown in Figure B.4 this is indeed already
observable for the ex-ante correlation which varies in this example between -0.60 and 0.05.
The time variation is then better captured by the time series regression approach based on
a rolling window, as this also allows adjustments for factors which only exhibit correlation
over a short time frame and not necessarily over the entire time period.

All in all, the time series adjustment proposed by Stubbs and Jeet (2016) can be used to
obtain statistically reasonable and significant reductions of RCON. This can be especially
useful if the attribution is conducted for research purposes in which a high statistical accuracy
of the results is needed to draw reliable implications. Applying the refined adjustment pro-
vides a better representation of the time-varying properties of the portfolio, however, comes

at the cost of statistical accuracy due to the smaller estimation window.
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Table 10: Summary Attribution Results

OLS TS Adj TS Adj 2

Panel A: Summary Performance Attribution (annualized values in %)

Active Return 1.27 1.27 1.27
World 0.00 0.00 0.00
Volatility -0.05 -0.05 -0.09
Size 0.49 0.49 0.48
Growth -0.02 -0.02 -0.05
Liquidity 0.13 0.05 0.10
Leverage -0.10 -0.02 -0.05
Value 0.81 0.68 0.84
Momentum 0.65 0.45 0.43
RCON -0.65 -0.30 -0.38

Panel B: Summary Quality Measures

R? 0.10 0.10 0.10
(0.08)  (0.08) (0.08)
Ratio RCON/r4 0.75 0.73 0.68
(14.18) (11.99) (11.85)
Mean abs. RCON (in %)  0.41 0.40 0.37
Std RCON (in %) 054 051 0.47
Corr RCON/FCON -0.28 -0.01 -0.01

Notes: This table shows the summary of the annualized attribution results in % as well as of the Quality Measures for the
attributions (corresponding standard deviations of the time series are shown in parentheses). Abbreviations: T'S Adj -

Standard Adjusted Multifactor Attribution, TS Adj 2 - Adjusted Multifactor Attribution with time-varying betas

6.4 Non-Linear Factor Attribution

In order to obtain more insights, how strong possible Non-Linear effects are apparent in
the tails of each factor, we analyze the different re-attributions of RCON when using the
standard NL. Adjustment as well as the refined NL. Adjustment for different values of a. Here,
a lower level of the chosen « coincides with the consideration of stocks with factor exposures
of large absolute magnitude in the re-attribution. The results in Table 11 show the complete
re-attribution of RCON in the standard NL Adjustment in which more than 25% of the

annualized cumulative RCON is re-attributed to the Size factor. Since the Size factor is
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amongst others constructed by taking short positions in small cap stocks, this factor would
be heavily restricted by the long-only constraint in practice. Hence, this large part of the
re-attribution reflects well the degree to which the factor is constrained in practice and the
resulting inability of the investor in fully emulating the corresponding factor bet. In general,
the standard NL Adjustment provides good indicators about which factors might be most
affected by constraints in the investment process. However, as this method re-attributes the
entire RCON without distinguishing between true stock-specific returns and RCON driven
by possible non-linear effects, it does not necessarily lead to more informative attribution
results.

Nevertheless, this issue can be encountered by using a more selective classification matrix
in the refined NL Adjustment. When choosing « = 0.1, which means that at each time ¢ only
factor exposures larger than the 90th and smaller than the 10th cross sectional percentile are
used in the calculation of the classification matrix, we can still explain a large part of RCON.
The re-attributed parts of RCON are very similar to that in the standard NL Attribution,
although assigning a significantly larger part back to the Momentum factor. This stresses the
circumstance that also Momentum strategies are strongly restricted in practice, especially
due to turnover and long only constraints. Moreover, the obtained result that the majority of
the re-attributed parts of RCON is negative, is well in line with the reasoning in Section 3.5
and confirms possible non-linear effects in the tails of factor exposures. Also, when putting
even more emphasis on the exposure tails with a = 0.025 and a = 0.01 we obtain similar
results in a smaller magnitude which is a further indicator for the non-linearities and justifies

the application of this re-attribution method.
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Table 11: Summary re-attribution of RCON

NL Adj NL Adj2 (a=0.1) NL Adj2 (a=0.05) NL Adj2 (a=0.025) NL Adj2 (a=0.01)

RCON Standard -0.65 -0.65 -0.65 -0.65 -0.65
World 0.00 0.00 0.00 0.00 0.00

Volatility -0.12 0.04 0.01 0.01 0.01

Size -0.18 -0.25 -0.17 -0.21 -0.06
Growth -0.08 -0.06 -0.04 -0.09 0.00

Liquidity -0.06 0.00 -0.05 -0.02 -0.02
Leverage -0.06 -0.06 -0.01 0.01 -0.03
Value -0.06 -0.01 0.06 -0.01 -0.04
Momentum -0.09 -0.15 -0.12 -0.05 -0.03
RCON Adjusted 0.00 -0.15 -0.33 -0.28 -0.48

Notes: This table shows annualized portions of the Residual Contribution (in %) re-attributed to each factor when using the
standard Non-Linear Attribution as well as the refined Non-Linear Attribution for different settings of a. Abbreviations: NL

Adj - Standard non-linear Attribution, NL Adj 2 - Refined non-linear Attribution

These non-linear adjustments also translate to attribution results with significantly im-
proved properties of the obtained RCON, as it can be seen in Table 12. Since the standard
NL Adjustment leads to a complete mitigation of RCON by construction, this also translates
to zero-values of the corresponding Quality Measures in Panel B. However, as mentioned be-
fore, this does not reflect well the idiosyncratic noise the portfolio is expected to show and
therefore, cannot necessarily be seen as a more informative attribution. In contrast, the
refined NL Adjustment leads to more interpretable results as it aims to distinguish better
between true stock-specific returns and more systematic constraint-induced residuals. Con-
sidering the case for o = 0.1, the adjustment leads to a RCON with a significantly lower
average magnitude (reduction of 35%/14bp) and volatility than in the OLS estimation. The
depicted distribution of the RCON in Figure 3 also makes clear, that we can explain not
only parts of negative RCON, but also of positive RCON. This suggests that non-linearities
in asset returns in combination with portfolio constraints can be seen as the one of the main
drivers for excessively large RCON of both signs. Also, the low correlation of -0.03 be-
tween RCON and the aggregated FFC'ON in Table 12 implies that the re-attributed RCON
were indeed rather systematically and likely to be caused by constraints and the portfolio

construction itself instead of true stock-specific returns.
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The observation that the refined NL Adjustment leads to a significant mitigation of the
correlation shows that in our example the main cause for this correlation were indeed non-
linearities in the asset returns as it was already suggested by the findings in Section 5.4.

To sum up, the standard NL Adjustment from De Boer (2019) can be used to obtain
general insight in possible main drivers of RCON as well as to identify factors which might
not have a linear relationship with the asset returns as it is assumed by the factor model. Also,
in cases in which the investor wants to fully eliminate the RCON, this approach represents
an easy and economically justified heuristic to do so. By using the refined NL Adjustment we
get a more realistic re-attribution which is justified by the improved statistical properties of
RCON such as a lower average magnitude and correlation with the aggregated FCON. In
general, this technique aligns the multifactor attribution well with the underlying investment
process as it takes possible non-linearities into account which have a significant influence on

the feasibility of the estimated factor returns for a constrained investor.

Table 12: Summary Attribution Results

OLS NLAdj NLAdj2(a=01) NLAdj2 (a=0.05) NLAdj2 (a=0.025) NLAdj2 (a=0.01)

Panel A: Summary Performance Attribution (annualized values in %)

Active Return 1.27 1.27 1.27 1.27 1.27 1.27
World 0.00 0.00 0.00 0.00 0.00 0.00
Volatility -0.05 -0.17 -0.01 -0.04 -0.05 -0.04
Size 0.49 0.31 0.24 0.32 0.29 0.44
Growth -0.02 -0.10 -0.08 -0.06 -0.11 -0.02
Liquidity 0.13 0.07 0.13 0.07 0.11 0.11
Leverage -0.10 -0.16 -0.16 -0.11 -0.09 -0.13
Value 0.81 0.76 0.80 0.87 0.80 0.77
Momentum 0.65 0.56 0.49 0.53 0.60 0.62
RCON -0.65 0.00 -0.15 -0.33 -0.28 -0.48

Panel B: Summary Quality Measures
R? 0.10 0.10 0.10 0.10 0.10 0.10
(0.08)  (0.08) (0.08) (0.08) (0.08) (0.08)

Ratio RCON/r4 0.75 0.00 0.54 0.59 0.60 0.66
(14.18)  (0.00) (8.53) (8.76) (12.54) (13.71)
Mean abs. RCON (in %)  0.41 0.00 0.27 0.31 0.34 0.39
Std RCON (in %) 0.54 0.00 0.36 0.40 0.44 0.51
Corr RCON/FCON -0.28 -0.02 -0.03 -0.18 -0.23 -0.25

Notes: This table shows the summary of the annualized attribution results in % as well as of the Quality Measures for the
attributions (corresponding standard deviations of the time series are shown in parentheses). Abbreviations: NL Adj -

Standard non-linear Multifactor Attribution, NL Adj 2 - Refined non-linear Multifactor Attribution with Threshold «
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Figure 3: Distributions of the obtained RCON in the standard OLS Attribution (blue) and
after adjustment with the refined NL Method (« = 0.1, red)

6.5 Combination of Approaches

Finally, we investigate possible combinations of the introduced estimation (WLS and Re-
stricted FMPs) and adjustment (Time Series and Non-Linear) approaches in order to explore
the full potential of these enhancements over the standard OLS approach. We used the most
promising techniques of the previous sections, namely WLS Shrink, Sym 2, TS Adj, TS Adj
2 and NL Adj 2 (a = 0.1) for which the results are shown in Table 13. The outcomes shown in
Panel A indicate, that all methods lead to an annualized cumulative RCON which is at least
35bp lower in its magnitude than in the standard OLS approach. This stresses the benefit
of combining different methods to mitigate the systematically negative trending RCON as
these values are less negative than when using them separately.

Looking at the corresponding quality measures in Panel B, we find additional evidence for
improvements, especially when using WLS Shrink together with NL Adj 2 (« = 0.1), which
results in an 15bp lower mean absolute RCON as well as a correlation between RCON and
aggregated FCON of nearly zero. Although NL Adj 2 (a = 0.1) already lead to significant
improvements in this regard as depicted in Table 12, this result suggests an attribution of a
slightly higher quality. By using the Time Series Adjustments in combination with Sym 2
and WLS Shrink we also obtain RCON of less magnitude and volatility than in the separate
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analyses, albeit these improvements are not as pronounce as for the aforementioned combi-
nations with NL Adj 2. However, as TS Adj and TS Adj 2 are based on selection procedures
with ensure the statistical significance of the adjustments, they provide a more profound
statistical justification for the adjustments than NL Adj 2.

All in all, these analyses stress the merits of combining different attribution approaches.
We identify the strongest overall improvements when using WLS Shrink in combination
with the refined Non-Linear Adjustment with Threshold o = 0.1. Using both Time Series
Adjustments in addition to Sym 2 and WLS Shrink also lead to strong, but less substantial
improvements. Ultimately, it depends on the preferences of the researcher whether she opts
for the lowest possible idiosyncratic contribution with a profound economic reasoning (NL

Adj 2) or for the statistically more significant, but smaller adjustment (TS Adj).

Table 13: Summary Attribution Results

Estimation Method OLS Sym 2 WLS Shrink
Adjustment Method NL Adj 2 TS Adj TS Adj2 NL Adj2 TSAdj TSAdj2

Panel A: Summary Performance Attribution (annualized values in %)

Active Return 1.27 1.27 1.27 1.27 1.27 1.27 1.27
World 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Volatility -0.05 -0.04 -0.06 0.01 -0.06 -0.05 -0.05
Size 0.49 0.29 0.43 0.42 0.33 0.40 0.41
Growth -0.02 -0.07 0.00 -0.04 -0.06 -0.01 -0.02
Liquidity 0.13 0.06 0.08 0.08 0.04 0.08 0.07
Leverage -0.10 -0.21 -0.13 -0.15 -0.23 -0.14 -0.11
Value 0.81 0.71 0.55 0.60 0.76 0.68 0.78
Momentum 0.65 0.57 0.48 0.51 0.64 0.53 0.50
RCON -0.65 -0.04 -0.08 -0.15 -0.14 -0.21 -0.30

Panel B: Summary Quality Measures

R? 0.10 0.09 0.09 0.09 0.09 0.09 0.09
(0.08) (0.08)  (0.08)  (0.08) (0.08)  (0.08)  (0.08)
Ratio RCON /r4 0.75 0.47 0.64 0.65 0.45 0.66 0.64
(14.18) (7.67)  (11.88)  (11.59) (7.3)  (124)  (10.76)
Mean abs. RCON (in %) 0.41 0.26 0.36 0.35 0.26 0.37 0.35
Std RCON (in %) 0.54 0.34 0.46 0.44 0.34 0.47 0.45
Corr RCON/FCON -0.28 2010 =003 -0.09 -0.01 20.04 002

Notes: This table shows the summary of the annualized attribution results in % as well as of the Quality Measures for the
attributions (corresponding standard deviations of the time series are shown in parentheses). Abbreviations: Shrink - WLS
Shrinkage Estimation, T'S Adj - Standard Adjusted Multifactor Attribution, 7'S Adj 2 - Adjusted Multifactor Attribution
with time-varying betas, NL Adj 2 - Refined non-linear Attribution (o =0.1), Sym 2 - Relaxed Symmetric Constraint based
on Benchmark weights (d = 10) and MW.
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7 Conclusion

In this paper, we investigated different techniques to improve the informativeness of multi-
factor performance attributions on constrained long-only portfolios. We applied these ap-
proaches on the attribution of a representative equity portfolio and evaluated the results
based on several quality measures. Using a comprehensive data set of historic return and
factor exposure data of MSCI World Index constituents over a time period of 22 years, we
firstly find that the application of market cap regression weights in the WLS approach implic-
itly leads to more representative FMPs. This translates into a lower unexplained contribution
in the attribution while only sacrificing statistical accuracy to a small extend. However, an
improvement can be achieved by using a Shrinkage Estimator based on the work of Ledoit
and Wolf (2003a) which brings together the favourable properties of a statistically accurate
and a representative weighting scheme in the regression. Similar results can be obtained when
deriving the FMPs explicitly subject to strongly relaxed real-world constraints. Furthermore,
we find that the Time Series Adjustment by Stubbs and Jeet (2016) and the Non-Linear Ad-
justment by De Boer (2019) are useful methods to ensure the uncorrelatedness of RCON
with the aggregated FCON which is a main property of true idiosyncratic return contri-
bution. While the Time Series Adjustment is a re-attribution based on a purely statistical
foundation, the Non-Linear Adjustment puts more emphasis on the economic reasons for the
occurrence of the excessively large RCON. Finally, with the analysis on simulated returns
we identify possible reasons, such as omitted factors in the model or non-linear asset returns,
for the issues that we face in practice in the attribution of long-only portfolios.

This paper contributes to the recent academic research on multifactor attribution in sev-
eral ways. Firstly, we introduce possible quality measures to assess the informativeness of
attribution results and to evaluate possible improvements through the application of different
techniques. Moreover, we propose the usage of a shrinkage estimator in the WLS regression
to combine the benefits of the widely used market cap weighting scheme with the properties
of the statistically robust weights. In addition, we show in which ways real-world constraints
such as the long-only, maximum weight and liquidity constraint can explicitly be incorporated

in the attribution in order to align it better with the investment process of a constrained
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long-only investor. Here, we extend the work of Melas et al. (2010) by investigating possible
relaxations or combinations of constraints and by providing an in-depth analysis of their ef-
fect on the implied FMPs. Moreover, we expand the approach of Stubbs and Jeet (2016) by
allowing time-varying adjustments based on a rolling window estimation instead of the single
adjustment as in the standard approach. With that, we take the time-varying properties of
the portfolio into account and therefore, obtain more accurately estimated factor contribu-
tions in the attribution. Finally, we also extend the Non-Linear Adjustment technique from
De Boer (2019) by defining conditions for the adjustment and thereby bring it more in line
with the underlying economic reasoning.

All in all, this paper is beneficial for the Quantitative Equities Team of APG as it provides
a comprehensive analysis of how different techniques can be used to improve the quality of the
multifactor attribution as well as a statistical and economical justification of their application.
An advice to which approaches should be used by the researcher to enhance the attribution
depends on the purpose of the analysis. If the attribution is conducted for pure research
purposes, for instance to identify the effect of a novel alpha signal on a backtested portfolio,
one should opt for statistically accurate methods in order to obtain the most reliable results.
In these cases, the preferable methods are WLS RW or WLS Shrink as well as the Time
Series Adjustments. If the objective of the attribution is of a more illustrative nature, such
as in internal performance reviews or client presentations, methods which better incorporate
the investment process of the constrained portfolio (WLS Cap, Restricted FMPs, NL Adj 2)
and thereby lead to the lowest RCON in general, are better suited. The application of these
methods can be economically well justified and the obtained attribution results are easier to
interpret and to explain due to the comparatively low level of the unexplained idiosyncratic
contribution.

Our research can be extended in various directions. As the approach of deriving the
FMPs subject to real-world constraints already lead to promising results, one could investi-
gate whether further improvements are possible by choosing different values for the scaling
factor d in order to relax or tighten the restrictions. Also, since we only imposed the con-
straints on the FMPs of the alpha and risk factors while excluding the industry and country

FMPs in the optimization, one can examine the benefits of the derivation of these FMPs
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subject to the restrictions of our real portfolio. Finally, a more extensive analysis of how the
different approaches can be optimally combined and used simultaneously could also signifi-

cantly enhance the quality of the obtained attribution.
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Appendices

A Technical Appendix

A.1 Shrinkage Intensity

The shrinkage method in Section 3.2.3 requires us to estimate the Shrinkage Intensity 5. In
this appendix section, we provide the formulas for this estimator, in which we closely follow
the derivation in Ledoit and Wolf (2003a) and adapt their approach to estimate the residual
covariance matrix.

In general, the optimal Shrinkage Intensity 0* minimizes the quadratic loss function based
on the difference between the shrinkage estimator ﬁ]ghrmk and the true residual covariance

matrix X, and is defined as
5 = argmin(;E[O?l]]E[H(l - g)pSample | 53Target _ 7] (41)
Ledoit and Wolf (2003b) show that the optimal 0* asymptotically behaves like a constant

over the sample size T, i.e. 6* ~ /T for large T. This constant x can then be written as

T—¢
= 4

where 7 is a measure of the imprecision of X5@mple ¢ quantifies the covariance between the

errors in XSemple and YTaerget and ~y is a measure of the discrepancy between YSemple and

ZA:Target

As derived in Ledoit and Wolf (2003a) a consistent estimator for 7 is given as

R . . 1 &, . _ ~ Taraet\2
R Y with Fiy= 7 0 (G -8 (G- 5) - L) (43)
1=1 = =

where the subscript ¢, j indicate the matrix element in row ¢ and column j and &; denotes the

average estimated residual return of stock ¢. Likewise, v can be consistently estimated as

TN LR m

vSample

i N
isample Vj.i,i.i)v (45)
JJ

Ejjmple A
: Viiij +

Sample
Ei,i
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where p denotes the average of the estimated correlation in S1Sample and

N 1L, - . R o ) )
Viiij = > ((Ei,t ~&)° - Ei?mple)((&,t &) &) - Ef?mple) ,
t=1
(46)
N 1 &, . B . ) o ) R
Yirii = Z; ((gj’t &) - Ei;mple)((ﬁi,t —&)(Eje—&5) - Ef;?mple)
t=

Since we use a shrinkage target with zero correlation, we follow the approach in Vlodrop
and Lucas (2018) and set p = 0. Bringing these estimates together, we obtain an estimator

for k as

>

~9 . (47)

~

v

Finally we can compute the shrinkage intensity estimator 5 as

b= max((),min(%,l)). (48)

In our analyses we use a rolling window of the past 7" = 60 months to estimate the Shrinkage

K=

Intensity as well as the sample covariance matrix.

A.2 Equivalence between FMPs from OLS/WLS and unconstrained

minimization problem

In order to show the equivalence of the FMPs obtained in the unconstrained optimization
problem in Section 3.3 with those of the WLS approach in Section 3.2, we firstly formulate

the Lagrangian function of the minimization problem

min wlMPRw -1 FMPE
FMP,k t t t
b (49)
s.t. Xow MEE — o
as
; 1 ) ;
E(WfN[P,k’ )\) _ §Wf']\r1P,let—1Wf]V[P,k _ )\(X;Wf'MP,k _ ek) ) (50)
Afterwards, we formulate the corresponding system of equations given by the first order
conditions
oL 1. FMPk '
W = Wt W, - Xt)\ =0 (51)
oL
a—)\ = XthFM-Rk — € = 0 5 (52)
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and solve it by firstly re-arranging Equation 51 to get
w PR oW XN (53)

Then, we fill this formulation in Equation 52 to obtain

X;WtXt)\’ — € = 0

(54)
e )\, = (X;WtXt)_lek
Substitution of this expression in Equation 53 results in
w, MPE = WX (XWX ) ey (55)

which is equivalent to the k-st column of the FMP matrix from the standard WLS estimation
in Equation 12. Using the Identity Matrix as regression weights correspondingly results in

the OLS equivalent.

A.3 Correlation between FCON and RCON

In order to calculate the correlation between the aggregated FCON and RCON we firstly
reformulate the decomposition equation of the active portfolio’s return in the standard attri-

bution

wi'r, = FCON, + RCON,

= Wf,th‘t,WLS + W?Iét
(56)
= W;l,Xt(X;WtXt)_lxgwtrt + W?I(In - Xt(XQWtXt)JX;Wt)I't

= Wi'Pwrsts + Wi My st
with the projection matrix Py s = X (X, W, X, )1 XiW, and the residual maker M,y 1g =
I, - X, (X;W,X,;) 1 XIW, as described in Greene (2003).
Then, the covariance between F'CON; and RCON; can be calculated as
cov(FCON;, RCON;) = cov(w;i Py wists, Wi My wrst)

_ Ar ! A
=w; PtWLscov(rt,rt)Mt’Wstt

= W?,Pt,WLS(XtEf,tXtI + EE,t)Mé,WLSW? (57)

Ar \A/ A Ar I A
=W PrwrsXedp i Xe Mt,WLSWt Wy PtWLSZ&tMt,WLSWt

=0, as XtIM;,WLS =0

_ AT / A
=Wy Pt,WLSEf:‘,tMt,WLSWt
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Analogously, we obtain the variances as

Var(FCON,) = W{f"lz't,WLsZa,t1:’1'5,14/LSWZ4

(58)
Var(RCONt) = W?’Mt,WLSE&‘,tM;’WLSW? ,
with which we can subsequently compute the correlation
FCON;, RCON,
p(FCON,, RCON,) = ——2¥ d ) (59)

/Var(FCON;) - Var(RCON;)

Given these formulations, we can identify three possible sources for a high (ex-ante)
correlation which we encounter in this paper in several attributions on the simulated and

empirical return data:

1) correlation between errors. If the off-diagonal elements of X, ; are non-zero, we corre-

spondingly obtain a larger value for the correlation bettwen RCON and FCON;

2) a non-linear dependency of asset returns on factor returns as described in Section 4.4.
In this case, we use a transformed exposure matrix X{"**/ so that X;""*/"M/ ., ; # 0.
Therefore, the corresponding term in Equation 57 does not cancel out anymore which

ultimately results in larger correlations in this setting;

3) the usage of FMPs obtained from the restricted optimization problems in Section
3.3. As the residual maker can also be written in terms of the FMP weights, namely
M:wrs = L,-XywliMP7 the usage of the derived FMPs also leads to a non-orthogonality
of the residual maker to the factor exposures which in turn also results in a larger cor-

relation.

If the covariance matrix of the residuals is known, such as in the simulation in Section
4, we are able to calculate the ex-ante expected correlations by plugging in this covariance
matrix for X.;. This allows us to separate the magnitude of correlation which we expect
by using different regression weights from the correlation which is caused due to estimation

errors and inaccurate regression weights as shown in the results in Table 14.
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B Tables and Figures

Figure 4: Time Series of Ex-Ante Correlation
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Notes: This figure shows the ex-ante correlation based on equal regression weights and simulated asset returns with correlated

errors and a non-linear dependency on the alpha factor exposures over the time period from January 1997 to February 2019.

Table 14: Ex Ante and Ex Post Correlation

Ex Ante Ex Post
OLS WLSRW WLS Cap MW & LO Sym 1 Sym 2 OLS WLSRW WLS Cap MW & LO Sym 1 Sym 2

Homosced. Errors 0.00 0.02 0.09 -0.08 -0.04  0.01 0.00 0.00 0.04 -0.23 -0.29  0.01
Heterosced. Errors -0.08 0.00 0.02 -0.09 -0.06  0.01 -0.04 -0.02 0.01 -0.22 -0.25  0.00
Correlated Errors -0.03 -0.01 0.11 -0.11 -0.07  0.01 -0.20 -0.24 -0.22 -0.54 -0.561  -0.09
Non-linear Asset Returns -0.12 -0.06 -0.06 -0.15 -0.14  -0.04 -0.36 -0.34 -0.27 -0.52 -0.31  -0.21

Notes: This table shows the average ex ante expected correlation between RCON and FCON given different error covariances

and regression weights as well as the ex post correlation obtained in the attribution based on simulated asset returns.
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Table 19: Attribution of a long-short portfolio based on simulated return data (OLS

Estimation)

Homosced. Errors Heterosced. Errors Correlated Errors Non-Linear Asset Returns

Ann. Cum. RCON (in %) -0.01 -0.02 0.02 -0.03
(0.04) (0.05) (0.05) (0.04)
R? 0.09 0.12 0.16 0.11
(0.00) (0.00) (0.01) (0.00)
Ratio RCON/r4 0.02 0.01 0.01 0.02
(0.00) (0.00) (0.00) (0.00)
Mean abs. RCON (in %) 0.05 0.05 0.05 0.05
(0.00) (0.00) (0.00) (0.00)
Std RCON (in %) 0.07 0.08 0.08 0.07
(0.00) (0.00) (0.01) (0.00)
Corr RCON/FCON 0.03 0.01 0.03 0.02
(0.08) (0.09) (0.07) (0.07)

Notes: This table shows the the mean of the calculated Quality Measures (corresponding standard deviations are shown in
parentheses) obtained from 25 multifactor attributions based on simulated return data. The attributed portfolio is an
unconstrained long-short portfolio which is optimized for the same composite Value-Momentum Signal as the long-only
portfolio used in the main analyses. The table shows the results of the attributions when using the standard cross-sectional

OLS estimation without further adjustments.
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