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Abstract

In TV advertisements, recent developments such as the set-top box have made it pos-
sible for media agencies to collect detailed numbers of viewers (also called TV ratings)
of the shows they broadcast. Ideally, this information can be used to gain insight in
the demographic composition of the target group for each TV channel at each moment
in time. However, this can not directly be achieved. The reason for this, is that only
household-level data can be obtained, rather than individual-level data. In this work, two
methodologies have been developed to obtain TV ratings per demographic segment from
household viewing and composition data. In the first method, theories of group utility and
choice models are combined to form a household level choice model, using individual
utilities. From a number of group utility specifications, the multiplicative group utility
(using the product of individuals’ utilities as household utility) proved to be the most
suitable to apply in a choice model. In the second method, a linear regression model and a
LightGBM model are estimated on data where segment TV ratings are known, to apply this
model on data from a different source. This method uses aggregated household ratings as
predictors and is therefore called the aggregated method. To tune the LightGBM model,
Bayesian Optimization of its hyperparameters is used. The LightGBM model proved to
outperform the linear model by a large margin in terms of model fit. The LightGBM
model also outperformed the choice model in terms of model fit and computation time.
Therefore, we conclude that the LightGBM model of the aggregated method is the most
suitable to estimate segment TV ratings. However, the aggregated method can only be
applied to household viewing data where segment TV ratings of data from a similar source

is available. In case this data is unavailable, one has to apply the choice model.

Key words: TV ratings, target group identification, segmentation, choice model, group
utility, regression, LightGBM, Bayesian Optimization.
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1 INTRODUCTION

In recent years, the number of methods of online advertising have increased at a high pace. In online
advertising, identifying whether an individual internet user is part of an advertiser’s target group is
relatively easy: the user’s browser saves cookies, telling the advertiser about the user’s browsing history,
general interests and approximate location (Farahat & Bailey, 2012). Using this information, it is easy
to tell the general demographic characteristics of this user.

Unlike online advertisers, TV advertisers have limited possibilities to identify such characteristics
of the people that watch a certain TV channel. Using two-way cable television set-top boxes (STB),
it is possible to track the viewing behaviour of households in the possession of such an STB (Chang,
Kauffman, & Son, 2012). This so-called Return Path Data (RPD) shows the viewing behaviour on
the household level. When matched to data of demographic information of this household and
aggregating over all households, one can theoretically identify target groups of different channels.

The composition of these target groups is of great interest to advertisers. Using this demographic
composition of each channel’s viewers, they can select the channels that are likely to be watched by the
target group of the product they are trying to sell, and show their advertisements on these channels. By
doing so, advertisers can reach a larger part of their target group with less advertisements, increasing
their advertising efficiency. For TV channels, knowing what their target group is, is interesting as well,
as it may yield an increase in revenue. Advertisers are obviously willing to pay more to show their
advertisements if they have a larger probability of reaching their actual target group (J. Webster &
Phalen, 1997). Furthermore, TV can be seen as a mass medium, as almost all people watch TV on a
regular basis (Sharp, Beal, & Collins, 2009). Therefore, TV is a medium that can be used to reach an
advertiser’s full target group. Besides, there are more possibilities than ever for TV advertisers to focus
their advertisements on channels watched by their target group, because the number of TV channels
individuals can choose from has increased massively in recent years (J. G. Webster, 2005).

However, using RPD data only, this target group can not be obtained directly, as that would imply
treating the household as a single entity. As Alderman, Chiappori, Haddad, Hoddinott, and Kanbur
(1995) concluded, treating a household as a single entity ia likely to lead to incorrect conclusions. To
make predictions of TV ratings (the number of individuals watching a specific channel at a specific
time) per segment, individual level data is desired rather than household level data (Gensch & Shaman,
1980). This is reflected in the RPD data as this only states that at least one person in a household
watched a certain channel. It does not contain any information on which members of the household
are watching television. This implies that the TV viewing behaviour can not directly be linked to
a certain demographic characteristic. It is therefore not possible to directly obtain TV ratings per
demographic group from the sole observation of RPD data.

This research focuses on developing models to make estimates of the demographic segment
TV ratings, using household level data. Traditionally, predictions on consumer behaviour are made
using statistical choice models. However, these choice models are developed under the assumption

that individuals choose independently of each other. In the case of TV channel selection though,
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different members of a household have to decide together on the channel to watch. Therefore, in
this paper, we develop a choice model (CM) that can model the influence individuals have on the
household decision, and be used to estimate segment TV ratings as well. This household choice model
estimates the utilities individuals from different segments perceive from watching each channel from
the observed household behaviour. The choice model is estimated separately per quarter hour, to
allow for different utilities over time in the data. The downside of this, is that the choice model is likely
to require a long time to estimate in a large number of time periods.

Besides choice models, it is also possible to model the relation between segment TV ratings and
aggregated TV ratings of households directly, and use the output of this model to estimate segment TV
ratings on observed viewing behaviour data of other sources, such as RPD data. To do so, we develop
a model estimating the relation between segment TV ratings and aggregated household TV ratings
directly. This model is named the aggregated model.

The aggregated model has two theoretical advantages over the choice model. Firstly, it can be
estimated over a large period of time at once, yielding a relatively low total computation time. Secondly,
the aggregated model is much more similar to a traditional regression model. Therefore, analytical
methods such as Ordinary Least Squares can be applied. However, these analytical techniques only
yield accurate models in case a number of assumptions hold. For example, the relation between
the dependent variable and independent variables should be linear. Nonlinear machine learning
techniques such as Gradient Boosting Decision Trees do not require this assumption (James, Witten,
Hastie, & Tibshirani, 2013). However, these machine learning methods have complicated algorithms,
possibly leading to long computation times (Ke et al., 2017). Therefore, we implement both a linear and
a nonlinear model for the aggregated method to compare each model’s advantages and disadvantages.

These choice and aggregated models should be able to replicate the TV ratings per segment as close
as possible. Besides accuracy though, computation time is an important performance measure as
well: datasets of TV viewing behavior are large, possibly leading to long computation times. Therefore,
we compare these methods in terms of prediction accuracy and computational feasibility.

The choice model and aggregated model are applied to Nielsen TV panel data, obtained during
four weeks in Chicago, US. For this data, both household-level viewing behavior and segment-level TV
ratings are known.

The main objective of this research is therefore to answer the following research question:

What is the best method to estimate TV viewing behaviour of demographic segments from
household level data?

To answer this main research question, it is split up into several parts. First of all, we need to
develop methodologies to obtain segment TV ratings from household TV viewing data. We develop
two methodologies: a method estimating these segment ratings using a choice model, and a method
estimating segment ratings from aggregated household TV ratings.

In the choice model, we use the observed household viewing behaviour and household characteris-

tics to estimate utilities per channel for each demographic segment. Using these utilities, proportions
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of TV ratings per demographic segment can be obtained, which are used to estimate the segment TV
ratings.

The aggregated model takes a different approach. Here, the observed household viewing behaviour
is aggregated to TV ratings per household type. Here, the household type is the number of individuals
per segment in each household. These aggregated household TV ratings are used as explanatory
variables in a regression model with the segment TV ratings as dependent variable. We use two
different regression setups: a linear one using Least Squares, and a nonlinear one using Gradient
Boosting Decision Trees. To optimize the hyperparameters of the Gradient Boosting Decision Tree
model, Bayesian Hyperparameter Optimization is applied.

Next, the aforementioned methods should be compared. We do this according to two performance
measures. The first is model fit: the implemented model should perform well at predicting segment TV
ratings. The second is computational feasibility. the model should have an acceptable computation
time.

To assess the suitability of the two models, as well as answer the main research question, we split

up the main research question into four subquestions:

Q1: How can TV ratings per demographic segment be estimated using a choice model?

Q2: How can TV ratings per demographic segment be estimated directly from aggregated household

TV viewing behavior?
Q3: Which model works best in terms of model fit?

Q4: Which model works best in terms of computational feasibility?

This thesis is organized as follows. Section 2 will shortly discuss relevant literature, and the contri-
bution this research makes. Next, section 3 gives a brief introduction to the available data. Section 4
describes the methodology of choice models and utility specifications that are used. Furthermore, it
contains a description of the aggregated model, which estimates a direct relation between segment TV
ratings and aggregated household TV viewing behaviour. It also describes how the output of these
models is used to estimate TV ratings per segment, and how model performance will be measured.
Section 5 will describe the outcomes per model, as well as a comparison of each model’s performance.
For readability, only the main findings are presented in section 5, more figures are available in the
appendices. Section 6 will answer the research questions mentioned above. Furthermore, it will also

present some suggestions for further research in this field.

2 LITERATURE & BACKGROUND

This section will start with a review on analysis of TV ratings in section 2.1. Next, literature on the
proposed methodologies is discussed. Some literature background of the choice model specification
used in this research can be found in section 2.2. The background behind the techniques used for the

aggregated model specification is summarized in section 2.3.
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2.1 TVratings analysis

The problem of estimating TV ratings per demographic segment using household level data has
received limited attention in literature. However, there has been extensive research in the field of
identifying TV audiences and segmentation of TV audience among channels, using individual data
and choice models.

In their review of literature on the recent developments in TV viewing behaviour, Sharp et al. (2009)
noted that in recent years, slightly more fragmentation among TV channels has occurred due to the
increased number of channels. However, they also concluded that the major channels attract similar
audiences from all segments of society. Only some smaller channels in their research have less varied
audiences.

In agreement to the conclusions of Sharp et al. (2009), J. G. Webster (2005) found limited frag-
mentation in TV audiences for established channels. This is less the case for smaller, newer channels,
which are often focused around a single theme. Even though these channels deliberately focus on one
theme to attract a homogeneous audience, individuals from all demographic segments are still part of
their audience.

Rust and Alpert (1984) used a choice model with utilities per TV program to estimate probabilities
for individuals from different demographic segments to watch different channels over time. They
proposed a model to estimate TV ratings per demographic segment as well. However, their focus
was, contrary to the research proposed in this paper, on predicting TV viewing behaviour rather than
evaluating TV ratings per segment. Furthermore, their model was based on TV viewing data from 1978
from Simmons Media Studies (1978) and due to the limited computer power of their era, the model
was built on a limited dataset in terms of number of channels, time span and number of segments.

Meyer and Hyndman (2005) performed a ratings analysis study as well, studying somewhat similar
data as in this research. However, Meyer and Hyndman (2005) used individual level data rather than
household level data. Unlike our work, there was no uncertainty about the demographics of the
viewers at each moment in time in their research. Furthermore, their focus was on predicting future
TV ratings, whereas we focus on estimating actual TV ratings per segment.

This research can make a contribution to literature on analysis of TV ratings in a practical and
academic manner. Knowing the TV ratings per demographic segment makes it easier for TV channels
to identify their target groups, which is of great interest to their advertisers. Furthermore, this specific
application of statistical choice model methods has until now received limited attention in literature.
This research will try to combine statistical choice models based on observed individual behaviour

and group utility methods that are used to estimate household utilities from individual utilities.

2.2 Choice model methodology

Extensive research has been done to estimating TV ratings using choice models. Among others, Meyer
and Hyndman (2005), Rust and Alpert (1984), Rust, Kamakura, and Alpert (1992) and Shachar and
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Emerson (2000) attempted to create choice models to predict viewing behaviour. However, none of
these researches included the aggregation step from household to individual preferences. Hence,
research performed so far is focused on predicting household level behaviour from household level
viewing data or on predicting individual behaviour using individual data.

Choice models assume that each individual’s gain from each possible choice (in this case the TV
stations) is measurable and expressible as a single number, the utility (Heij, de Boer, Franses, Kloek,
& van Dijk, 2004). Group choice models require that the utility for each choice for the entire group
is expressed in a single number. However, extensive research has not lead to consensus in how this
group utility should be calculated from individual utilities (Corfman & Gupta, 1993).

To be able to estimate a household choice model from individual utilities, a function uj, = f(w;)
is needed that translates the individual’s utility functions w; to household utility functions uj. In
literature, different options for this function are researched. The most well-known possibilities for
f(w;) are the additive, multiplicative, maximin and maximax functions (Brock, 1980; Curry, Menasco,
& Ark, 1991). The additive function takes the sum of each individual’s utility as group utility for a
specific option (Harsanyi, 1955), whereas the multiplicative takes the product of the individual utilities
(Nash, 1950). The maximin and maximax functions take the maximum or the minimum, respectively,
of the individuals’ utilities as group utility (Rawls, 1971).

Each of the aforementioned group utility functions has received much attention in literature on
group behaviour and utilitarianism. However, there has been limited attention to the application
of these functions in choice models. Therefore, this research makes an academical contribution by

assessing the suitability of each of these utility functions for use in econometric choice models.

2.3 Aggregated model methodology

In the aggregated model, a regression model is developed regressing the segment TV ratings on
household TV viewing behaviour and several other explanatory variables (details will follow in section
4.3.3). Traditionally, regression models are estimated using linear regression, making the assumption
of the existence a linear relation between the dependent variable and the predictors (Heij et al.,
2004). Estimating these models analytically using least squares methods furthermore requires the
assumption that the dependent variable is normally distrubuted as function of the independent
variables.

To avoid the assumption of normality, various tree-based regression methods have been developed,
such as Random Forests (RF) (Liaw & Wiener, 2002), Boosted Regression Trees (BRT) (Elith, Leathwick,
& Hastie, 2008) and Gradient Boosting for Decision Trees (GBDT) (Friedman, 1999). Each of these
tree-based regression models has very good overall predictive performance, although the predictive
power of each method differs per case (Caruana & Niculescu-Mizil, 2006). Moreover, these ensemble
methods are often more accurate in their predictions than linear regression. However, each of these
models also have a major downside: they can be quite costly to estimate due to their complex nature
(Ke et al., 2017).
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In order to make these decision tree algorithms less costly, several propositions have been made.
Specifically in the field of GBDT, many algorithms have been proposed to reduce computation time.
The main bottleneck in the implementations of GBDT algorithms lies in the identification of the most
useful split point in each tree (Ke et al., 2017). Therefore, several propositions have been made to make
selection of split points quicker. Shafer, Agrawal, and Mehta (1996) attempted to speed up split point
selection by enumerating all possible split points on the subset belonging to the branch where the split
is to be made. However, their algorithm still appeared to be time- and memory-consuming. Another
option is the histogram-based approach of Wu, Landgrebe, and Swain (1975), which selects split points
by evaluating the shape of attributes’ histograms. However, according to Perner and Trautzsch (1998),
this method does not perform too well in terms of predictive power. Furthermore, in large datasets,
the creation of the histograms takes up so much computation time that the algorithm is not very fast
either (Ke et al., 2017).

Ke et al. (2017) have developed the LightGBM algorithm, combining two novel techniques to
speed up GBDT. Firstly, they use Gradient-based One Side Sampling (GOSS), in which unimportant
data instances are discarded when updating the gradient used to build new trees. Secondly, they
use EFB (Exclusive Feature Bundling) to combine mutually exclusive variables into one variable to
reduce dimensionality. Their algorithm has proven to be both efficient and accurate in several studies
(Fonseca et al., 2017; Ke et al., 2017; Ma et al., 2018). However, like any decision tree algorithm, the
LightGBM algorithm by Ke et al. (2017) contains a large number of hyperparameters that should be
tuned by the user to obtain an optimal result.

To find the optimal hyperparameter settings of machine-learning algorithms like LightGBM,
multiple possibilities exist. The first, most obvious method, is to manually select hyperparameters
based on previous experience. This however either requires much manual labour or expert experience
(Snoek, Larochelle, & Adams, 2012). A different option is grid search (J. Bergstra & Bengio, 2012), in
which all possible combinations of a user-specified selection of values per hyperparameter are tried
out. The downsides of this are that only these user-specified values are taken into account and that the
model has to be trained a huge amount of times, once for each combination of hyperparameter values
(J. Bergstra & Bengio, 2012). This number of evaluations increases exponentially as the number of
hyperparameters increases (Bellman, 1961). A second option is therefore random search, in which only
asubset of random combinations of the grid are tried out (J. Bergstra & Bengio, 2012). This is somewhat
faster than grid search, but still requires many evaluations of the model to be trained. A third method
is automated hyperparameter tuning. A common way to automate hyperparameter tuning is using
Bayesian Optimization, in which a seperate probability model is created using the performance metric
of the LightGBM algorithm as dependent and hyperparameter settings as independent variables
(Snoek et al., 2012). This seperate probability model is much easier to optimize and therefore leads to
the optimal hyperparameter setting using less evaluations of the model (Snoek et al., 2012; Thornton,
Hutter, Hoos, & Leyton-Brown, 2013).
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3 DATA DESCRIPTION

The data studied is from Nielsen Media Research and consists of three interconnected datasets:
a dataset of household characteristics, a dataset of household viewing behaviour and a dataset
containing the true segment TV ratings per segment. Together, these three datasets define the TV
viewing behaviour of a TV panel in Chicago, Illinois, USA. The data was obtained during four weeks at
the beginning of 2019: from January 3rd, 2019 at 4am until January 31st, 2019 at 4am. The data in the
TV panel only contains data of adults, data of children younger than 18 years is not taken into account.

Besides the data of the Chicago TV panel, data is also available for the TV panel of Cleveland, Ohio,
USA. This data has the same structure as the Chicago data. The Cleveland data serves to test the
out-of-market predictive power of the aggregated model.

This section will describe the structure and descriptive statistics of the three datasets of Chicago.
First, the composition data is described in section 3.1, followed by the viewing data in section 3.2 and
the truth data in section 3.3. A brief overview of the Cleveland data is in section 3.4.

3.1 Composition

The first dataset describes the composition of the 904 households in the panel. For each household,
information is known about its demographic composition: for each individual i belonging to a
household #, the education level and demographic group (containing information on age and gender)
is known. To make sure the panel of 904 households is a good representation of the actual US
population, each individual has been assigned a weight w; based on the number of similar individuals
it represents. This way, individuals that are more typical for the US population or are less represented
in the TV panel have larger weights than individuals that are rarer, or well represented in the TV panel.
The same holds for households, each household has a weight w;, denoting the number of households
it represents.

Each of the 904 households in the data contain a number of 1 up to 7 people aged 18 and above.
The average number of people per household is 2.01, summing up to 1,820 individuals in total. As
figure 1 shows, most households contain no more than two people. Only 194 households consist
of three or more people (approximately 21.5% of the households). This is not surprising, as only
household members of grown-up age are in the dataset.

The composition data, adjusted using the representation weights w;, contains a fairly equal
division of males and females: the percentage of females is slightly higher with 51.9%. As figure
2 shows, the observations are pretty evenly spread among the age groups as well. Furthermore,
the spread of observations among education levels in 3 shows that the majority of individuals has
education level around 4, with some outliers at 0. Unfortunately, as the definitions of the education

levels are unknown, it is not possible to give an interpretation to the different education levels.



3. Data description M.E.]. Pigeaud

400 1

300 A

200

100 1

1 2 3 4 5 6 7

Figure 1: Histogram of the number of households (x-axis) per number of individuals per household (y-axis).
The distribution shows a large skew to the left.
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3.2 Household viewing

The second dataset contains the actual TV viewing behaviour of the households. Each observation
stores three variables: the household ID (h), the channel (s) being watched and the date and time ()
at which channel s was watched. Time is measured in quarters of an hour; a TV viewing session is
counted if channel s was watched during at least 5 of these 15 minutes. Therefore, each observation
represents the viewing behaviour of one household # at a point in time ¢. In total, there are 1,127,953
observations of TV viewing moments in the viewing dataset.

As figure 4 shows, the number of viewing sessions per household varies greatly. The mean number
of television viewings per household per month is 1,256. As the viewing sessions are measured per 15
minutes, this would imply that the average household watches TV 10 hours per day. However, this
number is likely to be much lower, as a TV watching session is already counted when the household
has watched a certain channel for 5 of the 15 minutes. Furthermore, the distribution of the amount of
time spent watching TV is heavily skewed to the left. This implies that there is a large number of light
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TV users and a smaller number of very heavy TV users. This is in agreement with Sharp et al. (2009),
who concluded that in general, the small group of heavy TV viewers cause the mean TV time to be
larger than expected.

Furthermore, figure 4 also shows a number of observations for which the number of TV viewing
sessions is larger than 2,688, the number of quarter hours in the observation period. This can be
explained in two ways. First of all, as mentioned before, a TV viewing session is counted if in 15
minutes at least 5 were spent watching a specific channel. Therefore, up to three viewing sessions can
be created in one quarter hour. Additionally, it is possible that households possess more than one TV

set, therefore watching multiple channels at the same time.
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Figure 4: Distribution of the number of TV Figure 5: Distribution of TV viewing sessions per channel.
viewing sessions per household. x-axis: no. quarter hours.
x-axis: no. viewed quarter hours. y-axis: no. channels

y-axis: no. households.

As figure 5 shows, the popularity of channels varies largely. The mean of the number of times a
channel has been watched during the data collection period is approximately 2,900. However, this
mean is influenced largely by a small number of very popular channels, having as much as 135,000
views. More than half the channels can be seen as small channels, having less than 250 views in total.
This may impose some issues in estimation of models, as very little information is available for these
channels. For approximately 25% of the channels, less than 10 observations are available. Especially
for these channels, estimation of TV ratings can be hard due to lack of data.

As figure 6 shows, the number of households watching TV varies greatly over time. There is however
a seasonal pattern visible: During prime time (evening hours), almost 700 of the 904 households are
watching TV. During the night and early morning, this number is just approximately 150. This can

cause trouble in model estimation, as for these morning hours, limited data is available.
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Figure 6: Number of households watching TV over time

3.3 Truth

The last dataset contains the actual TV viewing numbers of each channel s at time ¢ per segment a
of demographic group and education level. This is the dataset that is aimed to be reproduced using
the first two datasets. The total viewing number v,; of channel s for each segment a is defined as
the sum of the weights of all individuals belonging to segment a who watched channel s at time ¢.

Mathematically, this can be displayed as

Vast = Y wil [yir =), )
ica
where I [-] is the indicator function. Hence, v,,; can be seen of the sum of the weights of the people in

segment a who watched channel s at time ¢.

3.4 Cleveland data

Besides these four datasets of a TV panel in Chicago, data of a TV panel in Cleveland, US is available
as well. This data will be used to assess the extent to which the models developed on the Chicago
data are applicable to data from other regions. The data for Cleveland again consists of a composition,
viewing, household weight and truth dataset. The Cleveland panel is somewhat smaller than the
Chicago panel: it consists of 534 households with in total 968 people. The total number of TV viewing
sessions is 723,699, spread over a number of 330 channels. 147 of these channels are local Cleveland

channels, that are not available to TV viewers in Chicago.

10
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4 METHODOLOGY

This section describes the methodology that is used to estimate TV ratings per demographic segment.
First, section 4.1 discusses the way segmentation is imposed. Then, section 4.2 describes the choice
models and the different household utility specifications that are used. Furthermore, it will also
show the calculations needed to transform the choice model outcome to TV ratings per demographic
segment. Section 4.3 explains the model specification estimating segment ratings directly using
aggregated household TV ratings. It presents two techniques for this model: an analytic, linear
solution and a nonlinear solution based on decision tree algorithms. At last, the measures used to

validate and compare the results of each model are introduced in section 4.4.

4.1 Segment definition

Using the individual level demographic characteristics on education, gender and age, it is possible
to define a segment for each possible combination of these. As the number of categories of the
gender, education and age variables is two, seven and eight respectively, the total number of segments
would then be 112. Theoretically, defining the segments as all possible combinations of demographic
variables will lead to estimates of TV ratings for very specific demographic segments. However, splitting
the data into 112 segments will mean that the number of observations per segment can be very small,
especially for the segments of people that are less represented in our data. This would likely reduce
the accuracy of the models.

Therefore, we initially impose segmentation per (group of a) demographic variable. Hence, of
the variables age, gender and education, only one variable is used to segmentate the data. This
implies that when segmenting on gender, the number of segments in the data is equal to two. When
segmenting on age or education, we combine some categories to obtain three segments. Based on
the results of the models discussed in section 5, the most applicable method can be selected for each
type of segmentation. Furthermore, based on the results of the different models, the demographic
property that has the clearest distinction in TV viewing behaviour can be identified as well.

The models will also be tested on data segmented on both age and gender, to make a judgement

on how the models perform on a larger number of segments.

4.2 Choice model

The choice of TV channel in a household can be modelled with a choice model. This choice model
aims to estimate the probability household & is watching channel s at time ¢, denoted as P (yps; = 1).
These probabilities can be estimated using utilities u;; of household /4 for channel s at time ¢. As
Heij et al. (2004) described, the probability that household & prefers channel s over channel r can be
defined as the probability of the utility of channel s being higher than the utility of channel r. Let S be
the total number of channels households can select from. Then, P ( Vhst = 1) can be estimated using
(2) (Luce, 1959).

11
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P(yhst = 1) =P (Upst > Upry YT #5)
Upst 2

S
Zr:l Uhrt

As any statistical model, using the choice model implies making a few assumptions. The most
important assumptions of the choice model are the independence of irrelevant alternatives and the
identically and independently distributed errors (Solgaard & Hansen, 2003).

The assumption of independence of irrelevant alternatives means that the choice between two
options is unaffected by the other options (Domenich & McFadden, 1975). In the case of TV channel
selection, this implies that the choice of a household between two channels s and r is independent of
all other channels. This assumption should generally hold for TV channel selection, as it is intuitively
unlikely that an individual’s choice between channels s and r is affected by a third channel 4.

The assumption of identically and independently distributed error terms implies that individuals
are relatively homogeneous, in the sense that two individuals with the same characteristics have the
same choice behaviour (Solgaard & Hansen, 2003). In the sense of the TV channel choice model,
this means that two individuals i and j frome the same demographic group have the same choice
probabilities for each channel. This is a strong assumption: it is very likely that two individuals with
the same characteristics contain unobserved heterogeneity, causing their preferences to be different.
For model simplicity though, we assume that individuals are homogeneous within segments.

Viewing preferences are likely to differ over time. For example, viewers interested in sports are
likely to obtain higher utility from watching a sports channel in the evenings and weekends, as major
games are played during these moments. As viewing behavior changes over time, the choice model
should be able to capture dynamic behavior. Therefore, the choice model is estimated per time step,
such that household utilities can change over time. Hence, for each time ¢ between 1 and T, the choice
model in (2) is estimated separately.

Theoretically, the choice model has two major downsides. Firstly, the fact that the model is
estimated separately for each quarter hour may cause some computation issues. The data available
covers viewing behaviour of four weeks. Estimating the choice model for this full month of data
implies estimating the model 2,688 times. Secondly, as figure 6 shows, there is a large number of
quarter hours with only a small number of households watching. This is mostly the case for the nightly
quarter hours, when most people are asleep. For these quarter hours, few observations are available

to estimate the model on. This data limitation is likely to reduce model accuracy.

4.2.1 Household utility specifications

The model in (2) assumes that each household has a single utility uj,;; for each stattion s from which
the choice for a specific channel is made. However, in this case, the decision is made by the members

of the household h. To model this household decision, we assume that the household utility is a

12
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function of the utilities of the individuals in this household.

This section therefore describes several methods that can be used to obtain household utilities for
a channel s from individual level utilities. For simplicity, we assume that utilities for individuals from
the same segment a are equal. Furthermore, we assume that all individuals’ utilities in a household h
are equally important in the TV channel selection process.

There are several possibilities to estimate household utilities s, from the segment utilities of the
individuals in a household w,; and the number of individuals from segment a in a household n,j,.
As Curry et al. (1991) denoted, most estimation methods fall in one of two major categories. The first
category consists of additive utility functions, also called Harsanyi solutions, named after its initial pro-
poser, Harsanyi (1955). The second category consists of multiplicative utility functions, synonymous
for Nash solutions because they satisfy the conditions in Nash (1950) and Nash (1953). The remainder
of this subsection briefly describes these methods and shows how they can be implemented in a
choice model.

The Harsanyi solution is the most straightforward type of group utility function. It simply takes
the sum of all individuals’ utilities as household utility (Harsanyi, 1955). Let nj, denote an A x 1 vector
where the ath element, n,j, denotes the number of individuals from segment a in household h, and
let wg; denote the A x 1 vector with the utilities w45, as elements. The household utility can then be

estimated using (3).

Upst = W, Ny, 3)

The Nash solution uses a multiplicative function to estimate household utilities out of its individu-
als’ utilities. It can be denoted as the product of the individual utilities. Therefore, the household utility
ups is equal to the product of all segment utilities w4ss, to the power n,j,, the number of individuals

per segment in household &. It's mathematical definition is stated in (4).

A
Upst = H (wust)nah 4)

a=1

Besides the Nash and Harsanyi solutions, other approaches exist where not all individuals’ utilities
are used in estimating the household utility. The most well known is the Maximin rule by Rawls (1971),
which maximizes the minimum of individual’s utilities. Its mathematical representation is displayed
in (5), where I [-] denotes the indicator function. The rationale behind this rule is that a decision is
made that is best for the worst off individual, in order to make sure every individual has at least some
level of utility (Brock, 1980). In terms of a household decision for a TV channel, this can be seen as the

decision to watch a certain channel that not everybody particularly likes, but nobody dislikes either.

st = min (gse ] (g > 01) (5)

Similar to the Maximin rule, we can also apply the Maximax rule in (6), which takes the maximum

13
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of a household’s individual utilities as household utility (Rawls, 1971). This can be seen as a household
to choose a TV channel because one individual really wants to see it, even though some others may
dislike it.

uhst:mt?x(wastl[nah >0]) (6)

To assess which method works best when estimating demographic segment TV ratings, we use all
four methods described above used and compare their performance, to assess which group decision

method is most appropriate in TV ratings estimation.

4.2.2 Estimation with Maximum Likelihood

Substituting the methodology in section 4.2.1 in the choice model of (2), we obtain a model that can
be used to estimate individual utilities. Under the assumption that individuals from the same segment
of demographic group and education have equal preferences, we can see each individual’s utility as
the utility of its segment: w,s;. Each household utility can then be estimated using the estimation
techniques in 4.2.1 and the segment utilities w ;.

Then, for the additive household utility estimation method of Harsanyi, the choice model to be
estimated is as follows:

!
Wy

S / :
Z'r:I Wy Mh

np

P(ynse=1)= @)

Similarly, using the Nash method to estimate household utilities multiplicatively, the choice model

to be estimated is as follows:

A
Ha:l (Wqse) e

yS A :
Zrzl Ha:l (Warg) "

For the Minimax and Maximax approaches, the probabilities are estimated as below in (9) and

8)

P(yhst = 1)

(10), respectively.

min (@as ! (M > 01) ©)

Plynse=1)= ,
( i ) Zlemlna(wartl[nah>0])

maxg (Wase] [nap, > 0]) (10)

P =1)=
(th[ ) 25:1maxa (Q)ar[I[nah>0])

The values of the parameters w,; are estimated using Maximum Likelihood, treating each moment

in time ¢ as a separate model. The likelihood function of (2) can be written as

H
L(phstrJ’hst) = H H (phst)y}m (1 - phst) (=) ) (11)
h=1s=1

14
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where P ( Vhst = 1) is denoted as py,s;. Again, yjs; is equal to 1 if household i watched channel s at
time ¢, and zero else, and H is the total number of households.
To maximize likelihood, it is often more convenient to minimize the negative log-likelihood. Taking

the log of (11) and multiplying by —1, we obtain the following objective:

H S
argmin— Y Y ypslog(pnse) + (1= ynse)10g(1 = past) (12)
h=1s=1

Substituting (7) in (12), the actual objective in case of additive household utilities becomes:

H S ' ny o' ny
argmin— »_ ) yhstlog(—s S )+ (1= ynst) log(l - S (13)
h=1s=1 Zrzlwrtnh Zr:lwrtnh

The log-likelihood minimization objectives for different household utility specifications can be
obtained in a similar way:.

The log-likelihood in (13) is complicated and its minimum can not be obtained analytically.
Therefore, the optimization process is done numerically, using the L-BFGS-B (Limited memory
Broyden-Fletcher-Goldfarb—Shanno with Bounds) algorithm by Zhu, Byrd, Lu, and Nocedal (1997).

As the log-likelihood in (13) is a complex and non-convex function, there is no guarantee that
the optimum found by the L-BFGS-B algorithm is the global optimum. The same holds for the log-
likelihoods of the other utility specifications. Therefore, it is difficult to judge whether a found solution
is optimal or not. We attempt to resolve this issue by using different random initializations of the
segment utilities in w,;; as starting values for the optimization algorithm, in order to find the lowest
minimum and to identify which utility specification has the most stable model fit.

Using the estimated segment utilities @4, we can obtain estimated probabilities 7 ,5; for individ-
uals from segment a to watch channel s at time ¢, using (14).

(Z)ast

ast=—e (14)
Zle Wart

4.2.3 Multinomial logit model

Besides estimating the vector of segment utilities w;; directly in (13), an approach defining w;; as
a linear function of the characteristics of individuals in segment a is used. The advantage of this
approach is the reduced number of parameters: when estimating the utilities as a function of a

segment’s characteristics x, as in (15), the numbers of parameters is reduced from AS to 4S.

/
Wast = X ﬂ t
as als (15)
= Post + P1scEducation, + fo5,Gender, + B35:Age,

When using the utility specification in (15), it is more appropriate to use the Multinomial Logit
(MNL) model of McFadden et al. (1973). The simple reason for this, is that (15) could yield negative
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values of w,;, leading to negative probability estimates. The MNL model uses exponentials to handle
negative utilities.

The additive household utility specification of (3), consisting of individual utilities according to
(15) can be rewritten by creating a matrix X, of which the ath row contains the characteristics of an
individual in segment a:

Upst = Wi np = B, X np. (16)

Using this specification of uy,;, we can rewrite (2) to the following:

Phst = exp {ups
PR e (1L
) Zf:l exp {up, ¢t

exp {f,, X' np} 17

B Z;5:1 exp{B;, X'nn} .

Similarly, the log-likelihood in (13) can be rewritten using the utility specification of (15). The
log-likelihood of the additive MNL model is then as follows:

LI exp {f., X np} exp{f., X'np}
¢(B) = yslog( S + (1= ynse)log|1 - > ) (18)
)= 2 8\ o exp gm0 S e ()

Rearranging terms and taking the denominator out of the first logarithm (which is independent s)

out of the summation over channels, we obtain the following simplified log-likelihood:

(p)=3

h=1

S exp {f.; X nn}
+Y (1-yp log(l - >
sgl( ) oo exp{p, X'ny}

N S
> (nseBs X'np) ~log ( ; exp {ﬁler'"h})

s=1

(19)

The log-likelihoods for other household utility specifications can be derived in a similar way. Using
the estimated f;, we obtain estimated probabilities for individuals to watch channel s from each
segment using equation 20.

o exp{xgfat
ast — S ! A
Zr:l €xp {xaﬁrt}

(20)

4.2.4 Derivation of TV ratings per segment

Using the output of the choice model, the estimated ratings 9,5, can be obtained in two steps. In
the first step, the TV ratings per segment from single-person households are calculated. As we know

the demographic characteristics of these people and know they are the only ones in the households,
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and therefore have to be the people watching, the segment TV ratings from single-person households
are not stochastic. In the second step, the segment TV ratings from households with more than one
person are estimated using the choice model probabilities.

The estimated TV ratings 7,5; can therefore be decomposed as

(s)

~(m)
ast TV 21

Vast =V ast’

(s)

2s; denotes the TV ratings from single person households and ?™ denotes the estimated

where v ast
ratings from mixed households.

(s)

The single ratings v,

can then, as first step, be calculated as the sum of all the weights of
individuals in single person households, watching channel s at time ¢ and with the characteristics of

segment a. Mathematically, this is displayed as

H
v =Y yusenantnln, 22)
h=1

where 7}, is a binary variable indicating whether household # is a single person household or not:

1 ifY4 ng=1
Th: Za_l ah (23)
0 else

and (, is equal to the individual weight w; of the individual in household # if household 7 is a single

person household, and zero else:

w; ifiehandt,=1
(h= (24)
0 else

(s)

Using the numbers of v,

(s)

we can also find the total TV ratings from single person households

v}, as
A
Ve =Y vadr (25)
a=1

Using (25) we can obtain wg’t”), the total TV ratings from mixed households, using (26), where ¢,

is the total TV ratings for channel s at time ¢. This """ can be used in the next step, where we estimate
ﬁ(m)
ast*

v = v v (26)

(m)
ast

) using the number of individuals in segment a, denoted as m,,

(m)

In the second step, we estimate dst

using the fact that the sum of ¥, over a should be equal to
wg’f). We can then estimate each ¥

estimated probabilities 7 ;5 from (14) or (20) and a tuning parameter 8, which makes sure the sum

17
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(m)
st

~(m)

of v,; aligns y,, . We achieve this by estimating the value of the parameter 6, using (27).

A
(m) _ ~(m)
wst - Zl Vast
a=

A
w(srtn) =0t Z RastMa (27)
a=1
(m)
v
Ot = -

A -
Zazlnastma

In (27), the parameter m, is the total number of individuals in segment a and can be obtained as

the sum of the weights w; of all individuals in segment a:

mag=) wi. (28)

ica

Using the estimated probabilities 7 ,4;, the number of individuals in the segment m, and the tuning

parameter §;, we can obtain estimates of the mixed segment TV ratings ﬁg?t):

~(m)

Dyst = OstfastMa. (29)

()

; 7y (m)
25 and estimated D

usi to obtain D4

Finally, we add up the calculated v

()
ast

+pim (30)

vdst: v ast”*

4.3 Aggregated model

To overcome the two limitations of the choice model (long computation time and limited data in
some quarter hours), a second method is developed. This different approach is to model the relation
between the segment ratings v,s; from the truth set, and the observed household viewing behavior
directly in a regression model. This method will be denoted as the aggregated model. The aggregated
model has as advantage over the choice model, that all quarter hours can be modelled at once. Hence,
only one model based on a very large number of observations needs to be estimated. This will likely
be computationally lest costly than the choice model. However, other than the choice model, the
aggregated model does require the availability of true segment TV ratings in at least a part of the data.

This section describes two methods for this approach: a linear model estimated with Least Squares
and a nonlinear tree-based method. Before describing the specifics of these two methods, the basics

of the aggregated method itself are introduced.

4.3.1 Basics of aggregated method

In the aggregated method, the segment TV ratings v, are attempted to be calculated directly from

aggregated viewing behaviour in the data, without using intermediate steps of individual probabilities.
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Therefore, the goal is to find a function f(-), that calculates the segment TV ratings from a number
of predictors. The predictors included in this function f(-) can be obtained from the viewing and
composition datasets. The predictors used are the household type TV ratings z;;, the day and time d,
the percentage of the population that is part of segment a, denoted as q,, the total ratings of channel
s attime ¢, denoted as ¥, and the percentage of all individuals in segment a living in a household of
type j, denoted as c4;. Hence, in the aggregated model, the goal is to find a function f(-) that best
approximates (31).

Vast = f(ZjStr dt) Cujr da> 'Wst) (3]-)

The predictor zj; is the total TV rating of channel s at time ¢ of households from a certain type j.
It can be seen as the total number of people living in a certain household type, where at least someone
in their household is watching channel s at time .

The household types are chosen to be Mutually Exclusive and Collectively Exhaustive (MECE)
and are based on the variable chosen to do segmentation on. All combinations of people from each
segment present in the data are considered a separate household type j. To illustrate this, we will
discuss an example. In case segmentation is done on gender, each individual belongs to either segment
0, of females, or segment 1, of males. Every possible combination of number of males and females in a
single household present in the data is then used as a separate household type.

Intuitively, one would define zj,; as the number of individuals in households of type j watching
channel s at time ¢. However, as each individual represents a larger number of similar individuals not
included in the TV panel, each household also represents a larger number of similar households not
included in the TV panel. Therefore, the TV ratings per household type zj; are calculated through
the weights of individuals in the households. Let the household weight of household % be the sum of
the weights of its individuals (¥ ;e w;). Furthermore, let gj, be a vector of size J where the jth item is
equal to one if household £ is of type j, and zero else. Then, the observed TV ratings for household
type j for channel s at time ¢ is the sum of the weights of all households in j that watch s at £. The
quantities of z;, are obtained using (32).

H
%FZPW%ZM) (32)

h=1 ich
The variable ¢, j, denoting the percentage of individuals in segment a that live in households of
type j, is then specified as the sum of weights w; of individuals belonging to segment a and living in a

household of type j, divided by the total number of individuals in segment a, m,, as displayed in (33).

Y gnjYiennica Wi
Cay = I (33)

The aggregated model is trained on the last three weeks of data of Chicago, using the first week

from Chicago as validation set and the data from Cleveland as test set. This split into three sets of data
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is made to be able to test for two types of fit: within-market fit and out-of-market fit.

Using the model estimated on the last three weeks of Chicago, within-market estimates can be
made for the first week of segment TV ratings. The within-market fit is then accuracy of these estimates
for the first week of Chicago data. It is a measure of how well the model can describe the relation
between segment TV ratings and the predictor.

The out-of-market fit is the accuracy of the estimated segment TV ratings for the Cleveland data,
again obtained using the model estimated on the last three weeks of Chicago data. By comparing
these to the actual segment ratings in Cleveland, we can assess the out-of-market fit. This way, we can
measure model fit in two ways. Firstly, we can asses how the model fits on unseen data, and check
whether the model has not been overfitted on our training data. Secondly, we can test whether the
aggregated model is applicable across markets. The intended application of the methods developed
in this research is to be able to estimate segment TV ratings on RPD data, which comes from a
different source than the panel data used to estimate these models. Therefore, it is important to
measure whether the model estimated on the panel data is applicable on data from different sources
or different markets as well.

The applicability of the aggregated method on different markets depends on the overlap between
the household types. The AM is estimated on one market, yielding parameters for the variables
(household types) present in this market. Then, these parameters are applied on a test market
dataset to obtain out-of-sample estimates of the segment TV ratings. In case a large proportion of the
household types in this training market is not present in the test market, the model is very likely to
produce less accurate ratings for the test market, as it is missing many variables there. The other way
around, a large number of missing household types in the test set has adverse effects as well: in that
case, there is information in the test set that is not used in the estimation of household types.

As figures 12a - 12d and table 11 in appendix A display, the overlap between household types
present in both the Chicago and Cleveland data is dependent on the number of segments used. When
segmenting only on gender, there are 20 distinct household types in Chicago. Of these 20 types, 15
(75%) are also present in Cleveland, which also contains one household type that is not in the Chicago
data. When imposing both gender and age as segments, yielding 6 segments, the overlap reduces to
52% of the household types in Chicago.

Whereas there are a large number of variables in Chicago missing in Cleveland, this is less the
case the other way around. This can largely be explained by the fact that the Cleveland data is smaller
than the Chicago data in terms of number of households and individuals. As 12a - 12d and table 11 in
appendix A show, the number of household types existent in Cleveland but non-existent in Chicago is
only one when segmentation is done on gender. For age and education segments, all household types
apparent in Cleveland are also apparent in Chicago. Hence, when imposing segmentation on age or
education, all information in the Cleveland data can be used. This is less the case when segmentation
is done on gender and age at the same time. Then, for a number of 6 segments, 13 of 65 household

types in Cleveland are missing in Chicago, an overlap of 80%.
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The aggregated method has one major downside over the choice model. Because it uses parame-
ters estimated on one TV market to make predictions on another market, it assumes that the function
f () is the same across markets. Therefore, it can only be applied to markets of which similar markets
exist, for which individual-level TV viewing behaviour is available. In this research, the assumption of
f () being similar between the TV viewing markets is likely to hold, as the cities from which the data

are taken (Chicago and Cleveland) are both northern US cities, approximately 500 kilometres apart.

4.3.2 Linear aggregated model

Under the assumption of linearity and normality, the relation between the household type ratings z;;
and the actual ratings v,,; can be modelled as in (34). The term g, is the 'benchmark’ estimation
of v, it is simply the population mean of TV ratings at time ¢ for channel s. The remainder of (34)
measures the deviation from the population mean of the segment TV ratings. The term e, is the
error term in the model as in traditional regression models. As in any regression model, it is assumed
to be identically and independently normally distributed. The parameter @, is the segment-specific
intercept. Furthermore, the y,; parameters capture the impact of the TV ratings of households of type
j on the TV ratings of demographic segment a.

J
VastZCIaWst""(l_CIa) (aa"' ZYajCaijst)"'east (34)
=1

The model in (34) is a basic linear representation of a relation between TV ratings per household
type and TV ratings per demographic segment. It has a limited number of parameters to be estimated:
only J+1 per segment. However, the model in (34) can not capture any dynamic behavior because of
the time-invariant parameters y,; and a,. As TV viewing behavior is likely to be different for different
times of the day, we should extend the model to be able to capture this dynamic behaviour.

As figure 6 showed, TV viewing behavior clearly shows trend-wise behaviour. This trend can be
represented in (34) by incorporating the term d;, as displayed in (35). This term d; is a vector of binary

variables, indicating what day of the week and what part of the day it is at time ¢.

J
Vast = qaW¥st t (1 - qa) dgt+ d;ﬁa + Z YajCajZjst |+ €ast (35)
j=1

The aggregated approach has a computational advantage over the choice model approach. Firstly,
it can be estimated with a large number of methods, such as simple traditional methods as Ordinary
Least Squares (OLS). Secondly, the number of parameters to estimate is just the number of segments
times the number of parameters per segment, or A(J+ L+ 1), where L is the length of d;. Lastly,
because of the term c,; in (35), the model estimated on TV panel data can directly be used to estimate

the unobserved segment ratings of RPD data as well.
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To estimate the model in (35), we rewrite it such that it has the form of a general linear model:

L J
Vast = qaW¥st + (1 - Qa) Qg+ Z Bardis + Z YajCajZjst |t €ast
=1 =1

. ] (36)
Vast — 4
Past = 9a¥st _ Ao+ Y Bardi+ Y, YajCajZjst +Nast»
1-qa =1 j=1
where 145t = €45t / (1 - gq4). Rewriting this in different terms yields
east = Xg50a +Nast, (37)
where the terms e, X,5; and 8, are defined as
Vast — qa¥st
edSt =
1-qg4
!
Xast = (1 dir - dir Cazise v Ca]Z]St) ; (38)
!
0q= (aa Bar -+ Par Yar - Ya]) .

Stacking all observations of all stations of a single segment, for all moments in time ¢ on top of

each other, we obtain the following, regular vectorized OLS function:
eq=Xa0q+1a4. (39)
The estimate 0, is now just the regular OLS estimate:

0= (X, X,) " X, eq. (40)

Using this 9a, out-of-sample predictions é,;; can be obtained as é,5; = x;méa. These estimates of

€45 can then be transformed to estimated TV ratings 7,5, using (41).

Vast = GaWst + (1 - Qa) ast (41)

We know the sum of the estimated segment TV ratings over segments should be able to the total

TV ratings:
A
Y Dast =Vsr. (42)
a=1

Therefore, for each channel and moment in time, the estimated segment ratings 7,5, should be
adjusted such that (42) holds. Similar to (27), this is achieved by multiplying each predicted rating

with a multiplication factor §; to obtain corrected estimates 7, ,:

1723; = 551: Dast (43)
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where

Vst

A 5 :
a=1Vasr

Ost = (44)

When estimating the model using (40), we make a few assumptions. First, we assume that the
relation between the deviation of the mean tv ratings e,s; and the predictors is linear. Furthermore,
estimating the model using least squares implies that the residuals 7,5, are identically and indepen-
dently normally distributed with mean zero and variance 02: 145; ~ N (0, 02) (Heij et al., 2004). To
test whether this assumption holds, we perform a Jarque-Bera test (Jarque & Bera, 1980).

The Jarque-Bera test statistic is calculated as

_n—k+1

JB 5

(52 + i (C—3)2), (45)
where n is the number of observations, k is the number of predictors, S is the residuals’ skewness
and C is the residuals’ kurtosis. Under the null hypothesis of normally distributed residuals, the test
statistic follows a y?(2) distribution. Using a confidence level of 0.05, that means the null hypothesis
of normally distributed error terms should be rejected if /B > 5.991

In case the Jarque Bera test is rejected, the assumption of normally distributed errors 1,5, does
not hold. Generally, this is also an indication that the linear regression model is not the optimal choice
to model the available data. Often, the distribution of the residuals is more heavy-tailed than that of a
normal distribution (Jarque & Bera, 1987). The regular OLS estimate is likely to be influenced largely
by observations in the tails of this distribution (Hogg, 1979), therefore leading to bad model fit on the

majority of the observations (Jarque & Bera, 1987).

4.3.3 Nonlinear aggregated model

The linear aggregated model in the previous subsection has a number of drawbacks. It imposes the
assumption of a linear relation between dependent variable and predictors, with identically and
independently normally distributed residuals. Furthermore, the relation is assumed to be without any
cross-effects.

To overcome the aforementioned drawbacks, we also use a nonlinear method. Common methods
for this are tree-based. As Sutton (2005) concluded, regression tree methods have several advantages
over linear regression. Firstly, they do not require assumptions on the form of the underlying distri-
bution. Secondly, regression tree methods automatically capture relations with interaction or cross
effects as well. These interaction effects are hard to uncover in linear models. Thirdly, it allows for
heterogeneity in the extent to which the different predictors affect the outcome. In other words, in
regression tree models, a variable can be a very important factor in one subset of the predictor space,
while having limited influence in another subset. This way, the influence of for example the TV ratings
of a specific household type can be different for different times of the day.
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As fitting a single decision tree on a set of data often leads to overfitting, we use Gradient Boosting
Decision Trees. Using a boosting algorithm for decision trees generally leads to good model fit, as the
model creates new trees based on the performance of previous trees it created (James et al., 2013).
However, as multiple trees are created and combined into one model, computation time can be long
and the resulting model is hard to interpret. A recent development in boosting is LightGBM, which is
an advanced boosting algorithm that requires relatively limited computation time (Ke et al., 2017).

LightGBM is a boosting algorithm derived from the Gradient Boosting Decision Tree (GBDT)
method (Ke et al., 2017). GBDT algorithms are boostings algorithm for forming regression or classi-
fication trees, using gradients to improve the decision trees in every iteration (Friedman, 2001). As
explained by Li (2016), the general idea behind the algorithm is as follows. We assume that there exists
a set of data points y that one wants to predict, a set of known variables x, and an imperfect model
FU™ that attempts to replicate y. Using this information, we can obtain predictions y; = F"™ (x;)
and residuals e; = y; — y;. To boost the model F (M we can add an estimator h(x) that tries to fit the
residual e;. This estimator is found by minimizing the loss function of the residuals, which can for
example be the mean squared error Y.1*_, (9; — F m) (xi))2 Adding this estimator to the existing model,
we obtain a new model F""*1) and we can obtain new residuals, to fit a new extra estimator on. In
terms of decision trees, the algorithm tries to find the split that minimizes the loss function.

Although GBDT models can lead to very accurate models (Friedman, 2001), it does have an obvious
downside. When seeking the split with the most information gain, the GBDT-algorithm estimates the
information gain for all possible splits for all observations (Ke et al., 2017). This leads to a very large
number of computations per iteration, especially for data with a large number of observations and/or
large number of features. Therefore, GBDT can be quite costly to apply.

To overcome this computational downside, Ke et al. (2017) have developed LightGBM, an algorithm
derived from the GBDT algorithm that requires a smaller number of computations. This is achieved
by using two techniques to reduce dimensions and data. Firstly, observations with small gradients,
having little room for improvements, are discarded in the estimation of the new model. Secondly,
predictors that seem mutually exclusive are combined to reduce the number of dimensions. These two
techniques have in previous research led to up to 20 times shorter computation time than conventional
GBDT techniques, while retaining similar model accuracy (Fonseca et al., 2017; Ke et al., 2017).

LightGBM is a complex algorithm, with many parameters that need to be fine-tuned. These
parameters include the maximum depth and number of leaves of the decision trees, but also the
size of the learning rate or shrinkage, a correction factor reducing the impact of individual trees,
and therefore reducing the risk of overfitting (Friedman, 1999). Furthermore, parameters as the
minimum number of observations in each leaf and a regularization measure can be imposed as
well. The performance of the LightGBM model is therefore highly dependent on the value of these
hyperparameters (Snoek et al., 2012; Thomas, 2019). Setting these parameters by hand either requires
expert experience (to have knowledge on which parameter settings might work) or a lot of time (to
perform a grid search: try many different combinations of parameters to see which combination

24



4. Methodology M.E.]. Pigeaud

yields the best result) (Snoek et al., 2012).

To overcome these issues, we have employed Bayesian Optimization of the hyperparameters, a
technique proposed by Snoek et al. (2012) to automate the tuning of parameters. The main idea of
this technique is to build a new, simple probability model of the objective based on the values of the
hyperparameters. By finding the optimum of this surrogate probability distribution, we can identify
parameter values that are likely to yield good results on the actual optimizer. Mathematically, Bayesian

Optimization attempts to solve the following:
x* = argmin f(x), (46)
xeX

where x* denotes the hyperparameters that yield the lowest value of the performance metric used,
and X denotes the domain of possible values for the hyperparameters (Dewancker, McCourt, & Clark,
2015). The outcome of the function f(x) is the value of the performance metric of the nonlinear model
for hyperparemeters x.

The most common choice of modelling objective functions in Bayesian Optimization are Gaussian
Processes (GPs) (Dewancker et al., 2015; Snoek et al., 2012). In GPs, the outcome of the function f
is assumed to follow a Gaussian distribution with mean function p(x) and covariance function K(x):
f~ N (,u(x), K (x)). The distribution of f and the optimal value x* are built up in a series of iterations,
called Sequential Model-Based Optimization (J. S. Bergstra, Bardenet, Bengio, & Kégl, 2011). In each
iteration, the distribution of f is updated based on the observations D = {x;, yi}gzl evaluated so far,
where x; is a vector of hyperparameter values and y; is the value of the performance metric of the
LightGBM model evaluated with hyperparameters x;. We model y; ~ N (f(x;), v), where v is the
variance in the actual model not captured by the GP. Next, the parameter values that should reduce
f are obtained by maximizing the acquisition function. This set of hyperparameter values is then
applied to the original model to obtain new data for a new iteration (J. S. Bergstra et al., 2011; Snoek et
al., 2012).

An essential step is the maximization of the acquisition function. The acquisition function is
basically a function that defines a maximization objective using f(x) to acquire the next set of hy-
perparameter values x to evaluate. The acquisition function mainly used in Gaussian Processes is
the Expected Improvement (EI) (Jones, Schonlau, & Welch, 1998), (47), which seeks to maximize the
difference between the current optimal hyperparameter values x5 and the new candidate values
Xnew. With the improvement function I(x) = max ( S (pest) — f (Xnew)» 0) (Jones et al., 1998), the El is
obtained as in (47) (Snoek et al., 2012). The second step is obtained by integration by parts Jones et al.
(1998). In (47), f" = f (Xpest) and f = f(Xpew). Furthermore, ¢ (- ; u,0%) and ®(- ; y, 0®) denote the pdf

and the CDE respectively, of a normal distribution with mean u and variance o2.
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P
E[I(x)| D] :f_oo(f’—f)cp(f; p(x),K(x))df 47)

=(f = p@)®(f; px),Kx) + K@) (f'; px), Kx)

A new set of parameter values to estimate the model on is then obtained by maximizing (47). This
can either be done by reducing the mean function p(x) or increasing the variance function K(x) (Jones
etal., 1998). Hence, there is a trade-off between staying in the currently "optimal" area of parameters
and exploring a different area in search of new, even better optima. The EI criterion automatically
makes a trade-off between these options.

The process of evaluating the EI and evaluating the new parameter values in the actual model
is repeated until convergence or for a maximum number of 50 iterations. Furthermore, for each
evaluation, the number of iterations of the LightGBM algorithm is capped at 100.

Bayesian Optimization with GPs has been applied to a number of hyperparameters of the Light-
GBM model, that are intuitively difficult to set by hand. Table 1 summarizes which hyperparameters
have been tuned using Bayesian Optimization and which values are used as the domain of these
hyperparameters. The maximum depth controls how many consecutive leaves in the trees can be
grown, and thus how 'deep’ the tree can become. The learning rate controls the impact of new changes
to a tree. A high learning rate may lead to overfitting. The leaf ratio controls how complex the model
can become. The leaf ratio is defined as the theoretical maximum of leaves (which is 2num-leaves)
divided by the maximum depth. It therefore defines what percentage of the maximum number of
leaves the trees should have. The minimum data in leaf defines the minimum number of observations
that should be in a leaf for it to be included in the tree. Setting this value low can yield a good fit but

may cause overfitting. The L2-lambda is a regularization measure to reduce the tree complexity.

| Name | Type Value range |
Maximum depth Discrete {4,5,6,7,8,9,10,11, 12}
Learning rate Continuous [0.001, 0.200]
Leaf ratio Continuous [0.4, 1.0]
Minimum data in leaf | Discrete {10, 20, 50, 100, 150, 200, 500}
L2-lambda Continuous [0.0, 0.1]

Table 1: Hyperparameters used in Bayesian Optimization

The predictors used in the nonlinear model are slightly different than in the linear model. The
weighted household types ratings c,z;s: are again used as predictors for v4s;. Furthermore, the day of
the week and the hour of the day are used as predictors, to allow for heterogeneity over time. To allow
for heterogeneity among channels, the channel size is included as predictor as well. This channel
size is defined as follows. For every station s, the absolute channel size is the sum over time of the
number of households watching s at time ¢. The categorical variable channel size of s is then either

small, medium or large, based on this absolute channel size of s. Lastly, the total rating for station s at
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time £, V¥, is also included as predictor.

Like the linear aggregated model, the nonlinear aggregated model does not necessarily generate
estimates D, that align the total ratings ¥ ;. Therefore, the estimated 7,,; have to be rescaled, using
the steps in (42) - (44) again.

4.4 Performance measures

In order to validate the estimates of 7,; obtained using the models in sections 4.2 and 4.3, we
compare them to the actual viewing numbers v,; in the truth dataset. Performance measurement of
continuous variables is often done using the Mean Squared Error (MSE) and the Mean Absolute Error
(MAE). However, as these traditional performance measurements often have the downside of taking
into account absolute deviations from the true value, a relative performance measurement is needed.

A measurement not taking these absolute measures into account is the Kullback-Leibler (KL)
divergence, named after Kullback and Leibler (1951). The KL divergence compares whether two
discrete distributions P and Q with the same n possible outcomes are similar, using (48). The lower

the outcome of (48), the more similar the distributions are.

KL=) P;log (%) (48)

i=1 i

To assess model performance in this research, we use KL divergence to compare the distributions
of the segment TV ratings as percentage of the total TV ratings between the estimated segment TV
ratings and the true segment TV ratings. For each time ¢ and channel s, the KL-divergence KLg; is
then calculated as:

4 Past
KLg=) Pastlog( ); (49)
a=1 Qast

where P,,; and Q;; are the estimated and true percentages of viewers of channel s at time ¢ from
segment a, respectively. For example, if at time ¢ channel s is viewed by two individuals from segment
a of 10 viewers in total, then Qs = 12—0 —.20. P, and Q¢ can be obtained using (50)

_ Vast Vast

and Qast =

St St

(50)

To put more emphasis on the accuracy of the ratings of larger channels, we use a weighted version
of the KL-divergence. This is achieved by scaling each channel’s KL-divergence KL;; by the total
ratings w; for that channel. The overall weighted KL-divergence KL* is then obtained using (51).

_ ZZ:I Zle KLSITWSIT
PIIRD IRE

Another way of evaluating the model fit is to measure the Mean Percentage Error (MPE), which

KL* (G29)]

measures the mean difference between the estimated and true percentage of TV ratings per segment.
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The outcome is therefore the average number of percentage points between the estimated and true

ratings. Mathematically, this can be calculated as in (52).

i i i Vast — Dast (52)
AST |

Furthermore, as measure of feasibility, the computation time needed to estimate the models is
used as performance measure as well.

To visualize the fit of the two models, index plots have been created. in these index plots, each
segment TV ratings estimate and true value has been transformed to a relative value. This way, the
estimates and truth values are more convenient to plot in the same plot. To create such a plot, each
true ratings index is obtained by dividing the relative segment rating, calculated as vqs;/m, by the

overall relative segment rating v, / YaMg:

Vast A
o m, Vast 2 —1 Ma
IX = V= . . (53)
s m, stMgq

Similarly, the estimated segment ratings index IX can be obtained by replacing v; in (53) by
Dast.

These indices are a relative measure of size of the TV ratings. When the segment ratings v, are
equal to the 'benchmark rating’ g, v ;, the index will be equal to 100. If the v, is much lower than
qdaV s, the index will be close to zero. Moreover, if v s, is much larger than g,y ;, it will be larger,
approximately up to 100 times the number of segments if v,s; = V.

An index plot is then created by creating a scatter plot of indices, with the true index I X on the
x-axis, and the estimated index IX on the y-axis. The closer these scatters are to the line y = x, the
better the model fit.

5 RESULTS

This section will describe the results of the models described in section 4 applied on the data discussed
in section 3. First, general results of the choice model approach are discussed. Next, the results of
the aggregated model are described. Lastly, the two approaches are compared with each other to

distinguish each method’s advantages and disadvantages.

5.1 Results of choice model

In this subsection, the results of the choice model are laid out. The different household utility
specifications as discussed in sections 4.2.2 and 4.2.3 are compared on their accuracy of the segment

TV ratings estimates, their model stability and their computation times.
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5.1.1 Model fit

To assess the suitability of the different utility specifications, we apply them to a subset of the Chicago
the. Table 2 shows the performance of the different utility specifications in estimating TV ratings
for a Thursday at prime time, on a random subset of 50 channels, using gender as the only segment.
From this table, we can denote that all but the maximax approach yield estimates of TV ratings that
are better than random guessing in terms of both KL-divergence and Mean Squared Error (MSE).
Furthermore, multiplicative models appear to be numerically quicker to solve, as the multiplicative

models have computation times of about half the computation times of other models.

H Model MSE (x10%) KL-divergence Computation time (s) H
MNL additive 28.0 0.048 1.292
MNL multiplicative 28.9 0.048 0.578

‘Choice additive | 583 0079 1.337
Choice multiplicative 30.5 0.048 0.603
Choice maximax 56.2 1.457 0.784
Choice maximin 27.9 0.038 1.373
Choice random 361.0 0.434

Table 2: Results of the different utility specification on estimation of TV ratings in Chicago on Thursday January
3rd, 2019, at 20:00 local time, on a subset of 50 channels, and using gender as segmentation factor.

The actual percentage and estimated percentage of males per household utility specification are
displayed in figures 7a - 7f. Each specification is initialized with the same set of random utilities. The
maximax approach takes on many extremes, estimating the TV viewers of multiple channels to be
either 0% or 100% males. The multiplicative approach seems to be a bit more conservative, having
dots spread around the line of 50%. The two MNL-approaches push all estimates to the mean of 50%:
both its optimal values as the initial random utilities yield estimates close to the mean. The additive
specification seems to be less drawn to the population mean than most other specifications. However,
the additive specification is therefore also a bit less accurate than the other specifications.

From figures 7a - 7f, we can also conclude that in general, the larger the channel, the closer the
estimated ratings are to the actual ratings. This is not surprising, as there is more data available to

estimate a large channel’s TV ratings on.

5.1.2 Sensitivity analysis

To assess model stability and the proneness of the different utility specifications to end up in local
minima of their log-likelihood, we perform a sensitivity analysis. The model is estimated for each
utility specification, using 100 different initial values of the parameters. The reason for this test, is that
it is hard to tell whether the optima of the objective functions from which the TV ratings in figures 7
and 2 are obtained, are local or global optima. A function of multiple variables is convex if the Hessian
is positive semi-definite (Lau, 1987). However, the objective functions are hard to differentiate, and

therefore it is very difficult to obtain the Hessian matrix analytically. Because of this, we can not assess
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Figure 7: Accuracy plots of the different household utility specifications. For each dot. the location on the x-axis
is the true percentage of males of the channel, whereas the location on the y-axis represents the estimated
percentage of males. Orange dots represent the Tandom’ benchmark estimate (when each channel’s utility is
random), whereas the model estimates are displayed in blue. The size of the dot is the size of the channel in
terms of total number of viewers. The four-digit number in each dot is the channel code of the corresponding
channel. Ideally, all dots are located at the diagonal dashed line, indicating that the estimated percentage of
males is equal to the true percentage.
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whether the log-likelihoods are convex, and thus whether the obtained optima are local or global.

Model stability across seeds is tested using the Coefficient of Variation (CV), also known as Relative
Standard Deviation. The CV is simply the sample standard deviation rescaled by the sample mean, to
be able to generalize standard deviations of TV ratings of different channels. Mathematically, the CV is
defined as

Co, = = (54)

where 7; is the mean and s, is the standard deviation of the TV ratings estimates 7, at time ¢ (Abdi,
2010). The mean CV is then the the mean of the CVs of TV ratings over the different seeds of random
parameter initialization. When the CV of seed k is denoted as cgf), the mean of K CVs, ¢j,, can be
calculated as

K
&= L Y b (55)
A=

Sensitivity to initialization of parameters is not necessarily a bad thing. Normally, we would
estimate such a sensitive model multiple times and select the model and initialization with the lowest
outcome of the objective function, in this case the negative log-likelihood. However, as table 3 shows,
the difference in values of the log-likelihood is not so large among seeds. The standard deviation
of the optimal log-likelihood value found using 100 different initializations is close to zero for the
multiplicative models and approximately 0.3 for the additive models. The maximax and maximin
model show more sensitivity in its log-likelihood values to the random parameter initialization. For
the maximax, maximin and additive specifications, the CV of the estimated TV ratings is larger though,
indicating that the log-likelihoods have many local optima close to each other, with different parameter
values. Therefore, it is hard to say which of these estimates is 'best’ based on log-likelihoods only.
Therefore, it is in this case better not to select a model based on outcome of the log-likelihood, but
on other measures such as computational feasibility, model fit and sensitivity to different utility
initializations.

When assessing the sensitivity of the models using the numbers in table 3, we can conclude that the
two multiplicative specifications are more stable than the other specifications. With CVs close to zero,
they are fairly constant in their predictions. Apparently, the log-likelihoods of the multiplicative and
MNL-multiplicative models have few local minima. The computation times of multiplicative models
is lower as well. This is an indication that for the log-likelihood of the multiplicative specification, it is
easier to find a (local) minimum of the negative log-likelihood.

In terms of model fit and computational feasibility, the multiplicative specification seems to
outperform the other specifications as well. The multiplicative choice model has one of the lowest
average weighted KL-divergence over the 100 runs. The maximin approach has a similar model fit, but
is more difficult to optimize: the process of optimization took on average almost one and a half second
per model initialization, whereas this was only half a second for the multiplicative model. A possible
reason for this, is that the log-likelihood of the maximin approach is not a smooth function, whereas

the log-likelihood of the multiplicative specification is smooth. Furthermore, the maximin approach
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| Model CV  Comp.time(s) MeanKL-div MeanLL LLSD ||
MNL additive 0.002 121.6 0.0475  1160.65  0.0018
MNL multiplicative | 0.000 175.1 0.0485  1159.18  0.0000
‘Choice additive [ 0.127 121.0 0.0971  1149.45  0.2900
Choice multiplicative | 0.000 70.1 0.0476  1159.19  0.0000
Choice maximax 0.389 120.1 05256  1149.39  0.7257
Choice maximin 0.110 176.7 0.0450  1148.18  0.8142
Choice random 0.339 0.4611  1343.39 68.7856

Table 3: Sensitivity analysis of household utility specifications in the choice model. LL is short for log-likelihood,
CV for Coefficient of Variation, and SD for Standard Deviation. Each model is estimated with 100 different
random initializations of its parameters. The model is estimated on a subset of 50 channels, for TV ratings in
Chicago on Thursday January 3rd, 2019, at 20:00 local time, using gender as only segment.

seems to get stuck in several local minima, leading to a large standard deviation in its estimates of TV
ratings. The multiplicative model is more stable. The two MNL-specifications yield relatively stable
results as well. However, as figure 7 showed, these specifications yield estimates of TV ratings that are
more or less the same as the estimates of the multiplicative model. Their likelihood is less convenient

to optimize though, according to the computation times in table 3.

5.1.3 Comparison of utility specifications

All in all, the estimations of different household utility specifications show quite some differences
in model fit, computation costs and sensitivity to random initialization. The multiplicative utility
specification seems to be the most suitable one, having limited differences in estimated TV ratings,
the lowest computation time and the lowest KL-divergence. Apparantly, the log-likelihood of the
multiplicative model is a bit convex and therefore relatively convenient to optimize. For this reason,
we will use the multiplicative definition in the performance comparison of the choice model and

aggregated model.

5.2 Results of aggregated model

In this subsection, the results of the linear and nonlinear models of the aggregated method are
discussed. They are compared in terms of model fit and computation time. Furthermore, the suitability
of the linear model is tested using a Jarque-Bera test on normality of its residuals.

To check the fit of the aggregated method, two different sets of data are used. The models are
trained on the data of last three weeks of the Chicago market. Their model fit is then evaluated on the
first week of Chicago (the validation set), to test the within-market fit. Then, the models are applied to
the Cleveland market (the test set) to assess the out-of-market fit. This way, we can assess the extent
to which TV viewing behaviour is different across markets. Furthermore, the out-of-market fit will
indicate how suitable the aggregated model is for estimating the segment TV ratings of data for which

individual level viewing behaviour is unavailable (e.g. in RPD data).
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5.2.1 Linear model

The parameters of the linear aggregated model, displayed in tables 12 - 15 in appendix B, are mostly as
expected. Household ratings of household types containing individuals of only one segment, only
affect the ratings of that segment and not of other segments. From the time/date variables, we can
gain some interesting insights, though. According to the linear model, men generally watch more
TV during the night and morning than women. Furthermore, older people watch more TV during
weekdays, whereas middle-aged people watch more TV during weekends. Highly educated people
watch more TV during the night and morning hours, but less during weekdays than people with low or
medium levels of education.

The Jarque-Bera test on normality of the residuals is rejected for all linear models (every segment
and every type of segmentation). This indicates that the residuals 145 are apparently not normally
distributed. The residuals’ distributions seem to be too heavy-tailed for a normal distribution. A
possible explanation for this, is the large number of observations (quarter hourly TV ratings per
channel) where a channel is watched by only one individual in the data. Hence, in these cases, the
total TV rating v, is equal to the individual weight w; of the single individual watching channel s.
Furthermore, the segment rating v,; is equal to w; for the segment of this single individual, and zero
for all other segments. Hence, for these quarter hours, it can be argued that the TV ratings follow a type
of discrete distribution, instead of a continuous normal distribution. For this reason, the linear model,

assuming normally distributed TV ratings, will not perform well for these quarter hour observations.

5.2.2 Nonlinear model

The variable importance of the nonlinear aggregated model, displayed in tables 17 - 20 in appendix D
show similar results as the linear parameters. The numbers in tables 17 - 20 are the number of times
each variable was used as split in each of the 100 decision trees, and thus give an indication of the
extent to which their value influences segment TV ratings. It is hard to draw any conclusions from
these numbers, as variable importance does not say anything about the direction of the split. However,
we can conclude that the time of the day, day of the week and benchmark rating play a large role in all
nonlinear models. Hence, the nonlinear model captures some dynamic behaviour. Furthermore, the
channel size has relatively high importance in many models as well, indicating some heterogeneity
exists among channels.

The hyperparameters of the nonlinear aggregated method, identified with Bayesian Hyperparame-
ter Optimization, are displayed in table 16 in appendix C. The hyperparameters obtained by Bayesian
Optimization are in general quite similar. Most models are built with a relatively high number of
leaves and a high learning rate, but low minimum number of observations per leaf. Apparantly, the
LightGBM model does not overfit too quickly on the training set (the last three weeks of Chicago
data). Two exceptions here are the models for young females when segmenting on age and gender,
and for middle-aged people when segmenting on age. To avoid overfitting on training data, Bayesian
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Optimization has yielded a relatively low number of leaves and maximum depth here. Furthermore,
the regularization factor (the Lambda L2-parameter) is relatively high for these models as well.

The Bayesian Optimization technique ensures that the model is not overfitted on the training
data, by testing each model on the validation set (the first week of data in Chicago). However, it does
not account for out-of-market overfitting. Therefore, in the next subsection, the linear and nonlinear

aggregated method will be tested for fit on the Cleveland data as well.

5.2.3 Comparison

The fit on the Chicago data (table 4) differs largely between the two implementations of the aggregated
method. The LightGBM model fits very well on the training data, having KL divergences below 0.1 for
all of the possible segmentations. The KL-divergence on the validation data (the first week of data)
is a bit higher, but nevertheless the model does not seem to be overfitted. By just looking at table 4,
the nonlinear model seems to outperform the linear model for every possible type of segmentation
in terms of within-market model fit. This better training fit and within-market fit can be explained
by the fact that the nonlinear model captures interaction effects that explain part of the segment TV

ratings. The linear model does not capture these effects.

Segmentation Training Validation
Type Number | AMlinear AM nonlinear | AMlinear AM nonlinear
Gender 2 0.2599 0.0424 0.2490 0.0592
Age 3 1.0455 0.0368 1.1385 0.0672
Education 3 0.6587 0.0273 0.6780 0.0581
Age-Gender 6 1.2465 0.0727 1.3370 0.1526

Table 4: KL divergences of the two specifications of the aggregated model on the Chicago market.

To assess the out-of-market fit, the out-of-sample estimates for the TV ratings in Cleveland have
been split up into four buckets of different channel sizes. Table 5 shows how these buckets have
been defined. The out-of-market fit is evaluated for each channel size bucket separately, to assess
differences in the strengths and weaknesses between the two methods. The splitting is done per
quarter hour ¢, based on the number of households viewing a channel at #. For example, if a channel s
is viewed by 7 households at time ¢, it would for time ¢ belong to channel size Small. If at time £+ 1
four more households tune in, bringing the number of households viewing s to 11, channel s will

belong to channel size Large at time ¢ + 1.

| Channelsize | Abbreviation | Minimum | Maximum |

Very large XL 20 0o
Large L 10 20
Small S 5 10

Very small XS 0 5

Table 5: Definition of household sizes. The columns indicate the minimum and maximum number of house-
holds viewing a station per quarter hour, respectively, for a station to fall into that channel size bucket.
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As table 6 shows, the out-of-market fit of the linear and nonlinear methods is similar when the
number of segments is limited to two. However, as the number of segments increases, the linear model
becomes unstable and increasingly less accurate. The nonlinear model can handle a larger number of
segments better: when segmenting on age or education, the weighted KL-divergence of the large and
very large channels is still below 0.1. When the number of segments increases to six, the accuracy of
the nonlinear aggregated model drops as well.

Segments Model

Type Number Channelsize | Linear Nonlinear

XL 0.017 0.013

L 0.036 0.036

Gender 2 S 0.059 0.059
,,,,,,,,,,,,,,, XS | 0482 0607
XL 0.373 0.017

L 1.046 0.051

Age 3 S 2.094 0.088
,,,,,,,,,,,,,,, XS | LseB_ 0291
XL 0.080 0.019

. L 0.666 0.044
Education 3 S 1.916 0.076
,,,,,,,,,,,,,,, XS | a9 0364
XL 2.525 0.067

L 2.185 0.150

Gender & Age 6 g 2 826 0.255
XS 3.525 2.789

Table 6: KL divergences per channel size of the different aggregated model specifications, using different types
of segmentation, on the out-of-market Cleveland data.

The index plots of the within-market fit for the two aggregated models when imposing segmenta-
tion on age in figure 8 reflects the general results obtained in table 4. The cloud of estimated indices of
the nonlinear method follows the optimal diagonal line quite closely, even for small channels. The
linear model seems to suffer from regression to the mean, meaning that the estimated ratings 9,
are generally closer to the benchmark v, than the actual ratings v, (Galton, 1886). The cloud of
the estimates of the linear model is a bit tilted, it is a bit more horizontal, indicating that the linear
estimates are generally closer to the population mean.

The index plot of the out-of-market fit in figure 9 shows a similar pattern. Again, for the results in
this figure, segmentation is performed on age. The indices for the estimates of the nonlinear model are
again scattered around the diagonal. Except for the largest channels, the spread is a bit larger than in
the plots of the within-market fit. The linear model is again a bit tilted towards the population mean.
For the smallest channels, neither model produces accurate results, with widely scattered points for
both models. The estimates of channels in the small category are more accurate, but nevertheless not
too trustworthy. For this reason, a rule of thumb is that only segment TV ratings of observations (a
single station in a single quarter hour) with at least 10 households viewing can be estimated with an
acceptable accuracy.
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Figure 8: Index plots displaying the within-market model fit of the aggregated method when segmenting on
age, on the first week of the Chicago data (the validation data), per channel size. Segments are defined as Young
(ages 18-34), Middle-aged (ages 35-54) and Old (ages 55+). Channel sizes are defined as in table 5. True indices
are on the x-axis, estimated indices on the y-axis.

Comparing the out-of-market fit of the models with the Venn plots of household types in figure
12 and the according overlap percentages in table 11 in appendix A, the importance of the overlap in
household types becomes apparent. This is especially the case when comparing the models using
education and age as segments. The overlap in household types between Cleveland and Chicago is
higher when imposing segmentation on education (71%) than when imposing segmentation on age
(63%). As a result, the fit of the linear model is far worse for the age segments than for education
segments. This difference is less apparent for the nonlinear model, but the fit is still slightly better
for the large and small channel sizes. Furthermore, the drop in performance of both methods when
increasing the number of segments to six can partially be explained by figure 12d. It shows that
when imposing segmentation on gender and age, 48% of household types are missing in Cleveland.
Furthermore, 20% of the household types in Cleveland are not present in Chicago. This means, that
for 20% of the household types in Cleveland, their TV viewing behaviour is not used in the estimation
of these out-of-market segment TV ratings.

The computation times in table 7 show large differences in estimation time between the different
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Figure 9: Index plot displaying the out-of-market fit of the estimates of segment TV ratings of both aggregated
model on the full month of Cleveland data. Segmentation is done on age. Segments are defined as Young (ages
18-34), Middle-aged (ages 35-54) and Old (ages 55+). Channel sizes are defined as in table 5. True indices are on
the x-axis, estimated indices on the y-axis.

methods. The linear model is by far the fastest: for every type of segmentation, the whole process of
estimating parameters on the training set and obtaining predictions for the validation and test sets
takes less than one minute per segment. For the nonlinear model, this is substantially longer: ranging
from just shy of 11 minutes for the three segments when segmenting on age to more than 32 minutes
when segmenting on age and gender. This result is hardly surprising as the nonlinear model is a far
more complex model than the analytically solvable linear model. Most of the computation time of the

nonlinear model is spent in the process of identifying optimal hyperparameters. During the process,

Segments Model
Type Number | Linear  Nonlinear
Gender 2 | 00:01:04 00:13:53
Age 3 | 00:01:47 00:10:48
Education 3 | 00:02:14 00:19:09
Age-Gender 6 | 00:05:47 00:32:52

Table 7: Computation times per model and segmentation. The times are in the format HH:MM:SS.
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the LightGBM model has to be evaluated multiple times to find the optimal model.

Based on table 4 and figure 8, we can conclude that the nonlinear model outperforms the linear
model in terms of within-market fit. The out-of-market fit displayed in table 6 and figure 9 also favour
the nonlinear model. There are two straightforward reasons for the better model fit of the nonlinear
model. Firstly, the Jarque-Bera test on normality of the residuals was rejected. This indicates that
the normality assumption of the linear model does not hold, leading to bad model fit. Secondly, the
nonlinear model was able to capture nonlinear relations (interaction effects between predictors). The
linear model is per definition not able to capture this type of relation, whereas the nonlinear model
can. By modelling these nonlinear relations, the nonlinear model can account for variable importance
that varies between subsets of the data.

The better fit of the nonlinear model comes at a cost of a computation time that is at least five
times as large as the computation time of the linear model. However, as this computation time is still
manageable, with just over half an hour of computation for the largest model tried out, the nonlinear
model seems to be the most suitable one of the two.

Furthermore, based on the out-of-market fit of the nonlinear model, we can conclude that the
aggregated model can be used to estimate segment TV ratings for markets where no individual TV
viewing behaviour is known (like RPD data). The nonlinear aggregated model is able to produce
relatively accurate estimates of the segment TV ratings for different types of segmentation, despite
the imperfect overlap in household types and the fact that TV viewing behaviour may be different in

different markets.

5.3 Comparison of choice model and aggregated model

This subsection will compare the suitability of the choice model and aggregated model. Specifically,
the multiplicative choice model and the nonlinear aggregated model will be compared, as these
specifications yielded the best results. These models are compared in terms of model fit, measured by
weighted KL-divergence and MPE, and feasibility, measured by computation time. The models are
compared by making estimates of the segment TV ratings on the full month of Cleveland data.

The estimates of the choice model are obtained by estimating the TV ratings per segment for each
time step independently, as explained in section 4.2. In section 5.1, the model was estimated per
subset of 50 channels. Including all 330 channels in a single model estimation drastically increases
the number of segment utilities w,; to estimate in the log-likelihood in (12). As table 8 shows, the
estimation procedure takes approximately 10 times more time when the number of stations used in
the choice model increases from 50 to 330. Furthermore, table 8 also shows that the efficiency of the
choice model is dependent on the number of stations. Using 50 stations at a time seems to produce
the most accurate estimates.

For the aforementioned reasons, the data is split when applying the choice model to the full month
of Cleveland data. The data is split into 8 subsets of approximately 50 channels each. The choice

model is then estimated for each channel subset and quarter hour separately. This should in the end
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| No. stations | KL-divergence Comp. time (s)

25 0.144 4.27
50 0.090 4.50
75 0.110 4.87
100 0.117 6.16
330 0.319 44.16

Table 8: Model fit and computation times of the multiplicative CM on different subset sizes of stations for a
single quarter hour. Results are obtained from the quarter hour starting at January 3rd, 2019 at 19:00 local time
in the Cleveland data (out-of-market data).

yield reliable estimates within a reasonable computation time.

Similar as for the results described in section 5.2, the estimates of the aggregated model are
obtained by training the nonlinear AM on the last three weeks of the Chicago data. The model
obtained on the Chicago data is then applied on the Cleveland data set to obtain out-of-market

estimates of the TV ratings per segment.

5.3.1 Model fit

From the accuracy of both models for different channel sizes and different types of segmentation,
displayed in table 9, we can draw a number of conclusions regarding the fit of the channels for different
channel sizes, segment types and performance measures.

First of all, when segmenting on gender, keeping the number of segments as low as two, the two
models seem to yield relatively similar results. The fit of the aggregated model and choice model are
the same for the largest channels. For the other three channel sizes, the choice model estimates yield
slightly lower KL-divergences and MPEs, but the difference is mostly small.

However, as the number of segments increases, a difference in performance between the two
models is noticeable. As expected, both models perform worse when the number of segments
increases. Nevertheless, this decrease in performance is much larger for the choice model than for
the aggregated model. When segmenting on age or education, the aggregated model still produces
reasonable results, with KL-divergences close to that of the model segmented on gender. The choice
model is able to produce satisfactory results when segmenting on education. However, the results
for age show a much larger difference between the KL divergence of the choice model and that of
the aggregated model. This trend is also reflected in the MPE, which shows that especially in the
age segments, the aggregated method is able to produce estimates that are much closer to the true
segment ratings than the choice model estimates.

A possible explanation for this, is the limited number of data points used to estimate the choice
model on. The choice model is estimated for each quarter hour seperately. For each quarter hour,
utilities for each segment and channel have to be estimated based on the data available for that quarter
hour. In case the number of segments increases, the number of utilities to estimate increases as well.

As a result, more variables have to be estimated with the same limited number of observations. This
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Segments KL Divergence | MPE (in %)

Type Number Channelsize | AM CM AM CM

XL 0.013 0.013 6.4 6.3

L 0.036 0.029 | 10.4 9.0

Gender 2 S 0.059  0.055 | 12.9 118

XS 0.607 0.310 | 25.7 23.5
777777777777777 XL | 0.017 0064 | 43 81
Age 3 L 0.051 0.118 6.4 109

S 0.088 0.207 8.0 13.8

XS 0.291 0.656 | 10.2 21.9
777777777777777 XL 0019 002 | 52 57
Education 3 L 0.044 0.058 7.3 8.4

S 0.076 0.130 9.3 11.0

XS 0.364 0.580 | 12.7 20.7
777777777777777 XL 0067 0116 | 40 54
L 0.150 0.200 5.5 7.1

Gender & Age 6 S 0255 0360 | 7.0 9.1
XS 2.789 0.920 9.6 15.0

Table 9: Comparison of prediction accuracy of the nonlinear aggregated model (AM) and the multiplicative
choice model (CM). These numbers represent the out-of-market fit for each model. Model fit is assessed in
terms of weighted KL-divergence and Mean Percentage Error (MPE), as described in section 4.4.

lack of data is likely to have a negative effect on the accuracy of the estimated utilities. The aggregated
model does not suffer so much from this problem, as it uses all quarter hour observations to estimate
its parameters. Increasing the number of segments will also increase the number of parameters to
estimate in the aggregated model, but this does not have a drastic effect as there are still enough
observations available.

Table 9 also shows that both models perform significantly worse for smaller channels. For the
largest channel size, the KL divergence is much smaller than for the smaller channel sizes. This holds
for both models, for all types of segmentation. The difference in MPE is not extreme, but nonetheless
significant. For the smallest channels, the estimates are close to random guesses.

The aforementioned results are also observable in the index plots in figure 10, displaying the
indices of the estimates of both the choice model and aggregated model estimates relative to the true
index of TV ratings of the different age segments. The cloud of scatter points displaying the indices
of the aggregated model follows the optimal diagonal relatively closely for the largest channels. For
the large channels, the indices also follow the diagonal, albeit not as closely. The cloud of the choice
model indices is much more horizontal: its estimates tend more to the mean. The estimates of the
smallest category of channels are spread across the entire plot, indicating that for those channels,
neither model produces accurate results. The estimates of the second smallest channels are neither
very accurate. Therefore, we can again conclude that the models only work for observations (a single
channel in a single quarter hour) where at least 10 households watched that channel.

According to table 9, the choice model and aggregated model produce relatively similar results in

terms of accuracy, when segmentation is imposed on gender. However, as the index plots in 11 show,
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Figure 10: Index plot displaying the out-of-market fit of the nonlinear aggregated model and the multiplicative
choice model, imposing segmentation based on age groups. The plot shows indices of estimates of the full
month of Cleveland data. Segments are defined as Young (ages 18-34), Middle-aged (ages 35-54) and Old (ages
55+). Channel sizes are defined as in table 5.

their estimates differ quite a bit in location. Here, the aggregated model produces estimates that are
closer to the mean, while the choice model takes on more extreme values. In this case, the estimates
of the choice model actually seems to fit a bit better than the nonlinear aggregated model, especially
for the small and large channel categories.

The accuracy numbers in table 9 slightly favour the aggregated model over the choice model when
segmentation is done on education levels. As figure 13 in appendix E shows, this is mostly because the
estimates of the choice model tend a bit towards the population mean. Nevertheless, the difference
between the two methods here is not very large in terms of model fit.

Similar conclusions can be drawn for segmentation imposed on gender and age, plotted in figure
14. The fit of the aggregated model is slightly better than that of the choice model. However, the
models have scatter clouds that are similarly shaped. The scatter clouds of both models are much
more widely spread across the diagonal, indicating that the estimated TV ratings are generally further
of the actual TV ratings than for other segmentation types. Some accuracy is obviously lost due to the

increase in number of segments. Compared to the index plots with lower number of segments, the

41



5. Results

M.E.]. Pigeaud

Very small

200 4

L]
[ ]

AM - nonlinear
CM - mult

Small

[ ]
[ ]

AM - nonlinear
CM - mult

4580 3 4

150 -

100 -

50

Large Very large
2001 ¢ AM - nonlinear S~ 1 e AM - nonlinear Vs
e CM-mult il | & cM-muit i

175 A

150 -

125 4

100

75 A

50 1

25

T T T T T T T T
0 50 100 150 200 0 50 100 150 200

Figure 11: Index plot displaying the out-of-market fit of the nonlinear aggregated model and the multiplicative
choice model, imposing segmentation based on gender. The plot shows indices of estimates of the full month
of Cleveland data. Channel sizes are defined as in table 5.

observations in the small and large channel size buckets appear to be much less accurate. It seems
that when the number of segments is 6, only the observations in the very large category can reasonably
be estimated. The minimum number of households viewing a channel to estimate segment TV ratings
with a reasonable accuracy therefore doubles from 10 to 20 when the number of segments doubles
from 3 to 6.

Comparing the shapes of the plots in figures 10, 11 and 13, the conclusion can be drawn that the
largest difference in viewing behaviour seems to be between age segments. For gender segments,
many of the true indices of segment TV ratings are around 100, indicating that often the total quarter
hour channel TV ratings v, are relatively evenly split between males and females. For education,
a similar conclusion can be drawn, especially for the larges channels. For age groups however, the
distinction is more clear. The true and estimated indices in the bottom plots of figure 10 show indices
ranging from close to zero (indicating almost no TV viewers for that channel in that segment) to above
200 (indicating that almost all viewers from that station are from a single age segment).
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5.3.2 Computational feasibility

The computation times of the aggregated model and choice model in table 10 shows a large difference
between the two models. The process of making estimates of the segment TV ratings for all quarter
hours and channels in the data of Cleveland using the choice model takes two to three hours when
imposing segmentation based on age, gender or education, yielding 2 or three different channels.
This is no surprise, as the choice model has to be evaluated multiple times (once for each set of
50 channels) per quarter hour. The model estimation and out-of-sample prediction process of the
aggregated model when segmenting on age, gender or education separately takes approximately 10
to 20 minutes, significantly shorter than the computation time of the choice model. Moreover, this
difference increases when the number of segments is larger. When segmenting on both gender and age,
yielding 6 segments in total, the aggregated model requires approximately half an hour computation
time. For the choice model, this is approximately half a day. Therefore, the straightforward conclusion
to draw from table 10, is that the aggregated model is to be preferred over the choice model in terms of

computational feasibility.

Segments Model
Type Number AM CM
Gender 2 | 00:13:53 02:36:34
Age 3 | 00:10:48 02:40:19
Education 3 | 00:19:09 02:09:46
Age-Gender 6 | 00:32:52 12:05:05

Table 10: Comparison of computation times between the nonlinear aggregated model and multiplicative choice
model for different types of segmentation.

The computational advantage of the aggregated model over the choice model is not very surprising.
The nonlinear aggregated model is a far more complicated model than the choice model and generally
requires more time per estimation. However, choice model has the disadvantage of having to be
estimated for each quarter hour seperately, per subset of 50 channels. This implies that estimating
segment TV ratings for the full month of data in Cleveland requires 2,688 -7 = 18,816 numerical
optimizations of the log-likelihood in (12). For this same period, the aggregated model’s parameters

only have to be estimated A times.

6 CONCLUSIONS AND DISCUSSION

In this research, methodology has been developed to estimate TV ratings per demographic segment,
using only household level TV viewing behaviour. We have identified two different methods to obtain
these segment TV ratings: The choice model and the aggregated method. Furthermore, we assessed
for each method which model or technique is the most suitable.

The first method applied a choice model to estimate probabilities for individuals from each

segment to watch a certain channel, and used these probabilities to estimate segment TV ratings.
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The observed household choices for a certain channel were modelled by a trade-off between each
household’s members’ preferences. This is achieved by modelling the household utilities as a function
of the utilities of the household’s individuals’ utilities. Maximizing the log-likelihood of this household-
individual choice model yielded estimates of the utilities individuals in a segment gain from watching
a certain channel. Using these segment utilities for all segments and the total TV ratings of the channel,
the TV ratings per channel per segment could be obtained through a small number of straightforward
calculation steps.

The choice model is a well-known and researched econometric model. Estimating group utility
from individual utilities has received a lot of academic attention as well. However, combining these
two by implementing group utility functions in the choice model has received relatively limited
attention in literature so far. Therefore, we have tried numerous known group utility functions to
find out which one is the most suitable. Four straightforward options were to take the sum, product,
maximum or minimum of the individuals’ utilities as household utility. Two other utility specifications
involved the use of the additive and the multiplicative individual utility specifications, respectively, in
a multinomial logit (MNL) model.

The multiplicative household utility specification has proven to be the most useful. Taking the
maximum or the sum of individual utilities proved to be suboptimal, yielding a choice model that
produced inaccurate TV ratings with a relatively long computation time. Taking the minimum of indi-
vidual utilities as household utility produced an unstable choice model with again a long computation
time. The two MNL-approaches and the multiplicative choice model produced similar results as the
multiplicative specification in terms of accuracy, but the multiplicative approach appeared to require
less computation time. In addition, the estimates of the MNL-models were pushed too much towards
the population mean.

The second method, the aggregated method, attempted to directly formulate a function to obtain
the segment TV ratings, using aggregated household type TV ratings, information on the date and
time, and channel size as predictors. A household’s type is defined by the number of individuals from
each segment that are part of it. The aggregated household type TV ratings then are the number of
people living in households of that type, watching the TV channel of interest at that point in time.
To be able to apply this model on other markets, these household type ratings were scaled by the
percentage of people from the segment of interest living in that specific household type.

The aggregated method is estimated with two different estimators. First, a linear model regression
model was specified, with the household ratings and time-date information as predictors and the
deviation of the segment TV rating of a channel from the population channel rating at that time as
dependent variable. Second, the relation between the segment channel ratings and the predictors was
modeled with the nonlinear tree-based method LightGBM. The hyperparameters of this LightGBM
model were optimized using Bayesian Hyperparameter Optimization. Both estimators were trained
on the observed household viewing behaviour and known segment TV ratings of the last three weeks

of the Chicago data. Using these models, within-market estimates were obtained for the first week of
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Chicago, and out-of-market estimates were obtained for the Cleveland data.

Of the two estimators of the aggregated method, the nonlinear model (using LightGBM) proved to
be generally better than the linear model. Its estimates were much closer to the actual segment TV
ratings in terms of within-market fit. In terms of out-of-market fit, the two models achieved similar
results for the gender segment ratings. For other segments though, the nonlinear model produced
more accurate estimates than the linear model. A plausible reason for the better model fit, is the
fact that the nonlinear model can capture relations that only hold for a subset of the data, by using
complicated interaction effects. The downside of the nonlinear model as opposed to the linear model
is its computation time. Due to the model complexity and the fact that it is not analytically solvable,
the nonlinear model requires up to ten times more computation time than the linear model. However,
as the nonlinear model’s computation time never went much above 30 minutes to estimate the model
parameters and calculate within-market and out-of market estimates, this does not seem to be too
problematic.

When comparing the two best configurations of the two methods, the nonlinear aggregated model
generally outperforms the multiplicative choice model. In terms of accuracy, the two methods had
similar results for the gender segments. For the age segments, the aggregated model performed much
better than the choice model. For other two segment specifications, education and gender & age, the
aggregated model also produced more accurate results than the choice model. However, for these
segmentation types, the difference was not very large.

The aggregated model also has a computational advantage over the choice model. Estimating
the choice model on a full month requires much time, as the model has to be estimated multiple
times for every quarter hour separately: once for every subset of 50 channels. This adds up to over
10,000 estimations for the four weeks of available data. Therefore, obtaining estimates for the segment
TV ratings for the full month of Cleveland data required several hours of computation times for the
gender, education and age segments (separately), and almost half a day when imposing segmentation
on age and gender together. This is mostly more than 10 times longer than the aggregated model’s
computation time, which is only estimated A times.

The aggregated model does have a practical downside over the choice model. The aggregated
model needs a dataset with the true segment TV ratings to initialize its parameters. It therefore
captures relations between variables in this estimation market that do not necessarily hold in other
markets. Furthermore, the aggregated model estimates segment TV ratings based on household type
TV ratings. Application of an aggregated model estimated on a different market therefore only works if
there is a large overlap in household types between these markets.

Consequently, when applying the aggregated model to data from sources such as RPD, where no
individual or segment level viewing behaviour is available, we have to be sure that the market the
aggregated model is trained on is similar to the RPD market. In case there is no similar market with
individual level data for the RPD market for which segment ratings are desired, one has to resort to the
choice model.
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In this research, we estimated the aggregated method on supervised data from Chicago, US and
applied it to data from Cleveland, US. These two cities appeared to be similar enough in terms of
culture (two cities in Northern US, approximately 500 kilometres apart) and in terms of household
type overlap (which is 50-75%, depending on the segments imposed): the estimates of the segment TV
ratings obtained using the model trained on the Chicago market were reasonably close to the true
segment TV ratings.

A downside of both models is the fact that they can only be used on a limited number of segments.
In this research, the models estimated on each of the gender, education or age segments separately,
using a maximum of 3 segments per model, yielded relatively good results. The quality of the TV
ratings estimates reduced fairly much when increasing the number of segments to 6. For both models,
a major reason for this is the smaller data that is available to estimate these ratings. Besides, the
number of quarter hours in which a channel is watched by only one individual from a segment is
much higher when the number of segments is higher. For the aggregated model, an additional factor
that reduces model performance is the decreased overlap in household types. Because of this smaller
overlap, the model does not have access to the same amount of information it was trained on in the
test set, yielding less accurate results.

Furthermore, both models do not yield accurate estimates of the segment TV ratings for every
channel and every quarter hour. Depending on the number of segments, the models need at least 10
to 20 households viewing the specific channel at the given quarter hour to be able to make reasonably

accurate estimates of the segment TV ratings.

6.1 Suggestions for future research

Based on the results from this research, a number of suggestions for future research in this field can be
made.

Firstly, the linear aggregated model in (35) could be extended to a linear dynamic panel model,
including previous (estimated) segment TV ratings in its predictors. To estimate the resulting model,
an estimator like the estimator of Arellano and Bond (1991) could be used. This might lead to a better
predictive accuracy of the linear model. However, it may also lead to longer computation times (as the
predictions have to be made per time step). Furthermore, it is doubtful whether the Arellano-Bond
estimator will improve the linear aggregated model so much that it will match the nonlinear model’s
predictive power.

Secondly, the aggregated model could be trained on data from a larger number of geographical
regions, to apply it on a dissimilar market. This way, two issues of the aggregated model might be
resolved. Firstly, the probability that all household types in the test market are in the model trained on
such a large scale dataset. Furthermore, the model will not capture market-specific behaviour and
is therefore generally better applicable on differing markets. Therefore, the necessity for a similar
training market could be resolved. However, the model fit on the test market might also be reduced

because the number of household types in the training data missing in the test data is likely to be
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large.

Lastly, it could be interesting to explore possibilities to improve the out-of-market fit of the
nonlinear aggregated model. In this research, there appeared to be a significant difference between
the within-market fit and the out-of-market fit of the nonlinear aggregated model. Hence, the model
was slightly overfitted on the training market. A possible measure to improve this out-of-market
fit would be to use data from a different market as validation set in the Bayesian Hyperparameter
Optimization algorithm. Whether this improved out-of-market fit could then be assessed by applying
the resulting model on data from a third market.
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Appendices

A  OVERLAP BETWEEN HOUSEHOLD TYPES

The following Venn diagrams show the overlap between household types, as defined in section 4.3,

existing in both Chicago and Cleveland for a number of segment specifications.

A.1 Venn diagrams

From these Venn diagrams, two conclusions can be drawn. Firstly, the number of household types
in Chicago (displayed in yellow) is generally significantly larger than in Cleveland. This is rather
unsurprising, as the number of households itself is larger in Chicago than in Cleveland as well.
Secondly, the larger the number of segments, the smaller the relative overlap in household types.
When gender is used as segment, the overlap between household types is 75% of the household types
appearing in Chicago. However, when both age and gender are used as segments, this number drops
to only 52%.

B Cleveland: 1
mm Overlap: 15
Chicago: 5

(a) Gender (2 segments). 75% of

Bl Cleveland: 0
mmm Overlap: 34
Chicago: 14

(c) Education (3 segments): overlap 71%

Bl Cleveland: 0
mmm Overlap: 26
Chicago: 15

(b) Age (3 segments): overlap 63%

B Cleveland: 13
mmm Overlap: 52
Chicago: 48

(d) Gender & age (6 segments): overlap 52%

Figure 12: Venn diagrams of overlap between the household types existing in Chicago (displayed in yellow) and
Cleveland (blue). The larger the number of segments gets, the smaller this overlap is, relatively.
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A.2 Table of overlap

| Segmentation No. segments | % overlap Chicago-Cleveland | % overlap Cleveland-Chicago ||

Gender 2 75 94
Age 3 63 100
Education 3 71 100
Gender & Age 6 52 80

Table 11: Percentage overlap in household types between Chicago and Cleveland. The % overlap Chicago-
Cleveland column contains the percentage of household types present in Chicago that also exist in Cleveland.
The % overlap Cleveland-Chicago column contains the percentage of household types present in Cleveland that
also exist in Chicago

B PARAMETER ESTIMATES OF LINEAR AGGREGATED MODEL

This appendix contains tables of parameter estimates of the linear aggregated model in (35) for
different types of imposed segmentation. The variables with numerical variable names are each
household-type ratings. Their variable names specifies the composition of the households in that
household type. E.g. when segmentation is done on gender, each household type rating variable’s
name is of the form xy, where x is the number of females (segment 0) in that household type, and y is
the number of males (segment 1) in that household type. For example, the household type '12" would
in this case contain all household with exactly one female and two males.

The household types variables are scaled by the percentage of individuals from segment a living in
a household type j, hence the parameters of the household types are for the scaled household types

CajZjst

B.1 Gender

H Variable Female (0) Male (1) H

intercept -2.34 -121.51
01 5.83 0.00
02 8.39 0.00
04 0.00 0.00
10 0.00 9.57
11 -0.26 0.00
12 0.20 -0.92
13 3.12 -7.46
14 -1.61 4.53
15 86.66 -425.18

Continued on next page
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Table 12 - continued from previous page

H Variable Female (0) Male (1) H
20 0.00 11.98
21 -2.07 0.57
22 -0.85 0.36
23 -3.33 2.81
24 11.57 -17.75
30 0.00 108.78
31 -10.83 2.43
32 -34.84 22.72
34 -20.50 27.63
41 -143.30 28.04
42 31.53 -16.49
tuesday 6.03 13.82
wednesday 13.37 -9.25
thursday 6.12 10.44
friday 20.19 -12.80
saturday 5.06 -18.87
sunday -31.37 24.61
night -70.57 105.05
morning -29.45 82.43
evening -66.02 34.32

Table 12: Parameters of the linear aggregated model segmented on gender. For the household types, their
variable names are denoted in the format xy, where x is the number of females and y the number of males,
respectively, in the household.

B.2 Age

H Variable Young(0) Middle-age (1) Old (2) H
intercept -100.16 -414.55  -74.71
001 10.43 0.00 0.00
002 2.88 0.00 0.00
003 87.42 0.00 0.00
004 18.25 0.00 0.00
010 0.00 5.47 0.00

Continued on next page
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Table 13 - continued from previous page

Variable Young (0) Middle-age (1) Old (2)

011 -2.90 0.89 0.00
012 7.60 -9.00 0.00
013 30.69 -50.99 0.00
020 0.00 0.93 0.00
021 -7.09 2.52 0.00
022 -2.89 1.62 0.00
023 -2.07 3.65 0.00
024 30.99 -3.96 0.00
030 0.00 76.30 0.00
031 -144.51 71.31 0.00
100 0.00 0.00 4.60
101 -20.73 0.00 -11.82
102 -2.34 0.00 -113.49
103 -13.53 0.00 -80.07
104 44.02 0.00 -276.42
110 0.00 -8.70 -5.61
111 -27.82 -10.22  -14.27
112 -11.53 -1.66  -14.70
113 -11.66 -24.94  -54.40
115 0.10 -20.14 15.39
120 0.00 -2.66  -59.41
121 -26.14 274  -19.97
122 -23.27 -1.67  -33.34
132 29.94 42.68  144.55
200 0.00 0.00 1.46
201 -13.97 0.00 1.08
202 -4.63 0.00 -13.43
203 -95.27 0.00 -45.72
204 -1.88 0.00 5.42
210 0.00 -16.43 -0.25
211 -10.67 -6.17  -17.65
212 -14.30 -64.89 0.72
220 0.00 2422 -164.21
221 142.38 66.65 101.98
300 0.00 0.00 17.66

Continued on next page
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Table 13 - continued from previous page

H Variable Young (0) Middle-age (1) Old (2) H
301 -93.36 0.00 37.93
tuesday -57.49 -79.39 89.37
wednesday -55.85 -14.35 19.65
thursday -40.75 -3.14 81.80
friday -35.45 -68.17  118.71
saturday -48.18 54.51 -77.49
sunday -47.45 158.99 -165.20
night 185.46 397.63 -196.40
morning -57.14 243.28  -76.55
evening -156.43 71.53 -186.75

Table 13: Parameters of the linear aggregated model segmented on age. The household types variables here
have the name format xyz, where x is the number of old, y is the number of middle-aged and z is the number
of young people in the household. Segments are defined as follows: Young (0): ages 18-34. Middle-aged (1):
ages 35-54. Old (2): Ages 55+

B.3 Education

H Variable | Low education (0) Medium education (1) High education (2) H
intercept 139.43 -121.20 -572.79
001 2.71 0.00 0.00
002 2.33 0.00 0.00
003 7.41 0.00 0.00
004 4.85 0.00 0.00
005 7.96 0.00 0.00
006 65.24 0.00 0.00
010 0.00 3.50 0.00
011 -2.26 -0.01 0.00
012 1.39 -7.53 0.00
013 4.50 -31.88 0.00
014 114.63 -393.76 0.00
015 25.22 -31.19 0.00
020 0.00 2.13 0.00
021 -17.31 5.84 0.00
022 -2.16 4.80 0.00
023 84.46 -129.26 0.00
030 0.00 9.95 0.00

Continued on next page
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Table 14 - continued from previous page

H Variable Low education (0) Medium education (1) High education (2) H
031 -17.21 8.01 0.00
032 -21.51 11.70 0.00
034 15.41 -13.99 0.00
040 0.00 6.90 0.00
042 13.33 6.52 0.00
100 0.00 0.00 4.61
101 -12.51 0.00 -4.99
102 4.58 0.00 -24.25
103 61.25 0.00 -235.48
110 0.00 -0.76 -1.79
111 -11.36 -8.52 -19.93
112 -4.55 -15.98 -43.05
113 -3.21 -25.37 -36.60
120 0.00 2.31 -2.80
121 -9.03 0.77 -15.69
122 -57.32 -12.26 -74.46
130 0.00 1.30 -30.17
131 -227.62 -47.73 -0.23
200 0.00 0.00 1.46
201 -16.47 0.00 2.52
202 8.70 0.00 -7.10
203 -13.92 0.00 3.32
210 0.00 -5.22 1.11
220 0.00 -4.57 0.89
221 -136.78 -39.80 9.75
240 0.00 -73.07 226.43
300 0.00 0.00 7.51
302 -17.17 0.00 3.64
310 0.00 -19.67 -1.00
400 0.00 0.00 -23.65
410 0.00 -55.05 23.90
tuesday 11.10 7.31 -45.18
wednesday -27.18 34.14 5.29
thursday 25.25 43.67 -51.04
friday -4.20 27.05 -29.56

Continued on next page
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Table 14 - continued from previous page

H Variable Low education (0) Medium education (1) High education (2) H
saturday -73.98 32.46 0.53
sunday -65.99 17.91 -28.96
night -85.35 80.95 240.50
morning -101.37 43.85 263.57
evening -194.14 -133.77 82.71

Table 14: Parameters of the linear aggregated model when segmenting on education. The household types
variable names are composed as xyz, where x is the number of highly educated, y is the number of medium
educated and z is the number of low educated people in the household. Segments are defined as follows: Low
education (0): education levels 0-3. Medium education (1): education level 4. High education: education levels
5and 6.

B.4 Gender & Age

| variable | F18-3¢ F35-54 F55+ M18-34 M35-54 M55+ |

intercept -99.85 -165.13  -29.53  -141.21 -300.57 -117.72
000001 10.53 0.00 0.00 0.00 0.00 0.00
000002 17.35 0.00 0.00 0.00 0.00 0.00
000010 0.00 9.46 0.00 0.00 0.00 0.00
000011 0.49 12.50 0.00 0.00 0.00 0.00
000013 11.33 -15.07 0.00 0.00 0.00 0.00
000020 0.00 20.84 0.00 0.00 0.00 0.00
000100 0.00 0.00 4.24 0.00 0.00 0.00
000101 -11.98 0.00 26.95 0.00 0.00 0.00
000110 0.00 -17.06 41.89 0.00 0.00 0.00
000200 0.00 0.00 16.00 0.00 0.00 0.00
001000 0.00 0.00 0.00 21.48 0.00 0.00
001001 0.95 0.00 0.00 1.33 0.00 0.00
001003 39.67 0.00 0.00 -22.47 0.00 0.00
001010 0.00 8.48 0.00 -6.01 0.00 0.00
001011 1.37 2.00 0.00 -3.47 0.00 0.00
001100 0.00 0.00  -20.57 -22.80 0.00 0.00
001101 390.72 0.00 -797.62  -297.48 0.00 0.00
001102 -5.49 0.00 4.59 -10.82 0.00 0.00
001103 17.07 0.00 -165.62  -139.67 0.00 0.00

Continued on next page
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Table 15 - continued from previous page
| Variable | F18-3¢ F35-54 F55+ M18-34 M35-54 M55+ |

001110 0.00 =177 0.50 -24.96 0.00 0.00
001200 0.00 0.00 102.68 -67.49 0.00 0.00
001210 0.00 29.26 5.32 -65.19 0.00 0.00
002000 0.00 0.00 0.00 8.60 0.00 0.00
002010 0.00 10.26 0.00 62.51 0.00 0.00
002100 0.00 0.00 14.06 -60.17 0.00 0.00
002110 0.00 2794 -13.88 -1.82 0.00 0.00
002202 -3.96 0.00 12.44 2.57 0.00 0.00
003000 0.00 0.00 0.00 34.00 0.00 0.00
003001 2.27 0.00 0.00 12.24 0.00 0.00
003010 0.00 -33.19 0.00 32.22 0.00 0.00
010000 0.00 0.00 0.00 0.00 10.37 0.00
010001 -0.14 0.00 0.00 0.00 2.56 0.00
010010 0.00 -0.02 0.00 0.00 0.02 0.00
010011 -2.45 0.12 0.00 0.00 -0.08 0.00
010012 -8.16 11.24 0.00 0.00 -4.32 0.00
010100 0.00 0.00 14.14 0.00 -17.57 0.00
010101 -36.03 0.00 16.18 0.00 -32.49 0.00
010102 -42.42 0.00 51.43 0.00 -96.38 0.00
010110 0.00 -1.17  -25.62 0.00 5.13 0.00
010111 -5.70 0.51 10.22 0.00 -4.14 0.00
010112 -14.35 -0.29 9.46 0.00 -21.48 0.00
010122 13.27 21.31 54.91 0.00 0.44 0.00
011000 0.00 0.00 0.00 15.34 11.09 0.00
011001 12.55 0.00 0.00 0.35 3.06 0.00
011010 0.00 5.40 0.00 -5.05 -0.89 0.00
011011 -4.89 -1.21 0.00 -4.64 -0.71 0.00
011012 -0.86 -0.94 0.00 -1.29 3.87 0.00
011020 0.00 28.02 0.00 -33.18 21.87 0.00
011100 0.00 0.00 -3.40 -29.90 -2.91 0.00
011101 -205.57 0.00 2439 -182.29 -134.75 0.00
011110 0.00 2.82  -19.40 -21.22 -8.06 0.00
011111 -1.29 9.23 -122.93 -4.52 8.08 0.00
012010 0.00 -9.28 0.00 2.62 7.86 0.00
013010 0.00 -11.79 0.00 -6.41 5.79 0.00

Continued on next page
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Table 15 - continued from previous page
| Variable | F18-3¢ F35-54 F55+ M18-34 M35-54 M55+ |

013011 2.04 -2.49 0.00 12.89 -3.94 0.00
020000 0.00 0.00 0.00 0.00 16.84 0.00
020010 0.00 -1.17 0.00 0.00 41.90 0.00
020100 0.00 0.00 -0.32 0.00 -7.29 0.00
100000 0.00 0.00 0.00 0.00 0.00 5.75
100010 0.00 -1.02 0.00 0.00 0.00 2.23
100011 -149.22 86.83 0.00 0.00 0.00 -110.58
100012 -85.02 -4.85 0.00 0.00 0.00 42.59
100100 0.00 0.00 0.23 0.00 0.00 0.31
100101 -7.97 0.00 -7.08 0.00 0.00 -0.91
100102 -0.06 0.00 15.01 0.00 0.00 -66.80
100110 0.00 -2.43 -0.34 0.00 0.00 -1.17
100111 15.40 15.34 -9.19 0.00 0.00 -30.79
100112 -6.47 -40.09  -19.61 0.00 0.00 19.44
100200 0.00 0.00 14.73 0.00 0.00 -8.91
101000 0.00 0.00 0.00 -23.65 0.00 -181.29
101001 -4.12 0.00 0.00 22.33 0.00 17.20
101010 0.00 -22.94 0.00 -34.75 0.00 -3.34
101011 -29.52 8.10 0.00 -29.39 0.00 -9.19
101012 -8.03 -8.55 0.00 -18.11 0.00 -1.04
101100 0.00 0.00 0.49 -6.54 0.00 -1.74
101101 -2.78 0.00 -15.38 -3.13 0.00 -0.72
101103 -69.69 0.00 -244.23 -209.50 0.00 146.48
101110 0.00 7.65 -133.65 3.68 0.00 -81.11
101111 -40.13 -73.55 -251.66 -26.64 0.00 37.10
101200 0.00 0.00 46.58 -82.28 0.00 -20.39
102002 24.27 0.00 0.00 37.29 0.00  -40.80
102010 0.00 1.53 0.00 -54.87 0.00 -27.53
102011 9.28 -58.36 0.00 5.87 0.00  -65.82
102013 1.23 4.98 0.00 -7.54 0.00 13.85
102100 0.00 0.00 -72.43 -25.35 0.00 -57.91
103100 0.00 0.00  -58.80 -15.05 0.00 6.44
110000 0.00 0.00 0.00 0.00 19.59 9.73
110001 -144.00 0.00 0.00 0.00 208.83  279.33
110010 0.00 141.06 0.00 0.00 -43.25 -150.47

Continued on next page
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Table 15 - continued from previous page
| Variable | F18-3¢ F35-54 F55+ M18-34 M35-54 M55+ |

110011 -111.49  -54.00 0.00 0.00 60.40 21.29
110100 0.00 0.00 -9.16 0.00 -8.35 -8.96
110101 -99.56 0.00 -147.47 0.00 15.75  126.73
110110 0.00 -19.05 -103.73 0.00 28.75  -32.24
111001 -68.05 0.00 0.00 -72.03 -41.63  -18.64
111100 0.00 0.00 -5.18 -18.33 -4.55 13.07
120101 -1.60 0.00 -83.34 0.00 -7.44 12.98
200000 0.00 0.00 0.00 0.00 0.00 -7.25
200011 -37.31  -82.33 0.00 0.00 0.00 14.46
200100 0.00 0.00 4.99 0.00 0.00 10.44
201100 0.00 0.00 14.24 -29.45 0.00 16.87
tuesday -35.44 -0.68 14.59 -14.41 -43.38 55.34
wednesday | -12.36 37.23  -50.53 -29.38 -31.50 36.39
thursday 0.28 9.89 -16.89 -27.39 3.76 43.58
friday -11.95  -18.62  -15.47 -13.45 7.83 63.81
saturday -19.52 -9.98 -126.10 -34.16 84.85 16.72
sunday -22.96  -16.73 -197.44 -28.40 160.63 11.82
night 57.56 98.66 -127.10 131.25 218.95  -75.52
morning -7.04 81.61 -41.94 29.43 157.61 -6.80
evening -121.33 -2.02  -120.71  -115.53 -21.73  -76.04

Table 15: Parameter values for linear aggregated model segmented on gender and age. The household types
variable names are of the form abcdef, where a are males aged 55+, b males aged 35-54, ¢ are males aged 18-34,
d are females aged 55+, e are females aged 35-54 and f are the number of females aged 18-34 in the households
in that type. E.g. household type 200100 are households with 2 males aged 55+ and one female aged 55+.
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C HYPERPARAMETERS OF THE NONLINEAR AGGREGATED METHOD

The table in this appendix contains the hyperparameters selected by the Gaussian Processes of the
nonlinear aggregated model, as described in section 4.3.3.

Segmentation Hyperparameters
Type Segment Max depth Learningrate MDIL Lambdal2 No.leaves
Gender 0 (female) 9 0.200 20 0.100 204
1 (male) 12 0.200 20 0.000 2255
-~ o0wyoungy | 11 0107 20 0.043 1739
Age 1 (middle-age) 6 0.200 20 0.000 25
2 (old) 12 0.200 20 0.000 3355
-~ odowy 12z 0200 20 0.012 4059
Education 1 (medium) 11 0.200 20 0.066 1646
2 (high) 12 0.200 20 0.089 3578
~  O0(youngfemale) | 5 0200 10 0100 31
1 (middle-aged female) 10 0.183 20 0.000 893
Gender & Age 2 (old female) 12 0.200 20 0.069 3112
3 (young male) 12 0.178 20 0.100 3711
4 (middle-aged male) 12 0.196 20 0.100 3845
5 (old male) 12 0.200 20 0.100 3060

Table 16: Hyperparameters as selected by the Gaussian Processes for the nonlinear aggregated model. 'mini-
mum data in leaf’ is abbreviated to 'MDIL

D VARIABLE IMPORTANCE OF NONLINEAR AGGREGATED METHOD

Tables 17 - 20 display the feature importance per predictor in each LightGBM model as described in
section 4.3.3. The feature importance here is defined as the number of times the variable has been
used as split in a tree. The variable names of the household ratings zs; are the same as in the tables of

linear parameter estimates in appendix B.

D.1 Gender
H Variable Female (0) Male (1) |
01 1655 0
02 1076 0
04 22 0
10 0 2791
1 2079 3165
12 1797 2347
13 595 726
14 259 293

Continued on next page
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Table 17 - continued from previous page

| variable Female (0) Male (1) |
15 47 20
20 0 1408
21 1519 2472
22 1276 1976
23 499 714
24 71 82
30 0 111
31 781 1372
32 96 134
34 26 42
41 124 230
42 85 156
day_of_week 601 575
hour 1199 1175
benchmark_rating 2353 3157
channelsize 483 983

Table 17: Feature importance of the nonlinear aggregated model, when segmenting on gender.

D.2 Age
[ Variable Young(0) Middle-age (1) Old(2) |
001 936 0 0
002 2259 0 0
003 143 0 0
004 431 0 0
010 0 156 0
011 2233 148 0
012 1130 73 0
013 266 12 0
020 0 211 0
021 1510 148 0
022 1171 129 0
023 491 58 0

Continued on next page
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Table 18 - continued from previous page

H Variable Young (0) Middle-age (1) Old (2) H

024 311 49 0

030 21 0

031 0 0

100 0 3692

101 917 0 882

102 364 0 196

103 110 0 53

104 207 0 38

110 0 136 2013

111 714 79 904

112 773 87 785

113 274 39 277

115 51 2 43

120 0 75 411

121 278 70 324

122 153 32 256

132 64 19 34

200 0 0 3389

201 1511 0 2211

202 930 0 1014

203 76 0 42

204 109 0 119

210 0 110 2070

211 304 42 485

212 168 8 178

220 0 18 139

221 14 29

300 0 954

301 84 376
day_of_week 650 93 576
hour 1184 200 1274
benchmark_rating 5366 286 5615
channelsize 980 47 1019

Table 18: Feature importance of the nonlinear aggregated model, when segmenting on age.
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D.3 Education

| Variable Low (0) Medium (1) High(2) |
001 3223 0 0
002 3166 0 0
003 1398 0 0
004 699 0 0
005 477 0 0
006 79 0 0
010 0 2340 0
011 4093 2636 0
012 1716 1023 0
013 364 171 0
014 30 4 0
015 192 102 0
020 0 2105 0
021 999 1029 0
022 333 315 0
023 45 32 0
030 0 523 0
031 262 256 0
032 58 98 0
034 56 19 0
040 0 139 0
042 39 88 0
100 0 0 2322
101 2225 0 1559
102 770 0 420
103 59 0 25
110 0 2374 2411
111 720 522 491
112 645 352 333
113 313 117 149
120 0 1005 876
121 551 488 388
122 159 101 91
130 0 305 190
131 42 24 31

Continued on next page
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Table 19 - continued from previous page

| Variable Low (0) Medium (1) High(2) |
200 0 0 2381
201 729 0 865
202 130 0 123
203 32 0 25
210 0 867 1248
220 0 486 739
221 52 43 103
240 0 16 40
300 0 0 630
302 89 0 157
310 0 267 537
400 0 0 45
410 0 26 62
day_of_week 906 558 431
hour 1698 1206 945
benchmark_rating 7707 4034 3760
channelsize 1348 888 654

Table 19: Feature importance of the nonlinear aggregated model, when segmenting on education.

D.4 Gender & Age

H Variable F18-3¢ F35-54 F55+ M18-34 M35-54 M55+ |
000001 80 0 0 0 0 0
000002 66 0 0 0 0 0
000010 0 1512 0 0 0 0
000011 110 624 0 0 0 0
000013 15 2 0 0 0 0
000020 0 220 0 0 0 0
000100 0 0 4496 0 0 0
000101 44 0 475 0 0 0
000110 0 125 169 0 0 0
000200 0 0 950 0 0 0
001000 0 0 0 424 0 0

Continued on next page
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Table 20 - continued from previous page

H Variable F18-3¢ F35-54 F55+ M18-34 M35-54 M55+ |
001001 323 0 0 3193 0 0
001003 20 0 0 24 0 0
001010 0 675 0 955 0 0
001011 109 390 0 605 0 0
001100 0 577 473 0 0
001101 19 34 52 0 0
001102 15 70 78 0 0
001103 26 28 14 0 0
001110 0 123 182 84 0 0
001200 0 0 122 29 0 0
001210 0 47 53 42 0 0
002000 0 0 483 0 0
002010 0 47 76 0 0
002100 0 0 63 58 0 0
002110 0 70 32 40 0 0
002202 8 112 70 0 0
003000 0 0 108 0 0
003001 33 0 237 0 0
003010 0 77 0 136 0 0
010000 0 0 0 0 1435 0
010001 169 0 0 0 1388 0
010010 0 3171 0 0 3971 0
010011 113 1173 0 0 1436 0
010012 44 147 0 0 184 0
010100 0 0 1229 0 958 0
010101 26 72 0 79 0
010102 13 66 0 66 0
010110 0 222 196 0 266 0
010111 14 88 107 0 114 0
010112 11 159 244 0 146 0
010122 19 50 43 0 23 0
011000 0 0 0 484 442 0
011001 70 0 0 208 230 0
011010 0 793 0 669 987 0
011011 91 639 0 872 895 0

Continued on next page
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Table 20 - continued from previous page

H Variable F18-3¢ F35-54 F55+ M18-34 M35-54 M55+ |
011012 31 154 0 178 218 0
011020 0 0 0 0 0 0
011100 0 0 192 121 220 0
011101 0 0 36 27 27 0
011110 0 126 168 96 122 0
011111 14 61 67 70 74 0
012010 0 216 0 234 227 0
013010 0 108 0 105 98 0
013011 27 147 0 206 122 0
020000 0 0 0 0 328 0
020010 0 14 0 0 48 0
020100 0 0 189 0 107 0
100000 0 0 0 0 0 2567
100010 0 1170 0 0 0 1527
100011 20 147 0 0 0 110
100012 9 76 0 0 0 85
100100 0 0 5752 0 0 3849
100101 115 0 1165 0 0 1067
100102 13 0o 28 0 0 17
100110 0 952 1453 0 0 1287
100111 15 33 29 0 0 33
100112 30 53 99 0 0 92
100200 0 0 273 0 0 190
101000 0 62 0 61
101001 19 0 77 0 114
101010 0 147 0 146 0 146
101011 24 171 0 89 0 152
101012 38 219 0 217 0 298
101100 0 0 1313 984 0 972
101101 85 0 658 686 0 719
101103 4 0o 28 17 0 25
101110 0 55 43 49 0 74
101111 10 34 28 29 0 28
101200 0 0 191 92 0 127
102002 23 0 0 72 0 26

Continued on next page
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Table 20 - continued from previous page

| Variable F18-3¢ F35-54 F55+ M18-34 M35-54 M55+ |
102010 0 87 0 80 0 98
102011 12 40 0 58 0 35
102013 20 28 0 22 0 41
102100 0 211 160 0 178
103100 0 45 71 0 36
110000 0 0 127 148
110001 9 0 51 36
110010 0 20 0 20 8
110011 4 38 0 85 45
110100 0 861 0 652 743
110101 12 0 87 0 38 44
110110 0 85 120 0 170 119
111001 16 0 0 140 155 149
111100 0 85 51 38 62
120101 1 13 8 27
200000 0 0 0 0 112
200011 8 24 0 0 0 36
200100 0 0 461 0 505
201100 0 0 82 22 0 158
day_of_week 109 720 962 763 764 749
hour 186 1302 1791 1254 1374 1407
benchmark rating 309 4946 7763 6477 5559 5246
channelsize 71 959 1365 1000 1118 1091

Table 20: Feature importance of the nonlinear aggregated model, when segmenting on gender and age.
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E INDEXPLOTS OF COMPARISON

This appendix contains two index plots comparing the fit of the choice model and aggregated model

when imposing segmentation based on education (section E.1) or gender and age (section E.2).
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Figure 13: Index plot displaying the out-of-market fit of the nonlinear aggregated model and the multiplicative
choice model, imposing segmentation based on education. The true index is on the x-axis, the estimated index
on the y-axis. The plot shows indices of estimates of the full month of Cleveland data. Channel sizes are defined

as in table 5.
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E.2 Gender & age
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Figure 14: Index plot displaying the out-of-market fit of the nonlinear aggregated model and the multiplicative
choice model, imposing segmentation based on age and gender. The true index is on the x-axis, the estimated
index on the y-axis. The plot shows indices of estimates of the full month of Cleveland data. Channel sizes are

defined as in table 5.
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