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Abstract

Market segmentation is a valuable analysis for businesses, especially when they have
a diverse clientele. Clustering is the unsupervised learning method that can deal with
market segmentation. While many clustering techniques exist, they generally suffer from
instabilities and thus do not necessarily generate the best solutions to a problem. A novel
method that does not suffer from these instabilities is convex clustering. Although convex
clustering is already established for continuous and binary data, this paper extends the
literature by generalising convex clustering for different data types. Two practical cases
show that the generalised model has a practical use and can provide businesses with vital
information. A simulation study furthermore reveals promising results: for categorical
data this model outperforms the benchmark of an established method, especially when
the relative difference between clusters is small. Finally, it is the first clustering method
that is able to analyse Poisson distributed data and its performance in the simulation study
is decent. Thus, this paper presents the generalisation for convex clustering for different
data types and supports that this extension to the literature is logical and beneficial.
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1 Introduction

In 2001, the German car company BMW released “The Hire”, a series of short films. The
protagonists of these action-packed stories are “The Driver” and his trusted BMW. The pictures
were professionally produced by A-list actors and directors and were staggeringly successful;
the number of views in the first four months surpassed 11 million. The marketing success also
translated to the business. BMW recorded a 13% increase in sales from 2000 to 2001 and 17%
in the consecutive year (Boeriu, 2009).

This astonishing accomplishment is due to the implementation of the Segmentation-Targeting-
Positioning model. BMW used this model as follows. They first analysed their (potential)
customers and segmented them into groups. This included a group of work-hard, play-hard
customers: they were married men without children, 46 years old, had an income of around
$150,000, and 85% had access to and used the internet — which was uncommon in 2001. This
is the group BMW decided to target, since they identified an opportunity for business ex-
pansion. To position the BMW brand accordingly, they utilised the knowledge gained from
the segmentation and produced high action films which these men would enjoy. The result is
that the group started to associate driving a BMW with feelings of excitement. Lastly, BMW
distributed the films through their website to effectively target this group, knowing most of
them had access to internet (Hespos, 2002).

The example about BMW'’s “The Hire” shows that segmentation of consumers is a valuable
asset for companies. The knowledge gained from discovering types of customers opens up the
possibility for effective targeted marketing where the business can position themselves optimally
for each type. It furthermore identifies other indispensable information, such as which type
of customer is likely to churn, which groups are prone to up-selling and/or cross-selling, and
how the company can differentiate their current and future products to fit the wishes of each
segment (Kotler et al., 2000).

In practice, businesses have little to no prior knowledge concerning the categories of cus-
tomers they serve or the distribution of their clientele among those classes. They need a
market segmentation analysis to uncover this information. A common data analysis method
to achieve such unsupervised learning task is cluster analysis. Clustering takes observations
and their corresponding variables as input and provides a hypothesis for a segmentation as
output. The general objective of clustering is to put similar observations in the same cluster
and dissimilar ones into different clusters. Most methods divide this problem into two aspects.
First, the (dis)similarities between the observations are determined and stored. Second, the
observations are separated based on the (dis)similarity.

The literature presents many different (dis)similarity metrics and clustering techniques
with each their own strategy for defining (dis)similarities and clusters. For surveys about the
(dis)similarity metrics and/or clustering methods the reader is referred to Fahad et al. (2014),
Xu and Wunsch (2005), Choi et al. (2010), and Boriah et al. (2008). The most common metrics,
like the Euclidean norm and Jaccard coefficient, and methods, like K-means and hierarchical
clustering, perform well, but they have drawbacks. The metrics are often nonparametric and
might not represent the true parametric structure behind the data. The methods themselves are
unstable; they are either greedy, implement hard thresholding, solve a non-convex optimisations
problem, or a combination of these three. This means that the final result of such methods is
not necessarily the best solution possible and can vary due to different initialisation.

A recent development within the field of clustering that does not suffer from these prob-



lems is convex clustering. This technique is proposed independently by Hocking et al. (2011)
and Lindsten et al. (2011). It shows competitive results compared to older, well established
methods. The main idea of convex clustering is to simultaneously define the similarity and
separate observations into clusters. This results in a parametric and convex optimisation prob-
lem consisting of two parts. The first part determines the similarity between observations by
means of the likelihood function of the distribution corresponding to the data. The second part
ensures that clusters exist by introducing a penalty term on the parameters from the likelihood
function. This penalty function forces pairs of parameters to move to each other and clusters
are formed when the parameters merge together.

Until now the convex clustering method is developed for continuous (Hocking et al., 2011)
and binary data (Choi and Lee, 2018) by respectively implementing the Gaussian and Bernoulli
likelihood function, both members of the exponential family. This leaves room to extend convex
clustering to other distributions. Accordingly, the goal of this paper is to determine whether
convex clustering is possible for the entire exponential family and devise a general model for
convex clustering. This method is called Generalised Convex Clustering (GCC). This extension
adds to the literature as it enables convex clustering for different types of data and it allows
for the vast amount of knowledge about the exponential family to be implemented on convex
clustering. It furthermore shows the added practical benefit of GCC by implementing this
method on two real-life cases

The outline of this paper is as follows: section 2 explains the methodology of the technique.
It starts with an overview of GCC and how it comprises from the likelihood of the exponential
family and a pairwise fused penalty. It furthermore includes the general algorithm to optimise
the GCC. Hereafter, section 3 demonstrates applicability of the technique by applying it on
two cases with different data types. Section 4 supports the findings with a simulation study
and shows the strengths and weakness of the method. Lastly, section 5 concludes the paper.



2 Methodology

This paper proposes a generalisation of convex clustering to the exponential family. Suppose
the goal is to cluster the observations of a nxd data matrix X, with X = [@1, @2, ..., z,]". Here
n denotes the number of observations, x; is a d x 1 column-vector of variables for observation
i, and d is the number of variables. Convex clustering assumes that each observation x;
is approximated by the centroid of a cluster, each represented by its parameter 6;, a d x 1
column-vector. Hence, the target is to find the most optimal @ = [01,05,...,0,]. These
centroids are estimated according to this optimisation problem:

min — (©]X) + PA(6), (1)

Here, the goodness-of-fit function ¢(@|X) measures the log-likelihood of the centroid describ-
ing the observations. The penalty function Py (@) is a Lagrange function, with A being the
Lagrange multiplier. This function penalises the number of unique parameters 8; to ensure that
centroids merge. Consequently the parameters of the centroids are called fusion parameters,
since the fusion of these parameters causes clusters to form.

The idea of convex clustering presented in Hocking et al. (2011) is given by the following
constrained optimisation problem:

j <
max £(B|X) subject to Z lo, 26, < ¢, (2)

1<u<v<n

where 1 is an indicator function, 3>, <, = S.u_y >.u_,, and ¢ determines the number
of unique fusion parameters and therefore the number of clusters.

If ¢ is chosen larger than the amount of pairs of observations, i.e. ¢ > @, the optimisa-
tion problem is unconstrained. For such values of ¢, each 6; is set optimally towards x; given
the log-likelihood function. Since the log transformation ensures that the function is mono-
tonic, there is an unique estimation of 8; for each unique observation x;. Thus only arbitrary
clusters — when data points are equal — are formed. Contrarily if ¢ = 0, all 8;’s are equal to each
other and only one cluster exists. The results between those two values of ¢ is of interest, since
the clustering occurs then. Suppose c starts at 2= and decreases. The allowed number
of unique parameters is then reduced. The stronger penalty on the fusion parameters forces
certain observations to fuse based on the effect on the goodness-of-fit. Concretely, the clusters
for which the loss of goodness-of-fit is lowest after merging are combined. This continues until
one cluster remains at ¢ = 0.

This seems similar to the popular cluster method Hierarchical Agglomerative Clustering
(HAC). In this bottom-up clustering technique, each observations starts in its own cluster
and the pair of clusters with the smallest distance for a certain metric are combined. This
continues until all observations are merged into one cluster. The first major difference is that
HAC is greedy and does not allow for clusters to break-up once they have formed. Convex
clustering does allow for this due to its convexness and finds the optimal solution given c¢. The
second difference is that HAC builds upon distance metrics, whereas convex clustering uses
the distribution of the data to compare observations.

Following the strategy of Hocking et al. (2011) the indicator constraint is relaxed to a convex
penalty function, since indicator functions are difficult to optimise. Moreover, it is easier to



minimise instead of maximise and to rewrite the penalty as a Lagrange function. These three
adjustments lead to equation (1).

The rest of the methodology is divided into four parts. It starts by delving into the penalty
function, after which the likelihood function of the exponential family is discussed. The next
section combines these into the GCC and indicates how clusters are specifically determined.
Lastly, a general algorithm for optimisation is derived.

2.1 Penalty Function

The penalty function ensures that the fusion parameters move towards each other and form
clusters between the observations. The penalty term is implemented as a Lagrange function,
which introduces the Lagrange multiplier A. The size of A determines the influence of this
penalty function and is negatively correlated with the number of clusters found.

Originally however, the indicator function imposes the formation of clusters. The indicator
function is difficult to optimise, partly due to not being convex. Although it theoretically
ensures the clear definition of clusters, as the name convex clustering suggests, this function is
clearly not appropriate.

A solution lies in the 0-norm; the indicator function of two vectors being dissimilar is the
same as the O-norm of the difference between those two vectors (Donoho, 2001):

lo, 26, = [0, — 0, ]lo. (3)

It is common practice in the literature to relax a norm into a higher norm. This leads to the
penalty function:

P)?<@) =A Z 6. — 0v||q7 (4)

1<u<v<n

where || ||, is the g-norm, with ¢ > 1. For these values of ¢ the norm is always convex and
easier to optimise then the O-norm. Popular values for ¢ are 1 and 2, respectively called the
Manhattan and the Euclidean norm.

This penalty term is related to the pairwise fused Lasso restriction. This shrinkage method
is proposed in Petry et al. (2011) and generalises fused Lasso (Tibshirani et al., 2005). Pairwise
fused Lasso shrinks all pairs of parameters as well as each parameter individually with a 1-norm:

p
A 1051+ Xe Y16 -6l (5)
j=1

1<j<i<p

where p the number of variables. Depending on the size of A\; and \s respectively, the shrinkage
forces parameters to both move towards 0 as well as towards each other. The last part forces
a clustering in the parameters. Price et al. (2015) proposes a fused Ridge restriction. The
generalisation to pairwise fused Ridge is straightforward and follows that of pairwise fused
Lasso.

The pairwise fused Lasso and Ridge originally compare all the pairs of variables. For convex
clustering this is not desirable, but rather the pairs of observations. With this adjustment the
general form for the penalty function of convex clustering is:

n

Pl @) =0 l6illg+ A2 Y 116w —bullg. (6)

i=1 1<u<v<n



This shows the relation of the penalty term of convex clustering to other fields within statistics.

Setting Ay > 0 offers little in terms of convex clustering. Intuitively the sparsity within
the fusion parameters this introduces might increase the interpretability of the results by indi-
cating which variables are important for clustering. This is however not true. The Euclidean
norm is inseparable variable-wise and forces the entire fusion parameter for an observation
towards 0 simultaneously. The impact of individual parameters is thus indistinguishable from
others. Even though the Manhattan norm is separable variable-wise, it does not force an entire
column of @ towards 0, but instead individual parameters 0,;. Sparsity in specific columns in-
dicates that the variables corresponding to these columns are less important for the clustering,
while sparsity in the entire matrix simultaneously does not provide clear proof concerning the
importance of variables.

The most appropriate penalty function for convex clustering is thus equation (4). Similar
to the indicator function it captures the effect of clustering the observations. The advantage it
has is that this function is convex, easing the computational effort. The choice between g = 1
and ¢ = 2 is important and has substantial consequences. This, together with the choice of A
and the evaluation method, is discussed in the next section.

2.2 Likelihood Function

The exponential family is a group of distributions that follow the same general form of proba-
bility distribution. Thus a general method for the entire family covers all individual members.
For regressions this lead to the creation of the Generalised Linear Model and this paper pro-
poses an equivalent for convex clustering. The general form of the probability distribution is
given by:

p(e|6) = H(w)exp (6 - T(x) - G(6)). (7)

where 6 is the natural parameter, also called the canonical parameter. This parameter repre-
sents the original parameters, the so-called source parameters, in a different plane. Both the
canonical parameter @ and the data @ are column vectors. For some distributions these are the
same size, while for others this differs. Since the goal of convex clustering is to form clusters,
and not to find the best fit, it suffices to employ 8 and not the source parameters. T'(x) is the
sufficient statistic and H (x) is the base measure, which are both only dependent on @. Finally,
(G(0) is called the log-partition function. This function is a normalisation factor and ensures
that the function is in fact a probability and the total probability equals 1: ffooo p(x]@) =1
(Jordan, 2009).

The likelihood function of the exponential family is the product of the probability distri-
bution over all observations in the corresponding dataset:

—=

L(O|X) = | | p(x:]6:)
i=1
n (8)
= HH(l’z‘) exp (0; - T(x;) — G(6;)),
i=1
where © = [01,05,...,0,]'. The base measure H(x;) depends only on x; and is therefore a

constant with respect to 8;. Thus, this part of the function is ignored for the optimisation of



the likelihood function towards the natural parameter:

L(O|X) o [[ exp (6 - T(a:) — G(6,). (9)

=1

The log-likelihood is however simpler to optimise:
U(O|X) < > 6;-T(x;) — G(6). (10)
i=1

It is additionally convex for the entire exponential family and differentiable on a interval
corresponding to the datatype and parameters.

Due to the convexness the general log-likelihood function can be inserted into equation (1)
without direct problems. All members of the exponential family can thus be implemented for
convex clustering. It clearly follows that the natural parameter of the exponential family is
the fusion parameter for convex clustering.

The exponential family contains several common distributions, notably the Gaussian,
Bernoulli, Poisson, and categorical distribution. For a comprehensive overview of the en-
tire family and the decomposition for each distribution the reader is referred to Nielsen and
Garcia (2009). The rest of this section displays the likelihood function of the four distributions
mentioned earlier. The derivation of the log-likelihood function of the Gaussian and Bernoulli
distribution shows the relation of the GCC to respectively Hocking et al. (2011) and Choi and
Lee (2018). The log-likelihoods of the Poisson and categorical distribution are referred to later
on in the application and simulation section of this paper to show the capabilities of GCC.

2.2.1 Gaussian distribution: The Gaussian or normal distribution is commonly used for
continuous data and is a staple aspect in many models and techniques. The Gaussian distribu-
tion has two source parameters: one location and one scale parameter. The scale parameter,
the variance-covariance matrix, is set equal to the identity matrix for simplicity. The decom-
position of the Gaussian distribution is then given as:

0 =p,
T(x) ==, (11)

1
G(0) = 500 + glog(Zﬂ'),

where p is the source parameter for the location. As aforementioned, it suffices to optimise
the natural parameter and not the source parameter. In this case the substitution of 8 with p
does not change the function in any meaningful manner, however for consistency the natural
parameter is kept.



The log-likelihood function of the Gaussian distribution is proportional to:

U(O]X) x Z 0.x; — ~0.0 glog(%r)

o Z 0x; — 79;@
=1

n 1
cxzegwi 09 — alr:alcZ (12)
i=1
n 1 ,
= _5(331 0;) (z; — 0;)
i=1
1
=—5lIX - o|%,

where ||-||F is the Frobenius norm. This is the same as the function used in the optimisation
problem proposed in Hocking et al. (2011), clearly showing that the paper used a Gaussian
distribution with an identity variance-covariance matrix as the goodness-of-fit measure for
convex clustering.

2.2.2 Bernoulli distribution: The next example is the Bernoulli distribution. This dis-
tribution is used to represent a situation where there are two options, i.e. binary choices. Choi
and Lee (2018) implements it for the convex clustering of binary data. The decomposition of

the Bernoulli distribution is:
0 = log <p> ,
1-p
(13)

G(8) = log (1 + exp(9)),

where p is the probability of the value of = being equal to 1. The log-likelihood of the Bernoulli
distribution over d variables is given by:

L(OB]X) x ZZGWJL’” (1+ exp(6;5))

1=1 j=1

n d
- Z <0;azZ — Zlog (1 + exp(@ij))> (14)

This derivation is different than in Choi and Lee (2018), but the output of the log-likelihood
is the same.



2.2.3 Poisson distribution: The Poisson distribution describes data with a high number
of trials, where for each trial the chance of the event of interest to happen is small. The input
is the count of an event during a specific period and the source parameter ( indicates the
expected number of occurrences during that period.

The decomposition of the Poisson distribution is:

¢ = log,
T(z) ==, (15)
G(0) = exp(0).

Here, z;; indicates the discrete number of occurrences of the event for individual ¢ during time
period t. The canonical parameter 0; is the same for each time period ¢. This is due to the
fact that the source parameter describes a series of number of occurrences and not a single
instance. The log-likelihood of the Poisson distribution thus is:

0(0]X) o zn: i (Giwu - exp(ei))

iil t=1 (16)
x Z (Gi"',mi - ?/Jexp(ai))v
i=1

where 1 indicates the total number of time periods, 2 is a ¥ x 1 column-vector of ones, and
xr; = ["Eil, Ti2y .- 7561'7,[)]/-

2.2.4 Categorical distribution: The categorical distribution represents the distribution

of categorical data which take K different classes in a single trial. This is the Bernoulli

distribution when K = 2 and the multinomial distribution when the trials is more than one.
The decomposition of the categorical distribution for the exponential family is:

k
o =log | — L),
: (1 - Efilpl)
T(z%) = 2*, (17)

K-1
G(0%) = log (1 +> ea;p(el)),

=1

where 0¥ is the canonical parameter for class k and p* is the probability of the random variable
being equal to class k. The data point x is represented by the K x 1 column dummy vector
[z, 22,...,2%) where ¥ = 1 if = k and 0 otherwise. Furthermore, pX =1 — Zl:?pl to
ensure identification and §% = 0 accordingly (Nielsen and Garcia, 2009). Thus 8 is a K —1x 1
column vector: [91,02,... 0K-1)

In most cases it is incorrect to assume that each variable has the same number of categories
K. To resolve this problem, for each variable j the number of classes is K. The log-likelihood

of the categorical distribution over d variables is given by:

n d Kj—l Kj—l
UOy,...,0,|Xy,...,X,) o<22< > (0Fak;) —log (1+ > exp(ogj))>, (18)
i=1 j=1 k=1 =1
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. Kj—1
Wlth Xi = [ac;{l, wlig, P ,xid]’, wij = [xllj, Z‘?j, e ,xijj ]/, @z = [01'1, 0i27 e 70id]/7 and 91']‘ =
[G}j,ﬁfj, 057 I

It is possible to vectorise the log-likelihood of the categorical distribution by implementing
the following adjustments. First, the matrix @; is written as a column vector: 6; = [0},60%, ...

..,0{{171,9}2, 02, ..., 95‘171]’ and the same for X; into column vector ;. The size of ; is
denoted as dK x 1, with dK = E?Zl(Kj — 1). Secondly, the variable z;; is introduced,

which captures the log-partition: z;; = log (1 + Zlijl_l exp(@fj)). It is important to note that
this variable does not change given the value of k, only due to ¢ and j. Substituting these
adjustments into the log-likelihood results in:

U(O]X) x z”: (0;% — zl{z), (19)

i=1

where z; = [2;1, 22, - . - 2iq)’ and 2 is a d x 1 column-vector of ones.

2.3 Convex Clustering

As aforementioned, the optimisation problem for GCC consists of two parts: the likelihood,
which serves as a goodness-of-fit to define the similarity between data points, and the penalty
function, which ensures that clusters are formed. The general problem is:

min — ((©]X) + P\(©), (20)

with X a n x d data matrix and @ a n x d parameter matrix.

Inserting the functions presented in section 2.2 and section 2.1 results in the optimisation
problem for GCC:

n

min — Z (9; ‘T(x;) — G(9¢)> + A Z [0 — 6u][4- (21)

i=1 1<u<v<n

T(z;) and G(0;) both depend on the specific distribution suited for the data.

In the penalty function of this optimisation problem the absolute influence of each variable j
is equal. If there is a difference between the scaling of the variables in the data this scaling might
translate to @ through the sufficient statistic T'(x;). Then for some variables the corresponding
fusion parameters are relatively larger than those of other variables. The penalty function
penalises variables with a relative large theta stronger than those with a relatively small theta.
Thus the former variables are more important for the clustering than the latter. A solution to
this problem is to scale the sufficient statistic, so that the relative size of theta is similar. Some
variables can then still be more important for the clustering, however the effect of different size
is then eliminated. Another solution is by implementing PCA as done in Choi and Lee (2018),
where the difference in scaling is captured in the dimension reduction. Researching whether
this problem is relevant and if the two solutions are viable is beyond the scope of this paper.

The previous section explained that there are multiple choices for the norm of the penalty
function, most notably ¢ = 1 and ¢ = 2. This choice is important and has substantial conse-
quences. This, together with the choice of A and the evaluation method, is discussed in the
remainder of this section.
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2.3.1 The choice of the penalty norm: The norm of the penalty function has implica-
tions for the results of the convex clustering. While any choice of ¢ € Z* shows to result in
well-defined clustering for the Gaussian distribution (Hocking et al., 2011), this does not hold
for the Bernoulli distribution. Choi and Lee (2018) proves that when the penalty function is
separable variable-wise there are only two possible outcomes: either one cluster or only arbi-
trary clusters. The intuition of this proof is that in case of a variable-wise separable penalty
where more than 1 clusters exist, a parameter 0;; is determined independently from the other
variables. 0;; then takes only two values for all 7, one for z;; = 1 and one for x;; = 0. This
means that the vector 6; is unique to each unique x; and there is no clustering. Generally, a
variable-wise separable penalty function creates an all-or-nothing clustering for the Bernoulli
distribution.

Needless to say, this result is not desired. This proof is given for a binary case, however
for the multiclass case the proof is similar and the same results hold. The multiclass case is
part of the exponential family in the form of the categorical and multinomial distribution. The
exponential family is therefore split on this. A general proof for which members of the family
this holds is beyond the scope of this paper.

A solution to the all-or-nothing clustering is to implement penalty terms which are insep-
arable per variable. Therefore, the 1-norm is not suitable, but any norm for which ¢ = 1 + ¢,
with € > 0 is. Although other norms are possible, the Euclidean norm is popular, intuitive,
and straightforward to optimise. Thus, ¢ = 2 for the rest of this paper.

2.3.2 The choice of the penalty parameter: The question of the optimal number of
clusters and consequently the optimal value for A still remains. There are several different
ways to answer this question. Obviously, the most desired situation is that the number of
clusters is known a priori. Due to the unsupervised nature of clustering this is rarely true. It
is however possible to determine the optimal number of clusters not beforehand, but rather on
the outcomes of the clustering. For example, the segmentation of the customers of a company
into 6 groups does not give enough information to personalise the products towards, but the
company also does not have the capabilities to adjust towards 15 segments. In this case 10
clusters might be preferred. While this method is practical, there is no theoretical justification
for the chosen number of clusters and incorrect results could be derived from this.

The theoretically supported approach is to analyse the validity of the clustering. There are
two types of validity for clustering: internal validity and external validity. Internal validity
refers to assessing the clustering results using only the information necessary to create the
clusters. External validity on the other hand utilises knowledge about the actual clusters of
the data to validate the results. Thus, external validation is not suited as a general method to
choose the optimal value of . It is however useful to evaluate the performance of the clustering
technique when the true clustering is known.

Several internal validity indices exist in the literature, including the Davies-Bouldin, sil-
houtte, and Dunn indices. These indices support the clustering methods which build upon
distance metrics (Rendén et al., 2011). Convex clustering is devised as an alternative to those
methods and implements distributions to avoid using distance metrics. Hence, these indices
are unsuitable to use as a validation method. The Akaike Information Criterion (AIC) does
not use the distances, but exploits the likelihood and the degrees of freedom instead. Originally
AIC is designed to assist with overfitting and to estimate the dimensions of a model (Akaike,
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1973). The AIC value is defined as:
AIC = -20(-)+2-m, (22)

where £(.) is the log-likelihood dependent on certain parameter(s) and m is the number of
parameters estimated by the model. This equation takes both the model fit as well as the
model complexity into account. Minimising AIC is equivalent to finding the best trade-off
between a good fit — a high £(.) — and a low complexity — a low m. The strategy to find the
best model is thus to estimate multiple models with varying parameters and to select the model
with the smallest AIC value. Several papers however discussed that AIC generally chooses a
higher dimension than the “true model”.

An related alternative that does find the “true model” is the Bayesian Information Criterion
(BIC), proposed in (Schwarz et al., 1978). The BIC value for a model is defined by:

BIC = —2¢(-) + log(n) - m, (23)

where n is the number of observations. Similar to AIC minimising BIC is finding the best
trade-off between a good fit and a low complexity, and thus the model with the smallest BIC
is considered best.

AIC and BIC are the two most commonly used information criterion, however there are
many more criteria available. Akogul and Erigoglu (2016) compared several of these informa-
tion criterion on their performance for clustering using mixture models. Unsurprisingly, this
study showed that BIC outperformed AIC. However their results show that the Kullback infor-
mation criterion (KIC) outshines BIC. This KIC is first proposed in Cavanaugh (1999) and is
specifically designed for large-sample models. In those models it outperforms AIC, but it also
suffers from the problem of choosing a higher dimension than the “true model” in small-sample
models. The KIC value is given by:

KIC = —20(-)+3- (m —1). (24)

The model with the smallest KIC is the most optimal trade-off between a good fit and a low
complexity.

In convex clustering each observation is defined by its own parameter and the goal is to
reduce the number of unique parameters, where each unique parameter is a cluster. The
number of unique parameters times the number of variables determines the complexity of the
model, instead of the number of variables for regressions. Determining the optimal number of
unique parameters for convex clustering is thus equivalent to determining which variables to
use for regression. It is therefore not far fetched to implement an information criterion to assist
with determining the number of clusters. Since BIC is the most commonly used information
criterion and seems to perform well in the other papers about convex clustering, the models
in the application section use BIC. In the simulation section the estimated number of clusters
of the three criteria are compared to the true number of clusters to figure out which criterion
is preferred.

With adjustments towards convex clustering the information criteria are:

AIC = —20(@|X) +2-|C| - d,
BIC = —20(®|X) +log(n) - |C| - d, (25)
KIC = —20(0|X) +3-(|C|-d — 1),

where |C| indicates the number of clusters and d the number of variables.
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2.3.3 Evaluation of the model: Given a choice for ¢ and A the output of the model
is a clustering of the observations. A problem that is common for unsupervised learning, is
that the correct solution for the observations are normally not known and it is not possible
to asses the performance the model properly. There are, however, predefined datasets set up
for unsupervised learning for which the outcomes are known. Another method to bypass this
issue is by simulating the data. Two popular clustering evaluation measures for when external
validation is possible are the Fy score and entropy (Rendén et al., 2011).

The F} score combines the precision and recall into a score for each cluster. The F} for a

specific cluster c is:

Fe_o precision, - recall,
c=2.

, 26
precision. + recall,. (26)
where precision. and recall, are respectively the precision and recall of the model in cluster ¢
versus all other clusters. These scores can then be summarised into a weighted F; score:

C
=Y ke (27)
ceC n

where C is defined as the set of clusters. The cardinality |c| indicates the number of observations
in class ¢. The range of the Fy score is [0,1]. F; = 1 is achieved when precision, = recall. = 1
for all values of ¢, indicating a perfect clustering; a higher score indicates a better performance.

Entropy has its basis in the information theory, which was first introduced by Shannon
(1948). Similar to the Fy score, the entropy can be calculated as a weighted measure as well
as for individual clusters. The entropy for a single cluster c is defined as:

E(c) == pe(q)log (pe(q)),

qeQ (28)

. |4
with pe(q) = ﬁ,
where ¢ indicates an actual cluster, @ the set of actual clusters, and |cq| the number of obser-
vations belonging to ¢ in cluster c. log (pc(g)) is not defined for the case that pc(¢q) = 0. In
that situation pc(g)log, (pc(q)) = 0, since

pc(ii)n_ler pe(q)log (pc(Q)) =0. (20)

The weighted entropy F is deduced similarly from the individual F(c) as the weighted Fj score

E=Y" |ni| - E(c). (30)

ceC

The range of the entropy is [0,log(n)]. If E = 0 the clustering is done perfectly, since then
pe(q) = 1 or p.(q) = 0 for all ¢ and g. This means that all observations in a cluster ¢ are
exclusively from a specific actual cluster q. Therefore, a lower value for the entropy indicates
a higher clustering performance.

Both the weighted F} score and the weighted entropy give an indication of the clustering
quality if the true clusters are known. As mentioned earlier this is rarely true in practice.
Hence, this paper includes a simulation study for which these measure can be derived.
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2.4 Optimisation

Newton’s method is popular estimation tool and is suited to optimise Generalised Convex
Clustering. This method comprises of the gradient and the Hessian. Both of these are well
known for the log-likelihood function of the exponential family. Newton’s method minimises
the function:

F(O|X) = —((O]X) + P\(©)
-y («%-T(wn —G(0i>) SR DN [N (3D

which is equivalent to the optimisation problem given by equation (21). Newton’s method is
an iterative algorithm which starts with an initial estimate for the parameters @ and at each
step r of the procedure updates the parameters:

07 = 0, —H(B;) 'V (0], (32)
with
oF ol 0Py

V(0) =56, = 50, " 56,
52F 520 52 Py (33)
00 = S50 = ~56:007 T 56,00
The gradient and the Hessian of the log-likelihood is given by:
4 oG
56, ~ )~ 5,
6% G (34)

30:00] ~ 56,00,

where gradient and the Hessian of the log-partition function G depends on the distribution.
Moreover, the gradient and the Hessian of the 2-norm penalty function is given by:

0Py 0,-0,
= )\ _—
00; UZ# 16; — 6,]|2

52P)\ I (02 - ev)(ez - av)/
— =\ — .

v#£i

The comprehensive derivation of the penalty function is illustrated in appendix A.

From equation (35) it is apparent that the derivative of the 2-norm penalty function is not
defined for 7 when 6; = 0,,. This occurs when ¢ = v and when ¢ and v are in the same cluster.
The former situation does not occur, but the latter does. To ensure that the derivative exists,
it is necessary to merge observations in the same cluster. As aforementioned, every observation
is assumed to be its own cluster before any merger occurs. When two clusters ¢; and ¢y are
fused they continue from that point onward as a single cluster ¢ with the same parameter 6..
Since the penalty term is the 2-norm, the fusion parameters are rarely exactly the same. The
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two clusters are considered fused when 0., — 0.,|l2 < 7, where 7 is a small threshold. The
choice of 6, is arbitrary for this new cluster. While a random 6. would suffice, the computation
time is less by using a 0. close to 8., and 8.,. Since the difference between the two parameters
is small, any parameter between the two is a valid initial parameter for the new cluster. In
this paper the fusion parameter of the new cluster c is determined by the weighted mean of ¢;
and ca:

_ |Cl|0(11 + |C2|ecz

1] + |ez

where |c| is the number of observations in cluster c.

Besides merging the parameters the data points also need to be combined. An intuitive way
to do this is to take the mean of x; for all 4 in the cluster. X does not directly influence the
log-likelihood function though, but rather through the sufficient statistic. Hence, the sufficient
statistics of cluster c is the average of the sufficient statistic of the observations within this
cluster and is either calculated directly or as a combination of its subclusters ¢; and ¢y which
form c together:

0. (36)

— 1
TczﬂZT(a:i)7
cl <
T.,

Tc _ |(31 |Tc1 + |C2
1] + |ez]

The update of the fusion parameters of cluster ¢ at step r is thus given by:
0, =6, —H(e;7)"'V(e:), (38)
with
= oG 6.-86,
VO.)=-T.+—+A _
(0 . 2o, 0,1
(39)

62G I (Oc - 01})(0c - 01})/
H(0,) = ——— - :
(6c) 56,66’ +A§C (IIHC—Hvlz 6. — 6,3 )

Algorithm 1 displays the pseudo-code for the minimisation of the optimisation problem of
general convex clustering given a value of A\, a threshold for clustering 7 and the maximum
number of iterations €.

For parameter tuning algorithm 1 is run for different values of A\ and for each the value
for the information criterion is determined. The clustering corresponding to the smallest
information criterion is considered best and is the final result of GCC of the dataset.

Since the application and the simulation study utilise the GCC optimisation of the Poisson
and categorical distribution, the derivation of the average sufficient statistic and the gradient
and the Hessian of the log-partition function is shown below for both distributions. The
sufficient statistics and log-partition functions are displayed earlier in subsections 2.2.3 and
2.2.4 for respectively the Poisson and categorical distribution.
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Algorithm 1 GCC optimisation for given A

1: Initialise all 89 with random values

2: Set each observation 7 in cluster ¢;

3: Define the set of clusters C' = {{c1}, {2}, ..., {en}}

4: Setr=1

5: repeat

6: for all clusters c € C do

7 Obtain V(6771) and H(8.~!) using equation (39)
8 Update 07, using equation (38)

9

end for
10:  for all pairs of clusters ¢, ¢, € C, with u # v do
11: if |07, — 6L |l2 < 7 then
12: Fuse ¢, and ¢, according to equation (36) and equation (37)
13: end if

14:  end for

15: r=r+1

16: until all values of . converge, r > Q or |C] =1
17: return C

2.4.1 Poisson distribution: The sufficient statistic for the Poisson distribution of cluster

c is:
_ 1 1
IE,Z:TE[EE:fT(JH):: Eﬂ—zijl/wi. (40)
i€c

i€c
The output of sufficient statistic is now no longer necessarily discrete as it is originally. This
does not disrupt the optimisation of the log-likelihood though and does not affect the clustering

negatively.
The gradient of the log-partition function is:
0
5 = G'(6.) = exp(d.) (41)
and the Hessian is:
O 60— b exp(6) (42)
50,00, = \e) T W expibe):

2.4.2 Categorical distribution: For the sufficient statistic of the categorical distribution

it is clear that: 1 1
T.= HZT(:,:Z-) - szi. (43)
i€c i€c
Similar to the Poisson distribution, the resulting sufficient statistic is no longer binary. This

does not matter for the optimisation problem though and the optimal clustering is still formed.
The gradient of the log-partition function is:

oG
e ol 2 Ki—-1 .1 .2 Kg—17
50 = 8= [8i1,81,---»Si1' +8i2:8i, -1 Sig" | (44)

C

17



Eo_ exp(6y;)

vi = ——x—12—— and the Hessian is a diagonal block matrix:
T exp(6l)

with s

diag(sc1) — 8L 8e1 (0] e (0)
2 (0] diag(sca) — SloSe2 -+ (0)
-G _ . c . 2S¢ . . 7 (45)
56,50, : ; g :
o (0] -+ diag(scq) — 8LyScd;
with se; = [s8;, 8%, ,sgrl]’ and diag(s.;) a diagonal matrix with the elements of s.; on

the diagonal. The comprehensive derivation of the gradient and Hessian of the log-partition
function is given in appendix B.
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3 Applications

This section shows the practical applicability of GCC. For this purpose two cases are presented
and analysed. The analysis includes the discussion of the practical implementation of the
clustering. The first case concerns the deaths of Prussian soldiers by a horse kick in cavalry
corps and the clustering of those regiments. This dataset is a famous example of a Poisson
distribution and is first used in Bortkewitsch (1898). The second case discusses the clustering of
visitors of the Van Gogh Museum (VGM) for the purpose of personalising emails to said visitors.
The data type available for VGM visitors is categorical in nature, for this the categorical
distribution is suited.

3.1 Prussian horse-kicking

Prussia was a kingdom formed in 1701 on the southern coasts of the Baltic sea. The kingdom
grew to become one of the great powers of Europe during the 18th century and it was thé
driving force behind the unification of the Germany in the 19th century. The kings of Prussia
accomplished this rapid rise to power due to creating a highly militarised country. The pro-
portion of their citizens enlisted in their army was by far the highest of Europe and at its peak
the military expenditure was 70% of the total budget of the Prussian state (Koch, 1978). As
the Enlightenment writer and philosopher Voltaire put it: “Where some states have an army,
the Prussian army has a state”.

From time to time though, this army was at peace. Although undeniably far less than in
wartime, deaths did occur during peacetime. The army incurred additional costs due to these
deaths, since the army had to pay widows a death gratuity and train a replacement (Koch,
1978). Next to the ethical part of loosing a life, it was thus also financially beneficial for the
Prussian kings to reduce the number of deaths in peacetime.

To that end the book “The Law of Small Numbers”, written by the statistician Ladislaus
Bortkiewicz in 1898, offered assistance. In this book Bortkiewicz researched the distribution
of the number of Prussian soldiers dying due to horse kicks in times of peace. He obtained
the annual number of deaths by horse kick from 14 Prussian cavalry corps over 20 years
and showed that this data followed the Poisson distribution; there are many soldiers in a
unit, where each soldier has a small chance to die by being kicked by a horse. The resulting
number of deaths is Poisson distributed. The Prussian state could use this result to predict
and anticipate the number of horse-kicking related deaths. The dataset can be obtained from
randomservices.org/random/ (Random, 2019).

In this section this famous dataset is revised. GCC with the Poisson distribution clusters the
different cavalry regiments and consequently determines which regiments handle their horses
similarly. The likely result is that there is one cluster of units whom manage their horses better
than the others. If this is indeed true, officers — if the Prussian cavalry core still existed — could
apply the doctrine of the regiments in the cluster with the least number of deaths to the other
units.

GCC is applied to the Prussian horse-kicking data with BIC and after the optimisation for
different values for A\ the optimal clustering is four groups of cavalry corps. Table 1 displays
the different values of lambda with the corresponding number of clusters and BIC scores. The
lowest value for the BIC scores is at A = 0.5 and corresponds with four clusters. What is
evident from this table is that the number of clusters is not monotonically decreasing, while
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this is expected. A likely explanation for this is that clusters are combined prematurely. For
the optimisation it is necessary to combine clusters at each iteration if the fusion parameters
are close to each other. If this is not done the gradient and Hessian of the penalty function
are undefined. It is currently however not possible for these clusters to split up later on if this
is more optimal. This effect is most notable with few clusters, but as table 1 shows, once A
increases and the number of clusters follows it is irrelevant. There are two possible solutions
for this, the first is a different optimisation problem for which parameters do not need to
be merged. The other solution is to use multiple random starts and use the most common
clustering. This costs additional computational power and while this is doable for this small
dataset, if the size increases the viability of this solution decreases.

Furthermore, the BIC scores are not smooth. This is to be expected from the issue described
above, since only a decrease in A or the number of clusters can result in a lower BIC. Specifically,
if X\ increases the log-likelihood increases and the BIC score can then only go down if the degrees
of freedom decreases. This is only the case when the number of clusters decrease, in the other
cases the BIC score increases.

A 01 02 03 04 05 06 07 08 09 1.0
Number of clusters 8 9 7 8 4 4 3 3 3 2
BIC scores 523 527 521 526 514 517 521 526 535 531

Table 1: The number of clusters and BIC scores for different values of A\ for the Prussian
horse-kicking dataset using GCC. The clustering of A = 0.5 is the best model according to
the BIC.

Table 2 depicts the optimal clustering according to the GCC method of the Prussian horse-
kicking dataset. It shows the four clusters ordered by the average annual deaths due to horse
kicks and the corresponding cluster sizes, as well as the total of all 14 regiments. Readers
familiar with the Poisson distribution would note that the average occurrence of the event
of interest is the estimator of the source parameter of the Poisson distribution. Hence, the
clustering finds four distinct Poisson distributions for this dataset, each representing a cluster.
Cluster B and cluster C are relatively close together with an average annual deaths of respec-
tively 0.58 and 0.72. Merging these clusters however increases the BIC score from 514 to 521
(as depicted in table 1 at A = 0.5 and A = 0.7) and is thus not an improvement.

Cluster A B C D Total
Average annual deaths 0.38 0.58 0.72 1.23 0.70
Cluster size 3 2 7 2 14

Table 2: The average annual number of deaths and the number of cavalry regiments per
cluster for the optimal clustering of the Prussian horse-kicking dataset using GCC.

Cluster C is the most average cluster; it has an average annual death nearly equal to the

total of all cavalry corps and half of the regiments are in this cluster. Interestingly the Gaurdes
du Corps, Prussian’s elite cavalry regiment, are in cluster C, while it is expected that the elite
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would be able to handle their horses better than other regiments. As mentioned earlier, the
goal of Prussian officers should be to reduce the number of deaths. They can achieve this by
using regiments in cluster A to teach regiments in C and D to reduce the deaths. They should
first focus on cluster D, since this has four times more deaths than cluster A.

To summarise, GCC is able to provide a clustering for a Poisson distributed dataset, which
has not been possible before. This example did reveal a minor issue with the algorithm. When
the number of merges is low, clusters form too quickly and the number of clusters is not
negatively correlated with the penalty parameter.

3.2 Van Gogh Museum

The Van Gogh Museum (VGM) is thé museum dedicated to the world renowned painter Vincent
van Gogh. Their collection contains 200 paintings, 500 drawings and 700 letters of van Gogh,
including the famous “Sunflowers” and “The Potato Eaters”. Visitors from all over the world
come to see the biggest collection of van Gogh’s in the world, supplemented with temporary
exhibitions and art of his contemporaries. Last year, in 2018, the total amount of visitors was
217 000. With this feat, the VGM was placed 29" for the most visited museum in the world
(AECOM and TEA, 2019).

The mission of the museum is to share the work of Van Gogh with the world and tries
to engage and inspire their visitors. To continue competing with the most popular museums
in the world VGM intents to innovate while staying true to their mission. To achieve this
goal, the latest project they set up is “Van Gogh Personaliseert” (Van Gogh Personalises).
This project aims to increase the visitor friendliness and engagement by personalising their
visits. One focus of the project is the email contact from the museum to the visitors. Visitors
receive emails after they booked their tickets with practical and other information about their
visit. This allows for up- and cross-selling of other products and services of the museum. To
personalise these emails, information about the types of visitors is necessary, which a market
segmentation provides.

For the general marketing strategies of VGM, its marketing employees implement eight
segments of people visiting the museum. This is based on a test which incorporates the
personal norms and values of people. This information is however expensive to require as it
involves individually interviewing visitors. Consequently it is not widely available and not
applicable for personalising the emails. The outcomes of this test is a decent reference for a
sanity check of the outcomes. The view of the marketing team is that there are four different
type of visitors and that there furthermore is a major difference between Dutch and non-Dutch
visitors. Thus there are eight segments according to their research.

The available data to create the segmentation is obtained at the moment of purchasing the
ticket. This data is predominately categorical; the few non-categorical variables are converted
to categorical. The data can be divided into several groups. The first group includes personal
information such as the country of origin and preferred language. The second is time related.
This includes the date of the purchase, the visit, and the derivatives from those two, such
as the month, the day of the week and whether the visit is in the morning, afternoon, or
evening. Another time related variable is the temporary exhibition in the museum at the
time of the visit. Thirdly, there is information concerning the ticket composition, for which
the most important derivatives is the type of ticket, the size of the group, whether there are
children, and if an audio guide is bought. The remaining variables are whether the visitor is a
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repeat visitor, has a subscription for the newsletter, and /or makes a donation. Each visitor is
described by one visit, due to the low frequency nature of the data; the mode of the amount
of visits is one. This statement is not true for repeat visits, but these are rare and taken into
account with a variable for revisit. Taking these directly into account is beyond the scope of
this paper.

The GCC with the categorical distribution for the log-likelihood and with BIC is used to
obtain results. Table 3 displays the values for A and the corresponding BIC scores and number
of clusters. As expected BIC is the highest at the lowest A\; A\ = 0.002 . At this point no
merger occurs and there is a trivial clustering; setting A = 0 results in the same clustering of
the observations. This shows that there are at least 12 pairs of observations that exactly the
same. The lowest BIC and therefore the best clustering is found at A = 0.020, where there
are six clusters. The stepsize is reduced after A = 0.17 from 0.0050 to 0.0010 to ensure the
best clustering is found. Taking an even smaller stepsize around A = 0.020 does not result in
a model with a lower BIC score.

Unlike the earlier Prussian horse-kicking example, the number of clusters and therefore the
BIC scores are smooth. The number of clusters is monotonically decreasing and the BIC scores
are distributed convexly. The issue of clustering observations too quickly together might occur
for this dataset, but due to the sample size this issue has little effect. Furthermore at the
optimal clustering this is unlikely to have any influence.

A 0.002 0.007 0.012  0.017  0.018 0.019 0.020 0.021 0.022
Number of clusters 988 402 198 74 39 18 6 2 1
BIC scores 459987 202739 128102 51813 414746 35788 33050 34590 50153

Table 3: The number of clusters and BIC scores for different values of A for the Van Gogh
Museum dataset using GCC. The clustering of A = 0.020 is the best model according to the
BIC.

Table 4 shows the six clusters at A = 0.020, ordered according to the number of observations
in each clusters. Surprisingly the model placed almost all observations in one clusters; 994
observations are in cluster A. The remaining six individuals are distributed over the remaining
five clusters. In this case the model apparently did not perform a clustering, but rather
indicates which observations are outliers. While this is odd, the most likely explanation is that
there is in fact only one type of visitor according to this data at the VGM, but this model
indicates that some visitors are outliers to this general type.

Cluster A B C D E F
Cluster size 994 2 1 1 1 1

Table 4: The number of individuals per cluster for the optimal clustering of the Van Gogh
Museum dataset using GCC.

In the previous example it was not possible to compare the results to an other clustering

technique, since those do not exist for a Poisson dataset. While there are methods available
that return results for categorical data, they are not developed for this type of data and there
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is no consensus on the ideal method. To compare with a similar method the VGM dataset
is clustered using Hierarchical Agglomerative Clustering (HAC). The average linkage method
and the Euclidean distance metric is used. The results of the clustering with HAC where the
number of clusters is set to six is displayed in table 5. These results are similar to those of GCC,
almost all observations are in a single cluster. In this case however there are 27 observations
distributed along the remaining five clusters. Clusters D, E and F do indicate outliers, but
clusters B and C could also been seen as small segments.

Cluster A B C D E F
Cluster size 9793 12 &8 3 3 1

Table 5: The number of individuals per cluster for the optimal clustering of the Van Gogh
Museum dataset using HAC.

Given the results of GCC however, the conclusion for the VGM is that a segmentation of
this data do not result in multiple clusters, but rather only one. Assuming that this is the
case, personalising has very little effect, since the visitors behave the same. The goal for the
marketing department of the VGM should be in optimising the content of the emails according
to the average visitor. These conclusion do only hold if the results of GCC are in fact true.
While it is not possible to determine the external validity of the model for this case study, this
is possible in a simulation study.
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4 Simulation study

The previous section displayed the practical applicability of GCC and proved that it is a
beneficial addition to the clustering methods for business cases. This section follows up on that
and supports the results by means of two simulation studies, one for the Poisson distribution
and another for the categorical distribution.

For both studies the data is simulated with certain parameters for the corresponding dis-
tributions. With the simulated data two aspects are studied. The first is how the estimated
number of clusters of AIC, BIC, and KIC relate to the true number of clusters. Secondly, the
performance of the GCC model is inspected for different settings of the parameters. Since there
is no benchmark clustering method for Poisson generated data available, the performance of
GCC can not be compared to another method. For the categorical distribution this is possible
by using average linkage HAC with the Euclidean distance metric, as specified in section 3.2.

4.1 Poisson Distribution

This section explains the study of the estimated number of clusters and the performance of
GCC for the Poisson distribution in a controlled setting. First, the the parameters of the study
and how they are adjusted are explained. Afterwards the study of the three information criteria
is reported. Hereafter the performance of GCC for each possible alteration of parameters is
shown and discussed. Lastly the implications of the results are explained.

There are many parameters to set for clustering, which can be split up in two groups. The
first are the cluster parameters and the second are the distribution parameters.

The former group is defined by the number of clusters and whether the observations are
distributed evenly or unevenly across those clusters. The total number of observations is set to
1000. This number is computationally feasible, while it is not so small that variance plays an
influential role. The number of clusters considered are 2, 4, and 8. The number of observations
remain constant, which ensures that when the number of clusters increases, the number of
observations per cluster decreases. This enlarges the impact of randomness on the clustering,
but this should not influence the results in a substantial way. An expected result from the
simulation study is that for a lower number of clusters it is easier to determine the correct
cluster, since there are less incorrect alternatives.

The distribution of the observations across these clusters is either evenly or unevenly dis-
tributed. In the evenly distributed setting the number of observations is equal for all clusters.
In the unevenly distributed situation there is one clusters which is significantly larger than the
others, while the distribution between the remaining clusters is even. For 2 clusters, one clus-
ter contains 750 observations and the other 250. For 4 clusters, the dominant cluster contains
550 observations and the others 150 each. Finally for 8 clusters, the largest cluster has 440
observations and the remaining each 80. In the evenly distributed situation each cluster has
an equal impact on the performance score. For the unevenly distributed case this does not
hold, the performance of describing the dominant cluster has a substantial effect on the overall
performance score. Thus correctly classifying the dominant cluster correctly is essential.

The second group of parameters define the distribution of each cluster. The parameters
needed to simulate the Poisson distribution is the number of time periods per observation and
the source parameter, which is the number of occurrences of an event during a certain time
period, denoted as (. For the former 10, 20, and 40 periods are used. The only difference
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between the different number of periods is due to the variance. The results of 40 periods
should have a lower variance in the results than those of 10 periods.

The source parameter ¢ has a major effect on the clustering performance. The size of
¢ itself should not impact the cluster performance considerably, but the relative difference
between the (’s of different clusters does. If this relative difference is large, there is little to no
overlap between the clusters. The observations in different clusters do not look alike and the
clusters are clearly defined. It is therefore easy to classify the observations in the corresponding
clusters and thus most clustering methods perform well for this situation. The other situation
is when the relative differences are large and there is a lot of overlap between the clusters. The
observations are then fairly similar across the clusters and the clusters are not clearly defined.
This makes it difficult to cluster and the performance of almost all clustering methods are lower
in this situation. This study thus includes three situations for (: a small relative difference, a
medium relative difference and a large relative difference. ( is computed as follows: first the
difference between each cluster is determined. For the small setting this is 1, for medium 1.5
and for large 2. Then this difference is incorporated around a base number, which is 10. For
example, for a small relative difference with 2 clusters two (’s are needed with a difference
between them of 1 around the base of 10. This yields 9.5 and 10.5. Similarly for a small
relative difference with 4 clusters the (’s are 8.5, 9.5, 10.5, and 11.5 and for a large relative
difference with 2 clusters 9 and 11. Each cluster then gets a ¢ assigned randomly.

The data is simulated according to the Poisson distribution with the parameters settings
as described as above. These simulations are first used to analyse the estimated number of
clusters compared to the true clusters for AIC, BIC, and KIC and secondly to study the
clustering performance of GCC.

For the information criteria analysis GCC is executed on all the different parameter alter-
ations with AIC, BIC, and KIC. For each of these alterations the number of clusters estimated
by the information criteria are recorded. These can then be compared to the true number of
clusters. Figures 1, 2, and 3 show the estimated number of clusters for respectively 2, 4, and
8 true clusters. In these figures GCC is run with each criterion for 18 different datasets, since
there are 2 settings for the distribution along the clusters, 3 settings for the time periods, and
3 settings for relative differences of (.

Figure 1 shows the estimated number of clusters for AIC, BIC, and KIC where the true
number of clusters is 2. In this case BIC seems to preform the best of the three criteria. It
estimates the number of clusters correct for 10 datasets, for 7 datasets it has 3 clusters and only
one dataset is estimated higher at 4 clusters. KIC performs comparable, albeit it is slightly
worse, with two datasets estimated to have 4 clusters. As expected AIC performs the worst
of the three and overestimates the number of clusters. This is a problem AIC has for variable
selection in regression models and apparently also for GCC on Poisson simulated datasets.

The next figure shows the situation for 4 true clusters. From figure 2 it appears evident
that the general remarks obtained from analysing figure 1 still hold. AIC performs worst and
overestimates the number of clusters. BIC and KIC perform comparable, but BIC estimates the
true number of cluster more often correctly. A new insight from this graph is that the estimated
number of clusters of KIC seems have more variance compared to BIC. The estimated number
of cluster of KIC ranges from 3 to 7 clusters, while BIC ranges from 4 to 6.
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Figure 1: The estimated number of clusters of AIC, BIC, and KIC for 18 Poisson simulated
datasets with 2 true clusters. The grey area emphasises the true number of clusters.
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Figure 2: The estimated number of clusters of AIC, BIC, and KIC for 18 Poisson simulated
datasets with 4 true clusters. The grey area emphasises the true number of clusters.
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Finally, figure 3 compares the information criteria for the 18 datasets with 8 true clus-
ters. This figure reconfirms the previous observations. BIC estimates the number of clusters
most often correctly, KIC is slightly worse, and AIC consistently overestimates the number
of clusters. Generally the spread of estimated number of clusters is higher than the previous
two situations. It appears that for a higher number of clusters, it is more difficult for the
information criteria to find the true number of clusters for the GCC. It is however likely that
this is due to the model itself; the datasets for which BIC and KIC estimated lower than 8
clusters or higher than 10 clusters are the datasets where there is a lot of overlap between the
clusters. As mentioned earlier, these models are more difficult to predict and true clusters are
more likely to be merged or split up. Still the variance of KIC seems to be a bit higher than
that of BIC.
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Figure 3: The estimated number of clusters of AIC, BIC, and KIC for 18 Poisson simulated
datasets with 8 true clusters. The grey area emphasises the true number of clusters.

As a conclusion of this part of the simulation, BIC is the best information criterion of the
three presented here. It predicts the true number of clusters correct most of the time and has
the lowest variance in the estimated number of clusters. KIC performs decent, however it has
a higher variance than BIC. Lastly, AIC overestimates the true number of clusters consistently,
as was expected.

The remaining section of this specific simulation study focuses on the performance of GCC
for the Poisson distribution, by inspecting the F; and entropy score. Here BIC is used to
determine the number of clusters. However as the figures above show, the true number of
clusters is not estimated for all models. To calculate the F; and entropy score each estimated
cluster needs to be linked to a true clusters and thus each estimated clusters is linked to a true
clusters according to the highest precision.

After running the data through the GCC and inspecting the performance, it seemed that the
number of time periods had minimal influence on the performance scores. As aforementioned
this is expected and therefore the time periods are not relevant to show. The number of time
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periods is thus set to 40. The other parameter changes do provide information about the model
and are thus shown in table 6. The table shows the I} and entropy scores of the results from
GCC for 2, 4, and 8 clusters in an evenly and unevenly distributed setting. This is done for
a relatively small, medium and large difference of ( between the observations. The range of
the Fj score is between 0 and 1, where 1 is a perfect clustering. For the entropy the range is
between 0 and 3, where 0 indicates a perfect clustering.

Evenly distributed Unevenly distributed

Number of clusters Number of clusters

¢ difference 2 4 8 2 4 8

Small F1 0.665  0.429  0.248 0.856  0.750  0.627
Entropy 0.673 1.353 1.982 0.531 1.053 1.592

Medium F1 0.692  0.531 0.363 0.870  0.762  0.654
Entropy 0.621 1.209 1.638 0.460  0.875 1.321

Larae F1 0.740  0.602  0.485 0.895 0.792  0.712
e Entropy 0.570 1.014 1.208 0.401 0.752  0.837

Table 6: The F; and entropy scores of the simulation study of the Poisson distribution using
different parameter settings. The ( difference indicates the difference between the clusters.

What is apparent from table 6 is that an increase in the number of clusters leads to a
drop in performance. For all different cases this is evident and there is no exception. This
is to be expected, but the difference is quite substantial. Due to more clusters, the relative
amount of overlap between the clusters becomes bigger. The increase of the log-likelihood due
to merging two different clusters becomes smaller when there is more overlap. Thus the GCC
would be more inclined to merge the clusters compared to a low overlap situation. Hence it
is obvious why GCC performs better when the relative difference between (’s increases. As
aforementioned, most clustering methods perform better in little overlap situations compared
to more overlap. This result is therefore not surprising.

The second result to note is the difference between performance on an evenly and unevenly
distributed dataset. As stated earlier in an unevenly distributed dataset, there is one cluster
that has a higher influence on the performance measures. The GCC performs better on the
unevenly distributed dataset compared to the evenly distributed dataset for all cases, thus the
dominant cluster is often described correctly.

The GCC model shows promising results for an unevenly distributed dataset and an evenly
distributed dataset with a low number of clusters. It is however not possible to compare this to
other clustering models, since there is no benchmark method yet for this type of data. While
the clustering of Poisson data is yet to be actively discussed in the literature, there now is a
method that can serve as a benchmark and can be improved upon.
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4.2 Categorical Distribution

While the previous section followed up on GCC in case of Poisson distributed data this section
discusses the simulation study for categorical distributed data. Again the set-up of the pa-
rameters is discussed, hereafter comes the comparison of AIC, BIC, and KIC, after which the
results are displayed and discussed. Unlike the Poisson case, there is a clustering method that
can be used as a benchmark. As argued in section 3.2, Hierarchical Agglomerative Clustering
(HAC) with average linkage and the Euclidean distance metric, while not designed specifically
for this data, is a possible method to identify clusters within categorical data. The results of
GCC are therefore compared to HAC to find out of this new model is an improvement over
the established methods.

The set-up of the cluster parameters is the same as the Poisson distribution case. The num-
ber of observations is 1000, they are distributed along 2, 4, or 8 clusters and this distribution
is either evenly or unevenly.

The difference is the way the source parameters for the distribution are determined. As
discussed earlier in section 2.2.4 each variable in the categorical distribution has K classes
where each class k has a certain probability p* that it is observed. In this simulation study
there are 10 variables. This is a compromise between computational power and variance. A
lower number of variables does speed up the model, but it increases the effect of variance in
the data generation. A higher number of variables results in the opposite. For each variable
the number of classes is determined as a random number between 2 and 9. Then for each class
and each cluster a random weight is set. These weights are later translated into a probabilities,
but they are first adjusted to ensure that there is a difference along the clusters. For each class
the sum of the weights of all clusters is determined. To ensure that one cluster is dominant
per class a proportion of this sum is added to the highest weight. This proportion is either
small (10%), medium (35%), or large (60%). For each cluster the resulting weights are then
translated into a probability such that the sum of all classes of a variable for each cluster is
equal to 1. A larger proportion setting thus results in bigger differences between the clusters
in terms of probabilities, which causes the overlap between the clusters to be smaller and thus
makes clustering easier. The clustering models should perform best in the large p* difference
setting and worst in the small p* difference setting.

With this set-up the simulation study is performed. The comparison of the information
criteria is performed in a similar way as the previous section. GCC is executed on the simulated
data with AIC, BIC, and KIC. The estimated number of clusters are shown in figures 4, 5, and 6
for respectively 2, 4, and 8 clusters. There are now only 6 different alterations of parameters
per number of clusters: even or uneven and a small, medium or large p* difference. To increase
the sample size each alteration is repeated 3 times. Due to the randomness in the process of
generating the source parameter the repeated generated datasets differ from each other.

The first situation is where there are 2 true clusters. Figure 4 displays the results. Both
BIC and KIC seem to be performing well. For 11 models they estimate the correct number of
clusters and most of the remaining models are estimated at 3 clusters. Only for two models
for both BIC and KIC is the estimated number of clusters higher. Furthermore, the variance
of the estimations of BIC and KIC seems similar. AIC on the other hand does not perform
as well. For most datasets it overestimates the number of clusters. This is also seen in the
previous simulation study and generally in the literature, the dimensions estimated by AIC is
higher than that of the true model.
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Figure 4: The estimated number of clusters of AIC, BIC, and KIC for 18 categorical
simulated datasets with 2 true clusters. The grey area emphasises the true number of clusters.

Figure 5 illustrates a similar story as figure 4. BIC and KIC perform alike, where this
time KIC performs slightly better. Again there does not seem to be much difference in the
spread of the estimated number of clusters of BIC and KIC. AIC again performs worst, since

it overestimates the dimenions.
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Figure 5: The estimated number of clusters of AIC, BIC, and KIC for 18 categorical
simulated datasets with 4 true clusters. The grey area emphasises the true number of clusters.
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Lastly is the situation of 8 true clusters. Figure 6 shows the results of the estimated number
of clusters for the information criteria. It confirms that BIC and KIC perform comparable.
KIC estimates for more datasets the number of clusters correctly, while the spread of the
estimations of BIC is smaller, implying a lower variance. AIC again consistently estimates
a number too high. As also shown in the Poisson simulation study, the spread of 8 clusters
is higher than that of 2 and 4 clusters. For a higher number of clusters, the variance of the
estimations seems higher.
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Figure 6: The estimated number of clusters of AIC, BIC, and KIC for 18 categorical
simulated datasets with 8 true clusters. The grey area emphasises the true number of clusters.

From the comparison of the information criteria it follows that BIC and KIC perform sim-
ilarly for categorical data. BIC has a lower variance in the estimations, but KIC is more
accurate in predicting the true number of clusters. AIC on the other hand consistently overes-
timates the number of clusters and is clearly not viable. Both BIC and KIC are viable to use
for the rest of the simulation study. BIC is however more consistent, and thus this criterion is
chosen.

Therefore the GCC model with BIC is run on each setting of the parameters to obtain the
F and the entropy score. Similar as in the Poisson simulation study each estimated clusters is
linked to a true clusters on the basis of highest precision. For this part of the simulation study
HAC is the benchmark model. HAC however cannot use the BIC score to find the optimal
number of clusters. There are other internal validation methods such as the Davies-Bouldin,
silhoutte, and Dunn indices. The focus of this paper is the GCC method, hence for the HAC
the true number of clusters is assumed to be known. This should enhance the performance of
HAC and shows how GCC compares to the ideal situation for the benchmark model.

The performance results are displayed in table 7. For the different parameter settings the
F} and entropy scores are shown for both the GCC and HAC methods. The Fj score lies on
a range between 0 and 1, where 1 is a perfect clustering, and that of the entropy is between 0
and 3, where 0 indicates a perfect clustering.
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Evenly distributed Unevenly distributed

Number of clusters Number of clusters
p¥ difference 2 4 8 2 4 8
Fl GCC 0.713 0.692 0.637 0.871 0.829 0.722
HAC 0.671 0.636  0.525 0.857 0.740 0.634
Small
GCC 0.586 0.905 1.132 0.533 0.601 0.776
Entropy
HAC 0.693 1.085 1.539 0.562 0.761  1.319
Fl GCC 0.901 0.847 0.777 0.945 0.795 0.783
. HAC 0.862 0.810 0.748 0.936 0.744 0.677
Medium
GCC 0.403 0.642 0.830 0.237 0.589  0.788
Entropy
HAC 0.541 0.668 0.938 0.301 0.735 1.136
F1 GCC 0.982 0.923 0.899 0.986 0.960 0.913
HAC 0.931 0.907 0.831 0.990 0.919 0.903
Large
GCC 0.046 0.268  0.368 0.036  0.077 0.192
Entropy
HAC 0.091 0.163 0.588 0.048 0.279 0.382

Table 7: The F; and entropy scores of the simulation study of the categorical distribution for
both Generalised Convec Clustering and Hierarchical Agglomerative Clustering using
different parameter settings. The p* difference indicates the difference between the clusters.

The results in table 7 show that the performance of GCC for categorical distributed data
improves the less clusters there are, the more uneven these clusters are distributed, and the
bigger the p* differences. This is similar to what the Poisson simulation study showed. In
general though, the F; and entropy scores for GCC are better for the categorical distribution
than for the Poisson distribution. They are however two different models and it is not possible
to compare these as such and state that GCC is more suited for categorical data.

There is an unexpected result of the F) score for 4 unevenly distributed clusters with a
medium difference. The score drops relatively a lot between 2 and 4 clusters and only slightly
between 4 and 8 clusters. The entropy score suggests that this should be more even. The F
score is therefore likely an outlier.

The comparison against the benchmark model HAC suggests that GCC outperforms the
established models. This is not surprisingly, since GCC incorporates how the data is distributed
while HAC does not take this into account. With few, unevenly, and a large difference between
the clusters the two models perform comparable however; the F} score indicates that HAC
outperforms GCC (0.990 and 0.986 respectively), while the entropy scores suggests the opposite
(0.048 and 0.036 respectively). The reason both models perform well in this situation, is that
there is very little overlap between the clusters. In practice these situations are relatively easy
to cluster and a slight difference in performance is irrelevant. The situations were the overlap
between the clusters is minimal is were the differences between the models is most noticeable.
Then the power of the parametric convex method becomes apparent. For instance when the
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difference between 8 evenly distributed clusters is small, GCC scores considerably better than
HAC. The F} score is 0.637 for GCC while it is only 0.525 for HAC and the entropy scores
confirm this with 1.132 for GCC and 1.539 for HAC.

In general GCC performs best for categorical data when the differences between the clusters
are relatively large and thus the overlap is small. This holds for all clustering methods and hence
in this situation GCC performs similar to the established benchmark. The advantage GCC has
over the established method is in the situation when the overlap between clusters is large and
clustering is more difficult. Naturally the performance of both GCC as the benchmark drop.
GCC however becomes better compared to the benchmark if the relative difference between
clusters becomes smaller. This is an promising result for GCC.
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5 Conclusion

In this paper the Generalised Convex Clustering (GCC) method is presented. While convex
clustering was previous only possible for continuous and binary data, GCC extends the convex
clustering method to different types of data. The optimisation function of GCC consists of two
parts: a log-likelihood function, which models the fit of the data, and a penalty function, which
ensures that clusters are formed. If the penalty function is a pairwise fused Ridge restriction,
this log-likelihood function can be of any distribution of the exponential family, which enables
convex clustering of all data types that those distributions can describe.

To obtain evidence of the viability of the GCC model, four distributions are considered
in this paper. Using the Gaussian and Bernoulli distribution allows the the clustering of
respectively continuous and binary data. The resulting optimisation problems of GCC is the
same as the previous papers on convex clustering for continuous and binary data. This confirms
that the generalisation is performed correctly. The Poisson and categorical distribution have
not yet been considered in other papers and both show promising practical and simulation
results. This paper thus achieves the goal to construct a general method for convex clustering
and extends the literature of convex clustering.

GCC with the Poisson distribution is the first clustering method for Poisson distributed
data. This opens up new analysis and insights. The simulation shows that this model performs
well when the clusters are relatively different, but the performance drops substantially when
the overlap between clusters becomes larger.

There are models that deal with cluster analysis for categorical data, however these are
not explicitly suited for this type of data. GCC with the categorical distribution is specifically
meant for that type and due to this performs well compared to a benchmark model; it scores
comparable in a setting were the overlap between the clusters is small, and outperforms the
benchmark when the overlap between clusters is large. The case studies demonstrate the benefit
for organisations to implement GCC to obtain a market segmentation or for other purposes.

Furthermore this paper studied three information criteria, which estimate the number of
clusters of GCC. These criteria are the Akaike Information Criteria (AIC), the Bayesian In-
formation Criteria (BIC), and the Kullback Information Criteria (KIC). Similarly to the con-
clusions of other literature the AIC overestimates the dimensions of the GCC model. Both
BIC and KIC perform comparable, however BIC is preferred for the Poisson and categorical
distribution due to the low variance in the estimated number of clusters.

The main shortcoming of the model is the computational effort of the optimisation. New-
ton’s method is easy to implement in programming languages and both the gradient and the
Hessian needed to perform this method are available for the entire exponential family. It is
however slow and therefore the number of observations this model can cluster is limited. While
other papers deal with this problem for the Gaussian distribution, further research should ex-
tend this to GCC to speed up the optimisation. Most preferably this solution does not require
observations to be merged, as then observations cannot be combined too quickly. The difference
between the scaling of the variables is furthermore an interesting topic for further research. If
such difference between scaling exists, some variables might have an unsubstantiated stronger
influence over the clustering than other variables. Possible solutions are to scale the sufficient
statistic or to implement a PCA method. Another aspect this paper addressed is the 1-norm
versus 2-norm. While it is proven that the 1-norm results in an arbitrary clustering for some
distributions, it is not yet clear for which distributions this exactly holds and for which distri-
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butions a choice between the two norms is possible. Lastly, the practical application of GCC
is shown for two different distributions in this paper. Case studies for different data types can
be beneficial to gain insights in the cases, but also in the way that GCC works. Improvements
for the specific cases can be used to enhance the general model.
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Appendices

A Derivative Penalty Function

The penalty function is given by:
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The Hessian is derived as the following:
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B Derivative Categorical Log-partition Function

This appendix shows the gradient and Hessian of log-partition function of the categorical

distribution.
The log-partition function is described by zfj‘

G(ol) =
=1

= log (1 + Z exp(chj)>,

where Hfj and sz
the gradient and Hessian it is broken down into single derivatives:

0G 0G G G G 0G
= 59T 502 K1 gl spRa=1 |
50, _6961 562, 505 100k, 50
°G el %G el
(604,)? 605,002 561,605 602,002,
9 %G s%a %G s%a
0°G 607,005, (602,)? 502,60517" 607,005,
50,00
c
el el %G el
L 5654 501, send 562 soRateoR1Tt  s0Ra 501,

For the gradient the one-dimensional derivative is given by:
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For the Hessian there are three different cases for the derivative
q = k, the second is p = j and ¢ # k, and third is p # 5.0
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can be vectorised as explained in section 3.2. To simplify the derivation of
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For p=j and ¢ = k:
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Using 6.; = [Glj,ﬁfj,...,ﬁg"_l]’, Sej = [sij,sgj,...,sg"_l]’ to simplify the Hessian into a
block matrix results in:
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From the cases above it is clear that:
592G _ diag(sej) — s.;8¢; ifj=p (57)
500J59’ (0] otherwise.

40



Thus:
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