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Abstract

Colorectal Cancer poses a heavy burden on the population, which can be relieved through
screening programmes. The cost-effectiveness of different screening programmes can be
predicted through simulation software, such as MISCAN-Colon. However, running the
software is often too computationally expensive to evaluate all scenarios of interest, which
may leave optimal screening programmes unexplored. This study compares different strate-
gies to develop a metamodel for MISCAN-Colon, which can assist in the faster evaluation
of screening programmes. Towards that purpose, it compares different strategies for sam-
pling data and different model architectures.

Based on a simulation study of MISCAN-Colon, five sampling strategies, which vary in
how they sample risk and screening, and 168 Neural Network architectures are proposed.
All model architectures are evaluated for all sampling strategies, which yields an optimal
architecture per sampling strategy. For each sampling strategy a Bayesian Neural Network
is fitted to function as a metamodel, which is then used to make predictions on a universal
test set. The performance of each metamodel is then evaluated in terms of speed, accu-
racy and uncertainty estimation. The results indicate that randomly sampling screening
and sampling risk from the population distribution yields the most accurate metamodel,

although more work is needed to make it usable in practice.
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1 Introduction

Globally, Colorectal Cancer (CRC) is the fourth most common cancer and the fifth most
frequent cause of cancer death (Bray et al., 2018). Correlated with lifestyle factors that
accompany growing prosperity, such as obesity, CRC is a growing problem in the developed

world.

Although global incidence has sharply risen between 1990 (818,000 diagnoses) and 2013
(1.6 million diagnoses), mortality rates have decreased due to better treatment methods
and the use of screening programmes. In cancer screening programmes, a certain por-
tion of the population is invited to undergo some cancer detection test. Effectiveness and

cost-effectivenss of such programmes have been demonstrated in the medical literature
(Lauby-Secretan, Vilahur, Bianchini, Guha, & Straif, 2018).

Screening programmes are already successfully being implemented in multiple conti-
nents. The (Dutch) National Institute for Public Health and the Environment (RIVM)
conducts population studies on the prevalence of cancer in its citizens. Towards this pur-
pose, they direct a scheme that invites Dutch citizens to partake in a Fecal Immunochemical
Test (FIT), which can be self-administered at home and can be used to diagnose (with a
certain accuracy) CRC. These citizens are invited to participate every two years, start-
ing at the age of 55, until the age of 75 (Toes-Zoutendijk et al., 2017). Although not
implemented, the medical societies in the United States have declared the importance of
CRC screening. The US Preventive Services Task Force (USPSTF) recommends starting

screening at age 50 and the American Cancer Society (ACS) recommends starting at age 45.

There are some studies that indicate that this is an effective regime for the timely de-
tection of (pre)cancereous lesions. However, given the current available national resources
(Van Hees et al., 2015), there is no evidence that this is optimal for all individuals in
the population. Some individuals may be at higher risk of developing CRC due to sev-
eral genetic or environmental (lifestyles) factors. Screening should only be used where its
impact is the greatest. By focusing screening on the right individuals at the right time,
governments or policy makers implement screening policies that cost-effectively optimize
life-years for the population, minimizing cancer-related suffering in high-risk individuals

and unnecessary screening intervention in low-risk individuals.

Already much is known about which personal characteristics are associated with an
increased risk of colon cancer (Ma & Ladabaum, 2014; Usher-Smith et al., 2018). Consid-
ering the results of many studies conducted to quantify the individual risk of developing
CRC based on lifestyle factors (Johnson et al., 2013), genetic indicators and comorbid-
ity (Haggar & Boushey, 2009), a possible way to reduce 'unnecessary’ screenings may be
to personalize screening based on individual CRC risk. However, this information is not
yet used in the design of nation-wide screening programmes. Personalized CRC screening

is, therefore, one of the challenges that health organizations need to face in the near future.



Because real-life implementation of screening is costly and takes a long time to return
results, the cost-effectiveness of screening is often estimated through simulation studies.
Well-known simulation models for CRC, such as MISCAN-Colon (Loeve, Boer, van Oort-
marssen, van Ballegooijen, & Habbema, 1999), are used to provide estimates of costs and
benefits of implementing specific screening programmes, for simulated populations. The
strategic scheduling of screening tests may be seen as a stochastic optimization problem,
in which costs are minimized and (quality) life-years are maximized. Unfortunately, eval-
uating these scenarios, even through simulation, is expensive, which slows down progress

in this field of research.

Several studies (e.g. Segnan et al. (2007); Singh, Turner, Xue, Targownik, and Bern-
stein (2006)) provide evidence for effective screening intervals when applying a single test,
but no study yet has found a cost-effective regime that combined different screening mea-
sures. Most notably Naber (2017) has stratified a population based only on optimal
colonoscopy frequency for different risk groups in the US. Again, researchers are limited
by the long run time of the simulation model they work with. This limits the amount of

scenarios they could simulate and therefore the amount of solutions they could explore.

Both risk stratification and multiple testing are difficult to optimize, due to the cost of
running simulations. In many scientific disciplines, the burden of costly simulation mod-
els is alleviated by cheaper approximations of the model dynamics, so-called metamodels
(also: surrogate models, response-surface models). These metamodels are trained on the
main model’s input and output and are designed to emulate their approximate relation-
ship. Using these metamodels, scientists are able to evaluate many more scenarios within
the same time, with approximate certainty, and explore relevant regions of the solution
space. Cost-effective solutions obtained by the metamodels can then be verified by the

main model. Machine Learning frameworks are often used as metamodels.

The main aim of this thesis is to deliver a metamodel design that researchers can use
to evaluate screening strategies in a fraction of the time it takes the original model to
run. Towards that purpose, we study optimal sampling methods, frameworks, designs
and evaluation methods for metamodels of expensive simulation models. This metamodel
is able to make inferences on costs and benefits, based on screening and cancer risk in-
puts. Such a model should allow for risk-based stratification and run many times faster
than the main model. In its estimates, accuracy should be balanced throughout the input
range, not favor, e.g. certain risk ranges. Furthermore, to validate its estimates, the meta-

model should not only predict the mean of predictive distribution, but also the uncertainty.

The findings and algorithms included in this thesis have important implications, allow-
ing researchers and policy-makers to find optimal screening trajectories at individual level,

to stratify the population, and to determine optimal screening programmes for citizens



based on their individual risk, at greater speed than before.

This thesis starts by providing the background knowledge required to understand the
methods used in this thesis, which is section 2. Then follows the Methods section, section
3, in which data sampling methods are discussed and different experiments are laid out
that are required to develop the metamodel. After that, the results are presented in section
4. Finally, we reflect on the results in section 5. To investigate the effect of alternative

initial settings, a sensitivity analysis is provided in section 6.



2 Background

This section provides supplementary information the reader may require to understand the
methods that are used in this thesis. This section starts with a short introduction of the
natural history of CRC and the relevance of screening, section 2.1. Then, the workings
and dynamics of the main model, MISCAN-Colon are explained in section 2.2. After that,
an analysis of the uncertainty dynamics of the main model is provided, section 2.3. The
subsequent section focuses on metamodels, their core functioning, different types and how
they can model uncertainty, section 2.4. The next section discusses different sampling
strategies for metamodel training, section 2.5. After that, a section will focus on Neural
Networks specifically, section 2.6. Finally, an overview follows of uncertainty in neural

networks, section 2.7.

2.1 CRC Development and Intervention

Colorectal Cancer is a malignant neoplasm in the colon or rectum. CRC starts as a non-
malignant polyp and may progress through several stages, including death from CRC. CRC
is commonly the result of a long process (Ristvedt et al., 2005), starting with the onset of
adenomas (precancerous lesions) that may slowly progress and become malignant cancers
(Morson, 1974; Vogelstein et al., 1988). CRC screening programmes have the potential to
detect precancerous lesions, after which they will be removed (preventing, therefore, the
further development of cancer), even before it comes symptomatic. Earlier detection of
the disease will make a patient better treatable. The 5-year survival rate is 90% for early
detection, but only 10% for people diagnosed with distant metastatic CRC (Jemal et al.,
2004; Ries et al., 2006). Nevertheless, without centralized screening, patients will often
not seek testing or treatment, even when CRC may become symptomatic. For example,
rectal bleeding is often not recognized by patients as CRC, which delays diagnosis and,
consequently, treatment. Thus, screening is one of the most important and effective tools
to reduce CRC mortality.

There are two main categories of CRC screening tests: endoscopic tests and stool-
based tests. Visual tests are tests that use internal imaging to detect CRC, for example a
colonoscopy. A colonoscopy is considered the gold standard of CRC diagnosis, a positive
result in all other tests is verified by a colonoscopy. Nevertheless, it should be noted that
colonoscopies have a very small, but not entirely insignificant, miss rate, which depends
on the size of the adenoma (Van Rijn et al., 2006; Kaminski et al., 2010).

Stool-based tests are designed to detect certain chemicals in the patient’s stool. Within
this category, the Fecal Immunochemical Test (FIT) measures the presence of blood in
stool. The FIT is found to be more effective at detecting CRC in the population than
other Fecal-based tests.(Toes-Zoutendijk et al., 2017; Van Rossum et al., 2008; Hol et al.,
2010). A FIT test may have a varying sensitivity and specificity. For example, an often-
used cut-off value for the FIT is 10 ug Hg/g, denoted as FIT10. This test will give a



positive value if Faecal occult blood > 10 ug Hg/g and negative otherwise. However, the
actual cut-off value may be varied by researchers, for example in cost-effectiveness (CE)
studies (Ykema et al., 2020).

In a screening programme, at any time, an individual may be invited to none, one or
multiple screening tests. For the general, low-risk population, intervals between tests are
usually at least a year. We refer to the totality of assignments over an individual’s lifetime
as a ’screening programme’. Screening may lead to the detection of adenomas or CRC,
which allows for the initiation of removal of localized lesions, in case of adenomas or early

stage CRCs, or the earlier initiation of treatment, in case of non-localized CRCs.

Despite the merits of screening programmes, there are limiting factors that motivate
policy makers to enforce restrictions on screening programmes. These include required
effort, anxiety, complications and other negative externalities in the population and an
economic burden on the parties that conduct the screening, which are often paid for by
public funds. While the benefits outweigh the costs in those that actually develop CRC,

'unnecessary’ screenings should be minimized.

2.2 MISCAN-Colon

A way to simulate the harms, costs and benefits of CRC screening is through microsimula-
tion models. These have been shown to be reliable tools in determining optimal screening
protocols and predicting future outcomes of CRC screening. The MISCAN (Mlcrosim-
ulation SCreening ANalysis)-Colon (Loeve et al., 1999) is one of those well-established
stochastic microsimulation models, used to simulate the development of CRC and how it
is affected by screening, in individuals in a population. Hence, it guides policy-makers
worldwide (Cenin, St John, Ledger, Slevin, and Lansdorp-Vogelaar (2014) for Australia,
Rutter et al. (2016) for the US, Van Hees et al. (2015) for the Netherlands and Goede et
al. (2015) for Canada.

In their seminal paper, Loeve et al. (1999) describe in detail the internal functioning of
MISCAN-Colon. We will summarize the dynamics here. For each individual, the model
draws a random date of birth and death (assuming no CRC), using birth and life ta-
bles (representative of the population under consideration). As each simulated person
ages, none, one or more adenomas may develop in these individuals, as seen in figure 1.
These adenomas (progressive or non-progressive) can grow in size from small (<5 mm) to
medium (6-9 mm) and then to large (> 10 mm). In case of progressive adenomas, those
may also progress into preclinical cancer and in stage from I to IV. Nevertheless, during
each stage, CRC might be diagnosed because of symptoms and, after clinical diagnosis, a
corresponding survival time is assigned. For synchronous CRCs, the survival is set on the
most advanced cancer. The date of death for CRC patients is the earliest simulated date
of death (due to CRC diagnosed versus another cause). Screening has the power to modify
some of the simulated life histories. This is because some CRC may be prevented by the

earlier detection/removal of adenomas.
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Figure 1: Progressive stages of CRC, as modeled in MISCAN-Colon

Individual Risk

The predisposition of an individual to develop an adenoma is governed by their individual
hazard rate. The hazard rate is calculated from their age and a risk index that is drawn from
a Gamma distribution, for each individual separately. The shape and scale parameters, k
and @, of the Gamma Distribution, which determine its mean and variance, are carefully
calibrated based on adenoma prevalance and multiplicity and may vary per population.
The risk scale is continuous and values can be seen as an odds ratio of the mean. The
mean and variance of risk in the general US population are considered to be 1 and 1.9863
respectively (Knudsen et al., 2016), which corresponds to a I'(k = 0.503454, 6 = 1.98628)
distribution. This is illustrated in figure 2. For metamodeling purposes, we want to set
bounds on the risk variable. The shape of the Gamma distribution implies that high risk
individuals are very rare in the population. In fact, approximately 70% of the population

has individual risk lower than the mean of 1 and 98% is expected to be lower than 5.

Screening Intervention

In MISCAN-Colon, screening tests are user-defined interventions, with specific parameters
per screening test. Because, in MISCAN-Colon, the time-component of a single screening
intervention is a continuous variable, a screening protocol may theoretically be an infinite
range of random time points in a simulated person’s life, with assigned intervention. To
make this more tractable, researchers may restrict this range by binning the age range,
for example in year-bins. Even more generally, researchers often prefer to summarize a
screening protocol by means of high-level variables, such as a starting age, a stopping age
and a frequency of applying a certain test. For example, the current screening policy in
the Netherlands is defined by a biennial FIT test, between the ages of 55 and 75. This,
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Figure 2: Probability density function of Risk in a US population

however, assumes that a constant testing frequency is optimal, which is counter-intuitive,
as it is known that age influences the hazard rate of adenoma onset and life years to be

gained from screening.

Stratification of the population

Because of the skewness of the Gamma distribution, with the majority of individuals oc-
cupying a small part of the risk range, CE modelers should be able to simulate population
strata of variable size. To facilitate this, ideally, inputs and outcomes should be observable
on an individual level. MISCAN-Colon allows for stratification of the population, where
each stratum may be assigned separate risk parameters and screening programmes. While
the input parameters allow for stratification, the output parameters are only presented for
the entire population. While these are tracked by the model, the current, publicly available
version of the model does not return them. In addition, the risk index per individual is not
observable. This way, we cannot observe risk and outcomes on an individual level, which

we require. In section 3.3, we present a workaround for these limitations.

The scenarios run through MISCAN-Colon are often compared based on two outcomes,
Life Years Gained (LYG) and cost. Scenarios can be compared by plotting these outcomes

for different strategies to form a cost-effectiveness curve.

2.3 Uncertainty dynamics of MISCAN-Colon

We require an understanding of MISCAN’s dynamics to make decisions for our metamodel.
For example, we want to get an idea of the variance in the output and how the mean and
variance in outcomes are affected by the input variables. In the literature, there is no study
that reports the input-output dynamics of MISCAN-Colon. Therefore, we have conducted
a simulation study of MISCAN-Colon. The full results can be found in section Appendix



D, the most important findings are summarized here.

As can be expected from a microsimulation model, we observe that the mean and
variance of observations scale linearly with the population size. This is an important
finding, as we wish to sum observations of outcomes for population sub-samples later
(Section 3.3). For risk, we have several important findings. First, we notice that the
outcome of LYG and Cost increases when risk increases, if screening is held constant. While
this is easily guessed, we also show that the increase is smooth and sub-linear. This can
help us in determining the metamodel infrastructure. In addition, we notice that variability
(measured by the coefficient of variation) decreases for higher risk individuals. This may
have implications for the sampling distribution we choose (section 3.3). For screening, we
notice a similar pattern, where more intense screening yields higher observations of LYG
and Cost, but decreased variability in Cost. The latter may be explained through the fact
that, given a certain proportion of sick people, there is less uncertainty in the disease being
caught and therefore less variety in the costs, within the population of sick people. It does

not as strongly influence the variability of LYG.

2.4 Metamodels

Now that we have established the dynamics and relevance of the main model, we will now

discuss the requirements and characteristics of the metamodel that will emulate it.

Definition of a metamodel

In the sense that a model is by definition an abstraction of reality, a metamodel is an
abstraction of a model, a model of a model. Metamodels are often employed when a high
amount of model runs is required, for example for sensitivity analysis, but this requires
too much computational resources (Villa-Vialaneix, Follador, Ratto, & Leip, 2012). A
metamodel’s aim is to emulate the main model’s mapping from model input to model
output, by training it on a limited amount of model runs. By only mapping this inferred
relationship and not replicating the main model’s complex calculations, this may lead to
a shorter run time. A metamodel may be employed for four different goals, understanding
of a main model (or underlying problem entity), prediction of new outcomes, optimization
or Verification and Validation (V&V) (Kleijnen & Sargent, 2000).

In essence, any ML framework that maps some input to some outcome, can be used
as a metamodel. Popular choices are Radial Basis Functions (RBF) (Sobester, Forrester,
Toal, Tresidder, & Tucker, 2014), Kriging (Freedman, 2009), Polynomial methods (Hussain,
Barton, & Joshi, 2002), Support-Vector Machines (SVM) (Lai, Yu, Huang, & Wang, 2006),
Random Forest (RF) (Breiman, 2001) and Artificial Neural Network (ANN)s. Appendix
C provides an overview of pros and cons of the different models.

As can be expected, drawbacks of metamodels are analogous to the limitations of the
main model, when compared to reality. The capabilities of the metamodel are limited

by the constraints set by the modeler, both in terms of variable selection and selecting



the training data. Therefore, a correct model selection process and Design of Experiment

(DoE) are vital steps towards building a fast and accurate metamodel.

Formally, we train the metamodel to predict outcomes for a certain scenario of interest.
Let there be a data set of input data points, denoted by z; € R¥ and let the main model
calculate the associated outcomes, denoted by f(x;) = y; € R!. The metamodel’s aim is to
generate estimations M (z;) = §; € R/, such that g; is adequately similar to y;. Adequacy of

similarity is then represented by the Loss function (also known as Error function), L(;, y;).

It is well-known that there are many different loss functions and that the decision for
a loss function is based on the modeler’s design requirements. One of the most common is
the Mean Squared Error (MSE), which is calculated through

L.
MSE(W) =~ g, 8) — vl
=1

also known as quadratic loss or L2 loss. An alternative exists in the form of the Mean
Average Error (MAE), denoted by

1 n
MAE(W) = - ZH?)(SCWB) —yill,
=1

which is also referred to as L1 loss. The main difference between these is the fact that the
MSE minimizes the squared error, instead of the absolute error. This implies that outliers
are punished more heavily and have a larger effect on the correction of the weights. In case
of uninformative outliers, this may have a negative effect on the model and the model will
overestimate the MSE. MAE, on the other hand, is more robust to outliers. However, all
loss is weighted equally and additive, regardless of the magnitude of the loss, which may
cause the model to improve estimates in a certain range by underperforming in a different

range. This compensatory behavior is not encouraged by the MSE.

2.5 Methods for Data Sampling

An important part of training a meta-model is generating the right data from the main
simulation model. Because the main model is assumed to be expensive to run, choosing
the right sampling method is necessary to let the model learn as efficiently as possible.
A well-known way of covering a representative portion of the input space is an m* (also
known as full factorial) design. It aims to create representative input spaces by dividing
the domain all k input variables into m levels, each unique scenario representing a data
point. The main disadvantage of this method is the large number of scenarios to evalu-
ate, as the data required increases exponentially with the amount of input variables. For
MISCAN-Colon, this may range from 7 to several hundreds, depending on the problem
definition by the modeler. As an alternative, oftentimes Latin Hypercube Sampling (LHS)
(Morris & Mitchell, 1995) is employed. In LHS, all design variables are divided into parti-

tions of a certain range and for each candidate solution, a value is sampled from the range.



This way, not all possible scenario is explored, but the solution space is still well-explored.
Generally, this leads to lower correlation in the datapoints than when completely random
sampling is used. However, Syberfeldt, Grimm, and Ng (2008) have shown that in some sit-

uations, full random sampling may lead to better results when training an ANN, than LHS.

To use this metamodel for population inference, it is required to estimate a weighted
sum of the metamodel’s inferences (this is further explained in section 3.3). Therefore, the
possibility exists that the metamodel’s optimal sampling distribution is not only achieved
by a space-filling design, but the weighing of the observations should also be taken into
account. For example, for a population in which the risk distribution is skewed strongly
to the left, it might benefit the accurracy of the final estimate to have a metamodel that
is more strongly tuned to lower risk. This, in turn, may be achieved through a sampling
distribution that favors low risk. In other words, the training distribution that matches
the distribution of the validation scenario, which adheres to standard practices in Machine

Learning.

On the other hand, this causes a sparsity of observations in the high-risk range of the
model. If we need a high amount of observations to accurately tune the model, this will
cause the model to be inaccurate in the ranges that are sparsely populated by training
observations. While the performance in the weighted sum results important nuances of

idiosyncratic behavior will be lost.

Ideally, data is sampled uniformly, such that the model becomes accurate for the entire
data range. However, when the size of the dataset is insufficient, it would be better to
focus the sampling of the data on those risk ranges that will be weighed the heaviest in

the final estimate for the population. These options will be further explored in 3.3.

2.6 Neural Network Framework

In this section, the theoretical background of Artificial Neural Networks will be provided, a

motivation for this method and how it will be applied in this thesis is provided in section 3.3.

An ANN is a computational model, loosely inspired by biological neurons, that maps
outputs Y to inputs X through a network of nodes and vertices. This mapping is per-
formed through computational units on the nodes and vertices, Activations and Weights
respectively. For simplicity’s sake, we will explain the structure of a single-layer neural
network here. The values at each hidden layer node z; is calculated by performing an ac-
tivation function on the activation value a; calculated for that node. The activation value
of the node is obtained by taking the propagated values of each input node x; connecting
to z; with the weights of their connecting vertex, w; j, and then summing them. This can

be formalized as



k
aj = Zwi’j *x Xi, (1)
i=1

where a; is the activation value at the node and X; is the value of input node i. Conse-

quently,

zj = c(ay), (2)

where c¢ is some activation function. Values at the output nodes are calculated in a similar
fashion, only replacing z; by z; and z; by yx. Some value y; can then me mapped to the

input values through
k
b = (D wij* X;). (3)
i=1

Using the same computational scheme, more hidden layers can be added, which allows

more the mapping of more complex behavior. The mapping is then computed by

k P o
Ge(Xi) =D wig e wjs o D weiXi).)), (4)
j=1 s=1 =1
which can also be expressed more conveniently in matrix notation as

Yp(x) = ¢( ...c (¢ (xW1)W3)...)Wp, (5)

where x is the k x 1 vector of input variables and W, the p x s weight matrix layer, mapping

the node vector of layer [ — 1 with p nodes to the nodes of layer [ with s nodes.

Activation function

The activation function ¢ is used to scale propagated values at each node and help the
ANN to model non-linearity. Without activation functions, an MLP is simply a linear
regressor. In the last few years, the most popular activation function has been the rectifier
(Ramachandran, Zoph, & Le, 2017), first used in deep learning by Glorot, Bordes, and
Bengio (2011). A unit employing the rectifier is referred to as a rectified linear unit (ReLU).
Mimicing the threshold activation behavior of certain biological neurons, it is also more
biologically accurate, than other activations functions, such as the hyperbolic tangent and
sigmoid neurons. Furthermore, it is computationally less expensive. Formally, the rectifier

calculates the output of a neuron through:

zj(aj) = maz(0, a;).

In contrast to other activation functions, ReLU activation suffers less from saturation
or the vanishing gradient problem (Goodfellow, Bengio, & Courville, 2016), both of which
hamper learning by the network. A weakness of the ReLLU is that, in some situations, a
neuron may get stuck at a value of 0. Because in gradient optimization, its functional

gradient also equals zero, it will no longer be updated. This is reffered to as a ’dying



ReLU’, from which it is unlikely to recover from this (Lu, Shin, Su, & Karniadakis, 2019).

This issue is mitigated through a smaller learning rate or asymmetric weight initialization.

Network Training and Optimization

The goal of training a Neural Network is to minimize the difference between estimates and
actual values. This difference is calculated through the error function L(W) (also known
as the loss function).

The loss function is minimized by adapting the estimates to the true values, which is
done by updating the weights matrices W, in the model. We can formulate optimizing the

model as the minimization problem

minw VL(W),

where V denotes the gradient. This can be a challenging task, with a multitude of practical
issues (including the aforementioned dying gradient or the exploding gradient problems).
In Machine Learning literature, many different minimization algorithms are known, which
vary in how they use the gradient and in the use of batches of observations for updating
weights. An important variable is the learning rate A, which determines the magnitude in
which weights are updated based on observations. The lower the learning rate, the slower,
but the more stable the model learns. One of the most popular and consistently used op-
timization algorithms is Adam (Kingma & Ba, 2014), which combines favorable properties
of RMSprop (Tieleman & Hinton, 2012) and Stochastic Gradient Descent (SGD) (Robbins
& Monro, 1951), it also incorporates advantages of Adagrad (Duchi, Hazan, & Singer,
2011). An in-depth explanation of Adam or either of its predecessors is beyond the scope
of this paper, but its properties are interesting. Adam is an adaptive learning algorithm
and finds individual learning rates for all parameters individually. Furthermore, it uses a
moving average scheme that incorporates recent gradient information to update weights,
which makes it more resistant to noisy data. To use Adam, setting four hyperparameters,
parameters that are inherent to the model and not tuned to the data, is required. Kingma
and Ba (2014) recommend a = 0.001, 51 = 0.9, 32 = 0.999,¢ = 1 x 10~%, which generally

perform well on a wide range of problems.

Model complexity and Regularization

In this section, we discuss modeling choices that govern complexity and regularization of
Neural Networks. It is a well-known fact in statistical optimization that not one algorithm
is superior in all aspects, for all data. This is often referred to as the No-Free-Lunch the-
orem (albeit a very loose interpretation of the seminal paper by Wolpert, Macready, et
al. (1995) and Wolpert, Macready, et al. (1997). Adding to this, with its complex struc-
ture, ANNs are notoriously hard to interpret without meta-analysis. Because the correct
structure of a Neural Network and the correct tuning of its hyperparameters are crucial
precursors for its effectiveness (Goodfellow et al., 2016), evaluating the right modeling

choices may make or break the effectiveness of our model. In this section, we evaluate



different modeling choices for Neural Networks and explain how we apply them.

Neural Networks are very well-geared towards learning complex, non-linear relation-
ships between inputs and outputs. The more layers and the more nodes per layer an ANN
has, the more complex learned relationships might be. The number of hidden units is an
important decision in the bias-variance trade-off in Machine Learning. Typically, when
the number of hidden units increases, the bias decreases and the variance increases in the
model (Geman, Bienenstock, & Doursat, 1992). However, as in all forms of learning, too
much flexibility in the learning structure, makes a model vulnerable to overfitting: the
model learns characteristics of the data that are idiosyncratic to the training set, but not
representative of the data generating process. This leads to poor generalization perfor-
mance (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). Deeper nets
are especially vulnerable to this. Caruana, Lawrence, and Giles (2001) argue that over-
fitting in Neural Networks trained through gradient methods, such as Backpropagation,
is not dependent on size, but agree that overfitting is an issue. Although many methods
have been developed to prevent overfitting, one would ideally average weights over multiple
networks, but this requires training and tuning many networks. Dropout offers a cheap
approximation of that mechanism by probalistically removing nodes from the network for

one training iteration. Therefore, the value at node i in layer [ is denoted by

k
l
a; = E Wi j * Tj KT, (6)
i=1

where ré» ~ Bernoulli(p) and p is the dropout probability for layer {. This methods offers
both model averaging and model regularization (Baldi & Sadowski, 2013).

Another issue with training deep Neural Networks concerns the simultaneous updating of
layers. During training, Backpropagation calculates a gradient for each layer individually,
under the assumption that all other layers maintain the same distribution. However, since
all layers are updated simultaneously, this assumption no longer holds (Goodfellow et al.,
2016). Since the distribution of inputs of a certain layer change as the weights of the
previous layer change, the calculated gradient values are no longer 'up-to-date’, which is
referred to as the Internal Covariance Shift (Ioffe & Szegedy, 2015). Ioffe and Szegedy
(2015) therefore propose Batch Normalization (BN). BN aims to prevent the Covariance
Shift by standardizing the activations of the previous layer by mini-batch. Because the
assumptions of Backpropagation now hold (approximately), this may increase training
efficiency (Goodfellow et al., 2016). The effectiveness of BN has been showcased in research
(Szegedy, Vanhoucke, loffe, Shlens, & Wojna, 2016; He, Zhang, Ren, & Sun, 2016; Amodei
et al., 2016).

For the amount of nodes per hidden layer, it is common practice to only consider
different powers of 2 as architectures. In unoffical sources, it has been suggested that this
achieves best performance, but the literature provides no hard proof. The optimal amount
of nodes per layer is not known a priori and can only be determined by experimentation,

often informed by intuition or similar problems (Goodfellow et al., 2016).



2.7 Quantifying Uncertainty in Neural Networks

In (meta)modelling, it is often necessary to provide estimates with a measure of certainty,
such as a prediction interval. Especially when the underlying data or model are stochastic.
This section provides an overview of different types of uncertainty and how they may be

estimated by Neural Networks.

Different types of Uncertainty

In a prediction interval, it is not clear whether uncertainty arises from inherent noise in
the training data, or whether the uncertainty arises from modelling assumptions or the
samplesize. Towards this purpose, we may distinguish epistemic and aleatoric uncertainty
(Fox & Ulkiimen, 2011). Aleatoric uncertainty, or statistical uncertainty, is inherent to
the data generating process and is simply a quantification of the variability observed when
repeating analysis of the same scenario. Epistemic uncertainty, or systematic uncertainty,
is all uncertainty that is introduced in the measuring or modelling process and can be at-
tributed to modelling assumptions or data selection. Theoretically, epistemic uncertainty
can be reduced to zero with perfect knowledge of the system, while aleatoric uncertainty
cannot. Generally, it is the modeler’s goal to minimize the epistemic uncertainty, such that
the total uncertainty approaches the aleatoric uncertainty. The modelling of epistemic un-
certainty can be very useful in the metamodelling process, as it gives us an indication of

the possible room for improvement of the model configuration or training data.

One way to model uncertainty in ANN outputs, is by replacing the scalar values of
weights in the Neural Network by prior distributions and updating the parameters of these
distributions by training. This is an example of Bayesian Learning and an ANN trained
this way is referred to as a Bayesian Neural Network (BNN) (Neal, 2012). In short, BNNs
try to learn the posterior distribution of the weights of the distribution parameters of the
weights conditional on the data, P(0|X,Y).

In recent years, many frameworks have been proposed to efficiently estimate BNNs,
some of the more notable are Neal (2012); Kingma, Salimans, and Welling (2015); Gal and
Ghahramani (2016); Lakshminarayanan, Pritzel, and Blundell (2017). And new frame-
works keep being developed. Due to its simplicity and generalizing capabilities, Monte-
Carlo Dropout (Gal & Ghahramani, 2016) has been receiving positive attention and has
proven to deliver strong practical results (Zhu & Laptev, 2017).

For the interested reader, an intuitive explanation of how Monte-Carlo Dropout may
be used to estimate a predictive distribution, is presented in Appendix F. However, this
knowledge is not required to understand the methods used in this thesis.

Despite the scheme’s simplicity, it does require the tuning of two additional hyperpa-
rameters, 7, the model precision, and p, the dropout probability. These parameters are
tuned such that the log-likelihood between the predicted outcomes and observed outcomes
is maximized. Because this log-likelihood is not necessarily convex for these parameters,

we may use Bayesian Optimization or grid search to find optimal values. The optimization



curve is expected to be multimodal (Gal & Ghahramani, 2016).

We can further distinguish homoscedastic aleatoric uncertainty, which is general for the
model, and heteroscedastic aleatoric uncertainty, which varies per observation, depending
on the independent variables. Heteroscedastic uncertainty can be modeled by making the
precision 7 a function of the data during the calibration process, simply replacing it by
some funcion ¢*(X) (Gal & Ghahramani, 2016), where the w indicates that it is dependent

on the model weights.



3 Methods

The methods section will lay out the experimental framework of this thesis. This work will
loosely follow the methodology by Kleijnen and Sargent (2000) and Sargent (2010) for the
design and validation of simulation (meta)models. Based on these works, the methodology
section consists of four subsections. First is the Purpose and Requirements section, which
contains the intended use and design requirements of the metamodel, section 3.1. Then,
the input and output variables are defined, in section 3.2. Then follows the Design of
Experiment, which functions as a schematic of the metamodel, from data to results, section
3.3. Finally, an approach is required to validate the metamodel’s effectiveness, which is

presented in section 3.4.

3.1 Purpose and Requirements

In this section, the metamodel’s primary goal is discussed. In their work, Kleijnen and Sar-
gent (2000) distinguish between four different general goals for metamodels: Understand-
ing, Prediction, Optimization and Validation & Verification. In the following paragraphs,

we will explain how our metamodel will be used for prediction.

In CRC Screening literature, researchers may design an experiment in which different
combinations of experimental variable settings, such as screening frequency and popula-
tion risk, are simulated. Because simulations are expensive, only a low amount of different
scenarios may be explored, before simulation time becomes intractable. With several ex-
perimental variables and those variables having several levels, this number may easily be
reached before the researcher’s curiosity is satisfied. The goal of the metamodel is to in-
crease the number of scenarios that can be explored in the available time, by decreasing
the time required for a single run. Inherently, the metamodel is an abstraction of the main

model and is therefore an approximation.

As designers of the metamodel, we envision its role as supplementary to the main
model, MISCAN-Colon. As an approximation of the main model, it will inherently have
equal or more uncertainty in its estimates. This additional uncertainty is referred to as
epistemic uncertainty, uncertainty attributable to the modelling process. Therefore, we
advise that the metamodel be used for the quick exploration of a large range of scenarios.
The best candidate results from that analysis can then be verified with the main model.
As such, it aids in the more effective use of MISCAN-Colon.

Design Requirements

From the purpose of the metamodel above, follow five requirements: Speed, Accuracy,
Uncertainty, Stratification and Balance. Now will follow in short how these requirements

are formulated and when they are met.



To make up for a loss in accuracy and time required for training, the metamodel should
be several times faster than the main model. While it is not feasible to evaluate every possi-
ble scenario, which would require 3! evaluations (assuming three screening levels per year
and 61 screening years), it could give an effective overview to at least make a prediction of
all unique screening programmes obtained by all possible combinations of start ages, stop
ages and frequencies for FIT and colonoscopy, e.g. those specified in section 3.3.1. This
yields approximately 150,000 evaluations. Based on empirical tests, we estimate that this
would take MISCAN-Colon 520 days, at 5 minutes per run. To make this tractable and
to allow for sensitivity analysis, this should be reduced to days. If the metamodel is able
to make a prediction per second, the run time would be reduced to 1.7 days. With no

benchmarks available in the literature, we believe this to be a reasonable improvement.

Since MISCAN-Colon itself is stochastic, it makes sense to define accurracy in terms of
statistical deviation, rather than a percentage value. Therefore the metamodel’s aim is to
make predictions that are within the Confidence Interval boundaries of the model. These

confidence intervals are presented together with the results, in section 4.4.

We have established that stratifying the population based on individual risk to assign
screening programmes more specifically can lead to gains in CE. Thus, the metamodel
should be able to make model strata within the population, in which different strata un-

dergo different screening protocols, depending on their risk.

An important requirement for the aforementioned stratification to work, is that the
model’s accuracy is balanced across the risk spectrum. A model that predicts well on low
risk values, but poorly on high risk values, may still be considered accurate when making
predictions on an entire population, if that population has mostly low-risk individuals.
However, when a stratum has strictly high-risk individuals, the hypothetical model would

poorly estimate the outcomes. Results for this requirement are presented in section 4.3.

Finally, because of its role in scientific research, the metamodel should not only return
an estimate of the mean, but also of the uncertainty of its estimate. Preferably, the model
should return both the aleatoric uncertainty and the epistemic uncertainty, which may be
used to construct confidence and prediction intervals. If the metamodel is able to return
a confidence interval of MISCAN-Colon, this would replace many runs of the main model,

thereby multiplying the metamodel’s relative efficiency.

In summary, the model should be fast, accurate, permitting stratification, balanced and
return uncertainty. After presentations of the results, these requirements will be revisited

in section 5.2.



3.2 Input and Output Variables

Now that we have established the core functioning of the metamodel, this section will
discuss the different variables. In this thesis, every datapoint represents the input and
output variables of a small, homogeneous population. This will further be explained in

section 3.3. From hereon, we therefore consider the input variables per sub-population .

Input Variables

We define the set input variables of the metamodel as X. X consists of a Risk component
R and a Screening component S, as described in section 2.2, so X = {R,S}. For each

sub-population i, a single data point may be generated, with values X; = {r;, S;}.

Domain of individual Risk

The individual risk number is theoretically unbounded if the risk distribution from which it
is drawn is unbounded, which is the case in the often-used Gamma distribution. However,

in its role as an odds ratio, this is practically unlikely. We define the risk variable as

{ri e R|0<mr <25},

where r; is the individual risk of some sub-population 7. This means that, while there is
still a non-zero probability of values occurring outside this range, the metamodel will be
trained and tested within it. The metamodel assumes the risk values of the population are

already drawn.

Domain of Screening

We determine the cost-effective screening range to be between 25 and 85 and therefore
assume that screening outside of this range may be clinically effective, but not interesting
cost-effective for cost-effectiveness studies. A screening age of 25 is unprecedentedly low,
as most studies do not start scenarios until age 50, but recently it has been found that
CRC incidence is increasing in lower ages (<40) (Siegel et al., 2017). An upper bound of
85 is used by most recent CE studies (e.g. (Knudsen et al., 2016; Peterse et al., 2018)). In
these studies, cost-effective strategies have stop ages lower than 85, but we cannot exclude
the possibility that such a cost-effective strategy exists, as the studies are limited in their
capacity to evaluate unique screening scenarios (which emphasizes the need for a meta-
model). Assuming year-bins, this constitutes 61 screening variables. It should be noted
that is considered too high-dimensional for some sampling methods, without dimension

reduction.
We bin the time range of the screening protocol into bins of one year. Each year is
then represented by one categorical variable, which denotes the screening test conducted.

Based on 2.2, we define the range of screening variables as

Si = {s1,82, ..., s7},Vt, t € [1,...,60],s; € {None, FIT, Colonoscopy} ,



where S; is the screening protocol assigned to some sub-population ¢. To let our meta-
model handle these categorical variables, we employ one-hot encoding, which transforms
each categorical variable into a number of binary variables, one for each level. With three

levels per screening variable, this results in a total of 180 screening variables.

Output Variables

We define the vector of output variables of the metamodel as Y. Y consists of a LYG
component L and a Cost component C, so Y = {L,C}. For each sub-population i, a

single output may be predicted, with individual values Y; = {L;, C;}.

LYG

Life-years gained (LYG) consist of a single random value for each observation, directly
returned from the main model:

L; eR

Cost

The Cost value is a vector containing different measures of cost outcome from the model.
MISCAN-Colon returns values for random variables that have an associated cost. During
post-processing, these values are multiplied with their variable cost to obtain the total cost
per cost variable in the model. We consider those post-processed cost values to be the

output of the model:

c; € R?

and ¢; ; is the cost associated with cost measure j for sub-population 7. In this thesis, cost

is measured in US Dollar, as variable cost values were adopted from Knudsen et al. (2016).

3.3 Design of Experiment

This section offers an overview of the steps required to sample data and obtain the meta-
model. The following paragraphs provide an overview of the design, after which more
detailed steps follow.

As mentioned before, with MISCAN-Colon as a black box, we cannot observe risk on the
value of the individual. However, we can control the how the model draws risk by running
MISCAN with a pre-specified mean and negligibly low variance (e.g. 1 x 10720). Then,
we can simulate outcomes for small, homogeneous populations, i.e. the individuals share
the same risk number. By drawing the input means of these homogeneous sub-populations
from the population risk distribution we want to model, we can add the outcomes together
and as such infer a discretized estimate for the entire population. Appendix B provides a

proof by simulation for this scheme.



As such, the metamodeling process consists of two steps: first, estimation of the out-
comes for homogeneous sub-populations of a population and second, combining those out-
comes into an estimate for a complete, heterogeneous population, i.e. the discretization
process. These are further divided into four experiments. The upcoming section will discuss
the series of experiments that are required for these four steps. First, data is generated,
which is described in section 3.3.1. Then, the first experiment follows in section 3.3.2, here
is described how to find an optimal Machine Learning Framework for ANN estimates. Ex-
periment 2 aims to find optimal hyperparameters through Bayesian Optimization, which
is found in section 3.3.3. Section 3.3.4 describes how to make predictions using the BNN;,
which is experiment 3, and section 3.3.5 presents the discretization algorithm required for
the final metamodel’s predictions, which is experiment 4. Finally, the last section describes

how all experiments are evaluated, section 3.4.

3.3.1 Data

The metamodeling process requires training data and test data. Because this thesis com-
pares different sampling distributions for metamodel development, a training data set will
be uniquely generated for each individual sampling strategy. The test data will function as
a ground truth to validate the metamodel’s estimates by and will be generated by running
MISCAN-Colon (the main model) a high number of times. In contrast to the training data,
the test data can be considered a universal truth and will be the same for validation of the
models from all sampling strategies. The test data will consist of two separate datasets,
one for validating the BNN estimates on small, homogeneous sub-populations; and one for

validating the estimates on entire populations.

Data was generated through MISCAN-Colon. Calibration settings were used for a US
population. For the screening tests, the same settings for screening costs, specificity and

sensitivity were used as in Knudsen et al. (2016).

Training Data

In section 2.5, we concluded that we would prefer uniform sampling in case of sufficient
data, otherwise we would prefer sampling from a distribution that is more likely to em-
phasize realistic scenarios. For the risk variable, we compare a Unif(0,25) distribution
vs. a I'(k = 0.503454,0 = 1.98628) distribution, which represent balanced sampling and
realistic sampling, respectively, as explained in section 2.5. In the same fashion, for the
screening variable, a a fully random and a frequency-based scheme are compared. The ran-
dom screening scheme is generated by randomly drawing a test for each year a screening
could possibly be conducted. The frequency-based screening scheme considers all possible
combinations of starting ages (S4 € {25,..,85}), stopping ages (So € {S4,..,85}) and
screening frequencies (f € {0, ..,10}), for all tests (T € {FIT,Colonoscopy}). In total, this
yields four different sampling scenarios, with two options for both Screening and Risk. To
function as a benchmark, we add a more general method, orthogonal Latin Hypercube

Sampling (Morris & Mitchell, 1995), which seeks to minimize correlation between the sam-



Strategy Risk variable Screening variables

1 Uniform Random

2 Gamma Random

3 Uniform Frequency-based
4 Gamma Frequency-based
5 Orthogonal Orthogonal

Table 1: Different sampling strategies to generate data from MISCAN-Colon.

Label Purpose Representation  Level Source

A Training Data  Sub-population  Unique per sampling strategy MISCAN
B-P Predictions Sub-population  Unique per sampling strategy BNN

B-T Ground truth  Sub-population  Universal MISCAN
C-p Predictions Population Unique per sampling strategy Discretization
C-T Ground truth  Population Universal MISCAN

Table 2: Overview of different types of datasets used. Data obtained from prediction has a label
suffxed by ’-P’, while test data is suffixed by -T".

pled observations. An overview of the different sampling strategies is presented in table 1.

The resulting training dataset for each sampling strategy is labeled as A’, see table 2.

Test Data

Now, we discuss the test data sets. As was explained in the previous section, it is required
to first make predictions on sub-populations. To validate these estimates, the true mean
and variance for a such homogeneous sub-population are required, for all risk values of
interest used for estimation. This is done through the same homogeneous sub-populations
as used for the training data, only we now run MISCAN-Colon, for each risk value of
interest, for both one low-intensity and one high-intensity screening scenario, 1,000 times.
These thousand runs can be summarized in a sample mean and variance and act as a
Monte-Carlo estimate for that specific risk value, for that screening scenario, i.e. a ground
truth. This results in the first test dataset, B-T.
In the end, the purpose of the metamodel is to make predictions for complete, heteroge-
neous populations. Those predictions can only be validated by a ground truth data for
these heterogeneous populations. To obtain this data, MISCAN-Colon is run to simulate a
large, heterogeneous population, in which 10M people are simulated and their risk is drawn
from I'(k = 0.503454, 0 = 1.98628) distribution. Again, the sample mean and variance
are calculated and serve as a ground truth to validate the metamodel. This results in the
second test set, C-T. An overview of the different datasets obtained through MISCAN is
presented in table 2.

Now that the datasets are established, we explain how a metamodel will be trained for

each of the sampling strategies in table 1.



3.3.2 Selection of metamodel framework

We have established that the main problem is high-dimensional and that we require es-
timates of the aleatoric and epistemic uncertainty. Therefore, we elect to use an ANN
with a Monte-Carlo Dropout extension to make estimates of the mean and variance of the
population, an extensive evaluation of the advantages and disadvantages of different NNs

can be found in Appendix C.

The Bayesian Neural Network not only returns predictions of the mean of the outcomes
of specific scenarios, but also of the associated epistemic and aleatoric uncertainty (see
section 2.7). By modeling the epistemic uncertainty, we can test whether the sampling size
and sampling scheme are sufficient for specific scenarios. This not only helps us to validate
the metamodel, but also to help plan future steps. Modelling aleatoric uncertainty helps
us understand the inherent variance in the sampled dataset. Together, they allow us to
estimate the predictive distribution, which we can use to make confidence intervals for our
estimates. One of the merits of Monte-Carlo Dropout BNNs is that they can be used as a
simple extension of existing 'vanilla’ Neural Networks. However, this means that we first
need to find an optimal non-Bayesian Neural Network architecture per sampling strategy,
before it can be optimized for uncertainty prediction.

It is common knowledge that, a priori, no de facto ideal approximation method can
be determined without testing. Rather, the choice for a meta-model framework should be
based on the model characteristics and shape of the data. For this thesis, this means that
the model should be well-equipped to handle high-dimensionality and both continuous and
categorical variables. Moreover, it should be able to make very accurate inferences on a

wide range of scenarios.

Experiment 1: ANN Hyperparameter Optimization

We conduct a grid search considering all ANN design variables discussed in section 2.6,
they are summarized in table 3. A grid search is considered an effective way of optimizing
ANN architectures, as the search space can be considered to be discrete. This yields a total
of 168 unique NN designs, which we train and validate for all sampling methods. To make
all four experiments tractable, the models are trained and optimized on a maximum of
100,000 observations. Because the actual datasets are much larger, we validate the ANNs
by making predictions on five test sets, that are independently sampled from the larger
datasets.

To make training time and testing time tractable, we train on a random sub-sample
(without replacement) of 100,000 observations. We validate each trained ANN on five
different test sets of size 100,000 and calculate the MSE and SMAPE for each test set.

We then average over those five holdout sets, to get an average MSE and SMAPE score
per trained ANN. While the datasets are larger, we chose to only sample 100,000 observa-
tions, otherwise later experiments become intractable. The process above is repeated for

each sampling method.



Variable Levels

Nodes per Layer {128, 256,512}

Hidden layers {1,2,3,4}

Batch Normalization {Yes, No} if no, Dropout(0.5) layers are applied
Y {LYG, Cost, Both}

Cost Split {No Split, Categories, Full Split} if Y €{Cost, Both}

Cost Split {No Split} it Y e{LYG}

Table 3: Caption

Per sampling method, we select the optimal networks for estimating outcomes LYG and
Cost, by selecting the network with the lowest MSE. These network designs will be used
for the BNN module of the metamodel.

3.3.3 Experiment 2: BNN Hyperparameter Optimization

To correctly use an ANN with Monte-Carlo Dropout as a Baysian approximation, we re-
quire the tuning of three additional hyperparameters, the length scale [, the model precision
7 and the dropout probability p. In contrast to the vanilla ANN hyperparameters, these
are optimized over a continuous scale. As 7 is a predictor of the model’s aleatoric variance,
it is important to find this value with high precision, which is not tractable through a grid
search. Furthermore, we expect the predictive distribution of the BNN to be multi-modal
(Gal & Ghahramani, 2016) and function evaluations are expensive, therefore we elect to
use Bayesian Optimization (BO) to find optimal parameter values, as it employs a scheme
that varies exploration and exploitation. For each BO iteration, we train a neural network
with certain parameter values and train a Monte-Carlo Dropout BNN. With this BNN, we
make MC predictions using the independent variables of the test set. We then calculate the
predictive mean and variance and consequently the log-likelihood of these values compared
to the dependent variables of the test set. The Bayesian Optimization algorithm iteratively
maximizes this log-likelihood by varying the tuneable hyperparameters. For each sampling
method, we run the BO algorithm until convergence, using the optimal ANN architecture
found in the previous step. Bayesian Optimization algorithms have no formal convergence
criteria (Scotto Di Perrotolo, 2018), so we run the algorithm a high number of times (300+)
and conclude convergence when the log-likelihood top 5 observations are no more than 1
% apart. Runs continuing beyond these criteria have shown little marginal improvement.
We use Tree-structured Parzen Estimator (TPE) and uniform sampling of the specified
ranges. The ranges are set as [0.01,0.99] for dropout, which are theoretical boundaries,
[0,100] for precision and {1 x 107%,1 x 1073,1 x 1072} for the length scale. To run the
BO algorithm, the Hyperopt package (Bergstra, Yamins, & Cox, n.d.) in Python is used.

3.3.4 Experiment 3: BNN Prediction

To make the estimates more robust against selection bias and weight initialization, we

combine the estimates of [ iterations of fully training the BNN. Because the outcomes of



the BNN are drawn from a Gaussian distribution, we can consider the predictions estimates
as a Gaussian mixture model (Cobb et al., 2019). We then calculate the ensemble mean
as such:
1 L
pens(Y) = 7 ZZ:M(Y)Z VY € L,C,
in which ;(Y); is the estimated mean of the I BNN for outcome Y. Similarly, we

calculate the variance of the mixture by the law of total variance (Cobb et al., 2019)

L
1
Ugns<Y) = Z ;(M(Y)l - ﬂens(Y»? + Z UQ(Y)ly
in which u(Y); is the estimated variance of the I BNN for outcome Y.

3.3.5 Experiment 4: Discretization

For the final experiment, we use a discretization scheme. First, we determine the risk
distribution of CRC incidence of the population we wish to model. Then we draw a large
number N random numbers from this distribution. We divide the random numbers into a
M bins, such that M << N. The bins are based on quantiles of the risk distribution, so
that each bin contains approximately the same amount of random numbers. Intuitively, this
means that the bin around the mode will be the narrowest, such that the more populated
areas of the curve will have more bins. For each bin, the average risk value is calculated,
which results in the M x 1-dimensional array k = [r1, 72, ..., "m, .., 'ar]. Each risk element r,
will be assigned a screening protocol S, together they will form the BNN’s input scenario
X FEach scenario X, will be evaluated by the BNN, yielding a mean and variance
prediction per outcome, for each risk element. Because we have shown in Appendix D that
observations of MISCAN-Colon are independent of each other (as is also inherent to its
micro-simulation nature), we can simply add up the sub-sample means and variances to

approximate the population mean and variance. Hence:

M
1
n¥) =+ ;u(m VY €L,C

and

M
1
Var(Y) = + ; Var(Yy) VY €L,C,
which represent the final estimates of the metamodel.

3.4 Validation

After establishing the variables of the metamodel, we now discuss validation criteria for
the metamodel.

With validation of the metamodel, we run into two limitations. First, the data we use



to train the model cannot be used for validation, because each observation represents a
unique and random sub-population scenario, not a heterogeneous population. Second, to
generate validation values for both the mean and the variance of the model, we need to run
MISCAN a high amount of times for every unique scenario, which is intractable. We can-
not obtain the mean and variance of the main model through analytical means, therefore
we conduct a Monte-Carlo simulation. We do this by running the same scenario through
MISCAN-Colon a high number of times and recording the outcomes, from which we obtain
the sample mean and variance. We assume these approach the true mean and variance for
the outcomes of these scenarios, for large enough amount of observations. To minimize the

correlation in observations, we initiate a new random seed for each iteration.

To test the validity of the metamodel, we try two test scenarios. In section 2.3, we
conclude that the intensity of screening is an important factor for the scale and variability
of outcomes of the model. Therefore, to explore both ends of the spectrum, we create
two ground truths: one for a low-intensity screening and one for a high-intensity screening
scenario. The low-intensity screening scenario will feature a 1970 US population with a
bi-yearly FIT between 55 and 75, with a colonoscopy at 69. The high intensity screening
scenario will be randomly drawn, with no test, a FIT10 test or a colonoscopy randomly
drawn at each lifeyear in the screening range, 25 to 85. These scenarios will be run through
MISCAN-Colon 1,000 times each, each time with a different random seed. We record the
outcomes and calculate a sample mean and sample variance over them, which we will use
as the ground truth outcomes.

Because all data is generated from statistical distributions, without external distortion,
we assume the simulation data inherently contains no uninformative outliers. Furthermore,
we want the metamodel to perform well across the entire spectrum of inference, therefore
MSE seems like the better choice. Finally, it should be noted that optimizing on percent-

age errors may cause a bias in estimations (Kolassa & Martin, 2011).

Choice of accuracy measure

In section 2.4, merits of different error measures were discussed. We want the model to
perform equally well across the outcome domain, therefore we use the MSPE to evaluate

model accuracy. To serve intuition in model evaluation, we will also the SMAPE value.

Generally, for a simulation model to be valid, it needs to be accurate enough to cor-
rectly distinguish between adjacent scenarios, i.e. those scenarios that have similar out-
comes when run through the main model. As such, the metamodel’s prediction interval
should ideally be narrow enough that it does not cover two adjacent scenarios. However,
after thorough analysis of MISCAN-Colon we have learnt that some, non-identical sce-
narios may have at least one identical outcome, with a precision of at least 8 decimals.
Therefore, in its supplementary role to the main model, which was described in section

3.1, it may be enough to be fairly accurate. For lack of benchmark in the literature, we



Experiment Input Data Output Data Test Data Description

1 A ANN hyperparameter search
2 A BNN hyperparameter search
3 A BE BT BNN Inference

4 BE CE CT Discretization

Table 4: Summary of experiments

will describe fairly accurate as the mean not being statistically different from the mean
of the MISCAN-Colon estimate. Through a Jarque-Bera test, a non-significant p-value
led us to conclude that we could not reject the null-hypothesis that the results from the
Monte-Carlo simulation follow a Gaussian distribution. Because the metamodel’s output
is a summation of Gaussian processes, we can assume the metamodel’s output also follows
a Gaussian distribution. Therefore, we may use a two-sided t-test for the mean estimate

of the metamodel and an F-test for the variance estimate.

To summarize, we will conduct two main experiments. The first one entails finding
an optimal ANN architecture through grid search, which we will denote experiment 1.
Finding optimal BNN hyperparameter values, we will refer to as experiment 2. Using the
BNNs to make estimation is denoted experiment 3. Finally, aggregating the BNN values

of experiment 3 into population estimates is experiment 5.



4 Results

In this section, the most important results will be discussed. The first part, will focus
on the first experiment, the selection of the NN architecture, section 4.1. Next, are the
results of experiment 2, the optimization of BNN parameters, section 4.2. After that, the
results of experiment 3, the accuracy of the Bayesian Neural Networks, i.e. the accuracy
of estimation of homogeneous sub-populations, in section 4.3. The fourth part and final
experiment, 4.4, will focus on the accuracy of the entire metamodel, which combines the
uncertainty of the BNN inference and that of the discretization process. For readability,
we will present the most relevant plots and results here, the full results will be available in

the Appendix.

4.1 Experiment 1: ANN Model Selection

In this section, we describe the results of training all Neural Network configurations on a
random sample of 100,000 observations, for each data source, as described in section 3.3,
i.e. experiment 1. The main question to be answered in this section is which ANN archi-
tecture is optimal for each sampling strategy. We have only included models that apply
the natural logarithm to results, as models without it were consistently slower to train and
took problematically long to converge. The best architectures per sampling strategy are
summarized in table 5. In the appendix, the top 10 best performers for LYG and Cost,
per sampling strategy are provided, in tables 17 and 18.

For both outcomes, MSE values of the top 10 smoothly increase, this could be an in-
dication that the top performing networks are fairly interchangeable. This implies that a
modeler may choose some other well-performing network because of favorable properties.
For example, when using sampling strategy 1, a 4-layer network may be exchanged for a
1-layer network, at the cost of a small increase in MSE. This may be favorable, as shallow
networks are often a smaller burden on computational resources than deeper ones. Other
than that, across sampling strategies and within sampling strategies, network depth or the

number of nodes per layer seems no definite determinant of ANN success.

Generally, the MSE scores increase smoothly when ordered, i.e. no sharp increases
or decreases. This indicates that the NN architectures are fairly interchangeable and the

results will not be too harshly impacted by changing the NN architecture.

NN architecture may be trivial across sampling methods, as their training data is sam-
pled from the same main model. Since the sampling methods are independent, we use a
Wilcoxon Rank Sum Test between the MSE values of different sampling methods. We do
this for both outcomes, LYG and Cost. Per outcome, this entails 10 comparisons, so we
apply a Bonferroni correction and set o = 0.005). Only for outcome Cost, the Rank Sum
test statistic is insignificant (p = 0.34), which cannot reject the null hypothesis that they

are sampled from the same distribution. The opposite applies for all other comparisons.



LYG: Risk, Screen id layers cost split BN Nodes Both MSE SMAPE

1: Unif, Unif 165 4 no split True 128 No 8.53 x 10> 0.00079
2: Gam, Unif 145 1 no split True 256 No 1.02 x 10®  0.0063
3: Unif, Freq 166 4 no split True 256 No 7.30 x 10> 0.012
4: Gam, Freq 165 4 no split True 128 No 7.94 x 102 0.030
5: Orth, Orth 144 1 no split False 128 No 5.04 x 103 0.0032

Cost: Risk, Screen id layers cost split BN Nodes Both MSE SMAPE

1: Unif, Unif 85 1 no split  True 256 No 1.28 x 102 0.0010
2: Gam, Unif 87 2 no split True 128 No 1.85 x 10 0.0039
3: Unif, Freq 88 2 no split True 256 No 3.78 x 10'2  0.0098
4: Gam, Freq 93 4 no split True 128 No 1.31 x 102 0.030

5: Orth, Orth 8 1 no split ~ True 512 No 9.22 x 101 0.0014

Table 5: Selected Networks for LYG and Cost for different sampling methods

This test indicates that we cannot generalize NN architecture optimality across sampling
methods and we have to optimize for each sampling method individually. Finally, there is

no architecture that is in the top 10 for all strategies, for either LYG or cost.

The final, optimal NN architectures for each sampling method are presented in table 5.
It should be noted that SMAPE and MSE values for each sampling method can be used
to compare architectures trained for that sampling method, because they are calculated
based on the same dataset. As such, these measures cannot be compared between different
sampling strategies, as they are not based on datasets with different ranges and variances.
We will compare the sampling strategies by means of a universal test set in experiment 3,
section 4.3. Furthermore, the results in this table give no definite indication of metamodel
accuracy, as the final test data (in experiment 4) is of a different shape than the training

data for this experiment.

4.2 Experiment 2: BNN hyperparameter optimization

In this section, the optimal NN architectures for each sampling strategy, found in the
previous experiment, were used to find optimal hyperparameters for BNN architectures,
through Bayesian Optimization. The optimal parameters are presented in table 6. This
table presents the combination of values that yielded the highest log-likelihood for each
strategy, for both LYG and Cost. An overview of the five best values per outcome, per
sampling strategy can be found in the appendix. Most notably, we see the lowest dropout
values for sampling strategy 2, for both LYG and Cost. This follows from the fact that
Other than that, we notice that the top results per sampling strategy are not similar, which

indicates that a single, global optimum could not be found.

4.3 Experiment 3: Accuracy of Bayesian Neural Network

This section will isolate the results of the first part of the metamodel, the Bayesian Neural

Network, before discretization. This means that the BNN’s predictions on universal test set



LYG: Strategy A Dropout T

1 1x10~* 0.32 1.78 x 10~*
2 1x1072  0.079 2.43 x 1073
3 1x1073 0.22 2.93 x 1074
4 1x10°3 0.18 1.59 x 103
5 1x 1072 0.25 2.25 x 1074
Cost: Strategy A Dropout T
1 1x1074 0.23 1.77 x 10712
2 1x 104 0.16 6.42 x 10710
3 1x10°3 0.35 6.08 x 10~ 11
4 1x 1072 0.23 3.97 x 10~ 11
5 1x 1072 0.42 4.89 x 10~ 11

Table 6: Optimal Hyperparameters for Monte-Carlo Dropout obtained from Bayesian Optimiza-
tion

B-T will be evaluated. All measures of accuracy in this part of the Results section, are cal-
culated by comparing the predictions on homogeneous sub-populations to those generated
by MISCAN, i.e. test set B-T. These are all predictions on homogeneous sub-populations,

with a population size of 1,000. The results are presented in figures 3 and 4.

Sampling Strategy 1

This strategy can be considered to have high risk and high-intensity screening on average.
We see that the epistemic uncertainty is the lowest around 12.5, which is the mean of the
Unif(0,25) distribution that was used to generate risk for this strategy. The SMAPE for
high-intensity LY G predictions also approaches zero at this risk value. Surprisingly, we do
not see the same behavior for high-intensity Cost predictions. Generally, we do see that
the BNN performs best in high-intensity screening scenario, as expected. Furthermore, it
heavily underestimates LYG in the low-intensity screening scenario, which was expected,
as the observations of LYG in the training data were on average higher than the values in
the test set.

Sampling Strategy 2

This strategy can be considered to have low risk and high-intensity screening on average.
The Gamma distribution used to generate risk for this sampling strategy, has 60 % of
observations lower than one and only 1 % higher than five. Therefore, it makes sense that
we see epistemic uncertainty increase for higher risk, as there are fewer observations to train
the BNN. We also see that the SMAPE values for high intensity screening scenarios are
low, rarely surpassing 0.05. The only exception is the SMAPE for high intensity screening
LYG predictions, which is very high. Nevertheless, this is observed for all BNN estimates
and can most probably be attributed to the very high variability of LYG for low risk, see
section D.3. For low risk, we observe very little epistemic, but also ensemble uncertainty.

This is an indication that all BNNs trained on the data ’agree’ on those predictions, which



could be an indication of a good fit.

Sampling Strategy 3

This strategy can be considered to have high risk and low-intensity screening on average.
It is therefore surprising that the BNN performs weakly on the low-intensity scenarios.
For predictions of high intensity Cost, we see very large ensemble uncertainty. This means
that the different BNN ensemble estimates were far apart. This could be an indication of
an ill fit.

Sampling Strategy 4

This strategy can be considered to have low risk and low-intensity screening on average. We
would therefore expect it to perform best on these domains. For Cost, we see a consistent
overestimation of the outcome, as compared to the true values. Unsurprisingly, we see the
epistemic uncertainty increase for higher risk, where data is more sparse. This was also

seen in sampling strategy 2.

Sampling Strategy 5

This dataset is similar to the data generated by sampling strategy 1, only with a mean
of 15. Unsurprisingly then, the results are almost identical to those of sampling strategy
1. It should be noted that we see the epistemic uncertainty almost disappear around 7.5,
which is an indication that both parameter and data uncertainty are almost zero, which is

an indication of a well-fitted model.

General Observations

For the low-intensity scenario, we see the overall best estimates for both LYG and Cost
from the BNN that is trained on data from sampling strategy 4, with gamma-distributed
risk and frequency-based screening. Interestingly, for this sampling method, we see an
almost inverse relationship between the epistemic uncertainty and the SMAPE of LYG
esimates. While the uncertainty increases with increasing risk, the SMAPE decreases dra-
matically for higher risk ranges (>5). It should also be noted that observations are very
sparse above that threshold, with 97% of observations having lower risk. For Cost, the
SMAPE is fairly constant for risk above 2.

While those errors are much higher for sampling strategy 3, with uniformly-distributed
risk and frequency-based screening, 0.54 and 0.47 respectively, this is mostly caused by

bad estimates for low risk value.

For the high-intensity scenario, on average the best estimates across the risk range, for
both LYG and Cost, are from sampling strategy 2, with gamma-distributed risk and ran-
dom screening. For LYG and Cost, this results in a SMAPE of 0.14 and 0.056 respectively.

For LYG, we see a more sensible relationship between the SMAPE values and epistemic



uncertainty, which both increase with risk.

On average, sampling methods that use Gamma-distributed sampling perform better
than the other methods, with SMAPE values across the risk range being about twice as
low on average. This does not yet account for the higher weighing of lower risk observa-
tions in the final estimate, in which Gamma-based methods are advantageous. Epistemic
uncertainty is lowest around the mode of the risk curve, which is found at 0 and increases

with risk, where the data is sparser.

For the other sampling methods, which do not have a defined mode, we see that epis-
temic variance is lowest around the mean of the risk variable in the data (12.5 for sampling

method 1 and 3 and 7.5 for sampling method 5).

4.4 Experiment 4: Overall accuracy of Metamodel

In this section, we report the accuracy of estimates which are derived from the metamodel,
i.e. discretization of the BNN estimates. In table 7, results are presented for estimates on
test set C-T. To reiterate, this dataset contains estimates of the outcomes for a popula-
tion of 10M people with Gamma-distributed risk, for a low-intensity and a high-intensity
screening scenario. The estimates in this section are the results of aggregation of the sub-
population predictions in experiments 3 and will be a reflection of the accuracy of the
entire metamodels, trained on the data of each sampling strategy. The t-statistics and
F-statistics presented in the table, are obtained by comparing the aggregated predictions
of the metamodel, to the universal test set C-T. The first part will focus on mean estimates

and the second part on variance estimates.

Sampling method 2, with data with Gamma-distributed risk and frequency-based
screening, is clearly the best performer on all scenarios. This was expected for the high-
intensity scenarios, as the sampling strategy’s data best matches the shape of the test
case’s data. However, what is more curious, is that it is also the best performer for the test
case with low-intensity screening. This is surprising, because the screening programme of
this scenario better fits the data of sampling method 4 and we saw better results in ex-
periment 3. All other sampling strategies have higher errors, with SMAPE values between
0.15 and 0.7. This is less surprising as these are uniform risk strategies, while the risk of

the population more heavily weights low risk estimates.

We see that for most models, epistemic uncertainty dominates the prediction uncer-
tainty, which is represented by the sum of epistemic, aleatoric and ensemble uncertainty.
Relative to the variance in the data, the aleatoric uncertainty, the epistemic uncertainty is

the lowest for sampling strategy 2, which also had the best estimates.

For sampling strategy 4, we see that for Cost in a low-intensity scenario, the uncer-
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tainty is dominated by ensemble uncertainty, which is an indication that different elements

of the ensemble had mean estimates that strongly varied.

Although the SMAPE values for the estimates of sampling strategy 2 seem promising,
the t-statistics for the two-sided t-test suggest that we should reject the hypothesis of
equal means, for all predictions. Therefore, we conclude that the predictions of the mean

by the metamodel are significantly different from the ground truth values generated by
MISCAN-Colon.

While prediction errors of strategy 2 are low, this sampling strategy very badly es-
timates the variance of the scenarios, especially for Cost. F-statistics are obtained by
comparing the predicted aleatoric variance to the variance of repeated MISCAN runs (test
set C-T'). The only non-significant F-value is given by sampling strategy 4, for Cost in a
low-screening scenario. Given that this is only 1 out of 20, this would not exceed a false

positive correction of 5%.

4.5 Run time

Approximate run times per experiment are provided in table 8. These are the recorded
run times for running a single sampling strategy. A modeler’s decisions, such as ANN
architecture, may have a large influence on the total run time, even when hardware performs
constantly. Therefore, the numbers presented here should only serve as an indication of
the order of magnitude of the run time.

We can divide the run time into two phases: model development, which covers the data
generation and experiments 1 and 2; and model prediction, which covers experiments 3
and 4. Model development entails finding the metamodel hyperparameters that best fit
the data of the modeler’s purpose. If successful, this step only has to be performed once.
The model prediction has to be repeated for each new scenario of interest. It should be
noted that specialized, high-powered hardware (Argonne’s BEBOP super computer) was
used to generate very large datasets. However, due to computational bottlenecks in GPU
capacity, most of the time, these were substituted by relatively small datasets of size 1eb,
which can tractably generated with non-specialized hardware. Approximate run times for
non-specialized hardware can be found in table 16.

In summary, it takes 0.5 to 2 days to train a new metamodel. Then, it takes approxi-
mately 60 to 75 minutes to train an ensemble to make predictions for each screening scenario
in experiment 3 and between 0.005 and 0.01 seconds to create an aggregated estimate for
experiment 4. Given the design aim of 150,000 predictions, this would take between 5,000
and 6,250 days of constant GPU running, which can be considered intractable for research

purposes, especially because it’s more costly than running MISCAN-Colon.
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. Number Lower Upper Total Total
Exp. Unit of Units Hardware used (s) () Lower Upper
. Bebop
5 -2 -2 3 3
Data  Datapoints 1x10 (1438 cores) 1x10 1x10 1 x10 1x10
NVIDIA Quadro 9 9 4 4
1 ANNs 168 M1200 GPU 1.2 x 104 1.8x10° 2.0x10* 3.0x10
2 BO . 300 Tesla K80 GPU 1 x 102 5 x 102 3 x 10* 1.5 x 10°
1terations
Training Total 5 x 104 1.8 x 10°
3 Ensemble 5 Tesla K80 GPU  6x 102 9x 102  3x10°  45x10°
members
Stratification Intel Core i7-7701 _3 Y _3 _9
4 Scenarios HQ CPU 5 x 10 1x10 5 x 10 1x10
Prediction Total 3 x 103 4.5 x 103
Total 5 x 10% 2 x 10°

Table 8: Approximate run times and hardware used for different experiments, for a single sampling
strategy.

5 Discussion

In this section, we first discuss the results per section. Then, we discuss limitations,
implications and avenues for future research. First, we reflect on the results of experiments
1 through 4, in section 5.1. Then, with knowledge of the results, we reflect on the design
requirements set up in section 3.1, this is presented in section 5.2. These evaluations are
summarized, resulting in user recommendations and general contributions to the literature,
in section 5.3. Then, limitations of the thesis are presented in section 5.4. Finally, avenues

for future research are discussed in section 5.5.

5.1 Discussion of Results

This section will comment on the separate results of the four experiments of this thesis.
An overall evaluation of the research and implications for users can be found in section
5.3.

Experiment 1: ANN Hyperparameter Optimization

Because of limitations in computing power, some boundaries needed to be set on the num-
ber of ANNS to evaluate. Because this is an a priori decision, this strategy runs the risk of
excluding the evaluation of ANN architectures which might be optimal, for example those
networks deeper than 5 layers. Based on the results, this seems less of a concern, because
we found that the ANN architectures that were tested seemed fairly interchangeable. If
only the ANNs at the edges of the range would be optimal, this would suggest the need

for a higher range, but this is not the case.

For all sampling methods, it seems to be optimal for both outcomes to train on only

one outcome, so not on split cost and not on LYG and cost at the same time. Because



the reported MSE is a generalization error, the fact that NNs with split cost perform
bad, could be an indication of those networks overfitting. Another consistent result can
be found in the fact that Batch Normalization seems required to balance deeper Neural
Networks (of 3 or 4 layers) and not always for more shallow designs (1 or 2 layers). This is
not surprising, as deeper networks are prone to overfit and we have mentioned before that

Batch Normalization helps in regularization.

The only consistency in the top 10 results for all sampling methods was that it was
best to train on a single outcome, so not on both Cost and LYG. This was surprising,
since we found that LYG and Cost are correlated. This cannot be attributed to a scaling
issue, because the data was normalized for models trained on Both outcomes. It was also
consistently optimal to not split the cost. This may be an issue of overfitting due to too

many parameters, even though the models were regularized through BN or Dropout.

It would be interesting to see how a metamodel with just the ANN estimates would
fare, so without the BNN extension. It does not have to sacrifice mean estimate accu-
racy for variance estimate accurracy and would be much faster in inference than a BNN.
Epistemic uncertainty may then be calculated through bootstrapping, with a separately

trained ANN for each iteration.

In conclusion, researchers are encouraged to try different architectures, but should not
feel forced to attempt to do this too exhaustively. In the results section, it was shown that
ANNSs with different amounts of hidden nodes, with or without Batch Normalization may
deliver optimal results. Using ANNs for prediction makes for a simplistic setup, but for
rather difficult tuning. ANNs are difficult to interpret, which hampers the development
of improvement steps. Although ANNs are often considered to be highly apt at fitting
high-dimensional functions; for lack of benchmark, we cannot objectively say that they are

the best model for our general purpose.

Experiment 2: BNN Hyperparameter Optimization

For almost all sampling methods, the algorithm was not able to converge to a single opti-
mal hyperparameter set, in a way that would suggest a global optimum. Rather, the best
for the precision parameter 7 in terms of log-likelihood were often far apart, as compared
to lower scoring iterations. While multi-modality was expected and is not an issue for the
other parameters, it is undesirable, for the precision parameter, which is the sole estimator
of MISCAN-Colon’s aleatoric uncertainty. An important reason this occurred would be
the decision to resample a new dataset for each iteration, which would imply a selection

bias.

A weakness of the current setup is the homoscedastic aleatoric uncertainty estimator.
It estimates a precision parameter based on the training dataset, while we know that not

all training datasets have the same aleatoric variance as the universal test set. It would be



interesting to see what a BNN with heteroscedastic aleatoric uncertainty could achieve in

terms of precision estimates and final metamodel prediction of variance.

Bayesian Optimization of the BNN hyperparameters allowed for a straightforward way
to find estimates on a continuous scale. An obvious downside to the approach is that the
resulting model is optimized for estimates of variance and not necessarily for estimates of
the mean. Modelers struggling with the Monte-Carlo Dropout approach of BNN esimation
may be interested to try deep ensembles (Lakshminarayanan et al., 2017). In combination
with bootstrapping, deep ensemble allow for an easily scalable way to estimate aleatoric

and epistemic uncertainty.

Experiment 3: Individual BNN estimates

As expected, all models have the lowest epistemic uncertainty for the risk range in which
they have the most data. It was also to be expected that high-intensity screening data per-
formed well on the high-intensity validation sets and vice versa. What was more striking,
is that no sampling method seems to be very good at estimating Cost in a low-intensity
scenario, with the actual values falling far outside the prediction uncertainty boundary of

one standard deviation.

While we have no benchmark of how large the epistemic uncertainty should be, it is
striking to see that it is often several times larger than the aleatoric uncertainty. Most of
the time, it is minimal at the mean of the risk distribution and that predictions further
from the mean are less accurate. This suggests that the model may have minimized the
MSE by just predicting the mean, which would be an indication that it was not able to

incorporate a more complex mapping, perhaps due to an ill fit.

By looking at the trends, it becomes apparent that the epistemic uncertainty often
increases and decreases with the absolute error. According to Scalia, Grambow, Pernici,
Li, and Green (2019), this is an indication of meaningful uncertainty, as the model would

become more accurate when the most uncertain predictions are removed.

The results of sampling strategy 3, with uniform risk and frequency-based screening
are quite disappointing for the prediction of Cost in a low screening scenario. The model
seems ill fitted, which is striking, as the low screening scenario is very likely present in the
training data of sampling strategy 3. And, if not, at least very similar scenarios. Again,

this may be an indication of an ill fit.

Being able to estimate both aleatoric and epistemic uncertainty is a clear strength of
BNNs. This allows researchers to formulate a distribution for the prediction uncertainty
and allows modelers to look for strengths and weaknesses of the model. Practically, mod-
eling of the epistemic uncertainty showed that the models are not very balanced across the

risk range, with epistemic uncertainty being the lowest around the mean of the sampling



distribution. This begs the question whether a weighted average of models trained on
different data sets may allow for a more balanced model. For example, a prediction from
a model trained on data of sampling strategy 2 may receive a higher weight for low-risk
sub-populations and a model based on sampling strategy 3 for high-risk sub-populations.
In the same way, models may be combined based on the screening intensity of the scnenario

of interest.

Experiment 4: Metamodel final results

Unfortunately, the metamodel performs poorly in the prediction of the variance of the main
model. Only the estimates of the variance of LYG for a high-intensity screening scenario
yield a p-value for the F-test that is not within the two-sided rejection region. However,

with 20 tests conducted, it is hard to reject the notion of a single false positive, at a rate
of 5%.

While sampling methods 1 and 5 practically should have approximately the same data
for large enough N, the orthogonal methods performed better, although still poorly. This
could be an indication that for the size of our dataset, Orthogonal Latin Hypercube meth-
ods still have an advantage, perhaps due to less correlation in observations.

Generally, the methods with Gamma-sampled risk outperformed the methods with
Uniformly-sampled risk. The only way that the strategies with uniform risk could have
performed better, was if model fit and data sufficiency were optimal, such that they would
perform similarly in the low risk scenario. Logically, they would then outperform the
gamma strategies in terms of high risk scenarios. This is especially desirable to make
predictions on stratified scenarios, in which some strata would contain only high risk indi-

viduals.

In conclusion, the metamodel trained on sampling method 2 seems promising. Based
on t-tests and F-tests, it gives estimates that are statistically significantly different from
MISCAN-Colon, which suggests that the metamodel cannot yet replace MISCAN in a
research context. However, with SMAPE values ranging between 0.06 and 0.004, it might
still be accurate enough to give an indication of promising screening scenarios. The sub-
selection of evaluated scenarios that seem promising, may then be verified by MISCAN-

Colon.

5.2 Reflection on the Design Requirements

In section 3.1, requirements for the design were presented. A reflection on these require-

ments will follow now.



Speed

Timing measurements showed that training a metamodel is a feasible task for any research
operation with access to a mid-range GPU. However, to use it for prediction is currently
slower than through MISCAN-Colon, assuming a single run of the latter. However, it
should be noted that the metamodel essentially replaces a thousand runs of MISCAN-
Colon, hence an estimate of the aleatoric uncertainty is included. Another strength of
the model is that it predicts on homogeneous sub-populations, building blocks of a het-
erogeneous population. Hence, if quantile risk predictions are generated for ten screening
programmes of interest, which would take under four hours, this allows for the testing of
10M stratification scenarios, where M is the number of quantile bins. The calculation time
of aggregation (experiment 4) allows for thousands of different scenarios per hour. Further-
more, the simple ANNs are able to make a population prediction in seconds, so they could

potentially be used for metamodeling efforts, though they lack estimates of uncertainty.

Accuracy

The most extensively evaluated requirement was accuracy. No metamodel was able to
make a prediction of the mean that was not statistically different from the mean pro-
duced by MICAN-Colon, as measured by means of a two-sided t-test. Nevertheless, results
are promising, with sampling strategy 2 producing a metamodel that has SMAPE values
around and below 0.05. Some researchers might find this adequate to explore candidate

solutions.

Stratification

The metamodel scheme has demonstrated its capacity for stratification well. By estimat-
ing on sub-populations, it can be used for a variety of stratification scenarios, without

retraining the model.

Balance

Unfortunately, the metamodel is not very well-balanced. It can be seen in figure 4, that
SMAPE values are inconsistent and inflate when data is sparser. Especially for very low
risk values, the model makes bad predictions on average. This, however, is not surprising,
because we have seen that MISCAN-Data is the most variant for very low risk (see figure

13). No statistical measures for balance were employed in this thesis.

Uncertainty

Finally, uncertainty estimation. The estimation of epistemic uncertainty has provided
important insights into the strengths and weaknesses of the metamodel. Unfortunately,
aleatoric uncertainty estimates were not accurate. Thus, we can conclude that the meta-
model has not been able to estimate accurate prediction uncertainty. The uncertainty
estimates in this thesis were only evaluated through estimation errors and F-tests. Model-

ers that are interested in more extensive, quantitative evaluation of the uncertainty, such



as through calibration or dispersion measures, are encouraged to look into the methods
proposed by Scalia et al. (2019).

5.3 Conclusions and Contributions

The main aim of this thesis was to develop a metamodel for MISCAN-Colon. Requirements
of the model were formulated in terms of speed, balance, accuracy, balance and capacity
for stratification and ability to estimate aleatoric and epistemic uncertainty. According to
the parameters set for these requirements, the best metamodel derived from the methods
of this thesis was not yet up to the standards of scientific research. Its most important
strengths were accuracy of mean estimates, its ability to quickly predict various stratifica-
tion scenarios and its ability to estimate both aleatoric and epistemic uncertainty. Current
weaknesses are the balance of its accuracy across the input space, accuracy of uncertainty

estimates and its speed in modeling predicting different screening scenarios.

The metamodel is quick, but inaccurate when in terms of stratification. However, it is
slow, yet accurate when evaluating different screening scenarios. This limits its usefulness
in public health research, as un-stratified scenarios are quicker evaluated by running the
main model, MISCAN-Colon and predictions on stratified scenarios are potentially inac-
curate, due to the in-balanced accuracy of the model. Nevertheless, if the balance of the
accuracy is improved, the metamodel may make for large gains in efficiency, by being able

to quickly predict different stratification scenarios.

In conclusion, the general framework of the model holds interesting properties and
could potentially be useful for CRC researchers. However, in its current form, it is not fast
or accurate enough, so it will require an effort of tuning the model to make it practically
useful. It should be noted that if prediction uncertainty is estimated correctly, the model
can not just replace a single run of MISCAN, but the high amount of runs required to
gain an uncertainty estimate of the main model. Therefore, with adequate accuracy, the

metamodel will be useful, even if the inference speed remains the same.

Other than developing a metamodel as a product, this research has provided some
insights to advise future metamodelers. First, it was shown that ANN architectures were
fairly interchangeable for predictions on MISCAN-Colon sub-populations, as long as they
were trained on a single outcome. Other than that, we showed that training on sam-
pling strategy 2, with Gamma-distributed risk and random screening, resulted in the most

accurate estimates of the mean.

5.4 Limitations

In experiment 2, the BNN was optimized for variance estimation, not for accuracy. This
may cause that estimates from the BNN are less accurate than those of the original ANNs,
which are purely optimized for mean estimation. Furthermore, the modeling process as-

sumes that optimal architecture for regular NN estimates will also be optimal for a Monte-



Carlo Dropout architecture. Potentially, there might be architectures more suitable for
variance estimation. However, it was deemed too expensive to optimize NN architecture

and BNN hyperparameters simultaneously.

The ANNs architectures were trained with log-transformed data, because without log
transformation, training and inference seemed intractable for such a large amount of net-
works. However, to calculate the final MSE error values, which were used to select the
optimal architectures, the ANN’s predictions were first exponentiated, before being com-

pared to the training data.

Through Google Colab, a free cloud-based service, we had access to considerable GPU
computing power. In some cases, for example with patient-sensitive data, researchers may
not be able to use such cloud-based services and therefore have limited GPU power. In such
a case, it is not feasible to use Neural Networks for training or prediction and researchers
are advised to use a different Machine Learning Framework, such as Kriging or Random

Forests.

In its current form, speed is still an issue. While, with GPU access, Neural Network
inference is much faster than without, hyperparameter optimization and Monte-Carlo in-
ference of estimates is a time-consuming process, as it takes several hundred training and

inference iterations until usable results are obtained, which might take days.

In this thesis, no variable selection was employed. While we consider it a strength that
the model is able model any test at any age, variable selection might increase accuracy of
the model.

No dimension reduction was used. Theoretically, ANNs should be able to handle the
dimensionality in this thesis and this high dimensionality was an important reason for the
choice of ANNs. However, since accuracy is not up to par yet, dimension reduction might
improve generalizing ability and training speed. Furthermore, it opens the door for other

methods, such as Random Forests or Kriging.

Finally, data from MISCAN-Colon was used without cleaning. The data is simulated
and therefore contains no measuring error. Any outlier in the data is inherent to the

statistical mechanics of the work (i.e. informative outliers).

5.5 Future research

In this work, we were only interested in homoscedastic uncertainty, because we were only
interested in the variance of the final outcomes. However, modelling heteroscedastic un-

certainty might make for more accurate estimates of the aleatoric uncertainty.

In this model we have not employed variable selection. This was done because we want



to be able to model a full screening policy, to measure its outcomes. In further modeling
efforts, research may try their hand at variable selection to see if similar outcomes may be

achieved through fewer variables.

Metamodeling efforts in this thesis were focused on achieving accurracy through com-
plexity. This complexity may have led to poor generalizability. We chose not to employ
dimension reduction of the variables, as to not add an additional layer of abstraction and
hamper interpretability. However, this has severely limited our choice of metamodel archi-
tectures, such as Kriging. It may be interesting to employ dimension reduction, such as
PCA or Moving Least Squares Projection. Alternatively, we may use high-level screening
variables, such as the start age, stop age and frequency of tests as input variables, in ad-

dition to the risk.

The metamodel has not yet been tested for a stratified population, while, theoretically,
it is one of its strengths. If the BNN of sampling method 2 now has to estimate outcomes
for a high-risk only stratum, this might cause sampling method 2 to appear less optimal,

because it is less accurate in these ranges.



6 Sensitivity

In this thesis, a sub-population size of 1 x 10% and a sample size of 1 x 10° was used to
train the metamodels for different sampling strategies. Because of computational con-
straints, it was not possible to consider different levels for these values, for all sampling
strategies. After obtaining results, it was concluded that sampling strategy 2 yielded the
best metamodel, hence the aforementioned parameters may be put in perspective. So,
this section provides results for a smaller and larger sub-population size, namely 1 x 102
and 1 x 10%, with sample size of 1 x 10°. Furthermore, a smaller sample size of 1 x 10* is
modeled, with a sub-population size of 1 x 10%. A larger sample size than the benchmark
model was not considered, mostly due to GPU constraints in experiment 3. Similar to the
process shown above, data is generated for these alternative scenarios, ANN architectures
and BNN hyperparameters are tuned to the data, as described in the Methods section.
In short, the metamodels are completely retrained. The performance of these alternative

metamodels is evaluated through the same standards as the models in section 4.

The sub-population size determines how large the homogeneous sub-populations are
that are run through MISCAN-Colon. As explained before, smaller sub-populations im-
ply a smoother approximation of the outcome curve but noisier data, while larger sub-
populations result in the opposite. The results for this analysis are presented in table 9.
A smaller sample size should logically lead to worse estimates, as less information is used

to train the model.

6.1 Speed

Both in terms of generating training data and conducting experiments to find metamodels,
run times are approximately the same for the three different sub-population times. As
can be seen in table 16, generating sub-populations of size 1 x 10% takes about 50% longer
than training a sub-population of size 1 x 10%2. Once training data has been generated, the
datasets are the same size and the time required to develop the metamodel does not differ
across sub-population sizes.

A smaller sample size uses only 10% of the data and therefore approximately 10% of the
time to generate it. While the gains in terms of speed were not measured for all experiments

separately, the entire process, including experiments 1-4 required about a third of the time.

6.2 Accuracy

In table 9, predictions on universal test set C-T are found, similar to those in table 5,
in the results section. For estimates of the mean, the model trained on the largest sub-
populations, outperforms the other models for three out of four scenarios. The model
trained on sub-populations of size 1 x 10® only outperforms it for estimates on LYG,
with low intensity screening, where it is very close to the predictions of the larger sub-
populations. In terms of variance estimates, we see the opposite: the model trained on the

smallest sub-populations has the best estimates, with only the benchmark model perform-



ing better when predicting LYG, with low intensity screening.

The metamodel trained on a smaller sample size actually makes better predictions for the
mean in a high intensity LY G and low intensity Cost scenario, than the benchmark. This is
surprising, as the model has seen less data. This is an indication that the benchmark model
might not be improved with more data, but with better tuning. However, a SMAPE value
of of 0.137 for prediction of LYG in a high intensity screening scenario may be too high
for researchers, even when using the metamodel for exploration. In figure 7, low intensity
predictions are very similar to the benchmark model, while high intensity cost predictions

are, surprisingly, more balanced.

6.3 Balance

Figure 5 portrays the SMAPE values for predictions across the risk spectrum. For all mod-
els, we see similarly trending behavior. Considering that the metamodels used to generate
the predictions for these SMAPE results only share a main model for data generation and
test set, not training data, ANN parameters or BNN parameters, the behavior between
the datasets is strikingly similar. Only for Cost predictions, with high intensity screening,

only the benchmark model seems to suffer from inaccurate estimates for low risk data.

6.4 Uncertainty

Epistemic uncertainty values across the risk spectrum may indicate how certain a model
is about its estimates for different regions of the solution space. These values are found in
figure 6. We see that epistemic uncertainty is the highest for the smallest sub-populations
and the smallest for the benchmark model, for LYG predictions. Remarkably, for Cost
estimates, epistemic uncertainty is the lowest for the largest sub-populations and highest
for the benchmark model. Other than a difference in magnitude, the curves are very similar
in shape.

In figure 8, it can be seen that epistemic uncertainty is lower for larger sample size when

predicting LYG and higher when predicting Cost.

6.5 Conclusion

When looking at sub-population size in this section, we face a bias-variance trade-off, in
terms of prediction accuracy. Estimating smaller sub-populations makes for metamodels
that better fit the variance of the DGP, while larger sub-populations result in better pre-
dictions of the mean. Other than that, the different metamodels behave very similarly and
it is up to the modeler’s preferences which sub-population size they prefer.

Surprisingly, using more data did not unequivocally imply better results. Both in terms
of uncertainty reduction and prediction accuracy, there is no clearly preferred sample size.

In terms of speed, a smaller samplesize is preferred.
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Figure 5: SMAPE values for predictions on universal test set C-T, for models trained using
sampling strategy 2, on sub-population sizes of 1 x 10%,1 x 103 and 1 x 10* and sample size 1 x 10°

Sub-pop Size Sample Size Var  Screening SMAPE, SMAPE,,,

1 x 102 1 x10° LYG Low 1.41 x 107! 3.66 x 107!
High 820 x 1072 6.02x1072°

Cost Low 3.56 x 1072 5.98 x 1071

High 6.49 x 1073 1.27 x 1071 °

1x 103 1 x 10° LYG Low 6.31 x1072° 1.79x 107! °
High 1.43x 1072 257 x 1071

Cost Low 5.89 x 1072 9.90 x 10~

High 401 x 1072 9.68 x 1071

1x10* 1% 10° LYG Low 6.86 x 1072 2.39 x 10!
High 3.46 x1073° 596 x 1071

Cost Low 1.15 x 1072 ° 8.51 x 1071

High 6.33x1073°  6.02x 107!

1x103 1x10* LYG Low 1.37 x 107! 4.39 x 1071
High 6.56 x 1073 7.24 x 1071

Cost Low 518 x 1072 257 x 1071 ¢

High 2.72x1072  6.78 x 107!

Table 9: Descriptive Statistics for predictions on universal test set C-T, by metamodels trained
on data using sampling strategy 2, with sub-populations of size 1 x 102, 1 x 10 and 1 x 10*. The
best SMAPE per scenario is marked by an °
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Figure 6: Standard deviation values for epistemic uncertainty of predictions on univer-
sal test set C-T, for models trained using sampling strategy 2, on sub-population sizes of
1 x 102,1 x 10 and 1 x 10* and sample size 1 x 10°

— le4 Low intensity High intensity
1e5 0 10
08 08
w06 06
YG ¥ ~
7 04 ‘ 04
02 02
" “w N
0 5 0 15 20 0 5 0 15 20
08 0125
05
0,100
w 04
Cost % s 0.075
0z 0.050
04 0.025
00 0.000
0 5 0 15 20 0 5 0 15 20
Risk Risk

Figure 7: SMAPE values for predictions on universal test set C-T, for models trained using
sampling strategy 2, with sub-population size 1 x 10 and sample sizes 1 x 10* and 1 x 10°
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Figure 8: Standard deviation values for epistemic uncertainty of predictions on universal test set
C-T, for models trained using sampling strategy 2, with sub-population size 1 x 10? and sample
sizes 1 x 10* and 1 x 10°

Appendix

A Parameter Descriptions

Parameter | Interpretation
«@ Stepsize of Adam optimizer
51, B2 Exponential decay rates for Adam optimizer
0 Scale parameter for Gamma function
Shape parameter for Gamma function
T Model Precision
Q end greek
a Activation value in ANNs

o)

—~

S
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h
<< 2w 25%‘59

Activation function in ANNs

Cost, outcome for sub-population ¢
Stratum size

Loss function of weight matrix W
Life years gained outcome sub-population 4
Sample size

Dropout Probability in ANNs
Individual Risk

Screening

Weight Matrix

Matrix of independent variables

Matrix of dependent variables
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Scenario ] it SMAPE ,, o & F(p)

LYG, Low 5.665 x 10°  5.654 x 10°  9.580 x 10~* 2.860 x 10°  2.838 x 10¢  1.001 (0.453)
LYG, High 9.631 x 10°  9.727 x 10°  4.931 x 1073 6.955 x 105  7.277 x 10°  0.956 (0.763)
Cost, Low  3.873 x 1019 3.873 x 1010 1.742 x 1076  2.978 x 10*®  2.535 x 101°  1.175 (0.00547)
Cost, High  9.233 x 101°  1.060 x 10!  6.898 x 1072 9.677 x 104  1.012 x 10*>  0.9562 (0.760)

Table 11: Discretization Results

B Validation of Discretization scheme

In this section, we present the accuracy of the discretization process, in table 11. The
aim of this section, is to show that if the sub-populations are estimated correctly, the
discretization correctly calculates outcomes for a heterogeneous population. The ground
truth for both the homogeneous sub-populations and the heterogeneous populations are
obtained by running MISCAN-Colon 1,000 times for these scenarios.

For each validation scenario, LYG and Cost for low-intensity and high-intensity screening,
we compare the results. We observe that for estimations of LY G, results are satisfactory,
for both low and high intensity screening. The prediction percentage error is low and the
F-statistic for variance comparison is not significant, so we cannot reject the null hypothesis
that they belong to the same distribution.

For cost, in the low-screening scenario, we see a very accurate estimate of the mean, but the
estimate of the variance is not as accurate. With a two-sided rejection region of 0.05 and
a Bonferroni correction for four repeated measurements, we maintain a lower critical value
of 0.00625. The p-value is close, but significant, therefore we reject the null-hypothesis
that they come from the same distribution. For Cost, the F-statistic is not significant, but

the SMAPE for the mean estimate value is relatively high.



C Choosing a metamodel framework

A well-known way of defining the objective function to optimize, is through Radial Basis
Functions (RBF) (Sobester et al., 2014). RBF is a local smoothing method, in which a lin-
ear combination of a series of basis functions is used to approximate the main model. The
shape of these functions is pre-determined by the modeler and may vary. A popular choice
for the shape is Gaussian, which is effective at estimating prediction errors. Estimation is
only based on the radial distance of individual data points to the origin. Like most local
smoothing methods, RBF methods are ineffective at estimation at high dimensionality.
For these methods, the median distance of the closest point to the origin grows with the
dimensionality of the model and population of the input space grows sparser. For both
these issues, the amount of data required to train the model grows exponentially with the

amount of dimensions in the model (Hastie, Tibshirani, Friedman, & Franklin, 2005).

Another popular meta-modeling technique, especially in (and also originating from)
the geostatistical sciences, is Kriging (Freedman, 2009), which uses Gaussian Processes to
obtain least-squares estimates of the unknown variable parameters. The technique is used
in many areas of research and has the significant benefit of providing uncertainty in its
estimates, making it suitable for prediction analysis. However, it has been found that Krig-
ing is not effective at high-dimensional problems either, with computational time growing
exponentially with each added variable. This occurs due to the fact that the covariance
matrix of independent variables needs to be inverted several times (Bouhlel, Bartoli, Ots-
mane, & Morlier, 2016). Some work has been done to lift the curse of dimensionality,
mainly through dimension reduction (such as Bouhlel et al. (2016), but this would require
two additional layers of complexity, one for quantification of categorical variables and one

for dimension reduction.

More traditional methods, such as fitting polynomial functions to the data, require
heavy assumptions on the shape of the model, do not fare well in high dimensionality and
are not equipped to approximate smooth functions (Hussain et al., 2002). Support- Vector
Machines (SVM) techniques are a promising field of research in metamodeling (Lai et al.,

2006).

Two very promising techniques for high-dimensional, numerical /categorical problems,
come from the domain of Machine Learning (ML) and are known as Artificial Neural Net-
work (ANN)s and Random Forest (RF)s. Random Forests are an ensemble technique,
which uses a large amount of sparse, high-variance decision trees to fit the model and can
be used for both classification and regression (Breiman, 2001). The technique has enjoyed
much attention since its conception and is well-known for good performance under high
dimensionality and missing data. A downside is that it is not able make inferences outside
the range of the training data (Rofbach, 2018). Additionally, RF techniques do not inher-
ently estimate and return a measure of variance. Nevertheless, Mentch and Hooker (2016)

are able to infer an asymptotically normal estimator of the variance of predictions of RFs.



Yet, these techniques have sparsely been adopted by the scientific community.
Artificial Neural Network techniques are a very popular technique and are often associ-

ated with important buzzwords of the 2010’s, such as Artifical Intelligence (AI) and Deep
Learning.



D Simulation Study of MISCAN-Colon

In this section, we explore the observed variance in Cost and LYG, for different variations
on a base case. To understand the stochastic nature of the main model, MISCAN-Colon,
we run the different configurations a high number of times and record the observed mean
and variance. We assume several factors may influence variance, such as individual risk and
the screening strategy employed, we also vary these to observe the influence on variance,

in order to support the choice for a population size.

Setup

We vary Screening, Risk and Population size to generate scenarios, which we run a high
number of times.

This serves as a Monte-Carlo estimate of the mean and variance of the model for specific
scenarios. According to [table], simulation time does not increase with population size up
to 1,000 individuals.

As a trade-off assume 1,000 individuals per simulation as the base case and simulate
variations on the base case, to observe the effect on variability. We will use the coefficient

of variation, denoted by
o

CV(p,0) = o
to observe the relative impact of different variables on the variability. Furthermore, the
base case will assume the mean of the risk distribution of [US population|, which is as-
sumed to be one, and follow the low-intensity screening scenario, as described in section
3.4.
First, we evaluate the effect of varying population size. Then, we will vary individual risk

and finally, we will look at the effect of screening on variability.

We run 10,000 simulations of the base-case, each with unique random seeds, so the
Random Number Generator (RNG) will be initiated differently each time. Except for the
random seeds, all simulations are identical. Therefore, all variability in outcome can be
attributed to the stochastic nature of the model and, from the point of view of the meta-
model, can be considered to be data uncertainty, also known as ’Aleatoric Uncertainty’ or
‘unknown unknowns’. This uncertainty will propagate unchanged to the final predictions
of the metamodel, no matter how much data is used to train the model. This can be dis-
tinguished from ’Epistemic Uncertainty’, or ’known unknowns’, which is the uncertainty
introduced by an insufficiently trained metamodel and can be reduced by exposing it to

more data.

D.1 The Base Case

For the 10,000 runs, LYG has a mean of 57.23 and a standard deviation of 17.11. The

variance is 292.63, the average variance per person in LYG is then obtained by dividing the



Screen Treat Diag Sympt Comp Surv Total Cost LYG
Mean 5.78 x 10° 2.76 x 106  1.94 x 10° 1.46 x 10* 1.39 x 10° 5.83 x 10° 4.26 x 105  57.23
Var 1.14 x 108 2.85 x 10" 1.36 x 108 1.35 x 107 1.53 x 107 6.40 x 10® 2.84 x 10'*  292.63
% 1.14 x 10° 2.85 x 108 1.36 x 10> 1.35 x 10* 1.53 x 10* 6.40 x 10° 2.84 x 108  0.29
CcvV 0.01 0.19 0.06 0.25 0.02 0.04 0.12 0.29
prye —0.07 0.21 0.13 —0.01 0.05 0.06 0.21 1.0

Table 12: Descriptive statistics for different Cost Measures, per 1,000 individuals

variance per the number of individuals per simulation, resulting in 0.29. The coefficient
of variation for LYG in the base case equals 0.29. For Total Cost, the mean is 4.26e6 and
the standard deviation is 5.23e5. The variance is 2.84ell, which means the variance per
individual is 2.84e8. The coefficient of variation is 0.12.

It already becomes apparent that, while Cost has greater absolute variance, this can be
attributed to overall higher values and it is more stable throughout iterations of the same
scenario than LYG. Histograms of the 10,000 runs can be found in figure 10. It can be
observed that the null hypothesis of normality is rejected by the Jarque-Bera statistic for
both LYG and Cost.

The correlation between LYG and Total Cost observed in the base case is 0.22 (p = 0.000).
In figure 10a, we can observe the relationship between the natural logarithm of Cost and
LYG and observe a positive correlation. The slope coefficient for the linear regression
(black line) equals 0.54 (p = 0.000), which suggests that for every 1% increase Cost, LYG
increases approximately 0.5%. This linear relationship can be explained by the fact that
they are both likely to increase with the prevalence of CRC in the simulation. If we look
at the different subcomponents the total cost measures are made up of in figure 77, we see
that the total cost is largely dominated by the treatment cost.

In table 12, we see that Symptomatic Costs are the most variant, based on CV, but
Treatment Costs are the greatest contributors to the variance of Total Costs. We see that
Treatment Costs are strongly positively correlated with LY G, which can again be explained
by their joint relationship with the prevalence of CRC. One can note that the variances do
of the cost-subcomponents do not add up to the variance of their sum, the Total Cost, as

their covariance is not zero.

D.2 Variance caused by population size

We explore population sizes [1,10%,102,10%,10%, 105,105, 107] and keep the rest of the base
case constant. MISCAN is a micro-simulation model which means that each individual is
simulated individually and independently. This is reflected in table 13, where the mean
and variance increase linearly with the amount of individuals simulated, m. Because the
CV is proportional to the standard deviation and inversely proportional to the mean, it
diminishes with a factor %, if the population is multiplied by a factor k. Practically,
this implies that simulations get more stable with increased populations, which was to be

expected.
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LYG Cost

Pop. size pu Var CV u Var cv
10 5.12x1072  297x 107! 9.82 4.33 3.29 0.41
100 0.582x 10~! 3.03 297 4.34x 10! 3.45x10'  0.13
102 5.58 2838 x 101 0.96 4.33x102 3.32x10%2 0.04

10®  5.58 x 10* 2.84 x 102 0.3 4.33x10% 3.33x10° 0.01
10*  5.58 x 102 2.81 x 10  0.09 4.33x10* 3.38x10* 0.00
10°  5.59 x 103 2.80 x 10*  0.02 4.33x10° 3.38x10° 0.00
10 5.59 x 10* 2.80 x 10° 0.0 4.33x10% 33.40 x10° 0.00
107 5.59 x 10° 2.80x 10 0.0 4.33x107 3.31x10" 0.00

Table 13: Descriptive statistics for Cost and LYG for different Screening strategies, n=10,000

LYG Cost
Risk u Var Var/m CV pu Var Var/m cv

0.1 554 28.09  0.02 0.95 1.21 x10% 3.08 x 1010 3.08 x 107 0.144
1.0 5723  292.63 0.29 0.29 4.26 x 10° 2.84 x 10 2.84 x 108 0.125
50  281.22 1394.0 1.39 0.13 1.40x 107 1.13x 102 1.13x10° 0.076
10.0 518.51 2688.5 2.68 0.09 2.29x 107 1.96 x 102 1.96 x 10° 0.061

Table 14: Descriptive statistics for Cost and LYG for different risk means, n= 10,000

D.3 Variance caused by individual risk

In table 14, we see descriptive statistics for simulations that differ from the base case in
terms of individual risk (the base case is printed as boldface). In terms of LYG, the mean
expectantly increases with risk, as CRC prevalence increases with risk. Interestingly, we
see the coefficient of variation decreasing, which indicates that high risk individuals intro-
duce less uncertainty to the model, in terms of LYG. This can be explained by the fact
that there is less uncertainty in the prevalence and therefore LYG. In other words, the
more certain we are people get sick, the more certain we are of the lifeyears we can gain.
We observe in figure 11b that for low-risk individuals, the mode of LYG is zero observed
LYG. In terms of cost, we see a much less steep increase of the mean with risk. This makes
sense, as we have found previously that costs are more stable than LYG due to constant
costs. Nevertheless, we do see a notable increase in terms of variance and relative vari-
ability, especially with very high risk, so very high-risk individuals seem to also introduce
more variability in observations of cost. In figure 11c, we observe few surprises, with cost

increasing for higher risk, which can be explained by a higher incidence of CRC.

Figure 11 portrays similar results, but with more different observations of risk and.
We can see the means of both LYG and Total Cost smoothly increase with risk. For this
situation, in which screening is constant, we can fairly accurately fit a simple polynomial
function to both LYG (L = 118.44 %7909 —67.44, R? = 0.999) and Cost (C = 5.84 x 10° %
r062 _1.36 x 105, R? = 0.999). For a high-frequency screening scenario, as described in
section 3.4, we perform a similar Monte Carlo simulation. We can then fit L = 165.77
r0-7 132, R? =0.999 and C = 1.93 x 10% %97 —6.85 x 10%, R2 = 0.998 Plots of these

functions are overlaid in the same figure. This shows that LYG and Cost might be easily
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Figure 11: Histograms comparing metrics for different risk measures, n = 10,000

LYG Cost
Screening I Var Var/m CV I Var Var/m cv
None 0.0 0.0 0.0 Undefined 3.83 x 10 3.67 x 10'!  3.67 x 108  0.158
Base 57.14 289.09 0.28 0.29 4.26 x 10°  2.75 x 101t 2.75 x 10®  0.123
T-yearly Col 88.95 615.96 0.61 0.27 6.30 x 10 1.49 x 10! 1.49 x 108  0.061
Rand(low)  95.03 721.18 0.72 0.28 9.61 x 105 1.28 x 10'*  1.28 x 108  0.037
Rand(high) 101.0 762.92 0.76 0.27 9.00 x 106 1.04 x 101 1.04 x 105  0.035

Table 15: Descriptive statistics for Cost and LYG for different Screening strategies, n=10,000

predictable, if screening is kept constant, which might be useful for policy makers.

D.4 Variance caused by Screening

In table 15, we see that variability in LYG remains fairly constant, regardless of the in-
tensity of screening. While the amount of LYG increases, the variance does not increase
proportionally. In cost, we see that C'V' decreases with more intense screenign. Total Cost
for Random screening is much higher, mostly explained by a large increase in the Screening
Costs. Similarly to increasing risk, we can speculate that more intense screening leaves

less room for stochasticity. Nevertheless, this does not agree with the constant C'V of LYG.

In figure 13b, we see that the costs for 7-yearly col and bi-yearly col are almost identical.

This is caused by the fact that more frequent screening (and therefore higher screening
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Figure 12: Plots illustrating the mean and standard deviation of LYG and Total Cost as a
function of risk, including least squares fit, n = 1,000 per 0.1 risk increment

cost) negates the need for surveillance, and is therefore compensated by lower surveillance

cost.

D.5 Time required to run MISCAN-Colon

Run-time for MISCAN-Colon is a significant bottleneck for those conducting cost-effectiveness
studies. The total run-time of a MISCAN-Colon scenario most importantly depends on
the size of the simulated population. We notice that the simulation time for each scenario
is comprised of a start-up time, which depends on the type of storage used, and a variable
simulation time, which depends on the speed of the processor used and the size of the
population. The variable simulation time grows approximately linear with the popula-
tion size. Therefore, we can formulate the total run time of a MISCAN-Colon scenario as
T =b+dx* N, in which T is the total run time, b is the start-up time and d is the speed
coeflicient. Tests were conducted on two different computers, one using virtual storage and
one using local (SSD) storage. Results are presented in table 16. It can be observed that,
due to the constant time required to start up a simulation, there is little time difference
between simulating the four lowest levels. After that, the variable time becomes a more
important factor in the total time. Therefore, when simulating small populations, large
gains can be made by using fast means of storage, such as local SSD, but this advantage
diminishes almost completely for larger population sizes, given that processor speed is

constant.
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Figure 13: Histograms comparing metrics for different screening strategies, n = 10,000

Population size  Virtual Storage Local Storage

1 9.52 0.53
1 x 10! 9.24 0.50
1 x 102 9.24 0.52
1% 103 9.38 0.55
1 x 104 9.87 0.76
1 x 10° 11.8 2.66
1 x 106 30.1 22.3
1 x 107 226 220
b 9.24 0.50
d 2.1e-5 2.1e-5

Table 16: Run-time in seconds for simulating a single population with variable population size,
assuming one core is used. Based on averaging 100 runs. Parameter estimates are based on linear
regression. The computer using virtual storage was using a quadcore Intel Core i7-6700 CPU with
8 GB RAM and the computer using local storage was using a quadcore Intel Core i7-7701HQ CPU
with 8 GB RAM.



E Results

E.1 Experiment 1

See table 17 for LYG and table 18 for cost.



No: Risk, Screen ID Rank Layers Nodes Cost Split BN Y MSE SMAPE
1: Unif, Unif 165 0 4 128 No Split True LYG 853 x10° 7.92 x10~*
50 1 1 512 No Split False Both 8.84 x 10 3.87 x 1073

166 2 4 256  No Split True LYG 8.92x 102 1.08 x 1073

49 3 1 256 No Split False Both 8.94x 103 3.43x 1073

164 4 3 512 No Split True LYG 9.16 x 10° 6.39 x 1073

149 5 2 512 No Split False LYG 9.53 x 10° 4.00 x 10~*

148 6 2 256 No Split False LYG 9.61 x 10® 6.80 x 1073

144 7 1 128 No Split False LYG 1.04 x 10* 4.57 x 10~*

51 8 2 128 No Split False Both 1.04 x 10* 3.40 x 1073

145 9 1 256 No Split False LYG 1.05x10* 6.45x 1074

2: Gam, Unif 145 0 1 256 No Split False LYG 1.02x10%° 6.28 x 1073
146 1 1 512 No Split False LYG 1.12x10° 1.88 x 1072

167 2 4 512  No Split True LYG 1.12x10° 6.77 x 1073

162 3 3 128 No Split True LYG 1.16 x 10® 1.37 x 1072

164 4 3 512 No Split True LYG 1.21 x10° 2.93 x 1072

166 5 4 256  No Split True LYG 1.24 x10° 3.16 x 1072

148 6 2 256 No Split False LYG 1.39 x10° 1.33 x 1072

68 7 3 512  No Split True Both 1.42x10% 2.52 x 1072

117 8 4 128 Categories True Both 1.53 x 103 2.60 x 102

165 9 4 128 No Split True LYG 1.57 x10° 6.86 x 1073

3: Unif, Freq 166 0 4 256 No Split True LYG 7.30 x 103 1.23 x 1072
163 1 3 256  No Split True LYG 847 x 10 1.47 x 1072

162 2 3 128  No Split True LYG 8.73 x 10 2.46 x 1072

69 3 4 128 No Split True Both 9.21 x 10® 3.35 x 1072

167 4 4 512 No Split True LYG 9.29 x10° 291 x 1073

164 5 3 512 No Split True LYG 9.42 x10° 1.33 x 1072

68 6 3 512  No Split True Both 1.02 x 10* 2.45 x 1072

146 7 1 512 No Split False LYG 1.02x10* 6.22 x 1073

144 8 1 128  No Split False LYG 1.03x10* 4.28 x 1073

161 9 2 512 No Split True LYG 1.05 x 10* 9.62 x 1073

4: Gam, Freq 165 0 4 128 No Split True LYG 7.94x 102 2.07 x 1072
167 1 4 512  No Split True LYG 894 x 102 1.32x 1072

163 2 3 256  No Split True LYG 9.25x 10> 2.18 x 1073

162 3 3 128 No Split True LYG 9.80 x 102 1.53 x 1073

68 4 3 512  No Split True Both 9.91 x 10> 2.13 x 1072

166 5 4 256 No Split True LYG 1.04 x10° 3.60 x 1072

117 6 4 128 Categories True Both 1.07 x 10> 2.42 x 1072

159 7 2 128  No Split True LYG 1.14 x10° 3.31 x 1072

161 8 2 512 No Split True LYG 1.17 x10® 1.06 x 1072

64 9 2 256 No Split True Both 1.23 x10° 4.60 x 1072

5: Orth, Orth 144 0 1 128 No Split False LYG 5.04 x 103 3.20 x 1073
146 1 1 512 No Split False LYG 5.17 x10° 2.34 x 1073

164 2 3 512 No Split True LYG 5.41x10% 8.13x 1073

162 3 3 128 No Split True LYG 5.52x10% 8.59 x 1073

147 4 2 128 No Split False LYG 5.84x10° 6.15x 1073

145 5 1 256 No Split False LYG 6.10 x 10° 1.24 x 1072

165 6 4 128  No Split True LYG 6.26 x 102 8.58 x 1073

48 7 1 128  No Split False Both 6.62 x 102 9.71 x 1073

148 8 2 256 No Split False LYG 6.66 x 10> 3.13x 1073

149 9 2 512 No Split False LYG 6.92 x10° 3.38 x 1073

Table 17: Top 10 NN architectures for LYG prediction, for each sampling strategy.



No: Risk, Screen  ID Rank Layers Nodes Cost Split BN Y MSE SMAPE
1: Unif, Unif 85 0 1 256 No Split True Cost 1.28 x 10" 1.01 x 1073
84 1 1 128 No Split True Cost 1.32 x10'2 2.55 x 1073

95 2 4 512 No Split True Cost 1.66 x 102 1.01 x 1073

86 3 1 512  No Split True Cost 1.70 x 102 1.16 x 102

120 4 1 128 Categories False Cost 1.82 x 102 3.07 x 1073

121 5 1 256 Categories False Cost 1.95x 10?2 6.78 x 1073

89 6 2 512  No Split True Cost 1.96 x 102 2.42 x 1073

77 7 2 512  No Split False Cost 2.00 x 102  2.46 x 1073

67 8 3 256  No Split True Both 227 x 102 224 x 1072

92 9 3 512 No Split True Cost 2.59 x 102 2.27 x 1072

2: Gam, Unif 87 0 2 128 No Split True Cost 1.80 x 101 3.96 x 1073
90 1 3 128  No Split True Cost 2.06 x 10! 4.54 x 1073

85 2 1 256  No Split True Cost 2.20 x 10 1.21 x 1073

84 3 1 128 No Split True Cost 2.23 x 10" 3.06 x 1073

89 4 2 512 No Split True Cost 2.43 x 10''  5.26 x 1073

86 5 1 512  No Split True Cost 2.70 x 10" 3.59 x 1073

88 6 2 256  No Split True Cost 2.87 x 10 5.78 x 1073

95 7 4 512 No Split True Cost 2.93 x 10 6.32 x 1074

94 8 4 256  No Split True Cost 2.95 x 10" 2.28 x 1073

91 9 3 256 No Split True Cost 4.73 x 10''  1.25 x 1072

3: Unif, Freq 88 0 2 256  No Split True Cost 3.78 x 10'2  9.78 x 1073
90 1 3 128  No Split True Cost 4.00 x 102 9.54 x 1073

92 2 3 512 No Split True Cost 4.35x 102 9.13x 1073

89 3 2 512  No Split True Cost 4.44 x 102 2.79 x 1073

23 4 4 512 Full Split  True Both 4.86 x 10'2 1.55 x 102

21 5 4 128 Full Split  True Both 4.87 x 10'?  1.70 x 102

94 6 4 256 No Split True Cost 4.95x 102 1.73 x 1073

77 7 2 512 No Split False Cost 4.95x 102 1.27 x 1072

93 8 4 128  No Split True Cost 5.55 x 102 2.16 x 102

22 9 4 256 Full Split  True Both 6.42 x 10?2 3.17 x 1072

4: Gam, Freq 93 0 4 128 No Split True Cost 1.31 x 102 3.00 x 1072
75 1 2 128  No Split False Cost 1.32x 102 5.73 x 1072

95 2 4 512 No Split True Cost 1.42 x 102 2.80 x 102

73 3 1 256  No Split False Cost 1.95x 10'2 1.77 x 1072

76 4 2 256  No Split False Cost 2.13 x10'2 1.58 x 1072

74 5 1 512 No Split False Cost 2.22 x 10'2  2.60 x 1072

89 6 2 512  No Split True Cost 2.39 x 102 2.75 x 1072

142 7 4 256 Categories True Cost 2.41 x 10'2  5.86 x 1072

91 8 3 256  No Split True Cost 2.46 x 102 2.12 x 1072

94 9 4 256  No Split True Cost 2.71 x 102 7.65 x 1073

5: OLHS, OLHS 86 0 1 512 No Split True Cost 9.22 x 101 1.43 x 1073
84 1 1 128 No Split True Cost 1.05x 10*2  3.16 x 1073

94 2 4 256  No Split True Cost 1.06 x 10'2  7.71 x 1073

71 3 4 512 No Split True Both 1.07 x 102 1.40 x 1072

85 4 1 256  No Split True Cost 1.10 x 102 3.54 x 1073

70 5 4 256  No Split True Both 1.14 x 10'2 1.47 x 1072

49 6 1 256 No Split False Both 1.14 x 102 1.32 x 1072

61 7 1 256 No Split True Both 1.19 x 102 1.23 x 1072

48 8 1 128 No Split False Both 1.20 x 102 1.26 x 1072

60 9 1 128 No Split True Both 1.21 x 102  1.36 x 1072

Table 18: Top 10 NN architectures for Cost prediction, for each sampling strategy. The MSE
and SMAPE scores provided are the sample average of predictions over five validation sets.



E.2 Experiment 2

LYG Cost

T Ir p loss T Ir D loss
1.78 x 107*  1.00x 10~* 3.20x 10! 6.22 1.77x 1072 1.00x 107* 226 x 10! 1.58 x 10!
1.37 x107* 1.00x 107* 3.12x 107! 6.23 1.68 x 1072 1.00 x 10=* 2.09 x 10~!  1.58 x 10!
3.78 x107* 1.00 x 10~* 3.15x10~' 6.23 6.98 x 10713 1.00 x 107* 241 x10~' 1.58 x 10!
3.28x107% 1.00 x 107* 3.04 x 107! 6.24 1.40 x 1072 1.00 x 107* 2.42 x 107! 1.58 x 10*
589 x107* 1.00x107* 3.13x10"! 6.26 142 x 1072 1.00 x 107* 2.01 x 10~!  1.58 x 10!
243 %1073 1.00 x 1072 7.86 x 1072 4.73 6.42 x 10719 1.00 x 107* 1.63 x 10~' 1.47 x 10!
1.77x 1072 1.00 x 1072 1.23 x 10~}  4.74 1.96 x 10~ 1.00 x 10™*  1.63 x 107!  1.48 x 10!
281 x 1073 1.00 x 1073 4.85x 1072 4.75 1.27x 10710 1.00x 10~* 1.49x10~! 1.48 x 10!
4.06 x 1073 1.00 x 1072 7.90 x 1072 4.76 1.14 x 107 1.00 x 107*  1.64 x 10~1  1.48 x 10!
3.39x 1073 1.00 x 107* 1.56 x 10! 4.76 223 x 10719 1.00 x 107* 1.37 x 107! 1.48 x 10!
293 x107* 1.00x 1073 220x10~' 5.92 6.08 x 10711 1.00 x 1072 3.51 x 10~' 1.67 x 10!
3.09x107* 1.00x107* 225x10"! 5.92 3.12x 1072 1.00x 1072 4.13x10"! 1.67 x 10!
482 x107* 1.00x10~* 245x10~' 593 3.90 x 10711 1.00 x 1072  3.13 x 107! 1.67 x 10!
501 x107% 1.00 x 107* 2.47x 10! 5.93 1.74 x 10~ 1.00x 1072 3.37 x 107! 1.67 x 10!
3.02x107* 1.00 x 1073 2.15x 107" 5.94 6.11 x 10711 1.00 x 1072  3.57 x 10~'  1.68 x 10!
125 x 1073 1.00x 1073 3.37 x 10~* 4.91 3.97 x 107" 1.00 x 1072  2.02 x 10~' 1.50 x 10!
6.21 x 1073 1.00 x 1073  2.67 x 10~ 4.93 4.89 x 10711 1.00 x 1072 2.08 x 10~'  1.51 x 10!
1.02 x 1073 1.00 x 1073  3.68 x 10~' 4.96 1.04 x 1071 1.00 x 1072 2.04 x 10~!  1.51 x 10!
5.36 x 107% 1.00 x 1073 1.88 x 10~* 4.97 442 x 10711 1.00 x 1072 2.09 x 107! 1.51 x 10!
9.44 x 107% 1.00 x 107® 3.68 x 107!  4.98 1.03x 107 1.00 x 1072 2.10 x 10~  1.51 x 10!
246 x 107* 1.00 x 1072 2.89 x 10~' 5.95 4.90 x 10711 1.00 x 1072  4.04 x 10~'  1.63 x 10!
3.72x107% 1.00 x 1072 2.77 x 107! 6.00 1.15x 10710 1.00 x 1072 4.99 x 10~!  1.65 x 10!
432 x107* 1.00 x 1072 3.78 x 10!  6.07 8.80 x 10711 1.00 x 1072  4.02 x 107!  1.65 x 10!
490 x 107% 1.00x 1072 3.87x 107! 6.10 1.33 x 1071 1.00x 1072 4.51 x 10~ 1.66 x 10!
748 x107%  1.00 x 1072 348 x 107! 6.15 9.67 x 10711 1.00 x 1072  4.32x 107! 1.67 x 10!

Table 19: Top 5 BNN hyperparameters, per sampling strategy



F Monte-Carlo Dropout

Following Bayes’ theorem, we can formulate the posterior distribution of weights as

P(X,Y|0)P(0)

POIX.Y) = =

(7)

The goal is to determine the parameters of this distribution, so we can predict some
unobserved y from the holdout set yy, based on the unobserved x, by integrating over the

weights distribution. This yields
Plunlon, X.Y) = [ Plonlen, 0)PO1X.Y)db (3)

which provides an exact answer, but is usually intractable to calculate. Recently, several
authors have used variational schemes to approximate the optimal model parameters. One
of the more notable, Kingma et al. (2015) use a sampling method to minimize the Kullback-
Leibler Divergence (KL Divergence) (also known as relative entropy) divergence between
P(0|X,Y) and some approximating function ¢(#|X,Y"). The KL Divergence is then denoted
by

q(w|0)
(W) P(X,Y|w)

KL(g(w|0) || P(w|X,Y)) = /Q(WW)ZOQP dw. 9)

Even though these techniques offer vast efficiency improvements over exact methods,
they are still computationally expensive and require a complex, entirely probabilistic Neural
Network framework to execute. With an added uncertainty variable for all weights, this
totals to double the amount of variables to estimate.

A popular technique of approximating an exact BNN is through Monte Carlo Dropout
(MCD) (Gal & Ghahramani, 2016). An exact derivation can be found in the appendix of
Gal and Ghahramani (2016) and is beyond the scope of this thesis. Their main contribution
constitutes that keeping dropout layers turned on during inference time, will yield a mean
and standard deviation that approximate the posterior mean and standard deviation of a
BNN. Instrumental towards this conclusion is their derivation that the loss function of an

ANN with L layers and softmax loss or MSE loss, with Lo regularization, denoted by

N L
1 .
Adropout = N E E(yzayz) + A E (”W’L”% + ”bZH%)a (10)
=1 =1

where A is the weight decay, a parameter for Ly regularization. The dropout loss in
equation 10 is approximately the same as the loss of a Deep Gaussian Process (DGP)
(Damianou & Lawrence, 2013), which is an important result because it implies a Gaussian
distribution for its outcomes; this applies only when a trick similar to equation 9 is used,
where the posterior distribution of the model weights is approximated by a distribution
of the weight matrices in which the the columns are randomly set to zero through some
Bernoulli process. The latter is analogous to dropout, completing the circle.

They further show this can be used to derive expectation and uncertainty for the model

by drawing Monte Carlo samples from this Bernoulli Distribution, obtaining the first two



moments, and inferring the mean,

T
I —.
By, 1x, (Yn) & Tth(xh,Wﬁ,...,WtL), (11)
t=1

and the variance, namely,

Varyh|xh (yh) ~ 7—_1ID
1 T
+ 7 >y (xn, W W) (x, WL W) (12)
t=1

B EYh,|Xh <yh)trEYh\Xh (yh)‘

Here, 7 is the model precision, which is a function of some known model parameters,

through

pl?

TN

where [ is the prior length-scale, N is the number of observations and p and A are as

(13)

before (Gal & Ghahramani, 2016). The prior length-scale is used to determine a prior ini-
tialization of the weights of the first layer, Wi. A larger length-scale means means stronger
regularization over the weights, a smaller length-scale leads to higher precision. Equations
11 and 12 equal the sample mean and sample variance, respectively, of T' forward passes
through the ANN with Dropout turned on.

In summary, prediction mean and variance may be obtained by using dropout layers
for predictions. Intuitively, this means that an ANN, trained with dropout layers to con-
vergence, may be used to predict y; a high amount of times (e.g. 10,000) on a single test
observation x;. Due to the probabilistic nature of the dropout layers, this will yield a
stochastic sample of estimates over which we can calculate the sample mean and sample
variance. The sample variance is an estimate of the model’s epistemic uncertainty. To
obtain the total prediction uncertainty, we add the aleatoric uncertainty, which is obtained

by taking the inverse of the model precision.
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