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Abstract

Ensuring fair treatment of historically disadvantaged groups of individuals by machine
learning (ML) guided decision-making systems is a rapidly growing point of discussion
in both academics and commercial industries. This thesis aims to investigate whether a
popular recidivism prediction instrument (RPI), known as COMPAS, can be accused of
being unfairly biased against African-Americans and/or women. Furthermore, the
applicability of certain bias mitigation post-processing algorithms is studied for
debiasing an arbitrary probabilistic recidivism predictor. Statistically conclusive results
suggest that COMPAS-scores are in fact unfairly putting African-Americans at a
disadvantage. However, the results with respect to a bias against women are
inconclusive. Finally, reject option based classification (RObC) proves highly effective
for achieving group-based fairness optima, while preserving balanced accuracy. However,
these group-based fairness measures are optimised at the expense of an arguably
important fairness notion, known as calibration.
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1 Introduction

Many U.S. courtrooms use state-of-the-art statistical software, like that of Northpointe Inc. (now
Equivant) to estimate the likelihood of a defendant becoming a recidivist, a term used to describe
convicted criminals who reoffend. Alarmingly though, a recent study shows that Northpointe’s deci-
sion support tool is almost twice as likely to mislabel black defendants as recidivists. Northpointe’s
COMPAS (an acronym for Correctional Offender Management Profiling for Alternative Sanctions)
is arguably the most widely used tool of its kind, with standard use in various phases of the criminal
justice process in Broward County of Florida, the states of Wisconsin, New York and California,
to name a few. COMPAS produces a risk score on a decile scale, based on a variety of variables,
including a defendant’s criminal history, degree of offence, family’s criminal history, age, gender and
opinions on various societal issues believed to be related to relevant criminological indicators. These
risk scores are then taken into account when, for instance, determining a defendant’s bail payment,
risk of pretrial misconduct or likelihood of reoffending upon release.

Subsequently, the introduction of a sentencing reform bill in the U.S. Supreme Court, that man-
dates the use of such risk assessment tools in all the nation’s courtrooms, inclined a New York-based
nonprofit investigative newsroom named ProPublica to place the COMPAS recidivism prediction
instrument (henceforth RPI) under harsh scrutiny. Their 2015 study into the suspected unfair treat-
ment of African-American defendants by COMPAS spawned a heated debate and numerous follow-up
studies about Northpointe’s statistical tool and algorithmic fairness in general (Dieterich, Mendoza,
& Brennan, 2016; Feller, Pierson, Corbett-Davies, & Goel, 2016).

In general, an increasing number of high-stakes decisions are being made about individuals by
artificially intelligent (AI) systems, significantly impacting their lives and communities alike. As
people continue to rely on algorithmically guided decision-making, societies must prioritise ensuring
that these models align with their norms and values. That is why recent years have witnessed a
noticeable increase in the emphasis on fairness, accountability and transparency in machine learning
literature. Not only academia, but prominent tech companies too are investing growing portions
of their time and funding in search of methods for identifying and correcting unethical systematic
disparities induced by decision-making models, known as algorithmic biases.

International Business Machines Corporation (hereafter, IBM) is no exception, having recently
deployed their Al Fairness 360 (hereafter AIF360) toolkit, an open-source Python library, dedicated
to helping users detect, understand and mitigate unwanted algorithmic bias (Bellamy et al., 2018).
This extensible toolkit serves as a platform on which commercial industry data scientists and machine
learning academics can exchange and evaluate bias correcting algorithms. Furthermore, it is also the
main resource of fairness related methodology for this study.

1.1 Research goals and hypotheses

The aim of this thesis is to investigate to what extent Northpointe’s criminal risk assessment tool,
COMPAS;, can be accused of being unfair with respect to race and gender. Additionally, this research
aims to study the effectiveness of various algorithmic bias mitigation techniques as methods for
correcting potential unfairness. Based on previous work on the subject, it is hypothesised that unfair
biases in disfavour of African-Americans and males. However, these disparities are expected to be
more moderate than, for instance, claimed by Angwin, Kirchner, Mattu, and Larson (2016), due to
methodological limitations of their study, outlined in Section 3. Furthermore, certain discrepancies
in recidivism prediction efficacy for males is expected to be attributable to demonstrable differences
in (re)offence prevalence between men and women. The presumed racial and potential gender biases



are quantified and tested using both conventional econometric methods, as well as contemporary
individual- and group-based fairness metrics.

1.2 Outline of thesis

The remainder of this paper is structured as follows: the next section contains an extensive theoretical
background on discrimination, algorithmic fairness in decision support tools for criminal justice,
algorithmic bias and fairness, and important trade-offs between non-discrimination and prediction
accuracy. Section 3 provides a brief overview of related work, previously done on the subject of
algorithmic fairness in criminal justice decision-support modelling, including a brief summary of
ProPublica’s accusation of COMPAS’ discriminatory properties and the most important follow-up
studies. Then, Section 4, covers IBM’s open-source fairness Python toolkit, along with the methods
considered for this research. The most important results obtained are presented in Section 5. Finally,
Sections 6 and 7 contain a recapitulation of this study’s points of discussion and most important
conclusions, respectively.

2 Background

2.1 Fairness in Machine Learning

Mehrabi, Morstatter, Saxena, Lerman, and Galstyan (2019) define fairness in the context of decision-
making and machine learning as follows: “In the context of decision-making, fairness is the absence
of any prejudice or favouritism toward an individual or a group based on their inherent or acquired
characteristics” These characteristics are described in more detail in Section 2.5.1.

But why should we care about embedding societal norms and values into decision-making al-
gorithms? In short, ensuring fairness is upheld by socio-technical systems will likely unfold to the
collective benefit of the societies in which they operate.

Since the industrial revolution, machines started fulfilling human tasks. What began as a means
to perform repetitive and exhausting manual labour, is now transitioning mental tasks that are
either too repetitive, prone to human error, or simply impossible for human brains. Automation has
moved from our hands to our brains. Consequently, as more and more decisions are being made
by algorithms, and these programmes become more sophisticated, the amount of influence these
choices exert on our lives increases. As alluded to in Section 1, machines in this day and age make
choices about hiring, prosecution, police patrolling, college admissions and mortgage applications,
among other matters. These decisions have significant impact on the lives of individuals and their
comimunities.

There is heightened concern in the scientific community and growing attention in public media
about the demographic disparities that might arise from this phenomenon (Narayanan, 2018). Origi-
nally, the aforementioned decisions used to be made by humans, often guided by their biases, histories,
prejudice and instinct. Especially during less emancipated and more racially skewed times in the
not-so-distant past, minority groups were systematically disadvantaged. Nowadays, the same choices
are made by computer programmes, trained on data recorded and gathered by humans. Although
these algorithms are designed as facially neutral and objective systems, they may still reflect our
human biases, thus perpetuating or exacerbating societal disparities (Barocas, Hardt, & Narayanan,
2018). The data on which these models are learned are a reflection of humanity. And albeit by mali-
cious design of stakeholders, or contaminated training data originating from an ethically unjust past,
algorithmic discrimination is an observed problematic outcome and should be dealt with promptly.



Fairness has become such a hot-button issue that a yearly conference has been fully dedicated
to the research area (ACM Conference on Fairness, Accountability and Transparency). This inter-
disciplinary nascent field of study that draws from computer science, statistics, law, psychology and
economics, is primarily concerned with ensuring non-discrimination in socio-technical systems. And
although it is in full bloom, there is still no consensus on appropriate means of alleviating algorithmic
unfairness (Hardt, Price, Srebro, et al., 2016).

2.2 Discrimination: from legal doctrine to algorithmic constraints

Understanding discrimination is crucial to effectively ensuring equitable treatment by socio-technical
systems. When is discrimination wrong? What does it mean to discriminate against an individual or
a group of people? It may come as no surprise that these and related questions cannot be answered by
a one-size-fits-all rebuttal. Barocas et al. (2018) argue that discrimination is not a general problem.
Rather, it is domain and feature specific. Altman (2016) acknowledges this statement by postulating
that there is no universally accepted definition of discrimination. Moreover, the same publication
finds that, despite discrimination being outlawed by six of the core human rights documents, these
very treaties do not define discrimination at all. They simply present a non-exhaustive list of at-
tributes on the basis of which discrimination is prohibited. Due to the nature of algorithmic design,
one cannot robustly reduce socio-technical discrimination without properly defining it. Luckily, when
focusing on specific domains, formalisations of this illusive notion arise, resulting in various societal,
lawful and economic definitions of discrimination. d’Alessandro, O’Neil, and LaGatta (2017) suggest
that fairness should be embedded in ML systems by finding the most relevant legal or economic
notion of discrimination, given the application and context, then proposing an appropriate best-fit
metric.

The attentive reader might wonder if discrimination isn’t the very point of machine learning. ML
systems essentially try to find patterns in data on the grounds of which lines can be drawn between
groups for classification and prediction. Then why are we accusing the machine learning community
of malicious practice, while these algorithms are doing exactly what they have been designed to do?
Clearly, this thesis concerns a different kind of discrimination. Discrimination in machine learning
is perfectly permissible, unless there is an unjustified basis for it, practical or moral irrelevance.
Inadvertently disadvantaging protected groups can also be sufficient reason for policy-makers and
auditors to scrutinise a decision-making system.

As mentioned before, international legal doctrine provide myriad ways of defining discrimination.
We therefore focus on judicial framings of discriminatory practice involved in ranking systems or
classification (e.g., hiring, housing, lending, recidivism assessments, etc.). The two prevailing theo-
ries of liability that are most appropriate for these kinds of problems are named disparate treatment
and disparate impact (Barocas & Selbst, 2016). d’Alessandro et al. (2017) succinctly describe the
former as differential treatment on the grounds of membership in a protected group, leading to disad-
vantageous outcome for members of that class. Disparate treatment, for instance, covers the blatant
denial of opportunities based on group membership, irrespective of whether or not considering the
sensitive attribute increases utility. Note how for disparate treatment, intent is of more importance
than discriminatory effect. Namely, if a malicious employer intentionally considers ethnicity in a
hiring model, but the model deems the variable unimportant, consideration of race will lead to few
disparities. The stakeholder, however, is still in violation of disparate treatment, despite his policy
not harming a protected group.

Disparate impact alludes to practices that are facially neutral or benign, yet result in dispro-
portionately unfavourable impact on a protected class. In other words, a policy can be seen as
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explicit intent (Corbett-Davies & Goel, 2018). The term was coined in the famous U.S. Supreme
Court case Griggs v. Duke Power Company (1971). Duke Power Company required applicants for
higher paying jobs to be in possession of a high school diploma, which at the time significantly
reduced the number of eligible black applicants. However, the Supreme Court ruled that the com-
pany’s requirements were irrelevant for an applicant’s ability to perform the job, and thus found
Duke Power Company guilty of discriminating against blacks. It is worth mentioning that disparate
impact law solely prohibits unjustified differential outcome. Namely, if the Supreme Court had found
that possession of a high school diploma was in fact essential for eligibility, it would have ruled in
favour of Duke Power Company and the disparate outcome would be legal (Corbett-Davies & Goel,
2018).

In the context of algorithmic fairness, disparate treatment is of lesser importance. Corbett-Davies
and Goel (2018) point out that the primary concern is whether socio-technical systems unintentionally
lead to disparities, albeit due to malicious design or implicit biases embedded in the data on which
they are trained. Therefore, our focus will be primarily on disparate impact, rather than treatment.

2.3 Algorithms, Bias and Criminal justice

Model-based risk assessments are well-established parts of the modern prosecution process in at
least 44 countries (Singh et al., 2014). Examples of use-cases in different countries include court-
ordered hospitalisation for long-term treatment ("terbeschikkingstelling" or TBS) in the Netherlands,
preventive detention in Canada and sex-offender civil commitment in the U.S. (Blais, 2015; Fabian,
2012; van Marle, 2002). Pretrial risk of misconduct, bail amounts and likelihood of general, violent or
sexual recidivism are commonly determined in part by some facially neutral algorithm. These scores
are based on input from criminological and mental health professionals, given to judges, prosecutors,
police and probation officers, and ultimately affect both the defendant’s freedom and public safety.
It is therefore important that these risk scores are reliable predictors, as mislabelling a defendant as a
risky criminal (false negative error) could result in the unjust incarceration of an innocent individual,
whereas erroneously deeming a dangerous criminal low risk (false positive error), thereby releasing
said delinquent into society, could infringe public safety.

The goal of the small but growing number of academics is investigating how machine learning
can improve and help to understand decision-making in criminal prosecution (Kleinberg, Lakkaraju,
Leskovec, Ludwig, & Mullainathan, 2017). However, the task of comparing algorithms and judicial
professionals is difficult, because the data on which models are trained are produced by the judges
and probation officers themselves. The problem of counterfactual outcomes further complicates the
task. Namely, there is only rearrest data about released defendants, whereas counterfactuals (i.e.,
the impossible observation of a detained defendant not reoffending) have to be estimated, thereby
introducing uncertainty. The matter becomes more convoluted when realising that judges take into
account broad set of (often difficult to quantify) variables such as severity of crime, racial inequalities,
impact on families and communities. Whereas algorithms are solely concerned with straightforward
outcome variables and are sometimes less nuanced by construction.

Criminal risk assessment tools are typically constructed using econometric models of weighted
factors, suggested by criminological research to be predictive of future delinquent behaviour. Risk
factors such as the defendant’s number of prior offences, family’s criminal history, gang affiliation,
substance abuse and mental health are assigned numerical values and compiled according to domain
experts’ knowledge to produce a risk score. Not only static criminal risk factors are considered, but
dynamic factors too are often taken into account by risk assessment instruments. Dynamic factors
refer to changeable characteristics such as pro-criminal attitude, criminal personality, recreational



The use of risk scores is motivated by the inaccuracy and susceptibility to bias of purely human-
made decisions. Here, bias defined as "a systematic error in reasoning or logic that occurs as the
result of the automaticity with which the human mind processes information based on expectations
and experience" (Tversky & Kahneman, 1974). In one psychiatric study, it is shown that unstructured
professional judgements about recidivism risk of mentally ill defendants had a false negative rate of
nearly 70% (Monahan, 1982). Furthermore, there is ample evidence that courtroom decisions made
by professional expertise are often associated with a defendant’s race or gender, resulting in the
unfair treatment of minority groups (Everett & Wojtkiewicz, 2002). Criminal justice experts and
statisticians have therefore made significant efforts to devise structured estimates about criminal
risk, with the goal of reducing error rates and prejudice in prosecution. In a broader sense, the
goal of using data-driven risk assessment tools is not only removing human subjectivity, but also
lowering crime and incarceration rates without affecting public safety (Stevenson, 2018). Advocates
of evidence-based risk assessment instruments therefore argue that the use of such tools will rid
criminal sentencing of human inefficiencies, diminish prison populations and maintain societal well-
being.

However, sceptics of the criminal risk assessment trend fear that these criminal sentencing tech-
nologies systematically disfavour minority groups, thereby perpetuating or sometimes even exac-
erbating societal disparities. Recent studies resonate these concerns by suggesting that these risk
assessment tools often fail to fully remove unfair treatment on the basis of stereotypes (Angwin et
al., 2016; Stevenson, 2018). Criminal risk assessment instruments have been accused of exacerbat-
ing unlawful disparities among traditionally disadvantaged communities, such as ethnic minorities
and women. These allegations were first voiced in 2014 by the former U.S. Attorney General, Eric
Holder, and formally investigated for the first time by ProPublica in 2015. Their widely read research
found, among other violations of fairness, COMPAS scores, a popular risk assessment tool in U.S.
courtrooms, to be about twice as likely to mislabel African-American defendants as high risk (false
positive) than it would Caucasians. ProPublica’s landmark article also sparked a series of follow-up
and refuting studies, the timeline and details of which are presented in Section 3.

2.4 On the origin of biases

As a technical matter, bias is something most scientists are familiar with. In statistics, the word
could refer to the bias of an estimator. A psychologist probably recalls cognitive human biases,
like confirmation, hindsight, survivorship or selection bias. Machine learning engineers are typically
concerned with an algorithm’s set of rules it uses to classify previously unseen observations, known as
inductive bias. Despite various nuances, 'bias’ generally refers to a systematic error or discrepancy.
Of course, these technical notions of bias can also raise societal implications (Barocas et al., 2018).
However, the bias that provokes the concerns mentioned in Section 2.1 is slightly different. Above
all, it is an ethical issue. We shall call this notion, unwanted algorithmic bias. Bellamy et al.
(2018) succinctly describe bias in the context of fairness as an unwanted systematic error that places
privileged groups at a systematic advantage and unprivileged groups at a systematic disadvantage.

But what causes this bias? Despite the scientific community’s abundance of definitions of socio-
technical discrimination, there is still much work to be done on understanding the intricate processes
that give rise to algorithmic bias. This subsection discusses potential mechanisms that lead to
unwanted model bias. These postulated causes of bias are elaborately listed and discussed by Barocas
and Selbst (2016). Hence, this subsection cites the their publication as its main source.



2.4.1 Target variables versus class labels.

The outcomes of interest that machine learning models try to predict are known as target variables,
and thus defines what the data miner is trying to find. Whereas class labels are the mutually
exclusive categories in which all possible values of the target variable can be divided. Note that a
target variable is a machine interpretable abstraction or representation of an entity of interest for
a model-builder. Defining a proper target variable is a non-trivial and highly subjective task. And
it is through this open-ended procedure of attempting to properly construct a target variable that
data miners may inadvertently define it, such that it opens the door to systematic impairment of
individuals (Barocas & Hardt, 2017; Barocas & Selbst, 2016).

Take a credit scoring example. Creditworthiness is not a measurable real-world entity. Rather, it
is the subjective perception of a person’s likeliness fulfil the duties required by the credit industry’s
own system. Hence, creditworthiness is a device of the problem itself, yet it is taken as the standard by
which companies decide whether or not to extend loans. Furthermore, there is evidence to believe that
the current compositions of credit scores disadvantage minority groups (Hurley & Adebayo, 2016;
Waddell, 2016). The problem of exerting bias through inappropriate defining of target variables
is not limited to credit scoring. Consider, for instance, how one should quantify what makes a
'good employee". Is it expected tenure or sales? Barocas and Selbst (2016) also show how certain
definitions of target variables for desirable employee traits can cause disparate impact. Finally, the
same holds for recidivism scores (Chouldechova, 2017). Angwin et al. (2016), for instance, have
shown how current scoring systems used in U.S. criminal sentencing have intrinsic tendencies to
disproportionately disadvantage blacks.

2.4.2 Training data.

Machine learning models learn by example. And a model is only as fair as the data it has been trained
on. Hence, if the model’s training data is tainted with or by human bias, naturally, the model’s output
will reflect it. The "with or by" part of the previous sentence hints at the two ways training data
can be the cause of unwanted algorithmic bias. Either when human prejudice in past decisions
have led to biased training examples entering the data set, and these biased examples are seen as
valid observations to learn from, or human bias in sample selection has led to over-representation of
one group, leading to systematic disadvantages for the under-represented subpopulation (Barocas &
Selbst, 2016).

The first case, known as skewed samples, arises from the process of manually labelling examples
by assigning them class labels (Barocas & Hardt, 2017). Think of constructing training data for a
hiring algorithm using examples of past résumés that were invited for interviews. If this recruitment
process was unjustly guided by a preference for male applicants in the past, training a model on
these examples will perpetuate that bias (Dastin, 2018).

In a more complex example, Lum and Isaac (2016) investigate the effects of training systems on
biased data in predictive policing in the U.S.. Sophisticated forecasting software is used by American
police forces to construct heat-maps of cities, indicating neighbourhoods with high estimated prob-
ability of violent crimes occurring. The authors find that the training data, produced by historical
patrolling efforts, are not at all good random samples, nor do they accurately represent cities’ crime
distributions. As a result, neighbourhoods that have been historically plagued by police forces” prej-
udice are constantly classified as high risk, leading to disproportionate patrolling in these areas. Due
to heightened presence of patrol cars in these areas, the odds of arrests are much greater here than
in less heavily monitored areas, despite these odds not corresponding to actual crime rates. This
vicious cycle therefore places these historically black or Hispanic neighbourhoods at an unfair disad-



vantage, and makes it increasingly difficult to alleviate bias in criminal justice. Thus, systems that
blindly learn from biased examples will continue to perpetuate past prejudice. Due to data mining
algorithms reliance on training data as ground truths, it is of great importance that decision-makers
assess the validity of the examples used for learning.

The second manner in which training data can lead to bias occurs during data collection, and is
commonly known as sample size disparity. This concerns under-representation of a subpopulation
due to non-random sampling. Inaccurate representations of groups of individuals can still be prob-
lematic, even if the recorded examples are free of human prejudice. Namely, under-representation
of subgroups leads to decreased prediction accuracy for the disadvantaged group, as opposed to the
over-represented group. As a result of poor prediction accuracy for under-represented groups, typ-
ically trustworthy criteria for fairness can result in discriminatory decision-making, as discussed in
Subsection 2.5.2. Under-representation typically occurs for minority groups or third-world countries,
due to lower levels of technological and online integration or economic participation, leaving them at
the outer regions of today’s data-generating efforts (Barocas & Selbst, 2016).

2.4.3 Feature selection.

Unwanted bias can also occur from a higher level of data-related fallacies, namely when deciding which
attribute to consider or not, also known as feature selection. The core of this problem lies in the fact
that data are by definition reductive representations of real-world entities or processes that can be
described with infinite accuracy (Barocas & Selbst, 2016). Thus, machine readable data will never
fully capture the detail of real life. More so, due to restrictions imposed by computational limitations
or model interpretability, it is often necessary to compactly describe statistical relationships in a
small number of attributes. Barocas and Hardt (2017) argue that some features may be much less
informative or less reliable recorded for minority groups in a population. Prediction accuracy is often
cited as the most important motivation to include or exclude a feature. This increase in accuracy
is often paired with a decrease in fairness, referred to as the fairness-accuracy trade-off (Dwork,
Hardt, Pitassi, Reingold, & Zemel, 2012; Zafar, Valera, Rodriguez, & Gummadi, 2015). Accuracy,
for that matter, is also an ambiguous metric when taking fairness into account. Two models with the
same prediction accuracy, for instance, can have very different subgroup accuracies due to inaccurate
representation of minority groups by limited features.

2.4.3.1 Proxies.

A subcategory of feature selection related causes of bias, known as proxies, has gained considerable
attention in current literature, due to historical relevance (Barocas & Selbst, 2016; Corbett-Davies
& Goel, 2018). These are superficially accepted characteristics that can be used as approximations
for protected attributes, such as ethnicity and religion. Proxies are often found to be the cause of
disparate impact. A well-known example is Redlining in the United States and Canada in the 20th
century, i.e., denying various services or opportunities based on applicant’s postal codes. More specif-
ically, malicious decision-makers used ZIP codes as proxies for ethnicity, as certain neighbourhoods
are historically inhabited by minority groups, predominantly (d’Alessandro et al., 2017).

2.5 Formally defining algorithmic fairness

Intuitively, fairness is something most humans have an innate understanding of, albeit often subject
to a person’s characteristics. Mathematically, however, defining fairness seems like a never-ending
multi-angle tug of war, satisfying one set of criteria as it violates the next. As one can imagine,



with the ability to ethically do so, is a challenging task, to say the least. Computer scientists and
statisticians have come up with a plethora of formal definitions of fairness, relying on the satisfaction
of various sets of criteria. Narayanan (2018), for instance, manages to touch upon 21 formalisations
of fairness. Sadly, no all-encompassing definition of fairness has been found, nor will this ever happen.
It is therefore of great importance to be able to identify which formal definition of fairness applies
to which use case, to ensure equitable outcome for all members of society.

2.5.1 Formal setup & terminological and notational conventions

As previously mentioned, studying fairness in machine learning applications is a relatively new prac-
tice. As is the case with most emerging fields of study, terminology and notation are not yet unani-
mously agreed upon, sometimes causing ambiguous interpretation of scientific writing. To make the
interpretation of the remainder of this thesis easier, several notational conventions are introduced
here. The following notational rules hold, unless explicitly stated otherwise: lowercase italic Roman
letters are used to indicated scalar variables. Random variables are denoted by italic type upper-
case Roman letters, and calligraphic uppercase Roman letters are used to indicate an unspecified,
unnamed, or generalised distribution. For instance, R ~ R is equivalent to saying that a random
variable R follows a probability distribution denoted by R. A general realisation of a random variable
is denoted by, e.g., R = r. Matrices and vectors are represented as boldface upper- and lowercase
letters, respectively.

Furthermore, because binary classifiers and their error types are commonly studied in fair ML
research, a few terminological conventions are stated here. For the types of decision-making processes
that are often the subject of fairness study, a binary outcome variable, typically denoted Y, has a
favourable (Y = 1) and an unfavourable (Y = 0) outcome class. The same holds for a corresponding
binary prediction label, commonly referred to as Y. For the sake of semantic consistency, I choose to
let outcome 1 denote the positive (i.c., favourable), and 0 the negative (i.e., unfavourable) outcome
classes or prediction labels. For instance, in a recidivism prediction context receiving a label ¥ = 1
while belonging to the outcome class Y = 0 corresponds to being labelled as low-risk (i.e., the
predictor expects this individual to not recidivate), while in fact being re-convicted of a crime in the
future. This example is known as a false positive error. See Section 4.1 for a more detailed overview
of a generalised binary classifier’s performance measures.

Let X;. € IR™MF denote the set of individual i’s observable features, where i = 1, ..., N, making
the total set of observed features for all individuals an N x k matrix X. Corbett-Davies and Goel
(2018) partition these observed features into protected and unprotected attributes: X = [X®) : X(®)]
(for an individual, this partitioning corresponds to x” = [(x®)7 (x*)T]), where X® and X®
have p and u columns, respectively. Protected or sensitive attributes are lawfully defined traits, on
the basis of which an individual might be discriminated or experience disparate impact. Examples
include ethnicity, sex, gender identity, religion or sexual orientation. Whether an attribute is deemed
protected is application specific (Bellamy et al., 2018). Namely, in one use case, discriminating on
the basis of a certain attribute can be perfectly acceptable, whereas basing decisions on the same
characteristic could be viewed as malicious practice in another. For instance, taking gender into
account when hiring security guards in male detention centres is perfectly permissible, whilst a
restaurant owner cannot do so when hiring staff.

Hardt et al. (2016) and Barocas et al. (2018), however, use a simpler indicator variable, A € {0,1},
to denote protected group membership, where A = 1 denotes an individual belonging to a sensitive
class, and A = 0 otherwise. For instance, we might have A = 0 for males and A = 1 for females.
This thesis focuses on binary prediction tasks (an applicant will be admitted to a university or
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introduced in this subsection can easily be extended to multiclass classification problems. For the
remainder of this report, a mention of observable features X and sensitive attribute indicator A in
the same context implies X consists of unprotected attributes exclusively, unless stated otherwise.
Define a binary predictor, Y := §(x, A) or Y := j(x) where Y € {0,1}, trained on the observed
data. The goal of this predictor is to approximate some target variable, Y. Note that these are
all random variables in the same probability space. That is, we assume that realisations of these
stochastic variables are samples from the joint distribution (X, A,Y) ~ J. To summarise, the goal
of fair machine learning is to predict some true outcome Y, using a learned predictor f/, based on
features X, whilst ensuring non-discrimination with respect to sensitive attribute A.

Finally, we introduce the concept of real-valued (risk) scores. Decision-making processes es-
sentially try to approximate an individual’s risk distribution and base a choice on the estimated
probability of a certain event occurring. Put differently, they approximate Pr(Y = 0|X), that is,
the conditional probability of reoffending (Y = 0), given observed features X. In practice, decision-
makers tend to use real-valued predictive scores R = r(x, A), such as FICO scores for predicting
creditworthiness introduced in Subsection 2.3, or COMPAS’ recidivism risk decile mentioned in the
Introduction. Please note that these scores need not lie in the interval, [0,1]. Typically, higher
values of R should coincide with a greater estimated likelihood of Y = 0, and therefore a tendency
to predict ¥ = 0. When taking, for example, COMPAS scores (€ {1,10}), a defendant with a score
of R =4 is expected to be less likely to recidivate than a defendant with R = 8.

A binary classifier can easily be obtained from a risk score by thresholding, namely, by requiring
Y = I{R < 7} for some threshold, 7 € ran(r(X, A)). Here, I{...} denotes an indicator function,
equalling one if its argument is true and zero otherwise. For instance, users of COMPAS scores often
use a threshold of 7 = 4 to distinguish between defendants with a low or high perceived likelihood
of reoffending (Angwin et al., 2016). A benefit of opting for such a threshold approach is that the
trade-off between a binary classifier’s true positive rate and false positive rate can be measured and
plotted by varying the threshold, yielding a receiver operating characteristic curve or ROC curve
Hardt et al. (2016).

Finally, as a purely practical convenience, consider the following notational convention. Denote
the probability of an event E occurring, conditional on group membership A = a, as Pr,(F) =
Pr(E|A = a).

2.5.2 The three fundamental principles of algorithmic fairness

As previously mentioned, there is no scarcity of formal mathematical definitions of fairness in the
current literature (Narayanan, 2018). Despite there being myriad ways of defining algorithmic fair-
ness, Barocas et al. (2018) argue that, fundamentally, most of these definitions are reducible to three
criteria. Their reasoning is based on the assumption that the majority of fairness criteria impose con-
straints on the joint distribution of the target variable Y, the risk score R or classifier Y = {R <7},
and the protected attribute A. More specifically, they suggest to express the joint distribution of
these three random variables in terms of three conditional independence statements. These three
fundamental criteria are independence, separation and sufficiency (see Table 1).

Clarity is an obvious benefit of being able to categorise fairness definitions according to these
principles. Furthermore, once one understands the advantages, drawbacks and legal repercussions of
each fundamental criterion, evaluating applicability of new fairness definitions becomes more feasible,
as its becomes a matter of correctly classifying the new notion of non-discrimination. Another
convenience of the three principle is their capability to be depicted as causal graphs (also known
as Bayesian networks or directed acyclic graphs (DAGs)), that is, a graphical representation of
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to visualise the encoded conditional independence assumptions of a data generating process. Random
variables are indicated by their relevant symbol enclosed in a circle, known as a node, and statistical
dependencies are depicted by undirected lines, known as arcs, vertices, or edges.

Independence Separation Sufficiency

V1A Y1IA|Y Y1IA|Y

Table 1: The three fundamental fairness criteria, as proposed by Barocas et al. (2018)

2.5.2.1 Independence

This constraint simply requires that the classifier is statistically independent of the sensitive attribute.
See Definition 2.1 below for a formalisation of independence.

Definition 2.1. Independence. The random variables (}A/, A) satisfy independence if VLA,

This is pronounced as "Y-hat bottom A". Independence is one of the most widely used criteria for
fairness and is formulated as follows. For all groups a, b and all values ¢, we have

Pry(Y = §) = Py(¥ = ). (1)
When Y is a binary classifier, independence is commonly referred to as demographic or statistical
parity (Feldman, Friedler, Moeller, Scheidegger, & Venkatasubramanian, 2015). This requires that
Pr,(Y =§) = Pr,(Y =) V§ € {0,1} and a, b. (2)
This corresponds to the proportions of positive decisions being equal across all groups of individuals.
In our recidivism example, independence means that the rates at which, for instance, men and women
receive low and high risk scores must be equal. It is worth noting that imposing such a restriction on
decision-making systems in criminal justice does not make much sense, as it is unjust to artificially
alter penalisation rates just to satisfy quota. Demographic parity restrictions are more commonplace
in employment applications where diversity is desired, and even then one could argue about its
validity. Other variations found in both machine learning literature as well as legal doctrine are
so-called p%-rules (Zafar et al., 2015). Suppose that group b is an unprivileged group, that is, has a
lower probability of receiving positive outcome prediction (e.g., being hired for a job). This rule is
then defined as

A

Pr,(Y =1
M > 1-— €, (3)
Pr,(Y =1)

where € = 5. Equation 3 implies that a decision-making process is fair if the inequality holds.

Additive constraints of p%-rules also exist, namely

Pro(¥ = 1) = Pry(¥ = 1)| <. (4)

The most famous example of this criterion in practice is the "four-fifths" rule. In 1978 the U.S. U.S.
Equal Employment Opportunity Commission (EEOC), Department of Labor, Department of Justice
and the Civil Service Commission created this guideline for employee selection procedures. It states
that “A selection rate for any race, sex, or ethnic group which is less than four-fifths [...] of the rate
for the eroup with the hichest rate will generally be recarded [...] as evidence of adverse impact”



(Barocas & Selbst, 2016). Hu and Chen (2018) argue that enforcement of such laws in the short run
will improve the reputation of disadvantaged protected groups in the labour market in the long run.
Despite its simplicity, natural interpretation and compatibility with legal notions of fairness,
independence suffers from some inconvenient shortcomings. First, it completely ignores possible
correlation between target variable, Y. and sensitive attribute, A. In particular, this limitation
rules out the perfect predictor ¥ = Y, when the marginal distribution of the target variable is
different across groups (i.e., Pr (Y = 1) # Pry(Y = 1)). Independence and its variants are called
‘optimality incompatible’, in this case. Aside from this drawback, Barocas and Hardt (2017) also
warn for what they call laziness, namely, the erroneous practice of accepting qualified people in the
advantaged group, and random (possibly unqualified) individuals in the other group, for the sake
of satisfying demographic parity. This laziness can adversely affect both the decision-maker as well
as the protected class. Consider a lending example, where creditworthy whites are granted loans
at a certain rate p. Due to, for instance, sample size disparity (see Subsection 2.4), the prediction
accuracy is much lower for blacks than for whites. However, by constraint of demographic parity,
the decision-maker is required to accept loan applications from the protected group with the same
rate, p. To satisfy this constraint, the decision-maker randomly accepts both creditworthy and non-
creditworthy blacks. The non-creditworthy minorities will most likely fail to repay the loan, further
impoverishing them and deteriorating the bank’s utility. This impoverishment of minority groups
will then result in a decision-making algorithm obtaining more training examples of non-creditworthy
minorities, thus creating a vicious cycle that diverges from the long term goal of equal lending rates
among all races. Acceptance (of unqualified), in this sense, can be a mixed blessing. In general
terms, this notions allows a decision-maker to wrongly trade false negatives for false positives.

2.5.2.2 Separation

The shortcomings of independence motivated researchers to devise fairness criteria that do take the
possible correlation between the sensitive attribute and target variable into account (Barocas &
Hardt, 2017). Require that the score, R, and sensitive attribute, A, to be independent, conditional
on target variable Y. See the following definition:

Definition 2.2. Separation The random variables (R, A,Y) satisfy separation if R1A|Y.
Formalising this as a constraint, this means that for all groups, a and b, and all values r and y,

Pro(R=r|Y =y) =Pr(R=r]Y =y). (5)

Note that Equation 5 is essentially Equation 1, conditioned on Y. The name, separation, comes from
the notion’s representation as a graphical model. When we view the following diagram,

B——

we see that the target variable nodes separates the sensitive attribute and score nodes. Intuitively,
this causal graph says that the risk score R is conditionally independent of sensitive attribute A,
given outcome variable Y.

Separation has the desirable property of optimality compatibility, namely, Y =Y is permissible.
In other words, separation allows the perfect predictor to be a feasible solution. In particular,
separation allows your target variable, Y, and sensitive attribute, A, to be correlated. Which means
that correlation between A and R is also perfectly permissible. Intuitively, this makes sense, as
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is allowed by the target variable. Furthermore, separation penalises laziness as it incentivises the
decision-maker to reduce errors uniformly in all groups, due to its requirement to have parity in both
the true and false positive rates. In other words, separation equalises the cost of uncertainty across
the different groups. Recall that independence satisfies neither of these desirable properties.

Hardt et al. (2016) propose two variants of separation, named equalised odds and equality of
opportunity. These criteria are discussed in further detail towards the end of this subsection, and
their work is covered in Section 3. They achieve separation by correcting score function R’s threshold
in post-processing, based on A. Note that this approach does not require retraining or applying
changes to R. Given R, the trade-off between true positive and false positive rates can be plotted
for all possible thresholds, yielding an ROC-curve. These ROC-curves can be constructed for both
groups a and b. Visually, separation corresponds to finding the intersection of the two areas under
a and b’s respective curves. This intersection is known as the feasible region, encompassing all
the realisable trade-offs for both groups. This is depicted by the shaded pink region in Figure 1.
Now, given the application-specific costs of false negatives and false positives, the decision-maker
can choose the optimal threshold in the feasible region. Note how all points in the feasible region
correspond to equal false positive rates (hereafter FPR’s) and false negative rates (hereafter FNR'’s)
for both groups, thus satisfying separation’s notion of non-discrimination.

Achieving separation by post-processing, though appealing, comes with some caveats. If the
score function, R, is close to to the Bayes optimal score, separation via post-processing will preserve
optimality among all separated scores (Barocas & Hardt, 2017; Hardt et al., 2016). However, if
R is a poor approximation of the true underlying risk, the constrained separated solution will be
even more unreliable. This could potentially cause harm to both the decision-maker’s utility and
individual well-being. If this is the case, Hardt et al. (2016) suggest to invest in collection of more
reliable data and reconsider target variable labelling, or impose separation as a constraint during
model training. Thus, separation implies faith in the quality of the data and predictive relevance of
the target variable. Given this faith is just, separation offers desirable optimality compatibility and
incentive to penalise laziness. If proven to be misplaced, data collection and model learning should
be scrutinised.
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Figure 1: Visual illustration of separation for binary classifiers, with respect to two groups of indi-
viduals. Separation finds the so-called feasible region (shaded pink region) for both groups, where
parity of TPR and FPR is realised. Taken from Barocas and Hardt (2017).



2.5.2.3 Sufficiency
Definition 2.3. Sufficiency The random variables (R, A,Y") satisfy sufficiency if Y LA | R.

Sufficiency, covered by Zafar, Valera, Gomez Rodriguez, and Gummadi (2017), means that the
target variable is independent of the sensitive attribute, given the real-valued score. Its name, like
separation, is derived from its representation as a causal model.

W——®

One can state that, for the purpose of predicting the target variable, Y, the sensitive attribute, A,

becomes redundant, as the score, R, is sufficient to perform this task. Sufficiency assumes that the
possible effect of A on Y is subsumed by R, and explicitly considering A is no longer needed. From
a legal perspective, this is of course very appealing. In a credit scoring example, this corresponds
to assuming that FICO scores already convey the possible effect of, say, gender on creditworthiness.
Ruling out the need to take gender into account when extending loans.

To achieve sufficiency, Barocas and Hardt (2017) point out that it is implied by calibration by
group. Thus, a decision-maker must calibrate his or her score function to satisfy sufficiency. Formally,
this is given by

Pr(Y=1R=r,A=a)=Pr,(Y =1R=7r) =, (6)

where r is normalised to the interval [0,1]. Intuitively, this means the score output r can be inter-
preted as a reliable probability of a positive outcome, for each group. For example, in a recidivism
case using COMPAS risk decile scores, this would imply that a certain score r for both white and
black defendants, corresponds to the same probability of reoffending.

2.5.3 Unawareness, individual and counterfactual fairness

It is worth noting that not all proposed fairness metrics fall neatly into the categories, independence,
separation and sufficiency. Namely, some proposed methods fall into categories of their own. Some
notable criteria are unawareness, individual and counterfactual fairness.

Unawareness (also known as anti-classification), arguably the simplest criterion for fairness, stip-
ulates exclusion of the sensitive attribute in the training data, as discussed by Grgic-Hlaca, Zafar,
Gummadi, and Weller (2016). This aligns nicely with the notion of disparate treatment, introduced
in Subsection 2.2. Mathematically, unawareness amounts to assuming

Y = §(X, 4) = §(X). (7)

The obvious benefit of unawareness is its simplistic intuition and applicability, and legal support
for disparate treatment cases. Conversely, there may be features in X, that are highly correlated with
the protected attributes that can be used as accurate approximations for these variables (i.e., prox-
ies). Thus, simply ignoring sensitive attributes often doesn’t alleviate the problem of discrimination
(Corbett-Davies & Goel, 2018).

Individual fairness, introduced by Dwork et al. (2012), differs from all previous notions of fairness,
because it is, as the name suggests, focused on individuals, as opposed to group fairness. It is based
on the principle that "similar individuals should be treated similarly", as stated by the authors. In
order to achieve this individual-based non-discrimination, they assume a distance metric d, that
quantifies the similarity between two individuals with respect to the application-specific task. Here,



0,d(z,y) = d(y,z) and d(z,z) = 0, where = and y denote different individuals. They continue their
formalisation by imposing a Lipschitz condition on the classifier, arguing that a classifier can be
seen as a randomised mapping from individuals to probability distributions over outcomes. That
is, let O denote a measurable space, and A(O) a measurable space of the probability distribution
over O. Then, a classifier can be formalised as M : V' — A(O), mapping each individual to a
distribution of outcomes. Two arbitrary individuals z,y with measurable distance d(z,y), map to
distributions of outcome M (z) and M (y), respectively. Now, the Lipschitz condition requires that
the statistical distance between distributions M (z) and M (y) is less than or equal to d(z,y), or
D(M(x), M(y)) < d(x,y) (where D is also a metric function). In the measurable probability space,
this corresponds to the outcome distributions of x and y are identical up to their distance d(z,y).

The benefit of individual fairness is that it devotes more attention to possible heterogeneity of
the population, by imposing restrictions on each pair of individuals, as opposed to the previously
mentioned group-based approaches. On the other side, a fundamental limitation of individual fairness
is the assumed existence of an appropriate metric function d. Intuitively too, this hurdle cannot be
ignored. How do you go about defining the similarity of two people? Kim, Reingold, and Rothblum
(2018) make an argument against the method proposed by Dwork et al. (2012), by questioning the
validity of assuming the existence of an appropriate metric function, and proposing an extension
method, named metric multifairness. Their notion is based on the more realistic principle that
"similar subpopulations are treated similarly". Despite this less fine-grained approach having more
real-world interpretability, it suffers from similar shortcomings as individual fairness.

Consider the following shortcomings of all previously mentioned criteria for fairness: indepen-
dence, separation and sufficiency are so-called observational fairness criteria, meaning that they con-
vey no information regarding the potential causes of unwanted bias, unawareness is most likely too
short-sighted of an approach due to its ignorance of possible correlated features, and individual fair-
ness is limited by its necessity of an appropriate similarity measure for individuals or sub-populations.
Proposed by Kusner, Loftus, Russell, and Silva (2017), counterfactual fairness, based on the principles
of counterfactual inference, theoretically remedies all these issues, by providing a means to interpret
the possible causes of unwanted bias. A predictor Y is said to satisfy counterfactual fairness if, given
a sensitive attribute A and observable features X,

Pr(Yace =91X,A=a) =Pr(Yaco =9 X,A=a)V§,a#d. (8)

Counterfactual fairness essentially requires that a decision is fair towards an individual if the
outcome is the same in the actual observed world as in a counterfactual world, where the individual
belonged to a different sub-population, a’. For instance, a hiring process is counterfactually fair
w.r.t. an individual if it had resulted in the exact same outcome for a black applicant, had the
applicant been white. The authors argue that a crucial step in alleviating unfairness, is properly
addressing causality of bias, using graphical modelling. Their proposed notion does exactly that,
by providing a method to check the influence of altering only the sensitive attribute. An important
setback of counterfactual fairness is its infeasibility in many real-world applications. Namely, it is
often difficult or even impossible to construct an effective and operational similarity measure with
which to compare individuals. Furthermore, it is difficult to reach consensus on what the correct
causal model should look like. This problem worsens as the number of features considered increases.

2.5.4 Examples of fairness definitions

In this subsection, I highlight a few examples of algorithmic fairness definitions, commonly used
in fair ML scientific literature. Their mathematical definitions, implications, relationships to other



fairness definitions, and their applicability are briefly covered. It is important to note the difference
between a fairness definition and the fundamental fairness principles mentioned earlier. The fairness
principles are the most basic mutually exclusive requirements for (arguably) fair decision-making, of
which fairness definitions are special cases or extensions, used in practice.

Classification parity. This is an umbrella term referring to a collection of metrics that require
some classification metric (typically one derived from a confusion matrix such as false positive rates,
precision and recall) to be equal across groups of individuals defined by their sensitive attributes.
Classification parity falls into the independence category of criteria. Here we define demographic
parity, that is equality of proportion of positive classifications, as defined by Feldman et al. (2015),

Pr(Y = 1|X®) = Pr(Y = 1). (9)

Whereas parity of false positive rates is formally defined as

Pr(Y = 1Y = 0,X?) = Pr(Y = 1|Y = 0). (10)

Calibration. A member of the class of sufficient fairness criteria, calibration is a fairness measure
concerning risk scores that approximate a respondent’s true risk, like FICO or COMPAS scores.
It requires that the risk scores, r(X), correspond to the same underlying risk, independent of an
individual’s protected attributes, X®. This can be formalised as

Pr(Y = 1|r(X™), X®)) = Pr(Y = 1[r(XW)). (11)

Equalised odds. Hardt et al. (2016) propose two oblivious fairness metrics (both falling under the
separation class of fairness measures). A metric is said to be oblivious if it depends solely on the joint
distribution of said metric, protected group membership and the target variable. The first proposed
notion of non-discrimination is called equalised odds. The goal of this fairness criterion is to impose
a non-discrimination condition, whilst aligning with the central goal of building accurate classifiers.
In contrast to demographic parity, equalised odds allows the predictor, say Y, to correlate with
protected class membership, say A, but only through the target variable, Y. Formally, a predictor
Y satisfies equalised odd with respect to protected group membership A and outcome variable Y if
V and A are independent, conditional on Y. This corresponds to

Pr(V =1|A=0Y =¢)=Pr(Y =1JA=1,Y =y), Vy € {0,1}. (12)

This definition’s alignment with the goal of high accuracy is easily shown, as YV =Yis always per-
missible. For instance, outcome y = 0 equalised odds requires that the predictor has equal false
positive rates across the two groups A = 0 and A = 1, satisfying Equation 10. Similarly, when y = 0,
the criterion enforces parity among true positive rates between the two demographics. A consequent
drawback, however, is that the constraint penalises models that solely perform well on the majority
group, by requiring that accuracy is equal across both demographics.

Equal opportunity. A less stringent version of equalised odds, is equal opportunity, also proposed
by Hardt et al. (2016). This relaxation of the previous fairness criterion rests on the intuition that the
outcome Y =1 is often viewed as the "advantaged" or "privileged" outcome, like a loan application
being accepted or being hired. Thus, Hardt et al. (2016) suggest to only enforce fairness in outcome
within the advantaged group. In a credit scoring example this is equivalent to give people who would
not default on a loan an equal opportunity of getting their loan application accepted. More formally,
this means



Pr(Y =1]A=0,Y =1)=Pr(Y =1|A=1,Y = 1). (13)

Despite its being more lenient, equal opportunity can serve as a more relevant notion of non-
discrimination in certain use cases, and generally allows for greater utility and accuracy.

2.5.5 The fairness-accuracy trade-off

A reoccurring, and in some sense unsettling, pattern in fair machine learning research is that of the
reciprocity between fairness and accuracy. In short, it is typically observed that as a decision-making
process becomes more equitable with respect to group-specific outcome, efficacy tends to deteriorate
(Kamiran, Karim, & Zhang, 2012). To remain as general as possible, the term efficacy is sometimes
used instead of accuracy, as it refers to a classifier’s tendency to produce a desired result, i.e., it also
encapsulates, say, precision and recall. However, they will be used interchangeably when discussing
this trade-off. Similarly, fairness is used as an umbrella term, alluding to generally accepted notions
of non-disparate outcome, e.g., statistical parity, equalised odds, or even individual-level fairness.

It is difficult to attribute a single cause to the frequently observed push-and-pull between fairness
and accuracy. However, excluding certain mathematical incompatibilities associated with mutually
exclusive fairness definitions, an often cited mechanism is the additional optimisation constraints
that fairness introduce. Namely, a classifier that is solely concerned with maximising, say, predictive
accuracy will search the problem space and try to find a feasible threshold to serve as a decision
boundary between posterior class-membership probabilities. The obtained solution could violate a
practically relevant fairness metric, such as equal false positive rates for men and women, which
would be completely permissible for an accuracy-concerned classifier. Adding a fairness constraint
during training can only leave the solution space unaffected in the best case scenario, but is more
likely to reduce the number of permissible solutions. The same line of reasoning works the other way
around, that is, starting with optimising a purely fairness-concerned classifier, and then constraining
it to produce a reasonably accurate classifier will most likely lead to a less equitable classifier, as
defined by the fairness constraint in question.

However, it must be noted that there is also fairness in accuracy. The aforementioned corner
case of a trivial classifier that is only concerned with equitable outcome can have severely damaging
effects on the individuals it decides over. Put differently, there are indirect dangers associated with
basing decision-making processes solely on the satisfaction of equality quota. Think of the ways
loan applicants are pushed impoverished when they are undeservedly granted credit, the societal
harm caused by not incarcerating dangerous criminals, and the financial drawbacks of a company
hiring someone who is unfit for a position. Fair outcome with regards to protected attributes, but
decision-makers must not be driven completely by equality, and still value efficacy.

2.6 Algorithmic interventions: achieving fairness

Satisfaction of non-discrimination criteria can by achieved by three types of algorithmic interven-
tions. The three types of techniques are based on the steps taken in a general machine learning
pipeline that is concerned with building a classification model. These steps roughly correspond to,
but are not limited to, collecting and processing (raw) data, learning or training a classifier, and
evaluating efficacy by testing the obtained model. Therefore, the three types of fair algorithmic
intervention techniques are pre-, in-, and post-processing (Bellamy et al., 2018). As their names
suggest, pre-processing techniques adjust input data by imposing restrictions on the feature space to
satisfy fairness criteria, in-processing methods impose constraints on a classifier at training time to
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classifier’s output to achieve non-discrimination (Barocas et al., 2018). Figure 2 provides a complete
and detailed schematic overview of the various fairness intervention techniques in their corresponding
locations in a model building pipeline.

These fairness processing techniques apply to all fundamental fairness criteria and their relax-
ations, but for the sake of intuitive interpretation, I will cover what each intervention method would
entail when independence, f/(: I{R < 7})LA, is the desired fairness objective. Applying a pre-
processing method would coincide with adjusting the input data such that it is uncorrelated with
the protected attribute A (i.e., cov(X, A) = 0). Whereas in-processing corresponds to imposing a
constraint during the learning process that constructs a classifier from training data, requiring the
distribution of R to be independent of A. Such a fairness constraint is imposed alongside an accuracy
constraint, and can lead to conflicting optimal solutions, as mentioned in the previous subsection.
And finally, achieving independence by post-processing is done by altering a learned classifier, such
that the adjusted classifier is independent of the sensitive characteristic, ie., ¥ = ]I{]:Z < 7HLA.
In the previous expression, tildes are used to indicate the post-processed classifier, risk score, and
threshold.
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Figure 2: Schematic representation of a generalised fair machine learning pipeline. In this figure,
cylinders correspond to raw, unprocessed data, rectangles are used to indicate processed data, wide
arrows depict learning or optimisation processes, and trapezoids represent learned models (note that
these can also be learned fairness-processors). Taken from Bellamy et al. (2018).

It is important to acknowledge the pros and cons of the three processing techniques with respect
to practical feasibility and utility. Pre-processing techniques require access to the raw training data
(and possibly the model building pipeline), which is not always possible in real-world applications.
However, if access to raw data is possible, pre-processing techniques have the benefit of ensuring
that the new and fairer feature space is unaffected by further training procedures. This follows from
the information theoretic data processing inequality (DPI), which states that post-processing cannot



information content of a signal cannot be increased by any local operation. This is formalised in the
following theorem.

Theorem 1 (Data processing inequality). Assume a probability model, described as a Markov Chain,
formed by the three random variables X,Y and Z: X — Y — Z. That is, the conditional distribution
of Z is independent of X, and depends exclusively on'Y (i.e., X LZ |Y ). The joint probability density
function can be expressed as:

p(x,y,2) = p(x)py | ©)p(2 | v).

Then it must hold that no deterministic or stochastic processing of Y can increase the information
content of Y about X :

I(X,Y) > I(X,2).

In the previous theorem, I() denotes the mutual information of two random variables, serving as a
measure of the total dependence between the two stochastic variables. For two arbitrary random
variables, I(X,Y) is defined as

I(X,Y) = /y /X pxy(z, y) log <m> dxdy. (14)

See Appendix C.1 for a formal proof of the DPI. The practical consequence of the DPI for pre-
processing techniques is that if the dataset satisfies, say, independence, then the re-trained classifier
will also satisfy independence. Note that this does not mean that the new debiased classifier will
yield the same utility as its unprocessed predecessor, as it will probably be less accurate.

With preservation of efficacy in mind, in-processing is the most effective, as optimising a clas-
sifier with a fairness constraint can result in the highest possible utility of the three intervention
phases (Barocas et al., 2018). However, as is the case with pre-processing techniques, enforcing non-
discrimination constraints at training time requires access to the raw data, exact model specifications,
and optimisation pipeline. This is unlikely to be feasible in many use cases, due to, for instance,
legal restraints imposed by non-disclosure agreements. Furthermore, in-processing techniques tend
to generalise poorly as they often only apply to specific model classes or training pipelines.

Finally, a post-processing technique is often the most feasible, and sometimes even the only
possible option. Namely, the process of deriving a new and fairer classifier Y from a possibly unfair
and randomised classifier Y = f(R, A) that depends on a real-valued score and the sensitive attribute
does not require access to the raw data on which the old classifier is trained. Moreover, post-
processing techniques are applicable to any arbitrary classifier as they do not need any information
on the workings of said classifier. Not having to retrain a decision-making model is a significant
advantage in practice, as retraining a complex pipeline can be computationally expensive. Conversely,
an obvious disadvantage of post-processing methods is the danger of severe losses in utility of a
classifier (Hardt et al., 2016).



3 Related work & the COMPAS-debate

3.1 Related work

As mentioned throughout the Introduction and Subsection 2.3, data-driven criminal risk assessment
practices are rapidly increasing in popularity across the globe, and even becoming well-established
mandatory parts of criminal sentencing processes in a growing number of nations. These decision-
making methods are also the cause of heated rhetoric between proponents and sceptics of their
advent. Despite the prevalence of these algorithms and the polarising debates that surround them,
there is a severe dearth of scientific evidence to back up any of the assertions made by each side of the
discussion (Stevenson, 2018). There is surprisingly little empirical peer-reviewed research available
about the most relevant factors criminal sentencing tools intend to influence or take into account,
such as detention and crime rates, recidivism, failure to appear in court (henceforth FTA), pretrial
misconduct and social disparities. Similarly, there is a lack of academic studies available about the
predictive power, reliability and efficacy of these instruments. The vast majority of cited findings
used to support either side of the debate comes in the form of non-academic and evidence-deficient
articles or opaque and often biased reports written by the very companies that produce the risk
assessment tools in question.

The peer-reviewed publications that are available come from various intersections of academic
disciplines, like Statistics, Computer Science, Law, Criminology, Political Science and Psychology.
Barocas and Selbst (2016), for instance, provide a lengthy and detailed survey of the disparities to
which Big Data have given rise. They do so from a judicial standpoint, elaborating on the potential
historical and technical causes of bias (discussed in Section 2.4), as well was coupling the relevant
legal doctrine to their statistical counterparts. The formal legal notions of discrimination upheld in
this thesis are based predominantly on their work (see Section 2.2). Their publication also serves as
a good non-mathematical starting point for anyone interested in equitable decision-making in Big
Data applications.

Stevenson (2018) similarly discusses algorithmic fairness from a judicial standpoint, albeit more
focused on criminal risk assessment tools in particular. This article starts by pointing out that
actuarial risk assessments in criminal sentencing have long surpassed the phase of being a trend
and instead have become commonplace in modern courtrooms. More importantly, these instruments
have attained their prominence with surprisingly little evidence-based knowledge as to their reliability
and societal impact. The author then shifts the discussion from the theoretical to the practical by
examining a widely used risk assessment tool used for pretrial risk estimation, the Public Safety
Assessment (PSA), and its effects on racial disparities and bail amount determination in the state of
Kentucky, a district heralded as a pioneer in pretrial reform. The study finds that the implementation
of pretrial risk assessments failed to result in the efficiency gains anticipated by proponents, nor did
it lead to racial disparities foreseen by its sceptics. The author attributes the lack of observed
decreases in crime factors to three possible causes. First, the expected magnitude of decreasing rates
of misconduct and other relevant factors could have been exaggerated due to the aforementioned lack
of scientific evidence and understanding associated with the risk estimating instruments. Stevenson
(2018) argues that the research suggesting these tools are superior to human professionals is far from
conclusive. Second, it is suspected that evaluators (e.g., judges) erroneously use their authority to
overrule the risk estimates when they are, in actuality, correct, instead of adjusting their own rulings
when the models contradict their opinions. This possibility is attributed to an apparent widespread
lack of confidence in actuarial risk assessment tools found among judicial professionals. Finally, the
third suggested cause is that the risk assessment instruments did in fact improve judges’ abilities



to predict future crime, but that these improvements did not result in immediate changes in the
expected indicators. This failure to see improved accuracy translate into improved outcomes can
be attributed to model misspecification (i.e., a failure to correctly model the ways in which crime
factors are affected by certain decisions), or to the fact that risk assessments only result in improved
rates of misconduct if the following actions undertaken by the evaluators are appropriate means of
actually mitigating the predicted risk.

The latter suggested cause is voiced, among other points, by Berk (2017). The author argues, in
accordance with the assertions made by Stevenson (2018), that debates around the use of criminal risk
assessment tools consist of sparse and assumption-based rhetoric, devoid of any empirical foundation.
The study examines the impact of machine learning forecasts of recidivism risk on parole release
decisions made by the Pennsylvania Board of Probation and Parole. The impact of the forecasts on
parole release decisions is assessed using an approximately natural randomised experiment, whereas
a regression discontinuity design is used to estimate the effect on recidivism. The findings suggest
that parole board members made little-to-no alternations to their choices when risk assessments were
at their disposal. Inconclusive evidence suggests that the risk forecasts led to a decrease in recidivism
rates. The author, however, is reluctant to draw this conclusion due to flaws in the research design, i.e.
he suspects the treatment effect was inflated as a result of policy alterations when risk assessments
were given to evaluators. Furthermore, the study concludes that the risk forecasts had no effect
on the total parole release rate, but did change the composition of released inmates. Namely, the
algorithm supposedly was able to distinguish between specific types of recidivism risks of violent and
non-violent crime, thereby giving evaluators the possibility to make more nuanced (parole) release
decisions.

In a more optimistic study, Kleinberg et al. (2017) report crime rate reductions up to 25% with
static incarceration rates, or detention rate declines of about 42 percent without any increasing
criminal rates. Using quasi-random assignment of cases to judges in a New York City dataset, and
simulation studies, the authors concluded that significant efficiency gains in crime risk prediction,
as well as improvements in societal disparity indicators are to be expected from the integration
between machine learning forecasts and criminal sentencing. These findings, however, still fall into
the aforementioned category of studies that rely on estimated results, as opposed to actually observing
the hypothesised outcomes.

3.2 The COMPAS-debate timeline

In 2014, the U.S. Senate was about to pass a landmark reform bill, mandating the use of criminal
risk assessment tools for sentencing processes nationwide. Eric Holder, the U.S. Attorney General
at the time, voiced his concerns about how little was actually known about the ways these risk as-
sessment instruments influence social disparities: "Although these measures were crafted with the best
of intentions, I am concerned that they inadvertently undermine our efforts to ensure individualised
and equal justice' [...] "they may exacerbate unwarranted and unjust disparities that are already far
too common in our criminal justice system and in our society." The former attorney general urged
the U.S. Sentencing Commission to investigate the efficacy and long-term societal consequences of
these soon-to-be mandatory risk estimation tools. The commission, however, refused to do so.
Shortly after Holder’s plea goes unheard, ProPublica, an investigative journalism bureau, manages
to obtain a large dataset of risk scores assigned to defendants from Broward County of Florida.
Broward County courtrooms, like many other counties and states in the country, use Equivant’s (then
Northpointe) proprietary criminal risk assessment software, COMPAS (acronym for Correctional
Offender Management Profiling for Alternative Sanctions). ProPublica was able to link these risk
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of data containing a defendant’s criminal record, COMPAS decile score and recidivism indicator, on
which they researched the fairness and accuracy of these scores. Their findings were published in
a polarising and highly publicised article that accused COMPAS scores of biased against African-
American defendants (Angwin et al., 2016). The study reported, among other findings, that black
defendants who didn’t recidivate within a two-year period after their initial arrest were almost twice
as likely as white defendants to be mislabelled as high risk criminals (false negative rates of 45 versus
23 percent for black and white defendants, respectively). False positive rates, too, were found to be
skewed to the disadvantage of African-American individuals: 45% and 25% for whites and blacks,
respectively. ProPublica found that even when controlling for prior offences, age and gender, black
defendant’s were still twice as likely to be labelled as high risk by COMPAS scores. Similar trends
were reported when focusing on violent recidivism risk predictions (also provided by COMPAS).

A year later, COMPAS’ developer, Equivant refutes ProPublica’s findings in a report claiming
that COMPAS scores are in fact fair with respect to a defendant’s ethnicity, when taking into account
base-rates of recidivism, a statistical aspect that ProPublica failed to control for in their investiga-
tion (Dieterich et al., 2016). The report further questions and refutes the validity of ProPublica’s
analyses. Dieterich et al. (2016) point out that ProPublica implemented incorrect specifications of
their logistic regression model, erroneously defined classification terms and disparity metrics, and
incorrectly interpreted classification errors. The authors show that when taking into account the
(presumably) appropriate classification metrics, the assertions about COMPAS scores being biased
towards African-Americans no longer hold. More specifically, Equivant’s rebuttal questions ProPub-
lica’s use of (complements of) Sensitivity and Specificity as classification error metrics for Caucasians
and African-Americans, as these measures are calculated on recidivists and non-recidivists separately.
Dieterich et al. (2016) therefore suggest using complements of predictive values that account for base
rates of recidivism among the two populations. When doing so, they conclude that COMPAS scores
satisfy classification parity among blacks and whites. This means that a risk score corresponds to
the same estimated probability of reoffending, irrespective of a defendant’s race.

This debate between COMPAS’ developer, Equivant, and ProPublica has lead to a great number
of researchers joining the debate. Chouldechova (2017) and Kleinberg, Mullainathan, and Raghavan
(2016), for instance, study the more theoretical side of the problem by showing the impossibility of
simultaneously satisfying both claims to fairness made by ProPublica and Equivant. Similarly, Feller
et al. (2016) demonstrates that both parties are essentially right and that their ideas of fairness are
incompatible. Going further, they suggest that the COMPAS scores might be problematic in not yet
measurable ways, i.e., increased predictive policing in neighbourhoods with high predicted recidivism
rates can lead to vicious cycles of increasing racial disparities.

Barenstein (2019) examines the matter from a different point of view, by scrutinising the data
manipulation choices made by ProPublica. The author accuses ProPublica of artificially inflating
the recidivism rate by almost 24% by failing to apply a two-year cutoff rule for both groups (i.e.,
recidivists and non-recidivists) in their dataset. The study reconstructs the dataset, but corrects for
the one-sided sample cutoff rule and finds that ProPublica’s data pre-processing decision affects the
negative and positive predictive values. However, the author concludes by noting that the choices
made by ProPublica had little-to-no effect on their key statistical measures, such as false negative
and false positive rates and total prediction accuracy.

4 Methodology & Data

This section outlines all the techniques, models, tools and dataset considered for this study. It lays
this the<is’ theoretical foundation bv elaboratine on the method’s workines implications and possible



mutual relationships, followed by an in depth description of the empirical data from which the results
in Section 5 are derived. The current section consists of several main topics: IBM’s Al Fairness 360
toolkit, quantifications of unwanted algorithmic biases in models or training data, known as fairness
metrics, bias mitigation algorithms and the considered data.

4.1 Confusion matrices and related performance measures

A binary classifier’s confusion matrix is the basis and source of many measures of efficacy and fairness
in this thesis and the vast majority of fair ML literature. That is why a few frequently used confusion
matrix-related notions are highlighted here for future reference in the methodology and results to
come. Table 2 shows a generalised depiction of a confusion matrix. The rows correspond to the
observed or true outcome label Y € {0, 1}, and the columns reflect the classifier’s predicted outcome
labels Y € {0,1}.

Ppsitive prediction class
(Y1)

Negative prediction class
(Yo)

Conditional procedure error

Positive outcome class (Y1) | True positives tp False negatives fn False negative rate #
Negative —outcome class False positives fp True negatives tn False positive rate —{2—
(YO) fp+tn
I i c ot fp ot fn fptin
Conditional use error Positive prediction error Totin Neg. prediction error Frtin Overall error DT fntfpiin

Table 2: Generalisation of a confusion matrix and (some of) its corresponding error type for binary
classification problems. Note that the overall error is the complement of overall prediction accuracy.

A natural metric of interest is a binary classifier’s overall prediction accuracy. However, this measure
is inherently short-sighted, in the sense that is fails to distinguish between class-specific error types.
For instance, given a highly unbalanced sample dataset where 95 out of 100 defendants are recidivists,
a trivial classifier that returns the high-risk label for every input will still have an overall prediction
accuracy of 0.95. To account for such shortcomings, balanced accuracy, precision, recall and Fjp
scores are often reported as indications of a binary classifier’s efficacy. Balanced accuracy, sometimes
abbreviated as BACC), is simply the average of the true positive and true negative rates,

TPR+TNR
5 .

Precision, also referred to as positive predictive value (PPV') by Chouldechova (2017), and recall are
defined as

BACC = (15)

tp
tp+ fn’

tp
fp+tp

Finally, the F-measure or Fj score considers both precision and recall as a measure of a binary

precision = PPV = recall = TPR =

(16) (17)

classifier’s accuracy. The parameter § represents the relative weight given to recall and precision,
i.e., recall is considered to be 3 times as important as precision. In this thesis’ recidivism use-case, |
have deliberately refrained from assigning more worth to either type of measure, as I believe that a
proper determination of the relative importance of reducing the number falsely imprisoned defendants
compared to lowering the amount of free dangerous criminals is best left to an expert in the fields
of criminology, law and societal impact of either error type. A value of § = 1 is therefore chosen,
making the F) score the harmonic mean of precision and recall:

PPV -TPR
32PPV + TPR’

It is reasonable to want a high-stakes classifier to have equal false positive and negative error rates

precision - recall

Fg=(1+ 5% = (1+5%)

- 1
(B?precision + recall (18)



equal precision across groups. However, Chouldechova (2017) shows that these criteria are not just
difficult to satisfy simultaneously in practice, but in fact mathematically incompatible when risk
prevalence, also known as base rate, differs among groups. This finding is formalised in Theorem 2,
a proof of which is given in Appendix C.2.

Theorem 2 (Chouldechova’s Incompatibility Result). If a classifier satisfies predictive parity, i.e.,
if PPV /precision is equal for all sub-populations/groups, but the base rates y differ between groups,
then the classifier cannot satisfy equal false positive and false negative rates across groups.

4.2 Random Forest

Random forest, developed by Breiman (2001), is a non-parametric ensemble machine learning method
for classification that creates a large collection of decorrelated decision trees using random samples
from both the variable space as well as the training observations space and returns the mode of the
decision trees’ outputs as its classification output. Decision trees are, despite their simplicity, effective
for capturing patterns in input data, and are generally low-bias (Friedman, Hastie, & Tibshirani,
2001). They are however known to suffer from high variance, and can therefore be dramatically
improved by aggregating over a large number of decorrelated identically distributed decision trees.
The formal process of random forest is described in Algorithm 1.

Algorithm 1 Random forest for classification

initialization

for b = 1 to B do
1. Take a bootstrapped sample of Sy, size N, from the training set.

2. Grow decorrelated decision tree T}, using Sy,
while minimum node size n,,;, is not reached do

(a) Randomly draw m variables from the p predictors
(b) Select the best split-point out of the m

(¢) Split parent node into two children nodes
end

3. Return the class membership prediction of Tj, C’b(x)

end

Output: Ensemble of decision trees with majority vote of output class: Cx(z) = mode{C,(z)}?

From a fairness analyses perspective, random forest is an appealing classification method as it
provides a natural way to rank the relative importance of predictors with respect to the classifica-
tion task. This relative feature importance (henceforth RFI) analysis is also proposed by Breiman
(2001).The two most common measures of variable importance for random forests are based on
predictive accuracy and Gini impurity. Because of its more natural and intuitive interpretation
regarding recidivism prediction, this study is done using accuracy-based RFI. The out of bag (ab-
breviated OOB) samples are used to measure prediction accuracy at the b-th tree. After accuracy is
recorded, the values of a single variable j are randomly permuted in the OOB samples, and predictive
strength is computed again. A decrease in accuracy after permutation is taken as a sign of feature
importance. The changes in accuracy are measured and averaged over all B trees. and the resulting



feature importances are normalised, yielding a distribution of RFIs. The RFIs of all predictors are
first recorded for the ensemble classifier concerned with modelling the predicted outcome label V', i.e.,
low- or high-risk COMPAS score, and compared to its RFI when predicting the observed outcome
label Y, that is, observed recidivism. A significant difference in relative importance of protected
attributes between the random forest models concerned with modelling V and Y, respectively, can
be used as tentative evidence of unfair treatment, as one would expect (protected) attributes to have
similar importance scores for both ¥ and Y, if the decision-making model based on COMPAS scores
(that implicitly defines Y) is to be considered fair.

4.3 Logistic regression

To be able to draw inference about the statistical relationship between protected attributes, such as
race and sex, and observed recidivism, risk score category and generalised error rates, it is necessary
to make certain distributional assumptions in order to model the posterior probabilities of class
membership given a defendant’s observed features. Logistic regression or logit model is a natural
choice for such purposes, as it provides an easily interpretable, yet generally effective manner to
model the linear relationship between variables in the feature matrix X and the odds of belonging
to a certain outcome class Y (Friedman et al., 2001).

Formally, the posterior probability of individual ¢ with feature vector x; and corresponding coef-
ficient vector B belonging to outcome class Y = 1 is given by

Pr(Y =1|X =x;,8) = (87x), (19)

where o(a) is the cumulative density function (CDF) of the logistic distribution, also known as the
logistic sigmoid function, defined as

__exp(a)
ola) = 1+ exp(a)’ (20)

4.4 1BM’s Al Fairness 360 toolkit

As mentioned briefly in the introduction, IBM has responded to growing concerns regarding unfair-
ness in machine learning by deploying an extensible architecture for understanding and mitigating
unwanted algorithmic bias, named Al Fairness 360 (https://github.com/IBM/AIF360). The core
objectives of this open source Python toolkit are to expedite the implementation of fair machine
learning techniques in industrial or commercial applications and to administer an open platform for
the scientific community to share and evaluate algorithms (Bellamy et al., 2018).

ATF360 consists of a comprehensive collection of datasets, fairness metrics and bias mitigation
algorithms, accompanied by tutorials and the corresponding scientific publications in which the
techniques are studied. These are implemented in the form of four abstractions, or so-called classes,
for datasets, metrics, explainers and algorithms. The Dataset class and its subclasses contain tools
for handling various forms of data (structured or unstructured) and built-in datasets on which models
can be trained and tested. The Metric class and its subclasses compute various individual and
group fairness metrics to quantify unwanted bias in datasets or models. The Explainer class works
in association with the metric classes, and provides further insights about the calculated fairness
measures. These explainer classes can be used to translate computed outputs to explanations that
are meaningful to various industry applications. At the time of writing, IBM’s AIF360 is the first
fairness toolkit to emphasise the need for user-friendly and industry-specific explanations. Finally,
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fairness metrics by manipulating the training data, imposing constraints when learning a model or
correcting outcome labels. The bias mitigation algorithms’ sub-classes are categorised according to
the three possible phases of intervention in a general machine learning pipeline (pre-, in- or post-
processing). Currently, a total of nine bias mitigation algorithms are supported by AIF360: four
pre-processing, two in-processing and three post-processing algorithms.

The following three post-processing algorithms are considered for this study: equalised odds
post-processing, calibrated equalised odds post-processing and reject option classification. Equalised
odds post-processing optimises equalised odds (see 2.5.4) by solving a linear program to find a new
probability distribution with which to alter the outcome labels (Hardt et al., 2016). Calibrated
equalised odds post-processing also attempts to optimise equalised odds, but simultaneously tries
to satisfy calibration of a classifier’s score output (Pleiss, Raghavan, Wu, Kleinberg, & Weinberger,
2017). Reject option classification re-assigns favourable outcome labels to unprivileged individuals
and unfavourable labels to privileged individuals, within the reject option clause: a confidence region
around a classifier’s decision boundary with the highest level of uncertainty. (Kamiran et al., 2012).
The details and workings of these algorithms are covered in Subsection 4.6.

4.5 Fairness metrics

ATF360 supports a wide variety of quantification measures of unfairness. We consider five of those
fairness metrics in the current study, to provide a comprehensive view of potential unwanted algo-
rithmic bias from multiple angles. The first four considered fairness metrics are simply computable
from a binary classifier’s confusion matrix. The fifth metric, known as the generalised entropy index
(hereafter GEI), introduced by Speicher et al. (2018), unifies many prevailing measures unfairness
by calculating a scalar degree of between- and within-group fairness.

In the following equations, we uphold the notational convenience introduced in the final paragraph
of Section 2.5.1, i.e., the probability of an event E, conditional on group membership A = a, is
subsumed in the right hand side of the following equation, Pr(F|A = a) = Pr,(F). Furthermore, the
following formulas assume group membership A = a corresponds to a majority or privileged group,
and A = b implies a minority or unprivileged group.

4.5.1 Statistical parity difference

This is the difference in probability of favourable outcomes between majority and minority groups
(Bellamy et al., 2018). For this fairness metric, we assume that a favourable outcome corresponds
to the positive prediction class (i.e., Y = 1. For instance, this could be a loan approval in a credit
scoring context, being hired in a recruitment example, or being labelled as low-risk by an RPI. There
are, of course, applications in which V=1 corresponds to an unfavourable outcome, such as receiving
a prison sentence in a criminal justice application. Ambiguity can be avoided in such cases by simply
adopting a notational convention by switching labels.
Statistical parity difference, or SPD, formally means

SPD =Pry(Y =1) — Pr(Y = 1), (21)
where SPD € [—1,1]. A value of zero denotes exactly equitable outcome between privileged and
unprivileged groups, whereas values of negative and positive SPD’s correspond to lesser and greater
benefit for the minority group, respectively. SPD is intuitively simple and supported by the legal
notion of disparate impact (See Section 2.2). However, it completely disregards equality in error rates
(i.e., FPR and F'NR), thereby permitting poor group-specific classifiers. As previously mentioned,
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therefore consider both group-specific and all-round prediction measures when evaluating fairness
through SPD.

4.5.2 Disparate impact ratio

Originally named "disparate impact" by Bellamy et al. (2018), calculates the quotient of the prob-
ability of favourable outcome between privileged and unprivileged groups. To avoid confusion with
the homonymous judicial concept introduced in Subsection 2.2, this work adds the word ’ratio’ to
the name. The disparate impact ration (hereafter DIR) is calculated as follows.

pip= o =1 (22)
Pr,(Y =1)

Notice that DIR € [0,00). Typically, there is said to be a violation of disparate impact if DIR
exceeds the boundaries of some interval determined by a threshold, €. For instance, a binary classifier
9(X, A) is in violation of disparate impact if DIR ¢ [(1 —¢€),(1 —¢)"']. DIR = 1 implies fair
outcome of favourable decisions between both groups, whereas a value less than 1 corresponds to
disadvantageous outcome for the minority group, and vice versa. DIR suffers from shortcomings,
similar to those of SPD. However, it has the added benefit of being easily adaptable to existing

legally defined fairness criteria, such as the four-fifths-rule.

4.5.3 Average odds difference

In contrast to the previous two fairness metrics, average odds difference (abbreviated AOD) takes
into account a confusion matrix’ rates of mislabelling. It is defined as the average difference in
false positive rates and true positive rates between majority and minority groups, and is denoted as
follows.

AOD = % [|FPR, — FPR,|+ |TPR, — TPR,|] (23)
Here, we adopt the following notational conventions: FPR, = Pr(ff = 1Y = 0,4 = a) and

TPR, = Pr(f/ =1]Y =1, A = a). Here, a value of zero implies equitable outcome for both groups,
a negative value corresponds to disadvantageous outcome for the unprivileged group and a positive
value implies higher benefit for the minority group. More specifically, notice that AOD = 0 implies

equalised odds is satisfied (Hardt et al., 2016).

4.5.4 Equal opportunity difference

This is a special case of the average odds difference, and corresponds to the difference in true positive
rates between privileged and unprivileged groups.

EFEOD =TPR, —TPR,
—(1- FNR,) — (1 - FNR,) (24)
=FNR,— FNR,

4.5.5 Generalised entropy index

The four fairness metrics mentioned above are all group fairness measures and suffer from common
drawbacks. Namely, they do not guarantee individual-level fairness (similar individuals should be
treated similarly) and fail to take into account relative group size, even though this quantity matters



fairness metrics tend to neglect societal well-being and are often infeasible due to difficulties in
defining an appropriate similarity metrics with which to compare individuals (Kim et al., 2018;
Speicher et al., 2018). Realising how many salient definitions of fairness tend to overlook the trade-off
between individual- and group-level fairness, Speicher et al. (2018) propose to quantify algorithmic
unfairness using a family of inequality indices typically used in econometrics and social sciences,
known as generalised entropy indices. Originally proposed as a measure of income inequality in
populations, generalised entropy indices or GEI’s, such as the Coefficient of Variation, Gini, Atkinson
or Theil index, can be interpreted as a quantification of information theoretic redundancy in data.
To quantify these unfairness components, we must adopt a benefit vector, b = (by, ..., b,), denoting
the relative benefit of a decision-making process’ outcome for all individuals in a population of size
n. The family of generalised entropy indices in then defined as

A3 |(2) -1 ag oo,

"b» bi
Ela) =<1y ZIn— a=1, 25
(@) ngu W (25)
—1N"In =, a=0.
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Where g is the mean benefit over the entire population and o > 0 is a regulation parameter which
denotes the weight given to the distances between an individual’s own and mean group benefit. More
specifically, for large o, £(«r) is more sensitive to large deviations in relative benefit, whereas for small
a, £(a) becomes more sensitive to smaller differences in benefit. Furthermore, the benefit function
is defined as b; = §; — y; + 1, where ¢; and y; denote individual ¢’s predicted and true outcome labels,
respectively.

Notice that several commonly used inequality indices are special cases of £(a). For instance,
(1) is the Theil index, £(0) is the mean log deviation, and £(2) is § times the squared coefficient of
variation.

Generalised entropy indices have the desirable property, named subgroup decomposability. Mean-
ing that for any partition of the total population into an exhaustive set of non-overlapping groups,
subgroup decomposability guarantees that the overall measure of unfairness can be broken down into
a within-group unfairness part (i.e., the weighted sum of inequality in benefits distributed among
individuals within each group) and a between-group unfairness component (the weighted sum of dif-
ferences in mean benefits received by each group). Subgroup decomposability enables us to take into
account the trade-off between individual- and group-level unfairness. Partition the total population
into |G| disjoint sub-populations, where group g € G has size |g| = n, with corresponding benefit
vector b? = (b9, ... bgg) and group mean benefit ;. Then, we can define the mean benefit for a

ey U

sub-population or group g € G as p, = ﬁ > b;. Equation 25s first case (i.e., £(a)|o ¢ {0,1}) can

1€g
be rewritten as
SR u g
E(by,....bp; ) = —= —1— (—=)* -1

Where Ew (b; @) is the within-group unfairness component, and £g(b; o) the between-group part, and
are thereby defined by the respective terms on the right-hand side of the first equality in Equation

9% Note that the previotielv mentioned orotnip-baced fairnece metrice <olelv captiire the between-



group component for |G| = 2, whereas £(«a) takes individual-fairness into account and is extensible
to multi-group frameworks (i.e., |G| > 2).

Thus, GEI’s unify group- and individual-level fairness metrics into one scalar value, whilst con-
sidering the often overlooked trade-off between the two components. Furthermore, this approach
provides a way to assess how unfair an algorithm is with respect to varying protected groups and
intersections thereof within the same population. Finally, generalised entropy enables a decision-
maker to account for fairness gerrymandering, that is, strategically manipulating boundaries and
intersections of subpopulations in order to benefit a particular group.

4.6 Bias mitigation algorithms

Besides supporting several means of quantifying unwanted algorithmic bias, AIF360’s Algorithms
class provides a number of pre-, in-, and post-processing debiasing algorithms. These methods
attempt to reduce unfair algorithmic bias by either manipulating training data, imposing constraints
during model learning or altering prediction outcomes. In this study, we consider three cases of
the last category, namely, post-processing algorithms. This section covers the mathematical details,
theoretical implications and pseudo-code of each algorithm.

4.6.1 Equalised odds post-processing

Equalised odds post-processing, proposed by Hardt et al. (2016), optimises for equalised odds by
solving a linear program. It is a supervised learning algorithm and can be executed by deriving a
new predictor from an existing binary classifier or a real-valued score function, which in turn can be
made a classifier by thresholding. In other words, we attempt to find an equalised odds predictor
Y derived from a real-valued score R or binary predictor Y. Being the result of a post-processing
procedure, we can state that the derived equalised odds predictor Y is independent of observed
features X, conditional on the joint distribution of the score and sensitive attribute (R, A).

Achieving equalised odds must be done subject to an accuracy-preserving constraint. We define
an arbitrary loss function ¢ : {0,1}?> — R, that takes the predicted value and true label as input
arguments and outputs the associated loss or inaccuracy, that is, £(7,y) € R. The goal of deriving
an equalised odds predictor is to minimise the expected loss B[((Y,Y)] subject to equalised odds.

Deriving the equalised odds predictor Y from a binary predictor Y and binary sensitive attribute
A is equivalent to solving a linear program in four variables, and has a useful geometric intuition
behind it. First, consider the following notational convention

A, A, A

YY) = (Pr(Y =1|A=4a,Y =0),Pr(Y =1|A=a,Y =1)). (27)

That is, 7,(Y) denotes the vector of false and true positive rates of a predictor ¥~ within a certain

A,

sub-population A = a, respectively. We can now express equalised odds in terms of v,(Y"). Namely,
a predictor Y satisfies equalised odds if and only if ~,(Y) = ~,(Y), for a binary sensitive attribute.

A

Next, let P,(Y) denote the two-dimensional convex polytope or polygon defined as the convex
hull of four vertices,

Po(Y) := Conv{(0,0), 7, (V),7,(1 = V), (1, 1)}. (28)

Graphically, this can be viewed as follows. Let the newly learned predictor’s false positive rates

(i.e., Pr(Y = 1|A,Y = 0)) for all possible thresholds be the z-axis, and the y-axis corresponds to

Y’s true positives rates for all possible thresholds (i.e., Pr(Y = 1|4,Y = 0)). So, P,(Y) is a closed
subspace of P := [0,1]2, denoted P,(Y) C P. Now, P,(Y) is equivalent to the area spanned by the



A A

lines passing through the coordinates in Equation 28, where ~,(Y) and «,(1 —Y") correspond to the
derived predictor being equal to the original predictor V and its complement, respectively. Notice
that P,(Y) for a € {0,1} characterises all the feasible trade-offs between false and true positive rates
that can be achieved by any classifier Y derived from a binary predictor Y, and thus, v.(Y) € Pa(?).

Finding the equalised odds solution can be summarised in the following optimisation scheme.

m}gnlE[f(f/, Y)]
s.t.Va € {0,1} : 7,(Y) € Po(Y) (29)

YY) =n(Y)

To show that Equation 29 represents a linear program in four variables, it must be shown that
the objective function E[@(Y, Y)} is in fact a linear function. Consider the following expansion of
the expectation of the loss function.

Bl(Y, V)] = 3 (yy)Pr(Y =y.Y =y) (30)

v,y €{0,1}

Where,

Pr(Y =¢,Y =y)=Pr(Y =¢/,Y =y | Y =Y)Pr(Y = Y)
+Pr(Y =y, Y £y |Y #Y)Pr(Y #Y)
=Pr(Y =¢,Y =y)Pr(Y =Y)
+Pr(Y =1—y,Y =y)Pr(Y £Y).
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Continuous statistics (e.g., a real-valued score function R) convey more information about an
individual observation’s estimated risk than a binary variable (e.g., a predictor 37) It is therefore
beneficial in terms of utility to consider deriving the equalised odds predictor Y from a score function.
Furthermore, real-valued scores are common in practical applications (e.g., using FICO scores to
evaluate loan applications or COMPAS scores for recidivism prediction).

For the following derivations, we will assume R € [0, 1] is the normalised version of some real-
valued scoring function and can thus be interpreted as an estimation of the probability of positive
outcome of the target variable Y. As mentioned before, deriving a binary predictor from a score
function is done by thresholding, that is ¥ = I{R > t}. Assuming that the underlying true risk
distributions of groups defined by A are not identical, applying a single threshold to these various
groups will result in a binary predictor that does not satisfy equalised odds, as it is unlikely that
unequal risk distributions yield equal false and true positive rates. We must therefore consider using
different thresholds for different subpopulations defined by A, that is ¥ = I{R > t,}. Unfortunately,
this is often insufficient to satisfy equalised odds (Hardt et al., 2016).

Recall from Equation 27 that equalised odds can be formulated as requiring equality of TPRs and
FPRs for different values of a. Also consider that an ROC-curve is a visual representation of a binary
classifier’s trade-offs between true and false positive rates for all possible decision-thresholds. It is
therefore useful, when attempting to achieve equalised odds, to consider the different ROC-curves
determined by group membership, or so-called A-conditional ROC-curves,

Ca(t) := (Pr(R>t|A = a,Y = 0),Pr(R > t{A = a,Y = 1)). (35)



Thus, we say that a score function satisfies equalised odds if and only if C,(t) = C(t) Vt,a #
a’. Due to the A-conditional ROC-curves being equal in this case, any threshold ¢ will result in
the equalised odds predictor. When this is not the case (i.e., ROC-curves are different), a utility
maximising approach is to set different thresholds for different A-based sub-populations. Graphically,
this corresponds to each A-conditional ROC-curve having its own point in the false/true-positive
plane denoting the optimal threshold. However, to align with the equalised odds criterion, these
thresholds must lie at the same point in the plane (which of course represents equal false and true
positive rates between demographics). This is possible if there exists a point where all ROC-curves
intersect. Though, in reality the curves might not have non-trivial intersections at all. Furthermore,
it is also possible that such an intersection (given it exists) corresponds to an undesirable trade-off
between F'PRs and T'PRs, regarding utility.

Hardt et al. (2016) suggest to use a randomisation approach to fill the span of all feasible derived
predictors Y and permit intersection in the false /true-positive plane. For every subpopulation a, D,
denotes the convex hull of the A-conditional ROC-curve’s image, that is

D, = Conv{C,(t) : t € [0,1]}. (36)

A

Notice that D, is the smoothed counterpart of the polytope P,(Y') in Equation 28. However, we
do not consider solutions below the false/true-positive plane’s main diagonal (i.e., the line connecting
(0,0) and (1,1)), as these points are worse than random guessing, and will therefore never be desirable
according to any logically defined loss function.

To derive an equalised odds predictor Y from two A-conditional ROC-curves, the algorithm
chooses a point in the intersection of their respective convex hulls as a (possibly randomised) threshold
predictor for each group a. Namely, any point in D, (i.e., the convex hull of an arbitrary group a)
corresponds to a feasible trade-off in true and false positive rates for a subpopulation, and hence
represents a predictor Y based on score R. Furthermore, this predictor can always be expressed as a
mixture of two threshold predictors, as the TPR-FPR-plane is two-dimensional. Given that A = a,
the derived predictor can be seen as Y = I{R > T,}, where T, € {t,,1,} is a randomised threshold
with distribution Pr(7, = t,) = p, and Pr(T, = t,) = 1 —p_ = p,. This means that for every
subpopulation, T, is either equal to a fixed threshold ¢, or a randomised mixture of two t, < t,.
When 7T}, is a mixture and R < t), the predictor always gives a negative output Y = 0, similarly,
when R > t, the predictor is always set Y = 1 and if R € (t,,ta) the predictor is randomly set Y =1
with probability p_.

Put differently, Y is constructed by choosing a trade-off point in the intersection of two convex
hulls (i.e., (70,71) € NaDy), and then for each group satisfy equalised odds (i.e., 7(Y) = 71 (Y))
using a randomised predictor Y | (A = a) = I{R > T,}.

Notice that the feasible set of FFPR/TPR trade-offs of all possible equalised odds predictors is
the intersection of the areas under the two groups’ ROC-curves. All logically considered solutions
lie on the upper-left boundary (i.e., above the main diagonal). This convex set can be seen as the
ROC-curve of the equalised odd predictor Y. Also note that the equalised odds predictor creates
incentive to increase prediction performance for all groups, as the equalised odds ROC-curve is
point-wise minimum of each A-conditional curve, and hence represents the minimum prediction
performance out of the two A-conditional predictors. Finally, finding the optimal equalised odds
trade-off corresponds to solving the following optimisation problem

min  y(Y){(1,0) + (1 =1 (¥))e(0, 1), (37)

Va:y(Y)ED,
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these points is undesirable.

4.6.2 Calibrated equalised odds post-processing

Next, we discuss calibrated equalised odds post-processing, as proposed by Pleiss et al. (2017). Cali-
bration is a crucial condition for many risk assessment applications. If a decision-making algorithm’s
predictions do not represent properly calibrated probabilities, satisfaction of other fairness criteria,
such as equalised odds, will not necessarily avoid discrimination. A lack of understanding how cali-
bration relates to prevailing fairness definitions and shortcomings of equalised odds post-processing,
as proposed by Hardt et al. (2016), are motivations for a cross-over method that achieves calibration,
whilst satisfying a relaxation of equalised odds.

If we look at the number of individuals that received some (normalised) risk score p, we say
that the risk assessment tool concerned with estimating the probability of belonging to the positive
class Y = 1 is calibrated if we find 100p% of the sample to actually be instances of the positive
class. Intuitively, calibration means that a risk score is a reliable estimate of the true population
distribution and carries semantic meaning. Although calibration is an important criterion for equity,
it is not sufficient to ensure fairness (Corbett-Davies & Goel, 2018).

The proposed algorithm yields a calibrated relaxed equalised odds classifier by withholding pre-
dictive information from one sub-population. The setup for this post-processing approach is similar
to that of equalised odds’ framework, extended to allow for probabilistic classifiers. Consider a binary
classification task and assume the existence of two disjoint groups, determined by a sensitive attribute
A = a where a € {0,1}. Allow these two groups to have unequal base rates pi,, i.e. probabilities of
belonging to the the positive class: py = Pro(Y = 1) # pu1 = Pri(Y = 1) where we use a shorthand
notation Pr(Y =y | A = a) := Pr,(Y = y). And let ro(x),r (x) : R*¥ — [0, 1] represent separate
risk estimators for the respective groups, where r, outputs the probability of a given observation
x : k x 1 belonging to the positive class (i.e., a normalised risk score), for sub-population a. In
practice, however, ry and r; can be trained jointly, implying that they are the same classifier.

For ease of interpretation, define the generalised false positive rate of classifier r, for group a as
Grp(ra) = Eulre(z)|Y = 0], and generalised false negative rate of the same classifier as g, (r,) =
E.[1 —ro(x) | Y = 1]. And we call a classifier r, perfectly calibrated if ¥Vp € [0,1], Pr(Y =1 |
ro(r) = p) = p. Note that calibration of both estimators with respect to both subpopulations is
crucial for non-discrimination, as failure to meet this demand can result in risk estimates carrying
group-specific information (Pleiss et al., 2017).

Define in the false-positive-false-negative plane (hereafter FP-FN plane) the region of trivial
classifiers as those that output a constant value for every input argument: r¢(x) = ¢Vz,c € [0, 1].
Furthermore, notice that the definitions of generalised error rates and calibration imply that all trivial
classifiers lie on the diagonal g, (r) 4+ ¢ (1) = 1, corresponding to random guessing. Consequently,
all reasonable classifiers (i.e., those better than random) lie below this boundary in the FP-FN plane.

Similarly, we can characterise the set of all calibrated classifiers for both subpopulations as a
linear relationship between their generalised error rates and base rates,

9sp(Ta), (38)

meaning that the classifier r, lies on a line with slope (1 — )/, starting at the origin (i.e.,
Gn(ra) = gpp(re) = 0). This lower endpoint corresponds to the perfect classifier, whereas the line’s
upper endpoint is its intersection with the trivial classifier diagonal, as no calibrated classifier can
predict with lower accuracy than random guessing. More specifically, the upper endpoint of the line
represented by Equation 38 corresponds to the trivial classifier that outputs a group’s base rate u,,.



This is the only trivial classifier that satisfies calibration, denoted as r#+. Furthermore, Equation 38
also implies gg,(r"*) = p, and gg,(r**) = 1 — p,. Finally, notice that for a given base rate p,, the
strictly better one of two calibrated classifiers lies closer to the origin on the line of all calibrated
classifiers.

As alluded to earlier in this subsection, the incompatibility of calibration and equalised odds
and the desirability of simultaneously satisfying both conditions serves as the main motivation for
calibrated equalised odds. The impossibility of calibrated equalised odds is formalised in the following
theorem (Kleinberg et al., 2016).

Theorem 3 (Kleinberg’s Impossibility Result). Let ro and 1 be classifiers for disjoint groups Gy
and G1 with unequal base rates pg # p1. ro and ry satisfy equalised odds and calibration if and only
if ro and ry are perfect classifiers.

The proof (for which the reader is referred to the work by Kleinberg et al. (2016) or that of Pleiss
et al. (2017)) builds on the intuition that the restrictions (i.e., unequal base rates, equalised odds and
calibration) define an over-constrained set of classifiers. Geometrically, we can confirm Theorem 3 by
realising that equalised odds requires both classifiers to have the same coordinates in the FPR-FNR
plane (see Section 4.6.1), whilst the unequal base rates of calibrated classifiers 1o and 7 stipulate
that they lie on separate lines (defined by Equation 38), solely intersecting at the origin (i.e., perfect
prediction). Hence, unless ry and r; have are perfect classifiers, the equalised odds constraint must
be relaxed.

Begin by defining generalised a cost function ¢, per subpopulation, that imposes restrictions on
generalised false positives gf,(r,) and negatives g, (r,)

Ca(ra) = 71-augfp(ra> + Vagfn(ra)a (39>

where m, and v, are group-specific non-negative constants, interpretable as the perceived cost or
weight of a false positive or negative error, respectively. Furthermore, we assume that for a given
base rate, at least one of the two constants is nonzero. In other words, the generalised cost function
ca(7q) is zero if and only if r, is a perfect predictor (i.e., gp(7a) = gsn(ra) = 0).

We can now state that calibrated classifiers ro and r; satisfy relazed equalised odds with calibration
if and only if ¢o(rg) = c¢1(r1). Geometrically, this condition amounts to requiring both calibrated
classifiers to reside on the same isoquant or level curve.

In the algorithm’s description we assume, without loss of generality, that for two well-calibrated
but possibly discriminatory classifiers ro and rq, ¢o(r9) > c1(r1). The objective is to obtain a cal-
ibrated classifier 7; such that co(rg) = ¢1(71). To satisfy this equal cost constraint, we withhold
predictive information for a random sample of the subpopulation defined by A = 1. Essentially, this
means we allow the classifier 7 to return the group’s base rate with a certain probability « (i.e., the
output of the calibrated trivial classifier r#1).

() = {r‘“ (x) = W%th probab%l%ty o (40)
r1(z) with probability 1 — «

Notice that Equation 40 results in the generalised cost of 71 being a linear combination of the
costs of r; and r#* with interpolation parameter a: ¢1(71) = (1 — a)ci(r1) + aeq (r*). From this last
<olro)=erlrn). pogylts in
01(7‘”1)—01 (7’1)

satisfaction of the equal costs constraint ¢;(71) = ¢o(rp), whilst preserving calibration.

equality, we can deduce that setting the interpolation parameter equal to o =



Algorithm 2 Satisfying calibration and a relaxed equalised odds constraint using information with-
holding
initialization

Input: classifiers ro and r s.t. ¢1(r1) < co(ro) < ¢ (r*') and holdout set Pyiq.
Output: calibrated classifiers o and 7y, satisfying co(ro) = ¢1(71).

Determine base rate uy of group 1 (using Pyaiq) to produce trivial classifier r#1.
while ¢y(rg) # ¢1(71) do

‘ construct 7 using a = -ro=ci(r).

c1(rt1)—ci(r1)

end

4.6.3 Reject option classification

The final bias mitigation algorithm considered for this study is Reject Option based Classification,
proposed by Kamiran et al. (2012). The original paper uses the acronym ROC, but in this thesis
I will refer to the method as RObC, to avoid confusion with the well-known abbreviation for the
Receiving Operating Characteristic curve. This post-processing method builds on the hypothesis
that discriminatory decisions are made in the vicinity of the decision-boundary, due to, what the
authors suggest, is a stronger influence of bias in this area. Moreover, RObC uses an adjustable
critical region around the decision boundary to re-assign outcome class labels among group instances
of advantaged and deprived individuals, to reduce discrimination (analogous to affirmative action).

Some key motivations for considering RObC are a lack of requirement to modify biased data or
impose constraints during training time, and extensibility with respect to multiple attribute handling
or ensemble classification.

For simplicity, we limit ourselves to a two-class single classifier problem with a binary sensitive
attribute indicator A = a where a € {0,1} (A = 1 corresponds to an instance belonging to the
protected group). As before the target variable is defined as Y = y with y € {0,1} where Y =1 is
the favourable label. Furthermore, we assume a probabilistic outputs the posterior probability of an
instance x belonging to the positive class Pr(Y =1 | x). RObC attempts to reduce discrimination,
defined by the authors as statistical parity difference or SPD, which corresponds to minimising
PrY =1|A=0)—-Pr(Y =1|A=1).

Typically, a trained classifier assigns an instance to the class with the greatest posterior proba-
bility (James, Witten, Hastie, & Tibshirani, 2013). However, RObC takes a different approach by
categorising instances near the decision boundary as "reject options" and labels them as belonging
to the positive class if the instance is a member of the sensitive group, and vice versa.

More specifically, if the classifier produces a posterior probability of an instance belonging to
the positive class with high certainty (i.e., Pr(Y = 1 | x) close to 1), then the instance is labelled
according to the traditional decision rule, i.e., if Pr(Y =1 | x) > Pr(Y = 0| x) then x is assigned to
the positive class, and otherwise to the negative class. However, if the instance is classified with low
certainty (i.e., Pr(Y = 1| x) close to 0.5), the reject option-clause applies.

Adopt a reject option for instances residing in the critical region, defined as max[Pr(Y =1 |
x),1 —Pr(Y =1|x)] <60, where 6 € (0.5,1). As stated earlier, Kamiran et al. (2012) suggest that
instances in the critical region (referred to as rejected instances or reject options) are ambiguous and
most susceptible to discrimination.

Algorithm 2 summarises RObC’s procedure.



Algorithm 3 Reject option based classification (RObC)

initialization

Input: A learned probabilistic classifier R that outputs the posterior probability of an instance X .
belonging to the positive class Y =1

Output: {Y;}Y, class labels for all instances

Reject option decision rule:

VX;.€e{Z|Z e X max[Pr(Y =1|2),1-Pr(Y =1]|2)] <6}
If A=1thenY, =1
If A=0thenY; =0

Standard decision rule:

VX;.e{Z|Z e X max[Pr(Y =1|2),1-Pr(Y =1|2)] > 6}
Y; = argmaxy ¢y [Pr(Y = 1] X;), Pr(Y =0 | X;)]

4.7 The Broward County recidivism dataset

The dataset used by Angwin et al. (2016) consists of pretrial and probation defendants in Broward
County of Florida, U.S.A. (the second-most populous county in the state), who have been assessed by
COMPAS'’ risk estimation tool between January 1st 2013 and December 31st 2014. The recidivism
risk scores are based on the COMPAS survey that each defendant must fill in within a day of his or
her arrest. ProPublica then links the pretrial defendants in this body of data to data about arrests up
to April 1st 2016, using a defendant’s reoffence record in this two-year period as the "true" outcome
variable, Y (i.e., did or did not recidivate). This variable is referred to as two_year_recid.

For the purpose of studying the COMPAS algorithm with respect to its efficacy and fairness,
the COMPAS score is converted to a prediction variable by thresholding. The score, R is a discrete
variable for which holds R € {1,10}, where 1 corresponds to the lowest level of estimated risk and
10 to the highest. The scores are subsequently divided by COMPAS into three disjoint categories of
recidivism risk, low for R € [1, 4], medium for R € [5,7] and high R € [8,10]. According to Equivant,
medium and high risk scores are much more likely to lead to increased supervision (Dieterich et al.,
2016), as a low COMPAS score corresponds to a small estimated risk of reoffending in the future.
Therefore, the distinction is made between low and non-low (i.e., medium and high) scores and the
resulting binary variable is used as a predictor. Or formally, ¥ = I{R < t} |,—s. BEquipped with
the necessary binary true outcome and prediction variables, Y and 57, it is now possible to study
confusion matrices, apply (most) fairness metrics and run logistic regressions, among other analyses
performed in the following section. It must be noted that this particular choice of prediction variable
is subjective (i.e., the distinction could also be made between high and non-high scores) and the
actual extent to which a defendant’s risk score influences a judicial evaluator’s decision regarding e.g.,
probation, parole, detention and supervision is much more intricate and dependant on other factors
than a single binary decision-variable. Furthermore, the "true' outcome variable two_year_recid is
also an approximation of a defendant’s actual recidivism rate, as it only takes into account a period
of two years following the initial COMPAS screening, and more importantly, the target variable only
accounts for observed recidivism. The subjectivity associated with these choices for Y and v surely
introduce some form of bias and should be kept in mind when interpreting the results presented in
Section 5.

The data contain a number of sensitive and non-sensitive attributes. The most important of
which is a defendant’s ethnicity, denoted by the categorical variable race. In this dataset, there
exist six categories of race: African-American (occasionally referred to as "black'), Caucasian (also
known as "white"), Hispanic, Native American, Asian, and Other. See Table 16 in the Appendix for
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ProPublica applies a number of observation drops (i.e., removing individuals with incomplete or
missing arrest data) and a two-year sample cutoff rule. This rule implies that two years prior to
the last date on which possible reoffence could be recorded (i.e., 01/04/2014) no new defendants
enter the dataset. This results in a raw dataset of size 7,214 containing only individuals whom have
been followed for at least two years. Furthermore, a second dataset is created for predicting violent
recidivism. These data are a subset of the previously mentioned general recidivism dataset, where
a distinction is made between violent and non-violent (re-)offences. Its original size counts 4,743
observations.

Before analyses, a small number of omissions is made. Following the methodology of Angwin et
al. (2016), observations with charge dates further than 30 days away from their COMPAS-registered
crimes are dropped, assuming these charge data are linked to the wrong COMPAS-cases. If no
COMPAS case is found, the observations are marked as is_recid = —1. This results in the final
sizes of 6172 and 4020 observations for the general and violent recidivism datasets, respectively.

It must be noted that ProPublica, for unknown reasons, failed to apply this cutoff rule to all
defendants in the un-processed dataset. Namely, it did allow for recidivists to enter the dataset
after April 1st 2014. Barenstein (2019) covers this data processing anomaly in great detail and
concludes that ProPublica thereby created an artificially high recidivism rate. He follows, however,
by noting that the key statistics such as false positive and false negative rates and prediction accuracy
are unaffected by this action. Nevertheless, further analyses regarding ProPublica’s decision to not
apply the cutoff rule to both recidivists and non-recidivists is beyond the scope of this research.

4.7.0.1 Demographic breakdown

Because this thesis aims to study the COMPAS algorithm’s propensity for racial and gender biases,
it makes sense to briefly summarise the data in terms of individual’s ethnicity and sex (see Tables
3 and 4). Dissecting the general and violent recidivism datasets with respect to race and gender,
it becomes clear that African-Americans and Caucasians are both well-represented, whereas the
remaining ethnic groups aren’t. African-Americans make up roughly 51% of the general recidivism
dataset, whereas Caucasians comprise about 34% of the observations. For the violent recidivism
data, this is more balanced: approximately 48 and 36 percent of defendants who had been initially
registered by COMPAS for violent offences are African-Americans and Caucasians, respectively.
Conversely, the remaining races combined (i.e., Asian, Native American, Hispanic and Other) only
account for roughly 15% and 16% of the observations in the general and violent recidivism datasets,
respectively.

As for the gender-based breakdown, approximately 20% of observations in both the general and
violent recidivism datasets correspond to females. This is in line with expectations, as women are
generally underrepresented in crime and incarceration rates.

A visual representation of race-wise and gender-based breakdowns can be seen in Figure 3. The
similarities between the nearly identical doughnut charts shows that racial and gender ratios are
roughly equal when subsetting general recidivism into violent recidivism.



Race/ | African-American Asian Caucasian Hispanic Native American Other All
Sex

Female | 549 2 482 82 2 58 1175 (19%)
Male | 2626 29 1621 427 9 285 4997 (81%)
All 3175 31 2103 509 11 343 6172

% 51.4% 05% 34.1%  82%  0.2% 5.6%

Table 3: Racial and gender-based breakdown of the general recidivism dataset.

Race/ | African-American Asian Caucasian Hispanic Native American Other All
Sex

Female | 393 1 336 61 0 50 841 (20.9%)
Male | 1525 25 1123 294 7 205 3179 (79.1%)
All 1918 26 1459 355 7 255 4020

% 47.7% 0.6% 36.4%  88%  0.2% 6.3%

Table 4: Racial and gender-based breakdown of the violent recidivism dataset.

(a) General recidivism. (b) Violent recidivism.

Figure 3: Doughnut charts visualisations of the demographic breakdowns of the general and violent
recidivism datasets in Tables 3 and 4, respectively. In the inner charts, purple corresponds to Females
and pink to Males. The explicit percentages have been omitted to avoid clutter.

5 Results

This section presents a detailed report and interpretation of the most important results obtained
during this research. The section comprises two main parts: the first part of the analyses is done
using, for lack of a better term, ’general purpose’ econometric and statistical methods. The workings
of these methods are discussed in Sections 4.2 (random forest) and 4.3 (logistic regression). The
second part discusses results gathered by applying methods deliberately designed to assess and correct
levels of unfairness associated with a decision-guiding model or algorithm.

More specifically, the first part of the results examines claims of unfairness with respect to eth-
nicity and sex via distributional analyses of the COMPAS risk prediction instrument, various logistic
regression and random forest models. These last two methods have the benefit of being easily in-
terpretable, yet effective for non-linear classification tasks. Finally, group-based fairness metrics and
optimised generalised entropy indices are apphed to assess levels of dlsparlty, which are then corrected
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5.1 Analyses I: traditional econometric methods

5.1.1 Distributions of COMPAS risk scores by sub-populations

To examine the distributional properties of COMPAS scores with respect to race and gender, the
Cumulative Distribution Functions (CDFs) per ethnic group and sex are studied (see Figure 4). The
CDF of a random variable X is defined for any real-valued x as Fx(z) = P(X <) =Y, , P(X =
x;) (Bain & Engelhardt, 1987). The CDFs per ethnic group, depicted in Figure 4a, show differing
distribution shapes of COMPAS risk scores among races. Specifically, the CDF of the risk score
distribution among African-American (corresponding to the orange dashed line) defendants resembles
that of an approximately uniformly distributed random variable, suggesting an even distribution of
all COMPAS score levels. This can be seen in an alternative visual representation in Figure 5b.
Conversely, the CDF of decile scores associated with Caucasian defendants (i.e., the green dotted
line in Figure 4a) follows a heavily right-skewed distribution, which can also be viewed in Figure
5a. That is, the highest density of COMPAS scores of Caucasian defendants is located towards the
lower risk scores. This discrepancy in risk score distribution could be interpreted as evidence of
unfair treatment. However, this assertion of unfairness would only hold if African-Americans and
Caucasians would have (approximately) identical base rates of recidivism. Put differently, recidivism
prediction instruments, R = (X, A), aim to approximate the true underlying recidivism distribution
Y | X, A. Therefore, largely differing distributions of risk scores between two sub-populations defined
by protected attributes (i.e., R(X,A = a) # R(X, A = b)) may suggest inequitable outcome if the
true risk distributions are similar (i.e., Y, | X = Y}, | X), where, e.g., Y, is shorthand notation for
Y | A= a, where a € {0,1}.

Due to the limitations of the data and the practical difficulty of obtaining reasonable estimates of
an individual’s true level of risk, effectively comparing the observed risk level distributions between
races is beyond the scope of this research. However, comparing observed base rates of recidivism,
fla = N%Zne ~, {y, = 0}, can also lead to insights with respect to distributional properties of
recidivism risk among groups. Namely, as shown in Figure 6, the observed likelihood of recidivism
is significantly greater for African-Americans than that of Caucasians. This average in means of the
race-wise recidivism distributions implies the true underlying risk distributions of African-Americans
and Caucasians are likely unequal, thereby making the discrepancy in CDF shapes between the
two groups insufficient evidence for assertions of disparities, as a sub-population that shows more
observed recidivism can be expected to have a greater proportion of high risk scores.

When focusing on gender-wise distributions of COMPAS risk scores, Figure 4b suggests the
distribution of risk scores given to males and females are roughly equal in shape, with that of women
being slightly more right-skewed (as one would expect). However, the significant difference in base
rates, depicted in Figure 6b, suggests that women (who appear to recidivate with lower frequency)
are being held to a similar standard as men in terms of risk assessments.

The remaining ethnic groups, i.e., Other, Hispanic, Asian and Native American, are relatively
under-represented in this specific dataset, when compared to Caucasians and African-Americans.
Especially Asians and Native Americans comprise such a small portion of the dataset (0.5% and
0.2%, respectively), that inferring distributional characteristics based on sample statistics is less
reliable than for the two majority sub-populations (e.g., notice the large confidence regions for Asian
and Native American base rates in Figure 6a). This is also the reason that these remaining ethnic
groups are treated as an entire group, denoted by the dummy variable race other2, in the logistic
regression and random forest models, presented later in this section.



CDF of COMPAS risk score distribution per race, for general recidivism CDF of COMPAS risk score distribution per sex, for general recidivism
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Figure 4: Cumulative distribution functions (CDFs) P(R < r) per race, where R is the random
variable generalisation of the COMPAS decile risk score.

Distribution of decile scores among white defendants Distribution of decile scores among black defendants

L L

00 00

00 00
5 5
S = S =

00 00

) I l )

c - o™ c O
L H 1 a 5 L r L L] n L H 1 a 5 L r L L] n
Decile score Decile score
(a) Caucasians. (b) African-Americans.

o Distribution of decile scores among male defendants o Distribution of decile scores among female defendants

1000 1000

L] L]
§ L] § L]
3 g

&0 &0

m I I I I I m

. | . | - - e e -
L H 1 a 5 L r L » 1w L H 1 a 5 L r L » 1w
Decile score Decile score
(c) Males. (d) Females.

Figure 5: Histograms displaying the COMPAS decile score counts by protected attribute value (i.e.,
race being either African-American or Caucasian, and gender being either male or female.)

5.1.2 Calibration

Intuitively, calibration of a recidivism prediction instrument (RPI) means that the probability of risk

octitmate a11tniite of +hic inetriiment are reliahle actitmatee of the nantilatiomn riel dictribiition for all



Average recidivism rate (observed base risk rate) by race . Average recidivism rate (observed base risk rate) by sex

o

o

a4

Likelihood of recidivism: j = Pr(¥ = 1)
o

Likelihood of recidivism: j = Pr(¥ = 1)
=

o

a0

(a) Observed base rates per race. (b) Observed base rates per sex.

Figure 6: Observed average recidivism rates per race (left) and sex (right). The x-axes correspond
to the various sub-populations, and the y-axes display the estimated base rates of recidivism, with
95% confidence intervals plotted around the average values.

sub-populations. Phrased differently, a well-calibrated score-based classifier outputs (approximately)
equal likelihood of recidivism per risk score, regardless of a defendant’s protected attributes (e.g.,
race or gender). Formally, a normalised risk score r is perfectly calibrated if and only if Vp €
0,1,Pr(Y =0 | r =p, A = a) = p, for all sub-populations a € |A|. For approximate calibration,
the last equality symbol should be replaced by an approximation symbol. It is worth repeating
that ProPublica’s report has been met with much criticism, partially due to their failure to take
calibration into account (Chouldechova, 2017).

Figure 7 shows the results of testing for calibration of COMPAS scores with respect to an in-
dividual’s ethnicity and gender, for general and violent recidivism. The lines represent empirical
estimates of Pr(Y =0 | R = r, A = a) with 95% confidence intervals depicted by the transparent
bands surrounding the lines. In this visualisation, overlapping confidence intervals at a certain risk
score indicate an insignificant statistical difference in estimated likelihood of recidivism between two
groups at a 5% level (i.e., the RPI is well-calibrated by group at this risk score). The classifier is
considered well-calibrated if and only if all risk score levels show no statistically significant differences
in estimation of recidivism rate, that is, one non-overlapping region is sufficient to deem the classifier
uncalibrated with respect to a certain protected attribute.

The COMPAS RPI satisfies calibration. This is shown in Figure 7a, where the 95%-confidence
intervals overlap at all risk score levels. Similarly, satisfaction of calibration persists for violent
recidivism, as depicted by Figure 7c. Conversely, COMPAS risk scores appear to violate calibration
with respect to gender for both general and violent recidivism (see Figures 7b and 7d). Namely,
both calibration plots show at least one pair non-overlapping confidence intervals (two for general
and three for violent recidivism). The figures suggest that females are less likely to recidivate than
men, despite their COMPAS scores being equal. Assuming law-enforcers apply equal decision-making
thresholds to men and women, it appears that a female defendant’s risk of recidivism is more likely
to be unfairly over-estimated than that of a male defendant.

Notably, a similar RPI, the Post Conviction Risk Assessment (PCRA) tool, developed by the
Administrative Office of the United States Courts for the improvement of post-conviction supervision
efficacy has been shown to also be calibrated with respect to race, but not to gender (Chouldechova,
2017).

Furthermore, there is a clear difference in the width of the confidence intervals associated with the



minority classes (i.e., African-Americans and women) visible in Figure 7. This holds especially for the
higher parts of the COMPAS risk scale, most notably for violent recidivism. The larger confidence
regions indicate greater levels of uncertainty associated with the estimates that the risk score provide,
meaning that the risk estimates are less precise (i.e., they show larger dispursion around the mean)
for women and African-Americans.
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e —

Recidivism rate
|

Recidivism rate
\

a 5 1l 1 L » o 1 i ] a L] " )
COMPAS Recidivism risk scale COMPAS Recidivism risk scale

(a) Calibration line plots for general recidivism for (b) Calibration line plots for general recidivism for
African-Americans (blue) and Caucasians (orange). males (blue) and females (orange).
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(c) Calibration line plots for violent recidivism for (d) Calibration line plots for violent recidivism for
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Figure 7: So-called calibration plots: line plots of (general or violent) recidivism rates per COMPAS
recidivism risk score by protected attribute (race or gender). The lines represent empirical estimates
of Pr(Y =0 | R = r,A = a) with 95% confidence intervals depicted by the transparent bands
surrounding the lines.



5.1.3 Assessing relative feature importance using random forests

In this subsection, a brief overview is presented of the most important results concerning the ap-
plication of random forest models to assess relative feature importance of variables involved with
the prediction of score category (low/high) and observed recidivism (no/yes). Random forests use
bootstrapped samples from the training data and subsets of the feature space to grow decorrelated
decision trees, aggregate them and take the mode of the output classes as final output. This is an
appealing approach as it reduces variability induced by randomly growing decision trees, whilst being
capable of learning highly non-linear decision boundaries. Additionally, this modelling technique is
free from distributional assumptions about the data generating process. Finally, random forests pro-
vide a natural and easily interpretable framework for evaluating the relative importance of variables.
These aspects make random forests a suitable modelling technique for fairness analysis, as it makes
it possible to compare the relative feature importance of protected attributes when modelling the
predictor variable (e.g., COMPAS score category) versus the true outcome variable (e.g., observed
recidivism), while keeping performance measures in mind.

In this setup, one random forests ensemble is concerned with predicting the binary variable for
COMPAS score category, score_cat, and the other model predicts observed recidivism within two
years after the initial COMPAS screening date, two_year_recid (analogous to the distinction made
between models in Section 5.1.4). Namely, COMPAS risk score category is defined by thresholding
the decile score at R = 4, where scores strictly above 4 are considered high-risk (denoted by a zero),
and low-risk otherwise (denoted one).

The data is randomly split into a training and test set, with respective proportions 70% and
30%. During training, a total of 100 decorrelated decision trees are grown per simulation run with
maximum depth of 3. The total number of draws is 100. The relative feature importance scores
are then computed during training, and presented Figures 8a and 8b for COMPAS score category
and recidivism prediction, respectively. See Table 5 for the explicit numerical values of the relative
feature importance scores. To assess the efficacy of the models, their overall prediction accuracy,
F1-score, precision and recall are calculated and compared in Table 6.

Average Feature importance over 100 draws: predicting risk score category Average Feature importance over 100 draws: predicting recidivism

Features
Features
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(a) Relative feature importance histogram of random (b) Relative feature importance histogram of ran-
forests for prediction of score category, for general dom forests for prediction of recidivism within two
recidivism. years, for general recidivism.

Figure 8: Histograms of relative feature importance distributions associated with two random forest
models concerned with predicting decile risk score category, i.e., low or not low (left) and observed
recidivism within two years (right).

As one might expect, both histograms in Figure 8 show that both random forests rank a defen-
dant’s number of prior convictions, age and length of detention period (in days) as the top three



Target variable: Score category Observed recidivism

Feature name RFEI RFI
priors_ count 0.404304 0.494003
age 0.253111 0.212477
length of stay 0.150235 0.159498
race_ Caucasian 0.091286 0.039834
race_ African-American 0.063213 0.023449
c_charge degree M 0.018507 0.015398
c_charge degree F 0.014976 0.013771
sex_ Female 0.002318 0.023345
sex Male 0.002051 0.018224

Table 5: Relative feature importance (RFI) scores.

Accuracy I} Negative predictive value True negative rate
Score category 0.741 0.717 0.752 0.686
Recidivism 0.670 0.622 0.675 0.578

Table 6: Performance measures for random forests, averaged over 100 simulation runs. The entries
leftmost column correspond to the dependent variable of the random forests.

both cases. A notable result, however, is the drop in relative feature importance scores of the race in-
dicator variable (i.e., race_caucasian and race_african_american) when shifting from predicting
score category (a label given by the COMPAS algorithm) and actual observed recidivism. Namely,
the features indicating a defendant’s race are estimated to be almost 2.5 times more important rel-
ative to the other features when predicting a defendant’s score category than they are when actual
recidivism is being predicted. This ratio is slightly larger when focusing on the difference in relative
feature importance of race african_american between score category and recidivism prediction
(about 2.7).

These results must be interpreted tentatively, though. Namely, as shown in Table 6 the model
concerned with predicting recidivism displays considerably worse test performance measures on av-
erage than the random forests predicting COMPAS score category, making its feature importance
scores less reliable and generalisable. The true negative rate in particular, is notably inferior for the
recidivism predicting model, indicating that it is more likely to incorrectly label a dangerous criminal
as low-risk. Furthermore, the relative feature importance scores provide limited information as they
tell us nothing about the sign or direction of the effects associated with the features, that is, the
histograms in Figure 8 do not clarify whether being African-American is associated with a positive
or negative statistical relationship with score category or recidivism. To obtain more directional
information about the features, coefficients and thus a parametric method is required.

5.1.4 Logistic regression of score category and observed recidivism

Logistic regression models are used in this study as a parametric modelling approach to assess the
statistical relationship between observed recidivism, COMPAS risk score category (i.e., low or not-
low) and the protected attributes (controlled for the relevant non-sensitive covariates). From a
fairness detection perspective, the purpose of these regression analyses is to study whether statis-
tically significant relationships between the protected attributes and the outcome variables persist
when modelling (predicted) COMPAS score categories versus actual (observed) recidivism.



The logistic regression analyses are set up as follows: first, the COMPAS risk score category
is regressed on the two sensitive attributes and non-sensitive relevant covariates (i.e., age category,
number of prior convictions, degree of offence and recidivism within two years) for both general and
violent recidivism, the results of which are shown in Tables 7 and 17, respectively.

In accordance with the work of Angwin et al. (2016) and COMPAS guidelines, a threshold risk
score of 4 is used to construct a binary dependent variable from a COMPAS decile risk score, that
is, Y = I{R < 4} (i.e., a defendant is labelled as high-risk if his or her COMPAS score is greater
than 4). Put differently, the dependent variable for the logistic regressions modelling score category
is expressed as

(41)

. J0, R>4
Y 1, R<4.

Then, the "true" outcome variable, i.e. observed recidivism within two years, is regressed on
the same dependent variables as score category regressions, for general and violent recidivism. The
results of which can be seen in Tables 8 and 18, respectively. In this setting, the outcome variable is
defined as y; = I{Defendant 7 is NOT convicted of another crime within two years}.

In this framework, statistically significant positive coeflicient estimates indicate that the corre-
sponding covariate is associated with an increased probability of the outcome variable being equal
to zero. Intuitively, this corresponds to being labelled as high-risk (Tables 7 and 17) or reoffending
within a two year span (Tables 8 and 18). Furthermore, for a given statistically significant coefficient
estimate Bk, the associated isolated change in odds of the outcome variable being equal to one, oth-
erwise known as the estimated marginal effect of &) on y, is equal to eﬁk, ceteris paribus (henceforth
c.p.).

The first comparison is made for general recidivism, between Tables 7 and 8. With regard to
the signs and magnitudes of the coefficient estimates in the score category regression model, almost
everything is in line with expectations, with the exception of the positive coefficient estimate of
sex female. The model suggests that being a woman corresponds to being e?-2!%3 ~ 1.25 times more
likely to be labelled as high-risk, holding all other variables constant. Conversely, the recidivism
regression model suggests that not being a man is associated with being e %3477 ~ (.71 times as
likely to recidivate within two years, c.p.. A significant positive marginal effect on being categorised
as a high-risk criminal, despite showing a significant negative effect on actual observed recidivism
can be interpreted as evidence of an unfair bias with respect to women. Section 5.1.2 displays a
similar phenomenon, by showing that COMPAS risk scores are poorly calibrated to the disadvantage
of women, even though females show a significantly lower prevalence of recidivism. The results
presented in this section echo that notion, but more convincingly so, as the regression models are
adjusted for other non-sensitive criminological covariates.

When focusing on the effects of race on COMPAS score category compared to those on observed
recidivism within two years, the logistic regression results suggest that ethnicity is associated with
significant changes in odds of being labelled as high-risk, despite not having a significant marginal
effect on the likeliness of rearrest. The results in Table 7 imply that African-American defendants are
1.61 times as likely to receive high-risk COMPAS scores as Caucasian defendants, holding all other
covariates equal. Being a member of the remaining ethnic groups (i.e., variable name race_other2)
also displays a significant, though negative, effect on the probability of being labelled as high-risk,
compared to Caucasians. However, when modelling observed rearrests within two years after the
initial COMPAS-screening date, being an African-American is associated with the only insignificant
coefficient estimate (race_other2 is barely significant). This could serve as evidence that ethnicity
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when conditioning on relevant, non-sensitive attributes.

Similar effects are observed for violent recidivism, presented in Appendix D. Namely, the marginal
effects of sex_female flip signs from positive to negative when shifting from using score category as
dependent variable to modelling observed recidivism. The marginal effect of race african_american,
however, remains significant, though more moderate, when comparing score category inference to that

of two year recidivism.

coef std err z p-value [0.025 0.975]

const -1.5248  0.078  -19.442  0.000  -1.679 -1.371
sex_ female 0.2193 0.079 2.764 0.006 0.064  0.375
age_ cat_ greater__than_ 45 -1.3574 0.099 -13.711 0.000 -1.551 -1.163
age_ cat_ less_ than_ 25 1.3063 0.076 17.231 0.000 1.158 1.455
race__african__american 0.4770 0.069 6.879 0.000 0.341 0.613
race_ other2 -0.5410  0.105 -5.165 0.000 -0.746  -0.336
priors__count 0.2695 0.011 24.305 0.000 0.248  0.291
c_ charge_ degree__m -0.3089  0.066 -4.646 0.000 -0.439 -0.179
two__year_ recid 0.6821 0.064 10.671 0.000 0.557  0.807

Table 7: Model specification and parameter summary of logistic regression with score category (low or
not low) as dependent variable for general recidivism. Note that the variable race_other2 corresponds
to a grouped dummy of all non-white and non-black ethnic groups.

coef std err z p-value [0.025 0.975]

const -0.6082  0.065  -9.430  0.000  -0.735 -0.482
sex_ female -0.3477  0.072  -4.840 0.000 -0.489 -0.207
age_ cat_ greater__than_ 45 -0.6695 0.076 -8.801 0.000 -0.819  -0.520
age_ cat_ less_ than_ 25 0.7333  0.069 10.639  0.000 0.598  0.868
race__african__american 0.0959 0.063 1.529 0.126 -0.027  0.219
race_ other2 -0.1780  0.088  -2.025 0.043  -0.350 -0.006
priors__count 0.1656  0.008  20.536  0.000 0.150  0.181
c_ charge degree_m -0.2186  0.059  -3.721 0.000 -0.334 -0.103

Table 8: Model specification and parameter summary of logistic regression with observed recidivism
within two years as dependent variable for general recidivism. Note that the variable race_other2
corresponds to a grouped dummy of all non-white and non-black ethnic groups.

5.1.5 Logistic regression of false positives and false negatives

Two of the main accusations made by Angwin et al. (2016) regarding the presumed unfair racial bias
are that African-American defendants are more likely to be incorrectly labelled as high-risk (false
negative error) and less likely to be misclassified as low-risk (false positive error) than Caucasian
defendants. These claims are based on race-wise confusion matrices derived from testing COMPAS
scores as classifiers when taking R = 4 as a threshold for predicted risk recidivism, and comparing
these predictions to the observed recidivism outcome variable. A limitation of this approach is that it
does not adjust for possibly relevant crime-related variables present in the Broward County dataset.
Therefore, it makes sense to reformulate their analyses in terms of logistic regression models to study
whether the claims made by Anewin et al. (2016) hold when accounting for other relevant covariates.



Chouldechova (2017) applies a similar approach to assessing the statistical relationships between
criminological variables and false positive errors in recidivism prediction via logistic regression, but
does not extend to false negatives, and controls for a smaller number of relevant covariates.

The set up of these analyses is analogous to that of those presented in Section 5.1.4: false positive
and false negative errors are taken to be the dependent variables for logistic regression models,
presented in Tables 9 and 10, respectively. Of course, the false positive regression is run on the
subset of all recidivists, and the false negative model is fitted on the subset of all non-recidivists.

Indeed, the unfavourable discrepancies in error rates for African-American defendants persist
when adjusting for other relevant variables. Namely, the regression output suggests that African-
American defendants are e®?#3! ~ 1.72 times more likely to be misclassified as high-risk criminals
and e %437 ~ 0.66 times as likely to be incorrectly classified as low-risk than Caucasian defendants,
c.p.. This, combined with the results presented in Section 5.1.4 make a stronger case as evidence of
COMPAS'’ unfair bias against African-American defendants.

Furthermore, based on the current regression results no conclusions can be drawn with respect to
the statistical relationship between error rates and gender, as the coefficient estimates of sex_female
are insignificant in both cases.

coef std err z p-value [0.025 0.975]

const -1.6686  0.102  -16.347  0.000 -1.869  -1.469
sex_female 0.1867 0.103 1.812 0.070 -0.015  0.389
age_ cat_ greater__than_ 45 -1.4005 0.136 -10.310  0.000 -1.667 -1.134
age_ cat_ less_ than_ 25 1.3885 0.105 13.198 0.000 1.182 1.595
race__african__american 0.5431 0.096 5.669 0.000 0.355 0.731
race_ other2 -0.4806  0.145 -3.309 0.001 -0.765 -0.196
priors__count 0.2884  0.017 17.150 0.000 0.255  0.321
c_ charge_ degree_m -0.1601  0.091 -1.766 0.077 -0.338  0.018

Table 9: Logit regression coefficient estimates and corresponding statistics from regression of false
negative errors on a set of covariates, for general recidivism. Model is fitted on the subset of recidivists
among all individuals.

coef std err z p-value [0.025 0.975]

const 0.6857 0.108 6.346 0.000 0.474  0.898
sex_ female -0.2483  0.127 -1.961 0.050 -0.496  -0.000
age_ cat_ greater__than_ 45 1.3046 0.146 8.940 0.000 1.019 1.591
age_ cat_ less_ than_ 25 -1.2275  0.110 -11.189  0.000 -1.442  -1.012
race__african__american -0.4137  0.102 -4.073 0.000 -0.613 -0.215
race_ other2 0.6138 0.152 4.046 0.000 0.316 0.911
priors__count -0.2536  0.015  -17.234  0.000 -0.282  -0.225
c_charge_ degree__m 0.4759 0.097 4.883 0.000 0.285  0.667

Table 10: Logit regression coefficient estimates and corresponding statistics from regression of false
positive errors on a set of covariates, for general recidivism. Model is fitted on the subset of non-
recidivists among all individuals.

5.2 Results of fairness analyses and bias mitigation

This subsection reviews the most important results obtained from algorithmic bias analyses using



4.6). The goal of this section is to demonstrate the applicability of the considered bias mitigation
algorithms on a general probabilistic classifier. First, the COMPAS risk scores are assessed using
various measures designed specifically for evaluating disparities between sub-populations. Then, a
similarly unfairly biased probabilistic classifier is trained and corrected by several post-processing
techniques. Finally, a visualisation of fairness-accuracy tradeoffs is displayed and discussed.

5.2.1 Experimental setup

The experimental setup of applying fairness metrics and bias mitigation algorithms is similar to that
of a general machine learning research pipeline. The full dataset X (and corresponding predicted and
true outcome labels Y and Y') suspected of being unfairly biased is partitioned into non-overlapping
subsets for training, validation and testing, with respective proportions of 70%, 15% and 15%. A
(possibly unfairly biased) classifier, concerned solely with maximising prediction accuracy, is trained
on the training data. Using the classification model fitted on the training set, predictions are made
on the validation and test sets and their accuracy and fairness levels are recorded. These values
represent efficacy and equitability properties of the decision-making process before post-processing
or bias mitigation is applied. The validation set is then used to fit the bias mitigation model.
For (calibrated) equalised odds post-processing ((C)EOPP), this entails solving a linear program to
find a new distribution of prediction scores to satisfy (relaxed) equalised odds and / or calibration,
whereas reject option based classification (RObC) finds an optimal new classification threshold 7 and
corresponding margin width 6 to simultaneously maximise prediction accuracy and approximately
satisfy some predetermined fairness constraint. Finally, generalised performance and fairness are
evaluated on the test set. The post-processed or transformed evaluation metrics of the validation set
are also reported.

A classifier’s performance is assessed using balanced accuracy (abbreviated in tables as BACC),
because this measure takes into account both outcome classes (and error types) by averaging the
true positive and true negative rates. Group fairness is assessed using Statistical Parity Difference
(SPD), Disparate Impact Ratio (DIR), Average Odds Difference (AOD) and Equal Opportunity
Difference (EOD). The formal definitions of these fairness measures are outlined in Section 4.5. In
this recidivism context, SPD measures the difference in likelihood of being assigned the favourable
prediction label (i.e., being labelled as low-risk), conditional on group membership. So a negative
SPD with respect to race suggests that African-Americans are less likely than Caucasians to receive
low-risk classifications. DIR uses the exact same information as SPD, but take the ratio of the
group-conditional rates of being labelled as low-risk, where a value of smaller than one implies the
privileged group is more likely to receive lower risk scores. The benefit of considering DIR is its
interpretation as the relative odds of receiving the favourable prediction label. Note that both SPD
and DIR fail to take error rates into account, and thus cannot serve as comprehensive fairness
measures by themselves. This drawback is compensated by considering AOD, which measures the
average difference in false and true positive rates between the privileged and unprivileged groups.
A negative AOD suggests that the unprivileged group is disproportionately disadvantaged, as it
implies that they are more likely to be incorrectly classified as high risk and / or less likely to be
mislabelled as low risk. An AOD of zero suggests the classifier is fair w.r.t. the protected attribute
in question. An obvious limitation of AOD is that it places two sometimes incompatible restraints
on a decision-making model, which could lead to unacceptably poor performance of overly penalised
classifiers. Its relaxed counterpart, EOD, is therefore also reported, as it only measures the group-
specific difference in correctly being labelled as low-risk by the RPI, making it a more easily attainable
fairness criterion.
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solving for one typically leads to the others also converging towards their points of fair outcome. A
special case of the generalised entropy indices, the Theil index (i.e., £(«) |4=1), is also reported in an
effort to consult an unrelated measure of inequality. Subgroup decomposability of the Theil index
also provides a measure of within-group inequality, denoted by &y (1).

It is worth repeating that when discussing group-membership with respect to race or gender,
African-Americans and females are referred to as the unprivileged groups for race and gender, re-
spectively. Whereas Caucasians and males are considered the privileged respective ethnic group and
Sex.

5.2.2 Evaluation of classifiers before bias mitigation

The COMPAS risk scores have certain limitations with regard to the applicability of the post-
processing methods considered in this study. First, they are discrete values from 1 through 10.
Second, the scores are not interpretable as (unnormalised) probability estimates of recidivism (i.e., a
defendant with a COMPAS score of 6 is not considered to be "twice as likely" to recidivate as one with
a score of 3). These aspects are problematic in the sense that any obtained classification threshold
on the COMPAS decile scale (e.g., one found by RObC) doesn’t have a probabilistic interpretation.
Furthermore, there is also a considerable loss of information as a result of all continuous threshold
estimates being set equal to the nearest integer. However, the fairness and balanced accuracy results
of the COMPAS risk score are still discussed and displayed in Table 11.

The reasons mentioned above motivate the use of a probabilistic classifier to study the applicabil-
ity of bias mitigation algorithms on a potentially biased decision-making process. A natural choice
is a logistic classifier (see Section 4.3), as this model specification is both comparably accurate and
easily interpretable from a probabilistic point of view. Table 12 contains the fairness metrics and
balanced accuracy of the pre-bias mitigation logistic classifier for all three data subsets.

Attribute | BACC F; SPD DIR AOD EOD £(1) &w(1)

Race 0.657 0.675 -0.245 0.634 -0.207 -0.203 0.241 0.239
Sex 0.657 0.675 0.0449 1.088 0.005 -0.007 0.241 0.241

Table 11: Balanced accuracy, F} score, group-fairness metrics, and Theil indices on Broward County
data set with COMPAS classifier. Unprivileged groups: African-Americans and Females.

Dataset | Attribute | BACC SPD DIR AOD EOD £(1) &w(1)
Train (7 = 0.5) Race || 0.670 -0.298 0.596 -0.261 -0.218 0.212  0.209
Sex | 0.670 0.246 1.483 0218 0.173 0.212  0.209
Valid. (7 = 7*) Race | 0.647 -0.188 0.743 -0.153 -0.098 0.188 0.188
Sex | 0.647 0.199 1.344 0.167 0.093 0.188 0.188
Test (1 = 7*) Race | 0.651 -0.228 0.699 -0.201 -0.183 0.195 0.194
Sex | 0.651 0.209 1.361 0.164 0.149 0.195 0.195

Table 12: Accuracy (BACC) and fairness results of the logistic classifier (before post-processing):
Privileged groups: Caucasians & Females. Optimal threshold: 7" = 0.554.

A quick comparison between Tables 11 and 12 shows both classifiers perform similarly with respect
to balanced accuracy, all having values around 65%. The same can be said for both the direction and
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scores and logistic classifier display similar results. More explicitly, both classifiers appear to be
severely disadvantageous towards African-American defendants. The COMPAS scores seem to be
approximately unbiased towards any sex according to the group-based fairness metrics. Conversely,
the logistic classifier seems to be very biased against male defendants, with positive values for SPD,
AOD and EOD and DIR > 1.

5.2.3 (Calibrated) Equalised odds post-processing

Equalised odds post-processing (EOPP) yields inadequate results, as it consistently returns either
the exact same classifier as the unprocessed one, or a trivial random guessing classifier that did
satisfy the group-fairness optima. See Table 19 in the Appendix for an overview of these results.
A possible explanation is that EOPP’s requirement to satisfy the stringent equalised odds criterion
by sheer prediction score reassignment is incompatible with the given probabilistic classifier and it
therefore either returns the input or a trivial classifier that does in fact satisfy equalised odds, but
is of course useless from a practical perspective. Incorrect model specification and deployment could
also be a cause of these results. However, the most likely explanation is that the A-conditional ROC
curves, across which EOPP searches for an optimal and feasible error rate tradeoff, only have trivial
intersection points. As mentioned in Section 29, equalised odds post-processing is severely limited by
its requirement of non-trivial intersections of A-conditional ROC curves. A lack of such intersection
points would mean there is no feasible and reasonable error rate tradeoff to satisfy equalised odds.
As a consequence, EOPP returns either the unprocessed (biased) classifier V or the trivial classifier
that does satisfy the fairness criteria, but is only as accurate as random guessing.

Calibrated equalised odds post-processing attempts to simultaneously satisfy calibration of a
classifier and some predefined relaxation of equal error rates by finding a new classifier from the
set of calibrated classifiers. This set of calibrated classifiers is equivalent to a line in the gener-
alised FN-FP-plane connecting origin (i.e., g, (r) = gf,(7) = 0 also known as the perfect classifier)
and the calibrated trivial classifier (i.e., the classifier that returns the (group-specific) base rate for
every input). This line is uniquely defined by the group-specific base rate. Satisfying calibrated
equalised odds or a relaxation thereof corresponds to finding a set of sub-population-specific cali-
brated classifiers that lie on the same horizontal, vertical or level-curve defined by the decision-makers
cost-weighing of false positive or negative errors. For a more detailed explanation of CEOPP, the
reader is referred to Section 4.6.2 and the work by Pleiss et al. (2017).

CEOPP is applied to the logistic classifier with fairness and accuracy properties listed in Table
12. The model is fitted on the validation set for three types of costs constraints, with respect to race
and sex separately. These cost constraints are approximately equal generalised false positive rates,
generalised false negative rates or approximately lying on the same level-curve defined by equally
weighted FPR and FNR. The fitted model is then tested on the test set. See Table 13 for an
overview of these results.

Classification performance remains at slightly lower, but still acceptable levels compared to the
pre-bias mitigation classifier. Furthermore, in terms of both balanced accuracy and fairness, using
false negative rates or a weighted cost function of both error types yield superior results than only
solving for false positive rates. This could suggest that ensuring that the rates at which defendants
are falsely labelled low-risk are approximately equal across groups is a more stringent criterion on
the classifier in question than attempting to equalise the rates at which defendants are mislabelled
as high-risk.

Furthermore, classification performance on validation and test sets appears to be relatively similar,
though fairness measures tend so stray further from their respective points of equal outcome when
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Dataset | Constraint | Attr. || BACC ~ SPD DIR AOD EOD  £(1) &w(1)

Valid. FPR | Race| 0.5999 -0.5933 0.2089 -0.5628 -0.6763 0.3754 0.3160
Sex || 0.5208 -0.0246 1.6246 -0.0565 0.0561 0.1717 0.1564

FNR | Race| 0.6286 -0.4801 0.5102 -0.4653 -0.3221 0.1629 0.1518
Sex || 0.6531 0.4278 1.8099 0.4181 0.2827 0.1923 0.1864

Weighted | Race || 0.6352 -0.5310 0.4690 -0.5218 -0.3573 0.1646 0.1507
Sex || 0.6530 0.4755 1.9092 0.4759 0.3121 0.1879 0.1808
Test FPR | Race | 05883 -0.6368 0.1376 -0.6088 -0.7186 0.4015 0.3384
Sex || 0.5362 0.3856 3.3174 0.3523 0.4818 0.3730 0.3238

FNR | Race || 0.6400 -0.4830 0.4956 -0.4713 -0.3238 0.1803 0.1683
Sex || 0.6502 0.3462 1.6307 0.3371 0.2280 0.1919 0.1878

Weighted | Race | 0.6367 -0.5141 0.4859 -0.5062 -0.3375 0.1593 0.1468
Sex || 0.6582  0.4677 1.8845 0.4690 0.3004 0.1836 0.1768

Table 13: Accuracy and fairness metrics for calibrated equalised odds post-processing (CEOPP)
under various optimisation constraints (false negative rate, false positive rate, and weighted FNR-
FPR) on the validation and test data. Averaged over 100 draws.

classification accuracy and fairness tend to move in opposite directions, that is, accuracy tends to
improve when fairness decreases and vice versa. It also suggests that overfitting could also occur
with respect to fairness constraints, in the sense that fitting a fairness-constrained model to a specific
dataset can generalise poorly when testing the same model on unseen data.

Most importantly, Table 13 clearly shows that CEOPP does little to improve for group-based
fairness constraints, when comparing the fairness measures to the unprocessed classifier’s results in
Table 12. In fact, CEOPP seems to exacerbate disparities in almost all cases, depicted by group-
based fairness metrics moving away from their equitable outcome points (e.g., the average FOD with
respect to race for the test set goes from —0.183 to —0.3238 in the best case scenario). Moreover,
CEOPP fails to satisfy the assigned cost constraint in most cases. For instance, when attempting to
satisfy for approximately equal false negative rates (which is equivalent to having equal true positive
rates), one would expect the equal opportunity difference metric to approach zero. This is clearly not
the case when viewing the corresponding results. Even more so, CEOPP worsens the FOD in the
F'NR constrained case. One plausible explanation is related to Theorem 3, postulated by Kleinberg
et al. (2016), suggesting that only perfect classifiers can satisfy calibration and (relaxed) equalised
odds when base rates differ for disjoint sub-populations. Knowing that CEOPP selects classifiers
from a set of calibrated classifiers, it is likely that the large significant differences in base rates
between groups (see Figure 6) results in the infeasibility of finding a classifier that remotely satisfies
a relaxation of equal error rates. This could lead the post-processing method to return comparatively
accurate, calibrated classifiers with deteriorated error rate discrepancies, making them undesirable
given the more equitable unprocessed original classifier.

It is worth mentioning that CEOPP does, however, reduce overall and within-group inequality,
as measured by the Theil index. Although the improvements are subtle (the test-set Ey (1) drops
by a factor of roughly 1.5 in the best case scenario), the opposite can be said for reject option
based classification. As will be discussed promptly, RObC severely outperforms CEOPP in terms
of between-group fairness, whilst exacerbating within-group disparities. This observation serves as
a subtle, yet important illustration of the trade-offs between group- and individual-based fairness,
discussed by Speicher et al. (2018), and Dwork et al. (2012), among others.



5.2.4 Reject option based classification

Reject option based classification (RObC) attempts to find a new optimal classification threshold,
denoted 7*, with margins of optimal width 6*, with the goal of perserving classification performance
whilst optimising a given fairness constraint. The method builds on the idea that individuals who
lie near the decision boundary are most susceptible to unfair treatment, as their posterior class-
membership probabilities convey the least certainty. RObC thus finds an optimal combination of
a new decision boundary and corresponding margin width, where individuals who reside within
the margins are classified according to a so-called reject option decision rule. More specifically,
unprivileged defendants within the boundary are assigned the favourable label (i.e., categorised as
low-risk), while privileged group members are assigned the unfavourable label (that is, classified as
high-risk). See Section 4.6.3 or the work by Kamiran et al. (2012) for a more explicit overview of
RODbC’s mechanism.

In this experiment, RObC is fitted to the validation data (i.e., 7* and 6* are obtained based on
this dataset) by performing a grid-search over combinations of 1000 thresholds 7 € [0.01,0.99] and
100 margin widths. RObC is applied with respect to both protected attributes, race and sex, and
concerned with the dual objective of maximising balanced accuracy, while optimising a user-defined
fairness constraint. The three considered fairness objective metrics are SPD, AOD and EOD.
Contrary to (C)EOPP, reject option based classification leaves the posterior probability scores of
the individuals unaltered and converges to a single new accuracy maximising decision threshold
and fairness optimising (minimal) reject option margin, making it unaffected by the classification
threshold used by the original unprocessed classifier.

The results of these experiments are presented in Tables 14 and 15, containing the balanced
accuracy and corresponding group-based and individual-level fairness metrics, and optimal decision
boundary and margin widths, respectively.

Dataset ~ Obj Attribute BACC SPD DIR AOD EOD £&(1) &w(l)

Valid. SPD race 0.665 -0.047 0.900 -0.011 0.000 0.259 0.258
sex 0.529 0.049 2.229 0.038 0.041 0.611 0.604

AOD race 0.664 -0.042 0.909 -0.009 0.050 0.296 0.295

sex 0.533 0.046 1.883 0.035 0.059 0.686 0.686

EOD race 0.643 -0.082 0.858 -0.045 0.023 0.225 0.224

sex 0.622 0.097 1.350 0.077 0.017 0.370 0.370

Test SPD race 0.651 0.058 1.136 0.114 0.120 0.261 0.254
sex 0.538 0.044 1.796 0.028 0.063 0.598  0.596

AOD race 0.639 0.025 1.057 0.058 0.037 0.302 0.300

sex 0.541 0.033 1.584 0.024 0.024 0.681 0.680

EOD race 0.656 -0.061 0.893 -0.006 0.004 0.249 0.247

sex 0.638 0.232 1.900 0.166 0.196 0.410 0.410

Table 14: Accuracy and fairness metrics for reject option based classification (RObC) under various
optimisation constraints (statistical parity difference (SPD), average odds difference (AOD), equal
opportunity difference (EOD), on the validation and test data.

RObC clearly reaches the desired goal of fairness and reasonable preservation of accuracy in the
race-based classifiers cases, thereby convincingly outperforming CEOPP. However, when attempting
to satisfy the given fairness constraints with respect to men and women, RObC, like CEOPP, fails to



Dataset ‘ Fairness objective ‘ Attribute H T* 0*

Valid. SPD race || 0.420 0.068
sex || 0.182 0.000

AOD race || 0.425 0.077

sex || 0.184 0.000

FEOD race || 0.480 0.048

sex || 0.334 0.000

Table 15: Optimal classification threshold (7*) and margin width (0*) for RObC, under various
optimisation fairness-constraints, calculated on the validation dataset.

odds difference w.r.t. sex does RObC yield acceptable balanced accuracies for both the validation
and test sets, with values around 63%. These desirable balanced accuracies are juxtaposed with poor
fairness metrics, especially for the test set. The EOD solving classifier achieves very appealing levels
of fairness, with SPD, AOD and EOD reaching zero, though contrasted by a disparate impact ratio
of about 1.4, when evaluated on the validation set. Please note that AOD = 0 implies satisfaction
of the stringent equalised odds criterion. But when the same classifier is confronted with unseen
test data, the classification performance remains desirable, even slightly increasing, while the group-
based fairness measure all skew towards biased levels against males. This suggests more evidence of
fairness-overfitting, i.e., a fairness satisfying post-processing method fitting to a data-specific solution
which doesn’t generalise well.

The poor fairness and accuracy results with respect to sex are also reflected by the optimal
parameters found for the corresponding RObC configurations. Namely, RObC consistently converges
towards very low decision thresholds for classification as high-risk, i.e., the classifiers are labelling
defendants as dangerous criminals at alarmingly low risk estimates. This phenomenon could be
attributable to the large difference in recidivism prevalence among men and women, combined with
the goal of deminishing disparaties against females.

As mentioned earlier, RObC does, however, perform well when reducing racial disparities among
defendants. Balanced accuracy is often improved, compared to the pre-bias mitigation performance
reported in Table 12, with negligible changes in accuracy between validation and test sets. And
despite RObC’s superior preservation of efficacy, group-fairness measures nearly reach their optima
in most cases, alongside minimal increases in within-group equitability. Namely, &y (1) increases
by a factor of about 1.5 in the worst test scenario, which is concerned with solving for the most
demanding fairness criterion, AOD. Surprisingly, the best generalised performing configuration of
RODC (i.e., minimising the absolute value of FOD for race) not only achieves the highest balanced
accuracy of all test cases, boasts the EOD closest to zero, but also yields the best value for AOD
(even better than the configuration of RObC that attempts to optimise for this very metric). Recall
that FOD is a relaxation of AOD. Though counter-intuitive at first sight, this observation could be
caused by the over-constrained AO D-solving reject option based classifier failing to consider some
apparently important scope of the problem space.

In terms of optimal thresholds and margin widths for racial disparity-minimising RObC, similar-
ities can be seen between all three fairness objectives. The three values of 7* lie somewhere between
probabilities of 0.420 and 0.480 of perceived recidivism risk. But also in this comparison, £OD-
solving RObC prevails over its race-concerned opponents, by achieving the highest optimal threshold
with the lowest optimal margin width. Minimising margin width is appealing, as RObC’s working
premise, how effective it may be, involves switching prediction labels around, which is difficult to
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of defendants who are subject to the reject option classification rule. A further discussion of this
topic is saved for Section 6. Furthermore, a high optimal threshold is desirable for the defendant’s
perspective, however one could argue that from a societal well-being point of view, stricter decision
boundaries would be preferable. A thorough investigation about these implications is best conducted
in collaboration with an expert on law and criminology.

A final caveat with regards to RObC’s apparent superior performance comes as a consequence of the
previously mentioned Theorem 3, that states that equalised odds and calibration are unattainable in
non-trivial cases. Seeing as how AOD reaches a value of approximately zero for the best performing
configurations of RObC, proper calibration of the risk estimates of these classifiers is no longer
possible. Meaning that the produced probability estimates carry different semantic meaning for
Caucasians than for African-Americans, which is undesirable and considerable as unfair treatment
(see Section 5.1.2).

5.2.5 Observed tradeoffs

Figure 9 displays a few noteworthy visualisations of observed tradeoffs between within- and between-
group inequality measured by Theil indices (Figures 9¢ and 9d), and between balanced accuracy
(BACC) and equal opportunity difference (EOD) for classifiers transformed by calibrated equalised
odds post-processing with respect to approximate equality of weighted generalised error rates (9a
and 9b). The left half of the plot-group correspond to the post-processed classifiers with respect to
race and the right half to those corresponding with sex-disparity minimising classifiers.

In this experimental setup, the effects of altering the classification threshold of a probabilistic
classifier on the balanced accuracy and EOD of the pre- and post-bias mitigation classifier. A total
of 500 of equally distanced values of 7 € [0.01,0.99] are considered, at each of which the balanced
accuracy and EOD are plotted before and after applying CEOPP. EOD is chosen as a representation
of group-fairness, because it uses error rate information, unlike SPD and DIR, which only look at
group-specific rates of assignment of prediction labels. Moreover, EOD is a special case of AOD
and hence more easily achievable. Furthermore, unlike AOD), the sign of FOD has a single clear
interpretation: negative values indicate a disproportionately large amount of false negative errors for
the unprivileged group and vice versa. Whereas the sign of AOD could be caused by discrepancies
between groups in either or both of the error types.

In the lower half of the plot-group in Figure 9, the total, within-, and between-group Theil
indices are plotted for the same CEOPP configuration and set of classification thresholds as the
plot directly above it. Recall that by sub-group decomposability of generalised entropy indices,
(C:T(l) = gw(l) + 53(1)

An immediately clear and reoccurring observation is the on average diminished balanced accuracy
after applying CEOPP, depicted by the blue dashed curves in Figures 9a and 9b being lower than their
solid blue counterparts at every threshold, showing that post-processing clearly constrains predictive
accuracy. Another clear pattern from these upper two plots are the upward and downward movements
of balanced accuracy accompanied by increasing and decreasing absolute values of EOD, illustrating
the so-called fairness-accuracy tradeoff. This pattern persists before and after bias mitigation. A
striking observation is the increased magnitude of unfairness, as well as a clear flip in direction of
the bias after a certain threshold. The solid orange lines in Figures 9a and 9b display moderate
unilateral deviation from the point equal opportunity (i.e., FOD = 0), in disfavour of African-
Americans and males, respectively. Whereas the post-processed FOD values display extremely
pronounced peaks in the opposite direction of the unprocessed bias for low-thresholds, before abruptly

flipping over towards equally spiked levels of unfairness in the other direction at their respective bias-
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ends of the threshold range that amount to random guessing) accurately portrays the inability of
calibrated classifiers to satisfy even the most lenient error-rate constraints. This also serves as a
visual clarification for the poor results achieved by CEOPP, shown in Table 13, as it is apparently
impossible for CEOPP to find a reasonable combination of efficacy and group-based fairness.

Finally, the lower two plots, Figures 9¢ and 9d, do not convey much information with regards to
the tradeoffs in within-, and between-group inequality. What can be said, however, is that according
to the Theil index, the vast majority of observed inequality is attributable to within-group disparaties.
This observation persists after post-processing, but with a slight increase in between-group inequality.
CEOPP only succeeds in lowering total inequality after the protected attribute-specific fairness-
thresholds. If a decision-maker would be concerned with optimising for £r(1) and BACC, CEOPP
would produce reasonable classifiers for the higher part of the threshold range, but of course these
models would result in severely undesirable error-rates disparaties.

It must be noted that the results presented in this subsection and specifically Figure 9 must
be accepted tentatively, as CEOPP failed to produce either reasonable classification performance of
fairness levels. The main purpose of these plots is to display empirical realisation of tradeoff patterns
that are commonly cited in literature (Chouldechova, 2017; Corbett-Davies & Goel, 2018; Kamiran
et al., 2012; Kleinberg et al., 2016). Furthermore, recall that RObC is unaffected by the threshold of
a classifier, as it will converge to the same optimal threshold and margin for every starting threshold.
Meaning that a fairness-accuracy plot of RObC would be a horizontal line at the optimal threshold.
For that reason, I have chosen to omit such a graph.
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Figure 9: Line plots of tradeoffs between balanced accuracy and equal opportunity difference, and
decomposed inequality measured by Theil indices, before and after calibrated equalised odds post-
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6 Points of discussion & topics for further research

Any informed debate about the implementation of lawful fairness in machine learning-guided decision-
making systems can be the source of a plethora of topics of discussion about the moral implications
of fair machine learning (ML). The most salient points of discussion and ideas for future research
projects arising from the findings of this thesis are briefly touched upon in this section. Furthermore,
this section covers some important considerations regarding the validity of the results reported in
this paper.

One of the most fundamental moral dilemmas in fair ML is whether decision makers (e.g., judges,
employers or creditors) should incorporate observed differences in base rates in their modelling pro-
cess, thereby treating individuals differently based in part on their group-membership. For instance,
if recidivism prevalence is observed to be significantly more pronounced among men or African-
Americans, should these groups then be held to different standards than their respective opposite
groups? On the one hand, this would avoid the issue of women being held to the same standard as
men regarding recidivism risk scores, despite women showing significantly lower rates of recidivism,
thereby reducing the rate at which women are incorrectly labelled as high-risk and unjust sentencing.
Conversely, doing so with respect to race would imply subjecting new African-American defendants
to harsher scrutiny in the form of different, more strict risk assessments than Caucasians. A conse-
quence of such policy is the exacerbation of base rates differences and social disparities by creating a
type of vicious cycle that becomes all the more difficult to break. More specifically, treating high-risk
groups with stricter estimates is likely to increase the rate at which the group is exposed to risk, due
to, e.g., increased surveillance, incarceration rates (which have known societal impacts that can lead
to rising crime rates), and greater chances of being falsely labelled as high-risk.

This leads to a related fundamental subject of debate. Namely, the bias introduced via a target
variable that is inherently incomplete, e.g., observed recidivism. It is likely that due to increased
police surveillance in low-income, high-crime, and commonly ethnically diverse neighbourhoods, the
odds of observing recidivism for racial minority groups is larger than for privileged groups. This
phenomenon sets off a feedback loop that increases recidivism rates not only by actual rising crime
rates, but also by the increased probability of unlawful behaviour being detected by the mere presence
of law enforcers. This pattern is translatable to many different applications, e.g., consistently denying
loan-applications of a minority group reduces the number of opportunities to work towards financial
prosperity and become more creditworthy.

Narrowing the discussion to the bias mitigation results discussed in Section 5, an important
debate arises from the intuition behind the best performing post-processing method, reject option
based classification (RObC). In short, RObC finds an optimal decision-boundary for the estimated
posterior probability of, say, a defendant becoming a recidivist with optimal margin width, within
which the reject option classification rule holds that dictates that unprivileged group members are
assigned the favourable label (e.g., classified as low-risk) and privileged defendants are given the
unfavourable label. This process is similar to that of affirmative action, which satisfies a certain
diversity quota by reassigning prediction labels, based purely on group-membership. For example,
in an employment setting this sounds reasonable, though one could easily argue against accepting
an unworthy candidate for a job. But when concerned with such high-stakes decisions as criminal
sentencing, it is difficult to justify such behaviour of (seemingly) arbitrarily switching risk estimates,
which in this application has immediate consequences in severity of penalties. Paradoxically, this
intuitively odd mechanism performs very well in terms of preservation of balanced accuracy and
optimisation of group-based fairness measures.

The intuition behind calibrated equalised odds post-processing (CEOPP) spawns similar moral



dilemmas. Contrary to RObC, CEOPP is subject to randomness, which is why the resulting fairness
metrics and balanced accuracies are averaged over many draws. In practice, this would mean that, for
instance, the results generated by a bias-corrected RPI for a specific defendant are non-deterministic,
and can thereby vary from execution to execution. This also seems infeasible for judicial applications,
as a defendant’s sentence can be based on pure luck.

A further topic of discussion regarding RObC is the presumed sacrifice of calibration that comes
with satisfying error rate equality across groups, as dictated by Kleinberg’s theorem. That is, as
a classifier achieves arguably important notions of fairness by satisfying equalised odds, the group-
specific probability estimates lose their semantic meaning, in the sense that a risk estimate of a
certain level would correspond to a different perceived risk of recidivism for members of one group
than for members of another. The validity of these assertions, and a proper discussion of which
fairness aspect weighs more heavily is left as a topic for further research.

7 Conclusions

The aim of this thesis was to investigate to what extent the recidivism prediction instrument (RPI)
known as COMPAS can be accused of being unfairly biased towards African-Americans and / or
women. Furthermore, this study set out the study the effectiveness of various bias mitigation post-
processing techniques, specifically (calibrated) equalised odds post-processing and reject option based
classification, when attempting to debias a presumably unfair arbitrary probabilistic classifier, whilst
preserving prediction performance to obtain a reasonable, non-trivial, and fair classifier.

The experimental setup of this research was divided into two parts: assessing the unfairness of
COMPAS scores using traditional non-parametric and parametric econometric methods, and applying
the aforementioned bias mitigation algorithms to an arbitrary, but demonstrably biased probabilistic
classifier.

The assertions regarding unfair treatment of African-Americans by COMPAS scores are confirmed
with convincing statistical significance by logistic regression modelling of both the true and predicted
outcome labels, as well as the false positive and negative error rates. These parametric modelling
were, however, less conclusive with respect to gender-bias. While the rate at which women were
labelled as high-risk (irrespective of correctness) are significantly higher than for men, compared to
significantly lower rates of observed recidivism, the rates at which females were subject to mislabelling
were insignificant in both cases.

When examining whether COMPAS scores are well-calibrated with respect to sex and race, this
study found them to be calibrated for ethnic groups, but uncalibrated with respect to gender, in
disfavour of females.

Furthermore, a non-parametric analysis of COMPAS scores by relative feature importance scoring
using random forests showed a clear drop in relative importance of race-related variables when
switching from predicting risk score categories to predicting actual observed recidivism. However,
the opposite held for sex-related variables. Namely, they appeared to be more important relative to
the other features when concerned with predicting observed recidivism.

As for the bias mitigation results, calibrated equalised odds post processing displayed very unde-
sirable performance in terms of equitable outcome, often exacerbating the levels of both racial and
gender disparities. Although CEOPP displayed acceptable conservation of classification performance
for race-based post-processing, it failed to result in a reasonable improvement of the already biased
classifier when aiming to reduce group-based inequality. A possible explanation is the impossibility
of calibrated classifiers obtaining error rate equality.

Reiect ontion haced claccaifcation chowed afrilcinoly ciimerior nerfoarmance both in ferma of nrocoer-



vation of efficacy and near optimal group-based fairness properties. However, it is highly likely that
these newly obtained reject option based classifiers fail to satisfy calibration, which could be seen as
unacceptable for practical purposes. Furthermore, it is disputable whether the intuition of affirmative
action on which RObC builds is morally justifiable in a real-world criminal sentencing application.



Appendices

A Glossary

e Anti-classification A class of fairness definitions in which a decision-making model / algo-
rithm does not consider protected attributes, like race, gender or proxies thereof when deriving
estimates.

e Bias A systematic error in reasoning or logic that occurs as the result of the automaticity with
which the human mind processes information based on expectations and experience

e Bias mitigation algorithm A procedure for reducing unwanted bias in training data or
models.

e Calibration A fairness definition that requires outcomes of decision-making systems are in-
dependent of protected attributes after controlling for estimated risk. Put differently, an es-
timated risk score, e.g., s(X), must correspond to the same risk for all individuals with that
score, irrespective of their protected attributes.

e Counterfactual In causal inference and treatment evaluation, a counterfactual is an unob-
served outcome that would have occurred, had the opposite decision been made of what actually
happened. In a lending example, this corresponds to the unobserved outcome that would’ve
been observed for a client whose loan application was denied, had it been accepted.

e Decision rule A decision rule is any measurable function d : IR? +— {0, 1}, where we interpret
d(x) as the probability that (binary) action a; is taken for an individual with visible attributes
x.

e Disparate impact In US law, disparate impact refers to practices in employment, housing
and other areas that adversely impact a protected group, despite the decision makers applied
rules and intent thereof being neutral and non-discriminatory.

e Disparate treatment In US law, disparate treatment refers to unlawful discriminatory prac-
tices by decision makers towards an individual because of a protected characteristic.

e Equalised odds We say that a predictor Y satisfied equalised odds with respect to the pro-
tected attribute A and outcome Y, if ¥ and A are independent conditional on Y.

e Fairness metric A quantification of unwanted bias in training data or models.

e Favourable label A label whose value corresponds to an outcome that provides an advantage
to the recipient, e.g., receiving a loan, getting hired, not being arrested.

e Gerrymandering The act of manipulating the boundaries of a population’s subgroups, with
the goal of benefiting a particular group or following some hidden agenda.

e Group fairness The goal of groups defined by protected attributes receiving similar treatments
or outcomes.

e Individual fairness The goal of similar individuals receiving similar treatments or outcomes.



Infra-marginality A general phenomenon in economics and statistics known as the prob-
lem of infra-marginality, refers to differences in error metrics across groups of protected and
unprotected individuals due to their respective risk distributions being different.

Oblivious A property of a predictor Y or score R (in supervised learning) is said to be oblivious
if it only depends on the joint distribution of (Y, A, Y) or (Y, A, R), respectively. Here, A denotes
the (binary) protected attribute, whereas Y denotes the (binary) target variable of interest.
Note that this property implies a model is oblivious to the information carried in X, the matrix
of observable features.

Parity A class of formal fairness definitions that requires certain predictive measures (often
derived from a confusion matrix, like precision, recall, F1-score, FPR) be equal across all groups
of individuals.

Protected attributes An individual?s characteristics or attributes on the basis of which dis-
crimination may occur. Examples include race (including colour, national or ethnic origin, or
immigrant status), sex (including pregnancy or marital status and breastfeeding), age, disabil-
ity, or sexual orientation, gender identity and intersex status.

Proxy Data used to approximate labels or features not directly available in a dataset or not
allowed to be used due to legal restrictions.

Sensitive attributes See "protected attributes."

Sensitivity Also known as the true positive rate. That is, the proportion of positive classes
correctly classified as such by a binary classifier.

Specificity Also known as the true negative rate. That is, the proportion of negative classes
correctly classified as such by a binary classifier.

Subgroup validity The phenomenon that certain features (say, x) are biased in the sense
that factors are not equally predictive across (e.g., race) groups.



B Exhaustive list of variables and their descriptions

H # ‘ Name ‘ Description ‘ Type H
0 |id Defendant’s identification number in dataset Positive integer
1 | name Defendant’s full name String
2 | first Defendant’s first name(s) String
3 | last Defendant’s surname String
4 | compas_screening_date | Date of defendant’s COMPAS assessment Date (yyyy-mm-dd)
5 | sex Defendant’s sex (M/F) Categorical (k = 2)
6 | dob Defendant’s date of birth Date (yyyy-mm-dd)
7 | age Defendant’s age at time of screening Non-negative integer
8 | age_cat Defendant’s age category Categorical (k = 3)
9 | race Defendant’s ethnicity / race Categorical (k = 6)
10 | juv_fel count Number of juvenile felony charges Non-negative integer
11 | decile_score COMPAS risk decile score Categorical (k = 10)
12 | juv_misd_ count Number of juvenile misdemeanour charges Non-negative integer
13 | juv_ other count Number of other juvenile charges Non-negative integer
14 | priors_ count Number of prior charges Non-negative integer
15 | days_b_screening arrest | Days between arrest and COMPAS assessment | Integer
16 | ¢_jail in Start of incarceration Date-time
17 | c_jail out End of incarceration Date-time
18 | c_case number Unique registered COMPAS case number Categorical (k= N)
19 | ¢_offense date Date of offense Date (yyyy-mm-dd)
20 | c¢_arrest_ date Date of arrest Date (yyyy-mm-dd)
21 | ¢_days from_compas Non-negative integer
22 | ¢_charge degree Degree of offense Categorical (k = 2)
23 | ¢_charge desc Description of charge String
24 | is_recid Whether previously registered by COMPAS Binary
25 | r__case_number Recid case number Categorical
26 | r_charge degree Recid charge degree Categorical
27 | r_days_from arrest Days between previous arrest & screening Non-negative integer
28 | r_offense date Date of previous offense Date (yyyy-mm-dd)
29 | r_charge desc Description of previous charge String
30 | r_jail in Start of previous incarceration Date (yyyy-mm-dd)
31 | r_jail_out End of previous incarceration Date (yyyy-mm-dd)
32 | violent_ recid .. ..
33 | is_ violent_ recid Whether previously charged for violent crime | Binary
34 | vr_case number Variable 25 for violent offense Categorical
35 | vr__charge degree Variable 26 for violent offense Categorical
36 | vr_offense date Variable 28 for violent offense Date (yyyy-mm-dd)
37 | vr_charge desc Variable 29 for violent offense String
38 | type_of assessment Type of COMPAS assessment Categorical
39 | decile score.1 ..
40 | score_ text Decile score category Categorical (k = 3)
41 | screening date v
V> T T Y S + Mavai v L CINDOINTIDDA Qo it vam e 4 (et Tt ) (Nt ]




43
44
45
46
47
48
49
50
51
52

v__decile score
v__score_text

v_ screening date
in_ custody

out_ custody
priors_count.1l
start

end

event

two_year recid

Violent recidivism risk decile score
Violent decile score category
Violent recid risk screening date
Start of pretrial custody

End of pretrial custody

Whether recidivated within 2 years

Categorical (k = 10)
Categorical (k = 3)

Date (yyyy-mm-dd)
Date (yyyy-mm-dd)
Date (yyyy-mm-dd)

Binary

Table 16: Exhaustive list of variables that comprise the two primary data sets considered for analyses.
Conventions: k denotes number of categories of categorical variable, "recid" is used as abbreviation
for "recidivist."




C Proofs

C.1 Proof of the information theoretic data processing inequality
See Theorem 1.

Proof. By the Chain Rule, the Markov Chain’s mutual information, (X, (Y, 7)), can be decomposed
in the following two ways:

I(X, (Y. 2)) =1(X,2)+ I(X,Y | Z)

=I1(X,2)+I(X,Z]Y).
By assumption, X 17 | Y = I(X,Z | Y) = 0, and thus we obtain I(X,Z)+ [(X,Y | Z) = I[(X,Y).
Because the mutual information of two random variables is always non-negative, the data processing

inequality follows from the previous expression: I(X,7) < I(X,Y).
O

C.2 Proof of Chouldechova’s Incompatibility Result
See Theorem 2.

Proof. First, it is shown that base rates (i), positive predictive value (PPV'), and false positive and
negative rates (FFPR and FNR, respectively) are related via a single equation following from the
definition of PPV':

tp TPR-p
PPV_tp+fp_TPR-u+FPR'(1—u)
B (1-FNR)-u
(1= FNR)-pu+FPR-(1—p)
o 1  (I1-FNRu+FPR(1—p) FPR(1 — p)
PPV (1— FNR)u (1— FNR)u
w 1—PPV
@FPRzl_M sy (L= FNR)

Using the final equation, the theorem can be proven by contradiction. Assume there exist two dis-
joint sub-populations defined by protected attribute A € {a, b} with unequal base rates, and some
binary classifier Y that satisfies predictive parity: PPV, = PPV, and p, # jw.

Now assume the following to be true:

(FNR, = FNRy)) A (FPR, = FPRy). (42)

Then the following must hold:



FPR, = FPR,
e 1— PPV,
~
1_,ua PP‘/a
Ha Mo
RN =
1_:“(1 1_,ub

1 —
(1- FNR,) = -1 PPV

1-FNR
1_,U/b PP‘/b ( b)

However, the last equation yields a contradiction as p, # pp. It must therefore hold that FFNR, #
FNR, and/or FPR, # FPR,,.
]



D Logistic regression results for violent recidivism

coef std err z P> |z| [0.025 0.975]

const -1.6705  0.095  -17.550 0.000 -1.857 -1.484
sex_female 0.2063 0.097 2.116 0.034 0.015 0.397
age_ cat_ greater__than_ 45 -1.3907 0.126 -11.034 0.000 -1.638 -1.144
age_ cat_ less_ than_ 25 1.4274 0.097 14.787  0.000 1.238 1.617
race__african__american 0.5517 0.088 6.267 0.000 0.379 0.724
race_ other2 -0.4591  0.132 -3.470  0.001  -0.718 -0.200
priors__count 0.2943 0.015 19.295 0.000  0.264  0.324
c_ charge_degree_m -0.2277  0.083 -2.745  0.006 -0.390 -0.065
two__year_ recid 0.8605 0.108 7.958 0.000 0.649 1.072

Table 17: Model specification and parameter summary of logistic regression with score category
(low or not low) as dependent variable for violent recidivism. Note that the variable race_other2
corresponds to a grouped dummy of all non-white and non-black ethnic groups.

coef std err z P> |z| [0.025 0.975]

const -2.0844  0.108 -19.296 0.000 -2.296 -1.873
sex_ female -0.6373  0.133 -4.794  0.000 -0.898 -0.377
age_ cat_ greater__than_ 45 -1.0749  0.147 -7.336  0.000 -1.362 -0.788
age_ cat_ less_ than_ 25 0.6555 0.109 5.989 0.000 0.441 0.870
race__african__american 0.2446 0.105 2.326 0.020 0.038 0.451
race_ other2 -0.1730  0.153 -1.128  0.259 -0474 0.128
priors__count 0.1481 0.011 14.035 0.000  0.127  0.169
c_charge degree_m 0.0539 0.096 0.562 0.574 -0.134 0.242

Table 18: Model specification and parameter summary of logistic regression with observed recidivism
within two years as dependent variable for violent recidivism. Note that the variable race other2
corresponds to a grouped dummy of all non-white and non-black ethnic groups.



Equalised odds post-processing results

Dataset | Attribute | BACC SPD DIR AOD EOD £(1) &w(1)
Valid. (7 = 7*) Race 0.647 -0.188 0.743 -0.153 -0.098 0.188 0.188
Sex 0.647 0.199 1.344 0.167 0.093 0.188 0.188
Test (7 = 1) Race 0.651 -0.228 0.699 -0.201 -0.183 0.195 0.194
Sex 0.651 0.209 1.361 0.164 0.149 0.195 0.195

Table 19: Equalised odds post-processing
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