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Abstract

Cannibalization of own assortment is a general concern to many retailers when introducing
new products. The focus of this study is estimating the cannibalization effect in terms of
change in discrete choice probability pre- and post-introduction. We use an MCMC Gibbs
sampler to estimate individual-specific brand preference and sensitivity to marketing decision
variables specified by the Multinomial Probit (MNP) model. Estimates for these parameters
are then used to simulate choice probabilities by means of the GHK simulator. Given that
the MNP model notoriously suffers from identification issues, we compare two different iden-
tifying model specifications, each placing a different restriction on the covariance matrix of
errors. The element-restricted model fixes just one parameter of the diagonal of this matrix,
while the trace-restricted model fixes the trace of the matrix. We evaluate both methods in a
simulation study and conclude that trace-restricted model outperforms the element-restricted
model in overall model-fit, although the element-restricted model has slightly better predic-
tive accuracy. We then apply the trace-restricted model to empirical sales data containing
a new product introduction in the laundry detergent category. This approach allows one
to observe changes in competitive structure as well as changes in sensitivities to marketing
decision variables in the face of new product introductions.

Keywords: cannibalization, discrete choice modeling, Multinomial Probit, MCMC Gibbs

sampler, GHK simulator, identification, trace-restriction, unobserved heterogeneity
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1 Introduction

Product assortment strategy is a central concern to many retailers of fast-moving consumer
goods. Retailers, both online and traditional, cater to a host of customers, each with different
demands and price sensitivities. While some may only be interested in low-priced standard goods,
others are willing to pay a premium for a more high-quality brand, a different flavor, or a special
edition. In an effort to serve as many customers as possible, retailers may choose to expand their
product assortment by introducing new brands and new product variants. However, it is widely
accepted that product proliferation may come at a cost operationally (Broniarczyk & Hoyer,
2006). Having more product variety complicates inventory control and quality assurances and
increases forecasting errors and overhead costs (Kim & Chhajed, 2000). As such, new products

must be introduced with careful consideration.

In evaluating the success of such introductions, one must consider how much new demand they
generate, but also to what extent this demand is poached from the existing, or incumbent prod-
ucts. This is also known as the cannibalization effect (Mason & Milne, 1994). Ignoring this
effect may result in an overestimation of the new product’s performance. The importance of
considering the cannibalization effect has not been understated in the literature, but the effect
itself has almost exclusively been viewed as undesirable. However, from a retailer’s perspective,
cannibalization may be part of a profit-maximization strategy when a new product introduc-
tion gains territory from an incumbent product with lower margins. Furthermore, it provides

an opportunity to gain insight into customer preferences through their brand-switching behavior.

In essence, estimating cannibalization comes down to estimating consumer demand pre- and
post-introduction. Demand, or marketing models, measure the change in demand as a function
of marketing decision variables employed by a firm, or its competitors, to facilitate managers
in their marketing strategies (Leeflang, Wittink, Wedel, & Naert, 2013). Among such models,
a distinction is made between aggregate demand models, describing behavior at the market,
store or brand level, and individual demand models. The latter has the advantage of gaining
insight into the effect of marketing instruments on a consumer or household level. Furthermore,
as consumer tastes continue to diversify, aggregated insights may no longer accurately describe
consumer decision making (Allenby & Rossi, 1998). Especially in the face of new product in-
troduction, dissagregate demand models may prove useful, as individual switching behavior can
be exploited to gain further understanding of customers’ latent preferences and sensitivities to

marketing instruments (Leeflang et al., 2013).



At the disaggregate level, the behavior of a consumer or household is best described by dis-
crete variables. The purchasing of a product at a certain price and discount among all other
alternatives, is a discrete choice. Formally, discrete choice analysis is defined as “the modeling of
choice from a set of mutually exclusive and collectively exhaustive alternatives”, where the choice
is expressed in choice probabilities (Ben-Akiva, Lerman, & Lerman, 1985). Many approaches to
estimating such models exist, and can roughly be divided into two categories: classical meth-
ods and Bayesian methods. Here, we take preference to Bayesian methods, because classical
approaches to inferring individual-specific parameters are more computationally demanding and

yield only approximations (Allenby & Rossi, 1998).

In this paper, we make use of the Multinomial Probit Model (MNP), a discrete choice model, es-
timated by Bayesian analysis. The aforementioned advantage of disaggregate demand modeling
is simultaneously one of its main complexities. Because we observe the effect of the marketing
instruments on an individual level, one must account for unobserved heterogeneity across house-
holds (Fok & Franses, 2001). The MNP model estimated by Bayesian methods is especially
well-equipped to account for this. Unfortunately, the MNP model suffers from identification
issues, making some model parameters inestimable in the absence of identifying restrictions. In
this paper we compare two specifications of the MNP model, both placing a different identifying
restriction on the covariance matrix of errors. The first places a restriction on a single element
of this matrix, while the second places a restriction on the trace of the matrix as first introduced
by Burgette and Nordheim (2012). While comparing the two model-specifications, our goal is
two-fold: 1) estimate brand preference and sensitivity to marketing instruments at the individ-
ual level in the face of a new product introduction and 2) estimate the choice probabilities pre-
and post-introduction to gain insight into the extent of cannibalization. To our knowledge, this

application of the MNP model has not yet been researched in previous literature.

The remainder of this paper is structured as follows. Section 2 provides a review of related
work on cannibalization and discrete choice models. Section 3 discusses our methodology to
obtaining parameter estimates for the marketing instrument sensitivities and the choice proba-
bilities. In Section 4, we evaluate our methods in a simulation study. In Section 5, we apply
our methods to empirical data containing sales data for laundry detergent provided by online
retailer Picnic. Conclusions are presented in Section 6 and lastly, we discuss the limitations of

this research and offer ideas for future research in Section 7.



2 Literature review

This chapter is split into two sections. In Section 2.1, we discuss several approaches to estimating
the cannibalization effect, as proposed in the literature so far. In Section 2.2, we discuss related

work on discrete choice modeling, our choice approach to estimating cannibalization.

2.1 Cannibalization

Current literature regarding the cannibalization effect can broadly be divided into two ap-
proaches. While one approach focuses on identifying situations in which cannibalization may
occur, the other is concerned with quantifying the extent of cannibalization. The former is more
normative in nature and provides ways to respond to situations for which the potential for can-
nibalization is high. For instance, Srinivasan, Ramakrishnan, and Grasman (2005) show that
the likelihood of a new product cannibalizing the sales of incumbent product increases with the
similarity of the features between these products. Similar findings are reported by Buday (1989)
and Copulsky (1976). Alternatively, Mazumdar, Sivakumar, and Wilemon (1996) and Moorthy
and Png (1992) present normative frameworks for the timing of new product introductions when

the potential for cannibalization is high.

The other stream of research takes a more quantitative approach to estimating cannibaliza-
tion effects. For instance, Mason and Milne (1994) estimate the cannibalization effect of new
cigarette variants by identifying core and fringe consumers of each brand, based on a clustering
algorithm. Pairwise cannibalization effects between different brands of cigarettes are calculated
based on the extent to which niches overlap. This model however, is dependent on consumer

survey data which may be costly to obtain.

Alternatively, making use of observed sales data, Fok and Franses (2004) propose a market-share
attraction model to estimate the effect of a new brand introduction on competitive structure for
laundry detergent brands. Their methodology enables to statistically test for various changes,
including changes in market share and changes in marketing-mix sensitivities, pre- and post-
introduction. Gielens (2012) builds on this approach in estimating to what extent private label
introductions change national brands’ market position. Here, the market share attraction model
is extended by modelling each product introduction by a step dummy variable allowing for a
level shift in attraction each time a product is introduced. As such, the attraction of a brand is

a function of all product introductions, as well as the usual controls and marketing-mix variables.



Bijmolt, Van Heerde, and Pieters (2005) take matters a step further. In addition to estimating
the effect of new product introductions by means of a multiplicative sales model, they propose an
approach to optimizing a retailers’ assortment. The authors predict sales instead of market share
and use these estimates in a Gibbs sampler to tackle the optimization problem. The multiplicative
sales model however, can also be used in a non-predictive setting. Van Heerde, Srinivasan, and
Dekimpe (2010) specify a Vector Error Correction (VEC) model and use Bayesian techniques to
estimate how much of the demand generated by new products stems from the incumbent brands.

The VEC specification enables distinguishing short-term fluctuations from long-term effects.

Though all aforementioned approaches provide important insights into the effect of new product
introductions on incumbent products, all are based on aggregate data. Aggregate data can be
very useful in the absence of dissaggregate data for gaining an understanding of a market as a
whole (Sheffi, Hall, & Daganzo, 1982). However, dissaggregate data, such as household panel
data, facilitates the analysis of individual consumer choice behavior and enable the researcher to
gain insight into consumers’ latent preferences. Such data is best utilized by means of discrete
choice models. Instead of modeling market share as a function of a brand’s attraction, one mod-
els individual consumers’ choice probabilities which may be aggregated in a later stage. Such an

approach allows one to account for individuals’ varying tastes, i.e. consumer heterogeneity.

2.2 Discrete Choice Models

Discrete choice models have been used for quite some time across many disciplines to model
stated preference, as well as revealed preference (Keane, 1997). Amongst this class of models,
the most commonly used is the Multinomial Logit (MNL) as introduced by McFadden et al.
(1973). The MNL model accredits its wide usage to the relative ease with which it is estimated.
However, the model makes some very strict assumptions regarding the patterns of substitution
across alternatives (Train, 2009). Namely, the MNL model exhibits independence from irrelevant
alternatives (ITA), meaning that the relative odds of choosing one alternative over the other is
the same regardless of the other alternatives available. However, this assumption may not be
appropriate in the case of consumer brand-choice behavior because some alternatives within a

choice set are more similar than others (Chintagunta, 2001).

Several solutions have been proposed to alleviate the ITA assumption. For instance, the nested
logit model does so, by imposing a hierarchical partitioning of the choice set based on predeter-

mined assumptions (Ansari, Bawa, & Ghosh, 1995). The division of the choice sets in nested



partitions is what induces a correlation structure between alternatives, as products within groups
are more strongly correlated than products across groups. However, dividing products into pre-
determined groups is not realistic, as the division is not always clear and thus may not properly

capture the substitution effects (Nevo, 2000).

A model that offers a more flexible specification is the Multinomial Probit model (MNP) (Hausman
& Wise, 1978). Though less restrictive, the model only started to gain traction when advances
in simulation techniques and computing power increased. This is because the MNP model does
not yield closed-form expressions for the integrals expressing choice probabilities, and therefore
cannot be computed numerically. Several classical approaches avoiding the evaluation of the like-
lihood function have been proposed i.e. Method of Simulated Moments (McFadden, 1989) and
Method of Simulated Scores (Hajivassiliou & McFadden, 1998). However, they require extremely
large sample sizes to yield accurate estimates, given that the approaches rely on asymptotic ap-
proximations. Albert and Chib (1993) and McCulloch and Rossi (1994) were first to propose
Bayesian sampling methods. They proposed using a Gibbs sampler to sample latent parameters
alongside the model parameters, also known as data augmentation. Since then, Bayesian analysis
of the MNP model has been the topic of much work; see e.g. Nobile (1998), Chib, Greenberg,
Chen, et al. (1998), McCulloch and Rossi (2000), Imai and Van Dyk (2004).

More recently, Burgette and Nordheim (2012) have made contributions to this body of liter-
ature by proposing an innovative identification approach. Identification, as will be discussed in
Section 3.3, is necessary as the latent parameters of the MNP model are scale- and level-invariant,
and multiplying all latent parameters by a positive constant does not change the ordering. Iden-
tification often comes in the form of a restriction on the covariance matrix. Mostly, such a
restriction is imposed on a single element of the matrix, but Burgette and Nordheim (2012)

propose a restriction on the trace of the matrix instead.

In this paper, we compare the identification strategy of Burgette and Nordheim (2012) to that of
Imai and Van Dyk (2004) (an element-restricted model), as we apply both strategies to an MNP
panel model. Furthermore, our model specification allows for heterogeneity among individuals
by using individual-specific regression parameters ;. As neither the trace-restricted model, nor
the element-restricted model by the aforementioned authors, allow for this, we consider that to
be our theoretical contribution to the literature. The estimation of cannibalization serves as an

empirical application of our method.



3 Methods

We commence by introducing the Multinomial Probit (MNP) model specification and our mode of
parameter estimation in Section 3.1 and Section 3.2. In Section 3.3, we dive into the identification
restrictions. Next, we elaborate on our method of obtaining the choice probabilities in Section
3.4, and lastly we propose methods of evaluation to assess the accuracy of our models in Section
3.5. As discussed previously, our model is specified at the individual level, and as such we may
use individual or household interchangeably. The same applies to the use of product, article or

brand. Implementation of all methods is done in Python.

3.1 Model Specification

We define the utility that customer i gains from product j at time ¢ as follows:
Uiji = X{jBi + €ijt- (1)

Here X;j; represents product-specific covariates such as price and price promotions and also
includes an intercept. The coefficient 3; represents the customer’s sensitivity to the marketing
decision variables as well as the customer’s intrinsic brand preference. Ultimately, the consumer

chooses the brand for which the utility is maximized:

Yit = argmax Uijt (2)
Jj=1,...J

The error terms ¢;;; follow a multivariate normal distribution such that e; = (€14, ..., €i) ~
N(0,%), where ¥ is a J x J matrix and J is the number of alternatives. This specification leads
to the MNP model. Given that choice modelling depends merely on the ordering of the utilities
and not on their absolute value, it is convention to model the utility relative to a base alternative.

Hence, we define the relative utility as follows:
Uijt = Ui = (Xije — X)) Bi + (€4t — €igt)

- ~ ~ )
Uz’jt = Xijt Bz + €5t for 7 =1, ey d — 1.

Here X;j; = [I;_1, D;], where I; is the identity matrix and D; is a (J — 1) x L matrix of differ-
ences in marketing-mix variables between each alternative and the base alternative. The relative
utility ﬁijt is the utility of brand i relative to the utility of brand J. The relative utility of brand

J is thus equal to zero. Due to this transformation, the dimension of € = (€14, ..., €7¢) 1S now



J—1 instead of J. The distribution of €;; remains multivariate normal, but the covariance matrix
of error differences ¥ needs to be derived from the covariance matrix of errors . Fortunately,
this derivation is straightforward as D M!YM;, where M; is a J — 1 identity matrix with an

additional columns of -1’s as the ith column.

As stated in Equation 1, households may be heterogeneous in their intrinsic brand preference
and sensitivity to marketing decision variables. We formulate 3; as random draws from the

multivariate normal distribution:

Bi = B+ v, (4)

where v; ~ N(0,X5). X3 is the L x L diagonal covariance matrix of 5; which allows the unob-
served shocks that influence marketing mix sensitivities to be correlated. Here L includes the

J — 1 intercepts and the covariates.

3.2 Estimation

Given the utilities Uiﬁ, ..., Uijt, the probability that household ¢ purchases article 7 on occasion
t is then given by:
Pr[ffijt > Uspr Vk # 5] (5)

Given that the utility Uijt is normally distributed, the joint distribution of Uijt is a multivariate
normal distribution with dimension 7; x (J — 1). Notice the subscript on the T;, as the number
of trips may vary between customers. To account for the household heterogeneity, we must
integrate over f3;, resulting in an (7; x (J — 1))-dimensional integral that needs to computed N

times to obtain the following expression for the likelihood:

N
E(data\@) = H/Pr[ﬁijt > ﬁikt vk 7& ]]fN(B’Ll/Bv Eﬁ)dﬂi (6)
=1

It is clear that this expression is analytically intractable. We must therefore rely on sampling
methods, and more specifically Gibbs sampling as described by Geman and Geman (1984). To
briefly describe the idea behind Gibbs sampling, we consider two random variables: 67 and 6.
Gibbs sampling proceeds by iteratively sampling 01”“ from the full conditional posterior distri-
bution f(07*|65") and using that value 87" to sample 65! from f(05/67"!). Given that we
use the previous value to randomly generate the next sample value, we obtain a Markov Chain.
After the Markov Chain converges, the simulated values 9§m) and 9§m) can be used as a sample

from the joint posterior distribution p(f,602|y). This distribution can then be used to obtain



posterior results, such as the posterior mean where Ey,[0] ~ ﬁ Z%:l 0™ One drawback of
this Markov Chain Monte Carlo (MCMC) sampling algorithm is that the draws obtained by the
sampler by definition suffer from autocorrelation. We may circumvent this issue by the use of

thinning i.e. saving only every tenth draw.

Gibbs sampling is especially convenient in the context of the MNP model because we can make
use of the fact that conditional on the utilities Uijt, .., Uiji, the MNP model is a standard
Bayesian linear regression. As such, the latent utilities can be sampled alongside the model
parameters. This is also known as data augmentation. The layers for the Gibbs sampler are

stated in Algorithm 1.

Algorithm 1 Gibbs Sampler Multinomial Probit

1: Set starting values for j3, 3, Y5 and Uijt, v Ui, m =0
2: Draw ffijt | }/it,ﬂi,i, ffikt V k # j independently for allt =1,...,7T; and i =1,.... N
3: Draw X:

e Set ¢ = (Uit - X{tﬁz)

e Draw ¥ from IW (v, ®) where v = X + Zf\il T; and ® =¥ + 21111 ZtTi1 €it€it’

4: Draw f; conditional on S, i, Y5 and 0,-jt, v, Upge Vi
5: Draw /3 conditional on g, ¥ and S;
6: Draw X3 conditional on 3, Y and S

7: Set m = m + 1 and return to step 2 till convergence

Step 2 through 6 of this algorithm require full conditional posterior distributions in order to
sample the model parameters. These conditional distributions are derived from the posterior
distributions which are proportional to the parameter’s prior distribution multiplied by the like-
lihood. We take flat priors for all parameters, with the exception of the prior distribution for 3;

(given by Equation 4) and for Y, for which we choose a proper, but weakly informative prior:

p(X) ~ IW (A, ¥) (7)

Here, the scale matrix ¥ determines the position of the distribution in the parameter space,
while the degrees of freedom A signifies the certainty of the prior information in the scale matrix
(Schuurman, Grasman, & Hamaker, 2016). To specify the least informative prior possible, one
may set W equal to ¢ times the identity matrix, where c is some constant, and A\ such that

it is only slightly larger than the number of random parameters. This because the inequality



A > (p—1) must hold in order to obtain a proper posterior density. However, some specifications
may yield unstable results if the degrees of freedom is too small. Alternatively, the larger the
degrees of freedom, the stronger the influence of the prior. The choice of A is thus a balancing
act between prior influence and numerical stability. The prior specified in Equation 7 has two
very attractive properties. First, it serves as a way of placing identifying restrictions on X, which
will be further discussed in Section 3.3. Second, it ensures that the posterior distributions for
the remaining parameters are proper as well (Paap & Franses, 2000). A brief summary of the

derivation of all posterior distributions can be found in Appendix A.

From most of these posterior distributions we can directly sample draws, as they are quite
standard i.e. the (Multivariate) Normal distribution and the Inverted Wishart distribution.
However, sampling the latent utilities requires a bit more effort. For instance, the utility ﬁijt
given all other utilities Uit,(_j) follows a truncated normal distribution, where the truncation

region is determined as follows:

- > max (U; _,0) if y;=7
i (~zt,( i0) @)
< max (Uit,(,j),()) if Y; 75]

The truncation ensures that the relative ordering of the utilities remains intact. Many modern
software packages allow for direct sampling from the truncated normal distribution, relying on
the inverse cumulative distribution function (CDF) technique (Devroye, 1986). Sampling x from
TN(a,b) is then achieved by calculating the inverse CDF of u, such that x = ®~!(u), where
u ~ U[®(a), ®(b)]. This approach requires the evaluation of three integrals, and can be slow
to be computed as u tends to zero or one (Geweke et al., 1991). Instead, we employ a mix of
accept-reject sampling and exponential sampling, as done by Jiao and van Dyk (2015). In short,
if U,-jt is truncated such that Uijt > u and u < 0, we employ accept-reject sampling from an
unconstrained normal distribution until Uijt > u. Alternatively, if Uijt > u and u > 0, we use
the exponential rejection sampling method as proposed by Robert (1995). The same scheme is
used when Uzjt < u, but with a slight modification, as —Uijt < —u. The mean and variance for

the truncated normal is specified as follows:

piji = 25;B8; + F Uy~ j) — Xi—)Bi) (9)

2 _ .
Tijt = 1/‘7]3

Here F' = —0,jvj,—;, where 0;; denotes the (j, j) element of ¥~ ! and vj,—j is the 7% row of £71



with the j™ element removed.

3.3 Identification

Though Algorithm 1 is a clever way of estimating the parameter estimates without having to
evaluate a high-dimensional integral, the algorithm is complicated by the matter of identifica-
tion. As is discussed extensively in the literature, the MNP model suffers from identification
issues due to the fact that utilities are scale- and level-invariant. Multiplying all utilities by a
positive constant does not change the ordering of an individual’s choice probabilities. The same
goes for adding a constant to all utilities. Given that we only observe the index of the maximum
of the utilities (not the utilities itself), and the ordering of the utilities is preserved by such
transformations, some of the model parameters are unidentified and cannot be estimated. The

MNP model therefore requires some form of restriction to ensure all parameters are identified.

Common practice is to set 53171 equal to unity. This identifying restriction reduces the number of
parameters to be estimated from J(J+1)/2 to J(J—1)/2 while maintaining all economically rel-
evant information. The removed parameters merely contain the scale and level of utility and are
thus not relevant for choice behavior and do not need to be considered (Train, 2009). However,
the choice of which category corresponds to the element of 3 that is set to unity, may have a large
effect on the posterior predicted choice probabilities. Instead, Burgette and Nordheim (2012)
propose a trace-restricted covariance matrix X. By fixing the trace rather than one element of the
covariance matrix, one is no longer forced to choose which alternative has unit variance. Further-
more, these authors have found that the MNP model with trace-restricted covariance provides
stronger identification, more interpretable results and yields less volatile posterior predictions,
in comparison to the element-restricted covariance matrix as proposed by Imai and Van Dyk
(2004). Burgette and Nordheim (2012) only implement the trace restriction for models that
assume the mean of § to be zero, while Imai and Van Dyk (2004) also estimate models where
the mean of 5 is expected to be non-zero. However neither groups of authors allow for hetero-
geneity in the regression parameters. This paper contributes to this research by implementing
the trace-restriction to an MNP model that allows for heterogeneity among customers as well as
assuming E[f;|3, Xg] # 0. We compare this model, hereby named the trace-restricted model, to
the model where only the first element of X is set to unity, hereby named the element-restricted

model.



3.3.1 Working Parameters

Instrumental to both the approach of Burgette and Nordheim (2012) and Imai and Van Dyk
(2004) is the concept of working parameters. These parameters are not identified given the data
Y but are identified as the parameter space is expanded by means of data augmentation to
(Y,U). The key use of the working parameter is to improve the rate of convergence in the data
augmentation algorithm as presented in Algorithm 1. To illustrate how the working parameter

can achieve this, consider the likelihood of the model parameters 6 = (3;, X):
LOY)xPY|0) = /P(Y,U]Q) au (10)

Given that the working parameter denoted by « is not identified given the data, the likelihood

of 6 can also be defined as:
L(0]Y) = L(a,0]Y) x /P(Y7 Ula,0) dU V « (11)

This property of o can be used in one of two ways. First, one may condition on any value of «,
which in the context of the MNP model often occurs in the form of a constraint (i.e. 2171 =1).
This is also known as conditional data augmentation. Instead of conditioning on «, one may opt
to average over the prior distribution of a. Using Fubini’s theorem, allowing to switch the order

of integration, the likelihood can then be written as:

[,(9|Y)o</ [/P(Y,U|a,9)P(a\9) da | dU (12)

~~

=P(Y,U|0)

Note that the prior distribution of « is conditional on 6. Averaging on « is also called marginal
data augmentation. Though both approaches may be used, marginal data augmentation has a
slight computational advantage because [ P(Y, Wla, 0)P(a|f) da is expected to introduce more
variance into the conditional distributions than P(Y, W|a, 6), because « is integrated out. More
expected variance, allows the sampler to take larger jumps which leads to faster convergence.
Additionally, it is expected to lead to Markov chains with less autocorrelation (Meng & Van Dyk,
1999). In short, working parameters may increase the rate of convergence of the Markov chains,

especially when used in a marginal data augmentation algorithm.

3.3.2 Marginal Data Augmentation

As previously mentioned, we use a trace-restricted covariance matrix as defined by Burgette and

Nordheim (2012) and apply it to the marginal data augmentation method as defined by Imai



and Van Dyk (2004), while assuming individual specific regression parameters whose population
mean is non-zero. As such, we modify Algorithm 1 to incorporate the working parameter «
resulting in Algorithm 2. Note that the starred parameters are only intermediate values. They

are re-scaled by the working parameters in step 4.

Algorithm 2 Marginal Data Augmentation

1: Set starting values for 3, f], Y3 and (7ijt, v, Uiyp, m =0
2: Draw 0& | Yit, iy 2, Uit ¥ k # j independently for all t =1,...., Ty and i = 1,..., N
3: Draw X:

e Draw o? from p(a?|3,%,Y) = p(a?|%)

e Set ¢ = (U — X1,5;)

e Draw 2* from IW (v, ®) where v =\ + sz\il T, and ® = U + Zf\il 23;1 €€t
4: Reset parameters:

e Set a? = p%l tr(X)

o ¥ =qa 2y

o U=oalep+ X5

5. Draw f3; conditional on 3, X, Yg and Uijt, vy Uit Vi
6: Draw /3 conditional on g, > and 5
7. Draw X conditional on £, > and §;

8: Set m = m + 1 and return to step 2 till convergence

The trace-restricted marginal data augmentation algorithm as described in Algorithm 2 differs
only from that of Imai and Van Dyk (2004) in the second part of step 4. Instead of setting o?
equal to the average of the trace of ¥, they set a? equal to the first element of ¥. Apart from
this step, the methods are identical. Note that in Step 5 through 7, we do not marginalize out
a. The original IVD algorithm does marginalize out o when updating 3, but that step is only
possible when we assume E[f;|3, 23] # 0. However, we do not make that assumption here and
thus we only partially apply marginalization (Step 2 through 4). Imai and Van Dyk (2004) argue
that the performance of this algorithm is less than when taking a full marginalization approach,
but given that we do not want to make the zero-mean assumption, we accept a slight reduction

in performance.



Step 3 of the marginal data augmentation algorithm requires drawing a? from p(a?|X). Given
the prior specification of ¥ in Equation 7, the prior of o2 is proportional to:

p(a[) ox [S(APH/2 ey L

&Etrapi—l)*(oﬁ)—Mﬂ2+l (13)

whereby integrating out « yields the prior distribution for £*. A benefit of this prior specifi-
cation, as pointed out by Burgette and Nordheim (2012), is that the Metropolis-Hasting step,
introduced in the original MNP sampler by Albert and Chib (1993), is made redundant. We can
simply sample ¥* from a standard inverse Wishart distribution and obtain ¥ by dividing £* by

the average of its trace.

Running Algorithm 2 M times after convergence, and averaging over the M draws then yields
the posterior parameter estimates for = (3;,%, 8,%5). Convergence of the Markov Chain is
assessed by means of subjective inspection as well as the Geweke test statistic (Geweke et al.,
1991). This test statistic assesses convergence by comparing the mean of the estimates from the
first 10% of the chain excluding burn-in, to the mean of the estimates of the last 50% percent of
the chain, correcting for the correlation between the draws. The assumption is that if the means
are drawn from a stationary distribution, they must be equal. The Geweke statistics follows a
standard normal distribution and for any value < |2|, we fail to reject the hypothesis that the

means are equal and that the chain has converged.

3.4 Choice probabilities

After obtaining the posterior estimates 6 = (3;,%, 3,%X3), we turn to calculating the choice
probabilities as given by Equation 5. The integrals solving for these probabilities do not have a
closed-form expression and we must therefore rely on simulation to approximate the probabil-
ities instead. For this, we use one of the most commonly used simulators, the GHK simulator
after Geweke (1989), Hajivassiliou and McFadden (1998) and Keane (1994). Throughout the
literature, the GHK simulator has confirmed to be the most accurate among other simulators.
In the following section, we briefly discuss the GHK simulation algorithm as described by Train

(2009).

3.4.1 GHK Simulator

Crucial to the implementation of the GHK simulator is that the simulation of the probability
that individual ¢ purchases product j at time ¢, P;j;, occurs on utility differences. When sim-

ulating P;j;, one subtracts the utility of U;j; from all other utilities, but when simulating P,



one subtracts the utility of U;,; from all other utilities. The assumption is that P;j; is equal to
the probability that all differenced utilities are negative. To illustrate how the GHK simulator
operates, consider the example of simulating Pjz;. Simulating Pj; requires taking utility differ-
ences relative to the k'™ alternative and transforming the J x J matrix ¥ to obtain the (J — 1)
x (J — 1) matrix 3 = MXM]. Here My, is a (J — 1) identity matrix with an additional column

of -1’s as the k' column. This yields:

Usijt — Uit = (Vije — Vire) + (Gije — Gire) ¥ j # k

Uijkt = Vijkt + €ijkt
€it = {€i1t, .., €1} for all alternatives but the k™" alternative (14)

€it ~ N(07 i)
Given the lower triangular matrix Ly, where L,L} = 3, we can write the model as follows:

- - Uitk = Vit + cuum

C11 0 B { ~ ~

Uitor, = Vigar + co1m1 + coamp

Co21 €922 0 ... 0 5 5

Ly = Uitsk = Vitak + caim1 + c3am2 + c3snz - (15)
€31 (€32 C33

)

(16)
where 1} = {n;,...,ns—1;} are (J —1) independent draws from the standard normal distribution.
If alternative k is chosen, this alternative has the highest utility and differencing the utilities

for the remaining alternatives against the k" utility thus yields negative utilities. As such, the

choice probability Pj;; can be calculated as follows:

Py = Pr (Upj, < 0 Vj # k)
— Pr (m < ;ﬂk)
c11
( —Vitar, + ca1m ‘ m < itlk)
C22 c11
( —Vitok + €317 + +C32Mm2
€33

~Viik ~Visor + o1
m < 2 < —)
’ 22

(17)



The second line of Equation 17 is straight-forward to compute as (7]1 < %) = @(%),
where @ is the standard normal cumulative distribution function. The subsequent probabilities
are slightly more complex because we condition on previous values of 7. Consider the probability

in the third line of Equation 17, which is expanded on below:

7, 7
Pr (772 < it2k +021771| m < ztlk)

Cc29 C11
-V
=Pr (?72 < M\ m = 771") (18)
C292
_ q)<—Vz't2k + CQW{)
€22

Here, we condition on the value 7; drawn in the previous step to calculate probability that
0¢t2k < 0. This value is drawn from a truncated standard normal, bounded from above by

—Vitik

ordk and is denoted by n]. Next, one draws the value 7} and calculates the subsequent proba-

bilities in a similar way for each part of Equation 17. This procedure is repeated R times for each
choice probability P;j;i, after which we average over all draws such that the simulated probability

Ut — R Z th

Given that the Gibbs sampler produces estimates for the covariance matrix of error differences
3, and the GHK simulator operates on the covariance matrix of errors X, we have to transform
¥ back into ¥. This is done by taking the Cholesky decomposition of 3 and adding a row
and column of zeros as the J'™ column and J* row. Multiplying the resulting matrix with its

transpose then yields 3.

3.5 Model Evaluation

Once the choice probabilities have been estimated, we compare the accuracy of the element-
restricted model and the trace-restricted model amongst each other, but also against some
benchmark measures. For these benchmark measures, we replace the GHK simulated choice
probabilities If’gft by the purchase frequency of a product over the estimation period. First, we

compare the log likelihood of each model, where the MNP log-likelihood is given by:

{0y, ) Zlog(HHPZZL;”> (19)

t=1j=1

where w;;; = I(y;j: = maxy, yir). Here the likelihood function is evaluated in the posterior means.

A more Bayesian approach to evaluating model fit is the widely applicable information crite-



rion, or WAIC, as introduced by Watanabe (2010). Model selection in Bayesian analysis is
mostly achieved by using Bayes factors and odds ratios. However, numerical computation of
Bayes factors in Hierarchical models may be complicated. Instead, one may approximate Bayes
factors by means of information criteria, such as the commonly used Akaike Information Cri-
terion (AIC) and the Bayes Information Criterion (BIC). An advantage of the WAIC is that
the posterior density may stray from the multivariate normal, which is often required by other
information criteria approximating the Bayes Factor. Furthermore, the WAIC is especially useful
for models in which the number of parameters is unclear, as is the case for Hierarchical models.

For this research, we use the WAIC as defined by Gelman, Hwang, and Vehtari (2014):

n M
WAIC = —Q(Zlog( L Zp yi|0™ ) —pvaIc)
=1 m=1
PWAIC = Z L (log p(yi|0™)) (20)

The second term, the posterior variance of the log predictive density calculated for each data-
point y; and summed over all individuals, is an approximation of the number of unconstrained
parameters in the model. Parameters that are estimated without any constraints or prior infor-
mation yield a count of one, while fully constrained parameters yield a count of zero. If both
the data and the prior contribute to the estimation of the parameter, the parameter count is an
intermediate value (Gelman et al., 2014). In this manner, the WAIC includes a penalty term for

the number of parameters to penalize overfitting.

Next, to evaluate the models’ predictive accuracy we look at a hold-out set. This set is cre-
ated by excluding each customers’ final s trips from the original dataset. These trips are not
used in parameter estimation. We then assess the predictive accuracy for each customer by

evaluating the mean absolute error at a given time ¢:
1 .
AE;y = 3 Z ’uijt - Pijt| (21)

The AE; is averaged over the s trips for each customer to obtain the mean absolute error
per customer MAE;. The overall MAE is obtained by averaging MAE; over all customers. To
further assess predictive accuracy, we look at the percentage of correct hits, and the log predictive
likelihood. Here, the percentage of correct hits is defined as the percentage of times the sampler

correctly assigns the highest choice probability to the chosen product.



4 Simulation study

During the simulation study, we evaluate the performance of both model specifications on simu-
lated data. This data is simulated to resemble the data from our empirical application as much
as possible. We discuss our simulation procedure in Section 4.1, and present our results directly

after in Section 4.2.

4.1 Data and Prior Distributions

For a sample of NV = 100 simulated customers, we simulate between 10 and 15 trips per customer.
The number of choice alternatives is set to J = 4, each having L = 2 covariates excluding
intercepts. These covariates are drawn with replacement from the set of price and price promotion
data from the empirical dataset used in the following section. The intercepts for each individual

B; are generated from:

Bi1 ~ U(=0.75,-0.25), Bia ~ U(—0.3,0.3)
Bis ~ U(—0.1,0.4), Bia ~ U(0.0,0.5) (22)

where ;1 through ;4 are the intercepts, and B;5 and B;¢ are the coeflicients on price and per-
ceived discount respectively. Here, we specifically choose for the uniform distribution, as heavier
tailed distributions might result in a simulated dataset in which some products do not have any
purchases. For the covariance matrix of the error terms, we draw a J x J matrix from an Inverted
Wishart distribution centered at the identity matrix and 25 degrees of freedom. The choice set
{Yi+} is generated in accordance with utility theory with the parameters as set above. The utility
model is then defined by taking the utility differences with respect to the J* alternative and ¥ is
transformed accordingly into the covariance matrix of error differences ¥. The hyperparameters
for the prior distribution p(X) ~ IW (), ®) are set with degrees of freedom A\ = 50 and scale
parameter ® = 50/, and the hyperparameters for p(¥3) ~ IW (v, V) with degrees of freedom

v = 15 and scale parameter ¥ = 21.

In estimating the model parameters, we exclude each individual’s last three purchase occasions
from the dataset, which are later on used to evaluate the accuracy of the parameter estimates
and the choice probabilities. We use the OLS estimator as starting value for S and set the
starting values for §5; equal to g8 for all . The covariance matrix of error differences Y is set to

M ;1M where I is the identity matrix. Lastly, we set the utilities for the purchased products



as indicated by {Y;:} equal to one, and to zero otherwise, after which we add a random element
determined by U(—0.1,0.1). We then run the Gibbs sampler 15,000 times, where we allow for

5,000 burn-in runs.

4.2 Results

After the sampler completes its runs, we assess convergence by inspection of trace-plots for g
and ¥, as well as computing the Geweke test-statistic for both parameters. Figure 1 and Fig-
ure 2 show several properties of the MCMC chain for the price coefficient for the element- and
trace-restricted model respectively. Inspection of these figures show strong signs of convergence
for both the element- and trace-restricted model. Formal testing by means of the Geweke test
statistic confirms convergence of the parameters 3;, f), B and ¥z for both models. The autocor-
relation plot of Figure 1 and Figure 2 show that the correlation weakens rapidly, and is virtually
zero after 5 and 10 lags respectively. The MCMC plots for the remaining parameters for both

the element- and trace-restricted model can be found in Appendix B.

After applying thinning, we obtain the posterior point estimates, corresponding to the means
of the posterior densities. The estimates, including standard errors, are reported in Table 1
for both the element-restricted model and the trace-restricted model. Comparing the estimates
for B across both models, they are of similar size and sign, with the exception of the intercept
B2. Both models estimate the appropriate signs for the price and promotion coefficients. The
uncertainty in the estimates are similar as well. The Highest Posterior Density (HPD) intervals
are reported in Table 2. For both the element-restricted, and the trace-restricted model, three
intervals include zero in the interval. This would suggest there is posterior support that they have
no effect on the utility. Comparing ¥ across the models, the elements of the element-restricted
model are slightly larger, but we observe about equal uncertainty in the estimates with respect
to the trace-restricted model. The most important observation from these results, is that the
signals as estimated by both models seem to be weaker in absolute value than expected given

the distributions they were simulated from in Equation 22.
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Table 1: Posterior means of the model parameters

Element-restricted Trace-restricted
Estimate (Std. Error) Estimate (Std. Error)
Coefficients
Bprice -0.209 (0.0016) -0.235 (0.0015)
Bpromo 0.146 (0.0031) 0.153 (0.0006)
Intercepts
51 -0.144 (0.0014) -0.047 (0.0011)
Ba -0.041 (0.0014) 0.189 (0.0015)
03 0.100 (0.0015) 0.300 (0.0020)
1.000 0.053 0.076 0.487 0.031 0.075
(0.0018) (0.0022) (0.0019) (0.0011) (0.0017)
5 0.979 0.030 0.803 0.009
(0.0036) (0.0020) (0.0034) (0.0022)
1.108 1.710
(0.0040) (0.0042)
Log-likelihood - 1005.47 -951.89
WAIC 3236.56 2852.84
Table 2: Highest Posterior Density (HPD) intervals
Element-restricted Trace-restricted
Bprice (-0.245, -0.171)* (-0.279, -0.118)*
Bpromo (-0.010, 0.310) (-0.003, 0.305)*
51 (-0.228, -0.060)* (-0.111, 0.021)
5o (-0.044, 0.130) (-0.098, 0.278)
B3 (0.004, 0.182)* (0.179, 0.414)*
Note: intervals denoted with * do not include zero
Table 3: Forecast performance
Benchmark Element-restricted Trace-restricted
Log predictive likelihood -415.47 -291.77 -298.88
% correct hits 27.67 63.67 58.67

MAE 0.374 0.297 0.290




To assess overall model fit, we report the log-likelihood and the WAIC in Table 1. The trace-
restricted model seems to provide a better fit tot the data, as both the log-likelihood and the
WAIC are in favor of the trace-restricted model. For the trace-restricted model we obtain a WAIC
of 2852.84, while for the element-restricted model we obtain a WAIC of 3236.56. In evaluating
the WAIC, a smaller value represents a more favorable model. Overall, both models provide a
better fit than the benchmark measure, as the log-likelihood for this model is -1335.13. This
benchmark measure is calculated by using the purchase frequencies of each product during the
test interval, instead of the simulated choice probabilities based on the parameter estimates. To
assess predictive accuracy, we report the log predictive likelihood, the prediction hit rate and the
MAE in Table 3. In terms of predictive performance, both models substantially improve on the
benchmark. The benchmark log predictive likelihood is smaller than that of both models. The
same can be said for the percentage of correct hits which for the benchmark is unsurprisingly
equal to the purchase frequency of the most frequently purchased product. In terms of MAE,
both the trace-restricted and element-restricted model improve significantly on the benchmark.
When we difference the MAE; for the benchmark with the MAE; for both models over all indi-
viduals, we find that the means for these sets of differences is significantly different from zero.
The t-statistic is 18.46 and 15.43 for the element-restricted and trace-restricted respectively.
Both statistics are much larger than the critical value, allowing us to assume that both models
significantly improve on the benchmark. Between the element- and trace-restricted model, the
former outperforms the latter slightly. Though the MAE and the log predictive likelihood are
similar across both models, the element-restricted model has a higher predictive hit rate. How-
ever, neither model is particularly accurate at 64% and 59% respectively. Here predictive hit rate
is defined as the percentage of cases the highest choice probability corresponds to the product of

choice.

Though predictive accuracy may be a good indicator of model fit, this study does not focus
on prediction. Hence, based on overall model fit, we conclude the trace-restricted model to
outperform the element-restricted model. Next, we evaluate the trace-restricted model on an

empirical application.



5 Empirical application

For this research, we use data from the Dutch online retailer Picnic. Founded in 2015, the e-
commerce counterpart to the conventional supermarket is only accessible via mobile applications
designed for hand-held devices. Unlike conventional supermarkets, Picnic has no physical stores
but delivers groceries free-of-charge to customers in over 100 cities in the Netherlands. Picnic’s
online store is organized along a hierarchical product tree consisting of 4 tiers, with tier 1 being
the most general and tier 4 the most specific. This research will focus on analyzing the effect of
introducing a new product on the other products within the 3™ category. This category is made
up of the same products, but may vary in brand, volume and flavor. We believe that we can
safely assume that the majority of the cannibalization will occur between products within this
3" tier, as is in line with previous research (Srinivasan et al., 2005); (Buday, 1989). That being
said, some extent of the cannibalization will be missed, as cross-category cannibalization could
also occur (Van Heerde et al., 2010). However, identifying which other categories and products

may be affected is outside of the scope of this research.

5.1 Data

The focus of this paper is the introduction of Zwarte Reus laundry detergent. For this product,
we find a time frame for which the corresponding product category does not experience other
introductions or removals. This way, we exclude possible confounding effects from other entries
and exits. For these product introductions, and the incumbent products within the same cate-
gory, we use daily sales data, shelf-price and perceived discount as explanatory variables. It is
important to note that we exclude data from the first two weeks following the introduction of the
new product. This is because the first couple of weeks surrounding a new product introduction
is often characterized by short-run fluctuations in sales. For some product introductions, the
additional promotional activity will catapult the number of sales in the first couple of weeks due
to trial-buyers, while for other introductions a burn-in period is required to reach their full sales
potential. Since we are interested in customers’ change in base behavior, we exclude the first two
weeks of sales data after the introduction of the product to ensure that the short-run fluctuations

have settled.

We only consider customers that have made a purchase in both the pre- and post-introduction
phase. Moreover, we only include customers who have made purchases in this category on more
than 5 separate occasions, both pre- and post-introduction. We do this for the following reasons.

First, due to capacity constraints, Picnic employs a waitinglist to only moderately add new cus-



tomers to their customer base. Because we do not want to include customers that have only
become eligible to order from Picnic mid-way through our test phase, we exclude new customers
from the dataset. Second, having more observations per customer ensures that the customer-
specific estimates are more reliable. Given that the time the sampler needs to complete its runs
grows with the number of customers and the number of purchase occurrences, we must be selec-
tive of how many observations to include. As such, we do not want to unnecessarily slow down

the sampler by including customers whose estimates are unlikely to be very telling.

5.2 Descriptive Statistics

For the laundry detergent category, the data set consists of 5,205 trips from 767 customers over
a time span of 63 weeks, excluding the two weeks directly after the introduction of Zwarte Reus.
Table 4 gives an overview of the market share, selling price, and perceived discount for each

brand, pre- and post-introduction.

Table 4: Data characteristics of the laundry detergent category

Pre-Introduction Post-Introduction
Market Average Perceived Market Average Perceived
share (%) price (€) discount (%) share (%) price (€) discount (%)
G’woon 78.03 1.91 0.00 77.68 1.99 0.00
Robijn 15.16 5.78 69.86 14.31 6.58 40.72
Fleuril 6.81 5.99 21.56 7.78 5.96 31.02
Zwarte Reus - - - 2.13 6.59 6.38

The dataset includes three A-brands, and one Private Label brand (G’woon) which is the market-
leader both pre- and post-introduction, with around 78% volume-based market share in both
phases, despite any promotional activity. This is not surprising given that G’woon is signifi-
cantly cheaper than the A-brands, which all operate in a similar price range. The average price
is defined as the mean shelf price over the trips occurring during the pre- or post-introduction
phase. Perceived discount is an indicator of promotional activity that is defined as the percentage
discount a customer receives at the time of purchasing. The perceived discount is reported in
Table 4 as the percentage of time that the product has a price promotion. For Robijn, Fleuril and
Zwarte Reus, these perceived discounts ranged from 10% to 50% off. To avoid multi-collinearity,

the perceived discount is not included in the shelf price.

In terms of switching behavior, customers tend to purchase the same brand on subsequent pur-

chase occasions, as is exemplified by the diagonals of the switching matrices in Table 5. In fact,



89% of subsequent trips consist of repeat purchases. This is confirmed by the distribution of
choice sets, as 74% and 79% of customers in the pre-introduction and post-introduction phase re-
spectively, have only one product in their choice set. However, we cannot speak of general brand
loyalty as we do not account for the marketing-mix variables. For instance, G’'woon is generally
very cheap, and Robijn has the most discounts which could account for what naively would
be misconstrued as brand-loyalty. Both G’woon and Robijn lose some market share, after the
introduction of Zwarte Reus, while the market share for Fleuril increases somewhat. However,

the changes are small.

Table 5: Switching matrix laundry detergent purchases'

Pre-Introduction Post-Introduction
G’woon  Robijn  Fleuril G’woon Robijn Fleuril Zwarte Reus
G’woon 0.95 0.03 0.02 0.96 0.02 0.02 0.00
Robijn 0.11 0.81 0.08 0.09 0.79 0.11 0.00
Fleuril 0.20 0.23 0.57 0.15 0.21 0.63 0.02
Zwarte Reus - - - 0.33 0.33 0.17 0.17

5.3 Results

Unfortunately, we cannot maintain the same procedure as executed during the simulation study.
The Gibbs sampler based on the mixed accept-reject algorithm used to sample the latent utilities
as discussed in Section 3.2 falters every so many runs, making it infeasible to complete sufficient
runs to obtain accurate estimates. The sampler falters because the mean of the truncated normal
distribution falls too far outside the bound of the distribution, making it impossible to obtain a
draw that is accepted by the accept-reject method. This can be caused by the fact that some
customers choose products that go entirely against the predicted choice, causing the residuals
to be very large. Given that the mean used in the truncated normal distribution modeling the
latent utilities is dependent on ¥ which is calculated using these residuals, the mean becomes
too large. To overcome this issue we alter the truncated normal distribution slightly by sampling

from the following distribution instead:

TN(IU’ZJtu Tzzjt)
Hijt = :L';'jt/Bi (23)

2 _1/5..
Tijt—l/o']]

!The {i,j} element of the switching matrix signifies the relative proportion of buyers that after purchasing product
i continue to buy product j on a subsequent trip.



In the original algorithm we use a different mean, namely p;;; = 7, 8; + F’(Uit(_j) — Xi—jBi),
where F' is defined as —oj; * v ;. Here v; ;) refers to the jt™ row of 71, with the jth
element removed. Furthermore, we use the inverse CDF technique (also discussed in Section
3.2) to sample the latent utilities from the truncated normal distribution, instead of the mixed
accept-reject region. We realize that the change in the distribution has as consequence that the
separate J — 1 univariate distributions do not approximate the multivariate truncated normal
distribution for the utilities Uy, as proposed by McCulloch and Rossi (1994). We also realize
that this in turn may lead to biased estimates for the model parameters. Whilst recognizing the
limitations of the data, we feel that it is important to publish the results here, as these results

showcase the potential for this novel approach to estimating cannibalization.

To estimate the change in market structure by the introduction of Zwarte Reus, we estimate
the trace-restricted MNP model separately on the pre-introduction and the post-introduction
observations. The resulting parameter estimates are then used to simulate choice probabili-
ties for both phases of the test frame using the GHK simulator. In both the pre-introduction
and post-introduction phases, Fleuril is used as the base brand. Posterior point estimates, in-
cluding 95% intervals, are presented in Table 6, and are based on 20,000 draws after burn-in.
The additional runs with respect to the simulation study are introduced because the altered
specification of the truncated normal induces less variety in the draws for the latent utilities.
Furthermore, We use the same prior specification as in the simulation study (p(2) ~ IW (50, 501)
and p(Xg) ~ IW(15,21)).

Similar to the simulation study, we assess convergence by means of convergence plots and more
formally by evaluating the Geweke test statistic. Plots for the pre- and post-introduction esti-
mates for Bprice as estimated by the trace-restricted model are shown in Figure 3 and Figure 4,
respectively. Inspection of the figures makes evident that the Gibbs sampler does not converge
as nicely for the empirical data as it does in the simulation study. Nonetheless, formal testing
points out that the parameters j3;, i), B and Xz do in fact reach convergence. Problematic is that
the autocorrelation for the price coefficient has barely weakened, even after 40 lags. Fach draw
thus remains strongly correlated and thinning barely has an effect. The high autocorrelation is
most likely caused by the lack of random variation in the distribution for the latent utilities. If we
compare the specification in Equation 23 with the original specification, we see that the mean in
Equation 23 is dependent on only one random variable, namely §;. In the original specification,

the mean is dependent on draws for 3;, Uy (_;) and ¥ (through F), allowing for more variation



in the mean of the distribution. Given that the sampler aims to approximate Um by X!

lack in variation in Uijt7 causes (3;, and thus 8 to remain highly correlated.
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Furthermore, the bottom two panels of both figures clearly show a bimodal distribution, more
strongly so pre-introduction, than post-introduction. Bimodality may be a sign of a poor identify-
ing restriction (Burgette & Nordheim, 2012), or that the Geweke test-statistic has falsely assured
convergence (Cowles, 2002). In both cases, the posterior estimates may be biased. Given that
our posterior estimate is the mean over all draws, our posterior estimate will fall right in between
the two peaks containing the most posterior mass. The trace plots of the remaining coefficients

are reported in Appendix B. Many, but not all, show this bimodality pattern.

5.3.1 Parameter Estimates

The parameter estimates are reported in Table 6. The coefficients Bprice and Bpromo have the
expected signs both pre- and post-introduction. The size of the price coefficient is also in line with
the price elasticity reported in the literature, while the size of the discount coefficient is larger
than expected. Interestingly, intrinsic brand preference, measured by the intercepts, is mostly
negative. KEspecially the A-brands exhibit deeply negative intercepts. This is in line however,
with a growing body of literature, substantiating the theory that consumers are increasingly
perceiving private label products as high-quality products similar to A-brands, at a lower price
(Baltas & Argouslidis, 2007); (De Wulf, Odekerken-Schroder, Goedertier, & Van Ossel, 2005);
(Erdem, Zhao, & Valenzuela, 2004). When comparing pre- and post-introduction parameter
estimates, we observe that most signals become weaker in absolute sense, with the exception
of the parameter for discount. Interestingly, the intercept for the private label brand G’woon
switches signs, becoming positive post-introduction. The preference for the incumbent A-brand
Robijn also becomes less negative. Overall, the standard errors for the coefficients and intercepts
are of appropriate size. In Table 7, we report the HPD intervals for the the parameter estimates.
All intervals across both phases, except for the G’'woon interval, exclude zero. This means that
there is posterior support that these parameters have an effect on the utility experienced by the
customer, and thus have an effect on product choice. The change of sign for the G’'woon intercept
is not completely unexpected given that the HPD intervals for the G’woon intercept includes
zero prior to the introduction of Zwarte Reus, meaning that even pre-introduction there is some

posterior support for a positive G’woon intercept.



Table 6: Posterior means of the model parameters pre- and post-introduction Zwarte Reus

Pre-Introduction Post-Introduction
Estimate (Std. Error) Estimate (Std. Error)
Coefficients
Bprice -1.397 (0.009) -1.025 (0.029)
Bpromo 4.407 (0.018) 5.314 (0.001)
Intercepts
Bzwarte Reus - -2.302 (0.019)
BRobijn -3.656 (0.015) -1.554 (0.023)
B woon -1.841 (0.037) 0.927 (0.02)
1.083  0.001 —0.001
1.273  0.0006 (0.005) (0.001) (0.001)
& (0.004) (0.001) 0.956  0.001
0.7272 (0.004) (0.001)
(0.004) 0.961
(0.005)
0.625 0426  0.106 —0.162 0.058
12.873 —0.024 2.468 —8.042 (0.017) (0.038) (0.015) (0.015) (0.008)
(0.098) (0.111) (0.027) (0.079) 5.600 0.877  1.178  0.126
1.125  0.128  0.240 (0.056) (0.040) (0.024) (0.030)
S (0.032) (0.023) (0.079) 0.800  0.014  0.065
0.790 —1.691 (0.018) (0.015) (0.009)
(0.010) (0.019) 1.306 —0.112
5.804 (0.013) (0.012)
(0.087) 0.413
(0.008)
Log-likelihood -1716.88 -2150.08

Table 7: Highest Posterior Density (HPD) intervals

Pre-introduction Post-introduction

Bprice  (-1.881, -0.936)* (-1.528, -0.503)*
Boromo  (4.290, 6.344)* (3.250, 5.557)*
Bzwarte Reus - (-3.656, -1.333)*
Brobijn  (-4.588, -2.787)* (-2.774, -0.008)*
Bcwoon  (-3.830, 0.039) (-0.956, 2.460)

Note: intervals denoted with * do not include zero

2The order of variables in ¥ is first the intercepts (Zwarte Reus, Robijn, G’woon) and then the coefficients (price,
promo)



Unlike in the simulation study, we also report X5 modeling unobserved heterogeneity in Table
6. Similar to Allenby and Rossi (1998), we find substantial heterogeneity across consumers,
especially pre-introduction. The first three diagonal elements of the matrix signify the unob-
served heterogeneity in the intercepts (Zwarte Reus, Robijn, G’'woon) and the latter diagonal
elements report the unobserved heterogeneity in the marketing decision variables (price, promo).
Pre-introduction, we observe much heterogeneity for Robijn and price, with respect to the other
parameters. Post-introduction, the unobserved heterogeneity remains high for Robijn, but weak-
ens for price, while we observe more heterogeneity for discount instead. Intuitively this means
that across test phases, attitudes towards Robijn vary greatly among customers. The same can be
said for price-sensitivity pre-introduction, and discount-sensitivity post-introduction. The pos-
terior standard errors are more or less equal pre- and post-introduction and are of appropriate

size.



5.3.2 Choice Probabilities

Using the estimates for §; and X, we compute the choice probabilities for each customer, for
each purchase occurrence, for each product using the GHK simulator. Given that we modify the
sampling distribution for the latent utilities, we assume our posterior estimates are biased. To
understand if and how our estimates affect the choice probabilities, we look at the same evalua-
tion criteria as used in the simulation study but apply them differently. In the simulation study,
we use % correct hits and the MAE to evaluate predictive accuracy. To do so, we withhold
some of the data to create a hold-out sample. For the empirical application however, we are
reluctant to withhold some of the data because it may further reduce the chance of making any
cannibalization effect apparent. Furthermore, we observe a significant drop in model-fit when we
reduce the minimal number of trips from 5 to 4. Thus, the % correct hits as reported on in Table
8 refers to how often we assign the highest choice probability to the chosen product in-sample.
Likewise, we calculate the MAE for each customer over all T; trips, instead of over the hold-out

sample.

Despite the potential presence of bias in the estimates, the model performs well as shown in
Table 8. In 94% and 95% of the cases the model correctly assigns the highest probability to the
chosen product. However, this figure may be slightly flattered. This is because the customers in
this dataset are quite persistent in their brand choice. As such, it is easier to predict a customer’s
next purchase. Furthermore, the MAE is low at 0.273 and 0.219 pre- and post-introduction, re-
spectively. Especially, when comparing the MAE to the benchmark MAE in the parentheses.
This benchmark is calculated by using the purchase frequencies of each product during the test
interval instead of the simulated choice probabilities. Formal testing by means of a t-test con-
firms that the improvement over the benchmark is statistically significant. Here, we compute the
difference between the benchmark MAE; and the model MAE; for all individuals in the sample,
and test that the mean of these differences is significantly different from zero. Pre-introduction
the t-statistic is 3.61, and post-introduction the t-statistic is 64.27. Both statistics are larger
than the critical value.

Table 8: Overall model fit pre- and post-introduction

Pre-introduction Post-introduction
% correct hits 94.12 94.89
MAE? 0.273 (0.466) 0.218 (0.482)

3The figure in the parentheses signifies the benchmark, where we use the purchase frequency over the testing
interval instead of the simulated choice probabilities
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Next we aggregate the choice probabilities over the individuals to observe whether cannibaliza-
tion has occurred. This is done by averaging the choice probabilities of all individuals who made
a purchase within the laundry detergent category for each point in time during the test frames.
The results are reported in Figure 5. The dashed line indicates the time of introduction. Note
that the dataset does not include the two weeks immediately after the introduction, to account
for temporary demand shocks inherent to new product introductions. Figure 5b is a zoomed-in
depiction of Figure 5a, whereby we hone in on 6 weeks prior to the introduction and 6 weeks

after the introduction to improve visibility.

At first glance, the introduction of Zwarte Reus seems to have little effect, as the new prod-
uct hovers around 2-3% market share and does not seem to be threatening towards the other
brands in the long term. Nonetheless, the immediate peak in choice probability for the private
label brand G’woon is striking. Likewise is the drop in choice probability for Robijn after the
introduction. Fleuril also experiences a drop, albeit not as extreme. This is in line with earlier
findings with respect to the parameter estimates. With the introduction of an additional A-
brand, overall preference moves toward the private label brand, while the incumbent A-brands
suffer slightly. However, we must be critical of the longevity of the effects. Given that the aggre-
gate choice probabilities for all incumbent brands almost return to their pre-introduction levels,

one could argue that the apparent effects are still part of introductory fluctuations.
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Figure 5: Long-term aggregate choice probabilities pre- and post-introduction Zwarte Reus, actual and
zoomed-in

To observe whether including customers with fewer trips per test phase in the dataset provides
a more complete view of the impact of the new product introduction, we add an additional anal-

ysis. Here, we observe shorter test-phases of 14 weeks pre- and post-introduction but include



all customers with 2 or more separate purchase occasions in both test phases. The results are
reported in Figure 6. Interestingly, the pattern we observe in Figure 6 is similar to the long-
term analysis. The two large peaks in G’woon choice probability, and the drop in Robijn choice
probability at the beginning of the post-introduction phase closely resemble the peaks in the
long-term analysis. In contrast with the long-term analysis however, we observe that after a
period of 50 days post-introduction in which Robijn recovers, the aggregate choice probability
for Robijn eventually stabilizes at a lower level than pre-introduction, while Fleuril stabilizes
at a higher level than pre-introduction. Similar to the long-term analysis, Zwarte Reus does
not become truly threatening to the incumbent brands, and we cannot speak of cannibalization.
Nonetheless, Zwarte Reus does seem to have an effect on the competitive structure of the laundry

detergent category.
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Figure 6: Short-term aggregate choice probabilities pre- and post-introduction Zwarte Reus

To analyze whether the introduction of an additional product to the category also affects individ-
uals’ sensitivity to price and promotional activity, we use the parameter estimates for 5; to model
several different scenarios. First, we model the choice probabilities as a function of the price of
one of the A-brands, both pre- and post-introduction. Here, we fix the price of all products to
their average price, with the exception of the focal product. For this product, we range the price
between 80% and 110% of its average price. Discount is set to zero for all products. Second, we
model the effect of discount on the A-brands on the choice probabilities of all brands. Again,
we fix the price of all products to their average price. Discount is fixed at zero for all products,
except one. For this focal product, we range the perceived discount between 0% and 50%. We

present the results in Figure 7.
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Figure 7: Aggregate choice probabilities as a function of price and discount pre-introduction (dashed)
and post-introduction (solid)

As expected, we observe that the brand experiencing the change in price loses choice share, while
the competing A-brand gains choice share as the price increases. The choice share for the private
label brand G’woon remains more or less unaffected. This pattern is especially apparent for a
price increase in Fleuril, as reported in Figure 7b. When we model the choice probabilities as a
function of the price of Robijn (Figure 7a), this effect is smaller, though still present. A potential
explanation for this can be that frequent Robijn purchasers are less price-sensitive. When we
compare pre- and post-introduction, we see that the post-introduction curves (solid) are slightly
steeper than the pre-introduction curves (dashed). This would suggest that customers have
become more price-sensitive, contradicting the parameter estimates of Table 6. However, the
difference pre- and post-introduction in Figure 7a and Figure 7b is very small. Though we did
not formally test it, the opposite scenario wherein customers become less price-sensitive, may lie

within the margin of error.



For promotional activity, we observe that the brand with the promotion gains choice share
as the promotion deepens. As expected, competing A-brands Robijn and Fleuril suffer the most
when the other is on sale. Interestingly, Figure 7c shows the private label brand G’woon also
benefits a little from a discount on Robijn, especially post-introduction. This is not the case when
a promotion on Fleuril occurs. In general, consumers seem to be more discount-sensitive post-
introduction, as we observe slightly steeper curves. With respect to brand-preference, households
seem to become less favorable towards Robijn but more favorable towards Fleuril and G’woon

post-introduction at their respective average prices, as made apparent by the intercepts.

Comparing the top and bottom panels of Figure 7, we clearly see that the effect for discount
is more profound than that of price. Furthermore, the difference pre- and post-introduction
is larger for the discount analysis than for the price analysis. This is not surprising given the
parameter estimates in Table 6, where we clearly observe that the effect of discount is larger
than the effect of price, in absolute sense. However, we must be careful directly comparing the
parameter estimates as they operate on different units of measure. Interestingly, for the newly
introduced product Zwarte Reus, none of the scenarios are attractive enough at the proposed
proposition (average price, no discount). Lastly, we observe that especially the market position
for Fleuril is highly influenced by price and discount. In fact, Fleuril can be market leader when
offering certain discounts or when Robijn increases its price. However, the market position of
Fleuril drops below that of Robijn, for high levels of discount on Robijn. The market positions

for all other brands are more stable among different ranges of price and discount.

Overall, we find that the introduction of Zwarte Reus affects the sensitivities for the marketing
decision variables price and perceived discount, despite the lack of quantifiable cannibalization
taking place. We cannot truly speak of cannibalization because in the long term, the introduction
of Zwarte Reus does not threaten the market position of the other brands. In the short term
however, we do see strong changes in aggregate choice probability. As expected, the competing
A-brands suffer from the introduction of an additional A-brand, but interestingly, it is the private
label brand that benefits from the introduction. However, the effects are only temporary, as all

brands rapidly recover to their pre-introduction choice shares.



6 Conclusion

In this paper, we set out to estimate the cannibalization effect that may occur in the context
of a new product introduction. Here, cannibalization is assessed by the change in the aggregate
choice probabilities of the incumbent products pre- and post-introduction. Simultaneously, we
estimate the change in individuals’ sensitivity to marketing decision variables such as price and
perceived discount, due to new product introduction. We do so by means of the Multinomial
Probit (MNP) model, a model that has gained much traction in the literature since improve-
ments in (Bayesian) simulation methods and computing power. The most obvious advantage of
the MNP model is that it allows for the modeling of unobserved heterogeneity across consumers,
without being restricted by the Independence of Irrelevant Alternatives (ITA) assumption. As
such, the MNP method takes preference over aggregate demand models which cannot model
consumer heterogeneity, and over other discrete choice models such as the Multinomial Logit,
which is bounded by the ITA assumption. In this study, we use Bayesian methods to obtain
estimates for the model parameters. Though many classical methods of estimation exist as well,
the use of such methods is not recommended, as they may be computationally intensive and only
yield approximate results. Instead, we opt for obtaining the parameter estimates by means of
an MCMC Gibbs sampler, where we sample the latent utilities alongside the model parameters,

also known as data augmentation.

A well-known complication of the MNP model is the lack of identification, due to the scale- and
level-invariancy of the latent utilities. Consequently, some parameters are unidentifiable, unless
a restriction is placed on the covariance matrix of differences . To do so, common practice is to
set one of the diagonal elements of ¥ equal to one. More recently, Burgette and Nordheim (2012)
have proposed an alternative identifying restriction, by fixing the trace of ¥ instead. Proposed
advantages are that the trace restriction provides stronger identification, more interpretable re-
sults and is less prone to making extreme predictions. Moreover, fixing the trace, instead of just
one element, eliminates the difficulty of determining for which product the variance is set to unit
variance, which may have consequences for the parameter estimates. In this study, we compare
the trace-restricted model of the aforementioned authors with the element-restricted model of
Imai and Van Dyk (2004). Both studies make use of marginal data augmentation, which is said
to improve the mixing behavior of the distributions, and limits the correlation between the draws
by introducing and integrating out a working parameter to improve the sampler’s convergence
rate. Our contribution to the literature is that our model specification allows for unobserved

heterogeneity across consumers by using individual-specific regression parameters, whilst not as-



suming E[5;|3, ¥g] # 0. For neither sets of aforementioned authors, this is the case.

During a simulation study, we find that in line with the findings of Imai and Van Dyk (2004), the
autocorrelation between draws weakens swiftly and is virtually non-existent after 10 lags for both
models. In terms of overall model fit, we find that the trace-restricted model outperforms the
element-restricted model. Though for both models, the parameter estimates seem to be slightly
too small in absolute value. This has as consequence that neither model is particularly accurate
in prediction. Nonetheless, based on the in-sample value of log-likelihood and the WAIC, we

take preference to the trace-restricted specification.

Unfortunately, we cannot comment on the performance of the trace-restricted model on the
empirical dataset for laundry detergent, provided by the online supermarket Picnic. The Gibbs
sampler falters every so many runs, making it infeasible to reach sufficient runs to obtain ac-
curate parameter estimates. We hypothesize that this is due to a lack of variation in the price
and perceived discount covariates. Another potential cause is that the households included in
the dataset exhibit very little switching behavior. Both contribute to the fact that the sampler
has very little random variation to accomplish improvement of the parameter estimates. We find
however, that if the mean of the distribution for the latent utilities is not dependent on X, the
algorithm no longer falters. This modification is not theoretically substantiated, but does allow
us to present a hypothetical use case for the trace-restricted MNP model. We realize that the
parameter estimates may be inaccurate due to this modification, but continue the analysis for

the sake of illustration nonetheless.

A key finding of the laundry detergent use case is that the MNP model may still detect changes
in competitive structure and changes in sensitivity towards marketing decision variables, even
in the case when the introduction of a new product is non-threatening to the market position
of the incumbent brands. Though we observe little to no cannibalization accompanying the
introduction of Zwarte Reus, we do see household preferences shift. For instance, households’
stance towards the private label brand seem to become more favorable with the introduction of
this additional A-brand offering. Furthermore, with the introduction of an additional product
within the laundry detergent category, consumers seem to become less price- but more discount-
sensitive. Such insights are easily overlooked and may be of great interest to retail managers

considering to expand their product portfolios.



7 Limitations & Future research

In this research, we are limited to the data of a single, online, supermarket. Though the data
contains sufficient observations, it may lack in sufficient variation in price and discount to truly
get an understanding of switching behavior due to a new product introduction. The sampling
methods do not falter on the simulation data, which is purposely simulated to resemble the em-
pirical data. The only difference is that the covariates are generated with replacement, inducing
more variation in covariates. Little variation in price and discount also results in less switching
activity, as is apparent in our empirical data. When little switching occurs, it is more difficult
to gain understanding of consumer preferences. Furthermore, if switching then does occur, it is
difficult to see why this is the case, as the covariates differed very minimally. Our solution to
introduce a different specification for the truncated normal distribution for the sampling of the
latent utilities, forces us to question the accuracy of the resulting parameter estimates. As such,
including data from other supermarkets may be needed to supplement our data and validate our
findings. Alternatively, further research has to point out whether our alternative specification of
the truncated normal are valid. Furthermore, it would be interesting to look at a more successful
product introduction, to see whether customers truly abandon one product for another. Though
the introduction of Zwarte Reus did change the competitive structure slightly, it never became
threatening to the market position of the other brands. Applying our methods to a product in-
troduction for which this is the case, would allow for a true quantification of the cannibalization

effect.

In an attempt to obtain accurate individual-specific parameters, this research only included
customers that have at least 5 separate purchase occasions both pre- and post-introduction. Ev-
idently, in order to truly be able to draw conclusions regarding consumer behavior, it is necessary
to have as many observations per customer as possible. But by excluding customers with fewer
purchase occasions, this research put the focus on so-called "habit’ buyers. This has two conse-
quences. First, some cannibalization goes undetected, as all purchases made by customers under
the 5-trip threshold are excluded from estimation. Second, another interesting effect that often
occurs in the context of new product introductions is neglected. New product introductions may
entice buyers, new to the category, to start buying within the category, allowing the category
to grow as a whole. Though outside the scope of this research, evaluating the effect of a new

product introduction on these first-time category buyers may be of interest as well.

Furthermore, this research did not explore the online aspect of the data, which provides many



more interesting avenues for future research. For instance, product placement in an online
setting, as a counterpart to the traditional display, poses an interesting topic for research. Es-
pecially when researching brand loyalty, the influence of a “Previously Purchased” page may be
significant. Many possibilities for incorporating such effects exist. For instance, one could use
app-event data to include this effect as a dummy variable. Alternatively, one may indirectly
model the previously-purchased effect by introducing dynamics into the model. For such an
approach, we suggest following Paap and Franses (2000), who include lagged utilities as an ex-
planatory variable and alter the MNP model to a VEC specification. Such a specification would

further disentangle short-term and long-term effects of the product introduction.

Another interesting avenue for further research is adding an additional layer to the Gibbs sam-
pler. In this research we assume the individual-specific parameters (5; to follow a theoretical
distribution N (3, 33). However, one could also infer the parameter 3; from data. Using features
such as income, family composition, and age as explanatory variables to infer brand preference
and sensitivity to marketing decision variables, could aid in obtaining an even deeper under-
standing of consumer purchasing behavior. For example, Nevo (2000) find that the relationship
between the choice of breakfast cereal and sugar content is intensified by the age of the consumer.

For this application, using app-event data to infer 5; may provide interesting insights as well.
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8 Appendix

A Derivation Full Conditional Posteriors

The derivations as described below are described in detail by McCulloch and Rossi (1994). The
probit model as explained in section 3.2 can be expressed as a standard multivariate regression
model, meaning that the parameters can be sampled using standard normal regression results.
Rewriting equation 3 to fit this standard regression, we obtain:

U |22 = +X / 2%/57: + €t/ $2

N|=

(A1)
= X3 Bi + €

The above transformation simplifies the model by allowing for normally distributed errors with
zero mean and unit variance. For this standard model, we know that the full conditional posterior
of the regression parameter § is normal with mean and variance dependent on the OLS-estimator
B. The full conditional posterior for the covariance matrix of the error terms is an inverted
Wishart distribution.

A.1 Conditional Distribution U;

Given all other parameters, the sampling of the latent utilities Ujj¢, ..., U;; can be interpreted
as a linear regression model, whereby the full conditional posterior of each utility U;;; follows
a truncated univariate normal distribution. The truncation region is determined in accordance
with the definition of utility theory, such that if individual ¢ purchases article j at time t,
Uijt > Uire ¥ k # j. Given that the the sampler operates on utility differences the truncation
regions are determined as follows:

< max (Uit,(—j)ao) if Yi 75]

Here Uit,(—j) signifies all utilities U; except the utility for the j** alternative. The truncated
normal has mean

pije = w38 + F/(ﬁit,(fj) — X~ Bi) (A.3)

and variance:
T = 1/0y; (A4)
Here F' = —0,7j—j, where 0;; denotes the (4, j) element of ¥~ and 7; _; is the j*! row of X1

with the 5 element removed.

A.2 Conditional Distribution §; and X

To sample f3;, we stack over time and obtain a linear regression with conditional conjugate normal
prior §;|3,%s ~ N(B,1 x ¥g). The full conditional posterior distribution of j; is therefore
normal with mean:

(XX +3,) (XU +2518) (A.5)

and covariance matrix:

(X XxF+3,0)7h (A.6)
Note that X}/ X =S X! 971 Xy and X}'UF = S0 X057 Uy

Conditional on the utilities and 3;, the results from the standard regression model imply that the



full conditional posterior of 3 is an inverted Wishart distribution. Given the weakly informative
conjugate prior, the inverted Wishart has scale parameter:

N T,
U+ (U — X8 (Uie — X3, 8:) (A7)
i=1 t=1
and degrees of freedom:
N
A+ T (A.8)
i=1

where ¥ and A are prior parameters.

A.3 Conditional Distributions 3 and ¥

To sample 3 we consider the part of the posterior density which depends on 3. Given that we
use a flat prior on 3, the posterior density is proportional to the complete data likelihood:

N
p(BISs, (51, 3,0, ) ox [Lexw(—5 (81 — 655" (81 — ) (A.9)
=1

This can be interpreted as the multivariate regression 5; =1 x S+ v; with v; ~ N(0,X3). The
full conditional posterior distribution is then normal with mean 8 = (32N 1)"12N 8 = 3.
The covariance matrix is given by ¥z ® (Zf\il 1)"1=X3/N.

Likewise, to sample X3 we consider the part of the posterior density which depends on 3.
Given the flat prior, the posterior density is proportional to the complete data likelihood:

N
& 7 _1 1 _
P18, B} 1, .0, ) o 8540 TTexp(—3 (6 - Y8518~ B)  (A0)
i=1
The term within the exponent can also be written as tr(ZEl(Bi — B)(B; — B)"). As such, the full

conditional posterior of ¥z is inverted Wishart with parameter Zfi 1(Bi = B)(Bi — B) and N
degrees of freedom.



B Convergence plots

B.1 Element-restricted model
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Figure 8: MCMC convergence plots for coefficients for the element-restricted sampler
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B.2 Trace-restricted
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Figure 9: MCMC convergence plots for coefficients for the trace-restricted sampler
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B.3 Pre-introduction (Trace-restricted model)
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Figure 10: MCMC convergence plots for coefficients pre-introduction
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B.4 Post-introduction (Trace-restricted model)
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Figure 11: MCMC convergence plots for coefficients post-introduction
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