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Abstract

This thesis investigates two methods used to estimate the yield curve using affine term
structure models (ATSMs) with non-Gaussian factors. ATSMs describe the dynamics of
the yield curve using affine transformations of latent factors. The factors behave according
to Gaussian or non-Gaussian dynamics. The methods of Ait-Sahalia and Kimmel (2010)
and Creal and Wu (2015) both promise quick and efficient estimation of ATSMs with non-
Gaussian factors, but it is unclear which model performs better. The method of Ait-Sahalia
and Kimmel (2010) approximates the likelihood of the latent state variables through Hermite
expansions, while the method of Creal and Wu (2015) approximates the entire ATSM by
a discrete-time version. Ex ante, it is not clear which of these approximations performs
better. This research performs a sensitivity analysis to the amount of starting values and
observations. A comparison between the two methods is done using an efficient amount of
starting values and observations, as using too much of either increases computation time
without significantly increasing performance. The Creal and Wu (2015) method results in a
lower root-mean-square error (RMSE). This lower RMSE is mostly noticeable in the yiclds
corresponding to the lowest maturity. The RMSE is comparable between the two methods
in the yields corresponding to the higher maturities. The lower RMSE comes at the cost of
an increased computation time. An empirical estimation of the parameters using real-world
data is performed for both methods, which supports the conclusion that the CW method
outperforms the ASK method for real-world data.
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1 Introduction

The yield curve is one of the most important instruments of an economy. Current yield curve
values allow for forecasting future yields, as current long-term yields carry an expectation of
future short yields. Pricing of derivatives and hedging of risk also crucially depends on an
understanding of what moves the yield curve (Piazzesi, 2010).

The yield curve describes the relation between yield on a treasury investment and time-
to-maturity. The yield curve can be described using Gaussian factors of Vasicek (1977), or
non-Gaussian factors of Cox, Ingersoll, and Ross (1985). Later, it was shown by Duffie and
Kan (1996) that both approaches can be generalized in affine term structure models (ATSMs).
ATSMs are able to consistently fit both the cross-section and time-series properties of the yield
curve (Piazzesi, 2010).

The Vasicek model has a fixed volatility of the short rate, while the CIR model allows for
varying volatility of the short rate, which is also observed empirically. Despite this, models
with only Gaussian factors have been very popular with practitioners. In 2011, the US bond
yields have occasionally become zero at the lower maturities. The lowest values the yield curve
can attain is called the zero lower bound, which is determined by policy. As the name implies,
the zero lower bound is mostly held at zero. Negative yields are a last resort of policymakers,
and do not happen without special circumstances. The Gaussian models do not have a built-in
protection to prevent overshooting the zero lower bound, resulting in negative yield forecasts.
Given the nature of the zero lower bound as determined by policy, it is unreasonable to forecast
negative yields, leading to inaccurate forecasts. This discrepancy between the reality of the yield
curve and the inability of the Gaussian models has resulted in a vast body of literature which
aims to deal with this overshooting of the zero lower bound. An overview of this literature can
be found in Krippner (2015).

Instead of trying to modify the Gaussian ATSMs, the ATSMs with non-Gaussian factors are
unable to reach negative yields. While this is great for modeling the zero lower bound when it is
at zero, this also proves to be a limitation when the yield becomes negative. Negative yields are
a last resort of policymakers, which rarely occurs. In the US the yields turned slightly negative
in 2015, after which yields turned positive again. This is not a big problem, as it simply results
in small estimation errors in short periods with negative yields. This should not drastically
affect estimation outcomes, when looking at a large enough sample.

The model which includes non-Gaussian factors thus seems an interesting avenue of research,
but there have been only a few extensions on this model, in contrast with the large body of
research on the Gaussian models. This is likely due to the lack of a general estimation method
for non-Gaussian models. Closed-form likelihood expressions are known for only a few special
cases, due to the complicated dynamics of the non-Gaussian state variable in continuous time
(Piazzesi, 2010). The interaction between Gaussian and non-Gaussian factors which prevents
closed-form likelihoods.

Combining Gaussian and non-Gaussian factors results in mixture models in the class of
ATSMs, introduced in Duffie and Kan (1996). The definition of these models is refined in Dai
and Singleton (2000), where additional restrictions are given to create a ’canonical’ definition

of the ATSMs. These additional restrictions allow for admissable models, resulting in positive



conditional variance, while imposing the minimum amount of identifying restrictions (Dai &
Singleton, 2000).

Estimation of ATSMs is done by maximizing the likelihood function, which requires being
able to compute the density of the latent variables. Closed-form densities can be computed
in the case of Gaussian variables or the one-factor non-Gaussian model. Using multi-factor
non-Gaussian models or mixture models does not allow for a closed-form density. Estimation
of multi-factor non-Gaussian or mixture models can be done using quasi-maximum likelihood
(Lund, 1997; De Jong, 2000), simulated maximum likelihood (Brandt & He, 2006; Piazzesi,
2005), generalized method of moments (Hansen, 1985; Singleton, 2001), and Hermite expansions
(Ailt-Sahalia, 2008; Ait-Sahalia & Kimmel, 2010).

Ait-Sahalia and Kimmel (2010) uses Hermite expansions aim to approximate the likelihood
function. Hermite expansions allow an approximation which is similar to a Taylor expansion.
This allows for quick and efficient estimation of the parameters. All estimation methods have to
translate the discrete observations of the yield curve to fit into the continuous-time framework
of ATSMs. Creal and Wu (2015) instead provides a discrete-time framework which is observa-
tionally equivalent to discrete observations in ATSMs. No additional assumptions are needed,
when compared to ATSMs. The dynamics between subsequent observations in the discrete-time
framework of Creal and Wu (2015) are identical to the dynamics between two observations in
the continuous-time framework of ATSMs. This discrete-time framework allows the computa-
tion of a closed-form likelihood for mixture models, which is not possible in the continuous-time
framework. Still, this closed-form likelihood leads to slow optimization which easily gets stuck
in local optima. Combined with a reduction in parameter space by clever use of regressions,
Creal and Wu (2015) is able to create a recipe for quick and efficient estimation.

This paper compares the methods of Ait-Sahalia and Kimmel (2010) and Creal and Wu
(2015). Both attempt to find a fast and efficient way to estimate the parameters of the yield
curve, but it is impossible to know ex ante which method leads to more lower errors, this has
not been studied before. This paper uses a simulation study to compare the two methods.
Both methods describe a single optimization trial. A single random starting point can either
obtain the global optimum or get stuck in a local optimum. In a probabilistic sense, increasing
the amount of starting values allows for a larger chance to find the global optimum, but each
starting value also increases computation time. Sensitivity analyses are performed to determine
the sensitivity to varying the amount of random starting points and the sensitivity to varying the
amount of observations to estimate from. The sensitivity analysis with respect to the amount
of observations is done to determine whether the two methods benefit from a large amount of
observations, or whether they also perform well on smaller datasets. These sensitivity analyses
are also used to inform the amount of starting values and observations of the comparison between
the two methods. This is done to prevent unnecessary computations which do not significantly
increase performance. Lastly, the parameters of the two methods are estimated on empirical
data.

The sensitivity analysis regarding the amount of starting points shows that both methods
do not significantly benefit from using more than 60 starting points. The average computation
time of the Ait-Sahalia and Kimmel (2010) method is around 9 seconds, while that of the Creal



and Wu (2015) method is around 43 seconds.

The sensitivity analysis regarding the amount of observations does not provide a clear result
for the Ait-Sahalia and Kimmel (2010) method. It is unclear what amount of observations
performs best, or whether there is a significant difference between them at all. The sensitivity
analysis of the Creal and Wu (2015) method shows that increasing the amount of observations
also increases performance. The increase in performance is no longer significant by using more
than 500 observations. In the final comparison, the Ait-Sahalia and Kimmel (2010) method
uses 300 observations. The method of Ait-Sahalia and Kimmel (2010) needs less observations
and evaluates quicker, but leads to larger errors on the lower maturities. The method of Creal
and Wu (2015) needs more observations and computation time, but leads to the lower errors on
the lower maturities. The performance in the higher maturities is similar. This conclusion is
supported by the empirical estimation of the parameters.

The remainder of this paper is structured as follows. The theoretical framework of ATSMs
and the methods of Ait-Sahalia and Kimmel (2010) and Creal and Wu (2015) are laid out in
section 2. The setup of the Monte Carlo methods is laid out in section 3, after which the results
are discussed in section 4. An empirical estimation of the parameters using the Ait-Sahalia and
Kimmel (2010) and Creal and Wu (2015) methods is given in section 5. Finally, a discussion

and conclusion is given in section 6.

2 Estimation Methods

The main goal of the paper is to compare the existing performance of Ait-Sahalia and Kimmel
(2010) and Creal and Wu (2015). First, the theoretical framework of risk-neutral dynamics is
described in section 2.1. The physical dynamics and the general construction of the likelihood
are given in section 2.2. The specifics of the Ait-Sahalia and Kimmel (2010) methodology is
discussed in section 2.3 and the Creal and Wu (2015) methodology is discussed in section 2.4.

Finally, the selection of which ATSM to use in estimation is described in section 2.5.

2.1 Risk-neutral dynamics

This section of the paper follows the presentation as given in Dai and Singleton (2000). Without
arbitrage opportunities, the price Pi(7) at time ¢ of a zero-coupon bond with time to maturity

Pi(r) = B9 [exp <— /:M rsdsﬂ , (1)

where EQ denotes the expectation under the risk-neutral measure and 7y is the instantaneous

T, is given by

short rate at time t. To obtain an N-factor affine term structure model, we consider the instan-
taneous short rate as an affine function of the state variables, and the risk-neutral dynamics of
the state variables X; must be affine in X;. Let us assume the instantaneous short rate r; is an

affine function of the N x 1 vector of unobserved state variables X;, such that

e = 6o + 01 X3, (2)



where Jy is a scalar and d; is an N x 1 vector. The risk neutral dynamics of the state variables

X; follow an affine diffusion, given by
dX, = K(6 — X)dt + Sv/SidW g, 3)

where thQ is an N-dimensional independent Brownian motion under @, © is an N x l-vector.
Both K and ¥ are N x N matrices, and S; is an N x N diagonal matrix with the ith diagonal
element given by o; + B/ X;. Each «; is a scalar and each 3; is an N x 1 vector, for 1 <i < N.
We now have a system of dynamics describing bond prices. A solution for this system is then
given in Duffie and Kan (1996), who find that

Py(r) = exp [A(T) + B(r)'Xy] , (4)

where A(7) and B(7) are the scalar and N x 1 solutions, respectively, to the ODEs

N

31;5—7') _ —(S() + B(T)’I%é + % 2; [ZIB(T)}? Qj,
i= (%)
OB(r +1
) _ iy + ; 128,

with initial conditions A(0) = 0 (scalar) and B(0) = 0 (N x 1). Here [X'B(7)]; indicates the
i’th element of the N x 1 vector ¥'B(7). The yields of a zero-coupon bond are then given by

log[P(7)]

Yi(r) = — = A(7) + B(r)' Xy, (6)

where A(7) = —A(7)/7 and B(7) = —B(7)/7.

2.2 Physical dynamics and likelihood construction

So far we have only considered risk-neutral dynamics. These do not depend on the physical
dynamics or the market price of risk. When estimating the models, we also need to understand
the dynamics under the physical measure P. Using the simple market price of risk found in Dai
and Singleton (2000), the market price of risk A; is specified as

= \/gt)‘v (M

where \ is a N X 1 vector of constants. Let us define the P-measure dynamics analogous to the
@Q-dynamics,
dX; = K(© — X;)dt + /S dW], (8)

where de now represents an N-dimensional independent Brownian motion under P. The drift

parameters are different under the P-measure, now defined as

C?ﬁ

=K - ¢,
K- (/60 w),



where ¢ is a N x N matrix with the ¢’th row given by X\;3] and ¢ is a N x 1 vector with the
i’th element given by A\;a;. This completes the dynamics of the model. The canonical A,,(N)
representation of Dai and Singleton (2000) contains N factors, m of which are volatility factors.

To follow the specification, the normalized form is given by

Omx1 K= Kinsxm Omx(N—m)
ON—myx1] K(v—myxm  KN-myx(N—-m)|

Om
o= x1 , ,6 _
Q(N—m)x1

as well as ¥ to be a IV x N identity matrix. There are several additional parameter restrictions,

o=

Lixem Brax (N—m)
ON—m)xm  O(N—m)x(N—m)]

given by

01 >0, m+1<i<N,

m
> Ki©; >0,  1<i<m,
j=1

/Cij§07 1<j<m, J# i
0; >0, 1<i<m,
Bij =0, 1<i<m, m+1<j<N.

These restrictions are needed to ensure the process attains positive conditional variance /Sy
over all possible state variables.

The model to be estimated can now be summarized as a state space system with an obser-
vation equation, given in Equation 6, which relates the observed yields to the state vector, and
a state equation, given in Equation 8, which describes the physical dynamics of the state. The
observation equation allows the determination of N state vectors from N observed yields by
inverting Equation 6.

When there are more yields than state variables, the observations equation can not be
inverted. Inverting the observation equation can then be facilitated by allowing errors. Two
alternatives are possible. FEither all observations are observed with error, or a subset of the
yields is observed with error. When all observations are assumed with error, Equation 6 can
not be inverted to yield the state variables from the observed yields, as none of the observations
is certain. In this case, a Kalman filter can be used to filter out this uncertainty and obtain
the state variables (Piazzesi, 2010). Instead, this paper assumes only N yields to be observed
without errors, and the remaining yields are observed with Gaussian errors. This allows the
inversion of Equation 6. The time to maturity 7() corresponds to the yields observed without
error, and the time to maturity 7(® corresponds to the yields observed with error. Following

the notation of Creal and Wu (2015), the observation equation can be split as

Yi(r0) = AW + By x,, (10)
Yi(r@) = Ar?) + BEODYX, + 0, e~ N(0,Q). (11)



The dynamics in Equation 5 are used to obtain A(7) and B(7). The N state variables are

obtained from inverting Equation 10, resulting in
X = B(rO) ! [v(r M) — 4] (12)
Once the state variables are obtained, we can find the observation errors n; of Equation 11 by
=Yy (r?) — A(r®) - B(rVY X,. (13)

Estimating the parameters is done through maximizing the likelihood of the observed yields,
by varying the parameter vector 6. The likelihood of the observed yields is given by p(Y1.7(6).
This can now be expanded in the elements containing Y;(7() and Y;(7(?)). As the clements of
Y;(7(M) are an affine transformation of the state variables, we can instead consider the conditional
likelihood of the state variables, multiplied by the Jacobian determinant. By considering the

likelihood via the prediction error decomposition, we obtain

p(irl0) = p (Vi (r®)Var (7);6) p (Vi (r)16)
(14)

Il
S

T
p (V)i );0) [Ipxaz:) 1760) .

o~
[

1

where Z; denotes set of available information at time ¢. The estimation of both the Ait-Sahalia
and Kimmel (2010) method and the Creal and Wu (2015) method roughly follows the same
steps. For a given parameter vector 6, the complete likelihood is then constructed as follows:

1. For a given 0, calculate the bond loadings A and B. Then, use Equation 12 to find the

state variables X;.

2. Given X, obtain the likelihood of the state variables Hthlp(Xt\It; 0). This step differs

significantly between the two methods.
3. Using Equation 13, calculate Q = =~ ST ne.

4. By multiplying the result of step 2 with the Jacobian determinant, the likelihood of the
yields observed without error is obtained. Using the variance found in step 3, we can
compute the likelihood of the yields observed with error. Thus the complete likelihood

can now be calculated, for a given parameter vector 6.

To allow for easier computation, the log likelihood is considered. The maximization of the log
likelihood is done using standard optimization techniques. The specifics of the two methods are
laid out in the following sections. Ait-Sahalia and Kimmel (2010) approximate the density of
the state variables using a likelihood expansion. Creal and Wu (2015) instead approximate the
entire process with a discrete version, which then allows for complete analytical solutions to the

transition densities.



2.3 Likelihood expansion of the state variables

The method of Ait-Sahalia and Kimmel (2010) uses Hermite expansions to approximate the
density of the state variables, Hthl p(Xt|Z;0). This method will be referred to as the ASK
method. This method is based on the expansions described in Ait-Sahalia (2008). Realizing the
likelihood of the state variables is Markovian, the information set Z; consists of the information
available at time ¢t and contains the previous observation X;_1. Suppose the time between yield
observations is given by A, denoted in years. The log conditional likelihood of the state variables
can be approximated using a likelihood expansion, which has the form of a Taylor expansion in

the dimension A at order K,

(
N Cy (X4 Xe—1; AF
I9(A, Xl X1:6) = =S In(27A) = D, + % Zc (Xl Xe1:6) 70 (15)

with Dy = 3ln(Det[0(X;0)0(X;;0)]). As the yield data is observed monthly, this means
A= % The coefficients C‘g? for k = —1,0,..., K can often not be computed in closed form
for mixture models. By performing a Taylor expansion in (X; — X;_1) of each coefficient Cg?t)
at order ji, the coefficients can be calculated in closed-form. Let such a Taylor expansion be
denoted by ngf’m‘ The order ji = 2(k — K) The approximation then becomes

(j-1,-1) k
K N Cx V(X Xi—150) * A
ﬂX>(A7Xt\XH;e):_Em(zﬂA)_DUJr : = kzoc(“ ) (X | X1 0)
(16)
k)

The closed-form likelihood expansions C(“’ within the context of the physical dynamics of
Equation 8 are provided by Ait-Sahalia and Kimmel (2010). The parameter vector 6 consists of
all free parameters {K, 0, a, 3, do, 61, A, 0 }. For a given parameter vector 6, the computation of

the log likelihood is as follows:

1. For a given 6, the ODEs in Equation 5 are solved numerically to obtain A(7) and B(7).
Then, use Equation 12 to find the state variables Xj.

2. Evaluate the joint likelihood of the state variables X;, using the expansions of the likelihood

in Equation 16.
3. Using Equation 13, calculate 0= ﬁ Zthz ;-

4. Add together the terms from step 2 and 3, and the Jacobian determinant to find the

complete data log likelihood, for a given parameter vector 6.

2.4 Discretization of the entire process

Creal and Wu (2015) consider a discrete-time process with the same dynamics as the continuous-
time model we have already defined. This method will be referred to as the CW method. The
state variable X; = (gj, h})’ consists of a G x 1 vector of conditionally Gaussian state variables
g+, whose volatilities are captured by a H x 1 vector of positive state variables hy. In the A, (N)

notation of Dai and Singleton (2000), this corresponds to G = (N —m) and H = m. By splitting



the state variables, the instantaneous short rate of Equation 2 now becomes
T = (50 + 5/1,hht + (5’1’ggt. (17)

Under the risk-neutral measure @), the Gaussian state variables g; follow a vector autoregression

with conditional heteroskedasticity

Q
gt+1 = “? + (I)?gf + (D?hht + Egheg,tﬂ + Egtﬂv 6_qQ,tJrl ~N(0,5,45,), (18)
H
DSy = YogS0g+ > DigTighis, o1 = hern — EQ(hy 1),
i=1

where Z; denotes the information set at time ¢. The volatility factors follow an affine transfor-

mation of the discrete-time equivalent of a multivariate Cox et al. (1985) process

hiy1 = pp, + pwisa, (19)
Wigg1 ~ Gamma(u,% + ZZ.Q,“r17 1), i=1,....H (20)
Z?tﬂ ~ Poisson(e;Z,Tl(IJgZhwt,), i=1,...,H (21)

where e; denotes the ith column of the H x H identity matrix Iyy. The Gaussian state variables
gi+1 are a function of the non-Gaussian state variables h; through both the autoregressive term
CI)?,Lht and the covariance term EghEgt 11 A process using only non-Gaussian state variables
would only require Equations 19 - 21, while a process using only Gaussian state variables would
vastly simplify Equation 18, and not require Equations 19 - 21. Mixture models using both
Gaussian and non-Gaussian factors require Equations 18 - 21.
The discrete-time equivalent to Equation 4, linking the price and the state variables, is given
by
Pi(7) = exp [A(T) + Bu(7)'he + By(7) 9] - (22)
While the factor loadings in the continuous-time framework are found by solving the ODEs
of Equation 5, the loadings can in the discrete-time framework are computed in closed form

through the recursions

Alr) = ~bo+ Alr = 1) + 6 By(r = 1) + [+ 82 + 52 B = 1)
+ %BH(T — 180,480, By(r — 1) — vy [log(err — S B (1 — 1)) + Zj, Bgr (1 — 1)]
+ @Y (IH — [diag(em — 3, Bgn)] 71) 3} Bgn(1 — 1), (23)
Bu(r) = =615 + ®% By(r — 1) + B By (7 — 1)
45 ® By(r — 1))5, (I @ Byfr — 1))
— 05 (1 — [ding(en — 4 Bon(r = 1)) ") S Bon(r = 1), (24)

By(7) = b1, + @' By(r — 1), (25)



with initial values A(0) = 0, By,(0) = 0, and By(0) = 0. The matrix X%} is a (G x H) x (G x H)
block diagonal matrix with elements X;,%; for i = 1,..., H and By, (1 — 1) = X}, By(T — 1) +
B (17 —1). The bond yields can then be expressed as

Yi(1) = A(7) 4 Bu(1) by + By(1) g = A(T) + B(1)' X, (26)

where A(7) = A(7)/7, Bp(t) = Bp(7)/7, and By(r) = By(r)/7. The final equality holds if
B(1) = (Bp(7)',B4(7)"), this is needed to invert the relation of Equation 12.

This concludes the discrete-time analogue of the continuous-time dynamics under @ laid out
in section 2.1. Similar to the continuous-time model, the discrete-time analogue needs to take
into account the P-dynamics to arrive at a model which can be estimated from data.

In the continuous-time model the P-dynamics have the same functional form as under @,
though with distinct parameter values. In the discrete-time model, this also holds. Under the

P-measure the dynamics have the same functional form as under @,

i1 = g + Pyge + Pgnhy + Egnen a1 + g a1, g1 ~ N(0, g, 25 ), (27)
H
DgtTys = DogTog + D BigTi ghit, et = his1 — E(hisa|Ty),
i=1

The parameters controlling the conditional mean are different between P and @), while the scale

parameters Yy, and X; 4, for i = 1,..., H are the same. The dynamics of the volatility factors
are given by

hey1 = pn + Zpwey, (28)

w1 ~ Gamma(vy; + zig41,1), i=1,....H (29)

Zi+1 ~ Poisson(e}S, 1 @), Spw), i=1,...,H (30)

The splitting of the observations in those with and without errors remains the same as with.
Creal and Wu (2015) notice the parameter vector 6 can be simplified in those parameters
that enter the bond loadings and those that do not. This fact can be used to reduce the amount
of free parameters to be estimated. Thus, given the parameters that enter the bond loadings
of Equations 23 - 25, the factors can be extracted from Equation 12. The parameters of the

P-dynamics can now be extracted by running generalized least squares (GLS) in the form of
g1 — Sgnenit1 = Mg + Pgge + Ponhe + Xgeeg 41 (31)

The parameters py, @4, @4, are now obtained. By using Equation 11 and 13, Q is calculated
as ) = ﬁ ZtT=2 nn;. Estimating these these parameters through GLS allows for a reduced
dimensionality of the parameter space, making optimization easier. The parameter vector
only contains the free parameters {50,<I>§,<I>h,<l>§,20,g,21’g,29h,E;,,I/;,,I/,?}. The method of
evaluating the log likelihood for a given parameter vector 6 is then as follows:

1. For a given 0, calculate the values for the bond loadings through the recursions in Equations

23 - 25. Then, use Equation 12 to find the state variables g; and h;.

10



2. Given g; and hy, run the GLS regression of Equation 31 to obtain fig, 'i>g and 'i>gh.
3. Using Equation 11 and 13, calculate = ﬁ E;FZQ -
4. Use the estimates of step 2 and 3 in the complete log likelihood function.

The strength of the method lies in the ability to create a concentrated likelihood, which
contains less parameters. By creating a reduced parameter space, the optimization technique
converges faster and has less numerical instability. Several restrictions are needed for identifica-
tion. 01 is a H x 1 vector of ones, d1 4 is a G' x 1 vector of ones. ,u_f,? is a G x 1 vector of zeros,
pp is a H x 1 vector of zeros. vp; > 1 and u,?z >1fori=1,...,H. q)?h = 0. The matrices

Yk, E;I‘bhEh, and Z;IQSZ;L must be positive and ¥, is diagonal.

2.5 Model selection

Following the Dai and Singleton (2000) notation, the A,,(N) model contains N factors, m of
which are volatility factors. Dai and Singleton (2000) note that the A;(3) model seems to fit
the real-world data better than the As(3) model. This is one of the main reasons Creal and
Wu (2015) conclude the A;(3) model is the benchmark non-Gaussian ATSM. This paper follows
this recommendation, and all data is simulated as such. Thus this paper uses the A;(3) model.

This model contains 3 factors, with 1 of those factors being a volatility factor.

3 Monte Carlo Set-up

This section outlines the methods used to evaluate the performance of the ASK and CW esti-
mation methods. The general setup of the simulated data is given in section 3.1, after which
the parameters used for the simulated data using the ASK and CW methods are discussed
in sections 3.1.1 and 3.1.2, respectively. The evaluation method of the estimation methods is
discussed in section 3.2.

This paper first performs the sensitivity analyses, before arriving at the final comparison.
This is mostly due to the computation time needed to optimize the models. Lowering the amount
of trials or the amount of observations can significantly reduce the computational burden of any
following steps. The sensitivity analyses to determine the right amount of starting values reduced
computation time linearly, and is therefore performed first. The sensitivity analysis regarding
the amount of observations, does not reduce the computation time linearly, and is thus performed
second. The sensitivity analyses are discussed in section 3.3. Finally, the method of comparing
the two methods, using the resulting amount of trials and observations, is outlined in section
3.4.

3.1 Simulated data and parameters

The simulated data data is generated through the continuous-time framework of Ait-Sahalia
and Kimmel (2010), discussed in section 2.2, using an Euler discretization, and the discrete-
time framework of Creal and Wu (2015), discussed in section 2.4. The data simulated through

the continuous-time framework of Ait-Sahalia and Kimmel (2010) will be referred to as the ASK
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data, while the data simulated through the discrete-time framework of Creal and Wu (2015) will
be referred to as the CW data. The simulated datasets contain 7" = 800 monthly in-sample
observations. For both methods, first the underlying state process is simulated, after which
the state process is transformed into the yield process. To simulate the state variables in the
continuous-time framework for a given parameter vector 6, an Euler discretization of Equation
3 is used. The Euler discretization uses 30 intervals per month. Of these 30 steps, 29 are
discarded, leaving only the observations at the monthly frequency. After simulating the state
variables, they are converted into a yield curve.

Each dataset contains the yields for the 1, 3, 12, 24, 36, 48, and 60 month maturities, similar
to the datasets used by Ait-Sahalia and Kimmel (2010) and Creal and Wu (2015). As there are
three state variables, three of the yields are assumed to be observed without errors, following
Equation 10, corresponding to the maturities in months O = {1,12,60}. The selection of
these maturities is in line with those in both Ait-Sahalia and Kimmel (2010) and Creal and
Wu (2015). The maturities observed without error correspond to the shortest maturity, longest
maturity and a maturity in the middle which is skewed towards the shorter end, as the shorter
maturities experience more volatility, and thus could contain more information. The remaining
maturities 7 = {3, 24, 36,48} are observed with error, following Equation 11.

A single dataset thus consists of 800 observations of 7 maturities. To obtain a distribution
of results, 100 datasets are simulated using the same parameter vector §. The values of the
parameters used to simulate the data are displayed in section 3.1.1. The resulting data follows
the stylized facts of the yield curve.

The simulated data following the discrete-time framework is similar in construction, but
does not need an Euler discretization, as the dynamics of the state variables are already given in
discrete steps in Equations 27 and 28. These are used to simulate 7" = 800 observations of 3 state
variables. Construction of the yields from the state variables is the same as before. Similarly,
100 datasets are simulated to allow for a distribution of results using the same parameter vector
0. The values of the parameters used to simulate the data are given in section 3.1.2. These
parameter values are obtained from the code of Creal and Wu (2015). The resulting simulated

data follows the stylized facts of the yield curve.

3.1.1 ASK data

The parameter values used to simulate the data in the continuous-time framework are inspired
by those provided in Ait-Sahalia and Kimmel (2010), which in turn have been inspired by
Cheridito, Filipovi¢, and Kimmel (2010). The simulated data of Ait-Sahalia and Kimmel (2010)
however fixes several off-diagonal elements of K at 0, as well as the free elements of 3 fixed at 0
to allow the computation of the exact density of the dataset. Knowing the exact density is not
necessary for the methods of this paper. Instead of fixing these values at 0, these parameters
have been assigned reasonable values, allowing for more complex behaviour of the dataset. The
selected values have been found by trial and error, but the resulting dataset has been tested to
follow the stylized facts of the yield curve.

It should be noted the dataset is very sensitive to changing these parameters, as only small

changes can lead to drastically different shapes of the yield curve, which do not follow the stylized

12



facts of the yield curve. Trying to estimate the parameter values from the real-world dataset
and using these parameters to simulate data, does not yield data which behaves according to
the stylized facts of the yield curve.

The parameters of Ait-Sahalia and Kimmel (2010), with minor adjustments used in this

paper, are given by

0 1 04 01 05 0 0
a=|1|, B=|0 0 0|, K=|-08 004 0007,
|1 0 0 0 -13 —09 1.8

[0.01 —0.1 0.002
O=1|0|, A= |-025], 81 = 10.005
0 —0.35 0.001

3e—08 —1le—09 —3e—09 —1.5e—09

—le—09 1le—08  6e—09 4e—09

—3e—09  6e—09  1le—08 6e—09
_—1.5e—09 4e—09  6e—09  7.5e—09

3.1.2 CW data

The parameter values used to simulate the data in the discrete-time framework are provided
in the code of Creal and Wu (2015). These parameters have been estimated on a dataset of
zero coupon bond yields between June 1952 and June 2012. The parameters can be split in
three categories; free parameters, GLS parameters, and fixed parameters. The free parameters
are those that are directly manipulated by the optimization procedure. The GLS parameters
depend on the fixed and free parameters, but are not allowed to vary freely. The value of the GLS
parameters is dictated by the values of the other paramaters during the optimization procedure.
The fixed parameters are fixed with given values throughout the entire optimization procedure
to allow for econometric identification.

The free parameters are given by

vy, = 1.934, v =2.637, d = —0.001,
0951 0
o9 = , &y, = 0.994, 39 = 0.996,
0 0536

30710 0
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The GLS parameters are given by
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The fixed parameters are given by
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3.2 Evaluating performance through RMSE

Evaluation of the estimation methods has some roadblocks. As there is no closed-form method
to calculate the likelihood of the data, it is impossible to compare the likelihood resulting from
the estimation methods to any true likelihood of the data. Because of the complex interactions
between the parameters, it is possible that multiple parameter values result in similar perfor-
mance of the evaluation methods. Evaluating model performance by the ability to find the
parameters used in the data-generating process are thus not precise.

Both methods contain an error term, given in Equation 11. To evaluate performance, this
error term can be evaluated. Using, for example, 7' = 800 observations, this results in 3200
error observations, 800 for each maturity observed without error. As discussed in section 3.1,
the maturities observed with error are given by 7 = {3,24,36,48}. To summarize these error
observations into a single number for easy comparison, the root-mean-squared error (RMSE) is
computed. For most of the results, a total RMSE is used, resulting in a single result computed
over all 3200 error observations, equally weighing each maturity. In the sensitivity analyses, the
total RMSE is used. In the final comparison between the two methods, the RMSE is split for
each maturity, resulting in four numbers corresponding to a single result.

Using the error term in-sample would not be desirable to compare performance. For example,
during the sensitivity analysis with respect to the amount of observations needed, the model
trained on 12 observations is evaluated only on those 12 observations, while a model trained
on 800 observations is evaluated over those 800 observations. The performance evaluation of
both methods should be done over the same data, to allow for a fair comparison. Using the
same in-sample amount of data becomes a problem, as the smallest amount of observations in

the sensitivity only uses 6 observations, which is not enough to perform a thorough observation.
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Thus, the estimation methods should be evaluated on the same out-of-sample dataset. Out-of-
sample evaluation can be done for multiple time horizons, using 24, 120, or 600 observations.
These represent short-, medium- and long-term goals of fitting the parameters to the model.

In graphs all out-of-sample horizons can be easily shown together. In tables, combining
all out-of-sample horizons would clutter the results. Only the tables using 120 out-of-sample
observations are placed in the main text, while the results of using 24 or 600 out-of-sample
observations are placed in the Appendix B.

The simulated data then takes the largest amount of in-sample data, 800 observations, and
adds the largest amount of out-of-sample data, 600 observations, resulting in a single dataset
containing 7' = 1400 observations. The in-sample and out-of-sample data is always connected,

to ensure the data do not represent vastly differing periods.

3.3 Sensitivity analysis and Wilcoxon rank sum test

A single random starting point of 6 does not guarantee the global optimum is reached. Multiple
random starting values are used to allow a larger chance of getting close to the global optimum,
this amount of random starting values is referred to as the amount of trials. The optimum
amount of trials needed is determined through a sensitivity analysis. In this case, optimum
refers to a point where adding more trials does not significantly increase estimation performance,
while it does increase computation time. In this sensitivity analysis the same datasets are
estimated using {10, 20, 40, 60,80,100} trials. In the sensitivity analysis regarding the amount
of trails, each dataset uses 800 observations. Intuitively, this is because the largest amount of
observations allows the most accurate parameter estimates. To allow for a distribution of results,
the sensitivity analysis uses 100 datasets. A single trial then simply estimates the given dataset
with a new starting value of the parameter vector 6.

Of the total amount of trials, the one with the highest likelihood is the best observation.
The remaining trials with sub-optimal likelihoods are discarded. With 100 simulated datasets,
this results in 100 parameter vector observations. The RMSE is computed over the 24, 120, and
600 out-of-sample observations. For the sensitivity analyses, only the total RMSE is used for
evaluation. Ex ante, it is impossible to know which random starting value performs well. In a
probabilistic sense, each trial has a chance to reach the global optimum, and thus increasing the
amount of trials increases the chance of finding the optimum, which would result in the lowest
RMSE. To find the optimal amount of trials, a balance needs to be found between the lowest
RMSE and the lowest computation time. Increasing the amount of trials linearly increases the
computation time.

To compare whether two distributions of RMSE’s (for two different amounts of trials) sig-
nificantly differ, a two-sided wilcoxon rank sum test is performed between all combinations of
amounts of trials. The Wilcoxon rank sum test is a nonparametric test for unequal locations
of the distributions between two samples. Combined with visually inspecting boxplots of the
distribution of RMSE, this allows identifying the optimal amount of trials while distinguishing
between non-significant differences.

The amount of observations used to estimate the parameters is fixed in most practical cases,

as the largest amount of available data is used. In the case of Ait-Sahalia and Kimmel (2010)
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the Monte Carlo data used to evaluate performance consists of 7' = 500 observations, while the
empirical estimation is performed on 7' = 372 observations. Creal and Wu (2015) use 7' = 721
observations for the empirical estimation. In both estimation methods, it is unclear how the
estimation methods perform if they are employed with more or less observations. To determine
the behaviour in case of varying amounts of data, a sensitivity analysis is performed. Does
increasing the amount of trials increase performance, or will performance stay the same? Do the
methods perform well with less data, or does performance drop when there are less observations?
In the context of efficient estimation, it is interesting to see whether an optimum can be found,
similar to the amount of trials, where performance can no longer significantly increase by adding
more observations.

The sensitivity analysis regarding the amount of observations is performed with the amount
of trials which have been determined as optimal. The amount of observations within each
dataset is given by T = {6, 12, 24, 36, 48, 60, 72, 84, 100, 200, 300, 400, 500, 600, 700, 800}.
The computation time does not increase linearly with the amount of observations, such that
deciding an optimal amount of observations is less straight-forward. The evaluation again uses
the total RMSE over all maturities, computed by fitting the estimated parameter vector 6 over
24, 120, and 600 out-of-sample observations. The two-sided Wilcoxon rank sum test is used to

evaluate differences in the location of the distribution of RMSE’s.

3.4 Performance Comparison

After the right amount of trials and observations has been determined, the two methods are
compared. Up until this point, the ASK method has been applied to the simulated data of
the continuous-time framework, while the CW method has been applied to the discrete-time
framework simulated data. The parameter values used within each framework have no clear
counterparts in the other framework, resulting in data which behaves vastly different. Both
datasets follow the stylized facts of the yield curve, but the steepness, volatility, and absolute
size of the datasets differs. Thus it would not provide much insight to compare the results of
the sensitivity analyses between the methods.

To allow a fair comparison, the continuous-time data is estimated using both methods,
and these results can be compared. Similarly, the discrete-time data is estimated using both
methods, allowing a comparison between the methods. In this final comparison both the total
RMSE, computed over all maturities of errors, and the RMSE’s computed over each maturity
are displayed. Decomposing the RMSE into the maturities allows for a more granular look at

the performance of the models.

4 Monte Carlo Results

In this section, the results of the Monte Carlo methods are discussed. The results of the sensi-
tivity analysis with regards to the amount of trials and the amount of observations are discussed
in sections 4.1 and 4.2, respectively. The result of the comparison between the two estimation

methods are discussed in section 4.3.
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4.1 Amount of trials

To determine the amount of trials needed for each estimation method, each simulated dataset
is estimated with either {10, 20,40,60,80,100} trials. For now, 800 observations are used in
all datasets. Of the total amount of trials, the one with the highest likelihood will be the best
observation. With 100 simulated datasets, this results in 100 best observations. The RMSE
of these observations is then used to evaluate performance. In Figure 1.A the distributions of
RMSE’s are displayed of estimating 100 datasets using the ASK method with 10, 20, 40, 60,
80, or 100 trials. The RMSE is evaluated over 24, 120, or 600 out-of-sample observations. The
distribution of RMSE’s using the CW method are displayed in Figure 1.B. It should be stressed
that the numerical values of the RMSE can not be compared between methods. The RMSE
should only be compared between the varying number of trials within a given method. This is
due to the difference in simulated data used between the two methods.

It is immediately clear that increasing the amount of trials lowers the RMSE of the best
observations. Ex ante, it is unknown whether a trial with a random starting value will reach a
low RMSE, or whether the optimization gets stuck in a local minimum.! Thus, increasing the
amount of trials allows for more opportunities to reach the optimum. By increasing the amount
of trials, the distribution of RMSE’s becomes more compact and shrinks towards zero. However,
increasing the amount of trials linearly increases the computation time.

The computation times of a single trial for both methods is shown in Figure 2. The average
ASK trial, displayed in Figure 2.A, takes around 9 seconds to compute. The average CW
trial, displayed in Figure 2.B takes around 43 seconds. Both methods show trials which take
only fractions of a second, these trials cancel as the parameters do not follow the parameter
restrictions. There are only a few of these invalid attempts using the ASK method, indicating
a relatively simple parameter space. A larger fraction of trials cancels using the CW method,
indicating a more complex parameter space.

To ensure no time is spent on slightly lowering the distribution of RMSE’s, an optimum needs
to be found between lowering the distribution of RMSE’s and the computation time. The results
of the Wilcoxon rank sum test on the ASK data, evaluated with 120 out-of-sample observations,
are displayed in Table 1.A. Additional results of performing the Wilcoxon rank sum test with
24 and 600 out-of-sample observations can be found in Appendix B. The results for all amounts
of out-of-sample observations are similar. To illustrate, consider the first row. Starting at 10
trials, the distribution of RMSE’s can be significantly improved at the 5% confidence level by
increasing the amount of trials to 20, 40, 60, 80, or 100 trials. The same holds for the second
and third row, using 20 or 40 trials, respectively. Any higher amount of trials is a significant
improvement. In the fourth row, using 60 trials, there is no significant improvement in the
distribution of results by moving towards 80 or 100 trials. Using 60 trials appears to be the
optimum between computation time and performance. The following results concerning the
ASK method will all use 60 trials.

The results of performing the Wilcoxon rank sum test on the distributions of RMSE using 120

f starting the optimization from the data-generating process (DGP) values, instead of random starting values,
the CW method remains close to the DGP values, with some small variance because of the random nature of
the data. Roughly 2 in 3 trials of the ASK method remains close to the DGP values, while 1 in 3 finds another
optimum with vastly different parameters, though with similar likelihood and RMSE.
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out-of-sample observations are displayed in Table 1.B. Additional results from using 24 and 600
out-of-sample observations can be found in Appendix B. The results show only slight differences,
but the conclusion is the same for all amounts of out-of-sample observations. Improvement can
again be found by increasing the amount of trials. Increasing the amount of trials from 40 to 60
is does not lead to a significant improvement with 120 out-of-sample observations, but it does
for 24 and 600 observations. Increasing the amount of trials beyond 60 is non-significant for
any amount of observations. The optimum between performance and computation time again

appears to be found by using 60 trials. In the following results, the CW method will be applied
with 60 trials.
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Figure 1: Boxplots of RMSE obtained by optimizing with varying amounts of trials.
These boxplots show the resulting minimum RMSE of optimizing the simulated data with the
ASK method and CW method. The boxplots show the results of optimizing using 10, 20, 40, 60,
80, and 100 trials, with the RMSE evaluated using 24, 120, and 600 out-of-sample observations.
Outliers are omitted for visual clarity. See Section 4.1 for a discussion of the results.
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Table 1: Wilcoxon results for different amounts of trials, 120 observations

(A) ASK method

# Trials 20 40 60 80 100
10 0.000 0.000 0.000 0.000 0.000

20 0.042 0.000 0.000 0.000
40 0.038 0.011 0.010
60 0.856  0.836
80 0.911

(B) CW method

# Trials 20 40 60 80 100
10 0.073 0.000 0.000 0.000 0.000

20 0.000 0.000 0.000 0.000
40 0.072 0.007 0.023
60 0.490 0.767
80 0.675

The tables display the results of performing a two-sided Wilcoxon rank sum test on the RMSE’s
obtained by optimizing using either the ASK method or the CW method, evaluated over 120
out-of-sample observations. The RMSE’s of optimizing using either 10, 20, 40, 60, 80, or 100
trials are compared. The values reported are the p-values associated with the null hypothesis
corresponding to identical locations of the distributions of RMSE’s. A low p-value indicates the
compared distributions show different locations. Values below 0.05 are displayed in bold, these
distributions differ significantly at the 5% level.
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Figure 2: Histograms of computation time per trial for both estimation methods.

The computation time for both methods is displayed, registered over the complete sensitivity
analysis with respect to the amount of trials. The computation times are registered with both
methods using 800 observations per dataset.
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4.2 Amount of observations

To determine the amount of observations to use in the final estimation, each of the trials is
run with datasets consisting of 6, 12, 24, 36, 48, 60, 72, 84, 100, 200, 300, 400, 500, 600, 700,
or 800 observations. The expected result is to find a reduced RMSE for a larger amount of
observations. This would be due to the increased amount of observations allowing the algorithm
to determine more precise parameter estimates.

The distributions of RMSE using varying amounts of observations are displayed in Figure
3. Again, it should be stressed the numerical values can not be compared between the two
methods, due to the two methods using different datasets. Only a comparison within a method,
using different amounts of observations is possible. The results of performing the sensitivity
analysis using the ASK method are displayed in Figure 3.A. Comparing the distributions of
RMSE, an increase in observations does not seem to lower the RMSE, there is no clear result
from increasing the amount of observations. The results of performing the sensitivity analysis
for the amount of observations on the CW method are displayed in in Figure 3.B. It is clear
that increasing the amount of observations, generally leads to a lower RMSE.

The results of the Wilcoxon rank sum test on the RMSE of 120 out-of-sample observations
of the ASK method are displayed in Table 2. The results of using 24 and 600 observations can
be found in Appendix B. There is no clear story to be found. No single amount of observations
results in a distribution of RMSE which significantly differs from all others on all evaluation
amounts. The results of performing a Wilcoxon rank sum test using 120 out-of-sample observa-
tions of the CW method are displayed in Table 3. The results using 24 and 600 out-of-sample
observations can be found in Appendix B. Using 24 out-of-sample observations, there seems
to be little significant improvement beyond using 200 observations. Using 120 out-of-sample
observations, there is no clear point after which there is no more significant improvement. Using
600 out-of-sample observations, the longest evaluation period, shows that there is no significant
improvement beyond using 500 observations. To determine the right amount of observations to
use in the final comparison, the computation time needs to be considered.

The computation times using each amount of observations are displayed in Figure 4, with
the ASK method and CW method displayed in Figures 4.A and 4.B, respectively. For the
ASK method, it is clear that increasing the amount of observations does not strongly influence
the computation time. Using 6 observations, the average trial lasts 6 seconds, while using 800
observations still uses less than 10 seconds. Though the difference is significant, both are short
enough that they should not influence the decision on which amount of observations to proceed
with. For the CW method, the computation is more dependent on the amount of observations.
Using 6 observations, the average trial takes 5 seconds, while using 800 observations it takes 43

seconds.
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Figure 3: Boxplots of optimizing using with varying amounts of observations.

These boxplots show the resulting minimum RMSE of optimizing the simulated data with the
CW method. The boxplots show the results of optimizing using datasets with lengths of 6, 12,
24, 36, 48, 60, 72, 84, 100, 200, 300, 400, 500, 600, 700, and 800 observations, with the RMSE
evaluated using 24, 120, and 600 out-of-sample observations. Outliers are omitted for visual
clarity. See Section 4.2 for a discussion of the results.



To determine an amount of observations to use for the final comparison, both performance
and computation time have to be considered. For the ASK method, looking only at perfor-
mance, using 300 observations seems to contain not only the lowest medians, but also the lowest
75th percentile, implying a denser and lower distribution of results. This can be due to three
possibilities. The first possibility for this is that using 300 observations actually provides a
better result than any other amount, in which case the right choice has been made. The second
possibility for the apparently denser distribution of 300 observations, is due to pure luck, while
the actual performance is no better or worse than the other amounts of observation. In that
case, it does not hurt to proceed with 300 observations. In the third case, the performance is
actually worse than the other amounts of observations, but due to bad luck it appears to be
better than the other choices. This result is unlikely, and shall not be given much weight. Thus
it is fine to proceed with 300 observations for the rest of the comparison, with an average trial
taking 8 seconds to compute.

For the CW method, it appears that using more than 500 observations does not increase
performance, while it does increase computation time. Using 500 observations takes on aver-
age 28 seconds per trial. Using less than 500 observations lowers both computation time and
performance, though the computation time does not scale linearly. It makes sense to prefer per-

formance over speed, and thus the CW method will use 500 observations in the final comparison.
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Figure 4: Boxplots of computation time per trial with varying amounts of observations.

The computation times for the ASK method and CW method are displayed, registered over
the sensitivity analysis with respect to the amount of observations. The computation time is
displayed in seconds per trial. Note the vastly different scales on the y-axis. Outliers are omitted
for visual clarity. See Section 4.2 for a discussion of the results
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Table 2: Wilcoxon results for ASK method with different amounts of training observations, 120 out-of-sample observations

# Trials 12 24 36 48 60 72 84 100 200 300 400 500 600 700 800
6 0.023 0.035 0.070 0.127 0.539 0.359 0.012 0.252 0.376 0.170 0.622 0.956 0.296 0.215 0.737
12 0.865 0.768 0.458 0.291 0.282 0.755 0.005 0.341 0.750 0.153 0.077 0.279 0.562 0.030
24 0.735 0.528 0.275 0.304 0.695 0.006 0.399 0.782 0.194 0.087 0.336 0.558 0.030
36 0.717 0.331 0.407 0.478 0.007 0.396 0.778 0.232 0.103 0.490 0.659 0.034
48 0.688 0.717 0.318 0.037 0.836 0.763 0.539 0.279 0.783 0.929 0.135
60 0.852 0.123 0.177 0.741 0.415 0.825 0.539 0.737 0.534 0.316
72 0.152  0.071 0.948 0.577 0.666 0.442 0.900 0.681 0.199
84 0.001 0.146 0.364 0.073 0.031 0.184 0.309 0.010
100 0.075 0.021 0.248 0.435 0.065 0.039 0.733
200 0.567 0.550 0.378 0.962 0.670  0.190
300 0.235 0.160 0.631 0.894 0.062
400 0.780 0.647 0.422 0.421
500 0.346  0.270  0.552
600 0.768  0.181
700 0.094

The table displays the results of performing a two-sided Wilcoxon rank sum test on the RMSE’s obtained by optimizing using the ASK method,
with either 6, 12, 24, 36, 48, 60, 72, 84, 100, 200, 300, 400, 500, 600, 700, 800 observations, evaluated over 120 out-of-sample observations. The
values reported are the p-values associated with the null hypothesis corresponding to identical locations of the distributions of RMSE’s. A low
p-value indicates the compared distributions show different locations. Values below 0.05 are displayed in bold, these distributions differ significantly
at the 5% level.



(4

Table 3: Wilcoxon results for CW method with different amounts of training observations, 120 out-of-sample observations

# Trials 12 24 36 48 60 72 84 100 200 300 400 500 600 700 800
6 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 0.297 0.083 0.339 0.013 0.083 0.004 0.025 0.010 0.014 0.328 0.119 0.204 0.563 0.179
24 0.392 0910 0.123 0.385 0.050 0.182 0.091 0.138 0.908 0.631 0.761 0.675 0.848
36 0.380 0.481 0.886 0.270 0.787 0.492 0.650 0.399 0.856 0.575 0.250 0.555
48 0.131 0.354 0.044 0.190 0.074 0.134 0.991 0.470 0.659 0.782 0.739
60 0412 0.649 0.755 0.983 0.902 0.102 0.349 0.210 0.052 0.191
72 0.203 0.672 0.346 0.537 0.399 0913 0.628 0.285 0.605
84 0.389 0.661 0.487 0.040 0.145 0.087 0.022 0.090
100 0.642 0.838 0.193 0.534 0.321 0.104 0.292
200 0.804 0.072 0.296 0.158 0.041 0.171
300 0.129 0.396 0.235 0.060 0.212
400 0.461 0.730 0.719 0.717
500 0.774 0372  0.802
600 0.512  0.991
700 0.445

The table displays the results of performing a two-sided Wilcoxon rank sum test on the RMSE’s obtained by optimizing using the CW method, with
either 6, 12, 24, 36, 48, 60, 72, 84, 100, 200, 300, 400, 500, 600, 700, 800 observations, evaluated over 120 out-of-sample observations. The values
reported are the p-values associated with the null hypothesis corresponding to identical locations of the distributions of RMSE’s. A low p-value
indicates the compared distributions show different locations. Values below 0.05 are displayed in bold, these distributions differ significantly at the
5% level.
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Figure 5: Boxplots of optimizing using both methods over both datasets, 120 observations.
The RMSE resulting from optimizing both datasets with both methods are displayed. Both
methods use 60 trials per dataset. The ASK method uses 300 observations per dataset, while
the CW method uses 500 observations. The total RMSE, computed over all maturities, and
the RMSE decomposed in individual maturities are displayed. The RMSE is evaluated over 120
out-of-sample observations.

4.3 Performance comparison

An efficient amount of amount of trials and observations has been determined for both meth-
ods, which allows for a representative performance, while keeping computation time as low as
possible. The ASK method uses 300 observations and 60 trials, while the CW method uses 500
observations and 60 trials. The performance of the two methods will now be compared. Until
now, the ASK method has only been used to estimate ASK data, and the CW method has only
been used to estimate CW data. Because the parameters between these simulated datasets have
no clear counterparts, the datasets behave differently. The estimates are found on differing data,
and putting these side-by-side would not allow for a valid comparison.

Now both of the methods are used to estimate both datasets. Comparing the results of
estimating the two methods on the same data leads to a valid comparison. The results of
estimating the datasets with both methods can be found in Figure 5. The RMSE is evaluated
over 120 out-of-sample observations. Additional results concerning 24 and 600 observations can
be found in Appendix A. The results using 24 and 600 observations is in line with those using
120 observations. Both the total RMSE and the RMSE for each maturity is shown. As expected,



the RMSE over a low maturity is higher than over the high maturity. The yield curve displays
more variance in the low end than in the high end, as expected.

It is clear the CW method performs much better than the ASK method, for both simulated
datasets. By applying the ASK estimation method to the CW data, a slight deterioration in
results is found. This can be explained by the different parameters corresponding to different
behaviour of the data. The CW method shows vastly different results between the datasets. The
distribution of RMSE using the ASK data is roughly 10 times as small as the RMSE using the
CW data. When comparing the two methods using CW data, the difference in performance is
mostly found in the 3 month maturity errors, as the higher maturity yields show little difference
between the two methods. As a matter of fact, the 36 and 48 month maturities show a lower
median RMSE using the ASK method. When comparing the two methods using the ASK data,
the CW method clearly outperforms the ASK method.

This increased performance is not without a cost. The CW method takes over three times
as long to compute. A single optimization run, consisting of 60 trials for both methods, takes
28 minutes using the CW method. The ASK method only takes 8 minutes. If the real world
data behaves more like the CW data, the added performance is mostly found in the 3 month
maturity. The CW data is simulated using parameter values estimated from the real-world data
of Creal and Wu (2015), while the parameter values of the ASK data are simply those that seem
to work in behaving like the real-world data. Thus it seems reasonable to assume the real-world
data behaves like the CW simulated data, and the difference in performance is mostly found in
the 3-month maturity. The ASK method is able to create a quick estimate which is capable of
fitting the higher maturities, though lacks precision in the 3 month maturity. If the real world
data, against common sense, behaves more like the ASK data, the RMSE resulting from the
ASK method is roughly 15 times that of the CW method. This clearly outweighs the 3 times
increased computation cost. In this case, the CW method is the clear winner.

5 Empirical Parameter Estimation

This section estimates the parameters of both the Ait-Sahalia and Kimmel (2010) and Creal and
Wu (2015) models on real-world data. The construction of the data is first discussed in section
5.1. The estimated parameters of the models using the ASK and CW methods are provided in

sections 5.3 and 5.3, respectively.

5.1 Real-world yield data

The dataset of the real-world yields consists of two parts. First, Fama and Bliss zero coupon
bond data is extracted from CRSP. The data consists of monthly US Fama and Bliss (1987)
zero coupon bond yields. The data spans from June 1952 through December 2018, for a total
of T' = 799 observations. For each month, the zero coupon bond yields for maturities of 12, 24,
36, 48, and 60 months are available.

The second part consists of the monthly riskfree treasury series, also extracted from CRSP.
This series contains the 1 and 3 month maturity zero coupon bond yields for the same date

range of June 1952 through December 2018. Combined, these datasets replicate and expand
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on the dataset used in Creal and Wu (2015). The real-world dataset is used in the empirical
estimation of the parameters.

As discussed in the introduction, non-Gaussian ATSMs are a good fit for estimating data
which incorporates a zero lower bound, but only if the zero lower bound is set such that the
vields never reach zero. When the yields become exactly zero or negative, a non-Gaussian
ATSM is unable to estimate the parameters correctly. Keeping the observations which do not fit
the model would invalidate entire regions of the parameter vector, possibly leading to entirely
different parameter estimates. The data of the US yields contains four observations of exactly
zero at the end of 2011. Three of these observations are on the 1-month yield and one on
the 3-month yield. In 2015 there are six observations of negative yields, five of which on the
1-month yields and one on the 3-month yield. These ten observations prevent the estimation of
the real-world data using non-Gaussian ATSMs.

In the code of Creal and Wu (2015), observations of exactly zero are dealt with by changing
them to a very small, positive value. This will introduce a new kind of error. This error mostly
manifests in the 3-month maturity observations, inflating the parameter estimates of the error
term variance Q) slightly. The parameter estimates of all model parameters are also slightly
changed. Still, this changing of the data to fit the model allows the model to estimate the
rest of the data, which would not be possible otherwise. As such, the model can still be used
to create a good estimate of the parameters. To accomodate the zero and negative data, the
practice of Creal and Wu (2015) is maintained, by changing these values to small, positive values.
Again, this increases the error of the model, but is necessary to allow the real-world data to be

estimated.

5.2 ASK parameters

Estimating the real-world data using the ASK method, results in the following parameter es-
timates. To be clear, all parameters that show exactly 0 or 1 are fixed parameters during the
estimation method, but shown here to create a clear picture of the full parameters, instead of

only displaying the parameter values which are allowed to vary.

0 1 0477 0.924 0.890 0 0
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L 0 | 0.819 0.931
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0.111

diag(Q) = . &y =0.638.
s =1ooml" P

0.026

27



It is hard to provide meaningful interpretations to the parameters, due to the way the parameter
values interact with each other to create the dynamics of the state variables. The variance of the
errors diag({2) show that the lower maturity observations exhibit larger error variance than the
higher maturities, with the lowest maturity observation being 20 times as large as the highest

maturity.

5.3 CW parameters

Estimating the real-world data using the CW method, results in the following parameter esti-
mates. The parameters which show exactly 0 are fixed during the optimization procedure. As
explained in section 3.1.2, the parameters can be split in free parameters, GLS parameters and
fixed parameters. In estimation, the fixed parameters do not change, and remain the same as
provided in section 3.1.2. The free parameters are directly manipulated by the optimization

procedure, these are given by

v, = 1.765, v =2.766, S0 = —0.0001,
1

9 = 0-109 0 , @, = 0.946, Y =1.329,
0 0.886

—1.08e—08 0 0.301 0 0.695
EO.g = 3 ZJl,g = y Egh = 3
' 6.40e—08  5.82e—08 ) —0.313 0.375 0.123

¥, = 0.001.

The GLS parameters are not allowed to vary freely, but the values are dictated by the free

parameters. The GLS parameters are given by

0.653  0.020 [—0.149

g = s q’gh = 3
—0.144 0.981 0.148
[0.071
—0.019 0.037

= R diag(Q)) =

K {0.030] &) 0.036
0.022

Again, it is hard to give reasonable interpretations to the specific values of the parameters,
due to the complexities of the interaction between the variables. The variance of the errors
diag(€2) displays the same decreasing pattern when moving from the lower maturities to the
higher maturities, but the difference is less extreme than exhibited on the ASK method. Here,
the 3-month maturity displays 3 times as much variance as the 48-month maturity.

In the comparison of the Monte Carlo results, there were two scenarios. If the real-world
data behaved more like the ASK data, the performance increase is found on all maturities.
If the real-world data behaved more like the CW data, the performance increase of the CW
data is mostly found in the 3-month maturity. Comparing the variance of the errors between
the two empirical estimations, it seems the conclusion is somewhere in the middle. There is a

large difference between the two methods on the 3-month maturity. But the CW method also
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outperforms on the 24- and 36-month maturities. It is only on the 48-month maturity that the
two methods seem to perform roughly the same, with the CW method slightly outperforming
the ASK method.

6 Conclusion

This research looks at two methods to estimate non-Gaussian affine term structure models, both
allow parameter estimation by approximating the dynamics of the yield curve. The Ait-Sahalia
and Kimmel (2010) method approximates the dynamics of the yield curve by applying a Taylor
expansion to the dynamics of the state variables. The Creal and Wu (2015) method instead
approximates the dynamics of the entire yield curve by considering a discrete-time variation of
an ATSM with identical properties. Creal and Wu (2015) uses the insight that not all parameters
are independent of others, a couple of parameter values can be trimmed from the parameter
space but still be recovered using a GLS regression. Ex ante, it is unclear which of these two
approximates allows for a better approximation.

Moreover, both methodology papers do not talk about the whether the methods are sensi-
tive to the amount of observations to put into the model, or the amount of trials after which
improvement is unlikely. While the amount of observations in most practical applications is
fixed, it is useful to know whether the methods are able to efficiently estimate parameters with
a certain amount of observations. The optimal amount of trials is needed to find a balance
between computation time and performance. After the sensitivity analyses, the methods are
compared using the selected amounts of trials and observations to find out which of the two
models is superior.

Increasing the amount of trials linearly increases the computation time. A significant increase
in the computation time should come with a significant improvement in the resulting RMSE. A
significant difference in performance is tested by means of the Wilcoxon rank sum test. Both
estimation methods show that the performance keeps increasing as the amount of trials increases.
This is as expected, as each trial has a chance to find the global maximum or get stuck in local
maxima. Increasing the amount of trials thus leads to a higher chance to find the global optimum.
The Wilcoxon rank sum test shows both methods have an optimum at 60 trials, any increase in
trials beyond 60 does not yield a significant increase in performance.

Increasing the amount of observations should increase performance, as the model has more
observations to train, which should allow for a better fit in the out-of-sample evaluation. The
increased amount of observations also comes with an increase in computation time, though the
CW method has a much steeper increase in computation time by adding observations than the
ASK method. The two method also differ in how they respond to an increase in observations.
While there is no clear result from increasing the observations for the ASK method, the CW
method clearly benefits with as much observations as possible. The ASK method is chosen
to be tested with 300 observations as this results in the lowest RMSE when inspecting the
results visually. These results are not significant, as there are no significant differences between
the different amount of observations, across any of the evaluation horizons. The lowest RMSE
is mostly due to the upper tail being more compact than the other distributions of RMSE.

Using the CW method, the method clearly benefits from as much observations as possible, but
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inspecting the Wilcoxon rank sum test results shows there is no significant increase possible
by using more than 500 observations. Thus the CW method uses 500 observations in the final
comparison.

In the final comparison, the two methods are applied to both simulated datasets. In the
sensitivity analyses, the ASK method has only been applied to the ASK data and the CW
method has only been applied to the CW data. By applying the two methods to the same
dataset, the RMSE between the methods can be compared. In both datasets, the CW method
performs better. In the CW dataset, the increased performance of the CW method is mostly
due to the lowest maturity of 3 months being much better, while the other maturities show
relatively similar performance. In the ASK dataset, the RMSE resulting from the ASK method
is roughly 15 times as large as that of the CW method.

The parameter values used to simulate the data of the CW method are estimated from the
real-world data, the parameter values of the ASK data are not estimated from real data. It is a
reasonable assumption that the real-world data behaves similarly to the CW data, and not like
the ASK data. In this case, the performance is similar between the two estimation methods,
apart from the lowest maturity, where the RMSE of the CW method is roughly half that of the
ASK method. The difference between the two methods can then be reduced to an increase in
performance in the low maturity, at the cost of a 3 times increase in computation time.

The empirical estimation of the parameters using both methods also supports the conclusion
of smaller errors in the lower maturities using the CW method. As there is no out-of-sample data
to evaluate the RMSE, the variance of the in-sample errors can be compared. The lower and
middle maturities show significantly lower variance in the CW method, while only the highest

maturity shows similar performance between the two methods.
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Appendix A Figures

20 —

Computation time (seconds)

12 24 36 48 60 72 84 100 200 300 400 500 600 700 800
Number of Observations

Figure Al: Boxplots of computation time per trial using the ASK method with varying amounts
of observations

The computation time for the ASK methods is displayed, registered over the sensitivity analysis
with respect to the amount of observations. The computation time is displayed in seconds per
trial. Outliers are included. See Section 4.2 for a discussion of the results

+ %a
40 i !
| 55

30

b, 25
Tyt

Computation time (seconds)

6 12 24 36 48 60 72 8 100 200 300 400 500 600 700 800

Number of Observations

Figure A2: Boxplots of computation time per trial using the CW method with varying amounts
of observations

The computation time for the CW methods is displayed, registered over the sensitivity analysis
with respect to the amount of observations. The computation time is displayed in seconds per
trial. Outliers are included. See Section 4.2 for a discussion of the results
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Minimum RMSE

Figure A3: Boxplots of optimizing using both methods over both datasets, 24 observations
The RMSE resulting from optimizing both datasets with both methods are displayed. The total
RMSE, computed over all maturities, and the RMSE decomposed in individual maturities are
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displayed. The RMSE is evaluated over 24 out-of-sample observations.

Minimum RMSE

Figure A4: Boxplots of optimizing using both methods over both datasets, 600 observations
The RMSE resulting from optimizing both datasets with both methods are displayed. The total
RMSE, computed over all maturities, and the RMSE decomposed in individual maturities are
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displayed. The RMSE is evaluated over 600 out-of-sample observations.
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Appendix B Tables

Table A1l: Wilcoxon results for ASK method with different amounts of trials, 24 observations

# Trials 20 40 60 80 100
10 0.000 0.000 0.000 0.000 0.000

20 0.028 0.000 0.000 0.000
40 0.093 0.004 0.002
60 0.296  0.209
80 0.708

The table displays the results of performing a two-sided Wilcoxon rank sum test on the RMSE’s
obtained by optimizing using the ASK method, with either 10, 20, 40, 60, 80, or 100 trials,
evaluated over 24 out-of-sample observations. The values reported are the p-values associated
with the null hypothesis corresponding to identical locations of the distributions of RMSE’s. A
low p-value indicates the compared distributions show different locations. Values below 0.05 are
displayed in bold, these distributions differ significantly at the 5% level.

Table A2: Wilcoxon results for ASK method with different amounts of trials, 600 observations

# Trials 20 40 60 80 100
10 0.002 0.000 0.000 0.000 0.000

20 0.025 0.000 0.000 0.000
40 0.015 0.000 0.000
60 0.142  0.203
80 0.993

The table displays the results of performing a two-sided Wilcoxon rank sum test on the RMSE’s
obtained by optimizing using the ASK method, with either 10, 20, 40, 60, 80, or 100 trials,
evaluated over 600 out-of-sample observations. The values reported are the p-values associated
with the null hypothesis corresponding to identical locations of the distributions of RMSE’s. A
low p-value indicates the compared distributions show different locations. Values below 0.05 are
displayed in bold, these distributions differ significantly at the 5% level.

34



Table A3: Wilcoxon results for CW method with different amounts of trials, 24 observations

# Trials 20 40 60 80 100
10 0.153 0.000 0.000 0.000 0.000
20 0.001 0.000 0.000 0.000
40 0.014 0.000 0.001
60 0.336  0.361
80 0.791

The table displays the results of performing a two-sided Wilcoxon rank sum test on the RMSE’s
obtained by optimizing using the CW method, with either 10, 20, 40, 60, 80, or 100 trials,
evaluated over 24 out-of-sample observations. The values reported are the p-values associated
with the null hypothesis corresponding to identical locations of the distributions of RMSE’s. A
low p-value indicates the compared distributions show different locations. Values below 0.05 are
displayed in bold, these distributions differ significantly at the 5% level.

Table A4: Wilcoxon results for CW method with different amounts of trials, 600 observations

# Trials 20 40 60 80 100
10 0.025 0.000 0.000 0.000 0.000

20 0.000 0.000 0.000 0.000
40 0.028 0.001 0.008
60 0.360 0.691
80 0.619

The table displays the results of performing a two-sided Wilcoxon rank sum test on the RMSE’s
obtained by optimizing using the CW method, with either 10, 20, 40, 60, 80, or 100 trials,
evaluated over 600 out-of-sample observations. The values reported are the p-values associated
with the null hypothesis corresponding to identical locations of the distributions of RMSE’s. A
low p-value indicates the compared distributions show different locations. Values below 0.05 are
displayed in bold, these distributions differ significantly at the 5% level.
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Table A5: Wilcoxon results for ASK method with different amounts of training observations, 24 out-of-sample observations

# Trials 12 24 36 48 60 72 84 100 200 300 400 500 600 700 800
6 0.009 0.135 0.091 0.297 0.488 0.879 0.199 0.130 0.819 0.768 0.602 0.757 0.810 0.232 0.363
12 0.354 0.392 0.140 0.106 0.029 0.275 0.000 0.029 0.069 0.005 0.009 0.007 0.211 0.001
24 0.815 0.582 0.524 0.323 0.960 0.017 0.281 0.464 0.062 0.138 0.104 0.915 0.030
36 0.517 0.374 0.138 0.697 0.002 0.166 0.205 0.033 0.058 0.048 0.659 0.010
48 0.863 0.531 0.681 0.038 0.565 0.765 0.197 0.319 0.301 0.791  0.090
60 0.552 0.649 0.038 0.588 0.681 0.220 0.248 0.340 0.633 0.093
72 0.295 0.146 0987 0.873 0.340 0.595 0.614 0.312 0.216
84 0.012 0.309 0.431 0.067 0.128 0.102 0.943 0.027
100 0.142 0.128 0.626 0.344 0.417 0.012 0.871
200 0.819 0.359 0.628 0.565 0.322 0.211
300 0213 0.419 0404 0412 0.141
400 0.704 0.750 0.078 0.726
500 0.944 0.172  0.351
600 0.127  0.524
700 0.030

The table displays the results of performing a two-sided Wilcoxon rank sum test on the RMSE’s obtained by optimizing using the CW method,
with either 6, 12, 24, 36, 48, 60, 72, 84, 100, 200, 300, 400, 500, 600, 700, 800 observations, evaluated over 24 out-of-sample observations. The values
reported are the p-values associated with the null hypothesis corresponding to identical locations of the distributions of RMSE’s. A low p-value
indicates the compared distributions show different locations. Values below 0.05 are displayed in bold, these distributions differ significantly at the
5% level.
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Table A6: Wilcoxon results for ASK method with different amounts of training observations, 600 out-of-sample observations

# Trials 12 24 36 48 60 72 84 100 200 300 400 500 600 700 800
6 0.063 0.111 0.027 0.285 0.518 0.239 0.066 0.755 0.161 0.030 0.179 0.38 0.111 0.138 0.958
12 0.768 0.750 0.458 0.399 0.445 0.884 0.052 0.911 0.472 0.778 0.492 0.902 0.968 0.146
24 0.679 0.730 0.628 0.752 0.619 0.115 0.935 0.321 0.974 0.757 0.873 0.825 0.243
36 0.312 0.240 0.351 0.993 0.022 0.536 0.763 0.602 0.327 0.752 0.679 0.050
48 0.958 0.993 0.389 0.187 0.549 0.143 0.715 0.956 0.557 0.549  0.405
60 0.879 0.381 0.369 0.448 0.129 0.642 0.948 0.401 0.445 0.573
72 0.400 0.175 0.691 0.175 0.800 0.904 0.572 0.600 0.331
84 0.040 0.854 0.531 0.640 0.434 0.848 0.850 0.111
100 0.081 0.014 0.130 0.276 0.063 0.093 0.789
200 0.464 0.859 0.582 0.869 0.950 0.162
300 0.318 0.163 0.470 0.487 0.038
400 0.768 0.728 0.787 0.229
500 0.469 0.585 0.411
600 0.919  0.148
700 0.146

The table displays the results of performing a two-sided Wilcoxon rank sum test on the RMSE’s obtained by optimizing using the CW method, with
either 6, 12, 24, 36, 48, 60, 72, 84, 100, 200, 300, 400, 500, 600, 700, 800 observations, evaluated over 600 out-of-sample observations. The values
reported are the p-values associated with the null hypothesis corresponding to identical locations of the distributions of RMSE’s. A low p-value
indicates the compared distributions show different locations. Values below 0.05 are displayed in bold, these distributions differ significantly at the

5% level.
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Table A7: Wilcoxon results for CW method with different amounts of training observations, 24 out-of-sample observations

# Trials 12 24 36 48 60 72 84 100 200 300 400 500 600 700 800
6 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.018 0.135 0.292 0.700 0.642 0.448 0.722  0.659
12 0.200 0.052 0.730 0.997 0.457 0972 0.068 0.008 0.002 0.000 0.000 0.000 0.000 0.000
24 0421 0.138 0.256 0.047 0.252 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
36 0.030 0.060 0.010 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
48 0.744 0.697 0.780 0.171 0.025 0.008 0.001 0.002 0.002 0.000 0.001
60 0.501 0985 0.093 0.014 0.003 0.000 0.001 0.001 0.000 0.000
72 0.495 0.269 0.052 0.016 0.001 0.003 0.005 0.000 0.002
84 0.094 0.012 0.003 0.000 0.001 0.001 0.000 0.000
100 0.329 0.161 0.024 0.047 0.055 0.002 0.028
200 0.638 0.231 0.291 0.363 0.029 0.220
300 0.520 0.460 0.649 0.083 0.353
400 0.879 0.806 0.321 0.852
500 0.810 0.274 0.898
600 0.187  0.670
700 0.333

The table displays the results of performing a two-sided Wilcoxon rank sum test on the RMSE’s obtained by optimizing using the CW method,
with either 6, 12, 24, 36, 48, 60, 72, 84, 100, 200, 300, 400, 500, 600, 700, 800 observations, evaluated over 24 out-of-sample observations. The values
reported are the p-values associated with the null hypothesis corresponding to identical locations of the distributions of RMSE’s. A low p-value
indicates the compared distributions show different locations. Values below 0.05 are displayed in bold, these distributions differ significantly at the
5% level.
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Table A8: Wilcoxon results for CW method with different amounts of training observations, 600 out-of-sample observations

# Trials 12 24 36 48 60 72 84 100 200 300 400 500 600 700 800
6 0.003 0.001 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 0.733 0308 0.944 0.017 0.881 0.266 0.621 0.030 0.002 0.014 0.000 0.000 0.000 0.000
24 0.495 0.793 0.030 0.848 0.438 0.833 0.026 0.002 0.016 0.000 0.000 0.000 0.000
36 0.374 0.203 0.382 0.879 0.610 0.209 0.035 0.131 0.000 0.000 0.000 0.000
48 0.019 0937 0.271 0.587 0.022 0.001 0.011 0.000 0.000 0.000 0.000
60 0.023 0.241 0.037 0.958 0.414 0.884 0.008 0.000 0.002 0.000
72 0.311 0.711 0.022 0.001 0.012 0.000 0.000 0.000 0.000
84 0.507 0.286 0.063 0.197 0.000 0.000 0.000 0.000
100 0.058 0.003 0.021 0.000 0.000 0.000 0.000
200 0.317 0.763 0.003 0.000 0.001 0.000
300 0.472 0.065 0.005 0.029 0.005
400 0.010 0.000 0.003 0.000
500 0.410 0.929 0.403
600 0.498  0.960
700 0.355

The table displays the results of performing a two-sided Wilcoxon rank sum test on the RMSE’s obtained by optimizing using the CW method, with
either 6, 12, 24, 36, 48, 60, 72, 84, 100, 200, 300, 400, 500, 600, 700, 800 observations, evaluated over 600 out-of-sample observations. The values
reported are the p-values associated with the null hypothesis corresponding to identical locations of the distributions of RMSE’s. A low p-value
indicates the compared distributions show different locations. Values below 0.05 are displayed in bold, these distributions differ significantly at the

5% level.



