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Abstract

This thesis uses the Freddie Mac Single Family Loan Level Data Set to investigate if a ma-
chine learning algorithm called gradient boosting can outperform a multinomial logit model in
monthly prepayment predictions for mortgages. If financial institutions can correctly predict
prepayments, they can hedge risks and price mortgages better. Additionally, this thesis uses
a model interpreter called Shapley Additive exPlanations (SHAP) to interpret the XGBoost
model. The XGBoost is better in predicting prepayments than the multinomial logit model.
Using SHAP values, this thesis finds that XGBoost is better able to capture the non-linear de-
pendencies of prepayment events on explanatory variables. Although prepayment dynamics are
better captured with the XGBoost model, both models are not able to discriminate well between

a full prepayment and other prepayment classes on a monthly basis.
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1 Introduction

A mortgage is a contract between a mortgagor and a mortgagee. The mortgagor borrows money from
the mortgagee at a specific interest rate to buy property. The property becomes the underlying
of the loan, meaning the mortgagee gets ownership of the property in case of a default of the
mortgagor. According to the Federal Reserve, total mortgage debt in the US totals 15.5 trillion
Dollars (Federal Reserve, 2019), making it a market with a size of approximately 75% of the United
States GDP (Bureau of Economic Analysis, 2019).

The prepayment of a mortgage is a (partial) settlement of the mortgage contract before it
matures. Hayre (2003) states that indifferent to country, mortgage type or market, four distinct
types of prepayments can be defined. These are defaults', mobility, refinancing, and voluntary full
or partial payoffs, each with its distinct risk drivers.

Mobility is one of the prepayment types, as the sale of a house prompts a full prepayment.
Exceptions exist due to, e.g. portability in the Netherlands or assumable loans in the United
States. Portability entails taking a mortgage contract from one property to another property and
an assumable loan gives the buyer of a house the option to transfer the mortgage that is currently
on the house to herself, usually with the same terms. Generally however, these exceptions do not
occur.

Additionally, refinancing is a prepayment type. A refinance event happens when a mortgagor
keeps the underlying property and prepays her mortgage with another mortgage, usually with
better terms. Refinancing is an interesting type of prepayment, since it is solely determined by
financial incentive. Generally, refinancing occurs when interest rates fall and mortgagors want to
take advantage of a lower interest rate. This is not the only reason, however. Refinancing can occur
due to an improved credit score. If the credit score of a mortgagor improves, a lender can offer better
rates and hence it is in the interest of the mortgagor to change mortgage. This is a credit-driven
refinancing. Also, a so called cash-out refinancing occurs when a mortgagor wants to transform part
of the build up equity in the house into cash. According to Hayre (2003), the refinancing rate is
typically modelled as a logistic function of the incentive to refinance. The refinancing rate gradually

rises when the refinance incentive increases. However, after a certain incentive to refinance, the effect

!Defaults make up part of the prepayment space. However, risk drivers of defaults are different than that of
other prepayment types and require a different modelling approach. They will only add noise to the model. For
this reason, and because the academic literature on defaults is vast and elaborate, e.g. Foster and Van Order (1984);
Boyes, Hoffman, and Low (1989); Altman and Saunders (1997); Ghent and Kudlyak (2011); Crosbie and Bohn (2019),
defaults are not included in this study.



of a higher incentive is only marginal due to the already increased refinance incentive.

Last, a borrower can opt to voluntarily make a full or partial prepayment. Whereas full pre-
payments usually invoke a penalty, this is not the case for partial prepayments below a certain
threshold, also known as curtailments.

The prepayment option means that banks may expect to lose a portion of the contractual interest
rate earnings. This risk can be viewed from two different perspectives, interest rate risk and liquidity
risk. Interest rate risk arises from both the missing interest rate payments, as well as the risk of
not getting the same or a better interest rate when a new mortgage is given out. Liquidity risk on
the other hand, arises from the mismatch in expected cash-flows within the bank. A prepayment
model forecasts the prepayment rate or the chance of a certain type of prepayment. These models
enable banks to correctly price mortgages and hedge interest rate risk correctly.

Prepayments have been modelled in many different manners. The most common are survival
analysis (Jacobs, Koning, & Sterken, 2005), a multinomial logit model (Clapp, Goldberg, Harding,
& LaCour-Little, 2001; Vasconcelos, 2010) and an option theoretic framework (Varli & Yildirim,
2015; Goncharov, 2002; Kang & Zenios, 1992). The challenge in predicting prepayments is modelling
the behaviour of mortgagors. There are frameworks that assume rational financial behaviour, such
as the option theoretic framework. However, prepayments are made, or not made, for a variety of
financially irrational reasons (Charlier & Van Bussel, 2001).

The mentioned prepayment models are all linear models that are explainable and have a high
degree of interpretability. This is desirable in economics, because then a relationship between
variables can be easily explained. For example, with every increase of 1 in the loan age, the
probability of a prepayment increases by 0.5 percent points. However, using these models implies
that no non-linear relationships are captured correctly. Such relationships are only approximated
linearly and thus there is potential for non-linear models to improve upon performance, relative to
the aforementioned models.

An example of those non-linear models are machine learning models. Machine learning models
are statistical algorithms that minimize a certain cost or loss function by delving into the relation-
ships within the data. Despite recent breakthroughs in and a proven record of machine learning
in prepayment forecasting (Sirignano, Sadhwani, & Giesecke, 2015; Riksen, 2017; Guelman, 2012),
the financial world is hesitant to implement these models (Brainard, 2018). The opaque nature
of machine learning models makes financial institutions prefer easily explainable models that give

a clear relationship between, e.g., the prepayment probability and the savings rate. Nonetheless,



aforementioned studies show machine learning approaches work well in prepayment modelling.

One particularly interesting machine learning model is gradient boosting (Friedman, 2001).
Gradient boosting can be used in a classification and regression setting. It uses a base model, which
is a decision tree. Gradient boosting iteratively fits a new base model on the errors of the previous
model. Then the results of the new base model and previous model are combined to create a new
model. This process is known as boosting. Gradient boosting is highly regarded for its predictive
power (Mangal & Kumar, 2016; Ben Taieb & Hyndman, 2014) and might be able to capture the
non-linear relationships in prepayment data better than current (linear) models. It is not known to
be a good model in a prepayment setting, because as far as the writer of this thesis could find, it is
not yet used in a prepayment setting.

Therefore, in order to explore if gradient boosting is indeed a good model for prepayment fore-
casting the main research question of this thesis is: ”Can a gradient boosting algorithm outperform
a multinomial logit in monthly prepayment forecasting?”. The data set that the models are fitted
on is the Single Family Loan Level Data Set from Freddie Mac (Freddie Mac, 2019) enriched with
macroeconomic variables. The prepayment classes that are modelled are full prepayment, partial
prepayment and no prepayment event. For this research, a specific gradient boosting algorithm
called XGBoost (Chen & Guestrin, 2016) is used as a classifier. It is quick compared to other
gradient boosting algorithms, has a high performance and is relatively easy to implement.

Although machine learning models are unpopular in financial institutions due to their opaque-
ness, methods have been invented to increase the explainability of these models. Methods such as
Shapley Additive explanations (SHAP) (Lundberg & Lee, 2017) have been introduced into the field
of interpretable machine learning. SHAP values of a variable give the attributions of a feature to
the output of the model. This provides a researcher with the insight of what contributed to the
outcome of a model. This thesis also investigates the inner workings of the XGBoost model with
SHAP. By using SHAP values, the relationship of the most important features with the dependent
variable is displayed.

The XGBoost algorithm is found to have superior performance over the multinomial logit model
in a prepayment setting. However, the XGBoost model overestimates the total number of partial
prepayments. Hence, a probability distribution is multiplied with the probabilistic outcome of
the XGBoost model to make the model more conservative in predicting partial prepayment. This
further increases the forecasting performance of the XGBoost model.

Furthermore, the XGBoost model is analyzed by using SHAP values. The SHAP values provide



explanations on how the model comes to prepayment probabilities. The most important contributor
to the model is the partial prepayment flag, which is 1 if a mortgagor has already done a partial
prepayment. Most relationships between a feature and the model output are found to be highly
non-linear. Monthly income is an important feature for the XGBoost model, but is found to have
no influence in the linear model.

This thesis adds to a growing academic literature involving machine learning in prepayment
modelling. The XGBoost algorithm performs well and it is possible to explain such a model by
using SHAP values. This is a step in the direction of acceptance of machine learning within the

financial industry and with financial authorities.

2 Literature review

This section discusses the academic literature around prepayment modeling. The literature review
is divided into four sections. Section 2.1 elaborates on the risk drivers of prepayments. Section
2.2 discusses models used in prepayment modelling and Section 2.3 introduces machine learning.

Finally, Section 2.4 provides academic findings on interpretable machine learning.

2.1 Risk drivers of prepayments

Each type of prepayment has its own risk drivers. Clapp et al. (2001) show that modeling refinance
and mobility as distinct prepayment types improves predictions significantly. Although the majority
of risk drivers has a similar effect on refinancing and mobility, some variables have opposite effects,
such as income. In this research, four types of risk drivers are defined: personal characteristics, loan

characteristics, macroeconomic factors and seasonality.

2.1.1 Personal characteristics

Age is found to be a driver of prepayments in several studies. It negatively influences mobility but
has no significant effect on refinancing (South & Crowder, 1998; Clapp et al., 2001). This is also
true for families when age of the family head is used (Quigley & Weinberg, 1977).

Due to less access to moving or refinancing opportunities, being part of a minority reduces the
probability of prepaying (Yinger, 1997). South and Crowder (1998) indeed confirm that in the
United States certain races have lower mobility rates, the most notable being African-Americans.

Different income levels have different effects on different types of full prepayments. Lower income



households do not show different refinance behaviour but are more reluctant to move than higher
income households, possibly due to an increased percentage that they must finance because of
less accumulated wealth. This lowers full prepayment risks for lower income levels (Archer, Ling,
& McGill, 2003). Higher income households have a higher opportunity cost for refinancing and
hence the probability of refinancing is negatively influenced (Clapp et al., 2001). However, this
is compensated by a positive relationship between income and the probability of moving (South
& Crowder, 1998; Clapp et al., 2001). The total influence of a higher income on full prepayment
probabilities is found to be not significant different from zero (Clapp et al., 2001). Similar to a high
income, a poor credit history results in a lower probability of refinancing (Bennett et al., 2001).
Another important factor explaining prepayment behaviour is burnout (Hayre, 2003). It entails
that at some point while interest rates are decreasing, the prepayment rate also decreases. This
seems odd at first, because the refinance incentive increases. However, most mortgagors have
already refinanced and the remaining mortgagors are unable to do so due to not enough equity or
creditworthiness. Additionally, Hayre (2003) notes that there is a media effect which entails that in
times of prolonged historically low interest rates, the media covers this phenomenon and a bigger

part of the population assumes a new mortgage, countering the burnout effect.

2.1.2 Loan characteristics

Loan characteristics include all risk drivers that are specific to a certain mortgage. The major
risk driver in this category is loan-to-value (LTV). A high initial LTV ratio negatively impacts
prepayment rates compared to a low initial LTV ratio (Bennett et al., 2001; Archer et al., 2003).
If current LTV is taken, a negative relationship is visible (Deng, Quigley, & Order, 2000). Besides
studying the impact of a high LTV ratio, Archer et al. (2003) show that debt-to-income (DTT) ratios
have a negative relationship with prepayment probability. Moreover, the contract mortgage rate of
the loan is of interest, but this is elaborated on in the section on macroeconomic factors below.
Research shows that mortgagors signal their intended behaviour by choice of mortgage products,
e.g. Dunn and Spatt (1988). An example of this choice is the loan term. Clapp et al. (2001) find that
mortgages with a maturity of 15 years have a lower prepayment probability than mortgages with a
maturity of 30 years. Furthermore, original loan balance has a positive effect on the probability of
refinancing because transaction costs are more likely to be covered due to the higher dollar amount

benefit of refinancing (Clapp, Deng, An, & Xudong, 2006).



2.1.3 Macroeconomic factors

Prepayment decisions can be attributed to personal or loan specific characteristics, but also economic
circumstances are an important driver of prepayment risks (Pavlov, 2001). Of these macroeconomic
variables driving prepayments, the current market mortgage rate is the most important and also
widely used in the academic literature, e.g. Green and Shoven (1986); Deng et al. (2000); Richard
and Roll (1989); Clapp et al. (2006). The current interest rate can have a refraining or accelerating
influence on full prepayments: the lock-in effect and the refinance incentive. The former entails that
when the market mortgage rate is above the contract rate, the probability of a full prepayment goes
down (Green & Shoven, 1986; Clapp et al., 2006). The home owners are reluctant to move due to
the higher interest rate on a new mortgage. This is the lock-in effect. The refinance incentive means
that when the market mortgage rate is below the contract rate, the probability of a full prepayment
rises (Green & Shoven, 1986). In that case, it is rational to obtain a new mortgage with a lower
rate and hence with a lower monthly installment; the refinance incentive is high.

Mortgage rate, however, is not the only important macroeconomic risk driver. Deng et al. (2000)
show that unemployment rates as well as divorce rates have positive effects on full prepayment rates.
The positive effect of unemployment rates on full prepayments is also shown by Pavlov (2001).

Additionally, the appreciation or depreciation of house prices plays an important role in full
prepayment behavior. Clapp et al. (2001) find that it can influence the decision of a mortgagor
to move and hence to prepay. An appreciated house can offer a substantial surplus, whereas a
depreciated house can leave a mortgagor with a debt. Finally, Caplin, Freeman, and Tracy (1997)
note that prepayment rates can decline as much as 50% during recessions, making GDP growth an

important prepayment driver.

2.1.4 Seasonality

Full prepayments occur more in the summer than in the winter, due to e.g. school holidays or a
better weather to move (Schwartz & Torous, 1989). Conversely, Charlier and Van Bussel (2001)
find that in the Netherlands partial prepayments occur more in the December. Seasonality can be
modeled by, e.g. using a dummy for certain months or periods (Charlier & Van Bussel, 2001) or

using a sine wave to model yearly seasonality (Spahr & Sunderman, 2001).



2.2 Prepayment models

Initially, prepayments were only modeled using option theory, since mortgages entail an option to
prepay. Options are often modeled using rationality assumptions. However, empirically it is shown
that prepayments do not appear to be rational and hence using option theory might not be optimal
(Vandell, 1995). Also, the option theoretic model does not correct for borrower heterogeneity,
wheres Deng et al. (2000) show significant heterogeneity among mortgagors exist, especially in
prepayments. A shift was made to empirical models that could incorporate exogenous variables,
such as a proportional hazard model or a (multinomial) logit model. A proportional hazard model
models the survival probability or time to failure of a loan given a set of explanatory variables.
Clapp et al. (2001) show that proportional hazard models have certain limitations such as their
handling of competing risks and the proportionality assumption. They argue that a multinomial
logit might be a more appropriate model to forecast prepayments because, e.g. it handles competing

risks better, and show that indeed the multinomial leads to better results.

2.3 Machine learning

Two general approaches exist in machine learning modelling. The first approach is modelling one
single model on the data, predicting a certain response variable. Another approach is combining
several models into a so called ensemble model. An ensemble model combines predictions of multiple
models into one overall prediction, e.g. by choosing the majority vote in classification problems or
averaging predictions in regression problems. One course of action is to build multiple advanced
models, but in practice a large number of simpler models is used. Examples of ensemble models are
random forests (Breiman, 2001), gradient boosting models (Friedman, 2001) and neural network
ensembles (Hansen & Salamon, 1990).

Within ensemble modelling two methods exist: bagging and boosting. Bagging entails indepen-
dently running multiple models and combining the outputs into one prediction, whereas boosting
iteratively trains a new model on the errors of the previous models. Weak learners are commonly
used as predictors in boosting models. A weak learner is a model that performs slightly better than
random guessing.

Using an ensemble method such as a neural network ensemble, prepayments can be predicted
better than by using a logit model or any single neural network Riksen (2017). Sirignano et al. (2015)
find in their study that all neural networks, including ensembles, that were investigated outperform

a logit model. A neural network is a type of machine learning algorithm that is structured like a
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brain to process information in the data. The gain in predictive power in both the neural network
ensemble and the single neural networks is significant due to the more complex modelling of relations
between features.

Another popular ensemble algorithm is gradient boosting. Gradient boosting is gaining in
influence. Studies show that it performs well in several fields, e.g. in insurance loss cost modelling

(Guelman, 2012) and in prediction of travelling time (Y. Zhang & Haghani, 2015).

2.4 Interpretable machine learning

As mentioned, the "black box” nature of the machine learning models can make financial institutions
hesitant to use such models. Linear models, conversely, provide a clear interpretation of the model.
However, many studies show that machine learning algorithms outperform simpler linear models,
e.g. Sirignano et al. (2015); Riksen (2017); Guelman (2012). Thus, researchers who recognize
the potential of machine learning have to consider whether the absence of interpretation is worth
the increase in predictive power. In other words, choose between interpretability and accuracy.
Fortunately, academic literature on model interpretability of machine learning models is growing
and hence interpretability might not immediately require less accuracy.

Two interpretability approaches exist: model specific and model agnostic. Model specific meth-
ods are for example the regression weights of a linear model, or specific methods to interpret a
neural network. Model agnostic methods are methods that can be used for any model and usually
involve analyzing feature input and output pairs.

Within academic literature, two model agnostic methods are commonly used: LIME and SHAP.
LIME (Ribeiro, Singh, & Guestrin, 2016) stands for Local Interpretable Model-agnostic Explana-
tions. It uses a local linear model to interpret the influence of each feature to a specific instance
of the data. SHAP stands for Shapley Additive exPlanations. Whereas LIME only gives local
approximations, SHAP also provides globally consistent explanations. Consistency here means that
the final prediction is fragmented into the attributions of each feature, and all the attributions thus

sum to the final prediction.

3 Data

This section introduces the data used in this thesis. Section 3.1 introduces the Freddie Mac Single

Family Loan-Level Data Set, whereas Section 3.2 specifies prepayment definitions. Section 3.3 notes
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the data indiscrepancies and how this thesis amends those. Next, Section 3.4 elaborates on the data

enrichment and data transformation. Finally, Section 3.5 displays summary statistics.

3.1 Freddie Mac Single Family Loan-Level Data Set

For this research, the Freddie Mac Single Family Loan-Level Data Set Sample (Freddie Mac, 2019)
is used, which is available for download. Freddie Mac is an American financial services provider that
buys mortgages on the secondary mortgage market, pools and subsequently sells these mortgages
as mortgage backed securities to investors. The data set contains origination data and monthly
performance data on 50,000 US fixed rate single family loan mortgages per year between 2000 and
2017, and 32,793 loans in 1999. This results in data on 932,793 US single family loan mortgages
with a total of 44,835,243 monthly observations. The loan terms vary from ten to forty years.
For computation purposes this thesis focuses on a sub-sample of 1000 random sampled loans per
year, leading to a data set consisting of monthly observations of 19,000 loans with in total 891,492
monthly observations following the loans. This results in approximately 47 monthly observations per
loan, whereas the original data set contains approximately 48 monthly observations per loan. The
Freddie Mac data set contains information on the loans until one of three things happen: the loan
matures, the loan is voluntarily prepaid in full, or it defaults. Information in the data is both loan
specific information at loan origination, such as original unpaid principal balance (UPB), location
of the property, property type and loan-to-value, as well as monthly information on loans, including
loan age, UPB and months to maturity. Moreover, for this thesis, the Freddie Mac data set is
enriched with macroeconomic factors to capture macroeconomic dependencies. Data enrichment is
elaborated on in Section 3.4.1. Unfortunately the Freddie Mac data set does not contain personal

data on mortgagors, such as age or race.

3.2 Prepayment types

The goal of this thesis is to model prepayment events and although the data from Freddie Mac
is available, it is not yet labeled into prepayment types. In this study, two prepayment types are
defined: full prepayments and partial prepayments. Additionally, a third class is defined as no event,
if neither of the prepayment events occurs. Information that is available and where we can derive
prepayments from is, e.g. the reason for termination of the loan. One of these reasons states that
the loan is either prepaid in full or is matured. In this study, full prepayments are defined based on

three conditions, 1) the outstanding balance is reduced to zero, 2) the reason for the zero balance
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is not default and 3) the installment paid is higher than a threshold times the installment that is
legally due. The installment is the contractual repayment of principal balance. If all conditions
except the last condition hold, the loan simply matures. The installment is not given, but can be
derived from available information in the Freddie Mac data set. It is derived as follows. Since the
loans are all fixed rate annuity mortgages and the interest rate, loan term and months to maturity
are known, the monthly annuity payment can be derived. When the interest due at month ¢ is
subtracted from the expected contractual annuity payment, the resulting amount is the expected
contractual installment. This is compared to the decrease in outstanding principal between months
t and t — 1. By using the above three conditions for a full prepayment, the defaulting and maturing
loans are filtered out. In this data set, however, there are almost no naturally maturing loans. This
is due to the right censoring nature of prepayment data and due to most mortgages in the data
being 30-year mortgages whereas the time frame of the Freddie Mac data is only 19 years.

Besides defaults and full prepayments, there are partial prepayments. These are not defined in
the data, so this thesis defines partial prepayments as follows. For every loan, when the outstanding

principal balance does not go to zero and hence there is no full prepayment,

Partial prepayment if — AUPB; > 2.3 Ing

Yt (1)

No event otherwise

where AUPB; is the difference in outstanding principal balance between ¢ and ¢ — 1, and In; is
the expected installment of the loan at ¢. The installment at time ¢ is the to be prepaid amount of
the loan at time ¢, or the difference between the annuity and interest due at time ¢. The difference
in outstanding principal AUPB; is expected to be negative, meaning a decrease of outstanding
principal, for each month ¢ as each month a mortgagor is expected to pay off part of her debt. A
threshold of 2.3 is used because the data contains irregularities and therefore a small decrease in
UPB could be caused by these data irregularities instead of a partial prepayment. In some cases
there is no payment in one month and a double payment in the consecutive month due to accounting
reasons or late payments. Hence, to make sure such errors do not appear as a partial prepayment
and to take other irregularities into account, 2.3 times the installment is taken as a threshold for
partial prepayments.

Additionally, the data set contains defaults. A variety of academic literature exists on default
modeling e.g. Foster and Van Order (1984); Boyes et al. (1989); Altman and Saunders (1997); Ghent
and Kudlyak (2011); Crosbie and Bohn (2019). These studies dive deeper in default modelling and
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since the scope of this thesis is prepayments and not defaults, defaulting loans are not taken into
account for this thesis. The definition of defaulting loans that is used in this thesis is that defaulting
loans are loans on property that is in foreclosure. In the Freddie Mac data set, the following reasons
for loan termination that are listed are due to foreclosure of the property: third party sale of
foreclosed property, charge off, repurchase prior to property disposition, REO disposition or re-
performing loan sale. Furthermore, certain loans are modified because the mortgagee was unable
to uphold her financial commitments. Modifying loans gives a mortgagor the opportunity to avoid
default and hence risk of foregone interest payments is reduced. Also, these modified loans have
risk drivers similar to defaulting loans and thus are deleted from the data. The other option is to
treat modifying loans as a full prepayment, since new terms are specified and hence it can be seen
as a new contract. However, modified loans are similar to defaults because if nothing would change,
the mortgagor who qualifies for a modification will most likely default. Therefore, if modified loans
are treated as a full prepayment then these loans add noise to the model because they have risk
drivers that differ from true full prepayments. These loan modifications are only for loans that are
prone to defaulting. Refinancing can also be seen as a modification, but enters the data set as a
new mortgage. Hence, modified loans are not refinance loans.

The resulting classes for loan ¢ at time ¢ are

Full prepayment
Yit = § Partial prepayment - (2)
No event

where the loan terminates if y;; is a full prepayment or no event with outstanding principal reducing
to zero. The frequency of each class in the Freddie Mac data set is presented in Figure 1. Clearly,
there is unbalanced data with no event being the majority class and the next biggest class, partial
prepayment, being five percent of the size of the no event class. Full prepayment is less than two
percent of the no event class.

The full prepayment rate of the full data set over time is plotted in Figure 2. Full prepayments
have a peak in the data set around 2004 and are high from 2002 to 2004. This is possibly due to the
combination of two things. One, the fact that the prepayment rate is highest from the first year to
the third year (see Appendix Table 10). This includes the fact that the portion of those prepaying

loans in the total is higher than later in time, when there are many other loans in the data for a
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Figure 1: The frequency of prepayment types in the Freddie Mac data set are displayed.

specific time point. Next, it can be attributed to falling interest rates in that period. Also because
of relatively low data frequency, the prepayment rate can be more volatile.

Additionally, the partial prepayment rate over time is plotted in Figure 3. Due to data quality
reasons that are elaborated on in in Section 3.5, the partial prepayment rate for the first seven

months is zero and consequently converges to the partial prepayment rate.

3.3 Issues

The Freddie Mac data set contains data discrepancies, of which one has to be amended before
analysis. The most important aspect and the aspect that needs to be amended is that the current
unpaid balance data is rounded to the nearest thousand in the first six months. This leads to, for
these six months, a constant outstanding balance and then a drop of 1000 once the outstanding
balance is rounded to the next thousand. Moreover, the outstanding principal is correctly specified
starting from the seventh month, leading to a drop or an increase in outstanding balance from the
nearest thousand. The drop of unpaid balance will then be labeled as a partial prepayment, but
this is not the case. One option is to eliminate these observations from the data and to start from
month eight. Information about full and partial prepayments is lost, but the issue is addressed.
However, full prepayments at the beginning of the contract have a high foregone interest rate and
hence being able to predict these instances does add value to the model. This is solved by labeling
all full prepayments that happen as such and the rest as no event. Since there is no method to

find out whether a partial prepayment occurred in the first seven months, the instances that are
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Figure 2: Full prepayment rates over time.

possible partial prepayments are also labeled as no event.

Additionally, the data contains information on long term, e.g. 30 year, mortgages that originated
earliest in 1999. Since the period on which the model is trained lasts up until 2017, there are no
fully maturing loans in the data. Furthermore, the data is right censored. This is a general issue in
prepayment /default modelling since the available information on the loan ends at time of the event.
The availability of more data in the lower loan ages leads to better predictions in these lower loan
ages than in later loan ages.

In some cases the Freddie Mac data set has no information regarding a specific variable. This
is indicated in the Freddie Mac data set by a missing information indicator, usually 9, 99, 999 or
””  Data points containing these missing information indicators are excluded from the data set,
with two exceptions. For the "first time home buyer flag”, more than a quarter of the data points
contain no information. This is taken into account as a separate class and expected to have minimal
predictive power. The other exception is the reason for loan termination. Although this feature is
not used in the model, it is used in the prepayment type labeling process. A minimal number of
mortgages in the data have no termination reason in their termination equation. The other features

of the termination observation of these mortgages indicate that these loans are prepaid voluntarily
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Figure 3: Partial prepayment rates over time.

and hence these instances are labeled as full prepayments.

3.4 Data enrichment & transformation

This section discusses how the Freddie Mac Single Family Loan Level data set is enriched and
transformed into the final data set. Section 3.4.1 discusses how the data is enriched and Section

3.4.2 elaborates on how the data is transformed to make better use of the information in the data.

3.4.1 Enrichment

As discussed in the literature, macro variables drive the risk of prepayments. In this study, Freddie
Mac data are enriched with macroeconomic variables. From the St. Louis Federal Reserve Economic

Data (FRED) database the following data are obtained:

e The 30-year fixed rate mortgage average in the United States (St. Louis Federal Reserve
Economic Data, 2019a). This is weekly data, but for the purpose of this research, it is

converted to monthly data by taking the mean over weekly observations of each month.

17



e Quarterly US real GDP (St. Louis Federal Reserve Economic Data, 2019d). In this research,

real GDP growth is calculated and taken as input instead of the level.

e Monthly US cross-country civilian unemployment rate (St. Louis Federal Reserve Economic

Data, 2019b)

e Monthly US personal cross-country savings rate (St. Louis Federal Reserve Economic Data,
2019¢). The savings rate is used because when the savings rate is high, this might indicate

that a (partial) prepayment is less likely due to the preference of saving over spending.

Additionally, from the Quandl page of Freddie Mac the following data is obtained:

e Monthly house price index (HPI) for each US state (Freddie Mac, 2018). As mentioned, Clapp
et al. (2001) find that a significant portion of heterogeneity in mortgage pools is due to house
price dynamics of different regions. For this reason, the HPI per state is added. For the
HPT of extraterritorial areas (Puerto Rico, Guam and US Virgin Islands), the average HPI
of the US is used because it is not available in the Freddie Mac data on Quandl. The data
is missing for the first half year of 2018, but as the HPI rose four percent in that period, a
monthly increase of %% = 0.66% is taken. To correctly model the incentive of housing sale,

the percentage increase in HPI from loan origination is calculated for each month.

3.4.2 Transformation

Also, data transformations are performed in order to make best use of the information added. The

newly created and transformed variables are:

e The delta mortgage rate, dM, is created by taking the difference between the current US
mortgage rate and loan specific rate. The idea is to capture the lock-in and refinance effect,

mentioned by e.g. Green and Shoven (1986).

e The sign of dM is used as a categorical variable, to indicate an upward or downward movement.

Also, no movement is an option.

e The six and twelve year moving averages of dM are calculated. However, the moving averages
experience a high degree of correlation. Hence, only the six month moving average is used.
Additionally, the difference between the six and twelve month average is used as a new feature.
Figure 9 in the Appendix shows that indeed there is no correlation between the difference

between the six and twelve month average with the six month average.
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e The six and twelve year sums of dM are computed. Following the same rationale as the
previous point, the variables used are the six month sum of dM and the difference between
the six and twelve month sums of dM. If the sum of the difference is close to zero and moving
average is low, this indicates that the interest rate is low for a longer period. Also, when the
six month difference of dM as well as the difference between six and twelve month sum of dM
are negative, this indicates that the interest rate reduces for a longer time period. By using
these two variables, this thesis tries to model the burnout effect. When interest rates are
persistently lowering, the refinance incentive lowers and thus the burnout effect is expected

to have a negative effect on the probability of a prepayment.

e For each month ¢ and loan i, UPB percentage is created, which is defined as current UPB

divided by original UPB.

e An indicator I;; is added that indicates whether a partial prepayment has already occurred in
the history of loan ¢ at time ¢. The idea is that a mortgagor who has already partially prepaid,

has a higher chance of another partial prepayment. This is called the partial prepayment flag.

e Since combined LTV (cLTV) and LTV are highly correlated, cLTV is replaced by the difference
between cLTV and LTV to have only the relevant information, but no correlation. Figure 9

in the Appendix shows that indeed there is no correlation between LTV and cLTV.

e Using debt-to-income (DTI) and the monthly annuity, the income of a mortgagor is calculated,

where income = debann“ity Here it is assumed that mortgage debt is the only source of

t-to-income *
debt. This is not generally true, as the sum of all declared debt payments at origination is
used to calculate the DTI. This is done, however, to create a proxy of income. Subsequently,
the log of the income is taken. This can be done because debt-to-income and the monthly

annuity are always positive and hence debt divided by debt-to-income is also positive.
e Original UPB is divided by 1000 to avoid small £’s in the multinomial logit model.
The goal of this research is to predict prepayments one month ahead. Hence, all variables relevant
variables are lagged one month.
3.5 Summary statistics

In Table 1 summary statistics of independent non-categorical variables of the model are displayed.

Table 1 contains summary statistics on the continuous independent variables, such as the minimum,
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Feature Minimum 1st Quartile Median Mean 3rd Quartile Maximum

Delinquency #month 0.00 0.00 0.00 0.09 0.00 125.00
Loan age 0.00 12.00 28.00  37.67 54.00 232.00
Months remaining 7.00 269.00  323.00 292.90 346.00 481.00
Nin-int UPB 0.00 0.00 0.00  95.05 0.00 96400.00
FICO score 300.00 698.00  745.00 735.70 780.00 832.00
Insurance percentage 0.00 0.00 0.00 4.67 0.00 40.00
# Units 1.00 1.00 1.00 1.03 1.00 4.00
cLTV 0.00 0.00 0.00 1.08 0.00 56.00
Debt to income in % 1.00 25.00 33.00  33.38 42.00 65.00
Original UPB 14.00 101.00  151.00 175.60 226.00 801.00
LTV in % 7.00 62.00 77.00  71.35 80.00 100.00
Interest rate in % 2.38 4.38 5.50 5.42 6.25 10.50
Orig loan term 120.00 360.00  360.00 328.60 360.00 480.00
# Borrowers 1.00 1.00 2.00 1.57 2.00 2.00
A Mortgage rate -5.82 -0.32 0.02 -0.03 0.30 4.36
MR sum of diff 6m -1.41 -0.38 -0.14 -0.08 0.23 1.14
MR SD 12-6 -1.41 -0.38 -0.15 -0.09 0.20 1.14
MR MA 6m 3.42 3.91 4.44 4.90 5.96 8.28
MR MA 12-6 -0.43 -0.08 0.06 0.04 0.15 0.63
House price index 39.70 98.50  104.20 107.00 113.90 271.30
rGDP growth in % -2.16 0.24 0.55 0.47 0.80 1.83
Unemployment rate 3.80 4.70 5.60 6.23 7.80 10.00
Savings rate 2.20 5.40 6.60 6.22 7.20 12.00
UPB percentage 0.00 90.00 95.58  91.76 98.33 162.61
Log of monthly income -6.33 7.51 7.94 7.94 8.37 12.34

Table 1: Summary statistics of all continuous variables of the enriched cleaned Freddie Mac data set used to model
prepayments. MR stands for mortgage rate. MR SD 6m and MR MA 6m stands for the six month sum of difference of
mortgage rate and the six month moving average, respectively. MR SD 12-6 and MR MA 12-6 represent the difference
between the twelve and six month sum difference and moving average, respectively.

maximum, mean and median. There are several variables that are highly skewed, such as number
of months delinquent, number of units and insurance percentage. In Table 12 in the Appendix
displays an overview of the number of observations in each class of the categorical variables. Table

10 and Table 11 in the Appendix give an explanation of all variables in the Freddie Mac data.
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4 Methodology

This section discusses the models and methodology used in this thesis. In Section 4.1 the multinomial
logit is explained. Moreover, in Section 4.2, gradient boosting is outlined. From Section 4.3 onward,

several techniques enhancing model performance are introduced.

4.1 Multinomial logit

Following the findings of Clapp et al. (2001), the multinomial logit model is used in this thesis. The
multinomial logit model is a generalization of the logistic regression to multiple classes, meaning for
each monthly observation ¢ it predicts the prepayment probabilities m;; for each prepayment type
k, where Zle i = 1. It assumes the model to be time independent. Recall that in this research,

three mutually exclusive prepayment classes are defined,

1 if full prepayment
Yi = § 2 if partial prepayment ; (3)
3 if no event

where y; is the label of a monthly observation. The regression formula of any logistic regression
involves regressing the log odds of class k against a baseline class K, in this case the no prepayment
event class, on the independent variables, so following loosely the notation of Greene (2002),

P(Y; = k)

= Bok + Brrr1i + - + By rTo,i = BiXi, (4)
for K — 1 classes and v explanatory variables, where x,; is a dependent variable and 3, . is the
effect of x,; on class k. The vectors Bj and x; have dimensions v x 1. This can be rewritten for

P(Y; = k) into

P(Y; = k) = P(Y; = K)e™, (5)

for k € {1, ..., K — 1}. When rewriting for the probability of class K, the fact that all probabilities

must sum to one is used and the probability of class K can be calculated by

K-1 K-1 1
P(Y; = K) P(Y; = P(Y; = K)eP™i = P(Y; = K) =
k=1 k=1 L+ Yoh ePi
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Equation 6 can be used in combination with Equation 5 to find probabilities of other classes,

eﬁkxi

P(Y; = k) = P(Y; = K)ePr*i = .
i ) (¥ Je 1—{—25:711 eBrxi

(7)

This thesis uses LASSO regularization (Tibshirani, 1996) to reduce the number of coefficients in

the multinomial logit model.

4.2 Gradient boosting

This thesis uses a gradient boosting algorithm (Friedman, 2001) to explore if prepayment behaviour
can be modelled better than with the multinomial logit. Gradient boosting is successful in many
applications, e.g. disease prediction (Bhatt et al., 2013) and face alignment (Xiong & De La Torre,
2013). In Section 4.2.1 the basis of gradient boosting is explained: gradient descent. Next in
Section 4.2.2, the methodology called boosting is elaborated on. Then, in Section 4.2.3 the general
gradient boosting algorithm by Friedman (2001) is explained. Finally, in Section 4.2.4 the XGBoost
algorithm (Chen & Guestrin, 2016) that is used for this thesis is explained.

4.2.1 Gradient descent

The basics of gradient descent were introduced by Cauchy (1847). A gradient decent algorithm is
an algorithm that minimizes a loss function. We have observation pair z = (x,y) and a function
Fw(x), with parameters w, mapping explanatory variables x to observation y. A differentiable loss
function, Q(z,w), is defined to model the performance of Fy (x). This loss function can be modelled
as, but is not limited to, a least squares, absolute error or logistic loss function. Section 4.2.4 goes
into more detail on the chosen loss function.

In gradient descent, the idea is to use the gradient or derivative of this loss function VQy (z, w)
with respect to the different function parameters or weights w, to find the values of w that minimize
this cost function. The starting values of w, wg, need to be defined for initialisation. In the base case,
called Batch Gradient Descent, the value of the gradient is calculated at each available observation
pair z;. Then, all gradients are averaged and consequently the new weight is calculated. This is

done iteratively, such that,

1 n
Wil =Wy =7 Z VwQ(zi, W), (8)
i=1

where v is the step function or learning rate and always positive, w1 are the optimal parameters

found using the derivative of the loss function VyQ(z;, wy) and z; is the observation pair (x;,y;)
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for observation 7. It is shown that, when step function 7 is small enough, this iterative process

converges to a (local) minimum. (Dennis & Schnabel, 1996).

4.2.2 Boosting

Boosting is an ensemble meta-algorithm that uses additive modelling to form a strong learner
consisting of many weak learners. A strong learner is a model that is able perform significantly
better than random guessing whereas a weak learner only performs slightly better than random
better. It started with a question posed by Kearns and Valiant: “Can a set of weak learners create
a single strong learner?” (Kearns & Valiant, 1989; Kearns, 1988). Schapire (1990) later shows that
a weak learner can perform as well as a model with arbitrarily small errors using additive modelling.
Rather than bagging, where additive models are formed simultaneously and every model gets an
equal vote, boosting sequentially trains models on the errors of the previous model. This way, the

emphasis lies on the iterative misclassifications of each model.

4.2.3 A gradient boosting machine

Gradient boosting, as introduced by Friedman in 1999, published by The Annals of Statistics in 2001
(Friedman, 2001) creates a link between gradient descent and boosting. Consider again observation
pair z; = (x;,¥;) and a function F(x). Furthermore, for each observation i we introduce some loss
function L(y;, F'(x;)). The goal is to use multiple weak learners h(x;a), where a represents the
parameters of function h(x), to form a strong learner F'(x). Initially, the best guess for a function

Fy(x) is the function h(x,a) with the parameters ag that minimize its loss function,

N
ap = argmin > Ly, h(xi,a)). (9)
=1

Next, multiple models are added that learn on the errors of their predecessors, which is the
boosting process. Gradient boosting differs from other boosting algorithms in its method of finding
new weak learners to add to the model. Gradient boosting searches for the steepest-descent step
in function space, and adds the weak learner that reduces the loss function the most. The most
straightforward way of doing this is by taking the gradient of the loss function. However, since the
loss function is only defined at data points {x;}#V, a gradient that generalizes over the entire feature
space x does not exist. Instead, a weak learner is chosen that best approaches this gradient.

For each new model m that trains iteratively on the errors of model m — 1, the following is
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performed. First, for each observation pair z;, the negative gradient of the loss function with
respect to the current model F},,_1(x) is calculated. This can be an analytical expression but if that

is not feasible, a numerical approximator is used. These gradients are called the pseudo-residuals

- - [P0 | (10

OF(x;) :|F(x)=Fm_1(x)
which corresponds to the steepest-descent step in function space for that observation. Now, since
this gradient can not be generalized, the weak learner h(x;;a,,) that best approaches g; is chosen
as a best alternative. Using least squares as a loss measure between the weak learner and the

pseudo-residuals, the solution or weak learner is found by

N
a,, = argmin yi — Bh(x;; a 2, 11
g miy ;[y Bh(x;; a)] (11)

where [ is used to scale the weak learner to the pseudo-residuals. Now that the weak learner that
best approaches pseudo-residuals {#;}3V is found, it can be added to the current model F, 1(x)
using a proper scaling parameter p. The proper scaling parameter p,, to multiply the best weak

learner h(x;;a,,) with, is found via a line search and provides

N
Pm = alg mpin Z L(@/ia Fm—l(xi) + ph(Xi; am)) (12)
=1

This is the best scaled weak learner to add to the model. Now an updated and hence stronger

model can be made by adding that weak learner to the model,

Fm(x) = Fm—l(x) +pmh(x§ am)' (13)

This is done for a pre-specified number of iterations M, or until the results on a specific test set

stop improving.
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Algorithm 1: Gradient boosting

1 Fy(x) = h(x,a9), where ag = arg min, Zf\il L(y;, h(x;,a))
2 for m =1 to M do

~ | 0L(yiF(xi))
3 ! [ OF(x;) :|F(x):Fm_1(x)
4 ay, = argming g SN | [7; — Bh(xi; a)]?

[T
5 | pm=argming 3 L(yi, Fro1(x) + phi(xi; am))
6 Fp(x) = Fr—1(x) + pmh(x; am)

7 end

4.2.4 XGBoost

The prepayments class probabilities are modelled using the XGBoost package in R, introduced by
Chen and Guestrin (2016). In this section, the workings of the XGBoost algorithm for the 3 class
classification problem are explained for the classes full prepayment, partial prepayment and no
event. Note that the XGBoost algorithm performs this section automatically. Consider the general
case of gradient boosting as explained in the previous section. For XGBoost, the weak learner f,(x)
is a decision tree with J terminal nodes, or leafs. The tree f,,(x) will be denoted as f,,, unless the
dependence on z is explicit, e.g. a sum over f;(x;) for different observations i. The loss function
used in XGBoost is a combination of the logarithmic (or cross-entropy) loss function and a penalty
term 2. The logarithmic loss function calculates the error of the predicted prepayment probabilities
Ui, €.g. (0.5, 0.2, 0.3), using the actual prepayment class y;, e.g. (1, 0, 0). The penalty term
protects against over-fitting the decision trees on the data by penalizing for complexity. Because of

this penalty term for complexity, this loss function is also called the regularized loss function,

L= Zg(yu?ﬁz‘) +>Q(fm) (14)

where:  Q(fn) =vJm + %A\Imez
iy i) = 225 Yibi
= > >n Yik log(Jir)

Here, m € M are the iterations of the XGBoost model, 9,1, is the predicted probability of prepayment
class k, y; is 1 if the observation is of class k, J,, is the number of terminal nodes (leafs) of the

tree of model m and w,,, are the prepayment probabilities that correspond to all leafs j of tree f,.
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Additionally, A and 7 are regularisation parameters and determined by the model. Note that the
loss function £ is differentiable. Additionally, note that the regularized loss function L increases
when a new tree is added to the model. Hence, the regularized loss function L only reduces if the
added model complexity of adding another tree does not exceed the added value of the new tree

to the model and hence prepayments are modelled better. Let Qz-(t_l)

be the predicted prepayment
class probabilities of observation i at iteration ¢ — 1 and let f; be the tree that is added at iteration
t. Note that here ¢ is used to distinguish between all iterations m and a specific iteration t. The

objective is to add the tree f; that minimizes the loss function, formally

N
“}%“L(t) N ;%,@f‘” + fi(x:) + Qo) (15)

In order to find the best split in their trees, vanilla gradient boosting machines calculate every tree
from scratch. XGBoost works well because rather than vanilla gradient boosting machines, it uses

the second order approximation to optimize Equation 15 (Chen & Guestrin, 2016),

N
L0 & 3 16l 070) + gifuoxs) + haf20x0)] + Q7). (16)
=1

_ 2 _
where g; = M%UE (yi, gjgt 1)) is the first order derivative of loss function £ and h; = #371) (yi, gjgt 1))

is the second order derivative of loss function ¢ at every monthly prepayment observation ¢, both
with respect to the predicted prepayment probabilities of the previous iteration gjft_l). The objec-
tive of each iteration t is to find decision tree f; that minimizes this loss function. Hence, the terms
that do not depend on this new tree f; can be removed from the objective function. What remains
is

N

LW = lgife(xi) + %h’iftz(xi)] +Q(fo), (a7)

i=1
which is the simplified loss function that depends on the first and second order derivatives, g; and

h;, of the loss function ¢ with respect to the predicted prepayment probabilities g}t‘l) at every
observation i, the new tree f; and the complexity of this new tree Q(f;).

Now that the objective function is defined, the second procedure that is of interest is to find
the split points that split the tree into leafs and branches. Define I; = {i|fi(x;) = j} as the set of

observations ¢ in leaf or terminal node j of the tree t. Equation 17 can be rewritten, by expanding
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2 and summing over the instances of each leaf j, i € I;, where j are the possible leafs, as

N J
7 (t L o 1 2
LW = Z[gift(xi) +5hifi (xi)] + e + 5)\thj
=1 j=1
(18)
1
j=1 i€l icl;

where the second part follows from separating all observations 7 in observation sets I; and that the
value for f;(x;) of observation i in observation set I; is w;. Recall that the variable factors here are
the number of leafs J; for the model f; that is proposed to reduce the loss function, the instances I;
and the corresponding values of the leafs w;. The derivatives g; and h; are constant. They depend
on the loss function of the previous prediction and hence do not depend on the proposed tree f.
The values of g; and h; for every observation ¢ can thus be calculated before proposing the new
tree and can be filled in for every proposed tree f; in Equation 18. Given a tree structure f; with
known observation sets I; in leaf j, the optimal value for weight w; in leaf j which are the optimal
prepayment probabilities, can be found by solving the quadratic equation in Equation 18 for w;.
This gives

W) = _Zzeflzi— -, (19)

ier; i

which can then be inserted in Equation 18, resulting in an minimum value for the loss function (an

optimal w* means the smallest loss) for tree structure f; of

1 (Zz‘eljgz‘)Q

LO(f) = + . (20)

where J; are the number of leafs of model f;. Equation 20 can be used to assess the loss reduction of
a particular split. Say that a split breaks an observation set I into two observation sets, namely I,
and Ip where I = I, U Ip. The loss reduction of this split can be easily calculated using Equation

20 by

1 i )2 ) )2 g)?
Lsplit i (Z elr, 9 ) 4 (z elr g ) o (Z’Lefg ) + v, (21)
2 ZieIL hi + A Zz‘eIR hi + A Zie] hi + A

which is simply a summation of constant terms, meaning this is a less computationally heavy

method of calculating the loss than vanilla gradient boosting. The constant terms are split based
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on feature distributions and consequently the features are placed into (new) observation sets, I,
and [r. Consequently, for both sets, the algorithm tries to find a further loss reduction by splitting

Ir and I, as well.

4.3 Overfitting

Machine learning algorithms such as XGBoost capture non-linear relations between variables in the
data. However, it is possible that such algorithms capture noise and spurious relations in the data
that do not represent any real relationship and are only in the data by chance. This way the error
of the model can seem low, whereas if the model is tested on out-of-sample data, it would have a
significantly higher error. This is known as overfitting. To solve this issue, the unbalanced data are
split and twenty percent of the data are randomly taken as a hold-out or test set for out-of-sample
testing, totaling 166,909 data points. The hold-out set is used to test model performance of both
the XGBoost and multinomial logit models. The hold-out set is not used in training or tuning the

model, hence the model has not seen the hold-out set before evaluating.

4.4 Unbalanced data

The very nature of prepayments creates an unbalanced data set. When tackling machine learn-
ing problems, unbalanced data are a problem. Unbalanced data, or unbalanced classes, create a
challenge in measuring model accuracy. If the model is trained on an unbalanced data set, the
model tends to predict the majority class. Why this is the case, is simple. Take as an example
prepayment data. Assume only one percent of the data are a prepayment event. Only predicting
“no prepayment event” would result in a model accuracy of 99%. However, no instances of the
prepayment class would be predicted correctly. This would greatly miss the purpose of the model,
which is predicting those prepayment events.

Multiple solutions are available to counter the unbalanced data problem. One can choose to give
weights to the observations in the XGBoost algorithm, use oversampling (increase minority class) or
undersampling (decrease majority class). Due to ample data, this thesis uses undersampling of the
number of no event class instances into the combined number of instances of the full prepayment
and partial prepayment classes to solve the unbalancedness issue.? After balancing, the training

data set contains 87,326 data points. This is not all, however. The next section outlines how this

2As mentioned, an alternative approach might be to give weights to all observations, where the minority class
instances receive more weight than the majority class instances. For robustness, this approach was also tried but
resulted in poorer performance.
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thesis solves evaluation issues due to unbalanced data. Note that in this hold-out set the ratio of
prepayment events and no-prepayment-event data is the same as for the entire data set, meaning
the hold-out set is also an unbalanced set. The hold-out set is not balanced because prepayments
events are not balanced and that is what this thesis tries to predict. The training sample is balanced

because then the model can better capture the relationships between variables.

4.5 FEvaluation metrics

Balancing the training data ensures that the model does not favor the majority class of no event
over the minority classes full and partial prepayment. However, an issue that still exists is finding
a suitable evaluation metric. As mentioned, pure accuracy might tell a misleading story. The
probabilistic classification equivalent of accuracy is the log loss, which provides a measure of fit but

does not provide an accurate representation of model performance.

4.5.1 Precision, recall and F1 score

Other evaluation metrics include precision and recall. Precision of class C' is the fraction of correctly
classified instances of class C' over the total instances classified as class C. On the other hand, the
recall of class C' is the fraction of the correctly classified instances of class C over the total instances
of class C'. Usually to increase precision, recall is reduced. This makes sense because to increase
the precision, one only takes the observations of which one is very certain and hence the number of
predictions of the class of interest goes down. A researcher has to make a choice as to whether she
prefers precision over recall, or if she wants a balancing function of the two. An option is to balance
precision and recall is the F1 score. The F1 score is the harmonic average of precision and recall.
It is used extensively in literature, e.g. Fujino, Isozaki, and Suzuki (2008); Sepilveda and Velastin
(2015); D. Zhang, Wang, Zhao, and Wang (2016). Since a high recall and a high precision are both
signs of a well performing model, a high F1 score also means a well performing model. The F1 score
is always between 0 and 1. The goal of this thesis is to correctly predict prepayments and in doing
so in this case there is no clear preference for precision or recall, hence the goal is to maximize both.
Therefore, this thesis uses the F1 score as one of the evaluation metrics. Additionally, sensitivity
and specificity are given for both prepayment models. Sensitivity is the same as recall, it’s the true
positive rate. If it is high, there are not many false negatives. Specificity is the true negative rate,

hence if it is high, there are not many false positives.
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4.5.2 Confusion matrix

Precision, recall and specificity can be determined from a confusion matrix. A confusion matrix
gives a global representation of the actual prepayment classes against the predicted prepayment
classes. It is called a confusion matrix because it indicates where the model has confused one class
for another. For every predicted class, it shows how many observations are actually from that

prepayment class and how many observations are from other prepayment classes.

4.5.3 Brier score

Furthermore, the Brier score (Brier, 1950) is used as an alternative to accuracy to measure the
ability of the model to capture prepayment behaviour. In the literature, the Brier score is used
extensively, e.g. Gerds and Schumacher (2006); Rufibach (2010). The formula to calculate the

multi-class Brier score is

1 N C
NZZ yzk yzk ) (22)

i=1 c=1
where IV is the number of instances that is used to evaluate the model and C' is the number of classes
in the model, in this case three: full prepayment, partial prepayment and no event. The prepayment
probability of instance i for class k is represented by g; ;. Similarly, the actual prepayment event
of instance ¢ for class k is represented by ; 1, which is 1 if the actual prepayment event is k& and 0
otherwise. The Brier score can be seen as a probabilistic mean squared error.

The reason for choosing the Brier score as an evaluation metric instead of the widely used logloss
is twofold. The XGBoost model is optimized by using the logloss or cross entropy error as a loss
function. By assessing both models with an evaluation metric that is not used in optimizing, a fair
comparison is made. Additionally, the Brier score provides a smoother loss function than logloss,
penalizing a higher error less severely. According to Wilks (2010), using the Brier score for assessing
models forecasting unbalanced events is sound if the number of observations exceed one thousand.
Using this insight, it is suitable to use the Brier score as an evaluation metric for this thesis.

The Brier score itself provides the average error of a model, but in order to compare models it

is useful to compute the Brier skill score. The Brier skill score is calculated by

BS,,

BSS=1-
SS BSye;’
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where BS,..r is the Brier score of a reference model, in this case the multinomial logit, and BS,,
is the Brier score of the model that is compared to the reference model, in this case that of the
XGBoost. Since the Brier Score can be seen as an error measure, a Brier Skill Score of 1 means a
very good model against a bad reference model. A score of 0 indicates a similar performance between

models and a negative score states that the reference model, the multinomial logit, performs better.

4.6 Hyperparameter tuning

The XGBoost algorithm has a variety of hyperparameters. Performance can increase significantly
with the right set of parameters, hence an important aspect of modelling with XGBoost is tuning
the hyperparameters. The parameters that are tuned in this model are the learning rate, mazimum

tree depth, gamma, sub-sample percentage, column sample percentage and minimum child weight.

e The learning rate, or step length, is p,, from Equation 12 and Equation 13. The learning rate
shrinks the weights predicted by each tree. In XGBoost this is a fixed value in order to avoid

overfitting and thus make the model more conservative.

e Maximum tree depth indicates the maximum amount of edges between the root node of a
decision tree and its nodes. Increasing the maximum tree depth can lead to more complex

models and to overfitting.

e Gamma states the minimum loss reduction needed in order for a tree to make a new split. If

the value for gamma is higher, trees become more shallow.

e Sub sample percentage specifies the percentage of training instances randomly sampled every
time a new tree is made. If set to 0.5 then for the creation of each tree 50% of the data points

are randomly selected to be used to train the tree.

e Column sample percentage does the same as sub sample percentage, but then in the other
dimension of the data set. It sets the percentage of variables used to create each new tree. If
set to 0.5, then for the creation of each tree 50% of the variables are randomly selected to be

used to create the tree.

e Minimum child weight gives the minimum number of instances needed in each leaf. If this

value increases, it makes the model more conservative.

For this thesis, hyperparameter grid search is performed. This entails setting up a grid of many

possible hyperparameters and creating a model with all pre-specified hyperparameters using cross
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validation. For the learning rate, the proposed settings were 0.01, 0.05, 0.1, 0.15 and 0.2. Maximum
tree depth was found by using a grid of 5 to 25 with step size 2. For Gamma, the proposed settings
were 0 to 10, with step size 1. For both column sample, sub sample and the proposed values are
0.5 to to 1 with step size 0.1. Finally, for minimum child weight the proposed settings are 1, 3, 5
and 7. All combinations are examined by using cross validation and the final hyperparameters are

shown in the results section.

4.7 K-fold cross validation

K-fold cross validation is applied to tune the hyperparameters of the model in order to avoid tuning
the parameters to noise. K-fold cross validation involves splitting the data in & folds. One fold is
left out and the other folds are grouped and balanced. It is important that all data transformation
and balancing is done after splitting, because the validation set should resemble the real world.
Consequently, the model is fitted on the data and tested on the fold that is left out by using a
suitable evaluation metric. This is an out-of-sample test, meaning the data on which the model
predicts is not used to train the model. It is done k times, until each fold is left out, and thus tested
on, once. After the process, the £ model evaluation metrics are averaged, resulting in one evaluation
metric for the out-of-sample test for that model. This thesis applies 5 fold cross validation to find

the best performing hyperparameters.

4.8 SHAP

For this thesis, SHapley Additive exPlanations (Lundberg & Lee, 2017), also called SHAP values, are
used as a model interpreter. Using SHAP values as model interpreters is a model agnostic method
of explaining a model, i.e. SHAP values can be computed for many different models. SHAP values
provide an understanding in the relationships between the features and the outcome of the model.
The SHAP methodology uses Shapley values (Shapley, 1953) from game theory. Shapley values
give the value of a player i in a game by evaluating the marginal increase of the value of a game
when adding player i to all possible coalition sets of players. Similarly, SHAP calculates the added
value of a feature as the weighted increase or decrease in the value of a model outcome when adding
a feature {z} over all subsets of features that exclude that feature, namely S C F'\ {z}. The SHAP
values for features in a model indicate the attribution of those features to the prediction outcome.

The SHAP value for a feature z and model f is calculated by
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o= BHEZEED (0 sun) - fatas). (2)
SCF\{z}

where F' is the total set of features for model f, S C F'\ {z} are all possible subsets of F' excluding
feature z, fg(xg) is the function trained on features of subset S and the same holds for function
fsugzy(Tsugzy) on the set SU{z}. The exclamation mark ! stands for factorial. These SHAP values
can be different for each observation and these different SHAP values can be aggregated in a graph,
showing the SHAP value for each available value of feature z. Figure 4 shows the perspective of

SHAP with the data and a model. It is used to interpret the XGBoost model.

explanation

Figure 4: SHapley Additive exPlanations.

For a model interpreter to be useful, it must contain the following three properties:

e Local accuracy: local accuracy states that output of the model interpreter must be the same
as the output of the model. The explanation model has to be a truthfull explanation. Hence,
the SHAP value of each feature of an observation must sum to the model output of that

observation.

e Missingness: missingness states that if a specific feature is not included in the observation,
i.e. missing, its SHAP value is zero. The feature then does not contribute to the model. This

is different from a feature being zero, which does provide information to the model.

e Consistency: consistency states that if the model changes and the contribution of a specific

feature to the model increases or stays the same, its SHAP value should not decrease.

According to Lundberg and Lee (2017), SHAP is the only model interpreter that has the desirable
properties local accuracy, missingness and consistency.

Due to the three class prepayment problem, the SHAP methodology provides three global graphs
per feature, one for each class with the relationship of the class with that feature. It is useful to

have three graphs because a regulator can also be interested in why you did not make a prediction,
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compared to why you did make a prediction. However, this provides a challenge in comparing
the SHAP output with the log odds from the multinomial logit. Hence, a Poisson regression is
performed for all prepayment classes to find the relationship between a specific feature with the log

of the probability of each class. For all three classes k,

log P(Y; = k) = Bok + Brptii + - + Boroi = BpXi, (25)

where IP(Y; = k) is the probability of class k, (3, the coefficient for variable v and class k and x,,;
is variable v for observation i. The Poisson regressions form the basis of the multinomial logit, as

=k
log IIP?((SZ:K)) =logP(Y; = k) —logP(V; = K).

A limitation of SHAP for XGBoost in a multinomial setting is that it does not provide contri-
butions to the probabilistic outcomes of the model, but rather to the log odds of that class. The
log odds can, naturally, be transformed into probabilities once the log odds for other classes are
also known. The log odds of other classes, however, do not follow directly from the SHAP values of
one class. Hence, when commenting on the SHAP contributions of the features on the model, this
thesis focuses on the direction of the SHAP values, rather than the exact contributions the of the
log odds. The transformation of log odds to probability is monotone, hence a higher log odds of a
full prepayment indicates a higher probability of a prepayment and this is of interest. After all, the
direction of the contributions is what counts on a global level to see whether, e.g., a higher income

gives a higher probability of a full prepayment.

5 Results

This section outlines the empirical results of this study. In Section 5.1, the results from the XGBoost
model are discussed. In Section 5.2, a comparison is made between the cross sectional performance
of the XGBoost algorithm and the multinomial logit model. Additionally, in Section 5.3 the multi-
nomial logit model and the XGBoost model are compared when determining the actual prepayment
rate over time. Finally, in Section 5.4 the SHAP values are shown, discussed and compared to the

coefficients of the Poisson regression.
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5.1 The XGBoost model
5.1.1 Hyperparameter tuning

Table 2 displays the hyperparameters that contribute to the highest F1 score. These hyperparame-
ters are found by using a grid search. The performance gain of using these parameters is significant,
with the F1 score of this set of parameters being 60% higher than that of the worst performing

parameter set.

Hyperparameter Value
Learning rate 0.15
Max tree depth 13
Gamma 5
Sub sample 0.8
Column sample 0.8

Minimum child weight 1

Table 2: Hyperparameters used to fit the final XGBoost model.

5.1.2 Initial results

Table 3 shows the results for XGBoost on the prepayment data set. When looking at precision
and recall of the XGBoost model, no event has the highest values compared to the other classes,
although the recall of partial prepayment and no event are similar. For this model, the F1 score
of full prepayment is 0.097 and the F1 score of partial prepayment is 0.514. Recall the definition
of a confusion matrix from Section 4.5.2. Table 4 displays the confusion matrix of the XGBoost
model. The XGBoost model overestimates the number of full prepayments in the test set: a total
of 3295 predicted full prepayments compared to the 2437 original full prepayments. Of those 3295
full prepayment predictions, 278 are actually a full prepayment observation, giving a precision of
0.084 or an 8.4% precision rate. Additionally, of the 2437 original full prepayment observations,

278 are correct. This gives a recall rate of 11.4%.

5.1.3 Distribution specification

From Section 5.1.2, the XGBoost model overpredicts both partial and full prepayments. This gives
rise to the idea that shrinking the forecast probabilities of those classes might prove beneficial to

the outcome of the model. Hence, using cross validation, the best prior probability distribution to
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Class No Event Full Prepayment  Part Prepayment

Sensitivity 0.897 0.114 0.876
Specificity 0.745 0.981 0.915
Precision 0.980 0.084 0.363
Recall 0.897 0.114 0.876
F1 0.936 0.097 0.514
Balanced acc. 0.821 0.548 0.896
Brier score 0.200

Table 3: Evaluation metrics of the XGBoost model.

Actual class

No Event Full Prepayment  Part Prepayment
No Event 135447 1767 1014
Predicted (89.7%) (72.5%) (12.0%)
class Full Prepayment 2978 278 39
(02.0%) (11.4%) (00.4%)
Partial Prepayment 12625 392 7426
(08.3%) (16.1%) (87.6%)

Table 4: Confusion matrix of the XGBoost model on the hold out set. For each class the predicted and actual values
are shown. In brackets, the percentages of the number of observations of the actual class is displayed. The column
percentages sum to one.

multiply with the probabilistic outcomes of the model is found. The goal of using this probability
distribution is similar to using a threshold in binary classification; to have a higher probabilistic
threshold for selecting a certain prepayment class. In order to use evaluation criteria such as the
Brier Skill Score, the prepayment class probabilities resulting from combining the model and the
distribution are normalized, meaning they are multiplied by a constant so that they sum to 1. This
is done because the Brier score is evaluated based on predicted probabilities of each class.

Table 5 shows the probability distributions and the corresponding average F1 scores of all classes.
The average F'1 score is used because, using 5-fold cross validation, there are 5 F1 scores per class per
distribution. More variations than shown in Table 5 are also tested but these variations give lower
average F'1 scores. The standard deviation of the F1 scores of the 5 cross validation folds is displayed
in brackets next to the average score. In the left column the distribution for respectively no event,
full prepayment and partial prepayment is given, with on the right for all three classes their average
F1 scores and standard deviations. For this research, the distribution (0.45,0.48,0.07) is chosen as

probability distribution to multiply with the probabilistic outcomes of the XGBoost model, due to
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the highest overall F1 scores. The choice for (0.45,0.48,0.07) rather than (0.48,0.45,0.07), which
has the same full prepayment and partial prepayment F1 score, is made because it has the highest
F1 score for the no event class. Although the F1 score of full prepayment and no event is higher
for (0.45,0.51,0.04), (0.46,0.49,0.04) and (0.43,0.48,0.09) than for (0.45,0.48,0.07), with a lower
standard deviation for the F1 score of full prepayment for (0.45,0.51,0.04), the F1 score for partial
prepayment for (0.45,0.48,0.07) is significantly higher and hence (0.45,0.48,0.07) is selected as a
distribution. The biggest advantage of having a distribution such as the one that is chosen, is
the increase of the F1 score of partial prepayments. The results of adding the distribution to the
results of the XGBoost model are displayed in Table 6. When comparing the results to the original
XGBoost model, the F1 scores for all classes are improved. The F1 score of partial prepayment
has increased significantly, whereas the F1 scores of Full Prepayment and No Event only increased

marginally.
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Distribution NE NE sd FP FP sd PP PP sd

0.49, 0.46, 0.04 0.967 (0.001) 0.098 (0.002) 0.654 (0.006)
0.48, 0.48, 0.04 0.966 (0.001) 0.099 (0.003) 0.653  (0.006)
0.46, 0.49, 0.04 0.965 (0.001) 0.101  (0.004) 0.651  (0.006)
0.45, 0.51, 0.04 0.964 (0.001) 0.101 (0.003) 0.649  (0.006)
0.48, 0.45, 0.07 0.966 (0.001) 0.098 (0.003) 0.667 (0.003)
0.46, 0.46, 0.07 0.965 (0.001) 0.099 (0.004) 0.667 (0.003)
0.45, 0.48, 0.07 0.963 (0.001) 0.100 (0.004) 0.667 (0.003)
0.44, 0.49, 0.07 0.962 (0.001) 0.100 (0.004) 0.667  (0.003)
0.46, 0.44, 0.1 0.963  (0.001) 0.096 (0.004) 0.652 (0.003)
0.45, 0.45, 0.1 0.962 (0.001) 0.098 (0.004) 0.652 (0.003)
0.4, 0.47, 0.09 0.961 (0.001) 0.100 (0.005) 0.652  (0.003)
0.43, 0.48, 0.09 0.960 (0.001) 0.101  (0.004) 0.652  (0.003)
0.45, 0.42, 0.12 0.961 (0.001) 0.095 (0.004) 0.635 (0.003)
0.4, 0.44, 0.12 0.960  (0.001) 0.097 (0.005) 0.635  (0.003)
0.43, 0.45, 0.12 0.958  (0.001) 0.098 (0.005) 0.635 (0.003)
0.42, 0.47, 0.11 0.957  (0.001) 0.100 (0.004) 0.635 (0.003)
0.33, 0.33, 0.33 0.936  (0.001) 0.094 (0.006) 0.508  (0.004)

Table 5: This Table shows the different distributions that are multiplied with the probabilistic output of the XGBoost
model with the evaluation scores of the corresponding posterior distribution. The distributions for respectively no
event (NE), full prepayment (FP) and partial prepayment (PP) are displayed on the left with their corresponding
average F1 scores and standard deviations (sd, in brackets) on the right. The distribution at the bottom represents
the uniform distribution and the distribution used for this research is displayed in bold.

5.2 Model comparison

In Table 6 the evaluation metrics of both the XGBoost prepayment model and the multinomial logit
prepayment model can be found. The regularization parameter, A, that is used for the multinomial
logit model is 1.403 x 1073. All lambdas and corresponding percentage of explained deviance can
be found in Figure 11 and Table 19 in the Appendix. Figure 11 shows that the explained deviance
of the multinomial logit model reduces exponentially when the lambda is higher than the chosen
lambda. The coefficients of both the Poisson regression to form the multinomial logit and the
coefficients of the multinomial logit can be found in respectively Tables 13, 14 and 15, and Tables

16, 17 and 18 in the Appendix.
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XGBoost Multinomial Logit

Class No Event Full Ppmt Part Ppmt No Event Full Ppmt Part Ppmt
Sensitivity 0.958 0.146 0.674 0.869 0.007 0.879
Specificity 0.591 0.975 0.982 0.734 0.998 0.87
Precision 0.970 0.082 0.674 0.978 0.040 0.271
Recall 0.958 0.146 0.674 0.869 0.007 0.879
F1 0.964 0.105 0.674 0.920 0.011 0.415
Bal. Acc. 0.774 0.560 0.828 0.802 0.502 0.874
Brier score 0.142 0.234

Table 6: Evaluation metrics of both the XGBoost model multiplied with the probability distribution and the multi-
nomial logit model. Additionally the Brier score is given. Ppmt stands for prepayment.

Similar to the XGBoost model, in the multinomial logit model no event also has the highest
values between classes for precision, but the second highest score for recall. No event does, however,
achieve a significantly higher F1 score than other classes. The F1 score of Full Prepayment is
0.011 and the F1l-score of Partial Prepayment is 0.415. Table 8 shows the confusion matrix of
the multinomial logit model and Table 7 shows the confusion matrix of the XGBoost model with
distribution. Contrary to the XGBoost model, the multinomial logit the model underestimates the
amount of full prepayments, a total of 427 predicted compared to the 2492 original full prepayments.

When comparing both models, the XGBoost model is outperforming the multinomial logit on
almost all evaluation metrics that are of interest. The F1 scores of Full Prepayment en Partial
Prepayment are higher for the XGBoost model than that of the multinomial logit model. The Brier
score of the XGBoost model is lower than that of the multinomial logit model, meaning its error is
lower. This is reflected in the Brier Skill Score, which is 0.397.

The goal of this research is to investigate whether a gradient boosting machine such as XGBoost
can outperform a multinomial logit model in a prepayment setting and hence if it is better able
to capture prepayment behaviour. Combining the above observations provides evidence that the
XGBoost model of this thesis indeed leads to better predictions of prepayment behaviour than the
multinomial logit model. The F1 scores for the XGBoost model are higher than the F1 scores of
the multinomial logit model. However, the F1 score for the full prepayment class of the XGBoost
model is very low. This is due to a low precision and low recall, of respectively 8.2% and 14.6%.
Thus, even a well tuned XGBoost model does not have much discriminatory power between monthly
observations for a full prepayment and the other classes. This result can be expected, as features

do not differ much between consecutive months and a prepayment remains a behavioural decision.

39



Actual class

No Event Full Prepayment  Part Prepayment
No Event 144543 1927 2495
Predicted (95.69%) (79.07%) (29.43%)
class Full Prepayment 3933 354 247
(02.6%) (14.53%) (02.91%)
Partial Prepayment 2574 156 5737
(01.70%) (06.40%) (67.66%)

Table 7: Confusion matrix of the XGBoost model with prior distribution on the hold out set. For each class the
predicted and actual values are shown. In brackets, the percentages of the number of observations of the actual class
is displayed. The column percentages sum to one.

Actual class

No Event Full Prepayment  Part Prepayment
No Event 131216 1887 1013
Predicted (86.87%) (77.43%) (11.95%)
class Full Prepayment 365 16 17
(00.24%) (00.66%) (00.20%)
Partial Prepayment 19469 534 7449
(12.89%) (21.91%) (87.85%)

Table 8: Confusion matrix of the multinomial logit model on the hold out set. For each class the predicted and actual
values are shown. In brackets, the percentages of the number of observations of the actual class is displayed. The
column percentages sum to one.

5.3 Model results over time

Because banks are eventually interested in determining the prepayment rate over time, the prepay-
ment rate over time is calculated. The full predicted and actual prepayment rates over time are
plotted in Figure 5. From Section 5.2.1 it is already clear that the XGBoost model overestimates the
amount of full prepayments. Interestingly, as shown in Figure 5a, these full prepayment forecasts
happen in months where the prepayment rate is already high. The most extreme case is between
2000 and 2004, where the model hugely overestimates the prepayment rate. This is potentially
because the model trains on the high prepayment rate data points and this increases the probabil-
ity of prepayment for data with features corresponding to that time period. The mortgage rate is
decreasing drastically in this period. The model likely overreacts to this because this is rare in the
data and only happens again during the financial crisis of 2008, where the model also predicts a

peak prepayment rate. Contrarily, in months with an average or low prepayment rate, the XGBoost
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(b) MNL full prepayment rate over time.

Figure 5: The actual prepayment rate over time of the hold out sample is plotted in black, whereas the predicted
prepayment rate is plotted in red. The left plot is of the XGBoost model and the right plot is of the multinomial logit
model.

model underestimates the prepayment rate.

From the confusion matrix in Section 5.2.1 it is already clear that the multinomial logit model
underestimates the number of full prepayments. Judging from Figure 5b, the prepayment rate is
indeed underestimated. The multinomial logit model underestimates the prepayment rate in all
months, except for April and March 2001 and January 2018.

The mean absolute error of the forecasted prepayment rate against the realized prepayment
rate for the XGBoost model is 0.033 and for the multinomial logit model it is 0.014. It is thus
straightforward to conclude that the MNL model performs better when the prediction results are
viewed in a temporal context. However, the mean actual prepayment rate is 0.016, which is low.
This, in combination with the fact that in Figure 5b it is shown that the MNL model hugely
underpredicts the prepayment rate, confirms that the MNL model not a better model. Indeed, the
error is lower, but also it rarely predicts prepayments. Additionally, the error of the XGBoost is
extremely high because of the period between 2000 and 2005, where the predicted prepayment rate
is extremely high.

5.4 Model explanation/SHAP

The final part of this research entails how SHAP adds to the interpretability of the XGBoost model.
With SHAP, relations between the independent and dependent variables can be found. In Figures
6, 7 and 8, the SHAP plots of respectively the full prepayment, partial prepayment and no event

classes can be found. For each class the six most important variables are displayed. Those six
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variables have the highest average absolute SHAP value. In Figures 12, 13 and 14 in the Appendix,
the influence of the twelve most important variables can be found. Recall that the SHAP values for
a specific class are the marginal attributions of a specific variable to the probability of that class
for each instance. The SHAP attributions are plotted for all existing observations of that specific
variable. This results in the global influence of the variables on the outcome of the XGBoost model.
Recall that the SHAP values are attributions to the log odds. The blue dots in the figures are the
individual SHAP attributions and the red line is a smoothed average over all observations.

Globally, the partial prepayment flag, which is yes if another partial prepayment has occurred,
and no if a partial prepayment has not occurred (yet), is the most important variable. It has the
highest average absolute SHAP value. Figure 6a displays that the probability of a full prepayment
decreases when another partial prepayment has already occurred (flag=1). Figure 7a shows that
this is possibly due to the the fact that the partial prepayment flag is such a strong indicator for
another partial prepayment. Therefore, the probability shifts from full prepayment and no event to
partial prepayment.

Recall that for the first seven months in each contract, no prepayments occur. This is visible
in Figures 6d, 7d and 8d. The effect on partial prepayment probabilities is negative and so large
that it is not visible in the figure. The absence of partial prepayments in the first seven months of
the contract inflates the probabilities of full prepayment and no event relative to eight months and
higher.

Additionally, all figures show some degree of dispersion of SHAP attributions. This indicates
interaction with other variables. A middle class income, e.g., only indicates a high probability of a
full prepayment when the original unpaid principal balance is bigger than $200,000. The dispersion

shows that the XGBoost model finds many interactions in the data.

5.4.1 Full prepayments

Figure 6 shows the SHAP values for the log odds of full prepayment for the most important variables.
The percentage unpaid principal balance is a good example of a non-linear relationship with full
prepayment probability. When the percentage unpaid principal balance is 100, meaning nothing is
paid off, this positively influences the probability of a full prepayment. When more UPB is paid off,
the probability of a full prepayment declines and after approximately sixty percent of the original
UPB is paid off, the probability of a full prepayment rises again. Figure 6¢ shows that as fewer

months remain in the contract, the probability of a prepayment increases. Moreover, at 354 to 360
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months remaining, a small positive shock is observed. This is most likely due to the absence of
partial prepayment in the first 7 months in combination with the fact that most mortgages have
a duration of 30 years (360 months) or shorter. For loan age, the probability of a full prepayment
increases until approximately one hundred months, from where it is constant. Contract interest
rate is also an important feature. The relationship with full prepayment probability is linear. There
is, however, a high degree of dispersion. This indicates many interactions with other variables.
Interestingly, the full prepayment probability declines after eight and a half percent. This decline
is only minor. It indicates that after a contract interest rate of eight percent, although the SHAP
values are dispersed, the biggest collection of SHAP values is around 0.3. Finally, the log of income
shows a parabola relationship with prepayment probabilities, where for both high and low income

families the full prepayment probability is higher.

5.4.2 Partial prepayments

Figure 7 shows the SHAP values for the log odds of partial prepayment for the most important
variables. The SHAP wvalues for the partial prepayment class show a high degree of dispersion.
The increase in partial prepayment probability when the partial prepayment flag is 1 is already
mentioned and clearly visible here. For the percentage UPB paid there is a lot of dispersion.
Also, the range of the figure is adjusted to account for the range of the relationship between the
variable and the outcome. As more principal is paid off, the probability of a partial prepayment
increases. At some point, the probability decreases again, possibly due to the fact that at some
point a partial prepayment becomes a full prepayment as the principal goes to zero. Again, for both
months remaining and loan age it is visible that in the first seven months no partial prepayments
are observed. The SHAP values of loan age for the first seven months are very low, indicating
the absence of partial prepayments in the first seven months. From eight months the prepayment
probability is relatively high and declines with loan age. For both loan age and months remaining,
the degree of dispersion is high, which indicates many interactions. The effect of the contract
interest rate on the partial prepayment probability is relatively constant, but increases abruptly
around nine percent. Finally, the partial prepayment probability initially increases with the log of

income, but then decreases and eventually stays constant.
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Figure 6: Global SHAP attributions for the “full prepayment” class for the six most contributing variables.
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5.4.3 No prepayment event

Figure 8 shows the SHAP values for the log odds of no prepayment event for the most important
variables. Most results from these figures follow directly from the other prepayment class SHAP
figures. Interestingly, the big increase for partial prepayment probability as more principal is paid,
comes from the no prepayment event probability. The range in Figure 8b is changed to adjust
for the range of the entire relationship. As more principal is paid off, the probability of no event
declines heavily, although the dispersion is high. As there are fewer months remaining for the
contract, the probability of no prepayment event increases. This is possibly due to the fact that the
partial prepayment probability decreases as there are fewer months remaining and hence either a
full prepayment or no event happens. Moreover, mortgagors who consistently partially prepay, have
already fully prepaid their mortgage when the months remaining becomes small and hence have no
SHAP value for these feature values. Adding that mortgagors who prepay are inclined to prepay
again, it seems reasonable that partial prepayment probabilities decline when months remaining
decline and hence the no event probability increases. Additionally, the difference between the first
seven months of the contract and the later contract months is greater for the probability of no
prepayment event than that for a full prepayment. Hence, the probability of no prepayment event

increases from the fact that in the first seven contract months there is no partial prepayment.

5.5 Comparison coefficients with SHAP

Recall that instead of comparing the log odds coefficients from the multinomial logit, the coefficients
from the Poisson regressions are used to relate SHAP values of each class to regressions of each class.
These Poisson regressions form the basis of the multinomial logit and using these regressions gives
the additional benefit of being able to compare a coefficient for each class with the SHAP values of
each class. Table 9 shows the Poisson coefficients of the six most important variables according to
the SHAP model.

Similar to the SHAP values, the coeficients for no prepayment event and partial prepayment
have a higher absolute value than those of full prepayment. The only exception is the contract
interest rate, which coefficient for full prepayment has a higher absolute value. This is expected, as
this relationship in the SHAP plots is a linear relation.

The directions of the SHAP relationships and coefficients are similar for the partial prepayment
flag. Also the extreme influence for partial prepayment is captured by the MNL model. The MNL

model has difficulties with the non-linear relationship between model output and percentage UPB,
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No Event Full Prepayment Partial Prepayment

Partial prepayment flag -11.123 -0.903 20.157
% Principal paid off 0.043 -0.005 -0.038
Months remaining -0.003 -0.001 0.004
Loan age 0.010 -0.001 -0.008
Interest rate -0.260 0.380 -0.120

Log monthly income

Table 9: The coefficients of the regularized Poisson regressions for all 3 prepayment classes. Points indicate that the
variable is excluded from the regularized regression.

although the mainly upward direction of the no prepayment event class and mainly negative direction
of the partial prepayment class agree. For loan age and months remaining, the MNL model has very
small beta’s. The XGBoost model captures many interaction effects that the MNL has no capacity
of capturing without explicit modelling. The relationship of contract interest rate with prepayment
probabilities has similar directions for both models, except for partial prepayment. Where the
SHAP values indicate a constant or slightly increasing relationship, the Poisson regression shows
a negative relation. Interestingly, the regularized Poisson regression excludes the log of monthly
income as a variable, meaning that in the Poisson regression the log of monthly income is found to
have no significant predictive power. This possibly is due to the fact that people with middle-class
incomes have SHAP values of 0 and hence do not add to the probabilities. These middle incomes
form the majority of the data. The higher and lower incomes do have an effect, as is seen in the

SHAP plots.

6 Conclusion & discussion

This thesis has shown that a well tuned XGBoost model has superior performance over the multi-
nomial logit in a prepayment setting and hence is better able to predict prepayment events. The
F1 scores for all prepayment classes are higher for the XGBoost model than for the multinomial
logit model. The F1 scores of the XGBoost model increase when a distribution is added that limits
the number of partial prepayments. However, even the XGBoost model has a poor performance for
predicting full prepayments. The discriminatory power of the model between full prepayments and
the other prepayment classes for monthly observations is low. When plotting the predicted pre-
payment rate over time one can see that the XGBoost model either overpredicts or underpredicts

the full prepayment rate. The XGBoost model is highly sensitive to periods where the mortgage
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rate declines. The multinomial logit severely underpredicts full prepayments. In general, it rarely
predicts full prepayment and this is confirmed by the prepayment rate over time.

For the second part of the research, this thesis uses SHAP to investigate why the XGBoost
model makes a certain prediction. It is shown that many relationships between variables and the
prepayment probabilities are non-linear and that this is captured by the XGBoost model. All SHAP
figures display a degree of dispersion. This shows interaction between variables in the XGBoost
model. Whether a partial prepayment has already occurred is found to be the most important
contributor to the model in terms of average absolute SHAP values. The thesis confirms other
research that states that full prepayments are more likely as the loan ages.

Additionally, this thesis finds that extreme incomes have a distinct effect on prepayment proba-
bilities. Comparing the Poisson regression coefficients with the SHAP values, the two match roughly.
The SHAP values do display a high degree of non-linearity which is not in the Poisson regression
coefficients. Monthly income does not match, however. The regularized Poission regression shrinks
the coefficients of monthly income to zero whereas it is found to be an important feature by the
SHAP methodology.

A limitation of this research is that the Freddie Mac data does not include personal character-
istics such as age or race. The XGBoost model possibly predicts prepayment better when these
factors are in the model. Further research can focus on data sets including these personal charac-
teristics, e.g. non-public data sets from financial service providers, to see if the model improves.
Additionally, in the Freddie Mac data set no partial prepayments are observed for the first seven
months. This makes the XGBoost model not forecast partial prepayments in these months. Further
research can focus on the first months of the mortgage contract, or other data can be used where

these first months are not limited to full prepayments and no prepayment events.
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Figure 9: Correlation matrix of continuous variables of the Freddie Mac Single Family Loan Level Data Set enriched
with macroeconomic variables including transformed variables.
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Name

Value

Description

Credit Score

301-850 or 9999

Representation of a borrowers
creditworthiness. This is the score
at time of origination.

Date of first scheduled mortgage payment

Original Debt to Income

First Payment Date YYYYMM
First Time Indicates whether borrower is first time
Y,N,9
Homebuyer homeowner
Number of Units 1,2,3,4,99 Number of units in the property, 99 = NA
Denotes if the mortgage type is primary
Occupancy status P,S, 1,9 resident, Second home or Investment
property. 9 = NA
Or1g1naiTC\c;mb1ned 0-200%, 999 Original mortgage + secondary mortgages
Monthly debt payments divided by total
1-65%

monthly income

Original Unpaid Principal
Balance

Rounded to 1.000

The unpaid principal balance of the
mortgage on the note date.

Original Loan to Value

6-105%, 999

Dividing loan amount by lesser of the
property’s value or purchase
price, 999 = NA

Original Interest rate

%o

Interest rate of the loan.

Channel

R,B,C,T,9

Retail, Broker, Correspondent, Third Party,
Origination Not Specified, 9

Property State

XX

Abbreviation indicating the state of the
location of the mortgaged property.

Property Type

CO, PU, MH,
SF, CP, 99

Denotes whether the property type secured
by the mortgage is a condominium,
leasehold, planned unit development (PUD),
cooperative share, manufactured home, or
Single Family home.

Loan Sequence number

XXXXXX

Unique identifier assigned to each loan,
F1is FRM

Loan Purpose

P,C, N, 9

Indicates if the mortgage is cash-out
refinance mortgage, no cash-out refinance
mortgage or a purchase mortgage

Original Loan Term

123

A calculation of the number of scheduled
monthly payments based on the first
payment date and the maturity date.

Number of Borrowers

01, 02, 99

The number of borrowers who are obligated
to repay the mortgage. 01 = 1 borrower,
02 >1 borrower, 99 = NA.

Table 10: Explanation of the Freddie Mac Single Family Loan Level Data Set variables that are available at loan

origination.
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Name

Value

Description

Loan Sequence Number

XXXXXX

Unique identifier assigned to each loan.

Monthly Reporting Period

YYYYMM

As-of month for loan information contained
in loan record. Delinquency happened on
month before.

Current Actual UPB

12345

Current actual UPB reflects the mortgage
ending balance.

Current Loan Delinquency
Status

XX, 0, 1, 2,
3,...,R

A value indicating the number of days the
borrower is delinquent, based on the due
date of last paid installment. N is
in months and R means REO disposition.

Loan Age

123

Number of months since origination
of the mortgage.

Remaining Months to
Contractual Maturity

123

Number of months until contractual
maturity date of the mortgage

Zero Balance Code

1,2,3,6,9,15

Reason the balance has gone to zero.
1 = prepaid or matured (voluntary payoff),
2 = third party sale,
3 = short sale or charge off,
6 = repurchase prior to property disposition,
09 = REO Disposition,
15 = Note sale/re-performing sale.

Current Interest Rate

12345

Reflects the current interest rate on the
mortgage note, taking into account any
loan modifications.

Current deferred UPB

12345

The current non-interest bearing UPB

of the modified mortgage.

Table 11: Explanation of the monthly Freddie Mac Single Family Loan Level Data Set variables that follow the loan

over time.

59



Feature Class Class Class Class Class Class
FT buyer Yes No NA
91023 445429 266968
Occupancy Inv. Prop Prim. Prop Sec. home
48029 718165 37226
Channel Broker Cor. Retail Unspecified
42453 130753 399106 231108
State Alaska Alabama Arkansas Arizona  California Colorado
1871 9848 5886 19866 85697 18446
Connecticut DC Delaware Florida Georgia Hawaii
8988 1710 3177 45368 27297 3162
Towa Idaho Illinois Indiana Kansas Kentucky
8020 4611 34934 21994 9246 12684
Louisiana Mass. Maryland Maine  Michigan  Minnesota
8435 18499 18172 3587 30378 20402
Missouri  Mississippi Montana N Carolina N Dakota Nebraska
19491 3085 3102 27177 2094 4418
New Hamp. New Jersey New Mexico Nevada New York Ohio
4647 21917 4979 5708 34373 32177
Oklahoma Oregon Penn. Rhode Is. S Carolina S Dakota
8154 13936 30155 2297 12839 1585
Tennessee Texas Utah Virginia Vermont Washington
12212 51553 8652 24653 3046 23826
Wisconsin W Virg. Wyoming Extrater.
18311 2623 1461 2671
Property type Condo Co-op MH PUD SF home
57761 1514 6094 130773 607278
Loan purpose CO-ref  No CO-ref Purchase
222341 256009 325070
# Borrowers One Two
341161 462259
Ppmt flag Yes No
147064 656356
MR direction Up Neutral Down
346007 4784 452629
Month January February March April May June
67461 67787 68016 68571 68931 69209
July August September October  November December
64283 64859 65428 65865 66300 66710

Table 12: Summary statistics of categorical variables of the enriched cleaned Freddie Mac data set used to model
prepayments. For each categorical variable the number of observations that belong to each class or category of that

variable are displayed.
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No Event Full Prepayment Partial Prepayment
Delinquency status 0.1271 0.1648 -0.2919
Loan age 0.0095 -0.0014 -0.0081
Months remaining -0.0027 -0.0011 0.0038
Non-interest rate UPB . . .
FICO -0.0013 0.0006 0.0007
Non-first time homebuyer 0.0285 0.0232 -0.0517
First Time homebuyer 0.0243 -0.0755 0.0512
MI percentage . . .
Number of units 0.0195 -0.1130 0.0935
Occupancy: Primary resident -0.0927 0.2176 -0.1249
Occupancy: Second home -0.0759 0.0282 0.0477
Combined LTV 0.0002 0.0010 -0.0012
DTI 0.0052 0.0040 -0.0092
Original UPB -0.0007 0.0018 -0.0011
LTV 0.0026 0.0003 -0.0029
Interest rate -0.2600 0.3797 -0.1198
Channel - Correspondent
Channel - Retail . . .
Channel - Third party -0.0223 0.0174 0.0049
St. Alabama . . .
St. Arkansas 0.0169 -0.0024 -0.0145
St. Arizona 0.0114 -0.0007 -0.0107
St. California 0.0093 0.0512 -0.0605
St. Colorado -0.0720 0.1180 -0.0460
St. Connecticut
Washington DC . . .
St. Delaware 0.1460 0.0319 -0.1779
St. Florida 0.0373 -0.1154 0.0780
St. Georgia 0.0949 -0.0187 -0.0762
St. Hawaii 0.0257 -0.1224 0.0967
St. Iowa -0.0126 0.1999 -0.1873
St. Idaho 0.1384 0.0364 -0.1748
St. Mlinois -0.1275 0.0777 0.0498
St. Indiana . . .
St. Kansas -0.0202 -0.0255 0.0457
St. Kentucky -0.0008 0.0129 -0.0121
St. Louisiana 0.0350 -0.2531 0.2181
St. Massachusetts -0.0173 0.0415 -0.0241
St. Maryland . . .
St. Maine -0.0251 0.0297 -0.0046
St. Michigan -0.0104 0.1075 -0.0971
St. Minnesota -0.0330 0.0602 -0.0272
St. Missouri -0.0204 0.0102 0.0102

Table 13: Coefficients of the grouped regularized Poisson regressions. 1/3
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No Event Full Prepayment Partial Prepayment
St. Mississippi
St. Montana . : .
St. North Carolina 0.0337 0.0310 -0.0647
St. North Dakota . . :
St. Nebraska 0.0276 0.0676 -0.0952
St. New Hampshire -0.0086 0.0103 -0.0017
St. New Jersey -0.0314 -0.0837 0.1151
St. New Mexico 0.2092 -0.0205 -0.1887
St. Nevada -0.0095 0.0057 0.0038
St. New York 0.1613 -0.1253 -0.0360
St. Ohio -0.0692 -0.0282 0.0974
St. Oklahoma 0.0463 -0.0600 0.0137
St. Oregon 0.0220 -0.0165 -0.0055
St. Pennsylvania -0.0270 -0.0803 0.1074
St. Rhode Island 0.0257 0.0452 -0.0709
St. South Carolina 0.0035 -0.0427 0.0392
St. South Dakota -0.0515 0.0083 0.0432
St. Tennessee . . .
St. Texas -0.0046 -0.1634 0.1679
St. Utah -0.0716 0.0987 -0.0272
St. Virginia . . .
St. Vermont -0.0737 -0.0395 0.1132
St. Washington 0.0046 0.0017 -0.0063
St. Wisconsin -0.2211 0.1214 0.0997
St. West Virginia . . .
St. Wyoming -0.1307 -0.0724 0.2030
Extraterritorial areas 0.6149 -0.2177 -0.3972
Property Type - Co-op . . .
Property Type - MH 0.2548 -0.2222 -0.0326
Property Type - PUD -0.0193 0.0171 0.0022
Property Type - SF -0.0220 -0.0469 0.0689
Purpose: NCO refinance -0.0358 0.0009 0.0350
Purpose: Purchase -0.1173 -0.0056 0.1229
Original loan term . . .
Number of borrowers -0.0110 0.0785 -0.0676
Partial prepayment flag -11.123 -0.9034 20.157
A mortgage rate 0.0004 -0.0003 -0.0001
Mortgage rate direction: down 0.0071 -0.0048 -0.0023
Mortgage rate direction: up -0.0223 0.0179 0.0043
Mortgage rate sum of diff 6m 0.2154 -0.3452 0.1298
Mortgage rate SD 12-6 0.1198 -0.1894 0.0696
Mortgage rate moving av. 6m 0.1149 -0.2508 0.1359
Mortgage rate MA 12-6 -0.0035 0.0035 -0.0001
House price index -0.0036 0.0047 -0.0011

Table 14: Coefficients of the grouped regularized Poisson regressions. 2/3
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Figure 11: Percentage deviance explained for every lambda in the regularized multinomial logit. The log of lambda
is taken because of its skewness towards low values. The vertical line corresponds with lambda = 0.001.
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No Event

Full Prepayment

Partial Prepayment

Real GDP growth
Unemployment rate
Savings rate

% principal paid off
February

March

April

May

June

July

August

September

October

November
December

Log monthly income

-0.0232
-0.0189
-0.0020
0.0432
0.0058

-0.0115
0.0710
-0.0055

0.0062

0.0088
0.0587

0.0422
0.0188
0.0009
-0.0049
0.0105

0.0080
-0.0351
0.0020

0.0183

-0.0018
-0.0809

-0.0190
0.0001
0.0011

-0.0383

-0.0163

0.0035
-0.0359
0.0035

-0.0245

-0.0070
0.0222

Table 15: Coefficients of the grouped regularized Poisson regressions. 3/3
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Full Prepayment

Partial Prepayment

Delinquency status 0.0377 -0.4190
Loan age -0.0109 -0.0176
Months remaining 0.0016 0.0065
Non-interest rate UPB . .
FICO 0.0019 0.0020
Non-first time homebuyer -0.0053 -0.0802
First Time homebuyer -0.0998 0.0269
MI percentage . .
Number of units -0.1325 0.0740
Occupancy: Primary resident 0.3103 -0.0322
Occupancy: Second home 0.1041 0.1236
Combined LTV 0.0008 -0.0014
DTI -0.0012 -0.0144
Original UPB 0.0025 -0.0004
LTV -0.0023 -0.0055
Interest rate 0.6397 0.1402
Channel - Correspondent

Channel - Retail . )
Channel - Third party 0.0397 0.0272
St. Alabama . .
St. Arkansas -0.0193 -0.0314
St. Arizona -0.0121 -0.0221
St. California 0.0419 -0.0698
St. Colorado 0.1900 0.0260
St. Connecticut

Washington DC . .
St. Delaware -0.1141 -0.3239
St. Florida -0.1527 0.0407
St. Georgia -0.1136 -0.1711
St. Hawaii -0.1481 0.0710
St. Iowa 0.2125 -0.1747
St. Idaho -0.1020 -0.3132
St. Illinois 0.2052 0.1773
St. Indiana i )
St. Kansas -0.0053 0.0659
St. Kentucky 0.0137 -0.0113
St. Louisiana -0.2881 0.1831
St. Massachusetts 0.0588 -0.0068
St. Maryland . .
St. Maine 0.0548 0.0205
St. Michigan 0.1179 -0.0867
St. Minnesota 0.0932 0.0058
St. Missouri 0.0306 0.0306

Table 16: Coefficients of the multinomial logit model. The coefficients represent the log odds for each class against
reference class “no event”. 1/3
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Full Prepayment Partial Prepayment

St. Mississippi

St. Montana . )
St. North Carolina -0.0027 -0.0984
St. North Dakota . .
St. Nebraska 0.0400 -0.1228
St. New Hampshire 0.0189 0.0069
St. New Jersey -0.0523 0.1465
St. New Mexico -0.2297 -0.3979
St. Nevada 0.0152 0.0133
St. New York -0.2866 -0.1973
St. Ohio 0.0410 0.1666
St. Oklahoma -0.1063 -0.0326
St. Oregon -0.0385 -0.0275
St. Pennsylvania -0.0533 0.1344
St. Rhode Island 0.0195 -0.0966
St. South Carolina -0.0462 0.0357
St. South Dakota 0.0598 0.0947
St. Tennessee . .
St. Texas -0.1588 0.1725
St. Utah 0.1703 0.0444
St. Virginia . .
St. Vermont 0.0342 0.1869
St. Washington -0.0029 -0.0109
St. Wisconsin 0.3425 0.3208
St. West Virginia . .
St. Wyoming 0.0583 0.3337
Extraterritorial areas -0.8326 -1.0121
Property Type - Co-op . .
Property Type - MH -0.4770 -0.2874
Property Type - PUD 0.0364 0.0215
Property Type - SF -0.0249 0.0909
Purpose: NCO refinance 0.0367 0.0708
Purpose: Purchase 0.1117 0.2402
Original loan term . .
Number of borrowers 0.0895 -0.0566
Partial prepayment flag 0.2089 3.1280
A mortgage rate -0.0007 -0.0005
Mortgage rate direction: down -0.0119 -0.0094
Mortgage rate direction: up 0.0402 0.0266
Mortgage rate sum of diff 6m -0.5606 -0.0856
Mortgage rate SD 12-6 -0.3092 -0.0502
Mortgage rate moving av. 6m -0.3657 0.0210
Mortgage rate MA 12m6 0.0070 0.0034
House price index 0.0083 0.0025

Table 17: Coefficients of the multinomial logit model. The coefficients represent the log odds for each class against
reference class “no event”. 2/3
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Full Prepayment

Partial Prepayment

Real GDP growth
Unemployment rate
Savings rate

% principal paid off
February

March

April

May

June

July

August

September

October

November
December

Log monthly income

0.0654
0.0377
0.0029
-0.0481
0.0047

0.0195
-0.1061
0.0075

0.0121

-0.0106
-0.1396

0.0042
0.0190
0.0031
-0.0815
-0.0221

0.0150
-0.1069
0.0090

-0.0307

-0.0158
-0.0365

Table 18: Coefficients of the multinomial logit model. The coefficients represent the log odds for each class against

reference class “no event”. 3/3

Lambda Relative deviance explained Lambda Relative deviance explained
0.070 0.267 0.016 0.320
0.064 0.270 0.014 0.323
0.058 0.274 0.013 0.325
0.053 0.277 0.012 0.328
0.048 0.279 0.011 0.330
0.044 0.281 0.010 0.332
0.040 0.283 0.009 0.333
0.036 0.285 0.008 0.335
0.033 0.288 0.007 0.338
0.030 0.293 0.006 0.34
0.028 0.298 0.005 0.343
0.025 0.302 0.004 0.347
0.023 0.306 0.003 0.350
0.021 0.31 0.002 0.352
0.019 0.313 0.001 0.354
0.017 0.316 0.000 0.357

Table 19: All lambda’s and the corresponding percentage deviance explained. The lambda used for the regularized

multinomial logit is in bold. This table corresponds to Figure 11 in the Appendix.
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Figure 12: SHAP values of the 12 most important variables for class full prepayment in the XGBoost model.
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Figure 13: SHAP values of the 12 most important variables for class partial prepayment in the XGBoost model.
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SHAP values of the 12 most important variables for class no event in the XGBoost model.
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