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Abstract

In this thesis we decompose a large Vehicle Routing Problem
with multiple depots, a heterogeneous fleet and customers with time
windows. The process, which we call ‘multi-process route optimiza-
tion’, first splits the VRP over smaller sub-problems and then solves
these sub-problems simultaneously using multiple processors. The
goal is to obtain solutions of similar quality in substantially less
time. We develop an evolutionary based decomposition method
with a fitness function that considers both the running time and
solution quality. Computational experiments on real world problem
instances show that solutions can be obtained in substantially less
time. After a few iterations we can even obtain better solutions
than without decomposition. After a few iterations of splitting and
solving, we alternate our splitting method with the Sweep method
to create more diversity in our splits.
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1 Introduction

As more and more customers order online, it becomes more difficult to
find the most efficient way to distribute goods. The distribution of goods
contributes to the total cost of a product, therefore routes must be con-
structed such that the total travel distance is minimized and less vehicles
are needed. Additionally, customer satisfaction must be increased to com-
pete with competitors. One of the factors that contributes to satisfaction
is time. Many retailers offer the option of next day delivery. Therefore, the
construction of routes needs to be fast.

The delivery of orders to customers can be seen as a Vehicle Routing
Problem (VRP). The classical VRP consists of a set of customers that need
to be served with a set of vehicles from a central location, called the depot.
The routing problem is to construct vehicle routes such that all customers
are served, while minimizing the total transportation costs.

In real life applications, the VRP is often extended with additional
characteristics and constraints, like the use of a heterogeneous vehicle fleet.
In this thesis, we consider a routing problem for a large retail company.
Customers are assigned to a specific time window in which they need to
be served. Additionally, there are multiple depots that differ in capacity.
Last, we have a heterogeneous vehicle fleet.

Since the VRP is a NP-hard problem (Lenstra and Kan, 1981), real-
world problems with large sized instances cannot be solved to optimality
within reasonable time. Although it is difficult to obtain an exact solution,
approximate solution techniques are available. However, the running time
of these techniques can also increase rapidly when the size of the problem
increases. Moreover, the huge amount of data that needs to be stored to
solve the problem can lead to memory issues.

A possible solution for this is to divide the large VRP over smaller
sub-problems and solve these sub-problems simultaneously using multiple
processors. We will call this multi-process optimization. In this way we
need less memory and the running time decreases. In this thesis we will
develop a suitable method to define these sub-problems. The goal is to
obtain a quality that is similar to solutions created without splitting in
substantially less time.

The research is carried out in cooperation with ORTEC, a large provider
of optimization software. Multi-process route optimization is relatively new
at ORTEC, and not much research is done on multi-process optimization
for routing problems with additional characteristics. Available literature
on multi-process optimization also focuses on simple versions of the VRP
with one depot, homogeneous fleet and no time windows. There is thus a
huge potential for research in the multi-process area.

This thesis is structured as follows. First, we will discuss and review rel-



evant literature in Section 2. In Section 3 we describe the problem, followed
by the description of multi-process optimization in Section 4. Next, we dis-
cuss our decomposition method in Section 5.1. In Section 6 we discuss some
computational experiments to test our method and show the corresponding
results. Last, Section 7 contains a conclusion and discussion.

2 Literature review

Researchers have been studying solution methods for the VRP for the past
decades. Due to the complexity of real-life problems, the VRP is often
extended with additional characteristics and constraints. In this thesis
we consider a Multi-Depot Heterogeneous Vehicle Routing Problem with
Time Windows (MDHVRPTW). We need to take these characteristics into
account when we decompose the problem.

Decomposing a problem instance can also be seen as clustering cus-
tomers and solve the problem for each cluster. Many studies use the term
clustering. Below we will review some of these studies and point out the dif-
ferences and similarities with multi-process optimization. The methods can
be divided in two main classes, namely cluster-first, route-second heuris-
tics and route-first, cluster-second heuristics (Bowerman et al., 1994). After
that we will review some studies that are more similar to multi-process op-
timization. Finally, we review some cluster techniques that are combined
with a Genetic Algorithm.

2.1 Cluster-first, route-second heuristics

Multi-process route optimization has some similarities with the ‘cluster-
first, route-second’” methods known from literature. In this method all
customers are clustered and assigned to a vehicle after which routes are
computed independently by solving a Traveling Salesman Problem (TSP)
(Flood, 1956).

A commonly used method to solve VRPs in this way is the Sweep
method (Gillett and Miller, 1974). This method constructs tours by sorting
customers according to the polar angle they span with the depot. After
the tour is initiated by an arbitrary direction, it is extended by iteratively
adding the next customer on the list. If the tour becomes infeasible by an
insertion, a new tour is initiated with the chosen customer. Unfortunately,
this method gives poor results for the VRP with time windows, because
it is difficult to get compatible time windows in a cluster (Labadi et al.,
2008).

Distance measures are also often used to cluster customers locations
(Anderberg, 1973). In Ho et al. (2008) the Clarke and Wright (1964) sav-
ing method is used. The saving value for two customers is equal to the



difference between the distance of the customers to the depot and the dis-
tance between the two customers. Customers are clustered based on larger
saving values. For problems with multiple depots, the authors propose
to decompose the problem into a single depot problem first, by assigning
customers to the closest depot.

In Ganesh and Narendran (2007) a VRP with delivery and pick-up is
considered. In this study an initial number of seed nodes is chosen that
will form the clusters. Roughly half of these nodes are the farthest away
from the depot and half are nearest. Customers are assigned to the cluster
with closest seed node.

Dondo and Cerdd (2007) extend the multi-depot VRP with time win-
dows and heterogeneous fleet. A time-window based heuristic is used to
group customers together in clusters, such that the customers can be as-
signed to one vehicle and the waiting time is minimal. In the next phase
clusters are assigned to vehicles, which are then assigned to a depot. The
first phase of the algorithm can take some time, because initial routes need
to be constructed. Since we want to keep our running time low, we prefer
the splitting phase to be fast.

A similar problem is considered in Tansini and Viera (2006). First, an
urgency measure is calculated to determine the order in which customers
should be assigned to a cluster. This urgency is based on the difference
between the proximity to the closest depot and the second closest depot.
Proximity is a function of travel distance and distance in time windows to
other customers in the cluster. While most studies only use time window
to check for compatibility, this study incorporates time windows in the
proximity measure.

Koskosidis et al. (1992) decompose the problem by solving a Capaci-
tated Clustering Problem where they approximate the cost of assigning a
customer to a vehicle. Since the effect of assigning a customer to a cluster
is only known after the routing phase, the algorithm starts with some ini-
tial cost matrix. The routes are evaluated after construction and used to
update the cost matrix. The algorithm then iterates between the clustering
and routing phase, each time updating the cost matrix.

Ostertag (2008) also performs multiple cluster iterations for a multi-
depot VRP with time windows. In the first iteration, customers are clus-
tered with a simple heuristics that assigns customers to the closest depot.
Because this decomposition method can give an uneven distribution over
the sub-problems, sub-problems can be further divided using the Sweep
algorithm or can be merged with other sub-problems. The resulting sub-
problems are solved with a Memetic Algorithm. In the next iteration new
sub-problems are formed by clustering routes based on proximity measures
through sweeping and distance. The author compares his method with
a fixed decomposition and shows that customers that lie nearly halfway



between depots can be better assigned when using multiple iterations re-
sulting in a better objective value.

The k-means algorithm can also be used to cluster customer locations.
In Geetha et al. (2009) and Kim et al. (2006) the standard algorithm is
adjusted by including a priority measure to select locations for a cluster,
since the clusters have limited capacity. Both studies set the initial number
of clusters equal to the estimated number of vehicles required to serve all
customers. The required number of vehicles is estimated by dividing the
sum of all demand quantities by the vehicle capacity. After the cluster
centroids have been chosen, assignment of customers is done according to
a priority rule. The priority rules of the studies are as follows.

Because smaller demands can probably be more easily packed in a clus-
ter, Geetha et al. (2009) assign customers with higher demand first. In Kim
et al. (2006) the order of assignment is based on the distance to the cen-
troid of the cluster centroids, called the ‘grand’ centroid. Customers that
are farther away from this grand centroid are assigned first. Customers can
only be assigned to a cluster if the vehicle capacity is not exceeded and all
customers can still be served by the same vehicle within their time window.

In Reed et al. (2014) the k-means algorithm is used as a preprocessing
step. They first use the built-in algorithm in MATLAB without taking the
capacity load into account. To adjust for this, they try to move a customer
of the cluster with greatest excess demand to a neighbouring cluster. This
clustering information is used to perform their ant colony optimization
method on each cluster separately.

Barreto et al. (2007) evaluated several cluster analysis based heuris-
tics to group customers. The grouping method that performed best was
a hierarchical method that iteratively merges nearest groups. Assigning
customers to the nearest depot also gave good results. To determine the
closeness of customers, different proximity measures were studied. Prox-
imity measure that gave the best result on average were group average
and centroid measures. However, the quality of proximity measure seems
instance-dependent.

2.2 Route-first, cluster-second heuristics

The opposite approach, called ‘route-first, cluster-second’ heuristics, clus-
ters customers in the second phase. Beasley (1983) proposed to relax the
vehicle capacity constraint and build one “giant tour” by solving a travel-
ling salesman problem. This tour is then split into a set of individual routes
satisfying the capacity constraints. The idea is that in this way customers
are clustered based on their closeness.

The giant tour can be constructed in several ways. In Ryan et al. (1993)
the order of customers in the giant route are in ascending or descending



order of polar angle relative to the depot. Nearest neighbour heuristics are
also suited to construct giant tours (Ho et al., 2008).

In the multi-depot heterogeneous VRP of Salhi and Sari (1997) giant
tours are constructed per depot. The authors argue that assigning customer
to their closest depot can give poor results if customers are nearly halfway
between two depots. These borderline customer are therefore not assigned
beforehand, but inserted after the giant tour is constructed and split. The
heterogeneous fleet is handled by assigning the smallest vehicle that can
accommodate the total demand of a route.

This basic idea of constructing a giant tour can be extended to deal with
additional constraints. Prins et al. (2014) give an overview of associated
literature. One extension is to exclude the depot from the tour to increase
the flexibility in partitioning. Additionally, this allows for the construction
of giant tours in multi-depot problems. For each subsequence of customers
the best depot and its optimal insertion can be determined (Vidal et al.,
2014). Heterogeneous fleet can be handled in the same way. Labadi et al.
(2008) incorporate time windows in the splitting procedure by doing a
feasibility check on the time windows.

Several studies alternate between the two solution spaces (giant tours
and routing solutions). This approach can also be combined with genetic
algorithms or ant colony optimization. In the former, giant tours are en-
coded as chromosomes and a crossover operator is used to generate new
chromosomes (Lacomme et al., 2001; Prins, 2004). In Santos et al. (2010)
giant tours are built by ants based on pheromone information.

2.3 Decomposition strategies

In this thesis we develop a more general decomposition strategy. The main
difference between the mentioned cluster heuristics and multi-process op-
timization is that the main goal of multi-process optimization is to reduce
the running time. Another difference is that in multi-process optimization
customers are assigned to a split that can consists of multiple vehicles. Fur-
thermore, multiple iterations can be performed to determine the optimal
split. We can nevertheless use these heuristics as starting point and change
the capacity condition of a cluster.

The term multi-process optimization is not used in the literature. How-
ever, some researchers have been using similar methods under a different
name. Below we review some of these studies.

Taillard (1993) uses the Sweep method to divide a problem instance into
a pre-specified number of polar regions. Approximately the same number of
customers are assigned to each region. These regions can be further divided
based on the radius of the locations. Each sub-problem is treated as an
independent VRP and can be solved in parallel. This method works well



for problems with customers uniformly divided around the depot, as shown
by high quality solutions for classical problems. A relatively simple VRP is
considered in this study and the proposed method becomes difficult when
the problem has multiple depots. The method can, however, be applied if
we first assign customers to a depot.

Another example of a decomposition strategy is the D-Ants approach of
Reimann et al. (2004). The problem is decomposed by applying the Sweep
method to the centres of gravity of an initial route solution. The authors
show that decomposing the problem and then solving these smaller sub-
problems improves the effectiveness of the solving strategy. An advantage
is that this method can be applied to any vehicle routing problem, including
VRPs with time windows and multiple depots. The authors also suggest
to decompose the problem in several single-depot problems first, and then
apply their algorithm.

Taillard and Voss (2002) introduce a framework that tries to standardize
the decomposition procedure. The method is named as POPMUSIC, which
stands for Partial OPtimization Metaheuristic Under Special Intensification
Conditions. An initial solution is split into p parts using some relatedness
measure. A sub-problem is then created by aggregating the closest r parts
around a chosen seed part. The sub-problems can be re-solved. If solving
the sub-problem yields an improvement, the complete solution is updated.

2.4 Cluster-based Genetic Algorithms

Cluster techniques can also be combined with a Genetic Algorithm (GA) to
iteratively improve the sub-problem distribution (Cheng and Wang, 2009).
Researcher Thangiah was one of the first to use GA for the clustering
phase in the ’cluster-first, route-second” methodology. In Thangiah (1993)
a system is developed to solve the VRPTW. Seed angles originating from
the depot are used to partition customers in clusters, one for each vehicle.
The seed angles are computed using a fixed angle and an offset from the
fixed angle. The GA is used to search for the set of offset that minimizes the
total operating cost. To evaluate the clusters produced by this algorithm,
a route is formed with a least-cost insertion heuristic, where time window
and capacity violations are penalized. The crossover operator exchanges
some randomly selected offsets.

Often, chromosomes directly represent the cluster distributions. In
Cheng and Wang (2009) chromosomes denote by which vehicle the cus-
tomers are served. New chromosomes are created by recombining two chro-
mosomes with a two-point crossover. A mutation operator is applied with
probability p,, and randomly swaps the vehicle of two selected customers.
The fitness value of a chromosome is obtained by summing the objective
values of the corresponding sub-problems. A drawback of this method is



that in each iteration all sub-problems need to be solved to obtain the fit-
ness value, since route information is not saved. This is inefficient since not
all clusters have been changed after crossover. Furthermore, if the cluster
size increases, solving all clusters is more time consuming.

Another example of a cluster-based GA is that of Pankratz (2005),
where each gene of a chromosome corresponds to a cluster of customers
served by the same vehicle. Offspring is produced by inserting one or more
clusters from the second parent into the first parent. Duplicate vehicles
and customers that originally belong to the first parent are removed from
the solution. Customers that become unassigned by this removal are re-
inserted. Finally, a mutation operator eliminates a cluster and re-inserts the
associated customers with an insertion heuristic. The fitness values of the
initial population are obtained by creating a route for each vehicle with an
insertion heuristic. Routes are re-adjusted after applying genetic operators
by deleting customers that were part of the regrouping and reinsert them.

In Maulik and Bandyopadhyay (2000) an evolutionary based variant
of the k-means algorithm is developed where GA is used to determine
the cluster centroids. Chromosomes represent the cluster centroids and the
fitness value of each chromosome is calculated by the sum of distances from
customers to the centroid. Single-point crossover is used to create offspring
where points to the right of some integer are exchanged between parents.
Last, new solutions are mutated with a fixed probability by multiplying
the centroid point by some d € [0, 1].

Several other studies use GA to determine cluster distribution (Potter
and Bossomaier, 1995; Thangiah and Salhi, 2001; Jorgensen et al., 2007),
and in almost all studies evaluating chromosomes involves solving the rout-
ing problem. If the problem size increases, this can be very time consuming.
We will therefore try to develop a GA where the fitness evaluation will be
fast.

3 Problem description

In this section we describe the problem of the retail company. A more
generic VRP in which vehicles have limited capacity is called the Capaci-
tated Vehicle Routing Problem (CVRP). We first give a description of the
CVRP before we discuss the specific characteristics of our problem.

3.1 Capacitated vehicle routing problem

The delivery of orders to customers can be viewed as a CVRP. The road
network is defined on a directed graph G = (V, A), where V' denotes the set
of vertices and A the set of arcs. The set A contains arcs between each pair
of nodes. The set of vertices can be divided into a set of customer nodes, N,
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and a depot node, d. Each customer has a certain demand quantity. The
available vehicles form the set K and have a certain capacity ). Orders
are assigned to a vehicle in such a way that the total volume of the orders
does not exceed the vehicle capacity. A route is defined by a sequence of
customers assigned to one vehicle.

The goal is to find a set of routes for the vehicle fleet to serve the set
of customers such that the transportation costs of the routes is as low as
possible.

3.2 Components

In this subsection we explain in more detail the three components of our
extended CVRP, namely the customers, depots and vehicles. For each
component several characteristics and constraints are discussed.

3.2.1 Customers

Each customer location is represented by a node in the graph. The demand
of customer i € N is measured by two units, denoted by P, = (P, Pa;).
Orders have to be delivered within a given time window. That is, for each
customer i € N there is a time window [a;, b;]. This means that orders can
only be delivered after a; and before b;. If a vehicle arrives at the customer
location before a; it has to wait. Last, each customer location has a fixed
service duration, s;, that represents the time needed to handle the order.

3.2.2 Depots

Instead of having one depot, the considered retail company operates from
multiple depots, denoted by the set D. There are two different types of
depots: main depots and sub-depots. For the main depot we can assume
that the capacity is not restricting. There are, however, a limited number
of vehicles available. At the sub-depots both the number of vehicles and
the capacity are restricting. Since some vehicles are allowed to reload at
the depot, the capacity of the depots can be larger than the sum of vehicle
capacities. Customers can be supplied from both types of depots.

3.2.3 Vehicles

At each depot d € D, a set of vehicles, Ky, is available. The fleet set
consists of heterogeneous vehicles, with the different types denoted by the
set W. Each type w € W has a capacity @, = (@10, Q2.w), driving speed
Sw, and operating cost o,. The fleet set thus consists of heterogeneous
vehicles, with different capacities, driving speed and operating costs.
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Vehicles can have a route assigned to it. A route starts with loading at
a depot and for each route it is pre-specified at which depot it must start.
After visiting the assigned customers, the vehicle returns to the same depot.
Some vehicles can load again and supply additional customers. Each time
the vehicle reloads at the depot, we say that it starts a new trip. A route
can thus consist of multiple trips. For each vehicle it is specified how many
trips it can execute.

Each vehicle has an earliest start time and a latest finish time. Vehicles
can only operate between these two times. There are also break require-
ments that need to be taken into account. Vehicles have to take a break
of x minutes for a working time between y; and y, minutes. Last, each
vehicle has a maximum allowed working time.

4 Multi-process route optimization

We will now explain the different stages of multi-process route optimization.
We first decompose the problem after which we will solve each sub-problem
individually using a specified solving procedure. Below these stages are
described in more detail.

4.1 Problem decomposition

The first step in multi-process optimization is to decompose the problem in
several sub-problems. The idea of problem decomposition is to decompose
a large VRP over smaller sub-problems and solve each of these simulta-
neously using multiple processors. With problem decomposition we mean
that the orders, depots and vehicles are divided over the different sub-
problems. Orders and vehicles can only occur in one sub-problem, while
depots can be in more sub-problems. Aggregating the sub-problems con-
stitutes a complete solution.

The main objective of multi-process optimization is to obtain a solution
quality that is similar to solutions created without splitting in substantially
less time. The quality of a solution is denoted by a cost function. A lower
cost yields a better solution. We only consider a solution to be feasible if
all customers are served.

Our algorithm consists of different types of iterations to determine the
best decomposition. Figure 1 gives a schematic overview of the procedure.
A multi-process iteration is defined as the process starting with decom-
position and ending with consolidation. During the decomposition phase,
sub-problem decompositions are initialized and improved using a genetic
algorithm, which we will explain in Section 5. The best decomposition is
returned and its sub-problems are solved. After consolidation, we can start
a new multi-process iteration or return the consolidated solution.
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In the first multi-process iteration we assume that all customers are
unplanned and we therefore split on the customer-level. From the second
iteration onward, when routes are constructed by solving sub-problems, the
splitting is done on the route-level which keeps important information of
the solution. Due to the current implementation of multi-process optimiza-
tion in the ORTEC software, we keep the customers and vehicles together
during the algorithm. We consider customers in a route as planned and all
remaining customers as unplanned.

Customers, vehicles, depots

J

Decompose the problem

Genetic algorithm

[ ]

Sub-problems

LU IR 8

Solve each sub-problem

Vehicle routes

Vo

Consolidate solutions of
sub-problems

vehicle routes,
depots

unplanned customers,

Final solution

A

Figure 1: Schematic overview of multi-process route optimization

We point out that we mainly focus on the splitting phase, not on solving
the sub-problems. We do however investigate if a good decomposition
depends on how the sub-problems are solved. In the next sections we
will explain how we solve the sub-problems and how we relate this to our
decomposition method.

4.2 Solving sub-problems

After we decomposed the problem, the next step is to solve the sub-
problems independently (and simultaneously). The solving is done with
an optimization system from ORTEC, called CVRS. This system contains
many heuristics and metaheuristics to solve vehicle routing problems. The
solving process can be divided in different parts. First a constructive heuris-
tic is used to create a feasible solution. After finding a solution, local search
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is applied to improve the solution. Optionally, a ruin-and-recreate princi-
ple is performed where a part of the solution in removed and constructed
again to escape local minima.

The product is highly configurable. A command template is used to
specify the combination of algorithms that should be used and in which
order. There exists a template that is specifically created to fit the needs
of the client. This template gives high quality solutions, but at the expense
of a high running time. To keep our method more general, we use a basic
template that is not designed to fit specific needs. A good decomposition
probably depends on which solving method is used for the sub-problems.
We therefore will consider two different templates. We will investigate how
we should define some elements of the genetic algorithm if the solution
method changes.

The two different templates we consider have the following character-
istics. The first template produces a high quality solution at the cost of a
longer running time, while the second template solves the problem much
faster but also has a lower quality solution. Both templates have a con-
struction phase followed by a local search procedure. The slow template
additionally performs the ruin-and-recreate principle. The command tem-
plate for the second multi-process iteration also has a constructions phase,
but only to insert any unplanned customers.

After the sub-problems are solved, the solutions are consolidated. A
new multi-process iteration can start, splitting the problem on the route-
level.

5 Genetic algorithm for decomposition

In this thesis we use a genetic algorithm for our decomposition method.
We will perform multiple multi-process iterations, therefore our algorithm
needs to be defined for both the customer-level as well as the route-level.
We first describe the main idea of a genetic algorithm before we define the
core concepts of the algorithm.

5.1 OQOutline genetic algorithm

The genetic algorithm is a search heuristic that is inspired by the theory on
natural evolution. The fittest individuals of the population are selected to
produce offspring. In Algorithm 1 a description of our genetic algorithm is
given. Our genetic algorithm starts with forming an initial population with
sub-problem decompositions generated by a fast splitting procedure. For
each individual in the starting population the fitness value is calculated.
Since solving all sub-problems is time-consuming, our fitness function is
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an approximation of the costs. We will explain in Section 5.2 how this
approximation is defined.

After the initial population is formed the following steps will be repeated
until a stopping criterion is met. First, two parents are selected from the
population and are combined through a crossover operator to generate two
offspring. To maintain genetic diversity, different mutation operators are
used on the offspring. The fittest individual will enter the population. We
keep a fixed number of individuals in our population, therefore one of the z
worst individuals is removed. If the stopping criterion is met, we evaluate
the chromosome with the best fitness value.

Algorithm 1 Overview genetic algorithm
1: create an initial population with n individuals
2: for iteration = 1tor do
3: select two parents P; and P,
4 apply the crossover operator to form offspring C; and C5
5 for each mutation operator m do
6: if random < p,, then
7.
8

apply mutation operator m

add best offspring to population and
9: randomly remove one of the z worst individuals

10: return individual with the best fitness value

5.2 Chromosomes and evaluation

An important setting in the genetic algorithm is the encoding of solutions
into chromosomes. Each chromosome in our population represents a sub-
problem distribution. For each customer, vehicle, and depot it is denoted
to which sub-problem it belongs. For simplicity, we assume that the depot
capacity is defined by the available vehicle capacity. Hence we do not need
to divide the depot capacity over sub-problems if the depot occurs in more
than one sub-problem. The difference between the depot capacity and total
vehicle capacity is small in our considered instances. The number of sub-
problems is variable and can vary over different chromosomes. There are,
however, a limited number of processors available giving us an upper limit
for the number of sub-problems.

Since it is very expensive with respect to running time to solve each
sub-problem, we approximate the quality of a sub-problem distribution
without solving it. We focus on both the running time and the solution
quality. We therefore split our algorithm in two phases. In each phase we
use a different fitness function to represent the main focus of that phase.
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In the first phase of our genetic algorithm we focus more on the running
time. With the fitness function in this phase we aim to get the desired
number of sub-problems as well as the desired size. We will refer to this
fitness function as the size fitness function. Although we focus more on
the sub-problem size, we also add an indication of the solution quality and
feasibility.

In the second part we focus more on the the solution quality using a
different fitness function, called the approzimate cost fitness function. We
only consider the best m chromosomes of the first phase and re-calculate
the fitness function. From here, we continue our algorithm as before.

5.2.1 Sub-problem size

With the size fitness function we focus on the running time. This is done by
focusing on the number of sub-problems and their sizes, as the running time
decreases if a sub-problem is smaller. As mentioned before, we also add
an indication of the solution quality and feasibility to avoid low solution
quality in the end. Normally, a higher fitness function constitutes a better
solution, but in our fitness function, good decompositions are featured with
a lower fitness value.

The size fitness function consists of multiple parts, each corresponding
to a different quality measure. The importance of each measure is deter-
mined by a parameter. The fitness function of a chromosome S looks as
follows:

F(S)=aG(S) + BH(S) +~1(S) + 0K(S) + CL(S). (1)

In the rest of this section we will discuss these five quality measures.

Within sub-problem proximity

Since the operating costs depend on the driving time and distance, cus-
tomers should preferably be close to each other. The first quality measure,
G(S), therefore calculates the within sub-problem proximity. We calculate
this measure as follows: Let S = {S},5s,...,Sr} be the set of R sub-
problems and N, the set of customers in sub-problem r. The centre of
gravity z, of sub-problem r is denoted by:

2y = <Z’i€Nr %7 ZieNr yi) (2)
| N: |V
The within sub-problem proximity is defined as the average distance be-

tween customers and the centre of gravity of their sub-problem. It is de-
noted as follows:

D @y = =, (3)

€N,

T
G(S):ZW

vl
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where S represents a chromosome with a sub-problem distribution and z,
the centre of gravity of sub-problem .S,.

Feasible capacity

With H(S) we check for feasibility of the vehicle capacity. If the total
vehicle capacity is lower than the order quantity, we add this capacity
shortage to the fitness value. Infeasible decompositions are thus featured
with a higher fitness value. Since infeasible solutions can have promising
properties and unplanned orders are considered in next iterations, we do
not delete them.

Let D, and K, denote the set of depots and vehicles in sub-problem r,
respectively. For simplicity we denote the customer demand by P and the
vehicle capacity by @). The total order quantity and total vehicle capacity
of sub-problem r are then denoted by:

TP.=) P, TQ.=) Q. (4)

1EN, JEK,

The feasibility check can then be defined as follows:

R
H(8) = Irporq, x (TP~ TQ,), (5)
r=1

were [ is an indicator function that represents whether there is a capacity
shortage.

Besides checking for feasibility, we also want an equal distribution of
the remaining capacity over the sub-problems. With remaining capacity
we mean the difference between the total vehicle capacity and the total
order quantity, assuming we can fully exploit the vehicle capacity. It might
be beneficial to have some spare capacity, since additional constraint make
it harder to use the full capacity of vehicles. The difference between the
maximum and minimum remaining capacity is added to the fitness value,
denoted as follows:

H2(S) = mea}’%((TQr - TPT) - nél}%l(TQr - TPT) (6)

The total value of this quality measure is defined as the sum of H; and
H,.

Depot assignment

Since it is probably cheapest to supply a customer from its closest depot,
we add a penalty I(S) to the fitness function if the closest depot of a cus-
tomers is not included in the same sub-problem. This penalty is equal to
the difference in distance between the customer and its closest depot and
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the customer and its closest depot in the sub-problem:

R
168) =3 3 (i =l ~ g = ). 7)

r=1 €N,

Sub-problem size

Since all sub-problems are solved in parallel, the running time is defined by
the slowest sub-problem. If we use a slow solving template, the difference in
running time can be substantial if there is a big difference in problem size.
If we use a fast template on the other hand, it might not matter much. To
reduce the difference in running time between sub-problems we can force
an equal distribution of the customers and vehicles over the sub-problems.
Therefore, K(S) is defined as the standard deviation of the number of
vehicles and customers per sub-problem.

Besides an equal distribution, we can also reduce the running time by
increasing the number of sub-problems. By setting a minimum and max-
imum number of sub-problems, we penalise decompositions with L(.S) if
the number of sub-problems is not within the desired values. The value of
L(S) is equal to the difference between the number of sub-problems and
the maximum or minimum, depending on which is violated.

5.2.2 Approximate routing cost

In the second part of our genetic algorithm we use a fitness function that
can better predict the plan costs. Following the approach of Nicola et al.
(2019), we consider a large set of potential variables and with the help of
a linear regression we identify the relation between these variables and the
total cost. All variables are measured per sub-problem. The variable value
for a chromosome is obtained by summing the values of the corresponding
sub-problems. We divided the variables in four categories, which are ex-
plained below.

Distance related measures
Since the total cost depends on the travelled distance between customers,
we include several distance related measures in our model. These in-
clude the sum (SumP), variance (VarP), minimum (MinP) and maximum
(MaxP) of distances between all pair of nodes. Furthermore, we include the
sum of distances to the nearest (SumMinP) and the farthest (SumMaxP)
neighbour of each customer. Due to time windows, some customers can
not be visited after each other. We therefore only consider links between
customers that satisfy the time window constraints.

Like the within sub-problem proximity, we also consider distances to
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the centre. We include the following variables. The minimum (MinM), the
maximum (MaxM), the sum (SumM) and the variance (VarM) of distances
between all customers and the sub-problem centre. Last, we consider the
distances between customers and their closest depot in the sub-problem,
measured by the variables SumD and VarD, denoting the sum and variance
of the mentioned distance, respectively.

Time window related measures

As mentioned before, time windows can have an effect on the cost. We
measure the influence of time windows with the variance (VarTW) of the
length of the customer time windows. We also consider the sum (SumTW)
of the time window lengths. Note that this value is the same for each chro-
mosome, we therefore only consider this variable if we compare different
instances. The amount of overlap in time window can also influence the
routing possibilities. The variables SumOverlap, AvgOverlap and VarOver-
lap measure the sum, average and variance of time window overlap between
customers, respectively.

Capacity related measures

The costs increase if more vehicles are used. The number of vehicles nec-
essary is dependent on both the vehicle capacity and the customer quanti-
ties. These effects are captured with the following variables. First we add
the total-demand/average-vehicle-capacity (TotD/AvCap) ratio, which es-
timates the minimum number of vehicles necessary to supply all customers.
The average-vehicle-capacity /average-demand (AvCap/AvD) ratio repre-
sents the average number of customers that can be supplied by one vehicle.
If a vehicle can perform multiple trips, we multiply its capacity by the
number of allowed trips.

Additional measures

Besides taking the constraints into account, we also include some general
measures. The first is the product of variances of the z and y coordinates
of the customer locations (VarX x VarY). If customers are scattered in
both directions, the travel distance increases. Last, we include the number
of customers, n, as a variable in our model. This variable is only used if
we compare different instances, since the number of customers is the same
for each chromosome within an instance.

5.3 Population management

In this section we determine which chromosomes may enter the population
and which chromosomes are removed from the population.

We will keep a fixed number n of individuals in our population. Indi-
viduals in our population represent different problem decompositions. To
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initialize the population we will use a relatively simple and fast splitting
strategy. We will explain our initialization method in Section 5.4.

After we generated the initial population, the algorithm performs r;
iterations with the size fitness function and r, with the approximate cost
function. In each iteration offspring is generated from the selected parents,
from which only the fittest one can enter the population. We only allow
the newly generated individual to enter the population if the fitness value
is lower than the worst individual in the population.

Since the population size is fixed, the new individual has to replace an
existing individual. Since the chromosome with the worst fitness value does
not necessarily result in the highest cost, we randomly replace one of the
z worst individuals. By removing chromosomes with a high fitness value,
the average quality of the population should increase

5.4 Initial population

In this section we explain how we constructed the initial population by
creating different sub-problem decompositions. In the first multi-process
iteration, we form the initial population on the customer-level. After that,
routes are constructed and the population is formed on the route-level.

5.4.1 Customer-level

In the first iteration we form our initial population on the customer level
in the following way. We first choose the number of sub-problems k. Since
we do not know the optimal number of sub-problems in advance we vary
this number by drawing a random number between k,,;, and k... Next,
we will select k seed customers as follows. The first seed customer is chosen
randomly, while the next customers are iteratively selected based on their
distance to the closest seed customer(s) selected so far. The probability of
choosing a customer as seed is proportional to its distance from the closest
seed.

This initialization takes extra time compared to randomly selecting cus-
tomers, but in this way the initial sub-problems are more spread out.

Before we form the sub-problems by assigning all remaining customers
to the closest seed customer, we first determine the maximum number of
customers per sub-problems. Since we want our sub-problems to be about
equal size, we only allow a maximum number of customers per sub-problem.
As starting point we use the number of customers divided by the number of
sub-problems. Since the sub-problems do not necessarily have to be equal
in size, we add some “slack” to this maximum number of customers. This
new maximum will be used when assigning the customers. The slack can
be adjusted manually.
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The order in which customers are assigned is based on a regret value.
This value measures the “regret” of not assigning the customer to its closest
seed and is equal to the difference in distance to the closest seed and the
second closest seed. Customers with a higher regret are assigned first. If
the maximum number of customers for a sub-problem is reached, customers
are assigned to their second closest seed (if possible).

We continue with forming the sub-problems by adding the depot that
is closest to the centre of each sub-problem. If a depot is only added to one
sub-problem, all corresponding vehicles are added to this sub-problem. If a
depot occurs in more than one sub-problem, we distribute the vehicles such
that the number of vehicles is proportional to the number of customers. It
can also happen that a depot does not occur in any sub-problem. We make
a distinction here between the main depot and sub-depots. Vehicles of the
main depot are more likely to travel long distances, because the sub-depots
can most likely not supply all customers nearby due to their low capacity.

Therefore, the main depot is added to all sub-problems and the vehicles
are divided proportional to the number of customers. Sub-depots are more
likely to supply customers nearby. We therefore select the sub-problem
with closest centre and add the depot with corresponding vehicles to it.

It is desirable that our initial population contains feasible decomposi-
tions, since this is the starting point of our algorithm. We therefore check
the capacity restriction. If there is a capacity shortage, random vehicles
of the main depot are re-assigned to this sub-problem, provided that the
switch does not result in a capacity shortage of the giving sub-problem.
Note that, due to other restrictions, unplanned orders are still possible
after solving.

We repeat this procedure until our population has the desired size.

5.4.2 Route level

From the second multi-process iteration onward, we form our population
on a route-level, that is, customers in the same route will always be in the
same sub-problem. We start our initial population in a similar way as in
the first iteration, by choosing k random seed routes and assigning each
remaining route to the closest seed route. Distance are calculated between
the centre of gravity of a seed route and each customer in other routes
(Ostertag, 2008). The centre of gravity of a route is calculated in the same
way as for the centre of gravity of a sub-problem. We again add a capacity
limit on each sub-problem and assign routes according to largest regret
value.

If the solution contains unplanned customers, we assign these customers
to the closest seed. Empty vehicles are divided over sub-problems in which
its depot occurs. The division is proportional to the number of customers
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per sub-problem.

5.4.3 Assign to closest depot

The sub-problems are disjunct and solved independently, so there is no ex-
change of information about feasibility possible. The depot capacity might
therefore be exceeded if it occurs in more sub-problems. For simplicity we
assumed that the depot capacity is equal to the capacity of the available
vehicles, but if we do not want to make this assumption, a simple solution
is to split the problem such that a depot only occurs in one sub-problem.
To make sure the decompositions are feasible with respect to capacity, we
also add the main depot to sub-problems that have a capacity shortage.
The capacity of the main depot is not restricting, however, we do need to
divide the vehicles of the main depot over the sub-problems. We randomly
add vehicles until there is enough capacity.

5.5 Selection and crossover operators

To form new decompositions, we first need to select two parent chromo-
somes from the population through a selection procedure. We use a binary
tournament selection where we randomly select two chromosomes S; and
S5 from the population. The fittest of the two individuals is selected as the
first parent. We repeat this selection procedure for the second parent. We
draw with replacement, hence parent 2 can be equal to parent 1.

These parents are recombined through a crossover-operator to create
offspring that hopefully inherit good properties of the parent solutions.
Recombination is sub-problem-oriented, that is, the operator works on sub-
problems rather than individual objects such as customers. The used oper-
ator is as follows. Given two parents, we first select a random sub-problem
from the first parent and add this sub-problem to the second parent. As
a result of this operation some customers and vehicles occur twice. To
repair the new decomposition, we remove these duplicate customers and
vehicles that originally belong to the second parent. The second offspring
is generated by repeating the above procedure and reversing the roles of
the parents.

Applying the described crossover operator can also result in sub-problems
without customers and/or trips. If this happens, we repair the decompo-
sition by removing it. Unassigned orders by this removal are assigned to
the sub-problem with the closest centre and vehicles are proportionally
distributed over the sub-problems that contain their depot.

We use the same selection procedure and crossover operator for the
customer-level and the route-level.
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5.6 Mutation operators

Mutation operators are used to diversify the search directions and avoid
early convergence. Each stage of the algorithm may require different oper-
ators. We therefore have multiple dynamic mutation operators. Each mu-
tation operator m has its own mutation probability p,, and forms offspring.
The mutation ratio is updated each iteration according to the evaluation
results from the offspring it produces by multiplying the probability with
the relative improvement. As a result, good mutation operators have a
higher probability of being selected.

5.6.1 Sub-problem level

We split our mutation operators in two groups, based on how they mutate
the chromosome. The first class of mutation operators we consider works on
the sub-problem level, to have high diversity in sub-problem constitutions.
This means that all customers and vehicles of the selected sub-problem are
affected by the change. We consider the following operators: removing a
sub-problem, splitting a sub-problem and a combination of merging and
splitting sub-problems.

Remove sub-problem

The first mutation operator removes a random sub-problem and re-inserts
the customers and vehicles in another sub-problem. To select a sub-problem
we calculate the fitness value per sub-problem. Bad sub-problems are fea-
tured with a higher fitness value and therefore have a higher probability of
being selected. Since the fitness value of a single sub-problem also depends
on the number of customers in a sub-problem, we look at the average fit-
ness value per customer. The probability of being selected is proportional
to the average fitness value per customer of a sub-problem.

The re-assignment happens as follows. Unplanned customers from the
removed sub-problem are assigned to the sub-problem with closest centre
of gravity. Planned customers in a route (with the corresponding vehi-
cle) are all assigned to the sub-problem that is closest to the route centre.
Empty vehicles are divided over sub-problems in which their depot occurs.
The division of vehicles is proportional to the number of customers in the
sub-problems. If a depot in the removed sub-problem does not occur in
any sub-problem, we add it to the sub-problem with the closest centre of
gravity. All corresponding vehicles are also added to this sub-problem.

Split sub-problem

To create more sub-problems, this mutation operator splits a selected sub-
problem. Here, sub-problems with more customers have a higher proba-
bility of being selected. We select the two customers in the selected sub-
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problem that are furthest away from each other. All remaining customers
are assigned to the closest customer to form two sub-problems.

If the sub-problem contains one depot we divide the corresponding ve-
hicles over the sub-problems proportional to the number of customers. If
the sub-problem contains more than one depot, we try to assign the closest
depot to each sub-problem. If both sub-problems have the same closest
depot, we divide the vehicles proportional to the number of orders. Other-
wise we assign all vehicles of the corresponding depot to the sub-problem.
The vehicles of the main depot are always divided proportionally over the
two sub-problems.

Merge and split sub-problem

The last mutation operator keeps the number of sub-problems the same.
First, the two sub-problems with closest centres are merged together. This
merged sub-problem is split with the described splitting method above.

5.6.2 Customer /vehicle level

The next mutation operator only affects some vehicles or customers in a
sub-problem. Only a few customers or vehicles change sub-problems.

Re-assign customers and vehicles

In the first multi-process iteration all customers are unplanned. The mu-
tation operator selects x customers an re-assigns them to a different sub-
problem. Customers that are further away from their sub-problem cen-
tre and closer to another sub-problem have a higher probability of being
selected. This probability is proportional to the distance to the centre
minus the distance to another sub-problem. Distance of a customer to a
sub-problem is defined as the minimum distance between the selected cus-
tomer and all customers in the sub-problem. The selected customers are
re-assigned to the closest sub-problem.

From the second multi-process iteration, customers are assigned to ve-
hicles or are still unplanned. The mutation operator re-assigns a vehicle
together with the planned customers to a different sub-problem. Vehicles
with their route further away from the sub-problem centre and close to
another sub-problem have a higher probability of being selected by this
mutation operator. Distances are calculated between the route centre of
gravity and single customers in other sub-problems. The probability of
selecting an unplanned customer is defined in the same way as in the first
multi-process iteration. Both routes and unplanned customers can be se-
lected in this iteration, based on their probability.

Additionally to non-empty vehicles, we also re-assign empty vehicles to
divide the capacity more equally over the sub-problems. Sub-problems with
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more vehicles in proportion to customers are thus more likely selected to
give vehicles and sub-problems with few vehicles are more likely to receive
vehicles. The probabilities are proportional to the vehicle/customer ratio
and the customer /vehicle ratio, respectively. The number of vehicles being
exchanged is y, or until the difference in vehicle/customer ratio between
the sub-problem is smaller than 5. The mutation operator works the same
in both multi-process iterations.

6 Computational results

The computational experiments are done on a practical and on a theoretical
case. The instances of the practical case consist of several real-world in-
stances of one of ORTEC’s clients. The instances of the theoretical case are
based on the Solomon benchmark instances. We used the original instances
to create instances with 1000, 1500 and 2000 customers.

6.1 Algorithm configuration

Our genetic algorithm is implemented in the C+4 programming language.
All results are obtained using a laptop with Windows 10 with a i7-8650U
processor (2.11 GHz) using 8 cores and 16 GB RAM. Note that, since we
only have 8 cores, we can only solve 8 sub-problems at the time. If chromo-
somes contain more than 8 sub-problems, we still consider the maximum
duration of all sub-problems.

Next, the following parameters need to be configured in our algorithm.
We created an initial population of n = 25 individuals. Since we aim for
a fast splitting procedure, we also want our initialization to be fast. The
duration of the initialization is partly defined by the number of individuals.
n = 25 gives a good balance between running time and sufficient variation.
For each individual in our initial population we draw a random number
between 5 and 8 that defines the number of sub-problems k. We chose 5
and 8, since the maximum and minimum allowed sub-problems are around
these numbers. With the mutation/crossover operators, the algorithm still
has room to create more or less sub-problems. The ‘slack’ on the maximum
number of customers per sub-problems is set to 50, which is around 2.5%
for most of our considered instances.

After that, our genetic algorithm performs r; = 75 iterations with the
size fitness function and ro = 25 iterations with the approximate cost func-
tion. The number of iterations can be increased, but at a cost of a higher
running time. We therefore choose to keep the number of iterations low.
We need more iterations with the size fitness function to ensure feasibility.
We assume that the quality of the chromosomes is reasonable after the first
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phase, therefore only 25 iterations with the approximate cost fitness func-
tion are performed. Only the m = 20 best individuals are re-evaluated and
used for the second part, to filter out possible bad solutions. The fittest
individual of each iteration will replace one of the z = 5 worst individuals.

The starting values of the mutation operators are 0.4, and the maximum
is 1.0. To avoid low mutation rates and as a consequence low diversity, we
set a minimum of 0.1 for each operator. The number of customers that is
re-assigned by the mutation operator is x = 50 and the number of empty
vehicles is y = 50.

6.2 Practical case

The instances of the practical case are real-world problem instances pro-
vided by one of ORTEC’s clients, a retail company.

6.2.1 Problem instances

The problem instances are provided by the considered retail company. The
instances are based on four distinct service areas, denoted by A, B, C, and
D. Each service area provides five instance consisting of customer demand
for different days and/or day parts (morning and afternoon). This gives a
total of 20 instances. A description per instance can be found in Table 10
in Appendix B. In Table 1 we give a summary of the instances per region.
The denoted values are the average of each region.

Table 1: Average value of the number of depots, vehicles and customers per region. The
different vehicle types are numbered by Vehiclel, Vehicle2, etc.

Region #Customers #Depots #Vehiclesl #Vehicles2 #Vehicles3 #Vehiclesd #Vehiclesb
A 2048 7 0 11 112 150 18
B 2721 3 0 13 165 150 0
C 2244 6 0 14 166 150 12
D 2053 4 3 22 127 150 0

Figure 2 shows the distribution of customers and depots for the four
different regions. The depots are denoted by the black squares. From these
figures we can see that the distribution is quite different per region. In the
rest of this section we will discuss how this influences our estimates.

For each customer demand the time window, service time and order
quantities are specified. Each service area has its own set of depots and
vehicles. The set of depots always consists of one main depot with infinite
capacity and several sub-depots with finite capacity. The available depots
and vehicles per day part can vary in the same area.
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Figure 2: Distribution of customers for instances A, B, C, and D;. Depot locations are
indicated by the black squares.

The retail company has five different types of vehicles available, having
different driving speed, operating costs, and capacity. The capacity of a
vehicle is denoted by two units. Additionally, vehicles have break require-
ments. Each route with a working time of at least 75 minutes must contain
a break of 15 minutes. If a route has a duration of at least 225 minutes, it
needs another break of 15 minutes. Waiting at customer locations is also
considered as a break, provided that the waiting time is at least 15 minutes.
Moreover, the vehicles have a maximum duration of 8 hours. An overview
of the different vehicle types and their operating cost can be found in Table
2. In Table 11 in Appendix B we give an overview of the division of vehicle
types over the depots.

6.2.2 Tuning of the fitness function

Our decomposition method strongly depends on a good fitness approxi-
mation, which consists of different quality measures, each multiplied by a
parameter. Before we evaluate the quality of the fitness function, we first
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Table 2: Overview of the different vehicle types.

T Speed Cost Cost Cost Cost Capacity Capacity
YP® factor perHour perDistanceUnit perRoute perOrder unitl unit2
1 0.47 30 12 0 0 180 250
2 0.85 60 8 0 10 600 875
3 1.00 200 0.1 2000 20 600 950
4 1.00 200 0.1 4000 20 600 950
5 1.15 200 0.1 2000 20 600 950

explain how we have chosen the parameter values. To tune the parameters
of our algorithm we use different test instances. To see the effect of how
the customer locations are distributed, we select one instance of each re-
gion for our test cases. We also make sure that there is some variation in
the number of depots and the number of customers in these instances. In
Table 3 we give an overview of the used test instances.

Table 3: Description of the instances used for determining the parameters of the fitness
functions.

Instance Region Day Day part  #Vehicles #Customers F#Depots
A A Monday morning 289 1303 7
B B Saturday morning 329 2962 3
C C Wednesday afternoon 345 2676 6
D D Monday afternoon 299 2233 5

Sub-problem size

The size fitness function contains the parameters «, 3,7, and (. We start
with setting the coefficients such that all measures are about equally rep-
resented. This gives the following values: o = 5,8 = 1,7 = 0.1, = 2.5,
and ¢ = 150. Next, we change the value of § and ( to change the sub-
problem sizes, keeping «, 3, and  constant, since these parameters do not
represent the sub-problem size. Furthermore, we let the minimum number
of sub-problems range between 4 and 7 and for the maximum number of
sub-problems we use the values 5, 8 and 10. We only consider the combi-
nations for which the minimum is smaller than the maximum number of
sub-problems. Results are obtained by running our algorithm for r; = 75
iterations for all combinations, using only the size fitness function.

With the parameter ¢ we try to obtain the desired number of sub-
problems. We expect that the percentage between the minimum and max-
imum allowed sub-problems increases when ( increases, since deviations are
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penalized more severely. Only in some cases, the number of sub-problems
is not within the limits, suggesting that even with small weights the al-
gorithm is able to create the desired number of sub-problems. Almost all
violations occur for combinations with a minimum number of sub-problems
of 4, a maximum of 5 and ¢ smaller than 175. In each iteration a new chro-
mosome is created by inserting a sub-problem and only with mutation, the
number of sub-problems can be lowered. Therefore, the algorithm might
have difficulty with creating a low number of sub-problems, especially when
violations only have a relative small penalty.

The goal of increasing the number of sub-problems is to decrease the
running time. In Figure 3 we show the running times for instance D using
both templates. These figures show that the running time decreases if the
number of sub-problems increases. Note that these running times only
involve solving the sub-problems. The splitting time is not influenced by
these parameter values, and is therefore omitted from this analysis. For
the slow template, the running time seems to decrease exponentially with
the number of sub-problems. This is expected, since there are elements in
the slow template that increase the running time exponentially with the
number of customers. For the fast template the decrease seems more linear.
The course of the running times for the other instances is similar.
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Figure 3: Distribution of the running time (in seconds) for the number of sub-problems
using the fast template (a) an the slow template (b).

Since all sub-problems are solved in parallel, the total running time is
defined by the slowest sub-problem. We therefore also aim at an equal
distribution of customers over the sub-problems, to lower the difference in
running time.

Figure 4 shows the distribution of the standard deviation of the number
of customers per sub-problem for each value of §. As expected, the stan-
dard deviation decreases if the value of § increases, since we penalize large
standard deviations more severely. However, the minimum value does not
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decrease. If the standard deviation is really low, the value of delta does
not matter much, since its contribution to the total fitness function is low
anyway. If 0 = 1.5, the other measures have a relatively large weight com-
pared to the standard deviation. Hence, a chromosome with a bad (high)
standard deviation can still be the best if the value of the other measures
is low. For larger values of ¢ this is less likely, explaining the decrease in
maximum standard deviation. Note that Figure 4 is independent of the
solving template that is used.

o customers)

&

Figure 4: Distribution of the standard deviation of number of customers (o) for each
value of 6.

Next we check if a lower standard deviation in the number of customers
also results in a decrease in the standard deviation and the maximum of
the running times. In Figure 5 the relation between the standard deviation
of the number of orders and the standard deviation of the running times
(in seconds) is shown. We clearly see a lower running time if the standard
deviation of the number of orders decreases. For the slow template the
relation is less strong. The running time of a template is not solely defined
by the number of customers, and for more complex templates, like the slow
template, the running time might depend more on other factors, such as
the number of depots or distances between customers.

At first sight, the maximum running time does not decrease if customers
are more evenly distributed. This is because the maximum running time is
also partly dependent on the number of sub-problems, because more sub-
problems result in a lower average running time. The standard deviation
of the number of customers does not necessarily decrease if the number of
sub-problems increases. If we only compare the maximum running time for
the same number of sub-problems, we now see that the maximum running
time decreases if the standard deviation of the number of orders decreases.
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Figure 5: Relation between the standard deviation of the number of orders and the
standard deviation of the running time (in seconds) using the fast (a) and slow (b)
template.

The results presented in this section show that we can guide the sub-
problems size towards the desired size. The running time can be reduced
if the number of sub-problems is increased. Since the total running time
is defined by the slowest sub-problem, the running time can be further
reduced if the sub-problems are more equal in size. We determine the
parameter values based on this information.

The running times for the fast template are all relatively low, hence
we considered the objective values to see if we can make a comparison
between parameter combinations. There is a high variability in costs, as
simple templates tend to find good solutions in some cases and very bad in
others. We did not find a link between the cost and the parameter values.
We therefore choose a random combination from the best 30%, which can
be found in Table 4. With this combination, the number of sub-problems
is not heavily restricted and we allow for more variation in the sub-problem
sizes. For completeness we also added the values of the other (constant)
parameters.

Table 4: Chosen parameter values for each template.

) ( min max |a [ v
Fast template 1.5 150 4 10 |5 1 0.1
Slow template 2.5 150 7 10 |5 1 0.1

The difference in objective values for the slow problem is smaller, as
this template searches more thoroughly for a good solution. We therefore
consider the running time in choosing the parameters. For this combination
we choose a parameter combination which results in more sub-problems,
to lower the running time more. The value for ¢ is higher than for the fast
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template, to lower the difference in sub-problem size. The chosen combi-
nation can also be found in Table 4.

Approximate routing cost

We will now discuss the tuning of the approximate cost fitness function.
We estimate the coefficients of this function with a linear regression, with
the costs being the dependent variable and the quality measures the inde-
pendent variables. It is possible that the estimates of the coefficients differ
between solving methods. We therefore need different models to approxi-
mate the routing costs from the two templates.

The data that is used in the linear regression is created as follows. For
each instances in Table 3 we run our algorithm for r; = 100 iterations
using the size fitness function, giving us 100 data points plus 25 points
from the initialization procedure per parameter combination. To lower
the dependence on the parameter values of the size fitness function we
run the algorithm with several parameter combinations. We do not use
the approximate cost function yet, since we then need to initialize the
coefficients, which might influence the estimates. Because there are more
unplanned customers in the beginning of our algorithm, we decided to
perform 100 instead of 75 iterations to extend our training set.

For each created chromosome we save the value of the independent vari-
ables and obtain the routing cost by solving all sub-problems using CVRS.
We removed observations for which there were unplanned customers, since
these solutions are not feasible and the routing cost is not representative.
From the remaining observations we randomly select 70% of the chromo-
somes for our training set, and the other 30% is used to test our model.

To measure the quality of the approximation we use the in-sample and
out-of-sample Mean Percentage Error (MPE) and the Mean Absolute Per-
centage Error (MAPE). They are defined as follows:

k A
1 Cs—C;
MPE = — _—
kS:1 Cs ? (8)
1 k ‘Os_és

where Cy denotes the costs for chromosome s obtained by the solution
method, C; the approximation of the regression model, and k& the number
of observations.

Table 5 shows the model estimates and errors for the two templates.
Both forward and backward stepwise regression were performed. The
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threshold for including or removing a variable is set to 0.1. Additional
to the variables discussed in Section 5.2.2, we also included the number
of customers, n, as a potential variable to account for the difference in
sub-problem size.
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Table 5: Model estimates using forward stepwise regression (Model 1) and backward
stepwise regression (Model 2).

Fast template Slow template
Variables Model 1 Model 2 Model 1 Model 2
Intercept 333995.80 **F*  338326.15 *F*  54278.96 ***  55858.26 ***
n 301.85 *** 302.03 *** 79.40 *** 62.72 HH*
SumP
VarP -22075.20 .
MinP
MaxP -1751.13 * -2812.31 *
SumMinP
SumMaxP
SumM
VarM 148721.16 *
MinM
MaxM
SumD
VarD 28774.64 .
SumTW 18.25 *** 21.12 Ho* 19.28 *** 24.20 ***
VarTW 65.37 *** 67.88 HHk
SumOverlap 0.11 -0.05 % -0.05
AvgOverlap
VarOverlap 18.40
TotD/AvCap -4261.82 *** -4324.54 *** 1651.89 *#*  1809.56 ***
AvCap/AvD -368.19 *** 424,50 FH*
VarX x VarY 1356228.00 ***  1522269.75 ***
R2 (adjusted) 0.9698 0.9698 0.9289 0.9289
MPE (in-sample) -0.15% -0.15% -0.23% -0.23%
MAPE (in-sample) 2.88% 2.87% 3.07% 3.07%
MPE (out-of-sample)  -0.49% -0.38% -0.40% -0.43%
MAPE (out-of-sample) 3.12% 3.04% 2.92% 2.94%

*¥E:p < 0.001; **: p < 0.01; *: p<0.05; .: p<O0.1.
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As expected, the model estimates for the fast template and the slow
template differ. Different variables are included, and the size and sign
of common variables are different. The interpretation of the sign of some
variables is not intuitively clear, for example for MaxP. One would expect a
higher cost if customers are further apart, but the reverse is true. A possible
explanation for this is that instance A spans a larger area resulting in larger
values for MaxP. At the same time, this instance has lower costs due to the
lower number of customers, possibly causing the mentioned effect.

As for the performance, the R2 of the slow templates is lower, but the
performance in terms of in-sample and out-of-sample is comparable. The
performance of the forward and backward stepwise regression models do
not differ much. Since the difference is small, we decided to only consider
backward stepwise regression from now on.

Our MPE is small and thus suggests that the errors are almost evenly
distributed around zero. Although the absolute errors (MAPE) are also
relatively small, our algorithm requires that the ranking of the fitness val-
ues of the chromosomes is comparable with the ranking of the costs. We
therefore also checked the average deviation of the rank. Since the costs
considerably differ per region and parameter combination, we determined
the per region and per parameter combination to make a fair comparison.

If we analyse these deviations, we see that the model is, in most cases,
not able to predict a comparable ranking. If we look at the distribution
of customers in Figure 2, we see that the distributions of customers are
different, both in shape and size. As a result, the relation between the costs
and the variables might differ. We therefore also estimate the coefficients
for each region separately, to see if there is a significant difference between
the regions. The model estimates are represented in Table 6.

The table shows that a different set of variables is significant for each
region, indicating that the we need different models. Although the R2 is
lower than for the models in Table 5, the errors are considerably smaller.
Only the errors for instance A are larger than for the combined model.
Maybe this is caused by the low number of customers compared to the
other instances. If we estimate the coefficients with another instance of the
same region the errors are smaller, however the ranking is still poor. There
might thus be other factors not included in the model that influence the
costs for this region making prediction more difficult. We can rule out the
solution method, as the other template does not have a better performance.

The distribution of the customers can make it more difficult to deduce
the cost from the problem decomposition. Customers are gathered in small
clusters and there are even some customers that are separated from the
other customers. Not having the right clusters together can result in high
costs, but it is difficult to determine the right combination. Due to the
already high distances between clusters, the distance related measures do
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not differ much between chromosomes, while there is high variability in the
costs. For the time window related measures the variability is high, but we
do not see a relation with the cost. Because neighbouring customers have
subsequent time windows, it is possible to visit them in a short time span
and keeping the distance low. Short time windows and little overlap thus
does not necessarily increase the cost.

Since the models for each region separately perform better, we decide
to continue our algorithm with these models.
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Table 6: Model estimates per region using backward stepwise regression.

Variables Fast template Slow template
Intercept 493538.30 ***  374720.52 ***
SumP

VarP -99212.19 ***  26221.32 *
MinP 418862.40 ***

MaxP

SumMinP -6765.97 *

SumMaxP -34.81 **

SumM

VarM 492932.20 ***  _387.76 **
MinM 418862.4 ***  -140098.58 .
MaxM

SumD 165.13 .

VarD -45770.61 ***  28345.73 **
VarTW 101.28 **
SumOverlap  -0.12 **

AvgOverlap

VarOverlap -198.83 *
TotD/AvCap

AvCap/AvD

VarX x VarY 1856352 *** 1114504.20 **

R2 (adjusted)

0.2998

0.0819

Variables Fast template Slow template
Intercept T37484.46 *** 794484 ***
SumP

VarP

MinP

MaxP -48576.21 ***  -52833.88 ***
SumMinP 46684.15 **
SumMaxP 87.41 .
SumM

VarM

MinM 6817801.23 **

MaxM 69667.45 **

SumD -1060.18 **
VarD 1302691 .
VarTW 1066.23 **

SumOverlap -0.08 **
AvgOverlap  -135068.23 *

VarOverlap -1184.57 .

TotD/AvCap

AvCap/AvD  8307.83 .

VarX x VarY

R2 (adjusted) 0.1833 0.2014

Variables Fast template Slow template
Intercept 670353.5 ***  642676.60 ***
SumP -1.19 * -0.46 ***
VarP -145280.7 * 101662.50 *
MinP

MaxP

SumMinP -11961.88 * -10888.95 *
SumMaxP

SumM 731.48 *

VarM 328515.2 . -353110.10 .
MinM 3484730 **

MaxM

SumD

VarD 466020.2 ***  415069.20 ***
VarTW 569.80 ** -156.03 .
SumOverlap  0.08 .

AvgOverlap  -21743.46 *

VarOverlap -582.10 ** 243.72 .
TotD/AvCap

AvCap/AvD  1120.07 .

VarX x VarY 4398313 **
R2 (adjusted) 0.2611 0.3068

Variables Fast template Slow template
Intercept 19699220 *** 5649141 ***
SumP -3.64 * 0.71 .

VarP

MinP

MaxP

SumMinP

SumMaxP -46.70 **
SumM 2153.66 *

VarM

MinM

MaxM

SumD

VarD -22015710 **

VarTW

SumOverlap  0.21 ** -0.09 ***
AvgOverlap

VarOverlap

TotD/AvCap -175204.4 ***  -46293.90 ***
AvCap/AvD  943.59 ***

VarX x VarY -25149490 *

R2 (adjusted) 0.6495 0.3300




6.2.3 Results

In this section, we present the solutions of our algorithm on the described
instances. A complete description of the instances can be found in Table
10 in Appendix B. For comparison we also show the solution quality and
running time of the command templates when no decomposition is used.

In Table 7 the costs and running times for both the fast and the slow
template are shown for indication. The costs of the slow template are on
average 20% lower, but the fast template is on average more than three
times faster. We clearly see a trade-of here between solution quality and
running time.

Table 7: Plan cost and running time of the fast template for all instances without
decomposition.

Fast template Slow template

Instance Cost Time Cost Time

Al 415,414.0 00:06:54 314,750.6 00:18:35
A2 685,485.2 00:13:55 508,290.1 00:59:13
A3 616,204.6 00:12:06 424,613.2 00:44:52
A4 697,847.4 00:14:45 489,931.4 00:47:57
Ab 683,200.3 00:14:38 502,246.8 00:53:25
B1 484,786.3 00:07:42 450,571.8 00:22:42
B2 751,335.9 00:22:08 587,052.0 01:29:19
B3 653,507.2 00:18:15 569,445.9 00:58:31
B4 677,793.7 00:18:20 581,130.9 01:11:14
B5 703,573.7 00:19:13 615,122.6 01:06:29
C1 253,146.5 00:04:23 224,042.5 00:14:22
C2 658,910.8 00:17:12 508,507.6 01:04:50
C3 616,701.2 00:17:36  440,736.8 01:02:20
C4 756,849.6 00:20:29 540,695.2 01:12:50
Ch 720,107.4 00:19:00 572,803.6 01:13:26
D1 586,932.9 00:09:18 479,525.5 00:27:20
D2 609,521.0 00:13:29 442,798.8 00:54:12
D3 619,545.1 00:13:51 449,872.1 00:49:34
D4 569,170.2 00:11:15 460,789.4 00:41:22
D5 553,738.1 00:10:10 457,648.6 00:38:05
Avg. 615,537.5 00:14:24 481,028.8 00:51:32

We now run our algorithm for three multi-process iterations to see the
effect on the running time and solution quality. In Table 8 the results are
shown as the percentage deviation from the results in Table 7. To get a
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clearer picture, we averaged the results per region. The results per instance
can be found in Table 14 and 15 in Appendix C.

Table 8: Average deviation of the cost and running time per region for the fast and slow
template. The denoted values are compared to solutions obtained without splitting.

(a) Results for the fast template.

1 iteration 2 iterations 3 iteration

Region Cost  Time  Cost  Time Cost  Time
+4.5% -72.0% +0.9% -61.1% -1.5% -52.1%
+1.1% -68.6% -4.5% -52.5% -6.7% -44.3%
+7.3% -69.4% +0.8% -61.4% -0.9% -51.0%
-3.3% -7128% -6.8% -621% -83% -52.5%

OaQw>

(b) Results for the slow template.

1 iteration 2 iterations 3 iteration

Region  Cost Time Cost Time Cost Time

A +11.0% -86.6% +5.5% -83.0% +1.9% -79.6%
B +6.7% -87.8% +6.5% -84.3% -1.9% -80.8%
C +5.6% -86.8% -0.4% -83.8% -21% -80.7%
D +2.2% -89.1% -22% -85.7% -4.6% -83.6%

From these results we can see that we achieved our first goal of reducing
the running time. For the fast template we can obtain solutions in half the
time, while for the slow template we can reduce the running time even
more. If we increase the number of iterations for the fast template, the
running time will soon approach the running time without splitting. For the
slow template, there is more room for performing more iterations, since the
running time is still reduced by 80% after three iterations. From the second
iteration the splitting time is much lower than for the first iteration, because
we now split on routes instead of single customers, giving us less elements
to consider. The solving time also decreases, since the construction phase
can be skipped.

The cost are still considerably higher after the first iteration, with the
exception of the fast template for region D. For most instances, however,
the costs decrease each iteration, pointing out the usefulness of multiple
iterations. The slow template needs more iterations to obtain a sufficient
cost, but after three iterations, the average cost for almost all regions is
lower than without splitting. We can thus not only obtain solutions in a
shorter amount of time, but we can also improve the costs.

Note that these results show the average per region, therefore, not all in-
stances perform as well. If we look at more detail at the individual instances
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of region A, we see that instance A4 and A5 have a positive deviation after
three iterations, meaning higher costs. Because these instance have longer
time windows and more overlap, a different model might be needed.

To see if the current approximate cost function causes the high cost, we
ran the algorithm again using models fitted on the instance itself. We in-
deed obtain better results, suggesting that different variables are significant
for these specific day parts. For the slow template the same results apply
for instance A4. For instance A5, however, the regular model estimates
give sufficient results. More data is therefore needed to determine if these
day parts differ from the others. For the other regions, the results do not
differ much per instance.

We also performed more multi-process iterations to see if we can even
further reduce the costs. In Figure 6 we show the cost and running time (in
seconds) for 10 iterations for instance D1. For comparison we also added
the cost and running time of the template without decomposition. In the
beginning the cost still decreases each step, but after 5 iterations we we see
that the cost flattens, because there is less diversification in the splits.

L3 Jlﬂalllm‘) . — ]Iuahuu:
(a) (b)

Figure 6: Course of the plan cost (a) and total running time (b) for instance D1. The
dashed lines denote the cost and running time without decomposition.

To create more diversity in our splits, we combine our genetic algo-
rithm with two methods of ORTEC. These methods divide the customers
and vehicles equally over the sub-problems. The methods implemented at
ORTEC are the Sweep method and the distance ordering method. The
Sweep method is already described in the literature review. In the distance
ordering method, the customer farthest from the depot is selected to form
a sub-problem. The closest customers are added until the sub-problem has
its proportion of the customers. This is repeated with the customers that
are left until all customers are assigned to a sub-problems. The vehicle are
then equally divided over the sub-problems.

For both methods, we need to determine the number of sub-problems
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beforehand. Each time a method is used, we draw a random number be-
tween 6 and 10 for the number of sub-problems. The Sweep method is used
in iteration 3, 6 and 9, and the distance methods is used in iteration 2, 5,
and 8. In the remaining iterations we use our genetic algorithm.

Running time ()
: @

# Tterations

# Tterations

(a) (b)

Figure 7: Course of the plan cost (a) and total running time (b) for a combination of
splitting methods for instance D1. The dashed lines denote the cost and running time
of the template without decomposition. The dotted lines denote the values when only
our genetic algorithm is used.

In Figure 7 the course of the costs and running time for the described
combination of splitting methods is used. The dotted lines denote the
values from Figure 6. We can see that this combination has a lower cost and
total running time. The performance can thus be improved by generating
more diverse splits. The costs, however, still converge after a few iterations.
This might suggest that the solving template is not able to find a better
solution.

We also ran the mentioned combination of splitting methods with the
slow template. We obtain similar results. The costs for this template also
converge, mostly after 6 iterations. The running time is, however, still way
below the running time without decomposition.

6.3 Theoretical case

We also want to test our method on other instances, to see if we obtain
similar conclusions as with our practical case.

6.3.1 Problem instances

The problem instances for the theoretical case are based on the Solomon
benchmark instances. These instance are suitable to test methods for the
capacitated vehicle routing problem with time windows. The objective is
to minimize the number of vehicles and total distance. This set of instances
consists of six different types, based on the distribution of customers and
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the length of time window. There are three types of distributions, namely
uniformly distributed customers (R), cluster customers (C) and a combi-
nation of both types (RC). The time window type are split in short (1) and
long (2) time windows. Furthermore, the instances consist of 25, 50 or 100
customers.

We select the following three instances, all containing 100 customers:
RC106-100, RC107_100, RC108_100, R106_100, R107_100, R108_100, and
C106.100, C107-100, C108-100. Since our method is designed for larger
problem, we modified the instances as follows. FEach customer is used
to simulate a new customer by adding a random value from a N(0,2)
distribution to its coordinates. The capacity, service duration and time
window are randomly drawn from the available values. We simulate 15, 20
or 25 points per customer, giving us in total 1500, 2000 or 2500 customers
per instance.

6.3.2 Results

For the theoretical case we use the same base configuration as for the prac-
tical case (Section 6.1). For the fitness function we will use the following
parameter values. For the size fitness function we use the same parameter
values for the fast template, see Table 4. The coefficients for the approxi-
mate cost function are taken from Nicola et al. (2019), where the coefficients
are estimated for nearest neighbour solutions.

The construction phase of our solution templates resembles the nearest
neighbour solution method. We will therefore only use the construction
phase in the solving template for the theoretical case in the first iteration.
Since the construction phase only inserts unplanned orders, we also do
local search from the second iteration, as the costs would not be changed
otherwise.

Table 9 shows the results for the theoretical case. For the practical case
we concluded that the gain in running time was smaller for the fast tem-
plate. The first splitting iteration is relatively slow compared to the solving
time. The solving time of is now even lower, resulting in less reduction of
the running time when using multi-process optimization.
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Table 9: Plan cost and running time after three iterations for the theoretical instances.

‘ No decomposition 1 iteration 2 iterations 3 iterations

Cost Time Cost Time Cost Time Cost Time

C106_1500 | 197,659.9 04:23.23 +1.8% -53.6% +0.5% -22.1% +40.3% +10%
C107-2000 | 248,853.7 10:03.04 +2.5% -42.8% +1.2% -24.3% +1.1% -54%
C108-2500 | 299,660.4 11:09.55 +1.7% -34.9% +40.5% +3.6% +0.3% +32.1%

R106-1500 | 213,813.8 05:20.59 +4.5% -51.9% +3.5% -248% +3.3% +1.4%
R1072000 | 246,526.9 10:13.53 +2.7% -55.7% +1.3% -30.0% +1.1% -6.1%
R108-2500 | 291,890.1 13:50.90 +0.7% -47.8% +0.0% -184% -0.7% +7.6%

RC106-1500 | 203,527.4 04:41.21 +5.7% -56.4% +4.4% -322% +4.3% -5.6%
RC107-2000 | 248,570.9 07:13.34 +4.3% -50.1% +3.6% -23.0% +3.5% +2.0%
RC108-2500 | 300,872.5 14:06.27 +3.8% -53.2% +2.5% -292% +2.1% -6.7%

For most cases the costs are also higher. This can be due to the co-
efficients of the approximate cost fitness function. For the RC model, the
estimation errors were considerably larger than for the other models, which
is reflected in the large (positive) deviation in the cost for this group. We
also do not know if the estimates would change if they were estimated on
the simulated customers.
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7 Conclusion

In this thesis we considered a Vehicle Routing Problem with many different
attributes. Since the VRP is a NP-hard problem, large sized problems
can not be solved to optimality within reasonable time. Even the running
time of approximate solution techniques can increase rapidly if the problem
size increases or if the problem becomes more complex. For many real
world problems, the construction of routes need to be fast due to increasing
customers expectations. This results in a trade-of between running time
and solution quality.

Recently, ORTEC started investigating a new method to overcome
this problem, called multi-process route optimization. This method first
splits the large VRP over smaller sub-problems and then solves these sub-
problems simultaneously using multiple processors. The goal is to obtain a
solution of similar quality in substantially less time. Our method extends
this approach by also incorporating the attributes to create decomposi-
tions. With a genetic algorithm we determined the best decomposition.
Furthermore, we investigated how we need to adjust the fitness function if
different solving methods are used.

We tuned our algorithm for two different solving templates, differing in
both the running time and solution quality. The first template produces
high quality solutions at the cost of a longer running time, while the sec-
ond template solves the problem much faster but also has a lower quality
solution. Our algorithm consists of two phases with two different fitness
functions, where we first focus on the number of sub-problems and their
sizes and then focus on obtaining a good objective value.

We saw that the average running time for both templates decreases
substantially if the number of sub-problems increase. Especially the slow
template can benefit from a reduction in sub-problem size. We therefore
chose to create more sub-problems for this template. We noticed that
different measures were important in estimating the routing cost for both
templates, resulting in different fitness functions.

The computational results on the practical case showed that solutions
can be obtained in substantially less time if the problem is decomposed in
sub-problems, without loss of quality. Even more, in most cases we were
able to obtain even better solutions. For the fast template we need to
keep the number of iterations relatively low, to preserve the reduction in
running time. The slow template needs more iterations to obtain a similar
(or lower) cost, but the reduction in running time is still significant.

The solution method for the theoretical case is much faster. Since the
running time of the first iteration of our algorithm is relatively slow, the
reduction in running time is less than for the practical case. This sug-
gest that our algorithm is more beneficial when slow and complex solution
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methods are used.

Our approach thus makes it possible to solve instances that could not
be solved before, because they are too large. It also makes it possible to
use more complex templates, that are normally too slow on large cases.
Because complex templates often have more components that increase the
running time exponentially with the number of customers.

Although we need to tune the parameters for new types of instances, our
method can be promising for the considered retail company. Instances on
the same day part and in the same region are very similar. Hence, we only
need to tune the parameters once. Since there are also some differences
between days, one can choose to tune the parameter per day (part) and
per region.

Although the method described in this thesis performs well, we propose
other interesting ideas and extensions that can be investigated in future
research. First of all we saw that after a few iterations the costs converged
and did not decrease any more. To create more diversity in the splits
and hopefully avoid convergence, we combined our algorithm with other
methods implemented by ORTEC. We saw, however, that the costs still
converged after a few iterations. Other splitting methods might be used or
different combinations to check whether they result in splits where more
improvement can be found.

Secondly, we saw that our approximate cost fitness function was in some
cases not able to correctly predict the real cost. More complex models or
different factors can be included to improve the fitness function. We did not
include any variables relating to the heterogeneous fleet. The approximate
cost fitness function will probably benefit from these kind of variables.

We also saw that the parameter values of the size fitness function some-
times direct the solution in the wrong direction. Better tuning of these
values might therefore be necessary. Furthermore it might be interesting
to make our method more dynamic, for example by choosing a command
template based on the sub-problem size or updating the parameter values
during the algorithm.
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A List of Symbols

Below we give an overview of all used symbols and notations.

Network graph

G directed graph representing the network graph
V set of all vertices in the network

A set of all arcs in the network

N set of customer nodes in the network
D set of depot nodes in the network
Customer

N set of all customers

N, set of all customers in sub-problem r
[a;, b time window of customer i € N

S; service duration of customer ¢ € N
P demand quantity of customer ¢ € N
=% demand quantity of customer : € N
Depot

D set of all depots

D, set of all depots in sub-problem r
Vehicle

K set of all vehicles

Ky set of vehicles available at depot d

K, set of vehicles in sub-problem r

w set of vehicle types

Quw capacity of vehicle type w € W

Sw driving speed of vehicle type w € W

Ow set of operating cost of vehicle type w € W

Genetic algorithm

S chromosome representing set of sub-problems

F(S) fitness function of chromosome S representing the size

Cs routing cost of chromosome S

2 centre of gravity of sub-problem r

r1 number of iterations with size fitness function

ro number of iterations with approximate cost fitness function
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=
3

NI e R

initial number of sub-problems

mutation probability of mutation operator m

number of customers reassigned by the mutation operator
number of vehicle reassigned by the mutation operator
number of individuals in the population

number of worst individuals in population

B Problem instances in detail

In Table 10 a more detailed description of the used instances can be found.

Table 10: Description of the instances from the retail company

instance region weekday day-part  #vehicles #orders #depots
Al A Monday morning 289 1303 7
A2 A Monday afternoon 291 2286 7
A3 A Wednesday morning 293 2089 7
A4 A Wednesday afternoon 293 2287 7
A5 A Saturday morning 293 2275 7
B1 B Monday morning 322 1861 2
B2 B Monday afternoon 329 3099 3
B3 B Wednesday morning 329 2876 3
B4 B Wednesday afternoon 329 2805 3
B5 B Saturday morning 329 2962 3
C1 C Monday morning 333 1046 6
C2 C Monday afternoon 339 2481 6
C3 C Wednesday morning 345 2446 6
C4 C Wednesday afternoon 345 2676 6
Ch C Saturday morning 345 2570 6
D1 D Monday morning 308 1840 d
D2 D Monday afternoon 299 2233 5
D3 D Wednesday morning 303 2238 4
D4 D Wednesday afternoon 300 2093 4
D5 D Saturday morning 299 1862 4

In Table 11 we give an overview of the different vehicles types per

instance.
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Table 11: Number of vehicle types per instance.

#Vehicles #Vehicles #Vehciles #Vehicles #Vehicles
Instance
typel type2 type3d typed typed
Al 0 11 111 150 17
A2 0 11 112 150 18
A3 0 11 113 150 19
A4 0 11 113 150 19
A5 0 11 113 150 19
B1 0 12 160 150 0
B2 0 13 166 150 0
B3 0 13 166 150 0
B4 0 13 166 150 0
B5 0 13 166 150 0
C1 0 14 157 150 12
C2 0 14 163 150 12
C3 0 14 169 150 12
C4 0 14 169 150 12
Ch 0 13 170 150 12
D1 2 22 132 150 0
D2 4 22 125 150 0
D3 3 22 126 150 0
D4 5 22 125 150 0
D5 2 22 125 150 0
C Results

Table 12: Number of sub-problems and standard deviation of the number of orders per
sub-problem for some parameter combinations.

A B C Dy
# o # o # o # o ) ( min max
7 91513 1704 5 6341 4 3775 |15 125 4 5
10 753116 7550 (10 9243 | 8 11491 |15 125 4 10
9 50.35| 8 50.87 |10 6546 | 8 6092 | 1.5 125 7 10
8 7084 |6 7T1.95| 8 6298 | 7 11838 |25 150 4 8
7T 7333| 7 8786 | 7 5353 | 7 79.07 |25 175 6 8
10 64.06 | 7 52.82 |10 81.72 |10 9791 |35 150 6 10
7 6989 |8 91.74| 7 6491 | 7 4206 |35 175 6 8
7 63628 6068 8 8735 8 8692 35 175 7 8
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Table 13: Maximum, average and standard deviation of the sub-problem running times
in minutes for instance D for some parameter combinations.

Fast template Slow template
Max Avg Sd Max Avg Sd 4] ¢ min max
01:28.71 01:18.66 00:08.74 | 03:22.68 02:49.95 00:29.15 | 1.5 125 4 )
00:48.56 00:31.55 00:13.48 | 01:28.21 00:59.56 00:25.99 | 1.5 125 4 10
00:46.92 00:35.39 00:08.02 | 01:20.72 01:03.99 00:11.23 | 1.5 125 7 10
00:52.98 00:34.91 00:15.03 | 01:58.60 01:19.19 00:21.19 | 2.5 150 4 8
00:46.84 00:34.92 00:11.04 | 01:38.41 01:02.75 00:27.56 | 2.5 175 6 8
00:33.08 00:22.35 00:08.01 | 01:36.72 00:52.18 00:21.45 | 3.5 150 6 10
00:46.42 00:37.14 00:05.31 | 01:29.62 01:04.58 00:14.15 | 3.5 175 6 8
00:41.47 00:30.22 00:10.68 | 01:35.87 01:05.06 00:29.38 | 3.5 175 7 8

Table 14: Deviation of the plan costs and running times from the solution obtained
without decomposition for three multi-process iterations using the fast template.

1 iteration 2 iterations 3 iterations

Cost, Time Cost, Time Cost, Time
Al +5.7% -83.9% -25% -73.6% -8.3% -65.4%
A2 +25% -76.9% +04% -67.1% -02% -56.8%
A3 +23% -66.1% -0.6% -52.8% -3.4% -42.6%
A4 +4.6% -61.1% +2.9% -39.5% +2.8% -39.5%
A5 +7.6% -721% +4.6% -60.9% +1.8% -56.4%
Bl +94% -711.5% +74% -60.1% +22% -46.3%
B2 -2.6% -722% -83% -61.9% -9.3% -53.8%
B3 +0.1% -53.5% -5.6% -44.3% -7.0% -33.8%
B4 -54% -777%  -8.0% -68.7% -9.8% -62.4%
B5 +33% -67.8% -7.6% -55.4% -9.5% -43.3%
Cl +8.0% -76.7% +1.8% -66.9% +1.6% -57.0%
Cc2 +7.5% -57.8% +0.6% -57.2% -3.9% -42.3%
C3 +7.9% -67.3% -02% -57.2% -1.0% -47.5%
C4 +6.9% -75.6% +0.9% -68.1% -1.7% -58.8%
C5 4+6.3% -69.5% +1.0% -57.6% +0.3% -49.6%
D1 -42% -71.4% -84% -58.5% -8.3% -51.4%
D2 -03% -72.0% -24% -624% -6.5% -50.7%
D3 +1.3% -71.5% -2.5% -628% -5.0% -53.8%
D4 -3.6% -73.8% -7.5% -62.6% -7.7% -51.8%
D5 -9.6% -75.6% -13.4% -64.5% -13.7% -54.6%
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Table 15: Deviation of the plan costs and running times from the solution obtained
without decomposition for three multi-process iterations using the slow template.

1 iteration 2 iterations 3 iterations

Cost Time Cost Time Cost Time
Al +232% -87.2% +13.5% -84.0% +12.2% -80.6%
A2 +83% -89.4% -1.6% -86.1% -4.6% -83.4%
A3 +142% -85.1% -71% -821% -0.1% -77.2%
A4 +124% -83.9% +83% -78.4% +7.3% -75.5%
A5 +4.6% -872% +02% -84.5% -55% -81.6%
Bl +11.8% -86.2% +3.0% -82.1% +2.9% -77.4%
B2 +84% -88.0% +3.6% -85.1% +1.3% -82.7%
B3 +4.7% -855% -4.6% -81.5% -49% -78.5%
B4 +1.7% -89.6% -2.0% -86.6% -62% -82.6%
B5 +6.8% -89.7% +3.1% -86.0% -25% -82.8%
D1 +125% -87.8% +4.5% -84.1% +3.4% -80.1%
C2 +1.9% -86.6% -2.9% -84.1% -8.0% -80.0%
C3 +86% -85.6% +3.0% -834% +38% -81.3%
C4 +12% -86.1% -3.6% -82.7% -55% -79.8%
C5  +3.9% -83.0% -2.9% -84.9% -42% -82.0%
D1  +9.9% -88.0% +9.6% -84.1% +9.2% -80.5%
D2 +4.4% -89.6% +0.1% -85.7% -1.5% -83.7%
D3 +34% -89.0% +0.1% -83.6% -1.8% -79.8%
D4  +1.4% -884% -6.8% -84.9% -8.7% -81.4%
D5 -81% -92.7% -13.9% -89.5% -18.7% -83.4%
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