THE COLLABORATIVE
TRAINEESHIP PLANNING PROBLEM

FEM21030-18!

Author: Menno van Beek BSc.
412261

Supervisor: dr. K.S. Postek

Second assessor: dr. S. Agrali

March, 2020

!Erasmus University Rotterdam, Erasmus School of Economics, Master’s program
Econometrics and Management Science specialization in Operations Research and Quan-

titative Logistics.

Abstract

In this thesis we study the collaborative traineeship planning problem (CTPP).
This problem consists of the construction of an initial traineeship planning and
the rescheduling of an existing planning in case of disturbances. We start by
pointing out some places in the literature related to the CTPP. We then for-
mulate the initial planning problem as a Mixed Integer Programming problem
(MIP). Thereafter, we formulate the rescheduling problem as a MIP by ex-
tending the MIP formulation of the initial planning problem. We prove both
problems are N'P-complete. Next, we elaborate on an exact approach for the
initial planning problem wherein we exploit variable fixing methods and valid
inequalities to increase the performance of a branch-and-bound algorithm. Fur-
thermore, we consider a three-stage genetic algorithm as heuristic approach
to solve the initial planning problem. We formulate the subproblem in this
genetic algorithm as a MIP and impose symmetry breaking constraints in an
attempt to improve the performance in terms of computation time. Also, for
the rescheduling problem we consider an exact and a heuristic approach. In the
exact approach we again take advantage of variable fixing methods and valid
inequalities. The heuristic approach consists of a variable neighborhood search
strategy, where each neighborhood is evaluated by means of a tabu search pro-
cedure. Finally, we provide results for both the initial planning as well as the

rescheduling problem.

Keywords: Collaborative Traineeship Planning, Initial Planning Problem,
Rescheduling Problem, Staffing Targets, Genetic Algorithm,
Tabu Search, Complexity Analysis.

Preface

What you are about to read is a thesis submitted to obtain the Master of Science

degree in the field of Econometrics, given the grade g of this thesis satisfies
5.0 < g <10.

I would like to take the opportunity to express my gratitude to dr. Krzysztof Postek
for being my supervisor throughout this process. His guidance and theoretical in-
sights have greatly helped to shape this thesis. Moreover, a special thanks to dr.
Semra Agral for being the second reader of this thesis. Furthermore, I would like
show my appreciation to Gregor Brandt and Mark van der Goot for their valuable
suggestions during my graduation internship at QuO Mare. Besides the above men-

tioned people, the ping-pong matches at QuO Mare against Jaron also helped a bit.

You will notice that in this thesis, I refer to 'we’ every time I make a statement. This
is not caused by the author being socially embarrassed or whatsoever. It is meant to
engage you, the reader, into the development process. To you as a reader, I would
like to express my appreciation. You almost succeeded in reading at least one page

of my master thesis. I hope you will enjoy reading the rest.

i

Contents

Preface

List of Figures
List of Tables

List of Algorithms

1 Introduction

1.1 Contribution and Structure of this Thesis
Problem Description

Literature Review
3.1 Crew Scheduling Problems
3.2 Crew Rescheduling Problems

3.3 Collaborative Traineeship Planning
Data Description

Problem Formulation
5.1 Sets
5.2 Subsets
5.3 Decision Variables 0.
5.4 Parameters Lo
5.5 Inmitial Planning Formulation
5.6 Rescheduling Formulation
5.7 Complexity Analysis
5.7.1 Partition Problem
5.7.2 Imitial Planning Problem
5.7.3 Rescheduling Problem

Methodology

6.1 Initial Planning Problem
6.1.1 Exact Approach
6.1.2 Heuristic Approach
6.1.3 Population Diversity Measurement

6.2 Rescheduling Problem
6.2.1 Exact Approach

il

N O ot G

10
10
11
13
14
14
14
19

6.2.2 Heuristic Approach

7 Computational Experiments

7.1 Instance Specifications
7.2 Parameter Settings Lo
7.3 Initial Planning Problem o000
7.3.1 Exact Approach,
7.3.2 Heuristic Approach L.
7.4 Rescheduling Problem
7.4.1 Penalty Trade-off
7.4.2 Single Event Rescheduling

7.4.3 Simulation Setting
8 Conclusion

Bibliography

iv

41
41
42
43
43
44
93
54
95
o7

59

61

List of Figures

© 00 J O Ot = W NN =

[
w N = O

[lustration of internship 1 capacity at location 1 and 2
Intuition of the polynomial reduction
[lustration of both cases for starting internship 1 at time period t* .
[Mlustration of the cross-over operation
Effect of MIP improvement methods.
Effect of MIP improvement methods detailed.
Improvement of mathematical programming heuristic.
Rescheduling trade-off instances with ppqae = 40 people.
Effect of MIP improvement methods.
Effect of MIP improvement methods detailed.
Effect of MIP improvement methods.
Effect of MIP improvement methods detailed.
Rescheduling trade-off instances with ppq. = 80 people.

List of Tables

O R

10
11
12
13

Initial planning problem im0z = 3, bmaz = 1, lmaz = 2, |Li|= 2.

Initial planning problem 4,00 = 8, binaz = 3, lmaz = 5, |Li|= 3.

Initial planning problem i00 = 12, binaz = 4, lmaz = 3, |Li|=2. . . .
Location subproblem comparison of greedy heuristic, exact approach
excluding symmetry breaking constraint and exact approach including
symmetry breaking ez = 5, bmaz = 2, |Li|l=2,Vi €.
Location subproblem comparison of greedy heuristic, exact approach
excluding symmetry breaking constraint and exact approach including
symmetry breaking imar = 12, byas = 3, |Li|=2,Vie Z.
Location subproblem comparison of greedy heuristic, exact approach
excluding symmetry breaking constraint and exact approach including
symmetry breaking imaz = 7, baz = 3, |Li|=3,Vi € Z.
Location subproblem comparison of greedy heuristic, exact approach
excluding symmetry breaking constraint and exact approach including
symmetry breaking imaz = 12, bypaz = 3, |Li|=3,Vi €Z.
Scenarios initial planning problem for algorithm comparison.
Initial planning problem algorithm comparison
Scenarios rescheduling planning problem.
Single event rescheduling problem: Availability change.
Single event rescheduling problem: Staffing target change.
Single event rescheduling problem: Additional people.

49

49

50

14 Simulation setting ppaz = 80, imaz = 12, baz = 4, lmaz = 5, |Li|=3. 58
15 Initial planning problem iz = 4, bmaz = 2, lnae = 2, |Li|=2 63

List of Algorithms

1 Genetic Algorithmo 27
2 Construct Initial Schedules 28
3 Combine Schedules 29
4 Subproblem Greedy Approach 31
) Internship Duration Improvement Heuristic 33
6 Variable Neighborhood Search 37
7 Tabu Search 2-Opt Internship Swap 38
8 Tabu Search 2-Opt Internship Duration 39

vi

1 Introduction

Motivated by increasing labor costs, companies are looking for opportunities to im-
prove the productivity of their employees. Among the available options, a common
strategy is to train employees in training programs (also known as traineeships).
Within such a program, employees are trained in multiple business units to increase
their experience level which is beneficial in terms of productivity. At the same time
the business units themselves also benefit from being fulfilled. In other words, there
is a common interest for employees and business units to make an efficient collabora-
tive traineeship planning. Creating such a planning is considered a non-trivial task
as multiple objectives and constraints on the traineeship program must be taken into
account. Thereby, whenever disruptive events occur the planning can be modified

with respect to the existing planning to deal with these disturbances.

In this research we focus on the Collaborative Traineeship Planning Problem (CTPP).
This problem consists of: (i) constructing an initial traineeship planning, and (i)
rescheduling an existing planning in case of disruptive events. We aim to develop an
algorithm (or two algorithms) to solve the initial planning and rescheduling prob-

lem. Hence, the main focus of this thesis is to address the following research question:

Can we design an algorithm that produces a collaborative traineeship planning within
a reasonable amount of time while satisfying constraints on the traineeship program
such that it is flexible in the trade-off of multiple objectives?

1.1 Contribution and Structure of this Thesis

We will address this research question as follows. First, we provide an extensive
description of the aspects of this problem and review the corresponding literature.
Thereafter, our first contribution to the existing literature is a Mixed Integer Pro-
gramming (MIP) formulation of the initial planning variant of the CTPP. This MIP
formulation is then extended to formulate the rescheduling variant of the CTPP.
Thereby, we prove both problems are N'P-complete. Next, we develop both an exact
and a heuristic approach to solve the initial planning problem. In the exact approach
we exploit variable fixing methods and valid inequalities. In addition to this, we pro-
pose a three-stage genetic algorithm as heuristic approach. For the rescheduling
problem we consider an exact approach where we again take advantage of variable
fixing methods and valid inequalities. Next to that, we consider a tabu search algo-

rithm with multiple neighborhoods to solve the rescheduling problem.

This thesis is structured as follows. We start in Section 2 with a comprehensive
description of the CTPP. Next, in Section 3 we present a review of the existing
literature related to the problem. In Section 4 we elaborate on the data required for
this problem. Thereafter, we formulate both variants of the problem in Section 5 as
a MIP and proof both variants of the problem are NP-complete. In Section 6 we
describe the methodology to solve both problems. We discuss the results in Section

7. Lastly, we conclude this thesis in Section 8.

2 Problem Description

For companies it is becoming increasingly more common to train employees in col-
laborative training programs. An example of a collaborative training program is a
group of people (employees) that follow a certain training program in which differ-
ent business units must be involved, but wherein the components themselves also
benefit from being fulfilled. In this case we consider both a common as well as an
individual interest in the training program, which can make planning more complex.
In current literature the collaborative traineeship aspect in the optimization of crew
planning is not yet addressed. The problem is even more challenging if a rolling
horizon is considered, in which the crew is rescheduled whenever disruptions occur
or new crew enters the training program. Combined with specific restrictions on the
training program, multiple objectives and structure on the internships, the problem
becomes even more complicated from both a scientific point of view as well as from
a practical perspective. To grasp the complexity of this problem in more detail we

provide a description of each aspect below.

Collaborative traineeship planning. The collaborative traineeship aspect con-
sists of both the common and individual interest. The individual interest refers to,
on the one hand, people that want to complete the training program and, on the
other hand, the interest of the company to have the internships staffed. The com-
mon interest aspect refers to the fact that both entities have jointly interest in the
internships, each from their own perspective. Hence, the collaborative characteristic
is a major extension to regular crew planning problems and of utmost importance

to this problem.

Consecutive training program. From a practical perspective the schedule for
each person in the training program should consist of consecutively planned intern-
ships. That is, for each person the training program shall consists of planned intern-
ships without gaps in-between. The reason for this is to ensure the training program
is completed by each person within a specified time period. Furthermore, this is
also supported by the practical incentive related to high cost for people not being
scheduled.

Internship and location structure. To allow for more flexibility we assume the
number of internships available at each location can vary to some extend. For each
internship a soft target on the minimum and maximum number this internship is
available at each location is set by the company. Additional costs are incurred in

the case the target is violated. We refer to a violation of the minimum (maximum)

number of available internships as understaffing (overstaffing). These costs are made
to hire extra people (in case of understaffing) or taking care of additional guidance
(in case of overstaffing). The reason for this flexibility is that we already restricted
that each person should have a consecutive training program. That is, the problem
cannot be restricted in both the individual and common interest. Furthermore, to
enhance even more flexibility we allow some variation in the the duration of each
internship per person. For each internship a range on the duration per person is pro-
vided, representing the minimum and maximum duration that person shall perform

the internship before it is considered as completed.

Block-wise structure. Each internship has a corresponding block, which forces
structure on the order in which internships can be performed. A block is closely
related to experience level, but represents a more generic framework. The block
structure imposes that a person can perform internships of a certain block if that
person completed the internships of the prior block(s). That is, we assume all in-
ternships corresponding to a certain block can be performed in an arbitrary order.
However, the order in which two internships are performed that correspond to two
distinct blocks is fixed in advance. This block structure is required for the training
program to make sure that the experience level of an person is matched to the diffi-

culty of the internship.

Rolling horizon and rescheduling. Whenever new people enter the training pro-
gram, the current schedule is insufficient and therefore has to be rescheduled. That
is, new people enter the program in a rolling horizon and a new schedule has to be
made with respect to the current schedule. The current schedule is respected in the
rescheduling to ensure the stability of the schedule. For example, if a person already
arranged peripheral matters for a certain internship it is undesirable to assign an-
other internship (or location) to this person. This aspect is especially important for
internships scheduled in the near future and becomes decreasingly important further

in the future.

Multi-objective. The previously described aspects and related objectives show
that this problem is has multiple objectives. That is, the objectives are maximizing
the number of people that complete the training program, minimizing the total cost
corresponding to over- and understaffing internships and minimizing the rescheduling
penalty whenever disruptions occur. To incorporate each objective appropriately,
some thought need to be given on the trade-off between the objectives. That is,

which objectives are most important and how each objective is taken into account.

3 Literature Review

In this section we elaborate on literature related to crew scheduling problems. We
start with an general overview of regular crew scheduling problems. Thereafter, we
discuss literature that focuses on crew rescheduling. Lastly, we review literature that

is specifically related to the collaborative traineeship planning problem.

3.1 Crew Scheduling Problems

In the last few decades increasingly more crew scheduling problems are studied,
mainly motivated by economic considerations to reduce labor costs. One of the first
crew scheduling problems is introduced by Edie (1954) and Dantzig (1954) who inves-
tigate crew scheduling at traffic toll booths using a Linear Programming approach.
Since then, various crew scheduling problems and extensions have been considered.
Most of the scientific literature focuses on real-world applications of crew schedul-
ing problems, among which the airline industry is one well-known example of crew
optimization. An illustration of various constraints and objectives provided by the
airline industry in crew optimization is presented in Kohl and Karisch (2004). An-
other illustration of crew scheduling in practice is given in Billionnet (1999), wherein

a regular crew scheduling problem with skilled workers is considered.

In some applications, a general planning problem is solved sequentially. That is,
a problem is split into smaller pieces that are solved sequentially, for example in
the airline industry the problem of flight and crew scheduling is solved sequentially.
In these cases the solution to the crew scheduling problem is related to the assign-
ment of aircraft to flights. Hence, solving these problems simultaneously rather then
sequentially could lead to better solutions. In Haase et al. (2001) an integrated
approach to the vehicle and crew scheduling problem is presented and solved by a
column generation approach for the crew schedules. This approach is integrated in
a branch-and-bound algorithm where the side constraints on the vehicles guarantee
that an optimal vehicle assignment can be derived afterwards in polynomial time. A
second example of integrating vehicle and crew optimization is given in Huisman and
Wagelmans (2006), wherein a dynamic variant of the problem is considered. That is,
a schedule is not constructed for the whole time horizon, but is generated dynami-
cally, for example the schedule can be generated every hour for the next hour. Their
approach has the advantage that the assumption that travel times are only assumed
to be known for the next hour rather than for the whole time period (in contrast
to regular vehicle scheduling). Another example of a simultaneous approach is de-
scribed in Cordeau et al. (2001) where a Benders decomposition is studied to solve

the integrated problem of aircraft routing and crew scheduling. The Benders decom-

position is used in order to handle linking constraints between aircraft and crew. In
this approach the Benders master- and subproblem consists of aircraft routing and
crew pairing, respectively. A trade-off in decomposition techniques is described in

Belién and Demeulemeester (2007).

Another topic is incorporating the preference of employees. For example, using a
column generation approach, a multi-objective problem is considered in Bard and
Purnomo (2005), wherein the preferences of nurses are taken into account. The
objective coefficients are determined by the degree to which individual preferences
are violated. The problem is solved by column generation in combination with in-
teger programming and heuristics. In Hanne et al. (2009) another multi-objective
problem is considered wherein the modelling is discussed including the treatment of
constraints, consideration of preferences and formulation of several objective func-
tions. Lastly, in Rasmussen et al. (2012) home care crew scheduling is considered in
which the preferences of home care crew are clustered to take the soft preferences

constraints into account.

Other extensions to regular crew scheduling problems are a stochastic approach to
protect against delays in the airline industry in Yen and Birge (2006) and a weighted
cost function in a multi-objective nurse scheduling problem in Parr and Thompson
(2007). In Brunner and Edenharter (2011) different experience levels of employees are
considered in a long term scheduling problem. Lastly, flexible employee availability
is studied in Agrali et al. (2017). Although most of the solution approaches exploit
column generation, alternative solution approaches have also been considered. Two
examples are the simulated annealing heuristic as given in Brusco and Jacobs (1993)
and the branch-and-cut approach provided in Hoffman and Padberg (1993). For a
more extensive overview of regular crew scheduling literature we refer to Ernst et al.
(2004) and Van den Bergh et al. (2013).

3.2 Crew Rescheduling Problems

In case the underlying data changes or contains uncertainty a crew schedule can
become infeasible. A real-world example is whenever disruptions occur or if crew
suddenly takes a day off or is ill. In these cases the current schedule has to be
rescheduled, since from a practical point of view it may be undesirable to construct
a new schedule from scratch. An example of a rescheduling approach that incorpo-
rates robustness is presented in Ionescu and Kliewer (2011) and Diick et al. (2012)
where the the increase in flexibility and stability of crew schedules is considered re-

spectively.

To solve these type of problems meta-heuristics are considered in Moz and Pato
(2007) and in Maenhout and Vanhoucke (2011). In Moz and Pato (2007) the feasi-
bility of nurse rosters are recovered by an evolutionary meta-heuristic. In Maenhout
and Vanhoucke (2011) a genetic algorithm is used wherein specific hard constraints
are considered. The fitness score of the individuals is related to the similarity be-

tween the newly formed roster and the infeasible roster.

An exact approach is considered in Moz and Pato (2004) whenever at least one crew
member informs that the assigned shifts cannot be performed. Their contribution to
rescheduling literature is an integer programming model based on a multi-commodity
flow formulation where the nodes of the network are aggregated. Lastly, a quasi-
robust optimization algorithm is discussed in Veelenturf et al. (2014) where the
authors study large scale real-time disruptions. They indicate that this problem
is equivalent to a two-stage problem where in the first stage the different scenarios is
considered and in the second the stage the true duration of the disruption is revealed.
The quasi robustness comes forth from a prescribed number of rescheduled duties

that are required to be recoverable.

3.3 Collaborative Traineeship Planning

Literature related to our problem consists of the collaborative traineeship planning
aspect. An example of the collaborative aspect is given in Juang et al. (2007) where
a genetic algorithm is used to arrange training programs for crew members. In Be-
lién and Demeulemeester (2004) and Belién and Demeulemeester (2006) a heuristic
branch-and-price strategy is used in combination with column generation to build
long-term trainee schedules. At first sight their problem seems similar, however
a closer analysis is that our problem has in addition varying internship duration,
multiple locations per internship and related penalty, block structure on groups of

internships and lastly the rescheduling aspect.

In Guo et al. (2014) a discussion of a basic residency problem is presented where
a one-year schedule is produced for an NP-complete problem. In case of shared
human resources, Stolletz and Brunner (2012) consider a fair optimization of shifts
over physicians. In this paper a comparison of a set covering approach is made
with an implicit modelling technique, wherein shift building rules are implemented
as constraints. Both techniques allow full flexibility in the terms of different starting
times and lengths as well as break replacements. The scheduling model integrates

physician preferences and fairness aspects with respect to crew.

4 Data Description

In this section we describe the data required for the CTPP. We start with the data
required for an instance of the initial planning problem. Thereafter we elaborate on

the additional data needed for an instance of the rescheduling problem.

For each instance of the CTPP an essential part consists of the time periods people
are able to perform internships and which internships shall be done by these people.

That is, we assume the following data is available for each person:
+ Available time periods a person can perform internships,

» Type of internships a person shall perform in order to meet the program re-

quirements,

» Range on the minimum and maximum number of time periods a person shall

perform each internship type.
Next, we assume the following data is available for each internship type:
» The block an internship corresponds to,
o At which locations an internship type can be performed,

« Soft upper and lower staffing targets at each location on the number of people

the location aims to have during each time period for each internship type.

As these staffing targets are considered soft targets, we require data related to the

following penalties in order to identify importance of each aspect:

« Penalty for violating soft upper and lower internship staffing targets internship

targets during each time period,
« Penalty for increased duration of someones traineeship program.

In case of disruptions such that we apply a rescheduling procedure we assume the

following data is available:
« Change of availability per person,
» Change of soft upper- and lower staffing targets during a certain interval,

» Additional people in the training program for which the data as described for

the initial planning problem is also known.

Lastly, we assume for the rescheduling case the corresponding penalty is set propor-

tional to the penalties corresponding to initial planning problem.

5 Problem Formulation

In this section we describe the mathematical formulation of the problem. First, we
introduce relevant notation in Section 5.1 — 5.4 to describe the sets, subsets, decision
variables and parameters. Thereafter, the mathematical formulation corresponding
to the initial planning problem is given in Section 5.5. This formulation is extended
in Section 5.6 to incorporate the rescheduling component. Lastly, in Section 5.7 we

prove both the initial planning as well as the rescheduling problem are N'P-complete.

5.1 Sets

In our mathematical formulation we use the following sets:
o P : set of people,
» 7 : set of internship types,
» B : set of blocks.
o L : set of locations,
o T : set of time periods.

Let the size of each set be given as: pmaz = |P| ; tmaz = |Z|, bmaz = |B|, lmaz = |L]
and tmaz = |T].

5.2 Subsets

In our mathematical formulation we use the following subsets:
» Py : subset of people starting in the first block,
7, : subset of internship types that person p has to perform,
o T3 : subset of internship types that must be performed to complete block b,

o Tp1 : subset of internship types that must be performed to complete the first
block,

B, : subset of blocks that person p has to perform,

o L; : subset of locations where internship ¢ can be performed,

Tp : subset of time periods person p is available.

5.3 Decision Variables

In our mathematical formulation we use the following decision variables:

o 1, if person p performs internship type i at location [at time period ¢,
it = 0, otherwise,
o 1, if person p completed internship type ¢ by time period t,
it = 0, otherwise,
- 1, if person p completed block b by time period t,
ot = 0, otherwise,
o 1, if person p started internship type 4 at location [at time period t,
it = 0, otherwise,
e 1, if person p meets the program requirements by time period t,
pt —

0, otherwise,

uzgt = number of over-staffed type i internships at location [at time period %,

u;;, = number of under-staffed type ¢ internships at location [/ at time period ¢.

Note: decision variable x;; uniquely defines a solution to the CTPP, as it completely
defines the assignment of people to internship types and locations over time. Hence,

the other decision variables follow directly from a given realisation of x,.

5.4 Parameters

In our mathematical formulation we use the following parameters:

e MinP,; : minimum number of time periods internship type ¢ must be per-

formed by person p,

« MaxP,,; : maximum number of time periods internship type ¢ can be performed

by person p,

« UB,; : soft upper target on the number of people to perform internship type

1 at location [during time period ¢,

« LB;; : soft lower target on the number of people to perform internship type 4

at location [during time period ¢,
. cf : penalty per over-staffed internship during time period t,

 c; : penalty per under-staffed internship during time period ¢,

10

b, : penalty for person p per time period late program finish,

+ e, : maximum number of time periods person p can perform internships in the

program.

These parameters represent the range on the number of periods an internship may be
performed, the target on the number of internships available, the maximum number

of violations on this target and the corresponding penalties.

5.5 Initial Planning Formulation

In this section we formulate the problem as a MIP. The objective function z of this

problem is given by

z = min { S > (e ufy e ug) +) (b (ep— > fpt))}. (5.1)

€T lEL; teT pEP teTp

The objective function is given by Equation (5.1) which is to minimize the total
penalty for over- and understaffing internships plus the penalty for time periods a
person completes the program later than the earliest possible time period that person
can complete the program. Note that we ensure that ZpG'P(ep — Zteﬂ, fot) >0,
by restricting the number of available time periods per person. In the remainder of
this section we will elaborate on Constraints (5.2) — (5.21), which define the feasible

region.

For + D wpur =1, VpeP,teT, (5.2)
i€T, lEL;

Z Z Tpilt Z MlanZ * Ypit*, vp € Pvl € Ipvt* € 7;)7 (53>
lEL; tETpit <t

>z < MaxPy, VpeP,icl, (5.4)
leL; t€7;;

To ensure the consecutive training program we restrict in Constraints (5.2) that
each person is busy with the training program during each time period, except for
the time periods that person finished the training program. The minimum and

maximum duration of each internship is fixed in Constraints (5.3) and (5.4). The

11

following constraints will force the block structure on the internship order.

Ypit + Y Tpar < 1, Vp € P,i € Iyt € Ty, (5.5)
leL;

Ypit = Ypi(t—1)» VpePieI,teT,:(t—1)€T,, (5.6)

ot < Ypit, VpeP,be Byicy,T,, (5.7)

Apbt < Qp(b—1)t» VpeP,beB,:(b—1) e B, teT,, (5.8)

Qpbt = Qpb(t—1)5 VpeP,beByteT,:(t—1)€eT,. (5.9)

Constraints (5.5) ensures that if a person completed an internship by time ¢ this
person can only perform this internship until time ¢ (excluding ¢ itself). Constraints
(5.6) ensures that once an internship is considered completed it remains completed
in the next periods. Constraints (5.7) forces a block to be completed if a person
completed all its corresponding internships of that block. Constraints (5.8) ensures
that blocks are performed in the correct order. Constraints (5.9) ensures that a block
remains completed in the next periods once it is considered as completed. We ensure
each person to perform the internships of the training program in a feasible order,
by restricting the variable indicating whether the training program is finished using

the following constraints.

Jot < Qpots VpeP,beB,teT, (510)
S =1, YpeP, (511)
teTp
S wpie < Qo VpePbeBy:(b—1)€ByteTy (512)
€Ty lEL;
Wpilt 2 Tpilt — Tpil(t—1)5 VpeP,iel,leLyteT, (513)
DD wpn <1, VpeP e, (514)
leL; ten

Constraints (5.10) ensures that the program is considered as completed only if that
person completed all its corresponding blocks of the training program. Constraints
(5.11) make sure that each person completes the training program. Constraints (5.12)
ensure that a person can only perform internships of its current block. Constraints
(5.13) and (5.14) require each person to perform each internship consecutively. That
is, a person can start an internship only once. This constraint also ensures that each

person can perform an internship at only one location. Soft bounds on the number

12

of internships available are imposed by the following constraints.

Z iy — UBiyy < ug, VieZ,leLiteT, (5.15)
PEP;
LB — Y Ty < uy,, VieI,leLliteT. (5.16)
peEP

Constraints (5.15) and (5.16) ensure the decision variables corresponding to the num-
ber of internships over- and understaffed are set. Lastly, Constraints (5.17) — (5.21)

below are the integrality constraints on the decision variables.

Tpitt, Wpite € {0,1}, VpeP,ieL,leLlteT, (5.17)
ypir € {0,1}, VpeP,i€L,teTy, (5.18)

gpbt € {0, 1}, VpeP,be By teTy, (5.19)

fot € {0,1}, VpeP,teT,, (5.20)
ub, uy, € No, VieZ,leLiteT. (5.21)

5.6 Rescheduling Formulation

To incorporate the rescheduling aspect in the mathematical formulation we introduce
the parameter &p;;, which is 1 if in the original schedule person p performs an
internship of type 4 at location | during time period t. Let f{pm =1, if person p is
allowed to be rescheduled during time period ¢ to perform internship ¢ at location [,

and 0 otherwise. Furthermore, let decision variable 7,;; be defined as

1, if we change person p to perform internship
Tpilt = at location [during time period t,

0, otherwise.

The corresponding penalty d,;; denotes the penalty incurred in case person p is
rescheduled to internship ¢ at location [during time period ¢ from another internship
or location at that time period. Thus, we add the following penalty term to the

objective function given in (5.1),

DD D ey (5.22)

pEPIEL, IEL; tET)

The penalty term given in (5.22) is to minimize the weighted number of rescheduled
internships and locations. More specifically, each internship performed by each per-
son at some location during a given time period is assigned a weight that indicates

the penalty in case this person is rescheduled. That is, higher weights indicate that

13

it is more undesirable to reschedule. In addition to Constraints (5.2) — (5.21) we

impose the following extra constraints to the mathematical formulation:

Tpilt = Tpilt — Lpilt, VpePiel,leLlteTy, (5.23)
rpite < Ryt VpePiel,leLliteTy, (5.24)
rpit € {0,1}, Vp € P,i € Iyl € Liyt €T, (5.25)

Constraints (5.23) ensure that if we reschedule person p during time period ¢ to some
other internship or location the penalty term d,;; is activated in the objective func-
tion. Constraints (5.24) ensure that rescheduling is only permitted for designated
decision variables. Note: Constraints (5.23) and (5.24) consider a generic reschedul-
ing approach. For example, we could achieve that only location changes are permitted
by setting Rpm. The same intuition applies to the value of the penalty parameter
di;. For example, if new people enter the program the penalty could be set to 0 for
all new people as these were not in the original schedule. Lastly, Constraints (5.25)

ensure the integrality of the rescheduling decision variables.

5.7 Complexity Analysis

In this section we elaborate on the complexity of initial planning problem as well as
the rescheduling problem. We show that both problems are A/P-complete. First, we
reduce 2-PARTITION to the initial planning problem. Thereafter, we show that the

initial planning problem can easily be reduced to the rescheduling problem.

5.7.1 Partition Problem

To show that the initial planning problem is AN/P-complete we use the well-known
NP-complete 2-PARTITION problem (see Karp (1972)). The 2-PARTITION decision

problem is defined below.

Definition 5.1. The 2-PARTITION decision problem is: given a set S of integers
ai,...,a, and an integer A such that Zies a; = 2A and a; < A,Vi € S. Is there a
partition Si,Ss such that S§US; =8, S NSy = () and Zz‘esl a; = Zj632 a; = A?
5.7.2 Initial Planning Problem

Let the decision problem of the initial planning problem be defined as: is there a
solution for the initial planning problem for which objective function (see Equation
(5.1)) is 07

Theorem 5.2. The initial planning problem is N'P-complete.

Proof. We show the initial planning problem is NP-complete as follows:

14

(i) First, we show the decision problem is in N'P.

(ii) Second, we show the 2-PARTITION problem can be reduced in polynomial time

to an instance of the initial planning problem.

(i) We prove that the decision problem is in NP, by showing that the certificate
to the decision problem can be verified in polynomial time. First, note that each
solution of the initial planning problem can be uniquely represented by the decision
variable z,;;; as described in Section 5.3 (recall: that x,;; = 1, if person p performs
internship 4 at location [during time period t). The certificate can be verified using
this representation by checking if the objective function equals 0 (resulting in 'Yes’
as answer) or is greater than 0 (resulting in 'No’ as answer). Rewriting the objective

function as given in Equation (5.1) gives:

Z Z Z cf - max {O, Z Tpilt — UBilt}

1€L leL; teT pEP

+ZZZC; - max {O, LBilt — prilt} (5 26)
€T leL; teT peEP ’

£ b, <ep_ S wmin{1,1-% Zw}).
pEP teTp i€Zy leL;

Note that (5.26) can be calculated in polynomial time and that therefore the certifi-

cate can be verified in polynomial time. Hence, the decision problem is in N'P.

(ii) We show that the 2-PARTITION problem can be reduced in polynomial time to
an instance of the initial planning problem. That is, we proof that the answer to the

2-PARTITION problem is "Yes’ <> the answer to the initial planning problem is "Yes’.

Consider the following instance of the initial planning problem with 2 internships, 2
locations, 1 block and m people, thus P = {1,...,m}. Let each person be available
during any time period. That is, 7, = 7, Vp € P. Now, let the durations of
internships Vp € P be restricted as:

MinP,; = MaxP,; = a,, for some integer a, such that > ap+ = 2A for

p*EP
some integer A,

« MinP,, =1,
« MaxP,; = 2A.

This structure enables each person to start internship 1 at any time period ¢ €
{1,...,2A}. Let the penalty associated per time period of late program finish be

b, = 0,Vp € P. Let the penalty for violating staffing targets be given as ¢/ =

15

c, =1,Vt € T. Assume both internships can be done at each of the two locations,
where the upper and lower target UB;;; and LBy (also referred to as capacity) for

internship ¢ at location ! during time period ¢ are as follows:
e Let LBy =0,Vie Lt T.
o Let UBoy =m,Vie L,t€T.
o Let LBy, =UBy;, =1, Vt € {1,..., A} and 0 otherwise.
o Let LB1gy = UBjo; =1,Vt € {A+1,...,2A} and 0 otherwise.

Figure 1 below illustrates the capacity for internship 1.

Location
A '
e
2 Capacity =0 Capacity = 1
h
4 ~N
1 Capacity = 1 Capacity = 0
\)I
» Time
- I)
RS RS
{1,.., A} {A+1,..,2A)}

Figure 1: Illustration of internship 1 capacity at location 1 and 2

—> First, we show that if the answer to the initial planning problem is "Yes’ then
the answer to the 2-PARTITION problem is ’Yes’. Assume the answer to the initial
planning problem is "Yes’, with a given representation of the solution by the decision
variable z,;;, then the solution to the 2-PARTITION problem is found by partitioning
S as:

S = {(lp ‘ Z Tpllt = ap}a (5'27)

te{l,...,A}
82 = {ap ‘ Z $p12t = ap}. (528)
te{A+1,...,2A4}

Note that S U S; = S and S; N Sy =) since internship 1 must be performed at
exactly one of the two locations. Since the answer to the initial planning problem
is "Yes’ the total penalty is 0. Hence, maX{O, ZpEP Tpilt — UBilt} =0, Vi €

16

Tl € Lit € T and max{0, LBy — Ypepapin} = 0. Vi € T,L € Lit € T,
Furthermore, using LB;;; = UByy; = 1,Vt € {1,..., A} and LBy, = UBjy =
L,vte {A+1,...,2A} it follows that:

> =1, vie{1,..., A}, (5.29)
peEP
> i =0, Vie {A+1,...,24}, (5.30)
peP
> o =1, Vie {A+1,...,24}, (5.31)
peEP
> apm =0, vte{l,..., A} (5.32)
peEP

Combining Equations (5.27) — (5.32) it follows that:

Z a; = Z Z Tpllt = Z 1= A, (533)

1€S] peP te{l,. A} te{l,...,A}
jESy pEP te{A+1,.. 24} te{A+1,... 24}

The reduction is graphically illustrated for P = {1,...,7} in Figure 2 below, where
person 1, 5 and 7 are assigned to location 1 (and the corresponding integers of the
2-PARTITION problem to S;1) and person 2, 3, 4 and 6 are assigned to location 2 (and
the corresponding integers of the 2-PARTITION problem to Ss).

Location
A
-
2 apz| ae ag ay So={ap ag ag a4}
A
Y~ \:
1 ay aq as S1 = {87, aiy, 35}
- /I
E » Time
L P P
hi Rl
{1, A} {A+1, .., 2A}

Figure 2: Intuition of the polynomial reduction

<= Second, we show that if the answer to the 2-PARTITION problem is "Yes’, then
the answer to the initial planning problem instance is 'Yes’. Assume the answer

to the 2-PARTITION problem is "Yes’. Again we use the intuition as illustrated in

17

Figure 2. The solution to the initial planning problem can be constructed as follows:
Assign person p to location 1 if a, € S; and to location 2 if a, € S>. Furthermore,
by appropriately choosing the order and duration of internship 2 we can assure that
person p can start internship 1 during any time period t* € 7, at the assigned

location, as illustrated in Figure 3 below.

Cases :

S R

! _Time
L A J
RS Y
{1,.,ap} fapt1, .., ap+hy}
(ii) t* > 1 [2 1 1]
\Time
- D .
AS AS
{1,.,t°-1} {t, ... t'+a,-1}

Figure 3: Ilustration of both cases for starting internship 1 at time period ¢*

That is, if person p should start internship 1 at (i) t* = 1, then the order should be
(1,2) and the duration of internship 2 can be arbitrarily chosen as h,. If person p
should start internship 1 at time period (%) t* > 1, then the order should be (2, 1)
and the duration of internship 2 is set to t* such that person p starts internship
1 at time period t*. Note that internship 2 can be assigned to either of the 2
locations since both targets LBo; and UBo; will not be violated. Using this result
and the fact that > ,cq ai = > ;c5,a; = A an order of people can be created
such that equations (5.29) — (5.32) hold (for example by sorting for each location
the people assigned to that location in increasing order of internship duration and
let person py perform internship 1 directly after person p; finished internship 1).
Combining Equations (5.29) — (5.32) and LBy, = UBqyy, = 1,Vt € {1,..., A} and
LBis = UByo = 1Vt € {A+1,...,2A) results in max {o, Y er xmlt—UBilt} —0
and maX{O, LB — ZpGP xm-lt} = 0. Thus, constructing the initial planning
problem instance this way results in a total penalty of 0. Hence, we have proven
that the 2-PARTITION problem can be reduced in polynomial time to an instance of
the initial planning problem. O

18

5.7.3 Rescheduling Problem

Theorem 5.3. The rescheduling problem is N'P-complete

Proof. Let the decision problem be: is there a solution with penalty at most k7
First, note that the rescheduling problem is in NP since a certificate can be verified
in polynomial time by calculating the objective function as given in Equation (5.26)
plus the the rescheduling term given in Equation (5.22) which can be computed in
polynomial time. Second, the initial planning problem can be polynomially reduced
to the following instance of the rescheduling problem. Let the penalty associated
to each rescheduling change be 0 (thus dpi;; = 0 in Section 5.6). Allow that all
changes of the initial schedule are possible (by setting Rpilt = 1). For this instance
of the rescheduling problem it holds that this is exactly equal to the initial planning
problem. Using Theorem 5.2 it can be easily verified that the rescheduling problem
is also N"P-complete. O

19

6 Methodology

In this section we describe the methodology to solve the problem. First, we consider
the initial planning problem in Section 6.1. Next, we elaborate on the rescheduling

problem in Section 6.2.

6.1 Initial Planning Problem

In this section we describe the methodology for the initial planning problem. First,
we elaborate on an exact approach in Section 6.1.1, wherein we use the mathematical
formulation as described in Section 5.5. To improve on the performance of this ap-
proach, we take advantage of the problem structure by fixing some decision variables

and introduce two valid inequalities.

Next, the N'P-completeness proof in Section 5.7.2 gives rise to explore a heuristic
procedure which we discuss in Section 6.1.2. In this procedure we use a genetic
algorithm followed by a mathematical programming heuristic to solve the initial
planning problem. In the genetic algorithm we decompose the problem into three
stages, where the first two stages correspond to a master-subproblem structure and
the last stage to an improvement strategy. In the master problem we decide for each
person on the order in which internships are performed and the corresponding du-
ration. The remaining subproblem corresponds to the assignment of each internship
of each person to a location for a fixed order and duration of each internship. After
the subproblem is solved we utilize a local search strategy on the internship duration
per person for each schedule. Lastly, we improve on the best schedule resulting from

this procedure by exploiting a mathematical programming based heuristic.

6.1.1 Exact Approach

In this section we outline the exact approach to solve the initial planning problem.
The MIP formulation of the problem as presented in Section 5.5 can be solved by ap-
plying a branch-and-bound algorithm. However, as the number of decision variables
can be high and the problem is A"P-complete (see Section 5.7.2), we intend to reduce
computation time by exploiting variable fixing methods in Section 6.1.1.1. Second,
we introduce two valid inequalities in Section 6.1.1.2 to tighten the mathematical

formulation.

6.1.1.1 Variable Fixing

In this section we describe the variable fixing methods we exploit to improve the

performance of the branch-and-bound algorithm. For each of the variable fixing

20

methods we take advantage of the minimum and maximum duration of each intern-
ship per person. The following constraints show how decision variable f;, indicating

if person p finished the program by time period t, is fixed.

for =0, if Y MinP, < > 1, VpEeP,teTy, (6.1)
i€, tETp:t! <t

for =1, if ¥ MaxPy, > > 1, VpeP,teT, (6.2)
i€, tETp:t! <t

First, in Constraints (6.1) we use that person p cannot finish the program by time
period t, if the number of time periods that is at least required to finish the program
is less than or equal to the number of time periods person p is available up-to and
including time period ¢. The number of time periods that is at least required is sum
of the minimum internship durations for person p and is given by the left-hand side
of Constraints (6.1). The number of time periods person p is available up-to and
including time period ¢ is given by the right-hand side of Constraints (6.1) and will
be used in each of the variable fixing methods in this section. Second, in Constraints
(6.2) we exploit the opposite effect of Constraints (6.1). Herein we use that person p
must have finished the program by time period ¢ if the number of time periods that
is at most required to finish the program is more than the number of time periods

person p is available up-to and including time period t.

The next decision variable on which variable fixing is applied denotes if person p

finished block b by time period t. The corresponding constraints are given below.

gpoe = 0, if Z Z MinP,; < Z 1, VpeP,beBytcT, (63)

b EBy:b' <b i€T,NT,, teTyt! <t
ot =1, if D > MaxP, > Y 1, VpePbeB,teT, (64)
b EBL:Y <b i€T,NTy v eTyt' <t

In contrast to Constraints (6.1) and (6.2), we also take advantage of the block-wise
structure of the problem in Constraints (6.3) and (6.4). That is, in Constraints (6.3)
we use that person p cannot finish block b by time period ¢ if the sum of the mini-
mum durations of the internships in blocks ¥’ € B : b’ < b are less than or equal to
the number of available time periods up-to and including time period t. A similar

argument is applied in Constraints (6.4).

For the next variable fixing method we first introduce some notation. Let b; € B

denote the block corresponding to internship ¢. Furthermore, let B,; C B and B;; cB

21

be defined as

Bpi:{beg‘b<bi,b68p}a Vp € P,i € I, (6.5)
By; = Bpi U {bi}, VpeP,icl, (6.6)

These definitions are illustrated in Example 6.1 below.

Example 6.1. Let B= B, = {1,...,3}. Furthermore, let Z =7, = {1,...,6} such
that b; is as follows b; = B-‘ Then, b;, Bp; and B;; are defined as:

i 1 2 3 4 5 6
b; 1 1 2 2 3 3

B, 0 1) {1} {1} {1, 2} {1, 2}
B;; {1} {1} {1, 2} {1, 2} {1, 2, 3} {1, 2, 3}

Using B,; and B,

pi?
whether person p finished internship i by time period t) as follows.

we fix the decision variable yp;; (recall that this variable indicates

Ypit =0, if MinPpy;i+ > > MinPy, < > 1, VYpeP i€, teT, (6.7)

bEBy; i EL,NT, vV eTyt! <t
Ypir = 1, if > > MaxPyy > Y 1, VYpePicL,teT, (68)
beB; iIGImeb t’€7;,:t’§t

Again, we take advantage of the duration of each internship and block structure.
Note the similarity between Constraints (6.3) — (6.4) and Constraints (6.7) — (6.8).
However, in contrast to Constraints (6.3) we have to correct for the unknown order of
internships in Constraints (6.7). That is, in Constraints (6.7) we ensure that person
p cannot finish internship ¢ by time period t if the sum of the minimum duration of
the internships in the blocks preceding internship ¢ (blocks B,;) plus the minimum
duration of internship ¢ is less than the number of time periods person p is available

up-to and including time period ¢.

Lastly, we fix the decision variables indicating whether person p performs internship
1 at location [during time period t. The variable fixing method for this variable is

as follows.

Tpiy =0, if Y Y MinPyy < Y 1, VpeP i€, leLiteT, (6.9)

bEBpi '€y veTpt'<t
Ty =0,if Y Y MaxP,y > Y 1, VpePicL,leLiteT, (6.10)
beB;’i '€TpNIy t'eTpt! <t

22

Observe that we again exploit the minimum and maximum duration of each intern-
ship. In Constraints (6.9) we ensure that person p is not performing internship i by
time period ¢ if the internships in the blocks preceding (denoted by B;) the block of
internship 4 (denoted by b;) cannot be finished by time period ¢. A similar argument
holds for Constraints (6.10), wherein also the durations of the internships in block b;
itself are incorporated. Combining Constraints (5.13), (6.9) and (6.10) we note that
the decision variable wp;; (recall that wy;; denotes if person p start internship ¢ at

location [at time period t) is fixed as well.

6.1.1.2 Valid Inequalities

In this section we describe the valid inequalities used to improve the performance
of the branch-and-bound algorithm. First, let §(p,¢’,t) be the number of time pe-
riods person p is available from time period ¢’ up to and including time period t.
Furthermore, let the sets p’it C 7, and p’{t C T, be defined as

= {t’ €T, ‘ t' <t, §(p,t',t) <MinP,, } VpeP,ie€l,teT, (6.11)

= {t” €T, ‘ t"<t, 5(p,t't) < Mame-}, VpeP,i€L,teT, (6.12)

We illustrate these sets in Example 6.2 below.

Example 6.2. Let the set of all time periods be 7 = {1,...,5}. Furthermore,
assume the availability of person p is 7, = {1,3,4,5} and that the minimum and
maximum duration internship ¢ are MinP,; = 2 and MaxP,; = 3, respectively.

Then the sets 7, and 7}, are defined as:

t 1 2 3 4)

The first valid inequality is then given by

Tpitt > Y Wi VpePicTL,leLl,teT, (6.13)
t'eT)

pit

The intuition of this inequality is as follows. Observe that 7;7/it is the set of time
periods from ' = ¢ back to t' € 7, such that the number of time periods person p is

available between ¢’ and ¢ is at most MinP,;. Then if person p starts internship 4

!

during some time period t* € pit» then person p should be performing internship

at time period ¢t. We illustrate this valid inequality in Example 6.3 below.

23

Example 6.3. Assume person p is available during any time period and starts
internship ¢ during time period t* at location [. That is, wy+ = 1. Let MinP); = 3.

Then Constraints (6.13) imply the following for decision variable zp;;:

t t*—1 t* t*+1 t* 42 t*+3 t*+4 t*+5
Wit 1
Tyt >1 > >1

The second valid inequality exploits the complementary effect of the first valid in-

equality and is given by

Tpit <> Wyiger VpePicT,leLteT, (6.14)

vieT,
Observe that 7., is the set of time periods from " = ¢ back to " € 7}, such that the
number of time periods person p is available between ¢” and ¢ is at most MaxP,;.
Then if person p does not start internship ¢ during any time period t* € plét, then
person p cannot be performing should be performing internship 4 at time period ¢.

We illustrate this valid inequality in Example 6.4 below.

Example 6.4. Assume person p is available during any time period and starts
internship 7 during time period ¢* at location [. That is, wp;+ = 1. Let MaxP,; = 4.

Then Constraints (6.12) imply the following for decision variable zp;;:

t t*—1 t* t*+1 t* 42 t*+3 t*4+4 t*+5
Wpilt 1
T <0 <0 <0

6.1.2 Heuristic Approach

In this section we elaborate on the heuristic approach to solve the initial planning
problem. First, we discuss the intuition of the algorithm in Section 6.1.2.1 and intro-
duce some relevant notation. Thereafter, we describe an overview of the algorithm in
Section 6.1.2.2. The components of this algorithm are discussed in Sections 6.1.2.3
— 6.1.2.8.

6.1.2.1 Intuition of the Algorithm

In this section we describe the intuition of the heuristic approach and introduce some
notation. First, observe that each solution to the initial planning problem can be

uniquely represented by the joint outcome of the following three decisions:

24

» Order of internships per person,
« Duration of each internship per person,
« Location assignment of each internship per person.

To deal with the complexity of these decisions we decompose the problem into a
master-subproblem structure. Next, we note the location assignment problem is a
relatively easy problem once the order and duration of internships is given. Hence,
we propose to decide on the order and duration of internships in the master problem
and thereafter solve the location assignment problem as a subproblem. However, si-
multaneously deciding on the order and duration of internships is complicated as the
quality of this can only be evaluated after the location subproblem is solved. That
is, the over- and understaffing penalties are unknown before the location subproblem
is solved. Therefore we apply a genetic algorithm to simultaneously decide on the
order and duration of internships where we emphasize on the order of internships
in the cross-over operation and use an extra improvement stage after the location
subproblem is solved to optimize the duration of internships. Lastly, we end our
heuristic approach by applying a mathematical programming heuristic to the best
schedule resulting from the genetic algorithm to further improve on the duration of

internships.

In summary, we decide on the order of internships in the first stage of the genetic
algorithm. In the second stage we solve the location subproblem for the newly con-
structed schedule. Next, we improve on the internship durations of the newly formed
schedule in the third stage of the algorithm. Lastly, the best schedule resulting from
a certain number of iterations of the algorithm is improved by a mathematical pro-
gramming heuristic. Note: during experimentation we observed it is favourable to
apply the mathematical programming heuristic (for a reasonable amount of solution
time) to a single schedule rather than applying the heuristic to multiple schedules

(with distributed solution time).

In the remainder of this section we use the following
« 0 : number of genetic algorithm iterations,
« x : number of schedules in initial population,
« S : set of schedules,
+ z(s) objective value of schedule s,

* vy @ variable indicating whether person p performs internship ¢ at location [,

25

* vy : parameter indicating whether person p performs internship ¢ at location

L,

* gpit : variable indicating whether person p performs internship ¢ during time

period t,

g, : parameter indicating whether person p performs internship ¢ during

time period ¢,

o &t - temporary upper target on the number of internships of type ¢ at location

[during time period ¢,

o (it - temporary lower target on the number of internships of type ¢ at location

[during time period t,

o ED,; : set of evaluated internship durations for person p internship type ¢ in

internship duration heuristic,

» O : set of ordered pairs of internships in mathematical programming heuristic.

6.1.2.2 Genetic Algorithm

In this section we describe the overview of the three-stage genetic algorithm. The
genetic algorithm is initialized by constructing a population of schedules as described
in Section 6.1.2.3. Thereafter, in each iteration of the genetic algorithm x/2 new
schedules are formed. Each new schedule is formed by taking two schedules of the
population and combine these into a new schedule as described in Section 6.1.2.4.
We ensure in each iteration of the genetic algorithm each schedule is used exactly
once in the cross-over operation. To each of the newly formed schedules mutation
on the order and duration of internships per person is applied. Thereafter, the
location subproblem is solved. This problem is solved using a greedy heuristic in case
iterations < 0 (see Section 6.1.2.5) or by an exact approach in case iterations = 0
(see Section 6.1.2.6). The internship durations of each schedule are then improved by
exploiting a local search strategy as described in Section 6.1.2.7. Next, the algorithm
removes k/2 schedules with the least objective values at the end of each iteration.
Lastly, the best schedule resulting from the described procedure is improved by means
of a mathematical programming based heuristic as described in Section 6.1.2.8. An

overview of the heuristic approach is given in Algorithm 1.

26

Algorithm 1: Genetic Algorithm

Input: Genetic iterations (#), initial population size (), allowed internship
durations per person ({Miny,;, Max,,}), over- and understaffing penalties
(¢, c;), internship lower- and upper target (LB;;, UB;;) per location.

Output: Best schedule speg

S {s1,...,54}
Construct initial schedules
S« S

while iterations < 6 do

while |S| > 2 do

Select random schedules s1, 50 € S : 51 # $9

Combine schedules s1 and sg into speq

Mutate order and duration of internships of schedule ¢4
Solve location problem for schedule Seq

S 8 U spew

S+ S \ {81, 82}

end

for s € S’ do
| Duration improvement heuristic for schedule s

end
while |S§'| > k do
Sdelete <— argmax {z(s)}

seS’!
S, — Sl \ Sdelete

end

S+ &
end

Spest <— arg min {z(s)}
seS
Apply mathematical programming heuristic on schedule spes;

27

6.1.2.3 Construct Initial Schedules

In this section we describe the algorithm used to construct the initial population. For
each schedule we generate for each person a random order of internships satisfying
the block-wise structure property. For each of these internships a random duration
is drawn within the range for that person. With the order and duration of each
internship, the corresponding time periods person p performs internship ¢ are derived,
indicated by g,,;;. This parameter serves as input to the location subproblem. The

construction algorithm is given in Algorithm 2 below.

Algorithm 2: Construct Initial Schedules
Input: Internships per person and range of duration ({MinP,;, MaxP,;})
Output: Set of initial constructed schedules S
for s € S do

for p € P do

for b € B, do

I+ZT,NT

while |Z| > 1 do

Draw random internship i € Z

Draw random internship duration rd in {Miani, MaxPpi}

Assign person p to first free and available time periods with
duration rd (construct g,;;)

I+ T\i

end

end

end
Solve location subproblem for schedule s
end

6.1.2.4 Combine Schedules

In this section we elaborate on the cross-over operation to combine two schedules to
form a new schedule. The algorithm starts by generating two scaled time periods t;
and to, such that the number of time periods in between depends on the objective
values of schedule s; and so. That is, the algorithm generates random ¢; at the begin
of the time horizon, and sets ¢ based on t; and the scaled objective values of both
schedules. The intuition in this step is that if one of the two schedules has desirable
properties, then the algorithm shall construct the new schedule mostly based on this
schedule. The genetic algorithm thus seeks to grasp the desirable properties in each
iteration of the algorithm, while allowing for mutations of the schedule by random
combing two schedules, having some randomness in generating time periods and

apply mutation to each newly formed schedule as an attempt to overcome getting

28

stuck in local optima. Using time periods ¢; and to, the new schedule is constructed

by the approach as presented in Algorithm 3 below.

Algorithm 3: Combine Schedules
Input: Schedules si, s9
Output: Schedule s,

Max,,
2peP 2ieT, 1By 5)
P

t o~ [U(O.&’), 05+

/ (2(s1)—2(s%))
U GG -2)T ((52)—29)

ta o | min By 7], max{t', 6o (71} }]

for p € P do

Find last internship i’ person p performs before time period #;.

Take order, duration and location assignment of internships person p
performs in schedule s; up-to and including internship ¢ in schedule s,¢

Find last internship i person p performs before time period 5.

Take order, duration and location assignment of internships person p
performs in schedule sy up-to and including internship i” in schedule
Snew (excluding internships determined in previous step)

Take order, duration and location assignment of internship person p
performs in schedule s; (excluding internships determined in previous
step)

Construct schedule s;,¢,, for person p based on internship order, internship
duration and location assignment of $;eq

end

Algorithm 3 is illustrated in Example 6.5 below.

Example 6.5. In this example we illustrate the cross-over operation for two people
p1 and pa. Let the internships to be performed by pi and ps be: 7, = I, =
{1, ..., 6}. Let £L = L; = {1}, Vi € Z. Furthermore, let the order of internships for
person p; and py in schedule s1 be (1, 2, 3, 4, 5, 6) and (2, 4, 3, 1, 5, 6), respectively.
Let the order of internships for person p; and ps in schedule s9 be (4, 3, 2, 1, 6, 5)
and (1, 4, 2, 3, 5, 6), respectively. Then the cross-over operation results in schedule

Snew as illustrated in Figure 4 below.

29

S B 3 B R D Y

S

SR A
I 4 : 3 2 ‘ 1 } 6 ’ 5 ’
Sz E E
t1 t2
P4 1 4 3 2 ‘ 5 ‘ 6}
sIIEW

Figure 4: Illustration of the cross-over operation

6.1.2.5 Subproblem Greedy Approach

In this section we elaborate on a greedy approach to solve the location subproblem.
For a given schedule s recall g,;; denotes if person p is scheduled during time period
t to perform internship ¢ and is considered fixed within the subproblem. This im-
plies the objective function of the subproblem solely consists of penalties for over-
and understaffing targets. The greedy algorithm starts with the initialization of the
temporarily upper- and lower target, &;; and (;;;, respectively. The algorithm then
iteratively assign per person each of its internships to the location for which the re-
maining violation penalty is maximal. By assigning internships iteratively we ensure
the algorithm performs favourably in terms of computation time, as the assignment
of an internship is considered only ones during the algorithm. Furthermore, the
aim of assigning an internship to the location with highest remaining penalty is to
decrease the total violation penalty after each assignment. After each location as-
signment the temporary upper- and lower targets are updated. Lastly, we end the
greedy algorithm by generating the schedule (uniquely given by ;) and calculate
the objective function z(s) of the schedule. The greedy algorithm is summarized in
Algorithm 4.

30

Algorithm 4: Subproblem Greedy Approach
Input: Current input schedule s, internship time periods g,;, of schedule s,
internship lower- and upper targets (LB;; and UB;j;) and violation
penalties (c; and c;)
Output: Location assignment v,;;, representation of schedule s as x,;;; and
objective function z(s)
Sie < UByy
Gite < LBy
for p € P do
for i € 7, do

[* < arg max Z {c? - max {0, §ilt} +c; -max {0, Cut}}
b teTp ¢ gpir=1

it < Sitrt — Bpit

Girt = Gitrt — Bpit

Upil* +—1

end

end
xpilt — gpit : 7}pil
Calculate objective function z(s) of current schedule s

6.1.2.6 Subproblem Exact Approach

In this section we elaborate on an exact approach to solve the location subproblem.
For a given schedule s recall g,,;, denotes if person p is scheduled during time period ¢
to perform internship ¢, which is considered fixed within the subproblem. This implies
the objective function of the subproblem solely consists of penalties corresponding

to over- and understaffing targets. That is, the objective function is given by

min { SN (e -y e u;,t)}, (6.15)

€L leL; teT

Such that
> v =1, VpeP,icl, (6.16)
leL;
> (gpit - vpit) — UBiyy < ujf, VieZ,leliteT, (6.17)
peP
LB — Z(gmt vpit) < Uy, VieZlel,teT, (6.18)
peEP
Upil € {0, 1}, VpeP,ie Ip,l € L;, (619)
ugy, gy, € No, VieI,leLliteT. (6.20)

31

The objective function in (6.15) is to minimize the total violation penalty of over-
and understaffing the location targets. Constraints (6.16) ensure that each intern-
ship of each person is assigned to exactly one location. Constraints (6.17) and (6.18)
ensure that violations of the targets are added to the objective function. Constraints

(6.19) and (6.20) ensure integrality of the decision variables.

The location subproblem involves symmetry in case for some internship 7 and two
people p1, p2 such that V¢ € T it holds that g, ;; = g,,;; where for some solution
to the subproblem it holds that v, ;;, = 1 and vp,;, = 1 for two locations I1,lz €
L; : 1 # lo. In that case, an alternative solution would be v, 4, = 1 and vy, = 1,
resulting in the same objective value. Hence, to avoid symmetric solutions to the

location subproblem we introduce the following symmetry breaking constraints

Z Upyil = Z Upyil Vpi,p2 € Pyi € Iy, NIy, 1" € Ly :

teLilsl leLulsl vt € Ta gplit - gpgit7 p1 < p2,

Constraints (6.21) ensure that symmetric solutions to the location assignments v, 1, Vpyii
are infeasible. That is, we restrict that, if for some internship ¢ we have g, ;, = g,
Vt € T, the location assignment of this particular internship shall adhere to: pp is

assigned to some location [and person ps to some location Il such that i1 < ls.

6.1.2.7 Internship Duration Improvement Heuristic

In this section we elaborate on the internship duration improvement heuristic. We
apply this heuristic in each iteration of the genetic algorithm to improve the quality
of each schedule in the population. The purpose of this heuristic is to overcome
potential non-fitting internship durations as constructed by the cross-over operation.
That is, the cross-over operation (see Section 6.1.2.4) is specifically designed to cre-
ate schedules with increasing quality regarding internship order, and hence there is

an opportunity for improvement in terms of internship duration.

To satisfy this purpose, while simultaneously taking into account the requirement
of a reasonable computation time, we consider only a subset of internship durations
per person. We refer specifically to this subset as the set of evaluated internship
durations. Assume person p performs internship i currently with duration cdp;.
Then, let the set of evaluated internship durations £D,; in the improvement heuristic
be defined as

EDpi = {ed ‘ Min,,; < ed < Maxy;,0 < |ed — cdy;| < a}. (6.22)
Observe « denotes the distance between the current duration and set of evaluated

32

durations. That is, a indicates the trade-off between computation time and potential

quality improvement.

Next, we restrict the evaluation space even further by considering only a random
subset of internships to evaluate per person. For each person p we restrict the
algorithm to evaluate a maximum of ¢ out of |Z,| internships. Again, observe the
trade-off between computation time and potential quality improvement is indicated

by ¢. The internship duration heuristic is summarized in Algorithm 5 below.

Algorithm 5: Internship Duration Improvement Heuristic

Input: Current schedule s given by x,;;, internship capacities (UB;;; and
LB;;;) and violation penalties (c;” and c;)

Output: Updated durations of internships of schedules s

P« P

e < UBuit — 3 cp Tpitt

Gt < LBt — > pep Tpilt

while iterations < |P| do

Select random person p € P’

T, 1,

Update & and iy

while |II’J| > |Z,|—¢, |II’)]> 0 do

Select random internship i € Z,,

for ed € £D,; do
Generate schedule for person p using duration ed for internship ¢
Calculate objective z.q4 based on &, (;;; and schedule of person p

end

Set duration of internship ¢ for person p as arg min z.q
edGSDp,-

Update &y and Ge

T, < I\

end

P« P \p

end

Calculate objective z(s) of current schedule s

6.1.2.8 Mathematical Programming Heuristic

In this section we elaborate on the mathematical programming heuristic used to im-
prove the best schedule resulting from the genetic algorithm. The intuition of this
heuristic is that we assume further improvement in terms of the duration of intern-
ships can be achieved with respect to order of internships and locations assignment.
This heuristic exploits additional constraints imposed on the MIP formulation (see
Section 5.5) to reduce the number of decision variables. These additional constraints

ensure the order of internships and corresponding location assignments are fixed for

33

each person. Note: an optimal solution to latter problem is not necessarily a global
optimum. To restrict the location assignment we add the following constraints to

the MIP formulation as given in Section 5.5
Tpilt < Vpil VpePiel,leLlteT, (6.23)

Recall vp;; denotes the location assignment of internship 4 of person p of the given
best schedule sp.s:. Hence, this constraint ensure the location assignment is fixed to
the location assignment as was determined for schedule spes;. Also note that com-

bining Constraints (5.13), (5.14) and (6.23) jointly ensure v,; = 0 implies wp;;; = 0.

For the second set of constraints we first introduce some notation. Let o0;, denote
the order number of internship ¢ for person p in the best schedule. That is, if person
p performs internship ¢ as its j-th internship, then o;, = j. We use 04, to define the

set O, as
Op = {(i,, i//)) Vi/7i// c Ipv Oi”p — Oi’p = 1} (624)

Observe O, is the set of ordered pairs of internships. That is, O, consists of the in-
ternship pairs 7', 7" such that person p performs internship ¢ directly after internship

i'. We illustrate O, in Example 6.6 below.

Example 6.6. Let 7, = {1,...,4} and the number of blocks by,ax be 1. Furthermore,
let the order of internships for person p be (1, 2, 4, 3). That is, 01, = 1, 09y, = 2,
o3p =4 and o4y, = 3. Hence, O, = {(1, 2), (2,4), (4, 3)}.

Next, we fix the order internships by imposing the following constraints to the MIP

formulation

Z Z Wit > Z Wil Vp e P,(i',i") € Op,t €T, (6.25)

el t*eTp:t*<t lEﬁi//

Constraints (6.25) fix the order in which person p can start each internship during
each time period ¢. Specifically, this constraint restricts the order of internships to

the order as in schedule speg;.
The latter problem is solved by means of a branch-and-bound algorithm, which we

warm-start using schedule spes:. The solution to the initial planning problem is then

given by the resulting schedule from this branch-and-bound algorithm.

34

6.1.3 Population Diversity Measurement

In this section we elaborate on the diversity measurement of a population of schedules
in the genetic algorithm. The aim of this measurement is to provide an alternative
approach to compare the convergence of the population, rather than using objective

values.

6.1.3.1 Schedule Diversity

Let d(p1, p2) denote the distance between person p; in schedule s’ and person ps in

schedule s”. We calculate d(p1, p2) as d(p1,p2) = Ziezpl Zleﬁi Y et |Tprite — Tpyiel,
if the set of internships that shall be performed by p; and ps is equal (thus Z,,, = Z,,).
Let decision variable a,,p, = 1, if we link person p; from schedule s’ to person py of

schedule s”, and be 0 otherwise.

6.1.3.2 Mathematical Formulation

In order to overcome potential symmetry between two schedules s; and sy we for-

mulate the diversity measurement as a MIP problem. The objective function is

min{ > dlpr,pe) -apl,m}, (6.26)

p1EP p2€P
Such that
Z apypo = 1, Vps € P, (6.27)
p1EP
Z apy py = 1, Vp, € P, (6.28)
p2EP
ap,py € 10,1}, Vp1 € P,p2 € P : L, =Ty, (6.29)

As the latter problem is a linear assignment problem the constraint matrix is totally
unimodular, and hence the LP-relaxation is integer valued. Solving this problem for

all pairs of schedules s’,s” € § : s’ < s we obtain the total diversity.

6.2 Rescheduling Problem

In this section we elaborate on the methodology used to solve the rescheduling prob-
lem. First, we describe an exact approach in Section 6.2.1, which exhibits similarities
to the exact approach used for the initial planning problem (see Section 6.1.1). Sec-
ond, we elaborate on a heuristic approach in Section 6.2.2. Note: in this section
we refer to the original schedule Z,;; as the schedule constructed using the order

of internships, duration of internships and locations assignments corresponding to

35

the schedule before the disruptive event is generated. This is necessary to overcome
difficulties regarding availability changes of people. We use the original schedule 2,

to calculate the rescheduling penalty as described in Section 5.6.

6.2.1 Exact Approach

In this section we elaborate on the exact approach to solve the rescheduling problem.
The exact approach for the rescheduling problem consists of a branch-and-bound
algorithm to solve the MIP formulation as described in Section 5. This formulation
consists of the initial planning formulation (see Section 5.5) and the rescheduling
extension (see Section 5.6). In Section 6.1.1.1 and 6.1.1.2 we discussed methods
to improve the performance of the branch-and-bound algorithm. Furthermore, in
Section 5.7.3 we proved the rescheduling problem is NP-complete. Hence, we apply
these improvement methods again to the rescheduling problem in order to reduce

computation time and tighten the mathematical formulation.

6.2.2 Heuristic Approach

In this section we elaborate on the heuristic approach to solve the rescheduling
problem. The heuristic approach is a variable neighborhood search approach. The
intuition behind this approach is that, in contrast to the initial planning problem,
the rescheduling is naturally more related to local search based strategies. That
is, assuming the original schedule before disruptive events is close to optimality, we
expect the optimal rescheduled schedule after disruptive events to be closely related
to the original schedule. The reason for this is that we penalize any change made to
the original schedule. Hence, we expect the rescheduled schedule mostly consists of
similarities compared to the original schedule. To overcome getting stuck in a local
optimum we exploit a variable neighborhood search strategy wherein each of the
neighborhoods is randomly chosen. Thereby, each neighborhood is evaluated using

a tabu search approach.

6.2.2.1 Relevant Notation

Before we describe an overview of the variable neighborhood search heuristic we first

introduce the notation used in this approach:
» ~ : number of iterations variable neighborhood search approach,
« N : set of neighborhoods,

« wy, : weight of neighborhood n,

36

e Tpirin @ iterations order swap of internship ¢’ and " is on the tabu list for

internship order swaps,
e w1 : iterations an internship order swap is tabu,

e 1 @ iterations internship duration change of internship i and " is on the

tabu list for duration changes,
» wy : iterations a paired internship duration is tabu,

o TDyyy : set of paired durations to evaluate in the tabu search procedure for

person p internship ¢/ and 7",

o &p - temporary upper target on the number of internships of type ¢ at location

!l during time period ¢,

o (¢ : temporary lower target on the number of internships of type 7 at location

l during time period ¢,

«)\ : temporary reschedule penalty after schedule change.

6.2.2.2 Variable Neighborhood Search Overview

We start the algorithm by initializing the original schedule. The algorithm consists
of v iterations of the variable neighborhood search heuristic. The first step in each
iteration is to select a random neighborhood n’. This neighborhood is selected with
probability %, where w,, denotes the weight of neighborhood n. Next, the
algorithm performs a tabu search strategy in the selected neighborhood n’. That
is, neighborhood n’ is enumerated with respect to the current reschedule. We end
each neighborhood by updating the current reschedule, the best solution and the
corresponding tabu list to neighborhood n’. The neighborhoods used are provided in
Section 6.2.2.3. Lastly, we solve the location subproblem in each iteration by means
of an exact approach, on which we elaborate in Section 6.2.2.4. An overview of the

heuristic approach is given in Algorithm 6 below.

Algorithm 6: Variable Neighborhood Search
Input: Original schedule
Output: Rescheduled schedule
Initialize original schedule

while iterations < v do
Select random neighborhood based on weights

Perform tabu search in neighborhood n’
Solve subproblem with exact approach
end

37

6.2.2.3 Tabu Search Neighborhoods

We propose the following two neighborhoods in our variable neighborhood search

heuristic:

1. Tabu-Search 2-Opt Internship Swap. In this neighborhood we compare
all 2-opt swaps of two internships (for a fixed internship duration and location
assignment) and apply the best swap to the schedule. This swap is then placed
on the internship order tabu list given by 7,,/;» for w; iterations. This approach

is summarized in Algorithm 7 below.

Algorithm 7: Tabu Search 2-Opt Internship Swap

Input: Schedule (represented by zp;;)

Output: Updated schedule (represented by xp;)

e < UBuit — 3 ep Tpitt

Gt < LByt — > pep Tpitt

for p € P do

Update &y and iy

for b € B, do

for i/ € 7,7}, do

for i’ € Z,NT \ 7ord <, Tpirir = 0 do

Swap order of internships 7’ and i’ for person p

Construct schedule (xp;;;) for person p based on swapped
internships, fixed location assignments and fixed
internship duration

Update &;;; and Cyy

A Ziezp Eleﬁi Zten dpiir - max {0, Lpilt — ipilt}

Calculate objective value based on &, iz, A and 21

Update &;;; and Gy

end

end

end

end

Do best 2-opt order swap for pair of internships i’ and i” with best
objective value, add pair of internships ¢ and 7" to the order swap tabu
list 7p;7;# for wy iterations, update tabu list 73,4, and best solution

2. Tabu Search 2-Opt Internship Duration. In this neighborhood we com-
pare all 2-opt paired internship duration changes (for a fixed internship order
and location assignment) and apply the best paired duration change to the
reschedule. That is, we simultaneously change the duration of two internships
for some person and place this paired duration change on the tabu list given by
Wiran for wo iterations. For example, if person p has range on minimum and max-

imum duration for internship 4; and is given by {6, ..., 8} and {10, ..., 11}

38

respectively, then 7D;;, = {(6,10), (6,11), (7,10), (7,11), (8,10), (8,11)}.
The algorithm evaluates each of these pairs Vp € P,b € By, i’ € I,N T, 1" €
I, NIy : 7' <i” and takes the pair with best objective value at the end of the

algorithm. This approach is summarized in Algorithm 8.

Algorithm 8: Tabu Search 2-Opt Internship Duration

Input: Schedule (represented by)

Output: Updated schedule (represented by ap;)

e < UBuit — > ep Tyt

Gt < LBt — > pep Tpitt

for p e P do

Update & and (i

for b € B, do

for i/ € 7, N7}, do

for " € Z, NIy \ 7' : i’ <" :pyin =0 do

for (td;, td;») € TDypiryn do

Change internship duration for internship ¢ and 3" for
person p to (tdy, td;n)

Construct schedule (xp;;) for person p based on
changed internship duration for internship 7’ and ",
fixed location assignment and fixed internship order

Update & and (i

A ZiEIp Z[eﬁi ZtETP dpilt - nax {07 Lpilt — i‘pilt}

Calculate objective value based on &y, Cizr, A and xp¢

Update &y and iy
end

end

end

end

end

Do best 2-opt internship duration for pair of internships ¢ and " with

best objective value, add pair of internships i’ and i” to the internship
duration change tabu list 1;;» for wg iterations, update tabu list 1,

and best solution

Observe the variable neighborhood heuristic can easily be extended with additional
neighborhoods to further improve the algorithms performance, but due to time limi-
tations we stick to these two. Furthermore, note during each iteration of the variable
neighborhood procedure only a single persons schedule is altered. That is, in the 2-
opt internship order swap neighborhood we swap only two internships for one person
and in the 2-opt internship duration neighborhood we change the duration of only

two internships for one person.

39

6.2.2.4 Subproblem Exact Approach

The last step in each iteration of the variable neighborhood search algorithm is to
solve the location subproblem by means of an exact approach. That is, we solve
the location subproblem for a fixed order and duration of internships per person.
The exact approach is similar as discussed in Section 6.1.2.6. However to incorpo-

rate rescheduling penalties we replace the objective given in (6.15) by the following

expression
min { Do D (e e) Y Y DY it 8 Upﬂ} (6.30)
€L leL; teT pEP €L, IEL; tET,

Observe the rescheduling penalty is given by the second term of this expression. Fur-
thermore, we ensure feasibility of the rescheduled location assignments by imposing

the following additional constraint to the formulation (see Section 6.1.2.6)

it Upit < Ryt VpePicT,leLlitecT,. (6.31)

40

7 Computational Experiments

In this section we elaborate on the computational experiments for the initial plan-
ning and rescheduling problem. We start with a description how each instance is
generated. Thereafter, we elaborate on the parameter settings used to obtain re-
sults. The first results we discuss correspond to the initial planning problem. Next,

we elaborate on the results for the rescheduling problem.

All computations were performed on a Windows computer with an Intel Core i7
6700HQ (2.60 GHz) processor and 8GB of RAM. We used CPLEX 12.9 to optimize
the MIP problems and implemented the algorithms in AIMMS.

7.1 Instance Specifications

For each instance we provide the number of people in that instance piq., the number
of internships 4,p4., the number of blocks by,4:, the number of locations I,,q; and
the corresponding number of locations per internship type |£;|. We distributed pyqax
people linearly to start in each block. That is, at the start of the planning horizon
each block has (up to rounding) the same number of people starting in each block.
Furthermore, we ensure the different internship types are distributed linearly (up to
rounding) over these blocks. Hence, for instances where iy,4, mod by, # 0 some

blocks have one internship more than others.

Given these characteristics, we generate for each internship type individually the
range of durations from a discrete uniform distribution, such that the resulting range
is a subset of {6,...,11}. We generate the range ({Miny,;, Max,; }) for each person p
for each internship type individually by taking the generated range for that internship
type and add some small disturbance to the minimum and maximum of the given

range based on a discrete uniform random variable which can take values {—1,...,1}.

Next, we generate the total capacity expected for each internship type ¢, as the num-
ber of internships in the corresponding block b; divided by the number of people
starting in block b; To add some variety to the total capacity per internship type we
multiply this by a uniformly distributed random variable on (0.95,1.05) individually
generated for each internship type. Thereafter, we set the lower- and upper target for
all time periods for some internship type ¢ by distributing the total capacity random
over L; locations. That is, the lower- and upper target for each internship ¢ and L;
remain unchanged over time (UB;; = LBy, VI € L;,t € T).

The penalties for staffing violations are set in consultation with someone that is

41

involved in a practical way with this problem in a hospital traineeship program. The

staffing penalties are set as

c/ =1, VteT, (7.1)
_) MaxP,; + MinP,,
c; =2, WeT.thZ{ 2 TP , (7.2)
PEPy1 1€LH1
_) MaxP,; + MinP,,
=0, Ve T > Y z{ e)

PEPy 1€LH

The intuition here is that, hiring extra people (understaffing) is about twice as expen-
sive as taking care of extra guidance (overstaffing) and shall therefore be penalized by
a factor two. Also note the understaffing penalty is set to zero after some time period.
This time period is set as the sum of the average of the durations corresponding to
the first block, since after this time period understaffing cannot be prevented. That
is, after this time period new people starting the traineeship in the first block are
required to deal with understaffing. Next, the penalty corresponding to increasing
the duration someones traineeship program is set to b, = 0.30. Hence, observe most
emphasis is placed on minimizing staffing violations rather than program duration.
Lastly, for the rescheduling problem we compare five settings of the rescheduling
penalty in Figure 8 and 13 (where each reschedule option is allowed), after which the
rescheduling penalty for the remaining rescheduling instances is set to d,;; = 0.50,

and where we allowed all rescheduling options (that is, Ry = 1).

7.2 Parameter Settings

The algorithms presented in Section 6 require some parameter settings. All these
parameters are set by extensive experimentation on several instances. We observed
various parameter settings provided similar results. Due to the performance require-
ment in terms of computation time, we restricted computation time for the exact
approach. Furthermore, we ensured to limit computation in the heuristic approach

by experimenting only with parameters that led to reasonable computation times.

We set the number of iterations in the genetic algorithm 6 to 100. The number of
schedules constructed in the initial population is set to k = 50. The parameters re-
lated to the rounding of ¢5 in the cross over-operation, 81 and s, are set to 0.10 and
0.90 respectively. In the duration improvement stage we set the parameters related
to the trade-off between computation time and potential improvement, a and ¢ to

1 and 4 respectively.
In the variable neighborhood heuristic the number of iterations + is set to 100. The

42

number of iterations wy and woy a 2-opt internship swap and paired internship duration
change are both set to 5. Neighborhood n is selected with weight w, = 1,Vn € N.

Next, for the initial planning problem we limited the computation time of the MIP
approach to 18000 seconds, except for the results in which we study the different
MIP improvement methods and the small instances in Table 1 and 15, where we
used 1800 seconds per instance. The maximum computation time of the mathe-
matical programming heuristic is set to 1800 seconds. Lastly, for the rescheduling

problem we used a maximum of 7200 seconds for the MIP approach.

Lastly, to compare the genetic and variable neighborhood search algorithms we ex-
tended the number of iterations for the rescheduling algorithm to v = 300 and
applied the mathematical programming heuristic to both the genetic algorithm and

the variable neighborhood search algorithm afterwards for a fair comparison.

7.3 Initial Planning Problem

In this section we elaborate on the results obtained for the initial planning problem.
We discuss results corresponding to the exact approach in Section 7.3.1. Second, we
elaborate on the results obtained by the heuristic approach in Section 7.3.2. Due to
time limitations we do not provide results for the population diversity measurement
described in Section 6.1.3.

7.3.1 Exact Approach

In this section we elaborate on the results obtained by the exact approach to solve
the initial planning problem. In Figure 5 we show results for an instance of the initial
planning problem with pp., = 20 people, imqr = 4 internships, bpee = 2 blocks,

lmaz = 3 locations and where for each internship i we have |£;|= 2 locations.

In Figure 5a the objective value of the best solution is provided for a given solution
time. Figure 5b plots the optimality gap against solution time. We observe the MIP
approach without improvement method is outperformed by each of the other im-
provement methods both in terms of objective value and optimality gap. In Figure
5 we provide the same instance in more detail. Here, we observe the improvement
method corresponding to variable fixing plus the first valid inequality (6.13) and
variable fixing plus both inequalities (6.13) and (6.14) perform best compared to the
other improvement methods and perform similarly if compared to each other. Lastly,
we find it notable the improvement method with variable fixing plus the second in-

equality (6.14) is not performing as good as the improvement methods with the first

43

valid inequality. Hence, we conclude the best approach is to exploit the variable

fixing methods plus the first valid inequality.

In Appendix A we provide additional results for an instance with p;,q, = 30 in Figure

9 and 10, and for an instance with %,,q, = 5 in Figure 11 and 12. Both instances

led to the same conclusions. We shall note that model building time is excluded in

these plots, since this was negligible compared to solution time (in these instances).

700

600

N o
o =]
S IS

Objective value
w
o
o

200

100 f

600

Objective value

200

100

MIP improvement methods objective value

— © —Regular MIP
— © — Variable fixing
Variable fixing + first inequality
— & — Variable fixing + second inequality
— © — Variable fixing + both inequalities

Solution time (s)

(a) Objective value.

800 1000 1200 1400 1600 1800

100

90¢

80

70

60

Optimality gap (%)

30

20

50 -

40+

MIP improvement methods optimality gap

Solution time (s)

(b) Optimality gap.

—-©-— Regular MIP
3?‘8 —-©-— Variable fixing 1
i \~® Variable fixing + first inequality
] \ —-©-— Variable fixing + second inequality | 7
) ® —©-— Variable fixing + both inequalities
H @ 1
i o
i 4
i -
I T i
i \
i \ |
! o- -
i
b o 1
| —————
% ——9
200 400 600 800 1000 1200 1400 1600 1800

Figure 5: Effect of MIP improvement methods.

MIP improvement methods objective value

— & —Regular MIP
— © — Variable fixing
Variable fixing + first inequality

— |— & — Variable fixing + second inequality

— & — Variable fixing + both inequalities

30

Solution time (s)

(a) Objective value.

60

100

90

80

70

60

50

40

Optimality gap (%)

30

20

MIP improvement methods optimality gap

—-©-— Regular MIP
—-©-— Variable fixing

Variable fixing + first inequality
—-©-— Variable fixing + second inequality | 7
—©-— Variable fixing + both inequalities

Solution time (s)

(b) Optimality gap.

Figure 6: Effect of MIP improvement methods detailed.

7.3.2 Heuristic Approach

In this section we discuss results related to the initial planning problem. First, we

compare in Section 7.3.2.1 the heuristic approach with the MIP approach, where we

applied variable fixing and both valid inequalities. Next, we zoom into the location
subproblem in Section 7.3.2.2, where we compare the greedy heuristic against the
exact approach and the exact approach with symmetry breaking constraints. We
elaborate on the mathematical programming heuristic in Section 7.3.2.3. Lastly, in
Section 7.3.2.4 we apply the initial planning algorithm and rescheduling algorithm
for an instance of the initial planning problem and compare both algorithms in terms

of solution quality and computation time.

7.3.2.1 Genetic Algorithm

Table 1 provides results for the initial planning problem for both the MIP and the
heuristic approach. Each row in this table corresponds to one instance of the initial
planning problem with p,,q. people. Furthermore, in each instance we have 4,45, = 3
internships by,q,; = 1, blocks, I = 2 locations and |£;|= 2 locations per internship
type. The optimality gap for the MIP and heuristic approach are given by Gap
MIP (%) and Gap H (%) respectively and are computed using the LP-relaxation
lowerbound where we applied variable fixing and valid inequalities. In Table 15 in
Appendix A a similar experiment is provided, where the number of internships is

imaz = 4, bmaz = 2 blocks, L. = 2 locations and |£;|= 2 locations per internship
type.

Table 1: Initial planning problem
lmaz = 35 bmaz = 1’lmax =2, ’['1’: 2.

Pmas Gap MIP (%) Gap H (%)
4 0.00 0.00
5 0.00 3.92
6 0.00 0.00
7 5.13 5.41
8 0.00 0.00
9 0.00 0.00

10 0.00 0.00
11 5.09 5.37
12 12.96 12.77
13 1.67 1.69
14 1.75 1.79
15 0.00 3.92
16 9.21 9.42
17 3.03 6.25
18 0.00 0.00

In this table we provide results for the initial planning problem for instances with 4,4 = 3
internships, bmaee = 1 blocks, lmas = 2 locations and |£;|= 2 locations per internship. The
number of people is given by pmae. and corresponds to one instance. The optimality gap
for the MIP and heuristic approach are given by Gap MIP (%) and Gap H (%), respec-
tively. The solution time for the MIP approach was restricted to a maximum of 1800
seconds per instance.

From Table 1 we conclude the heuristic and MIP approach perform approximately

45

similar in terms of solution quality. However, we note the solution time for the MIP
approach was limited to 1800 seconds, whereas the heuristic required at most 150
seconds per instance. Furthermore, we observe that for the instance with ppe. = 5,
Pmaz = 15 and ppee = 17 the MIP approach outperforms the heuristic in terms
of optimality. Analyzing these instances in more depth reveals the total staffing
penalty was particularly low in these instances compared to the other instances.
That is, in absolute terms the objective values were reasonably comparable. Espe-

cially, the number of staffing violations was significantly higher in the other instances.

Next, Table 2 provides results for larger instances compared to Table 1 Each row
corresponds to one instance with a given number of people Pz, tmar = 8 intern-
ships bz = 3 blocks, Lnee = 5 locations and |£;|= 3 locations per internship type.
The optimality gap for the heuristic approach is given by Gap H (%) and is com-

puted using the LP-relaxation lowerbound where we applied variable fixing and valid

inequalities.
Table 2: Initial planning problem
ima;t = 8; bmaw - 37 lmaw = 57 ‘Ez‘: 3.

Dmaz Time H (s) Time MIP (s) Gap H (%)
10 842 9 0.00
15 1334 3789 1.06
20 1606 >18000 17.67
25 2053 >18000 6.24
30 3579 >18000 19.43
35 3890 >18000 5.30
40 3601 >18000 6.85
45 4789 >18000 7.07
50 4796 >18000 10.58
55 5721 >18000 5.68
60 5733 >18000 11.60
65 7712 >18000 7.89
70 8410 >18000 22.36
75 8665 >18000 3.02
80 8454 >18000 10.48

In this table we provide results for the initial planning problem for instances with ime; = 8 in-
ternships, bmae = 3 blocks, lmaz = 5 locations and |£;|= 3 locations per internship. The number
of people is given by pma. and corresponds to one instance. The optimality gap for the heuristic
approach is given by Gap H (%). The solution times for the heuristic and MIP approach are given
by Time H and Time MIP, respectively. For the instances with py,q. > 20 the MIP approach was
not able to find a feasible solution within the restricted maximum computation time of 18000 sec-
onds per instance. For the instances pmaez = 10 and pmaez = 15 the MIP was solved to optimality.

From Table 2 we conclude the heuristic outperforms the MIP approach, since the
MIP approach is not able to find feasible solutions for instances with pp.. > 20.
Furthermore, we find it notable the optimality gap is varying significantly. This

could be caused by the fact we only optimized one instance for a given number of

46

people Ppaz- Also note the optimality gap was computed using the LP-relaxation
lowerbound, which is likely to be inaccurate for these larger instances (compared to
the instances in Table 1). Another important observation is that the MIP approach
is not able to find a feasible solution within 18000 seconds and hence the MIP ap-

proach cannot be used for practical problem.

Lastly, we show results for even larger instances (compared to the instances in Table
1 and 2) of the initial planning problem in Table 3 with 4,4, = 12 internships,

bmaz = 4 blocks, I = 3 locations and |£;|= 2 locations per internship type.

Table 3: Initial planning problem
lmaz = 12, bma:p = 47 lmax = 37 |£z|: 2.

Pmaz Time H (s) Time MIP (s) Gap H (%)
20 2694 >18000 0.46
20 2429 >18000 0.78
20 3431 >18000 1.89
30 5537 >18000 17.48
30 5301 >18000 25.62
30 5450 >18000 14.53
55 8641 >18000 26.56
55 9055 >18000 16.38
55 8831 >18000 25.35
80 10460 >18000 25.64
80 10496 >18000 21.33
80 10898 >18000 31.88

100 11328 >18000 23.56
100 10967 >18000 22.00
100 11136 >18000 22.89

In this table we provide results for the initial planning problem for instances with ;e = 12 in-
ternships, bmaz = 4 blocks, lmae = 3 locations and |£;|= 2 locations per internship. The number
of people is given by pma. and corresponds to one instance. The optimality gap for the heuristic
approach is given by Gap H (%). The solution times for the heuristic and MIP approach are given
by Time H and Time MIP, respectively. In all instances the MIP approach was not able to find a
feasible solution within the restricted maximum computation time of 18000 seconds per instance.

Again, we see in Table 3 the MIP approach is not able to find a feasible solution
within 18000 seconds. This result is as expected since we have more internships
in this instance and also more internships per block, which increases the potential
number of orders each person can perform these internships. As we observed in Ta-
ble 2 the optimality gap seems varying for several instances. Hence, in Table 3 we
provide results for three different instances with the same characteristics. For sev-
eral pairs of these three instances we again observe high variations in the optimality
gap. This could be caused by the fact that the lowerbound is computed using the

LP-relaxation, which is probably inaccurate for larger instances.

Lastly, we observe the computation time for the heuristic approach seems to flat-

47

ten, which is partially caused by the fact that for larger instances the mathematical
programming heuristic requires the maximum computation time of 1800 seconds in
contrast to the smaller instances with ppe. = 20 and ppee = 30 for which the
mathematical programming heuristic terminated because of optimality. That is, if
we would increase the maximum computation time for the mathematical program-
ming heuristic the computation time of the heuristic approach would also increase

significantly.

7.3.2.2 Location Subproblem

In this section we compare the greedy heuristic described in Section 6.1.2.5 to the
exact approach described in Section 6.1.2.6 to solve the location subproblem. For
the exact approach we provide results for both including and excluding symmetry

breaking constraints.

In Table 4 — 7 we provide results for the location subproblem. For each table we
provide the number of internships 7,4, the number of blocks b,,4:, the number of
locations per internship type |£;|. In each table we vary the number of people ppax
and the total number of locations [,,,,. Each row in these tables corresponds to 5000
instances for which we provide the average optimality gap for the greedy heuristic
by Gap H (%), the total cumulative computation time by Time H (s), Time MIP (s)
and Time MIP SYM (s), for the greedy heuristic, MIP approach excluding symmetry

breaking constraints and including symmetry breaking constraints respectively.

FEach instance was obtained by applying the genetic algorithm to the problem, where
we continued the algorithm with the solution provided by the exact approach without
symmetry breaking. That is, during each iteration of the genetic algorithm we solved

the location subproblem with each approach for each newly constructed schedule.

48

Table 4: Location subproblem comparison of greedy heuristic, exact approach
excluding symmetry breaking constraint and exact approach including symmetry
breaking
imaz = Dy bmaz = 2, |Li|=2,Vi € T.

Imas Dmaz Gap H (%) Time H (s) Time MIP (s) Time MIP SYM (s)
2 30 0.78 122 239 259
2 70 0.54 215 309 340
2 100 0.31 309 360 402
3 30 0.63 114 224 248
3 70 0.18 207 292 326
3 100 0.23 277 341 385
4 30 0.75 108 222 241
4 70 0.57 229 319 356
4 100 0.21 304 365 409
5 30 1.11 134 252 274
5 70 0.62 238 335 367
5 100 0.59 357 415 458

In this table results are presented for the location subproblem. In each instance of the problem we have
imaz = D internships , bmqes = 2 blocks, |£;|= 2,V: € T locations per internship. The number of people
is given by pmaz. The total number of locations is given by lmnes. Each row in this table corresponds to
a total of 5000 instances of the problem solved throughout the genetic algorithm. For the greedy heuris-
tic we provide the average optimality gap (Gap H (%)). The total cumulative computation time each
of the three approaches is given by Time H(s), Time MIP (s) and Time MIP SYM (s), for the greedy
heuristic, exact approach excluding symmetry breaking and including symmetry breaking respectively.

Table 5: Location subproblem comparison of greedy heuristic, exact approach
excluding symmetry breaking constraint and exact approach including symmetry
breaking
imaz = 12, byae = 3, |Li|=2,Vi € T.

lmaz Prmaz Gap H (%) Time H (s) Time MIP (s) Time MIP SYM (s)
2 30 3.90 174 440 493
2 70 2.82 357 548 628
2 100 1.92 529 662 771
3 30 3.37 181 428 496
3 70 3.21 370 561 653
3 100 2.02 530 671 787
4 30 3.51 182 427 479
4 70 2.46 370 553 652
4 100 1.20 534 664 T
5 30 4.02 183 444 506
5 70 2.11 377 568 652
5 100 1.08 524 684 797

In this table results are presented for the location subproblem. In each instance of the problem we
have imaz = 12 internships , bmaz = 3 blocks , |£;|= 2,Vi € T locations per internship. The number
of people is given by pmas. The total number of locations is given by lmnez. Each row in this table
corresponds to a total of 5000 instances of the problem solved throughout the genetic algorithm. For
the greedy heuristic we provide the average optimality gap (Gap H (%)). The total cumulative com-
putation time each of the three approaches is given by Time H(s), Time MIP (s) and Time MIP SYM
(s), for the greedy heuristic, exact approach excluding symmetry breaking and including symmetry
breaking respectively.

49

Table 6: Location subproblem comparison of greedy heuristic, exact approach
excluding symmetry breaking constraint and exact approach including symmetry
breaking
imaz = Ty bmaz = 3, |Li|=3,Vi € Z.

Imas Dmaz Gap H (%) Time H (s) Time MIP (s) Time MIP SYM (s)
3 30 1.08 115 292 352
3 70 0.75 233 419 511
3 100 1.15 310 473 594
4 30 2.04 130 321 376
4 70 1.41 259 445 539
4 100 2.29 367 558 681
5 30 3.30 137 329 386
5 70 1.48 227 401 499
5 100 1.30 324 511 641
6 30 1.65 121 289 350
6 70 1.45 236 404 492
6 100 1.03 320 500 627

In this table results are presented for the location subproblem. In each instance of the problem we have
tmaz = 7 internships , bmqes = 3 blocks, |£;|= 3,V: € T locations per internship. The number of people
is given by pma=z. The total number of locations is given by lmqe.. Each row in this table corresponds to
a total of 5000 instances of the problem solved throughout the genetic algorithm. For the greedy heuris-
tic we provide the average optimality gap (Gap H (%)). The total cumulative computation time each
of the three approaches is given by Time H(s), Time MIP (s) and Time MIP SYM (s), for the greedy
heuristic, exact approach excluding symmetry breaking and including symmetry breaking respectively.

Table 7: Location subproblem comparison of greedy heuristic, exact approach
excluding symmetry breaking constraint and exact approach including symmetry
breaking
imaz = 12, byae = 3, |Li|=3,Vi € Z.

lmax Prmaz Gap H (%) Time H (s) Time MIP (s) Time MIP SYM (s)
3 30 5.50 212 606 726
3 70 4.28 416 769 929
3 100 2.79 585 1026 1224
4 30 5.15 213 591 716
4 70 4.07 423 796 955
4 100 2.88 592 1071 1271
5 30 5.89 223 622 743
5 70 4.28 431 796 954
5 100 3.35 600 1098 1295
6 30 6.68 226 639 758
6 70 2.48 429 812 976
6 100 3.13 581 1066 1270

In this table results are presented for the location subproblem. In each instance of the problem we
have imaz = 12 internships , bmaz = 3 blocks , |£;|= 3,Vi € T locations per internship. The number
of people is given by pmas. The total number of locations is given by lmnez. Each row in this table
corresponds to a total of 5000 instances of the problem solved throughout the genetic algorithm. For
the greedy heuristic we provide the average optimality gap (Gap H (%)). The total cumulative com-
putation time each of the three approaches is given by Time H(s), Time MIP (s) and Time MIP SYM
(s), for the greedy heuristic, exact approach excluding symmetry breaking and including symmetry
breaking respectively.

50

Based on the results for the location subproblem provided in Table 4 — 7 some ob-
servations and conclusions can be made. First, comparing both exact approaches we
observe the exact approach outperforms the exact approach with symmetry breaking
constraints. At first sight this result seems counter-intuitive since breaking symme-
try in a branch-and-bound procedure generates extra cuts which normally results in
a reduction of computation time. However, a deeper analysis reveals that indeed the
solution time of the branch-and-bound procedure is decreased for the MIP approach
with symmetry breaking constraints, but that the additional model building time
caused by these constraints is larger than the reduction in solution time. Hence, we
conclude that symmetry breaking shall not be applied in the location subproblem

when an exact approach is used.

Next, we observe the greedy heuristic is significantly faster than the exact approach
while finding high-quality solutions for all instances. Here, we shall emphasize that
the shown optimality gaps are not present in the final solution in the genetic al-
gorithm as we apply the exact approach in the last iteration of the algorithm to
overcome this problem. However, the selection of schedules in the genetic algorithm
does not require an optimal solution to the location subproblem, but only an indica-
tion whether a certain schedule is reasonably good to maintain in the next iteration.
This supports the fact that we used the greedy heuristic in the genetic algorithm to
decrease solution time, while ensuring optimal location assignment (with respect to.

internship order and duration) in the last iteration of the algorithm.

7.3.2.3 Mathematical Programming Heuristic

In this section we elaborate on the mathematical programming heuristic. In Figure
7 we provide a comparison of the objective value before and after the mathematical
programming heuristic was applied. In these instances we used pmqe, = 30 number
of people, imqr = 12 internships, byqe = 4 blocks, Ly = 3 locations and |£;|= 2
locations per internship type. Thereby, the computation time for each of the 250
instances was set to a maximum of 1800 seconds. This result is obtained by applying
the mathematical programming heuristic in each iteration of the genetic algorithm

to each schedule in the population before the selection procedure is applied.

51

Obj. before and after math. programming heuristic

1

650

[e2]
o
o
T
¢

550

500

450

Obj. after math. programming heuristic

N

o

s}
T

350 1 1 1 1 1 1
400 450 500 550 600 650 700

Obj. before math. programming heuristic

Figure 7: Improvement of mathematical programming heuristic.

An important observation is the almost linear relationship between objective values
before and after the mathematical programming heuristic is applied. This supports
the fact that we select schedules based on objective value and apply the heuristic to
the best schedule resulting from the genetic algorithm. Another observation is the
significant improvement the heuristic achieves, which is 9.81% on average for these
specific instances. Thereby, we shall note that in the experimentation phase of this
heuristic we observed the best approach is to apply the mathematical programming
heuristic to a single schedule, rather than distributing the same solution time over

several schedules.

7.3.2.4 Algorithm Comparison

In this section we compare the initial planning algorithm and the rescheduling al-
gorithm for instances of the initial planning problem. The characteristics of the
instances generated for this comparison are given by the scenarios in Table 8 below.
For each scenario we provide the number of internships 4,42, the number of of blocks
bimaz, the number of locations I,,4; and the number of locations per internship type

L.

52

Table 8: Scenarios initial planning problem for algorithm comparison.

Scenario Tmaz brmaz lmax |Ls]
1 8 2 5 3
2 12 4 5 4

In this table we provide the characteristics for the two scenarios used to compare the initial
planning and rescheduling algorithm for instances of the initial planning problem. For each sce-
nario we provide the number of internships imaqz, the number of of blocks byq., the number of
locations lymqer and the number of locations per internship type | L.

In Table 9 we compare the initial planning algorithm and the rescheduling algorithm.
For a given number of people pmq.. We generate five instances based on the given
scenario. We provide the average computation time and average optimality gap Time
I(s), Time R(s), Gap I (%) and Gap R (%) for the initial planning and rescheduling
algorithm respectively.

Table 9: Initial planning problem algorithm comparison

Scenario DPmaz Time I (s) Time R (s) Gap I (%) Gap R (%)
1 20 1710 1520 1.35 1.32

40 3902 4217 15.11 18.93

80 9721 10923 22.96 27.38

2 20 2780 2408 3.37 3.90

40 7534 8405 18.25 23.12

80 17590 22871 24.09 29.59

In this table we compare the initial planning and rescheduling algorithm for instances of the
initial planning problem. Each row corresponds to five instances generated in accordance to the
specifications of the corresponding scenario as described in Table 8. The number of people is
given by pmas. We provide the average computation time and optimality gap Time I(s), Time
R(s), Gap I (%) and Gap R (%) for the initial planning and rescheduling algorithm respectively.

Based on the results presented in Table 9 we conclude that the initial planning
algorithm outperforms the rescheduling algorithm for solving the initial planning
problem. We observe the initial planning problem finds significantly better solutions
than the rescheduling algorithm, especially for medium and larger instances. Also
note the increasing gap between Gap I and Gap R, indicating the initial planning
algorithm is increasingly better than the rescheduling algorithm when the instance

size increases.

7.4 Rescheduling Problem

In this section we elaborate on the rescheduling problem. First, we provide some
insight in Section 7.4.1 regarding the trade-off between the rescheduling penalty,
staffing penalty at locations and the number of changes made to the original schedule.
Thereafter, we discuss results corresponding to single event rescheduling in Section

7.4.2. Recall the original schedule p;; to calculate the rescheduling penalty, is

93

the schedule constructed using the order of internships, duration of internships and
locations assignments corresponding to the schedule before disruptive events are
generated. Lastly, we elaborate on a simulation setting wherein multiple events are

generated over time.

7.4.1 Penalty Trade-off

In this section we elaborate on the trade-off regarding the setting of the reschedul-
ing penalty and the resulting staffing penalty for violating internship targets at
locations and the number of changes made to the original schedule. In Figure
8 we illustrate this trade-off for five settings of the rescheduling penalty d,;;: €
{0, 0.25, 0.50, 0.75, 1}.

Imaz = 6 internships, by,q. = 3 blocks, [, = 3 locations where each internship can

In this particular instance we used ppqa. = 40 people,

be performed at |£;|= 2 locations. For each individual setting of the rescheduling
penalty we generated five instances, which are optimized using the MIP approach.
For

each person we change the availability starting from time period 2 up to a random

In each instance we change the availability of five randomly chosen people.

generated time period t;qndom, Where trqndom 1S generated using a discrete uniform
distribution on the interval (6, 10).

On the left-hand side of this figure we provide the average number of changes made
to the original schedule. On the right-hand side the corresponding average location
penalty incurred for violating staffing targets. A similar experiment is given in Figure
13 in Appendix C, where the number of people piq. is set to 80 and the number of

people, for which availability changes are generated, to ten.

Rescheduling trade-off between schedule changes and location penalty
1400 T T T T & 1570

\ Pre 1560
1200 o
v 1550
1000 ‘\‘ 7
\ - 1540

Avg. number of schedule changes

@©
o
o

[o2]
o
o

N
o
o

n
o
o

—O--— e C)

0.25 0.5

0.75 1

1530

1520

1510

1500

1490

480

Avg. location penalty

Reschedule penalty

Figure 8: Rescheduling trade-off instances with p,,q. = 40 people.

54

An important observation is the significant high number of changes made to the
original schedule for a rescheduling penalty of d,;; = 0. Second, we see the average
location penalty to be negatively related to the number of schedule changes. This
result shows the trade-off between the number of changes made to the schedule and
Based on these observations we decided to use a rescheduling penalty of d;; = 0.50

in our remaining rescheduling experiments.

7.4.2 Single Event Rescheduling

In this section we elaborate on single event rescheduling problems. In Table 11 — 13
we provide results for rescheduling problems corresponding to availability changes of
people, staffing target changes at locations and additional people joining the trainee-
ship program, respectively. For these rescheduling experiments we used two scenarios
as presented in Table 10, where the number of internships is given by i,,ax, the num-
ber of blocks by b4z, the number of locations by /4, and the number of locations
per internship type by |£;|. Thereby, in Table 11 — 13 we provide the number of peo-
ple Praz, the average computation time of the heuristic approach and exact approach
by Time H (s) and Time MIP (s) and the average optimality gap of the heuristic
approach Gap H (%). Each row in Table 11 — 13 corresponds to five experiments of

the rescheduling problem where the same type of events are generated.

For each instance of the rescheduling problem we first create an initial planning by
solving the initial planning problem using the genetic algorithm and thereafter gen-
erated the given disruptive events. In Table 11 we provide results for the reschedul-
ing problem corresponding to availability changes of people. In each instance we
change the availability of five randomly chosen people. For each person we change
the availability starting from time period 2 up to a random generated time period
trandom, Where trgndom is generated using a discrete uniform distribution on the in-
terval (6,10). In Table 12 we provide results for the rescheduling problem where the
staffing target is altered. Here, we generate for each internship a random variable
based on a discrete uniform distribution on the interval (—1,1), (—2,2) and (—4,4)
for pmag is 20, 40 and 80 respectively, which is then added to the staffing targets
UByj;; and LBjj;. In Table 13 we added five people to the original planning at the
first time period ¢ for which ¢; = 0 (see Equation (7.3)) and then set ¢; = 2 as in
Equation (7.2) and update the corresponding staffing targets. That is, we alter the
staffing targets as described in Section 7.1.

55

Table 10: Scenarios rescheduling planning problem.

Scenario Tmaz brmaz lmaz |L;]
1 8 2 5 3
2 12 4 5 4

In this table we provide the characteristics for two scenarios that are used to generate instances of
the rescheduling problem. For each scenario we provide the number of internships imqz, the num-
ber of of blocks bmnmaz, the number of locations lma, and the number of locations per internship
type |L;].

Table 11: Single event rescheduling problem: Availability change.

Scenario Dmaz Time H (s) Time MIP (s) Gap H (%)
1 20 180 95 4.20

40 350 480 6.06

80 746 3902 5.99

2 20 340 211 3.57

40 630 974 4.33

80 1214 6704 3.84

In this table we provide results related to the rescheduling problem where the availability of peo-
ple is changed. Each row in this table corresponds to five instances, for which we provide the
average results. We compare the variable neighborhood search heuristic and MIP approach com-
putation time which is given by Time H (s) and Time MIP (s), respectively. The optimality gap
of the variable neighborhood search heuristic is given by Gap H (%).

Table 12: Single event rescheduling problem: Staffing target change.

Scenario Dmaz Time H (s) Time MIP (s) Gap H (%)
1 20 191 110 5.47

40 349 425 4.24

80 812 3259 4.69

2 20 329 232 4.22

40 593 771 3.91

80 1198 6534 4.10

In this table we provide results related to the rescheduling problem where the staffing target are
changed. Each row in this table corresponds to five instances, for which we provide the average
results. We compare the variable neighborhood search heuristic and MIP approach computation
time which is given by Time H (s) and Time MIP (s), respectively. The optimality gap of the
variable neighborhood search heuristic is given by Gap H (%).

56

Table 13: Single event rescheduling problem: Additional people.

Scenario Dmaz Time H (s) Time MIP (s) Gap H (%)
1 20 209 3957 10.12

40 402 >7200" 8.24

80 898 >7200" 6.02

2 20 436 >7200" 7.90

40 850 >7200" 6.34

80 1803 >7200" 5.97

In this table we provide results related to the rescheduling problem where five additional people
are included in the traineeship program. Each row in this table corresponds to five instances, for
which we provide the average results. We compare the variable neighborhood search heuristic and
MIP approach computation time which is given by Time H (s) and Time MIP (s), respectively.
We indicate the MIP approach was not solved to optimality by * after 7200 seconds of computation
time. The optimality gap of the variable neighborhood search heuristic is given by Gap H (%).

Based on the results in Table 11 — 13 some conclusions can be drawn. First, we
observe in Table 11 and 12 the MIP approach is able to find the optimal solution
within 7200 seconds of computation This result seems counter-intuitive since we ob-
served for the initial planning problem the MIP approach was not able to find a
feasible solution for instances with a similar size. However, the difference with the
initial planning problem is the rescheduling penalty, which results in different type

of optimization problem since any change to the original planning is penalized.

This is inline with the results described in Table 13, where five additional people
are added to the program. For these additional people we used a rescheduling of
0, resulting in a mixed setting of the initial planning and rescheduling problem.
Also observe the optimality are decreasing for increasing instance sizes in Table 13.
This is caused by the decreasing effect of five additional people to an increasing
number of people in the original instance given by p,.q.. That is, the effect of five
additional to an instance with p,,q. = 20 people is higher than on an instance with
Pmaz = S0 people. Hence, we conclude that for rescheduling purposes related to
additional people events the heuristic outperforms the MIP approach, especially for

larger instances.

7.4.3 Simulation Setting

In this section we elaborate on a simulation setting of the problem. For this pur-
pose, we generated six events at time periods {6,9, 12, 16, 20, 24} where each of these
events is generated in a similar fashion as described in Section 7.4.2, but now start-
ing the event at the given time period. The following events are generated: AC, TC
and AP, corresponding to availability changes of people, staffing target changes at

locations and additional people added to the program respectively.

o7

In Table 14 we provide the average results of five instances evaluated over a time
horizon of 24 time periods. We provide the cumulative penalty for the MIP and
heuristic (H) approach up-to and including the time period the event is generated.
For example, the cumulative location penalty corresponding to the first event (avail-
ability change generated at time period ¢ = 6) is calculated as the cumulative location
penalty up-to and including time period t = 6. Next, we provide the total reschedul-
ing penalty incurred by both approaches based on the rescheduled planning at the
generated event. For example, the rescheduling penalty corresponding to the second
event (target change generated at time period ¢t = 9) is calculated as the rescheduling
penalty incurred by changing the schedule at time period ¢ = 9 compared to before
rescheduling at time period ¢ = 9. Note: although these events are generated as
single rescheduling events, the events are in fact overlapping over time. Lastly, we

provide the computation time by Time (s) for both approaches at each event.

Table 14: Simulation setting
Pmaz = 807 ima;t = 127 bmam = 47 lmaz = 57 |['z|: 3.

Event AC TC AP TC AC AP

Time period event generated 6 9 12 16 20 24
Cum. Location penalty MIP 112 168 193 320 453 509
H 112 187 200 278 299 366

Reschedule penalty MIP 210 112 0 155 176 0

H 198 117 15 140 134 54

Time (s) MIP 6409 5678 >7200 6705 5967 >7200

H 1115 1090 1693 1298 1214 2043

In this table we provide results for a simulation setting of the rescheduling problem for five instance
over a time horizon of 24 time periods with six reschedule events. Each instance is generated by
solving the initial planning problem using the heuristic approach with pmq> = 80 people, tmaz = 12
internships, bmaz = 4 blocks, lmaez = 5 locations |£;|= 3 locations per internship type, and there-
after the various rescheduling events are generated at the time periods provided below the given
events. We provide

Based on Table 14 we conclude the MIP approach is significantly slower compared
to the rescheduling approach, which is inline with the conclusions on single event
rescheduling in Section 7.4.2. Second, we observe the MIP approach is outperformed
in case of the rescheduling event where additional people are added to the traineeship
program. This is also observed in Section 7.4.2 for single event rescheduling of
additional people in Table 13. Lastly, we conclude based on the cumulative penalty
the heuristic approach outperforms the MIP approach, which is mostly caused by

the rescheduling event corresponding to additional people.

o8

8 Conclusion

In this thesis we studied the collaborative traineeship planning problem. This prob-
lem consists of the construction of an initial traineeship planning and the rescheduling
of an existing planning in case of disturbances. First, we described the problem in
Section 2 and provided an overview of literature related to the problem in Section
3. The required data is described in Section 4. Thereafter, we formulated the initial
planning problem as a MIP in Section 5. This MIP formulation was extended to
formulate the rescheduling problem. Based on these formulations we proved both

the initial planning and rescheduling problem are NP-complete.

In this research we started with the following research question: Can we design
an algorithm that produces a collaborative traineeship planning within a reasonable
amount of time while satisfying constraints on the traineeship program such that it

1s flexible in the trade-off of multiple objectives?

We conclude the collaborative traineeship planning can be efficiently solved by two
algorithms, which are specifically designed to solve either the initial planning or
rescheduling variant of the problem in order to provide a solution within a reason-
able amount of time. We list conclusions related to both variants of the problem in

more detail below.

To solve the initial planning problem we first elaborated on variable fixing methods
and additional valid inequalities to improve a MIP approach in Section 6.1.1. We an-
alyzed the effect of these methods in Section 7.3.1 and concluded the MIP approach
was performing best when variable fixing plus the first valid inequality (given by
Equation (6.13)) was exploited. Next, we described a heuristic approach in Section
6.1.2 because of the performance requirement in terms of computation time. In this
heuristic we considered a three-stage genetic algorithm, where the subproblem was
formulated as a MIP in Section 6.1.2.6. We compare the heuristic in Section 7.3.2.1
with the MIP approach in terms of computation time. We concluded the heuristic
approach outperforms the MIP approach, especially for practical applications where

the MIP approach is not even able to find a feasible solution.

Two major components of this algorithm are analyzed in Section 7.3.2.2 and 7.3.2.3.
We observed that an exact approach for the location subproblem was better than an
exact approach where symmetry breaking constraints are added. This was caused by
extra model building time for these constraints, which was larger than the reduction

in solution time. Furthermore, we observed the greedy heuristic for the location

99

problem was significantly faster than the exact approach while finding high-quality
solutions, which supports the use of the greedy heuristic in the genetic algorithm.
Lastly, we showed for the mathematical programming heuristic the objective values
before and after this heuristic have an almost linear relationship, which supports the

selection of schedules based on objective values.

For the rescheduling problem we again apply a MIP and heuristic approach. In the
MIP approach we take advantage of variable fixing methods and valid inequalities.
The heuristic approach consists of variable neighborhood search, where each neigh-
borhood is evaluated by means of a tabu search procedure. Based on the results
for single event rescheduling (see Section 7.4.2) and a simulation setting (see Section
7.4.3) we conclude the heuristic approach outperforms the MIP approach. Lastly,
we evaluated the performance of the rescheduling algorithm in case this algorithm is
applied to the initial planning problem. We concluded the initial planning heuristic

outperforms the rescheduling heuristic for this particular setting.

For further research addressed to the CTPP we would like to extend the rescheduling
algorithm, since from a practical point of view this problem shall be solved multiple
times over a given time horizon in contrast to the initial planning problem. In our
rescheduling heuristic we used only two neighborhoods, and hence we think there is
some opportunity for improvement here. Furthermore, due to time limitations we
have not been able to test various settings of the rescheduling penalty. That is, in
further research this parameter shall be adjusted to match practical incentives more

naturally.

60

Bibliography

Agrali, S., Tagkin, Z. C., and Unal, A. T. (2017). Employee scheduling in service industries with
flexible employee availability and demand. Omega, 66:159-169.

Bard, J. F. and Purnomo, H. W. (2005). Preference scheduling for nurses using column generation.
European Journal of Operational Research, 164(2):510-534.

Belién, J. and Demeulemeester, E. (2004). Heuristic branch-and-price for building long term trainee
schedules. DTEW Research Report 0422, pages 1-22.

Belién, J. and Demeulemeester, E. (2006). Scheduling trainees at a hospital department using a

branch-and-price approach. European Journal of Operational Research, 175(1):258-278.

Belién, J. and Demeulemeester, E. (2007). On the trade-off between staff-decomposed and activity-
decomposed column generation for a staff scheduling problem. Annals of Operations Research,
155(1):143-166.

Billionnet, A. (1999). Integer programming to schedule a hierarchical workforce with variable
demands. European Journal of Operational Research, 114(1):105-114.

Brunner, J. O. and Edenharter, G. M. (2011). Long term staff scheduling of physicians with dif-
ferent experience levels in hospitals using column generation. Health Care Management Science,
14(2):189-202.

Brusco, M. J. and Jacobs, L. W. (1993). A simulated annealing approach to the solution of flexible
labour scheduling problems. Journal of the Operational Research Society, 44(12):1191-1200.

Cordeau, J.-F., Stojkovi¢, G., Soumis, F., and Desrosiers, J. (2001). Benders decomposition for

simultaneous aircraft routing and crew scheduling. Transportation Science, 35(4):375-388.

Dantzig, G. B. (1954). Letter to the editor -— a comment on Edie’s "traffic delays at toll booths”.
Journal of the Operations Research Society of America, 2(3):339-341.

Diick, V., Ionescu, L., Kliewer, N., and Suhl, L. (2012). Increasing stability of crew and aircraft
schedules. Transportation research part C: emerging technologies, 20(1):47—61.

Edie, L. C. (1954). Traffic delays at toll booths. Journal of the Operations Research Society of
America, 2(2):107-138.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., and Sier, D. (2004). Staff scheduling and rostering: A
review of applications, methods and models. Furopean Journal of Operational Research, 153(1):3—
27.

Guo, J., Morrison, D. R., Jacobson, S. H., and Jokela, J. A. (2014). Complexity results for the
basic residency scheduling problem. Journal of Scheduling, 17(3):211-223.

Haase, K., Desaulniers, G., and Desrosiers, J. (2001). Simultaneous vehicle and crew scheduling in

urban mass transit systems. Transportation Science, 35(3):286-303.

Hanne, T., Dornberger, R., and Frey, L. (2009). Multi-objective and preference-based decision
support for rail crew rostering. In 2009 IEEE Congress on FEvolutionary Computation, pages
990-996. IEEE.

61

Hoffman, K. L. and Padberg, M. (1993). Solving airline crew scheduling problems by branch-and-
cut. Management Science, 39(6):657-682.

Huisman, D. and Wagelmans, A. P. (2006). A solution approach for dynamic vehicle and crew
scheduling. European Journal of Operational Research, 172(2):453-471.

Ionescu, L. and Kliewer, N. (2011). Increasing flexibility of airline crew schedules. Procedia-Social
and Behavioral Sciences, 20:1019-1028.

Juang, Y.-S., Lin, S.-S., and Kao, H.-P. (2007). An adaptive scheduling system with genetic algo-
rithms for arranging employee training programs. Expert Systems with Applications, 33(3):642—
651.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complezity of computer
computations, pages 85—103. Springer.

Kohl, N. and Karisch, S. E. (2004). Airline crew rostering: Problem types, modeling, and optimiza-
tion. Annals of Operations Research, 127(1-4):223-257.

Maenhout, B. and Vanhoucke, M. (2011). An evolutionary approach for the nurse rerostering
problem. Computers & Operations Research, 38(10):1400-1411.

Moz, M. and Pato, M. V. (2004). Solving the problem of rerostering nurse schedules with hard
constraints: New multicommodity flow models. Annals of Operations Research, 128(1-4):179—
197.

Moz, M. and Pato, M. V. (2007). A genetic algorithm approach to a nurse rerostering problem.
Computers & Operations Research, 34(3):667-691.

Parr, D. and Thompson, J. M. (2007). Solving the multi-objective nurse scheduling problem with
a weighted cost function. Annals of Operations Research, 155(1):279-288.

Rasmussen, M. S., Justesen, T., Dohn, A., and Larsen, J. (2012). The home care crew scheduling
problem: Preference-based visit clustering and temporal dependencies. Furopean Journal of
Operational Research, 219(3):598-610.

Stolletz, R. and Brunner, J. O. (2012). Fair optimization of fortnightly physician schedules with
flexible shifts. Furopean Journal of Operational Research, 219(3):622-629.

Van den Bergh, J., Belién, J., De Bruecker, P., Demeulemeester, E., and De Boeck, L. (2013).
Personnel scheduling: A literature review. European Journal of Operational Research, 226(3):367—
385.

Veelenturf, L. P., Potthoff, D., Huisman, D., Kroon, L. G., Maréti, G., and Wagelmans, A. P.
(2014). A quasi-robust optimization approach for crew rescheduling. Transportation Science,
50(1):204-215.

Yen, J. W. and Birge, J. R. (2006). A stochastic programming approach to the airline crew schedul-
ing problem. Transportation Science, 40(1):3-14.

62

Appendix A

Table 15: Initial planning problem
ima:c = 47 bmaz = 27 lmax = 27 |»cz|: 2

Prmas Gap MIP (%) Gap H (%)
5 0.00 0.00
6 0.00 0.00
7 0.00 0.00
8 0.00 0.00
9 0.00 0.00

10 0.00 0.00
11 0.00 1.56
12 0.00 0.00
13 0.00 1.04
14 0.00 0.00
15 0.00 0.00
16 0.00 0.00
17 0.00 0.00
18 0.00 0.00
19 0.00 0.00
20 0.00 0.00
21 0.00 0.00
22 0.00 0.00
23 0.00 0.00
24 0.72 0.73
25 0.00 0.00
26 0.00 0.00
27 0.00 0.00
28 0.00 0.45
29 0.00 1.10
30 0.00 0.00
31 0.00 0.39
32 0.00 0.81
33 0.00 0.00
34 0.00 0.00
35 1.12 1.13
36 0.00 0.00
37 0.00 0.00
38 0.00 0.00
39 0.51 0.51
40 1.22 1.88
41 0.00 0.00
42 0.00 0.00
43 0.00 0.00
44 0.00 0.00

In this table we provide results for the initial planning problem for
instances with i,q: = 4 internships, bmaez = 2 blocks, lnmez = 2
locations and |£;|= 2 locations per internship. The number of
people is given by pmaez and corresponds to one instance. The op-
timality gap for the MIP and heuristic approach are given by Gap
MIP (%) and Gap H (%), respectively. The solution time for the
MIP approach was restricted to a maximum of 1800 seconds per
instance.

63

Objective value

Objective value

Appendix B

MIP improvement methods objective value

1200 T T
S — © —Regular MIP
u — © — Variable fixing
1000 l‘ Q Variable fixing + first inequality B
\ — © — Variable fixing + second inequality
! \ — © — Variable fixing + both inequalities

100

Optimality gap (%)

MIP improvement methods optimality gap

—-©-— Regular MIP
— -~ Variable fixing
Variable fixing + first inequality

—©-— Variable fixing + both inequalities

—-©-— Variable fixing + second inequality | 7

— .
800 1000 1200 1400 1600
Solution time (s)

(b) Optimality gap.

Figure 9: Effect of MIP improvement methods.

0
0 200 400 600 800 1000 1200 1400 1600 1800
Solution time (s)
(a) Objective value.
1200 MIP improvement methods objective value
® — & —Regular MIP
— © — Variable fixing
1000 Variable fixing + first inequality B
\ — © — Variable fixing + second inequality
— © — Variable fixing + both inequalities
to ~=
soof e
o)
\\ ™~ .
0
‘ \\ Q
600 | \ ;5\ 7
‘ oo >
| RSN
400 F | AN 1
| <
200 ©
0
0 50 100 150 200 250

Solution time (s)

(a) Objective value.

300

100

920

80

70

60

50

40

Optimality gap (%)

30

20

MIP improvement methods optimality gap

1800

—-©-— Regular MIP
[a —-©-— Variable fixing =l
Variable fixing + first inequality
39@\\ fﬁ{ —-©-— Variable fixing + second inequality | 7
—)L* . RN —© — Variable fixing + both inequalities
L © ~ 4
OO
¥\®.
NN
L N 1
.
. N
L \ N 4
SO T o]
L \‘\9777,,,,,’
. L . - L i
0 50 100 150 200 250

Solution time (s)

(b) Optimality gap.

Figure 10: Effect of MIP improvement methods detailed.

64

1800

1600

1400

Objective value
=)
o
o

®
=3
S

600

400

200

1400

1200

1000

Objective value
[o<3
o
o

@
o
S

1200

MIP improvement methods objective value
T T T T T T

\ — © —Regular MIP
\ — © — Variable fixing
\ Variable fixing + first inequality
\ — & — Variable fixing + second inequality
— ©& — Variable fixing + both inequalities

800 1000
Solution time (s)

1200 1400

(a) Objective value.

1600 1800

Optimality gap (%)

IN
o

w
o

MIP improvement methods optimality gap

©-— Regular MIP

-©-— Variable fixing

Variable fixing + first inequality

©-— Variable fixing + both inequalities

—-©-— Variable fixing + second inequality | |

1000 1200 1400
Solution time (s)

800

(b) Optimality gap.

Figure 11: Effect of MIP improvement methods.

MIP improvement methods objective value

— © —Regular MIP
- — & — Variable fixing
Variable fixing + first inequality
— © — Variable fixing + second inequality
— © — Variable fixing + both inequalities

60
Solution time (s)

(a) Objective value.

Figure 12: Effect of MIP

120

Optimality gap (%)

©
o

®
(=]

N
o

@
o

o
=]

IS
o

w
o

MIP improvement methods optimality gap

G- —-©-— Regular MIP
L —-©-— Variable fixing 1
G-—0-Q Variable fixing + first inequality
L N —-©-— Variable fixing + second inequality | |
\.\ —-©-— Variable fixing + both inequalities
L N 1
\.
\
Lo N\]
] .\,
L O=rmg 4
i N
~N
| N
L N, 1
i N
I N
o N -
N
@ - _ _ O——— oy
Z L i — L = =
20 40 60 80 100

Solution time (s)

(b) Optimality gap.

improvement methods detailed.

65

Appendix C

ggosocheduling trade-off between schedule changes and location perﬁlt_tsg

2500

2000

1500

1000

Avg. number of schedule changes

o
o
o

Figure 13: Rescheduling trade-off instances with pp,q. = 80 people.

O

Reschedule penalty

66

e
e
R
. 9/
\V
g
\.
\
Cm
——e__
. . e R Q
0.25 0.5 0.75 1

1160

1140

1120

1100

1080

1060

1040

1020

1000

Avg. location penalty

	Preface
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Contribution and Structure of this Thesis

	Problem Description
	Literature Review
	Crew Scheduling Problems
	Crew Rescheduling Problems
	Collaborative Traineeship Planning

	Data Description
	Problem Formulation
	Sets
	Subsets
	Decision Variables
	Parameters
	Initial Planning Formulation
	Rescheduling Formulation
	Complexity Analysis
	Partition Problem
	Initial Planning Problem
	Rescheduling Problem

	Methodology
	Initial Planning Problem
	Exact Approach
	Heuristic Approach
	Population Diversity Measurement

	Rescheduling Problem
	Exact Approach
	Heuristic Approach

	Computational Experiments
	Instance Specifications
	Parameter Settings
	Initial Planning Problem
	Exact Approach
	Heuristic Approach

	Rescheduling Problem
	Penalty Trade-off
	Single Event Rescheduling
	Simulation Setting

	Conclusion
	Bibliography

