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Abstract

Several penalized variable estimation techniques such as the (adaptive) elas-
tic net have been proposed for modeling VAR data in order to improve
dimension reduction and forecast performance. Literature has proven that
the multi-step adaptive elastic net gains in sparsity performance, however,
this has never been investigated within a VAR framework.

The aim is therefore to analyze if the multi-step adaptive elastic net
(maenet) is able to provide the accurate VAR model compared to its single
step variants used as benchmark methods such as the elastic net (enet),
adaptive elastic net with ridge weights (aenetR) and the adaptive elastic
net with lasso weights (aenetL).

I compare them in terms of estimation bias, sparsity and forecast per-
formance.

Simulation results show that the multi-step adaptive elastic net is able to
consistently find sparser VAR models compared to the benchmark methods
with a gain in efficiency and accuracy as the probability of selecting the
correct model increases. In addition, the coefficient estimates are closer
to those of the true model. Forecast performance is one of the best in
small samples, but approximately equal in large samples. Overall maenet
performs well in high-dimensional small samples in terms of selecting the
right variables and forecast perfomance.

Empirical results also show a sparser model compared to the single-step
adaptive elastic net methods.

The gain in performance in especially small samples makes this model

interesting for many fields, such as macroeconomics and finance.

ii



Acknowledgements

Looking towards the end of my study Econometrics and Management Sci-
ence, I can honestly tell that I have enjoyed my study so far. It has truly
provided me interesting, though but certainly beautiful insights and tools
to use in my career.

I declare my sincere gratitude to my family who has always supported
me in my writing process. Even in periods where I faced some disturbing
cicrcumstances, they still believed in me and motivated me to follow my
dreams. Writing this thesis comes at the cost of lots of sacrifices, efforts
and research work and also a job to get the bills paid.

I would also like to thank my supervisor dr. Annika Schniicker of the
Erasmus University Rotterdam, who supported me during my writing pro-
cess. She understood my personal situation and provided me the necessary

and useful feedback.

iii



NON-PLAGIARISM STATEMENT

By submitting this thesis the author declares to have written this thesis completely by himself/herself, and not to
have used sources or resources other than the ones mentioned. All sources used, quotes and citations that were
literally taken from publications, or that were in close accordance with the meaning of those publications, are
indicated as such.

COPYRIGHT STATEMENT

The author has copyright of this thesis, but also acknowledges the intellectual copyright of contributions made by
the thesis supervisor, which may include important research ideas and data. Author and thesis supervisor will
have made clear agreements about issues such as confidentiality.

Electronic versions of the thesis are in principle available for inclusion in any EUR thesis database and
repository, such as the Master Thesis Repository of the Erasmus University Rotterdam

M.N. Oemar




Contents

List of Figures . . . . . . . . . . . . ... ... vii
List of Tables . . . . . . . . . . . . . ix
1 Introduction . . . . . .. ... o o oo 1
2 Data . . . .. .o 6
2.1 Missing data . . . . . . ... L0000 7

3 Methodology . . . . . . . ... 8
3.1 VAR model . . . . ... ... 8

3.2 Multi-step Adaptive elastic net on VAR models . . . 10
3.2.1 Penalized methods . . . . . ... ... ... 10

3.2.2 Ridge regression method . . . . .. .. .. 11

3.2.3 Lasso method . . .. ... ... ...... 11

3.2.4 Adaptive elasticnet . . .. ... ... ... 12

3.2.5 Multi-step elasticnet . . . . .. ... ... 12

3.2.6 Optimization algorithm . . . . .. .. ... 16

3.2.7 Multi-step AEN algorithm . . . . ... .. 19

3.3 Specification of the maximum lag length ppgz . - . . 20

3.4 Specification of the tuning parameters . . . . . . .. 21

3.4.1 Specification of the penaly searching grid . 21

3.4.2 Data-based selection of penalty parameters



o N O L

3.5 Conventional information criterion on VAR models . 23

3.6 Simulation study . . . . ... ... ... L. 24

3.6.1 Setup . . . ..o 24
Simulation results . . . . .. ... oo 30
4.1 Parameter estimation . . ... .. ... .. ... .. 35
4.2 Sparsity performance . . . . . ... ... 41

4.2.1 Active variables . . . . ... ... ... .. 41

4.2.2 Sparsity plots . . . . ... ... L. 42

4.2.3 Inclusion of true model . . . . ... .. .. 46
4.3 Lag selection performance . . . . . . ... ... ... 46
4.4 Forecast performance . . ... ... ... ...... 48
Empirical analysis . . . . .. ... ... ... 0. 48
Conclusion . . .. .. .. 51
Limitations and recommendations . . . .. ... ... ... 53
Appendix . . . ... 54

8.1 Derivation of the adaptive elastic net for VAR models 54

8.2 Ridge estimation within VAR framework . . . . .. 56
Program codesin R . . ... ... ... o 0L 57
9.1 Functions . . . .. ... ... ... L. 57

vi



List of Figures

1 Aggregate plot of variables in order to depict the missing

values. . . .. Lo 7
2 Sparsity plot generated of the VAR coefficients estimated by

the enet-VAR model generated by own code. I set the user

defined maximum lag length arbitrarily on 4. The DGP is,

however, a VAR(1) process. . . . . ... ... ... ..... 14
3 Simulation plots for II[1,1] with k¥ = 5 and k£ = 20 (large

dimension) and 7" = 100 (small sample) and 7" = 1,000

(large sample). II estimated by enet, aenetL, aenetR and

Maenet. . . . . .. 38
4 Simulation plots for II[1,1] with ¥ = 5 (small dimension)

and k = 15 (high dimension) for 7" = 100 (small sample)

and T = 1,000 (large sample). II estimated by OLS, enet,

aenetl, aenetR and maenet. . . . . .. ... ... ... 39
5  Simulation plots for IT[1,1] with £ = 20 (large dimension)

and 7' = 100 (small sample) and 7' = 1,000 (large sample).

IT estimated by enet, aenetL, aenetR and maenet. . . . . . 40
6 Simulation plots for the IT coefficient matrix of DGP1 with

kE = 20 (large dimension) and T' = 100 (small sample) and

T = 1,000 (large sample). A representation of the coefficient

plot estimated by enet, aenetL, aenetR and maenet. . . . . 43
7 Simulation plots for the IT coefficient matrix of DGP2 with

k = 20 (large dimension) and 7" = 100 (small sample) and

T = 1,000 (large sample). A representation of the coefficient

plot estimated by enet, aenetL, aenetR and maenet. . . . . 44

vii



Simulation plots for the IT coefficient matrix of DGP3 with
kE = 20 (large dimension) and 7' = 100 (small sample) and
T = 1,000 (large sample). A representation of the coefficient
plot estimated by enet, aenetL, aenetR and maenet.

Plots of the IT coefficient matrix of the empirical dataset with
k = 22 (large dimension) and 7' = 127 (small sample). A
representation of the coefficient plot estimated by the adap-
tive elastic net based on lasso weights and the multi-step

adaptive elasticnet. . . . . ... ...

viii

45



List of Tables

= W N

DGP1 simulation results . . . . . . ... ... 32
DGP2 simulation results . . . . . . . ... ... 33
DGP3 simulation results . . . . . . ... ... ... 34

Empirical results where the forecast performance and spar-

sity are depicted. . . . . ... oL 50

ix



1 Introduction

In the field of macroeconomics and policy analysis, it is of keen interest
to know what the dynamic relation between variables is. Vector autore-
gressive (VAR) models are the multivariate expansions of the univariate
autoregressive (AR) models. Autoregressive models describe the intertem-
poral dynamics between the current value of a variable with its past values
and an idiosyncratic part. Vector autoregressive models describe the dy-
namics of the variables as a function of their own lagged values, lagged
values of other variables and an idiosyncratic part. Sims (1980) advocates
the use of VAR models for macroeconomic analysis in order to quantify eco-
nomic relations. Moreover, VAR models are amongst others appropriate for
macroeconomic data, because macroeconomic data are correlated over time
and as such dependent on past values. Macroeconomic variables are also
likely to be intertemporally related to other macroeconomic variables. This
makes the VAR model an appropriate estimation model for macroeconomic
data.

The specification of VAR models consists of two steps. The first step is
to analyze the k variables that should be included in the VAR model. The
second step being a crucial choice for VAR models is the selection of the lag
order. If the selected lag order is higher than than the true one, it results
in overfitting and consecutively increases forecast errors. On contrary, if
the selected lag order is smaller than the true one, it leads to underfitting
resulting in autocorrelated error terms. The effect of autocorrelation is
visible in the consistency of the estimated parameter, because the rate
of convergence of the estimated parameter to the true parameter is then
affected as shown in the paper of Sharma (1987). This in turn affects the

efficiency of the prediction performance as well.



In the perspective of producing good predictions, it is necessary to select
the best possible model in terms of forecast performance. Several attempts
have been done for model selections. The first way for selecting the lag
length was by using the information criteria such as the Akaike Informa-
tion Criterion (AIC) and the Bayesian Information Criterion (BIC). These
conventional methods ought to find the model that balances a good fit be-
tween the data and sparsity. A proposition to improve this information
criteria methods is to evaluate them sequentially. Two alternative methods
are firstly the top-down approach and secondly the bottom-up approach.
This procedure is dependent on the search path you opt for, which might
provide sub-optimal models. Another approach for selecting the lag length
is by means of hypothesis testing, where coefficients are tested on their
significance.

Common to all approaches so far is that it is time-consuming and com-
putationally intensive. This is where the work of Hsu et al. (2008) kicks in.
They translate lag selection for VAR models to a variable selection prob-
lem. They use the lasso method of Tibshirani (1996) for model selection
in the VAR framework. The lasso estimation is also based on minimizing
the sum of squared residuals like the OLS estimation is based on. Now
the addition here is that the sum of absolute coefficients is bounded by a
prespecified value implying variable selection as some coefficients are put to
zero. In this way the lasso method performs model selection by excluding
abundant variables out of the model. The authors show an improvement
in the forecast performance in finite samples. The paper of Zou and Hastie
(2005) shows that the limitations of the lasso method are visible when the
parameter space gets larger and more correlated.

That is where the elastic net estimation method shows an improvement

compared to the lasso method. The paper of Zou and Hastie (2005) shows



that the elastic net method, which combines the lasso and ridge regression
penalties in a convex way, outperforms the lasso method in case the amount
of parameters, in this case the pk? lagged variables, exceeds the amount of n
observations and can obtain the oracle properties. Zou (2006) explains that
if an estimator has the oracle properties, this estimator performs as if the
true model were provided on beforehand. Technically said, the asymptotic
distribution of an oracle estimator is the same as the asymptotic distribu-
tion of the maximum likelihood estimator (MLE) based on the true model.
The lasso method is only capable of selecting at most n variables. In ad-
dition, if variables are highly correlated, then the lasso method randomly
select one variable out of them, whilst the elastic net method is able to
conduct grouped selection on which will be technically elaborated further
in Section 3. The ridge regression part of the elastic net groups correlated
variables together, which is the so-called de-correlation step such that a
variable is not easily eliminated from the model while having predictive
power. The lasso part of the elastic net asserts the variable selection by ex-
cluding redundant variables from the model. The paper of Zou and Hastie
(2005) poses that the elastic net method works well in settings of relatively
low amount of observations and a high set of variables.

For macroeconomic variables oftentimes the amount of observations n
might be relatively low due to the frequency of data observations compared
to the set of k macroeconomic variables. In light of this, it is of keen interest
to investigate the elastic net procedure for selecting the lag order as well
as evaluating the resulting forecast performance of the VAR models. Addi-
tionally, the grouping power of the elastic net method is useful for macroec-
nomic models. Suppose that you have a model with macroeconomic and
financial variables, then it is likely that the financial and macroeconomic

variables exhibit a group pattern with probably relatively strong intraclass



correlations. The grouping property of the elastic net method as explained
by Zou (2006) and Furman (2014), clusters correlated variables together.
Finally, the oracle property of the elastic net method as mentioned ear-
lier, is very useful in finding the correct sparsity pattern as the sample size
increases.

As far as my knowledge of the literature concerns, only the paper of
Furman (2014) explicitly discusses the elastic net approach in a VAR frame-
work. In particular, they discussed the adaptive elastic net which allows
heterogeneous weights for the lasso penalization on coefficients. This means
that each coeflicient is penalized differently according to their individual as-
signed penalty weight. Zou (2006) shows that this adaption in the lasso part
results in the oracle property. However, in macroeconomics there is usually
no large sample size. This means that the estimator is not likely to reach
the asymptotics for the correct sparsity pattern and coefficient estimates.
A relative finite small sample size implies a model that is not as sparse as
that of the true model. Thus there is still a risk of having false positives
in the model. This means that coefficients that should be zero and be left
out of the model are unjustifiably estimated as a nonzero value and incor-
porated in the model causing overfitting. The paper of Xiao and Xu (2015)
therefore presented the multi-step adaptive elastic net method for acquir-
ing a more sparse model, which means decreasing the false positive rate,
whilst maintaining the prediction accuracy as good as the adaptive elas-
tic method provides or even better. When I link this concept to the VAR
model, it becomes interesting. This is because you want to find the spars-
est VAR model as generated by the true data generating process (DGP).
Especially considering the consequences of underfitting and overfitting, this
is of importance.

Combining the multi-step adaptive elastic net approach in terms of VAR



model selection for finding the correct amount of p lags and sparsity in a
relatively small finite sample, will be of added value for the current VAR
literature, particularly in the field of macroeconomics, and has as far as my
knowledge extents, not been investigated before.

The aim of this paper is to analyze the performance of the multi-step
adaptive elastic net on VAR models in finite samples. I evaluate its per-
formance in terms of variable selection, forecast performance and level of
sparsity compared to the single-step elastic net, single-step adaptive elastic
net based on ridge weights and the single-step adaptive elastic net based on
lasso weights. I investigate the performance based on a simulation study
and an empirical application.

The results of this paper show that the multi-step adaptive elastic net is
able to find consistently sparser VAR models compared to the benchmark
methods, such as the single step elastic net and its adaptive variants, with
a gain in efficiency and accuracy as the probability of selecting the correct
model increases. In addition, the coefficient estimates are closer to that of
the true model. Forecast performance is one of the best in small samples,
but approximately equal in large samples.

The remainder of this paper is set out as follows. Section 2 introduces
the dataset for the empirical analysis. Section 3 introduces the model that
I use for the analysis. Section 3.6 presents the simulation study for this
model. Section 5 discusses the empirical analysis and section 7 concludes.
The part appended to this study can be found in section 8 where the math-

ematical derivation of the used model is presented.



2 Data

The dataset that I use for this study comes from the Economic Research
department of the Federal Reserve Bank of Saint Louis (FRED). I use the
dataset with a timespan from the second quarter of 1959 until the first
quarter of 2020 which amounts to about 244 observations. The variables in
the dataset are grouped into financial and macroeconomic indicators. For
the division of the groups, they largely followed the paper of Stock and
Watson (2012).

I work with quarterly macroeconomic data of Group 1: National Income
and Product Accounts henceforth abbreviated as NIPA. Since this group
consists of 23 variables and all variables are explained in the appendix of
the FRED database!, I only summarize the categories of variables that I
include rather than mentioning them all individually. Categories of vari-
ables I consider are GDP, personal’s available income, consumption and
tnvestment, government’s expenditures, investments and receipts, exports
and imports and output of several sectors.

First of all, I would normally check for stationarity of the variables
as this is the prerequisite prior to estimate a VAR model. However, the
appendix of the FRED database already provides the integrating order of
the variables as well as the transformation methods to get them stationary.
That means that I do not have to conduct the Augmented Dickey-Fuller test
for finding the integrating order I(d) as conducted by Engle and Granger
(1991). It is for the estimation purpose important that the shape of the
distribution remains the same over the time-dimension such that asymptotic
theory can be held valid as is explained by Davidson (2009).

For the majority of the variables I take logarithmic differences c.q.

"https://research.stlouisfed.org/econ/mccracken/fred-databases/



Alog(yt). For some variables I applied the first numerical difference be-
tween two subsequent observations c.q. Ay;. The remainder set of variables

is already stationary and do therefore not need to be transformed.

2.1 Missing data
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Fig. 1: Aggregate plot of variables in order to depict the missing values.

Figure 1 represents the overview of missing values within variables in
terms of proportion missing and in terms of a combined overview. This
plot is a result of the VIM package in R. If the missing observation extends
over the set of variables or at least over the largest part of the variables,
I opt for removing that observation. I consider the other missing values
to follow the Missing at Random mechanism (MAR). This implies that I
attempt to estimate the missing value by the information of other observed
variables. I use a Bayesian approach for this problem. I draw imputed val-
ues from the predictive distribution conditioned on the observed variables
in the model. In order to decrease the risk of biased estimates, multiple

imputations are recommended as explained by Royston (2004). I therefore



impute these missing values five times and take the average of these pre-
dicted values afterwards. I apply the method predictive mean modelling in
the mice package in R for estimating the missing values, as I only deal with
numerical variables. If the proportion of missing values is more than 50%
for a variable, then I exclude this variable from the model. In my case, this
is for the variable Real Output from the Manufacturing Sector (OUTMS).
For the missing values where no imputation value can be estimated, I decide
to delete the whole observation from the dataset. In the end, I remain with
T = 127 complete observations for k = 23 variables that I use for further

analysis.

3 Methodology

3.1 VAR model

The VAR model is given by

p
Y=o+ > ILY+u. (1)
=1

For each time period ¢, Y; is a kx 1 vector of dependent variables. The
vector of constants is denoted by Ily a kx 1 vector, where Y;_; is a kx 1
vector of [ periods lagged variables of Y;. It is more convenient to neglect
the kx 1 vector of constants Ily for the remainder part of the research,
because this study considers a standardized dataset. Subsequently, IT; with
a dimension of kxk represents the matrix of coefficients from the lag [ past
values of the k variables Y;_; on the current value of the %k variables Y.
Finally, 1 is a kx I vector of white noise error terms with v, ~ N (0, X,),
which is assumed to be independent from the explanatory variables Y;_;

and a multivariate normal distribution with covariance matrix X,. I let



the past count for lag 1 until lag p, where p is subjective and dependent on
the user input. This might be the first guess based on the serial correlation
of the data. Another method is to consider the time-series properties of
the dataset. The frequency at which the data is represented might give a
proper indication for what maximum lag order could be considered.

In fact, it would be appropriate to estimate a VAR model by seemingly
unrelated regressions, henceforth abbreviated as SUR. I hereby use the
finding of among others the paper of Basu, Michailidis, et al. (2015). They
found that a joint estimation of the lag coefficient matrices II; and the
inverse of the covariance matrix ¥, does not contribute evidently for better
forecasts.

For making equation (1) more convenient in terms of an aggregated
matrix, I also introduce the index i € RF to refer to variable i out of k
variables and therefore Y; is a kx 1 vector and I represent the aggregated
matrix accordingly.

All kx 1 vectors of dependent variables Y; over all T periods are col-
lected into one big matrix Y, thus the kx T matrix Y = {Yl s YT].
I also collect all p times kx k lag coefficient matrices I1; into one big matrix
IT with dimension kxkp, thus IT = {1‘[1 e Hp]. In addition, I create
a new explanatory variable Q, that enables us to collect the vector Y;_;
for all p lags. This results in a kpx 1 vector of Q, = [Y;f—1 . Y?_p:| T.
Then I collect all Q, for T periods into one big matrix Q with dimension

kpx T. This results in Q = {Ql s QT]. Finally, I collect all T resid-

ual vectors v; into one k x T matrix such that V = [;/1 VT:|' After

g eeey

rewriting all terms accordingly, I get the following equation.



Y = 11 A 2
kxT  kxkp x kaxT+ kxT ( )

In vector notation I get the following representation with Y; on the

TOws.
or]
1
Y! My ... ILy, . Ty : vT
— T
= X Qh +
T : T
Yk Hk71 "‘Hk,h ‘--Hk,kp . Vk
T
L ~kp]

For the remainder of this paper, I introduce the index numbers m € R*
and n € R*P. This means that IL,, ,, refers to the effect of the nth lagged

row of the lagged matrix Q on the current value of the mth variable.

3.2 Multi-step Adaptive elastic net on VAR models

3.2.1 Penalized methods

The idea of penalized estimation models as described by among others Zou
and Hastie (2005) and Tibshirani (1996) in general is that extra bias has
been introduced by the penalty terms A at the benefit of having lower vari-
ance of the parameters’ estimations. In this way a sparser model can be
reached, which consists of less variables in the model and hence a lower
amount of variance. The minimization formula of the sum of squared resid-
uals or the log likelihood is affected by the penalty term. If redundant
variables remain in the model, it basically generates extra variance without

extra predictive power.
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3.2.2 Ridge regression method

The ridge regression bounds the square of the coefficients by the Lg-norm.
This implies that the sum of all squared elements in the IT matrix is smaller
than an arbitrary non-zero value z representing the Lg-norm boundary on
the coefficients. This implies Y% _, Zﬁp:l H%%n < z. The advantage of
the ridge penalization is that it can shrink parameters and create grouping
effects. This means that correlated variables in the model attain coeffi-
cients that are more in the vicinity of each other. This is the so-called
de-correlation step. However, the disadvantage is that the model will not
get a more parsimonious representation, since all variables will remain in
the model. This means that the ridge regression is not able to select vari-

ables in the model. Especially in terms of selecting the amount of p lags

and right sparsity, this is of crucial importance.

3.2.3 Lasso method

The lasso method improves in this by putting irrelevant coefficients to zero
and as such eliminate variables from the model. The lasso method penalizes
the absolute value of the coefficients by the L;-norm. This implies that
an:l Zﬁp: L [ II;] < s, where s is a non-zero value. In this way, lags of
variables that are superfluous in the model can be simply left out. As
the lasso estimation do not attain the oracle properties, the adaptive lasso
method is proposed. The adaptive lasso method applies heterogeneous
shrinking parameters across coefficients. This means that the strength of
penalty differs across coefficients. The intuition behind this is that smaller
coefficients are less relevant and are therefore penalized more heavily than

the bigger coeflicients.
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3.2.4 Adaptive elastic net

The elastic net penalization method, also called a hybrid penalization method,
is a weighted convex combination of the ridge penalization and the lasso
penalization. Despite the fact that the lasso method improves in the vari-
able selection part, it behaves worse in cases that the amount of variables
k, p lags (k?p parameters) in the model exceeds the amount of observations
n. Also, in cases of multicollinearity. Zou and Hastie (2005) show that fore-
casts by ridge regressions outperformed the predictions of the lasso method.
These two issues are relevant for the VAR setting, especially for macro-
economic variables. This is because the macroeconomic data frequency is
mostly on a low-frequency basis, e.g. on a quarterly basis. In addition,
the set of variables within the field of macroeconomics can be large and
they are likely to exhibit coherence. The paper of Furman (2014) shows
that the adaptive elastic net is a good method to estimate VAR models
consistently, even in cases where the parameter space is large and where

the lagged variables exhibit a certain degree of correlation.

3.2.5 Multi-step elastic net

Thus far Zou (2006) has shown that the adaptive lasso estimation method
performs better than the regular lasso method in terms of coefficient estima-
tion, because the heterogeneous weights make sure that relevant variables
are not equally heavily biased as the irrelevant ones. The adaptive elastic
net improves compared to the adaptive lasso by incorporating an extra reg-
ularization parameter, which makes sure that the variable selection is done
more carefully, especially in the case of multicollinearity. This means that
in high-dimensional settings, more regularization parameters are required

to obtain better estimations as mentioned by Xiao and Xu(2015). This can

12



be achieved by iterating the adaptive elastic net over different stages where
the tuning parameters and weights change in each iteration r.

Xiao and Xu (2015) show that by iterating r times the adaptive elastic
net for variable selection, a sparser model can be attained. Particularly
in small sample cases, a sparser model is recommended. This is because
in a finite small sample, the model cannot learn sufficiently from the data
to estimate the coefficients in the unsparse model efficiently. This would
obviously result in poor forecasts.

If the chosen maximum lag order is bigger than the maximum lag order
according to the DGP, then the elastic net and lasso methods are able to
shrink some of the coefficient matrix to zero on an individual level. How-
ever, they do not always select the correct lag order as a group. Therefore
it results in an unstructured sparse coefficient matrix IT where some coef-
ficients belong to the active set S; and others to the inactive set Sp. The
indicator value 1 stands for coefficients that are not shrunk towards a zero
value. The indicator value of 0 stands for coefficients that are shrunk to-
wards zero. Figure 1 shows the graphical illustration of the problem. The
DGP I use as example, consists of two variables with n = 100 observations

and a VAR(1) coefficient matrix IIpgp of

0.7 0.2 1 0
Ipep = , 2, = (3)
0.2 0.7 0 1

13



Fig. 2: Sparsity plot generated of the VAR coefficients estimated by the enet-VAR model
generated by own code. I set the user defined maximum lag length arbitrarily on 4. The
DGP is, however, a VAR(1) process.

(1) (2] 3} (4]

II II II II

Figure 1 shows that 6 out of 16 (= 37.50%) coefficients of IT =

3x12

IT; NII; N II3 N I14 are shrunk to zero and thus fall in the inactive set Sy.
3z3 33 323  3x3

They are graphically depicted as white blocks. my aim is to find II; € &;
and ITo UTI3 UTI, € Sy. However, I find that only some coefficients, in this
case IIy and Ily,—5 € II3 are turned to zero.

The simulation study in section 3.6 elaborates on this matter in more
detail with several high dimensional multivariate DGPs. The weighting
term w%?n updates in each iteration 7. Following the paper of Zou and
Hastie (2005) and Zou and Zhang (2009) and after some rewriting, the

optimization problem adopted to the multi-step elastic net function can be

described in the following way for the VAR framework.

, )\(T)
Hglc)tstic = (1 + ﬁ)
T k kP
argain {z S 3 (Yo — I, Q)2 4 APl 0, | + Ag")n%,;sm} |
t=1m=1 n:l

(4)
where A; is the penalty term for the lasso method and Ay the penalty

term for the ridge regression. The term w,, , defines the heterogeneous lasso

penalization weights on the coefficients. This term takes care for heavier

14



penalization of the smaller coeflicients, and, softer penalization of the larger
coefficients. In order to cope with the double shrinkage, I need to inflate
the elastic net estimator. This is because the elastic net is estimated in a
two stage procedure as explained by Zou and Hastie (2005). The first stage
consists of estimating the ridge coefficients for each value of Ay. The second
stage consists of estimating the lasso coefficients conditioned on the ridge
coefficients, A9 and A;. This double shrinkage incurs biased coefficients
leading to poor forecasts. Following the paper of Furman (2014) I pre-
multiply the elastic net equation 4 by the factor (1+,§‘—%). Parameter £ is
the amount of equations that is being estimated at once in the VAR model,
and, T the amount of time-series observations. The papers of Zou and
Zhang (2009) and Furman (2014) elaborate more on this matter.

The initial weights for the adaptive lasso and adaptive elastic net are
determined by |ITiial ~0 where [TIinitial| are the initial estimates of the
coefficients by OLS or ridge regression, and, § a positive constant number.
The paper of Zou and Zhang (2009) suggests that I can let § € (0.5,1,2),
however I remain with the proposition of Xiao and Xu (2015) to let § = 1.

The additional step of the multi-step adaptive elastic net is that the
adaptive elastic net for variable selection is conducted iteratively whereby
the weights w%)n are updated in each iteration r. The weight in iteration
r > 1 is determined by \H%;l) x A=Dq(r=1| In order to make the esti-
mation of the tuning parameters more feasible, I should rephrase equation

4 and introduce the term « which is the fraction of the total penalty be-

longing to the lasso method. That is, o = )\1’):&, and, (1 —a) = /\1)—\+2A2'
In addition, I aggregate A\; and Ay to A. This means that A\a = Ay and
A1 — a) = Ao

The advantage of this re-parametrization is that I can better specify the

two-dimensional searching grid of the tuning parameters, as « is specified
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on the interval [0,1]. So, instead of finding the parameters A\; € (0, 00) and
A2 € (0,00) in a two-dimensional grid, I simplified it to a two-dimensional
searching grid for which A € (0,00) and o € (0,1). This allows us to

reformulate equation (4) into,

(r)
rn  _ A
Helastic - (1 + kLT)X
T k kP
argnin {3 52 S7 (Vo HU0 @, 0+ Xl ol T, -+ 1= o)
t=1m=1n=1

(5)
The overview below shows that different values for parameters A, w and
« lead to different estimation models. The models can vary between OLS,
lasso, adaptive lasso, elastic net and adaptive elastic net. In case I iterate

r> 1 times over the adaptive elastic net VAR model, then I get the adaptive

elastic net VAR model.
ifA=0,r=0,w}’), =0and a =0 —» VAR OLS

ifA>0,r=0, w%)n =1and a =1 — VAR lasso
ifA>0,r=1, wf,’{)n # 1 and a =1 — VAR adaptive lasso
ifA>0,r=0and a =0 — VAR ridge regression
ifA>0,r=0, w%)n =1land a € (0,1) - VAR elastic net

ifA>0,1=1, w%)n # 1 and a € (0,1) - VAR adaptive elastic net

ifA>0,re(1,.,R], w%,)n # 1 and a € (0,1) — VAR multi-step aenet

3.2.6 Optimization algorithm

There are two major methods to estimate the elastic net model. On the
one hand there is the LARS algorithm as discussed by Efron et al. (2004),

which calculates the whole solution path for the coefficients. On the other
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hand, there is the coordinate descent method as proposed by Friedman,
Hastie, Hofling, et al. (2007) and Friedman, Hastie, and Tibshirani (2010).
This method does not calculate the whole solution path of coefficients, but
rather iteratively updates each coefficient II,, , at a time while fixing the
others until the convergence criterion has been met. The cyclic coordinate
descent method as discussed in the paper of Wu, Lange, et al. (2008) is a
famous numerical optimization method for solving penalized functions.
The advantages of the coordinate descent method compared to LARS
method are that the computation time is shorter and the estimation more
robust. This method is often used for functions with a lasso type of penal-
ization. The argument is that the lasso part in the optimization problem
is convex but not differentiable. However, this problem can be split up,
such that the global minimum can be found. Suppose that I can split
the equation in two parts. The first part denoted as L(II) is the SSR
and the second part denoted as P(II) the penalty term. I can define the
formula as L(IT) + P(II). For the sake of convenience, I consider each vari-
able m separately. Ly, (TI) = S 1 (Yoe — S8 ) S8, L, ,Q,)* The
penalty term P,,(II) for variable m is denoted as )\Eﬁpzl (0w | Ty | +
(1 — )2, ). Since there exists no analytical solution for the lasso part
of penalty term P(II), I apply a numerical optimization procedure, the so-
called coordinate descent algorithm. The basic idea behind this algorithm
is to conduct a scalar optimization. I can achieve this by optimizing each
coefficient of the Il matrix, while holding all other coefficients constant.
The paper of Tseng (2001) confirms that the global convergence can be
reached by solving the partitioned subproblems within the framework of
the coordinate descent method. Suppose that [ want to optimize the VAR
model by the cyclical coordinate descent method, I require some inputs.

As the DGP is unknown to the researcher, he puts in an own indication of
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the maximum lag order. Before I can use the coordinate descent algorithm
to update the coefficient matrix IT, I need to provide the algorithm an ini-
tial estimation of the coefficients. This is in turn based on the specified
maximum lag order. I initialized the IT matrix with only ones in the cells.

The first step is then to restrict the model by excluding the lagged
series h Q,_, and exclude the coefficient II,, ,—,. The next step is to
calculate the residuals of this restricted model as Wy, ,+p ¢, also called the
partial residual. Subsequently, I plot the residuals of the restricted model
Winnn,t on the lagged series Q,,_j; that has been excluded from the full
model. The result is a preliminary estimation of II,,,—;. Finally this
preliminary estimator goes through the soft-threshold operator and scaled
by the product of the ridge penalty term A(1—a) and Q%:h. The latter part
is the variance of Q,,_,%. The idea of the soft-threshold operator is that
the preliminary scalar coefficient estimation is shrunk to zero if the absolute
value of the estimation is smaller than a pre-defined constant term v X wy, .
In my case « is defined as the product of Aa. This is the effect of the
lasso part of the elastic net. Secondly, the soft-threshold operator shrinks
the absolute value of coefficients if their value exceeds that of v X Wy, .
By scaling the coefficient estimate after the soft-threshold operator by the
variance of Q,,_;, the more the preliminary estimate will be shrunk in a
quadratic way. This is the effect of the ridge regression part of the elastic
net. Appendix 8.1 will elaborate on the derivation of the elastic net model
in a VAR framework in detail. The resulting estimator f[mm:h is given in

equation 3.2.6.

2
n=h

?As Q,,_, has been standardized, T can mathematically conclude that the square Q
is equal to the variance.
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(6)

I conduct a pathwise coordinate descent strategy on the estimation of
the VAR elastic net model. This means that I calculate solutions based
on a sequence of lambdas and alphas. Lambda can range in a sequence
from Mgz until Ay, where Ap,q; entails the relatively highest level of pe-
nalization in the L1-norm and A, relatively the least. Following Nichol-
son, Matteson, and Bien (2014), T use Ao = elog(maz(QY)) and \,... =
elog(maz(QY))/R where R is for the depth of the lambda grid and I put
R = 102. Due to the required computation time, I only choose for a length
of the lambda grid M = 5. For the alpha values I use a;,;, = 0.75 and
Qmaz = 0.95 with a step size of 0.1 such that the length of alpha grid is 3.

As the coordinate descent method finds the solution by iterating, I
therefore take a convergence rate of € = 10™* where € is the scaled abso-
lute maximum difference between the Il,.,, and Il,4 following Nicholson,
Matteson, and Bien (2014).

As I also have a L2-penalization norm and therefore have the « to
balance between the lasso and ridge penalization, I also calculate different
solutions based on different values of . I can create the solution path
by fixing « at a certain value and find solutions for different values of A

conditioned on the level of a.

3.2.7 Multi-step AEN algorithm

From the inspiration of the paper of Xiao and Xu (2015), I adjust and
redefine the algorithm in the following stepwise way such that it fits my
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VAR elastic net framework.

Step 1: Initialize the weight scalar wy, , with m € [1,.....k] and n €
[1,.....kp]

Step 2: In the iteration for r € [1,....,R]; Estimate the elastic net equa-
tion (5) for which in the initialization the coefficient estimation ﬁmm is a
function of the ridge or ordinary least square regression, and, the weight
scalar wy, 5, is initially put to a constant value of 1. From the first iteration
onward, H(Ql)()\,a) is a function of the tuning parameters. The weights
can be updated by: wg?n = Hq(ﬁfnl) X )\(T_l)a(’"_l)r‘s.

It is important to note that after each iteration the amount of coeffi-
cients gets smaller implying that the amount of lags gets smaller as well
until I reach the point of convergence where poptimar € Pmaz- My aim is
that the algorithm should be able to turn all abundant coefficients to the
inactive set Sg and retain only the coefficients of the true lags and variables
in the active set Sj.

Regarding the convergence criterion of the multi-step adaptive elastic
net iterations, I define it in the similar way as for the coordinate descent

algorithm, also with e = 1074,

3.3 Specification of the maximum lag length p,,..

Prior to applying the penalized methods on the estimation of the coefficients
in the VAR model, it is important to first have an indication of what the
maximum lag length, say, pmq: might be. After the specification of paq,
the penalized methods are able to filter out the redundant variables which
includes lags of own and other variables in the model, such that the model
becomes sparser.

By inspection at the serial correlation plots of the variables at its own

past values, an initial guess of p;q, might be deduced. Also, considering
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the time-series frequency might give an indication of p.,qq.

In this paper I therefore consider the serial correlation as guidance for
the maximum lag length p,.q.. However in the simulation study, I choose
for a lag length bigger than what the serial correlation plots imply. That
is because I want to investigate whether the multi-step adaptive elastic net
is able to recognize the correct sparsity pattern by itself. This also implies
finding the true lag length. This means that if I find a serial correlation
of order 4 in quarterly data, then I take for p,.., a multiple of 4, e.g.
8. Because if data is correlated with its previous year, then it might be

correlated with two years back as well.

3.4 Specification of the tuning parameters
3.4.1 Specification of the penaly searching grid

I also need to specify the searching grid for the penalty terms A and «. I let
a range from 0.50 to 1 by incrementing with a step size of 0.1. The reason
why I opt for a relatively higher « is that the variable selection results
from the lasso penalization. Therefore, I give a large weight to the lasso
penalization. The paper of Tabassum and Ollila (2017) affirms that the
interval of a € [0.5,0) is not that interesting as in that case the solutions
will more likely move towards ridge regression solutions and as such will
not result in clear variable selection. Following the papers of Nicholson,
Matteson, and Bien (2014) and Friedman, Hastie, and Tibshirani (2010)
I let A decrement in a logarithmic-linear way. Where A4, represents the

value for which all coefficients II,, , Vm, n are zero.
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3.4.2 Data-based selection of penalty parameters )\, «

As e.g. used in Zou and Hastie (2005) for finding the tuning parameters «
and A, I apply the crossvalidation technique accordingly. However, due to
the time dependence structure, the normal crossvalidation technique is not
appropriate anymore. I opt for a rolling window estimation of the penalty
parameter as explained in the paper of Song and Bickel (2011). This is
because there is auto-correlation present in the data, which causes the data
not to be independently identically distributed anymore. The underlying
assumption of the traditional cross-validation technique is that the data
should be independently identically distributed. For (V)AR models it is
important to let the model be trained by past contiguous clustered data in
order to take the sequential nature of time into account and to avoid the
look-ahead bias that could occur if one would use future data as training
input. I opt accordingly for a rolling crossvalidation technique as in line
with the papers of Nicholson, Matteson, and Bien (2014) and Song and
Bickel (2011). The idea is that the dataset is split up in three equivalent
parts. The subperiods are calculated as 17 = L%j and Ty = L%J The
period from ¢ = 1 until ¢ = T'1 — 1 is used to initialize the model, whereas
the period from ¢t = T7 until t = T2 — 1 is used for selecting the penalty
parameters. The third period from T2 until T is used for the evaluation of

the one step ahead forecasts.

Initialization FEstimation Fuvaluation

I accordingly evaluate on the basis of one-step ahead forecasts. The

proxy for the performance in terms of prediction is the MSFE.
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3.5 Conventional information criterion on VAR models

The idea behind the information criterions AIC and BIC is that they tend
to strike a balance between a good fit and the parsimony of a model. The
practical difference between both information criterions is that the BIC pe-
nalizes model complexity heavier than the AIC does. Under the assumption
that the errors are normally distributed, the information criterions can be

defined in the following way as described in the paper of Luetkepohl (2009).

AIC = Tin | X | +2(pk* + k), (8)

BIC =Tin| 2| +(n T)(pk* + k), (9)

where T is the amount of observations, 3, is the estimated covariance
matrix of 3, which resembles the kxk covariance matrix of €; as introduced

in equation 1. The covariance matrix is defined as

T
1
EV:—Zl/tV;}r, (10)
Tt:l

whereby the analogy for the estimated covariance matrix holds.

The penalty term is for the AIC a constant factor of 2, whereas for the
BIC model it is in T. The factor after the penalty term, pk? + k, resembles
the amount of parameters to estimate in the VAR(p) model. Altogether,
this shows that the penalty terms of the information criterions exhibit a
positive function with the dimension of the model, and, that the BIC crite-

rion model penalizes the complexity of the model relatively heavier. Among
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others Kuha (2004) recommends the usage of both methods as complemen-

tary for the model selection procedure.

3.6 Simulation study
3.6.1 Setup

The aim is to simulate from several data generating processes following
Kock and Callot (2015) with different true lag orders, different amount of
variables, different levels of sparsity and different degree of stationarity. The
particular focus is on large multivariate models, where the aim is to show
how the models perform compared to small multivariate models. Different
methods are evaluated in terms of sparsity and forecast performance.

As mentioned in the introduction, several literature studies show that
the penalized estimation models are proper dimension reduction techniques
for VAR models. The focus therefore lies on the comparison between these
estimation techniques. Furman (2014) shows that the adaptive elastic net
performs accurate forecasts within the VAR framework and the multi-step
adaptive elastic net is an extension to it. Therefore I only focus on the
comparison between the single-step elastic net with the multi-step elastic
net. The techniques that are taken into consideration are elastic net (enet),
adaptive elastic net with ridge weights (aenetR), adaptive elastic net with
lasso weights (aenetL) and the multi-step adaptive elastic net (maenet).

For all DGPs, I use a time-invariant diagonal covariance matrix for the
error term denoted as 3, with 0.10 as diagonal entries. The amount of
simulation draws is R = 100.

It is important that the VAR model from which the DGP is simulated,
is stationary. In order to establish stationarity, it is important that the

condition I — (3-7_, N'TL;)| = 0 is met. Following Kock and Callot (2015),
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I use for DGP1 and DGP3 parameters generating stationary time series.
However, for DGP2 I use parameters that generate data close to unit root.

In contrast to Kock and Callot (2015), I let the amount of variables
only be in the limited set k& € [5,20] for DGP1 and DGP3, and the amount
of time series observations be in the set T' € [100, 1000] due to the required
computation time, whereas they have a more expansive grid running from
k =5 to k = 50. Recall that the amount of parameters to be estimated
grows quadratically in the amout of variables k. For DGP2, I use the set
k € [5,15] because of its complexity and that it is close to unit root requiring
more computation power for estimating the coefficients.

DGP1 is based on a sparse VARy(1) process where each variable is
only dependent on its own previous lag with coefficient 0.5. This is a
fairly simple case to consider, although very practical. The emphasis here
is on the sparsity, since it is a diagonal VAR(1) coefficient matrix with
zeroes on all the off-diagonal elements. One could consider this model
as k separate AR(1) models collected in one VAR(1) coefficient matrix
II;. This type of models are interesting for variables that are collected on
a monthly or quarterly basis and have a strong correlation with its own
previous lag. Those are especially variables with a temporary behaviour.
This might be interesting for financial variables where for instance a short-
term momentum effect is present in the data.

DGP2 is based on a VAR (4) process and has a diagonal block matrix
structure with block size of 5z5. This means that sets of variables exhibit
a grouped structure, which is common in the field of macroeconomics. The
entries in each block of II; consist of the value 0.15 and the entries in
each block of II4 -0.10. The coefficient matrices IIs and Il3 are zero ma-
trices. The largest root is 0.98, which implies a persistent behaviour in

the time series and is close to unit root. This structure is in accordance
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with macroeconomic models based on quarterly data, where they exhibit
a strong coherence with the past observations with a certain persistent be-
haviour. This is especially applicable in cases where for instance grouped
macroeconomic variables are intertemporally related to each other but not
to the variables outside the groups. Note that equation 3.6.1 represents
a block matrix of 2x2. This is only used for illustration purposes, since
blocks of 525 would take too much space to depict. Note that DGP2 is
constructed for lag 1 and 4 as block diagonals of 5x5. That means that the
dimension of the matrix is a multiplication of 5.

DGP3 is based on a V ARy (1) process with (—1)Im="lgplm=nl+1 and o) =
0.4 on the entries of the ITy matrix. The term |m — n| displays the absolute
distance with respect to the diagonal element of row m. This means that
the diagonal elements are valued as 0.4 and the values on the off diagonal
elements decrease exponentially in relation to the diagonal elements. In this
situation the sparsity assumption is violated as none of the elements are
zero. The further the off diagonal elements lie, the smaller the coefficients
become. The aim for this DGP is to consider how the penalized methods
perform in terms of sparsity and forecast performance despite the fact that
the true DGP is not sparse. Equation 13 depicts the I} matrix for £ =5
variables. The practical relevance of such a VAR model is visible in cases
where macroeconomic or financial variables are still intertemporally related
but also sorted on the level of correlation they exhibit. That means that if
variable k gets information from the previous lag of variable k—1 and k41,
it gets less information from k — 2 or k + 2 and even lesser from k — 3 or
k + 3. That means that variables that are less coherent are placed further
away from the diagonal and as such have a weaker intertemporal relation
to the current variable k.

Considering that the true lag is unknown to the researcher, I use for
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DGP1 and DGP3 the initialization guess for the potential maximum lag
length as p.max = 2, since the data is generated on the basis of first order
serial correlation in the data. That means that variables are related to
their values in the previous quarter. For DGP2 the initial guess is set as
p.max = 8, because this data is generated on the basis of the fourth order
serial correlation. That means that the values of the current quarter are
related to the values of the previous year, say, four quarters back. Given
the fact that a researcher do not know the true lag, a guess could be made
on the basis of the serial correlation. In this case, there is serial correlation
at lag 4, thus lag 8 is a logical choice as well as data of eight quarters back
might be of relevance as well. The aim is to show if the applied model is
capable of selecting the right amount of lags by putting the redundant lags

to zeroes and more importantly, finding the right sparsity pattern.

DGP 1: This dataset is generated by a sparse VARy(1) process with
a VAR coefficient matrix of

HlDGPI — (11)

0.5
DGP 2: This dataset is generated by a VAR (4) process

0.15 0.15
0.15 0.15

HIDGPQ —
0.15 0.15
0.15 0.15
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—-0.10 -0.10

PGP _ —-0.10 -0.10

—-0.10 -0.10
—-0.10 -0.10

(12)

DGP 3: This dataset is generated by a non-sparse VARy(1) process

with a VAR coeflicient matrix of

0.40 —0.16 0.06 —0.03 0.01
—0.16 0.40 —0.16 0.06 —0.03
0.06 —0.16 0.40 —0.16 0.06 (13)
—0.03 0.06 —0.16 0.40 —0.16
0.01 —0.03 0.06 —0.16 0.40

DGP3 _
II; =

In order to evaluate the performance of the multi-step adaptive enet
algorithm, the following criteria are used which are partly based on the
paper of Kock and Callot (2015), Tibshirani (1996), Zou and Hastie (2005)

and the relatively more recent paper of Schniicker (2019).

Inclusion of true model
By this criterion I want to measure if the resulting coefficient matrix con-
tains the true active coefficients, say Si"¢ C Syodel. This is proxied by
an indicator variable where that takes value 1 if this criterion is met and 0
otherwise. Subsequently, the results are averaged over R simulations.

R
Z I(Sllfrue g S{nodel>. (14)
r=1

1
R
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The share of inclusion of the relevant variables
This proxy is used to measure the performance of the model by evaluating
the accuracy of selecting relevant variables. In mathematical terms it can

be defined

*Z WZZI M = 1,10 = 1)) (15)

m=1n=1

Evaluating sparsity
Interesting is to evaluate the sparsity of the model. This can be done by
counting all the nonzero coefficients. Then the result can be averaged over

all R simulations. In mathematical terms it can be defined as

k

1 R k D
r=1 m=1n=1

Mean squared error The mean squared error is the squared deviation
of the estimated coefficient ﬂmn compared to the the true coefficient I, ,,

averaged over all Monte Carlo replications.
1 Rk 2
MSE(\ ) Z ZZ (TN — ) ) (17)

Mean squared forecast error The mean squared forecast error is the
squared deviation of the estimated variable Yo, h-periods ahead compared to
the the true value Y,,, averaged over all Monte Carlo replications. Following
the paper of Kock and Callot (2015) I apply an one-step ahead forecast

window, thus h = 1.
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4 Simulation results

As introduced in the methodology section, I use three different DGPs to
show the performance of several models. The aim is to show the perfor-
mance of the multi-step adaptive elastic net compared to the single step
(adaptive) elastic net methods.

DGP1 is generated by a sparse VAR(1) process, whereas DGP2 is gener-
ated by a block-VAR(4) model and DGP3 by a non-sparse VAR(1) model.
For DGP2, the largest amount of parameters should be estimated. That
is k? * p.max(= 8), which amounts for ¥ = 5 to 200 parameters and for
k = 15 to 1,800 parameters. For DGP1 and DGP3, however, it reduces to
50 respectively 800 parameters.

All results are based on the average of the amount of simulations. This is
R =100 for DGP1 and DGP3 and R = 25 for DGP2. Although I am aware
that the amount of simulations for DGP2 is low for statistical conclusions,
it nevertheless provides useful insights with consistent estimates. Because it
still shows the performance of the maenet estimator compared to the others
with results that converge in probability over the amount of simulation runs.

Overall the results show that the multi-step adaptive net performs bet-
ter in terms of sparsity, share of relevant variables and difference between
the estimated and true coefficient values. The forecast performance stays

relatively the same, while the model has become much sparser using the
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multi-step adaptive elastic net. The model in general performs better in a
VAR(1) setting compared to a VAR(4) model. When the sample increases,
the multi-step adaptive elastic net in general provides better results than
in a low time dimension. I can infer this from the improvement in the share
of relevant variables, evaluating the level of sparsity and mean squared dis-
tance from true coefficients. Even in the high-dimensional case with & = 20
variables, the model is capable of getting a much sparser model while keep-
ing the forecast performance more or less in line with the other competitive

methods or even improves.
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Table 1: DGP1 simulation results

DGP1

active variables
k=5

oracle
OLS
enet
aenetL
aenctR
maenet

sparsity
k=5

oracle
OLS
enet
aenetL
aenctR
maenet

share of relevant
variables
k=5

oracle
OLS
enet
aenetL
aenctR
maenet

inclusion of
true model
c =5

oracle
OLS
enet
aenetL
aenetR
maenet

MSE from true PI
k=5

oracle
OLS
enet
aenetL
aenctR
maenet

MSFE

k=5

oracle
OLS
enet
aenetL
aenctR
maenet

lag selection
k=25

AIC
BIC
enet
aenetL
aenetR
maenet

T =100
5.00
50.00
42.23
6.68
17.08
6.22

T =100
0.00

0.00
19.50
30.51
30.24
29.30

T =100
1.00
0.10
0.12
0.78
0.30
0.82

0.94

T =100
0.000
0.587
0.444
0.127
0.210
0.125

T =100

0.874
0.821
0.820
0.869

T =100
1.01
1.00
2.00
1.52
2.00
1.47

T = 1000
5.00
50.00
42.03
6.42
14.98

6.06

T = 1000
0.00

0.00

19.41
29.26
31.32
28.83

T = 1000
1.00
0.10
0.12
0.80
0.35
0.84

T = 1000
1.00
1.00
1.00
1.00
1.00
1.00

T = 1000
0.000
0.049
0.045
0.007
0.015
0.007

T = 1000

0.771
0.764
0.767
0.771

T = 1000
1.00
1.00
2.00
1.61
2.00
1.47

k=20
k=20
k=20
k=20
k=20
k=20
k=20

oracle
OLS
enet
aenetL
aenctR
maenet

oracle
OLS
enet
aenetL
aenctR
maenet

oracle
OLS
enet
aenetL
aenctR
maenet

oracle
OLS
enet
aenetL
aenetR
maenet

oracle
OLS
enet
aenetL
aenctR
maenet

oracle
OLS
enet
aenetL
aenctR
maenet

AIC
BIC
enet
aenetL
aenetR
maenet

T =100
20.00
800.00
656.09
74.24
233.79
43.85

T =100
0.00

0.00
379.35
709.91
564.15
723.47

T =100
1.00
0.03
0.03
0.27
0.08
0.45

0.63

T =100
0.000
14.865
9.247
1.154
3.952
1.356

T =100

1.124
0.809
0.912
0.815

T =100
1.16
1.00
2.00
2.00
2.00
2.00

T = 1000
20.00
800.00
668.27
43.00
201.12
39.29

T = 1000
0.00

0.00
379.47
713.21
595.85
711.82

T = 1000
1.00
0.03
0.03
0.47
0.10
0.52

T = 1000
1.00
1.00
1.00
1.00
1.00
1.00

T = 1000
0.000
0.854
0.753
0.069
0.207
0.069

T = 1000

0.724
0.749
0.737
0.749

T = 1000
1.00
1.00
2.00
2.00
2.00
2.00

This table presents the

of the criterion is evaluated against different models: oracle, OLS, enet, aenetL, aenetR and
maenet where oracle stands for knowing the true DGP matrix, OLS for an ordinary least

squares estimation of the coefficient matrix, enet for elastic net, aenet for adaptive elastic net

overview of the R = 100 simulation results of DGP1. The majority

with weights based on initial lasso L or ridge R weights.



Table 2: DGP2 simulation results

DGP2

active variables

k=5 k=15
T =100 T = 1000 T =100 T = 1000
oracle 50.00 50.00 oracle 150.00 150.00
ols 200.00 200.00 ols 1380.00  1800.00
enet, 148.00 170.46 enet, 1042.29 1420.04
aenetL  26.54 72.23 aenetL  109.33 331.50
aenctR  49.46 75.39 aenctR  260.33 355.92
maenet 16.92 45.15 maenet  52.08 136.92
sparsity
k=5 k=15
T =100 T = 1000 T =100 T = 1000
oracle  0.00 0.00 oracle  0.00 0.00
ols 0.00 0.00 ols 0.00 0.00
enet 46.77 49.62 enet 798.88 749.63
aenetL  145.92 122.23 aenetL  1689.00  1459.71
aenctR  125.85 122.23 aenetR  1529.50  1437.21
maenet 154.85 127.46 maenet 1747.29 1552.75

share of relevant

variables
k=5 k=15
T =100 T = 1000 T =100 T = 1000
oracle 1.00 1.00 oracle 1.00 1.00
ols 0.25 0.25 ols 0.11 0.08
enet, 0.28 0.29 enet, 0.11 0.11
aenetL  0.55 0.69 aenetL  0.36 0.44
aenctR  0.45 0.66 aenctR  0.21 0.42
maenet  0.60 0.96 maenet 0.46 0.89
inclusion of
true model
=5 k=15
=100 T = 1000 =100 T = 1000
oracle  1.00 1.00 oracle  1.00 1.00
OLS 1.00 1.00 OLS 0.00 1.00
enet 0.00 1.00 enet 0.00 0.71
aenetL.  0.00 0.46 aenetL.  0.00 0.00
aenetR  0.00 0.46 aenetR  0.00 0.00
maenet 0.00 0.00 maenet 0.00 0.00
MSE from true PI
k=5 k=15
T =100 T = 1000 T =100 T = 1000
oracle  0.000 0.000 oracle  0.000 0.000
OLS 4.149 0.225 OLS NA 2.261
enet 1.613 0.219 enet, 7.216 1.783
aenetL  1.166 0.149 aenetL  4.128 0.682
aenctR  1.161 0.153 aenctR  5.306 0.790
maenet 1.486 0.144 maenet 5.110 0.697
MSFE
k=5 k=15
T =100 T = 1000 T =100 T = 1000
oracle oracle
OLS OLS
enet 0.579 0.406 enet 0.774 0.341
aenetL  0.465 0.456 aenetL  0.378 0.372
aenctR  0.533 0.516 aenctR  0.765 0.374
maenet 0.567 0.405 maenet 0.755 0.393
lag selection
k=35 k=15
T =100 T = 1000 T =100 T = 1000
AIC 3.69 4.00 AIC 5.33 4.00
BIC 1.08 4.00 BIC 2.67 1.92
enet 8.00 8.00 enet 8.00 8.00
aenetL  6.85 7.85 aenetL  7.83 8.00
aenetR  8.00 8.00 aenetR  8.00 8.00
maenet  6.46 5.00 maenet  7.58 6.63

This table presents the overview of the R = 25 simulation results of DGP2. The majority of the
criterion is evaluated against different models: oracle, OLS, enet, aenetL, aenetR and maenet
where oracle stands for knowing the true DGP matrix, OLS for an ordinary least squares
estimation of the coefficient matrix, enet for elastic net, aenet for adaptive elastic net with

weights based on initial lasso L or ridge R weights.



Table 3: DGP3 simulation results

DGP3

active variables

=5 k=20
T =100 T = 1000 T =100 T = 1000
oracle 25 25 oracle 400 400
ols 50 50 ols 800 800
enet 43.59 44.46 enet 645.815  671.472
aenetL  11.76 19.70 aenetL  87.426 109.792
aenetR  20.26 25.79 aenetR 232167  229.528
maenet 10.23 18.38 maenet  55.741 96.547
sparsity
k=5 k=20
T =100 T = 1000 T =100 T = 1000
oracle 0 0 oracle 0 0
ols 0 0 ols 0 0
enet, 0 0 enet 0 0
aenetl, 0 0 aenetl, 0 0
aenetR 0 0 aenetR 0 0
maenet 0 0 maenet 0 0
share of relevant
variables
k=95 k=20
T =100 T = 1000 T =100 T = 1000
oracle 1.00 1.00 oracle 1 1
ols 0.50 0.50 ols 0.5 0.5
enet, 0.53 0.54 enet 0.509 0.514
aenetl,  0.85 0.89 aenetl,  0.69 0.832
aenetR  0.72 0.79 aenetR  0.571 0.665
maenet  0.88 0.92 maenet 0.772 0.896
inclusion of
true model
k=5 k=20
=100 T = 1000 T =100 T = 1000
oracle 1.00 1.00 oracle 1 1
OLS 1.00 1.00 OLS 1 1
enet 0.11 0.38 enet 0 0
aenetL.  0.00 0.00 aenet, 0 0
aenetR  0.00 0.00 aenetR 0 0
maenet  0.00 0.00 maenet 0 0
MSE from true PI
k=25 = 20
T =100 T = 1000 T =100 T = 1000
oracle  0.000 0 oracle 0 0
OLS 0.564 0.051 OLS 14.487 0.831
enet 0.430 0.047 enet 8.381 0.75
aenetL  0.333 0.033 aenetL  1.976 0.209
aenetR  0.320 0.031 aenetR  4.003 0.273
maenet  0.343 0.034 maenet  2.422 0.214
MSFE
k=25 k=20
T =100 T = 1000 T =100 T = 1000
oracle oracle
OLS OLS
enet 0.841 0.722 enet 1.230 0.633
aenetL  0.827 0.720 aenetl,  0.847 0.610
aenetR  0.822 0.719 aenetR  1.060 0.615
maenet  0.837 0.720 maenet 0.874 NA
lag selection
k=25 k=20
T =100 T = 1000 T =100 T = 1000
AIC 1.00 1.00 AIC 1.037 1
BIC 1.00 1.00 BIC 1 1
enet 2.00 2.00 enet 2 2
aenetl,  1.76 1.88 aenetl 2 2
aenetR  2.00 2.00 aenetR 2 2
maenet 1.70 1.82 maenet 2 2

This table presents the overview of the R = 25 simulation results of DGP3. The majority of the
criterion is evaluated against different models: oracle, OLS, enet, aenetL, aenetR and maenet
where oracle stands for knowing the true DGP matrix, OLS for an ordinary least squares
estimation of the coefficient matrix, enet for elastic net, aenet for adaptive elastic net with

weights based on initial lasso L or ridge R weights.



4.1 Parameter estimation

For evaluating the performance in terms of parameter estimation, I consider
the bias and estimation errors as proxy.

In order to visualize the accuracy of parameter estimation by the differ-
ent methods, I follow the paper of Kock and Callot (2015) by considering
the first parameter in the IT matrix denoted as II[1, 1]. However, instead of
depicting density graphs as they do, I opt for boxplots. The reason for this
choice is that boxplots show the distribution of the data with the median
as center gauge. As the amount of simulation R = 100 is not much and
therefore the average value of II[1, 1] might be biased, a more robust proxy
for the center of II[1, 1] estimates like the median is more appropriate. The
median is less sensitive to the variability in the simulation set. Moreover,
I only choose to discuss the boxplots of the high dimensional settings, as
this is where the focus particularly on is.

The boxplots in figure 3 show that the true II[1, 1] is 0.5 for DGP1, which
is a sparse VAR(1) process. Furthermore, it seems that in a small sample
the OLS, enet and aenet are downward biased with average median values
of 0.37, 0.36 and 0.38. Coeflicient estimates by the aenetL and maenet seem
to be closer to the true value of 0.5, where maenet provides an average
median with the closest estimate of 0.44. Considering the boxplot below in
figure 3, all methods perform approximately equal in terms of parameter
estimation and converge towards 0.50 with a current median value of 0.49.
Only the maenet estimates are correct with a median of 0.5. This is the
same as the true value of TI[1, 1]. Interesting as well is to note that as the
sample gets larger, the spread in the estimation becomes smaller. In terms
of statistics, this implies consistent estimators.

Table 1 of DGP1 shows that the deviation from the true IT is the largest
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for the OLS and the smallest for the maenet and thereafter for the aenetL.
This pattern is visible in the small £k = 5 as well as in the large dimension
k = 20. This pattern is visible in the small sample T" = 100 as well as in the
large sample T = 1000. Interesting to see is that all methods learn from
the data as the sample size increases resulting in lower estimation errors.
The reason that the OLS and enet show the highest errors is that the OLS
do not shrink the coefficients like the penalization methods do and as such
estimates all coefficients including the redundant ones. For the enet, how-
ever, the penalties are not efficiently chosen as it is the case for the adaptive
variants such as aenetL and aenetR. The reason that the aenetL shows
lower deviation errors than aenetR is that aenetL uses the lasso estimates
as initial weighting estimation matrix applying a stronger variable selec-
tion than using the ridge regression estimates as initial weighting matrix.
The maenet improves this by iterating the estimation steps using updated
weighting matrices in each iteration r until the solutions converge.

Table 2 of DGP2, which is a sparse VAR(4) process, shows slightly
different results. Although OLS shows again the highest deviation from
the true II, maenet does not show the best results anymore in terms of
deviation from true Il. It appears that aenetL performs on average better,
except for k = 5,T = 100 where the aenetR seems to perform better on
average instead. Given the low set of simulations, this last result might be
a coincidence.

The boxplots of DGP2 in figure 4 show that all penalized methods
except enet heavily penalizes the II[1,1] to 0 in small samples (7" = 100).
The OLS estimate shows a high median biased estimate for II[1, 1] with a
value of over 0.50 for kK = 15,7 = 100. It seems that the penalized methods
have difficulties with correctly estimating the coefficients in small samples

with high dimensional settings.
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Table 3 shows the simulation results for DGP3, which is a non-sparse
VAR(1) process. It is obvious that the maenet does not show the lowest
deviation from the true II[1, 1] anymore. This might be because this DGP is
not sparse and as such no variables need to be selected, but only estimated.
Due to the iteration procedure, maenet might unjustifiably turn coefficients
to zero or shrink them too much. For k = 5, aenet R performs the best. This
might be explained from the fact that the DGP is constructed such that the
off-diagonal elements decrease exponentially from the diagonal. As k =5
is a low dimensional setting, the off-diagonal elements are not that close
to zero and a softer penalty is more appropriate. However for k = 20, the
aenetl and maenet performs better than aenetR. This can be explained
from the fact that the matrix for £ = 20 with size 20x20 is much bigger
than for £ = 5 with 5x5 and therefore the distance of elements towards the
diagonal increases. As the amount of elements with a growing distance to
the diagonal increases and the coefficient is an exponential decreasing func-
tion from the diagonal element, the values on the outer off-diagonal might
be close to zero for which a zero coefficient estimate (variable deselected)
would be better instead of a biased nonzero value. Therefore, the methods
that impose a stronger variable selection, seem to be preferred.

The boxplots of DGP3 in figure 5 show for k = 20 that the maenet
estimates II[1, 1] are the least biased estimates with a value of 0.34 in small
samples. Moreover, it seems that maenet shows an unbiased estimate for
I1[1,1] with a value of 0.4 being the same as the true II[1,1] value. All
estimators seem to be consistent, where the maenet estimator seems to
be consistent and unbiased for T = 1000 (large sample). The consistency
seems to be stronger for the adaptive elastic net variants compared to the
normal elastic net and OLS by considering the spreads of the estimators

for T = 1000.
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Fig. 3: Simulation plots for II[1,1] with & = 5 and k¥ = 20 (large dimension) and 7" = 100 (small sample) and
T = 1,000 (large sample). IT estimated by enet, aenetL, aenetR and maenet.
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4.2 Sparsity performance

In order to evaluate the performance in terms of sparsity, I consider the
numerical results from table 1 of DGP1, table 2 of DGP2 and table 3 of
DGP3 the active variables, level of sparsity, share of relevant variables and
the inclusion of true model. In addition, I consider the graphical coefficient

plots in figure 6 of DGP1, figure 7 of DGP2 and figure 8 of DGP3.

4.2.1 Active variables

For DGP1 it is visible that the maenet provides the amount of active vari-
ables that is the closest to the true amount of active variables in all settings
where the dimension varies from k = 5 tot k& = 20 and where the sample
varies from T = 100 tot T" = 1000. The good follow up is by the aenetL
because of its lasso weights as input resulting in a stronger variable selec-
tion than aenetR does. It is also visible that OLS and aenet performs
the worst, which is logical since the OLS does not perform variable selec-
tion and enet does not perform efficient variable selection because of the
homogeneous weights used for all parameters. Interesting to note is that
maenet strongly outperforms the other methods when k = 20. However,
as the sample size increases from 7' = 100 to 1" = 1000, the performance of
maenet and aenetl gets closer.

For DGP2 it is remarkable that for small samples, maenet estimates
too many parameters as zero while they are actually nonzero. The adaptive
single step elastic net seems to perform better in terms of estimating the
correct amount of active variables. However, when the sample size increases
from T = 100 to T" = 1000, it seems that maenet is the most accurate.

For DGP3, on contrary, maenet underestimates the amount of variables

in all cases. Here it seems that aenetR is the best among the estimators.
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This can be explained from the fact that DGP3 is generated from a non-
sparse VAR(1) process where all coefficients within lag 1 are actually active.
The aim is only to put the coefficients on zero for lag 2, because we use
p.max = 2, but none for lag 1 which is different from DGP1 and DGP2.
That means that there is appearantly no need for a strong variable selection

regime such as aenetL or more restrcivtive the maenet.

4.2.2 Sparsity plots

For this subsection I consider the sparsity plots of DGP1, DGP2 and DGP3
in figures 6, 7 respectively 8. In all cases it is visible that maenet presents
the sparsest coefficient plot. It becomes particularly visible for small sam-
ples where the distinction between methods is more evident. The methods
seem to get closer results as the sample size increases. This finding is
mainly relevant for macroeconomic datasets with small sample sizes that
are generated from a sparse model. The sparsity plots are supported by the
numerical results under the row sparsity of the tables where it is visible
that maenet is the sparsest model followed by aenetL. Exception is for
DGP3 where for some strange reason no numerical results are available,
however, the figures show that maenet provides the sparset model as well
for DGP3.

In addition, fraction of relevant variables also show that maenet has
the highest rate in all case, which implies that it performs a good variable
selection. It is also consistent as it moves more towards 1 as the sample

size increases.
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Fig. 6: Simulation plots for the IT coeflicient matrix of DGP1 with k = 20 (large dimension) and 7" = 100 (small
sample) and 7' = 1,000 (large sample). A representation of the coefficient plot estimated by enet, aenetL, aenetR and
maenet.
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Fig. 7: Simulation plots for the IT coefficient matrix of DGP2 with k = 20 (large dimension) and 7" = 100 (small sample)
and T' = 1,000 (large sample). A representation of the coefficient plot estimated by enet, aenetL, aenetR and maenet.
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Fig. 8: Simulation plots for the IT coeflicient matrix of DGP3 with & = 20 (large dimension) and 7" = 100 (small
sample) and T = 1,000 (large sample). A representation of the coefficient plot estimated by enet, aenetL, aenetR and
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4.2.3 Inclusion of true model

Considering the share of relevant variables, it is remarkable that all pe-
nalized models have a high rate of simulation runs that include the true
model. This result increases along the increment of the sample size, but
decreases along the increment of the dimension. All OLS runs contain the
true model, which is logical as the OLS does not perform variable selection
and the DGP is just a diagonal matrix with 0.5 on the entries.

However, it seems that alle estimation methods have difficulties finding
the true model for DGP2 in the small sample, even the OLS. However, as
the sample size increases, the methods have a higher probability of finding
the true model, except the maenet. Apparently, maenet estimates a too
sparse model as can be seen from the active variables as well. So it seems
to oversimplify models resulting from DGPs constructed from correlated
block matrices.

For DGP3, it is remarkable that none of the penalized methods but enet
has a chance to find the true model for £ = 5. However, when the dimension
increases to k = 20, also enet is not able to find the true model anymore.
Conform the expectations, OLS has a probability of 100% of finding the
true model. Because of the non-sparse construction of DGP3 whereby none
of the coefficients are zero, penalized methods are not well suited for finding
the true model as they apply variable selection to a certain extent while

they should not.

4.3 Lag selection performance

In this subsection I evaluate on the lag selection performance. There are two
strands of lag selection methods. One strand consists of the conventional

methods such as AIC and BIC. The second is based on the penalized
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estimation methods. I define the lag selection procedure in the latter one
as follows. I divide the estimated IT in p.max lags. Then I consider each of
them as separate matrices. Subsequently, I start counting from p.max to
p = 1 meaning that if I start with p.max then I look for matrix Il 4, if all
coefficients are estimated as zero. If yes, I consider the estimated amount
of lags as p.max — 1 repeatedly until I end up at a nonzero matrix. The
nonzero matrix belonging to that lag is considered as the estimated lag.
Note that the regularized estimator already implies the lag selection where
each variable might have a different lag where some or all lags in between
might not be relevant at all. The reason that I still opt for setting whole
matrices to zero by the aforementioned two-step procedure is that I assume
the data to come from the same DGP with the same serial correlation over
time.

The conventional lag selection criterions, such as the AIC and BIC,
are overall the most accurate in selecting the right lag size. Although, for
DGP2 it seems that BIC' selects on average a smaller lag. For & = 5 the
right lag is selected on average when the sample size increases to T' = 1000
implying consistency. However, against all odds it does not happen when
the dimension increases to k = 15.

Considering the penalized methods, it is interesting to see that they all
overestimate the amount of lags for all DGPs. However, maenet shows the
smallest amongst the overestimated lags, being closer to the true one.

It is interesting to note that for DGP2 where we take p.max = 8, being
much higher than the true one, maenet is the only penalized method show-
ing lag estimations that gets smaller as the sample size increases. However,
for DGP1 and DGP3 where we take p.max = 2, it is remarkable that the
amount of lags on average increases or remain the same as the sample size

increases. It probably has difficulties with finding the exact lag. It might
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perform well in terms of finding a lower lag than the true one, however,
when the p.max is so closely defined to the true lag then it does not find

the exact one on average.

4.4 Forecast performance

In terms of forecast performance, it is notable that the forecast errors de-
crease as a function of sample size. That basically means that as T" moves
from 100 to 1000, the estimators have a bigger sample to learn from in order
to make the predictions. In all cases it seems that the increase in sample
size has a stronger impact on forecast improvement for high dimensional
settings such as k = 15 and k& = 20 compared to the situation of the low
dimension such as k£ = 5.

Overall, maenet has more or less the same performance as the other
penalization methods, especially for large samples 7' = 1000. For DGP2 it
is remarkable that aenetL performs the best for the small sample 7" = 100.
The enet performs in small samples the worst among the other penalized
estimators because of the inefficient homogeneous penalty weights.

At least the maenet outperforms the enet for all DGPs with all different
settings. Moreover, it is remarkable that for the high dimension k& = 20(and
k = 15) and small sample T' = 100, maenet outperforms the other methods

except for aenetL.

5 Empirical analysis

In this section I discuss the empirical results for applying an appropriate
model to estimate the parameters and forecast. Looking at Table 4 it is
visible that the maenet provides relatively the sparsest model with at last

93 active coefficients. The forecast performance is approximately the same
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as that for the enet, while gaining much in estimation efficiency. The enet
estimation method has 1854 active coefficients, which is approximately 20
times as much as for the maenet. This is also visible in the plot of Figure
9.

For estimating the VAR model on this empirical dataset, I use as
p.max = 5. The reason for this choice is that we deal with quarterly
data and therefore I expect that the true lag amount is 4. If that is the
case then the fifth lag would be penalized by the methods.

Considering the structure in the plot of Figure 9, it seems that the
VAR(1) largely follows a diagonal structure. However, the structure of the
remainder of the coefficient matrix looks noisy. Possibly a VAR(1) model
could be sufficient for this empirical dataset. For discussing the economic
interpretation of the coefficients, I use the maenet coefficient matrix.

Considering the four lags, it is remarkable that variables 4,5,7,8,9,10,12,14
and 15 follow a diagonal VAR(1) structure. Those are predominantly vari-
ables about personal consumption of services and nondurable goods (4,5),
residential and nonresidential fized investment (7,8,9,10) and government
receipts and spending (14,15). All of them are negatively correlated to its
previous lag, except for government spending.

In addition, personal consumption is negatively influenced by govern-
ment expenditures of the previous quarter. This might be explained from
the fact that if the government increases its expenses, inflation might rise
resulting in lower personal consumption. Also, GDP (1) is positively influ-
enced by personal consumption of services four quarters (one year) back.
The economic reasoning for this is that if demand for services increases,
people are getting educated over a period e.g. one year resulting in more
appropriate employees and as such a higher GDP now.

Also, the growth of government expenditures and investment is nega-
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tively influenced by the personal consumption and positively influenced by
the residential fized investment (10) of the previous quarter. The economic
reasoning for this is that as the personal consumption increases, employ-
ment opportunities increase and therefore the government gets more rev-
enue based on more employees paying taxes over their salaries and tax
revenues based on the products. Therefore, the government do not neces-
sarily spend or invest that much to stimulate the economy anymore. For
the second relation, one can note that when a country invests, there is some
time and money needed before it can harvests from its investments. That
is where the government might help by stimulating the investments.

Finally, exports are positively related to investments of four quarters
back. The economic reasoning for this is that if a country invests in the de-
velopment of products or services, it might improve its competitive position
with other countries resulting in better exports over time.

Note that I do not discuss the significance of the coefficients as boot-
straps are required to make statistical statements by reducing the proba-

bility of coincidence.

Table 4: Empirical results where the forecast performance and sparsity are depicted.

MSFE active coefs

enet 1.541 1854
aenetl. 1.385 579
aenetR  1.292 817
maenet 1.457 93
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Fig. 9: Plots of the IT coefficient matrix of the empirical dataset with k& = 22 (large
dimension) and T' = 127 (small sample). A representation of the coefficient plot estimated
by the adaptive elastic net based on lasso weights and the multi-step adaptive elastic net.

6 Conclusion

The aim of this paper is to analyze if the multi-step adaptive elastic net
(maenet) is able to provide the accurate VAR model compared to the other
methods. I also consider its forecast performance and the gain in sparsity. A
simulation study is conducted based on a VAR(1) sparse, VAR(4) a sparse
block diagonal matrix and a VAR(1) non-sparse DGP.

The key finding in this paper is that the maenet method is capable
of recognizing a sparse coefficient matrix being relatively close to the true
coefficient matrix in a relative small sample. The simulation studies show
that conditioned on a small sample, the other penalized methods do not
show such a sparse model. This implies that this model provides consistent
estimates at a higher rate. Because when the sample size increases, it
converges faster to the true model compared to the others except for the

situation where the DGP is based on a non-sparse VAR model with many
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redundant variables. In this case, maenet excludes these variables from
the model and aenetR would be more appropriate because of its softer
penalization algorithm.

This finding is incredibly useful for macroeconomic researchers. They
oftentimes have to deal with a high dimensional dataset with relatively few
datapoints as macroeconomic data is mostly on a quarterly basis resulting
in a difficult quest for the true model. This requires a high consistent rate
meaning that the algorithm should learn fast from relatively few data.

In terms of lag selection, maenet is in general able to be closer to the
true lag compared to its single-step elastic net variants.

Much gain in efficiency can be achieved as the fraction of relevant vari-
ables is the highest with approximately the same or even better forecasts’
performance as the other methods.

Altogether, this enlightens the current literature in this perspective,
since there has been no study so far that focuses on the benefits by com-

bining the multi-step adaptive elastic net with VAR model estimation.
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7 Limitations and recommendations

One of the limitations of this research has been the simulation study. In
the future, it would be interesting to test this method on a broader variety
of simulated datasets with a much higher dimension, e.g. k = 50 or even
k = 100 like the paper of Kock and Callot(2015) conducted. The reason
that it could not be conducted so extensively in this thesis is due to my
processing power of the computer. It has difficulties with handling such
high dimensional settings.

Future research for optimizing the adaptive weights in the maenet could
be interesting as well. One could think of selecting much more efficient input
weights to reach a much faster convergence for the IT coefficient matrix
estimation.

Another recommendation for future studies is to investigate the robust-
ness of the model with respect to the selected guessed maximum lag length,
say p.max. I initially considered this for my study of this model, however
the calculation power is too demanding for my system.

Last point for future studies is to consider the consistency of this maenet
method in the VAR context.

It would also be interesting to consider a two-step estimation method.
In the first step the maenet estimation method can be used to find a sparser
model. In the second step another method could be used for estimating the
active coeflicients in &7 found by the penalized estimation method maenet,
in the most efficient way where the prediction performance can be improved.

That is where the future research probably could focus on.
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8 Appendix

8.1 Derivation of the adaptive elastic net for VAR models

This section discusses the derivation of the coordinate descent method for
applying the elastic net model on VAR models. I got inspired by the paper
of Nicholson, Matteson, and Bien (2014) where they did the derivation for
a lasso-VAR model. I used the analogy of reasoning to derive the estimator
for the elastic-net model.

First of all I denote the squared residuals of variable m of the VAR
model as L,,. Suppose that I consider the residuals of a VAR model on
variable g and suppose that I want to estimate II;j; which is the effect
of the h-th row of the lagged variable matrix Q on the current value of
variable g. The residuals can then be denoted as Lpy—g¢ = (Y=gt —
Zﬁil =g n2n Quath — Hm:gm:hQn:h,t)Z- Denote Wy,—gn-h as the
residual of the restricted VAR model for variable g, also called the par-
tial residual in which the effect of the h-th row of the lagged matrix Q
is excluded. Denote P, ,(II) as the penalty part of the loss function for
coefficient II,, ,. Now I can re-write the squared residual for variable g as

Ly,—g+ in the following equation.

Lgi(TI) = (Wynzne — g Q) (19)

If I rewrite the quadratic term in equation 19, I get the following equa-

tion.

Lg,t(H) = Wgz,n;éh,t + Hg,hQ%,t - 2Wg,n7ﬁh,tﬂg,th,t (20)
Py (A, o, w) = Aawg [Ty p| + (1 — aw,y ,)IT ), (21)

54



Now I aim to minimize function f(II) = Ly ,(II) + P, ,(II). Note that
I added the factor of % in front of Ly;. I did this to make the derivation
more convenient. In mathematical terms this does not change the location

of the global minimum and therefore will not affect my outcome.

o
Ofgn (M v w) = min[5 3 Lgu(T) + Py (L v w)] - (22)
o t=1

and the subgradient of Ly 5, (IT) + P, ,(II|A, o,w) is denoted as follows.

g,,h(Hp‘a O‘yw) = )‘O‘wg,hw(ﬂg,h) + 2)‘(1 - awg,h)Hg,ha (23)

ng,t(n) = 2Hg,hQ%L7t - 2Wg,n7ﬁh,tQh,t7 (24)

whereby

ST, ) = sign(Ilyp) if Iy #0

[—1,1] if Iy, =0
In order to assure that I have a global minimum for Il j in equation 22,
the condition 0 € Jfy 4 should hold. As I take the first derivative of a
quadratic loss function, this condition implies that the first derivative of
fg.n is zero for a specific value of Il ;. After some algebraic rewriting, I

get the following result for the VAR adaptive elastic net estimator ﬁg,h.

T
Zt:l Wg,n;ﬁh,t Qh,t_kawg,hw(ng,h)

if T, , > Aaw
2A(1—awg.h)+3 0, Q2 g:h g:h

=

gh =30 if |ﬁg,h’ < )\awg,h

T
Zt:l Wg,n;ﬁh,t Qh,t"")\awg,hw(ng,h)

if TI, , < Aow
2A(1—awg.h)+3 0, Q2 g:h g:h
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(25)

I can translate the nonlinear estimator II,; in equation 8.1 to the soft
threshold ST operator, where ST (a,b) = sign(a) * maz(|a] — b). For the

estimator it boils down to the following equation.

I, , = ST (WynzhtQh,ts Aawg,p)
g, 2M(1 — awg p) + Zg’zl Q%L,t

8.2 Ridge estimation within VAR framework

For the adaptive elastic net estimation, there are two possibilities for the
weighting matrices. On the one hand I can use the II matrix being esti-
mated from the lasso method on the VAR model. That is when o = 1 in
equation 5. I use the coordinate descent algorithm to estimate this II ma-
trix. On the other hand by following the paper of Kock and Callot (2015),
I can make use of the weighting matrix being estimated by the ridge regres-
sion technique where predictors are to a certain extent decorrelated. This is
the case when o = 0. The estimation is as follows. As this is an quadratic
optimization, I decide to leave the proof behind as this derivation is quite

similar as for the normal OLS.

I=YQ(QQ+A)" (27)
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9 Program codes in R

9.1 Functions

#Hn#HHH###A#E FUNCTIONS #HH###H#H#BHAHFHRS

# LOAD PACKAGES

library(tsDyn) # for sorting data
library(vars) # for estimating var model
library(rlist)

library (BigVAR) # for simulating VAR data
library(tidyverse)

library (lattice)

library(corrplot)

library(abind); library(magic) # for block matrix

## Soft-thresholding algorithm for elastic net in VAR Models

soft_threshold <- function(z,gamma){
#coef is a scalar coefficient such as B_ij

#gamma is the hyperparameter, which is calculated as lambda*alpha

if(z < -gamma) {z = z + gammal # shrink coef
else if(z > gamma) {z = z - gamma} # shrink coef
else {z = 0} # eliminate coef
return(z)}
#ommmm e #
# The coordinate descent algorithm applicable for standardized VAR

data

## Got my inspiration from LASSO-VAR(p) algorithm of Nicholson (2014)

adap_enet _VAR <- function(input.data, p.max, initial = c("normal",

adaptive"),
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34
35

36

37
38
39
40
41
42

43
44

45

46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

PI_ini, PI_weight,

weight_input = c("lasso", "ridge", "none"),
M, R, eps,

alpha.min, alpha.max, lambda.grid, step.

size){

# Setting default values for arguments

if
if

if

if

if

if
if

if
if

(missing(p.max)) {p.max = 8}

(missing(M)) {M = 5} #is needed for the length of the lambda
grid

(missing(eps)) {eps = 107-4}

(missing(alpha.min)) {alpha.min <- 0.75} #since we want to
attach at least 75 percent to the lasso part for variable
selection

(missing(alpha.max)) {alpha.max <- 0.95} # since we don’t want
that the elastic net solely depends on the lasso part.

(missing(step.size)) {step.size <- 0.1}

(missing(R)) {R <- 100} # is needed for the depth of the lambda.

grid
(missing(initial)) {initial = "normal"}
(missing(weight_input)) {weight_input = "none"}

# Initialize the weightings

weight = 1

delta <- 1 # chosen conform paper of Xiao (2015)

##

Initialization of the data (with aid of vars package)

var_check <- VAR(input.data,p=p.max,type="none")

datmat_check <- var_check$datamat

Y_tilde <- t(scale(datmat_check[,(1:ncol(input.data))]))
Q_tilde <- t(scale(datmat_check[,-(1:ncol(input.data))]))
YQ_tilde <- rbind(Y_tilde,Q_tilde)

QY <- Q_tilde %*% t(Y_tilde) #matrix product of Z_tilde

and t(Y_tilde)
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66
67
68
69
70

71
72
73
74
75
76

7
78
79
80
81
82
83
84

85
86
87
88
89

90
91
92

93
94

95
96
97
98
99

k <- nrow(Y_tilde)
kp .max <- nrow(Q_tilde); T <- ncol(Y_tilde)

if (missing(PI_ini)) {PI_ini <- matrix(rep(1l,(kxkp.max)), nrow=k,
ncol=kp.max)}
if (missing(PI_weight) && weight_input == "lasso")
{PI_weight <- PI_ini
PI_weight <- adap_enet_VAR2(input.data, p.max = p.max,
initial = initial,
alpha.min = 1, alpha.max = 1,
R = R)$PI_optimal # adaptive with

lasso input

if (missing(PI_weight) && weight_input == "ridge")
{PI_weight <- PI_ini
PI_weight <- adap_enet_VAR2(input.data, p.max = p.max,
initial = initial,
alpha.min = 0, alpha.max = O,
R = R)$PI_optimal # adaptive with

ridge input

# penalty grid

alpha.grid <- sort(seq(alpha.min,alpha.max,step.size), decreasing =
TRUE)

lambda.grid <- exp(seq(log(max(QY)),log(max(QY))/R,length.out = M))

# looping through sequence of penalty grids, where lambda is
conditioned on alpha

PI_old <- PI_new <- PI_ini

VAR_array <- list(); counter = 1 # storage of PI_new and

referring residual

ptm <- proc.time() #starts stopwatch

for (a in 1:length(alpha.grid)){
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100
101
102

103
104
105
106
107
108
109
110

112
113

114

115
116
117
118
119
120
121
122

123

124
125
126
127
128
129

alpha = alpha.grid[al

for (m in 1:M){ # looping through M iterations for lambda
conditioned on specific value for alpha

lambda <- lambda.grid[m]

#### Run coordinate descent algorithm if alphal!=0
Y_tilde.used = Y_tilde
Q_tilde.used = Q_tilde

#### Run coordinate descent algorithm when alpha != 0
if (alpha != 0){PI_new <- coordesc_enet(PI_old = PI_old, Y_tilde
= Y_tilde.used, Q_tilde = Q_tilde.used,
initial = initial, PI_weight = PI_
weight , lambda = lambda, alpha =
alpha, delta = delta)}

#### Calculate analytically the result when alpha == 0; ridge
regression

if (alpha == 0) {PI_new = Y_tilde %x*% t(Q_tilde) %x*% solve ((Q_
tilde %*% t(Q_tilde)) + lambda*diag(l,nrow = kp.max))} #

ridge solution

error_new <- Y_tilde - PI_new %*% Q_tilde

PI_old <- PI_new

#store in results in a big list
VAR_array[[counter]] <- list(PI.est = round(PI_new,2), lambda.
est = round(lambda,2), alpha.est = alpha, delta = delta,
residuals2 = round(sum(t(colSums(
apply(error_mew, 1, function(x
) x72)))),2),

iteration = counter)

counter = counter + 1

} # end M (lambda) loop
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130
131
132
133
134

135
136
137
138
139

140
141
142
143
144
145
146

147
148
149
150
151
152

153
154
155
156

157
158
159
160
161
162
163

} # end alpha 1loop

# Create report based on optimization algorithm

VAR.lag.df = as.data.frame(do.call(rbind, lapply(VAR_array, unlist)
)) #convert the big list into a dataframe

VAR.lag.df = unique(VAR.lag.df) #remove duplicates

VAR.lag.df = dplyr::arrange(VAR.lag.df,residuals2,desc(alpha.est))

# Return PI matrix of the lowest SSR

PI_optimal matrix (as.numeric (unlist (VAR.lag.df[1,1:(k™2%p

.max)])), nrow k, ncol = kp.max)

lambda_optimal = as.numeric(unlist (VAR.lag.df[1,]$lambda.est))
alpha_optimal = as.numeric(unlist (VAR.lag.df[1,]$alpha.est))
proc.time() - ptm # end of stopwatch

return(list (PI_optimal = PI_optimal,
alpha_optimal = alpha_optimal, lambda_optimal = lambda_
optimal))}

# Mulit-step adaptive elastic net for VAR models algorithm

multi_step_enet_VAR <- function(input.data, R, p.max, alpha.min,

alpha.max, eps){

if (missing (eps)) {eps <- 107 -4}

PI_weight <- PI_maenet_old <- PI_maenet_ini <- adap_enet_VAR(input.

data = input.data, R = R, p.max = p.max, alpha.min = alpha.min,
alpha.max = alpha.max, initial = "adaptive")$PI_optimal
max.difference = 1
counter .maenet = 1

while (max.difference > eps){

result.algorithm <- adap_enet_VAR(input.data = input.data,
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164 R = R, PI_weight = PI_weight,

165 p.max = p.max, alpha.min

alpha.min, alpha.max

alpha.max,

166 initial = "adaptive")

167

168 PI_maenet_new <- result.algorithm$PI_optimal

169 max.difference = max((abs(as.vector (PI_maenet_old) - as.vector (PI

_maenet_new)))/(1+abs(as.vector (PI_maenet_o0ld))))

170 PI_maenet_old = PI_maenet_new

171 PI_weight = PI_maenet_old

172 counter .maenet = counter.maenet + 1
173

174 }

175

176 alpha_optimal result.algorithm$alpha_optimal

177 lambda_optimal
178
179

result.algorithm$lambda_optimal

180 return(list (PI_optimal_maenet = PI_maenet_new, alpha_optimal =
alpha_optimal,

181 lambda_optimal = lambda_optimal))}

182
183
184|# -------——————m - - #
185
186| ## Coordinate descent algorithm for elastic net on VAR models
187
188| coordesc_enet <- function(PI_old, Y_tilde, Q_tilde, initial = c("
normal", "adaptive"), PI_weight, lambda, alpha, delta){

189
190 # COORDINATE DESCENT UPDATE: update each coordinate of the PI matrix

given lag, lambda, alpha, row i and column j

191

1921k <- nrow(Y_tilde); kp.max <- nrow(Q_tilde); T <- ncol(Y_tilde
)

193

194| weight = 1

195

62




196

197
198
199
200
201
202

203
204

205
206
207
208
209
210
211
212
213
214

215
216
217

218

219
220
221
222
223

224
225
226

if (missing(PI_old)) {PI_old <- matrix(rep(1l,(kxkp.max)), nrow=k,
ncol=kp.max)}
PI_new <- PI_old

if (missing(PI_weight)) {PI_weight <- PI_old}

gamma <- lambda*alpha #hyperparameter
correction.enet <- 1+((lambda*(1-alpha))/(T*k)) # to correct for

double shrinkage/bias correcting

R.vec <- rep(NA,length.out=T) #Initiate a Txl vector for partial
residuals
max.difference <- 1

eps <- 107-4

while (max.difference > eps){

for(i in 1:k){

for (j in 1:kp.max){

PI.Q_ex_j <- PI_old[i,-j] %*% Q_tildel-j,]
R.vec <- t(Y_tildel[i,] - PI.Q_ex_j) # vector of
restricted (model) residuals

Q_j_squared <- t(Q_tilde[j,]) %*% (Q_tildel[j,])

PI_ij_hat <- (Q_tildel[j,] %*% R.vec) # plot of restricted
(model) residuals on j th row of original Z mat
PI_ij_hat = bound(PI_ij_hat) # such that there exists no Inf or

-Inf values

### weights for normal part

if (initial == "normal") {weight = 1}
if (initial == "adaptive") {weight = abs(PI_weight[i,j]*gamma)
“(-delta)l}

if (is.finite(PI_weight[i,j]))
{PI_newl[i,j] = correction.enet*((soft_threshold(PI_ij_hat
, (gamma*weight)) / ((2*lambda*(1-(alpha*weight)))+Q_j_

squared)))}
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227 if (lis.finite (PI_weight[i,j1))

228 {PI_newl[i,j] = 0}
229
230 max.difference = max((abs(as.vector(PI_old) - as.vector (PI_new)

))/(1+abs(as.vector (PI_old))))

231

232 PI_old[i,j] = PI_new([i,j] #update the old PI matrix

233

234

235 } #end j loop

236

237 if (abs(sum(PI_new([i,])) > 1) {PI_new([i,] = normalize(PI_new([i,])
}; PI_old = PI_new

238

239 } #end k loop, thus whole PI matrix is updated
240
241} #end while loop
242
243| return (PI_new)}
244
245|# ---------mmmmm - #
246 | #

247\ # ----------mmmmmm - #
248
249| ## Cross-validation for VAR models with Elastic-Net

250 # By means of this time-dependent cross validation we want to

optimize the hyperparameters lambda and alpha of this model

251

252| enet _VAR_cval <- function(input.data, p.max,

253 initial = c("normal","adaptive"), weight_
input=c("lasso", "ridge"),

254 alpha.min, alpha.max,

255 R){

256

257

258 # Create time intervals

259 T_full <- length(input.datal[,1]) - p.max

260 T1 <- floor (T_£full/3)
261 T2 <- floor (T_full/3*2)
262
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263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

284

285
286

287
288
289
290
291
292
293
294
295
296

length.window =
length.eval =

length.fcast =

T1
T2 - T1
T_full - T2

# Load and prepare dataset

var_check <-
datmat_check <-
Y_tilde_full <-

Q_tilde_full <-

VAR (input.data,p=p.max, type="none")
var _check$datamat
t(scale(datmat_check[,(1:ncol(input.data))]))

t(scale(datmat_check[,-(1:ncol(input.data))]))

MSFE_matrix = matrix(NA, nrow = length.eval, ncol = 3)

colnames (MSFE_matrix) <- c("MSFE", "alpha", "lambda")

# train the parameters in block T1+1 to T2

for (t in 1:length.eval)

{

algo_est_init

<- adap_enet_VAR(input.data = input.

datal[t:(T1+t-1+4),],

eval _position

Y_tilde_train

Q_tilde_train

PI_train

alpha_train

lambda_train

initial = initial,
weight _input =
weight _input,
R = R, p.max = p.max,
alpha.min = alpha.min,
alpha.max = alpha
.max)

<- T1 + t

<- algo_est_init$Y_tilde

<- algo_est_init$Q_tilde

<- algo_est_init$PI_optimal

<- algo_est_init$alpha_optimal

<- algo_est_init$lambda_optimal
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297

298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315

316
317
318
319
320
321

322

323
324
325
326
327
328
329
330

Y_train_fcast
position]
fcast_train_err

train_fcast
MSFE_matrix[t,1]

MSFE_matrix[t,2]
MSFE_matrix[t,3]

for (parameters in

alpha_eval

<- PI_train %*% Q_tilde_full[,eval_

<- Y_tilde_full[,eval_position] - Y_

<- sum(fcast_train_err~2)
<- alpha_train

<- lambda_train

1:length.eval) {

MSFE_matrix [parameters ,2]

lambda_eval = MSFE_matrix[parameters,b3]

for (observation

fcast_position

Y_tilde_eval
=1)

Q_tilde_eval
=1)

begin.window =

end.window =

if (alpha.min !

in 1:length.fcast) {

= T2 + observation

= matrix(Y_tilde_full[,fcast_position], ncol

matrix(Q_tilde_full[,fcast_position], ncol

fcast_position - length.window

fcast_position

= 0 && alpha.max != 0)

{PI_eval = coordesc_enet(Y_tilde = Y_tilde_full[,begin.
window:end.window],
Q_tilde = Q_tilde_full[,begin.
window:end.window],
initial = initial,
alpha = alpha_eval,
lambda = lambda_eval,
delta = 1)
}
if (alpha.min == 0 && alpha.max == 0)
{
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331 PI_eval <- adap_enet_VAR2(input.data = input.datalbegin.

window: (end.window+p.max),], p.max = p.max,
332 initial = initial,
333 alpha.min = 0, alpha.max = O,
334 R = R)$PI_optimal
335 }
336
337
338
339 eval_error = Y_tilde_eval - PI_eval %*% Q_tilde_eval
340 MSFE_eval _matrix [parameters ,observation] = sum(eval_error~2)
341 }
342
343 }
344
345 MSFE_eval_avg = cbind(rowMeans (MSFE_eval_matrix), MSFE_matrix

[,2], MSFE_matrix[,3])

346 colnames (MSFE_eval_avg) = c("MSFE", "alpha", "lambda")

347

348 # find parameters with minimum MSFE

349 optimal_parameters = MSFE_eval_avg[which.min(MSFE_eval_avgl[,1])
,2:3]

350

351

352

353 return(list (MSFE_matrix, MSFE_eval_avg, optimal_parameters))}
354

355 # -------mmmmm oo #

356

357| bound <- function(x){

358

359 # this function is meant for censoring the weights such that it can

’t take extreme values.

360 if (!is.finite(x)) {x = 0}

361 if(is.finite(x) && x == -Inf) {x = -107100}
362 if (is.finite(x) && x == Inf) {x = 107100}
363

364| return(x)}

365

366
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367
368
369
370
371
372
373
374

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

395
396
397
398
399
400
401
402
403
404

## Forecast function

forecast <- function(input.data,

# Create time
T_full <- 1le
T1 <- f1
T2 <- f1

length.window

length.fcast

# Initialize
var_check

datmat_check
Y_tilde_£full
Q_tilde_£full

SFE.error <-

)

for (observat

reg_type = c("ols", "penalized"),

initial = c("adaptive", "normal"),

weight_input = c("ridge", "lasso","none"), p.max
,» R,

alpha, lambda,

iter) {

intervals
ngth(input.datal[,1]) - p.max
oor (T_full/3)
oor (T_full/3%*2)

= T2

= T_full - length.window

dataset

<- VAR(input.data,p=p.max,type="none")

<- var_check$datamat

<- t(scale(datmat_check[,(l:ncol(input.data))]))
<- t(scale(datmat_check[,-(1l:ncol(input.data))]))

matrix (NA, nrow = length.fcast, ncol=nrow(Y_tilde_full

ion in 1:length.fcast) {

fcast_position = T2 + observation

Y_tilde_fcast = matrix(Y_tilde_full[,fcast_position], ncol=1)
Q_tilde_fcast = matrix(Q_tilde_full[,fcast_position], ncol=1)
begin.window = 1

end.window

= length(input.datal[,1])-length.fcast
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405 input.eval = input.datal[begin.window:end.window,]

406

407 if (reg_type!="ols" || reg_type!="ols_oracle"){

408 # PI_eval <- adap_enet_VAR(input.data = input.eval, p.max = p.
max ,

409 # initial = initial, weight_input =
weight _input,

410 # alpha.min = alpha, alpha.max = alpha,

411 # R = R)$PI_optimal}

412

413 PI_eval = PI_input}

414

415 if (reg_type=="ols"){

416 PI_eval <- Bcoef (VAR(input.data = input.eval,p=p.max,type="none"
))

417

418 }

419

420 if (reg_type=="ols_oracle"){

421 PI_eval = PI_org

422

423 }

424

425 fc_error = Y_tilde_fcast - PI_eval %*% Q_tilde_fcast

426 SFE.error [observation,] = fc_error~2

427 }

428

429 MSFE <- mean(SFE.error)

430

431 return (MSFE) }

432 # ———-mmmmmm e m e m #

433

434| # normalize vector

435

436| normalize <- function(vector) {vector / sqrt(sum(vector~2))}

437

438|# -—-—-—-mmmmmmmmmmmm #

439

440| compare_true_est_vars <- function(PI_org, PI_est)

441
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442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

k

nrow (PI_org)

p = ncol(PI_org)/k

p.max = ncol(PI_est)/k

kp.max = k*p.max

PI_full_org <- matrix(0,nrow=k,ncol=kp.max)

PI_full _orgl[,1:ncol(PI_org)] = PI_org

PI_true_vec

PI_est_vec

<- as.vector (PI_full_org)

<- as.vector (PI_est)

true_active_index <- which(PI_true_vec!=0)

est_active_index <- which(PI_est_vec!=0)

est_active

match_count

<- length(est_active_index)

<- est_active_index %in’% true_active_index

frac_relevant_vars <- length(which(match_count==TRUE))/length(match

_count)

true_included

true_included

diff_est_true

<- true_active_index %in% est_active_index

= all(true_included == TRUE)

<- sum((PI_est_vec-PI_true_vec) ~2)

# correct sparsity

zeroes_model

zeroes _DGP

corr_spars

which(PI_est == 0)
0)

which(PI_org ==

length(which(zeroes_model != zeroes_DGP))

summary_table <- matrix(NA, ncol=5)

summary_table[,1] = est_active

summary_table[,2] = frac_relevant_vars
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481
482
483
484
485

486
487
488
489
490
491
492

493
494
495

496
497

498

499
500
501
502
503
504

505

506

507

508
509

510

summary_table[,3] true_included

summary_table [,4] diff_est_true

summary_table[,5] corr_spars

colnames (summary_table) = c("est_act_vars", "frac_rel_vars",

included", "SE_PI", "corr_spars")

return (summary_table)}

data
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# The coordinate descent algorithm applicable for standardized VAR

## Got my inspiration from LASSO-VAR(p) algorithm of Nicholson (2014)

adap_enet_VAR2 <- function(input.data, p.max, initial = c("normal","
adaptive"),
PI_ini, PI_weight,
weight_input = c("lasso", "ridge", "none"),
M, R, eps,
alpha.min, alpha.max, lambda.grid, step.
size){
# Setting default values for arguments
if (missing(p.max)) {p.max = 8}
if (missing(M)) {M = b} #is needed for the length of the lambda
grid
if (missing(eps)) {eps = 107-4}
if (missing(alpha.min)) {alpha.min <- 0.75} #since we want to
attach at least 75 percent to the lasso part for variable
selection
if (missing(alpha.max)) {alpha.max <- 0.95} # since we don’t want
that the elastic net solely depends on the lasso part.
if (missing(step.size)) {step.size <- 0.1}
if (missing(R)) {R <- 100} # is needed for the depth of the lambda.
grid
if (missing(initial)) {initial = "normal"}




511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

528
529
530
531
532

533
534
535
536
537
538

539
540
541
542
543
544
545
546

if (missing(weight_input)) {weight_input = "none"}

# Initialize the weightings
weight = 1

delta <- 1 # chosen conform paper of Xiao (2015)

## Initialization of the data (with aid of vars package)

var_check <- VAR(input.data,p=p.max,type="none")

datmat_check <- var_check$datamat

Y_tilde <- t(scale(datmat_check[,(1:ncol(input.data))]))
Q_tilde <- t(scale(datmat_check[,-(1:ncol(input.data))]))
YQ_tilde <- rbind(Y_tilde,Q_tilde)

QY <- Q_tilde %*% t(Y_tilde) #matrix product of Z_tilde

and t(Y_tilde)
k <- nrow(Y_tilde)

kp .max <- nrow(Q_tilde); T <- ncol(Y_tilde)

if (missing(PI_ini)) {PI_ini <- matrix(rep(1l,(kxkp.max)), nrow=k,
ncol=kp.max)}
if (missing(PI_weight) && weight_input == "lasso")
{PI_weight <- PI_ini
PI_weight <- adap_enet_VAR2(input.data, p.max = p.max,
initial = initial,
alpha.min = 1, alpha.max = 1,
R = R)$PI_optimal # adaptive with lasso

input

if (missing(PI_weight) && weight_input == "ridge")
{PI_weight <- PI_ini
PI_weight <- adap_enet_VAR2(input.data, p.max = p.max,
initial = initial,
alpha.min = 0, alpha.max = 0,
R = R)$PI_optimal # adaptive with ridge

input
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548
549
550
551

552
553
554

555
556

557
558
559
560
561
562
563
564

565
566
567
568
569
570
571
572

573

574
575

# penalty grid

alpha.grid <- sort(seq(alpha.min,alpha.max,step.size), decreasing =
TRUE)

lambda.grid <- exp(seq(log(max(QY)),log(max(QY))/R,length.out = M))

# looping through sequence of penalty grids, where lambda is
conditioned on alpha

PI_old <- PI_new <- PI_ini

VAR_array <- list(); counter = 1 # storage of PI_new and

referring residual

ptm <- proc.time() #starts stopwatch

for (a in 1:length(alpha.grid)){
alpha = alpha.gridl[al

for (m in 1:M){ # looping through M iterations for lambda
conditioned on specific value for alpha

lambda <- lambda.grid[m]

#### Run coordinate descent algorithm if alpha!=0
Y_tilde.used = Y_tilde
Q_tilde.used = Q_tilde

#### Run coordinate descent algorithm when alpha != 0
if (alpha != 0){PI_new <- coordesc_enet(PI_old = PI_old, Y_tilde
= Y_tilde.used, Q_tilde = Q_tilde.used,
initial = initial, PI_

weight = PI_weight,
lambda = lambda,
alpha = alpha, delta
= delta)}

#### Calculate analytically the result when alpha == 0; ridge

regression
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586
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590
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592
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597
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600
601

602
603
604
605
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607

if (alpha == 0) {PI_new = Y_tilde %*% t(Q_tilde) %*% solve ((Q_
tilde %*% t(Q_tilde)) + lambda*diag(l,nrow = kp.max))} #

ridge solution

error_new <- Y_tilde - PI_new %x*’% Q_tilde

PI_old <- PI_new

#store in results in a big list
VAR_array[[counter]] <- list(PI.est = round(PI_new,2), lambda.
est = round(lambda,2), alpha.est = alpha, delta = delta,
residuals2 = round(sum(t(colSums(
apply(error_new, 1, function(x
) x72)))),2),

iteration = counter)

counter = counter + 1

} # end M (lambda) loop

} # end alpha loop

# Create report based on optimization algorithm

VAR.lag.df = as.data.frame(do.call(rbind, lapply(VAR_array, unlist)

)) #convert the big list into a dataframe

VAR.lag.df = unique(VAR.lag.df) #remove duplicates

VAR.lag.df = dplyr::arrange(VAR.lag.df ,residuals2,desc(alpha.est))

# Return PI matrix of the lowest SSR

PI_optimal matrix (as.numeric (unlist (VAR.lag.df[1,1:(k™2%p

.max)])), nrow k, ncol = kp.max)

lambda_optimal = as.numeric(unlist(VAR.lag.df[1,]$lambda.est))
alpha_optimal = as.numeric(unlist(VAR.lag.df[1,]$alpha.est))
proc.time() - ptm # end of stopwatch

return(list (PI_optimal = PI_optimal,
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608 alpha_optimal = alpha_optimal, lambda_optimal = lambda_
optimal))}

609

610 | ############# END OF FUNCTIONS #H##HHAAHHHAAHHHY

./Codes_ New/Nasser_ functions_ v2.R
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