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Abstract

Several penalized variable estimation techniques such as the (adaptive) elas-

tic net have been proposed for modeling VAR data in order to improve

dimension reduction and forecast performance. Literature has proven that

the multi-step adaptive elastic net gains in sparsity performance, however,

this has never been investigated within a VAR framework.

The aim is therefore to analyze if the multi-step adaptive elastic net

(maenet) is able to provide the accurate VAR model compared to its single

step variants used as benchmark methods such as the elastic net (enet),

adaptive elastic net with ridge weights (aenetR) and the adaptive elastic

net with lasso weights (aenetL).

I compare them in terms of estimation bias, sparsity and forecast per-

formance.

Simulation results show that the multi-step adaptive elastic net is able to

consistently find sparser VAR models compared to the benchmark methods

with a gain in efficiency and accuracy as the probability of selecting the

correct model increases. In addition, the coefficient estimates are closer

to those of the true model. Forecast performance is one of the best in

small samples, but approximately equal in large samples. Overall maenet

performs well in high-dimensional small samples in terms of selecting the

right variables and forecast perfomance.

Empirical results also show a sparser model compared to the single-step

adaptive elastic net methods.

The gain in performance in especially small samples makes this model

interesting for many fields, such as macroeconomics and finance.
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1 Introduction

In the field of macroeconomics and policy analysis, it is of keen interest

to know what the dynamic relation between variables is. Vector autore-

gressive (VAR) models are the multivariate expansions of the univariate

autoregressive (AR) models. Autoregressive models describe the intertem-

poral dynamics between the current value of a variable with its past values

and an idiosyncratic part. Vector autoregressive models describe the dy-

namics of the variables as a function of their own lagged values, lagged

values of other variables and an idiosyncratic part. Sims (1980) advocates

the use of VAR models for macroeconomic analysis in order to quantify eco-

nomic relations. Moreover, VAR models are amongst others appropriate for

macroeconomic data, because macroeconomic data are correlated over time

and as such dependent on past values. Macroeconomic variables are also

likely to be intertemporally related to other macroeconomic variables. This

makes the VAR model an appropriate estimation model for macroeconomic

data.

The specification of VAR models consists of two steps. The first step is

to analyze the k variables that should be included in the VAR model. The

second step being a crucial choice for VAR models is the selection of the lag

order. If the selected lag order is higher than than the true one, it results

in overfitting and consecutively increases forecast errors. On contrary, if

the selected lag order is smaller than the true one, it leads to underfitting

resulting in autocorrelated error terms. The effect of autocorrelation is

visible in the consistency of the estimated parameter, because the rate

of convergence of the estimated parameter to the true parameter is then

affected as shown in the paper of Sharma (1987). This in turn affects the

efficiency of the prediction performance as well.
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In the perspective of producing good predictions, it is necessary to select

the best possible model in terms of forecast performance. Several attempts

have been done for model selections. The first way for selecting the lag

length was by using the information criteria such as the Akaike Informa-

tion Criterion (AIC) and the Bayesian Information Criterion (BIC). These

conventional methods ought to find the model that balances a good fit be-

tween the data and sparsity. A proposition to improve this information

criteria methods is to evaluate them sequentially. Two alternative methods

are firstly the top-down approach and secondly the bottom-up approach.

This procedure is dependent on the search path you opt for, which might

provide sub-optimal models. Another approach for selecting the lag length

is by means of hypothesis testing, where coefficients are tested on their

significance.

Common to all approaches so far is that it is time-consuming and com-

putationally intensive. This is where the work of Hsu et al. (2008) kicks in.

They translate lag selection for VAR models to a variable selection prob-

lem. They use the lasso method of Tibshirani (1996) for model selection

in the VAR framework. The lasso estimation is also based on minimizing

the sum of squared residuals like the OLS estimation is based on. Now

the addition here is that the sum of absolute coefficients is bounded by a

prespecified value implying variable selection as some coefficients are put to

zero. In this way the lasso method performs model selection by excluding

abundant variables out of the model. The authors show an improvement

in the forecast performance in finite samples. The paper of Zou and Hastie

(2005) shows that the limitations of the lasso method are visible when the

parameter space gets larger and more correlated.

That is where the elastic net estimation method shows an improvement

compared to the lasso method. The paper of Zou and Hastie (2005) shows

2



that the elastic net method, which combines the lasso and ridge regression

penalties in a convex way, outperforms the lasso method in case the amount

of parameters, in this case the pk2 lagged variables, exceeds the amount of n

observations and can obtain the oracle properties. Zou (2006) explains that

if an estimator has the oracle properties, this estimator performs as if the

true model were provided on beforehand. Technically said, the asymptotic

distribution of an oracle estimator is the same as the asymptotic distribu-

tion of the maximum likelihood estimator (MLE) based on the true model.

The lasso method is only capable of selecting at most n variables. In ad-

dition, if variables are highly correlated, then the lasso method randomly

select one variable out of them, whilst the elastic net method is able to

conduct grouped selection on which will be technically elaborated further

in Section 3. The ridge regression part of the elastic net groups correlated

variables together, which is the so-called de-correlation step such that a

variable is not easily eliminated from the model while having predictive

power. The lasso part of the elastic net asserts the variable selection by ex-

cluding redundant variables from the model. The paper of Zou and Hastie

(2005) poses that the elastic net method works well in settings of relatively

low amount of observations and a high set of variables.

For macroeconomic variables oftentimes the amount of observations n

might be relatively low due to the frequency of data observations compared

to the set of k macroeconomic variables. In light of this, it is of keen interest

to investigate the elastic net procedure for selecting the lag order as well

as evaluating the resulting forecast performance of the VAR models. Addi-

tionally, the grouping power of the elastic net method is useful for macroec-

nomic models. Suppose that you have a model with macroeconomic and

financial variables, then it is likely that the financial and macroeconomic

variables exhibit a group pattern with probably relatively strong intraclass
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correlations. The grouping property of the elastic net method as explained

by Zou (2006) and Furman (2014), clusters correlated variables together.

Finally, the oracle property of the elastic net method as mentioned ear-

lier, is very useful in finding the correct sparsity pattern as the sample size

increases.

As far as my knowledge of the literature concerns, only the paper of

Furman (2014) explicitly discusses the elastic net approach in a VAR frame-

work. In particular, they discussed the adaptive elastic net which allows

heterogeneous weights for the lasso penalization on coefficients. This means

that each coefficient is penalized differently according to their individual as-

signed penalty weight. Zou (2006) shows that this adaption in the lasso part

results in the oracle property. However, in macroeconomics there is usually

no large sample size. This means that the estimator is not likely to reach

the asymptotics for the correct sparsity pattern and coefficient estimates.

A relative finite small sample size implies a model that is not as sparse as

that of the true model. Thus there is still a risk of having false positives

in the model. This means that coefficients that should be zero and be left

out of the model are unjustifiably estimated as a nonzero value and incor-

porated in the model causing overfitting. The paper of Xiao and Xu (2015)

therefore presented the multi-step adaptive elastic net method for acquir-

ing a more sparse model, which means decreasing the false positive rate,

whilst maintaining the prediction accuracy as good as the adaptive elas-

tic method provides or even better. When I link this concept to the VAR

model, it becomes interesting. This is because you want to find the spars-

est VAR model as generated by the true data generating process (DGP).

Especially considering the consequences of underfitting and overfitting, this

is of importance.

Combining the multi-step adaptive elastic net approach in terms of VAR
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model selection for finding the correct amount of p lags and sparsity in a

relatively small finite sample, will be of added value for the current VAR

literature, particularly in the field of macroeconomics, and has as far as my

knowledge extents, not been investigated before.

The aim of this paper is to analyze the performance of the multi-step

adaptive elastic net on VAR models in finite samples. I evaluate its per-

formance in terms of variable selection, forecast performance and level of

sparsity compared to the single-step elastic net, single-step adaptive elastic

net based on ridge weights and the single-step adaptive elastic net based on

lasso weights. I investigate the performance based on a simulation study

and an empirical application.

The results of this paper show that the multi-step adaptive elastic net is

able to find consistently sparser VAR models compared to the benchmark

methods, such as the single step elastic net and its adaptive variants, with

a gain in efficiency and accuracy as the probability of selecting the correct

model increases. In addition, the coefficient estimates are closer to that of

the true model. Forecast performance is one of the best in small samples,

but approximately equal in large samples.

The remainder of this paper is set out as follows. Section 2 introduces

the dataset for the empirical analysis. Section 3 introduces the model that

I use for the analysis. Section 3.6 presents the simulation study for this

model. Section 5 discusses the empirical analysis and section 7 concludes.

The part appended to this study can be found in section 8 where the math-

ematical derivation of the used model is presented.
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2 Data

The dataset that I use for this study comes from the Economic Research

department of the Federal Reserve Bank of Saint Louis (FRED). I use the

dataset with a timespan from the second quarter of 1959 until the first

quarter of 2020 which amounts to about 244 observations. The variables in

the dataset are grouped into financial and macroeconomic indicators. For

the division of the groups, they largely followed the paper of Stock and

Watson (2012).

I work with quarterly macroeconomic data of Group 1: National Income

and Product Accounts henceforth abbreviated as NIPA. Since this group

consists of 23 variables and all variables are explained in the appendix of

the FRED database1, I only summarize the categories of variables that I

include rather than mentioning them all individually. Categories of vari-

ables I consider are GDP, personal’s available income, consumption and

investment, government’s expenditures, investments and receipts, exports

and imports and output of several sectors.

First of all, I would normally check for stationarity of the variables

as this is the prerequisite prior to estimate a VAR model. However, the

appendix of the FRED database already provides the integrating order of

the variables as well as the transformation methods to get them stationary.

That means that I do not have to conduct the Augmented Dickey-Fuller test

for finding the integrating order I(d) as conducted by Engle and Granger

(1991). It is for the estimation purpose important that the shape of the

distribution remains the same over the time-dimension such that asymptotic

theory can be held valid as is explained by Davidson (2009).

For the majority of the variables I take logarithmic differences c.q.
1https://research.stlouisfed.org/econ/mccracken/fred-databases/
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∆log(yt). For some variables I applied the first numerical difference be-

tween two subsequent observations c.q. ∆yt. The remainder set of variables

is already stationary and do therefore not need to be transformed.

2.1 Missing data

Fig. 1: Aggregate plot of variables in order to depict the missing values.

Figure 1 represents the overview of missing values within variables in

terms of proportion missing and in terms of a combined overview. This

plot is a result of the VIM package in R. If the missing observation extends

over the set of variables or at least over the largest part of the variables,

I opt for removing that observation. I consider the other missing values

to follow the Missing at Random mechanism (MAR). This implies that I

attempt to estimate the missing value by the information of other observed

variables. I use a Bayesian approach for this problem. I draw imputed val-

ues from the predictive distribution conditioned on the observed variables

in the model. In order to decrease the risk of biased estimates, multiple

imputations are recommended as explained by Royston (2004). I therefore
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impute these missing values five times and take the average of these pre-

dicted values afterwards. I apply the method predictive mean modelling in

the mice package in R for estimating the missing values, as I only deal with

numerical variables. If the proportion of missing values is more than 50%

for a variable, then I exclude this variable from the model. In my case, this

is for the variable Real Output from the Manufacturing Sector (OUTMS).

For the missing values where no imputation value can be estimated, I decide

to delete the whole observation from the dataset. In the end, I remain with

T = 127 complete observations for k = 23 variables that I use for further

analysis.

3 Methodology

3.1 VAR model

The VAR model is given by

Yt = Π0 +
p∑
l=1

ΠlYt−l + νt. (1)

For each time period t, Yt is a k×1 vector of dependent variables. The

vector of constants is denoted by Π0 a k×1 vector, where Yt−l is a k×1

vector of l periods lagged variables of Yt. It is more convenient to neglect

the k×1 vector of constants Π0 for the remainder part of the research,

because this study considers a standardized dataset. Subsequently, Πl with

a dimension of k×k represents the matrix of coefficients from the lag l past

values of the k variables Yt−l on the current value of the k variables Yt.

Finally, νt is a k×1 vector of white noise error terms with νt ∼ N (0, Σν),

which is assumed to be independent from the explanatory variables Yt−l

and a multivariate normal distribution with covariance matrix Σν . I let
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the past count for lag 1 until lag p, where p is subjective and dependent on

the user input. This might be the first guess based on the serial correlation

of the data. Another method is to consider the time-series properties of

the dataset. The frequency at which the data is represented might give a

proper indication for what maximum lag order could be considered.

In fact, it would be appropriate to estimate a VAR model by seemingly

unrelated regressions, henceforth abbreviated as SUR. I hereby use the

finding of among others the paper of Basu, Michailidis, et al. (2015). They

found that a joint estimation of the lag coefficient matrices Πl and the

inverse of the covariance matrix Σν does not contribute evidently for better

forecasts.

For making equation (1) more convenient in terms of an aggregated

matrix, I also introduce the index i ∈ Rk to refer to variable i out of k

variables and therefore Yi is a k×1 vector and I represent the aggregated

matrix accordingly.

All k×1 vectors of dependent variables Yt over all T periods are col-

lected into one big matrix Y, thus the k×T matrix Y =
[
Y1 , ..., YT

]
.

I also collect all p times k×k lag coefficient matrices Πl into one big matrix

Π with dimension k×kp, thus Π =
[
Π1 , ..., Πp

]
. In addition, I create

a new explanatory variable Qt that enables us to collect the vector Yt−l

for all p lags. This results in a kp×1 vector of Qt =
[
YT
t−1 , ..., YT

t−p

]T
.

Then I collect all Qt for T periods into one big matrix Q with dimension

kp×T. This results in Q =
[
Q1 , ..., QT

]
. Finally, I collect all T resid-

ual vectors νt into one k × T matrix such that V =
[
ν1 , ..., νT

]
. After

rewriting all terms accordingly, I get the following equation.
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Y
k×T

= Π
k×kp

× Q
kp×T

+ V
k×T

(2)

In vector notation I get the following representation with Yi on the

rows.


YT

1
...

YT
k

 =


Π1,1 . . .Π1,h . . .Π1,kp
... . . . ...

Πk,1 . . .Πk,h . . .Πk,kp

×



QT
1
...

QT
h

...

QT
kp


+


VT

1
...

VT
k



For the remainder of this paper, I introduce the index numbers m ∈ Rk

and n ∈ Rkp. This means that Πm,n refers to the effect of the nth lagged

row of the lagged matrix Q on the current value of the mth variable.

3.2 Multi-step Adaptive elastic net on VAR models

3.2.1 Penalized methods

The idea of penalized estimation models as described by among others Zou

and Hastie (2005) and Tibshirani (1996) in general is that extra bias has

been introduced by the penalty terms λ at the benefit of having lower vari-

ance of the parameters’ estimations. In this way a sparser model can be

reached, which consists of less variables in the model and hence a lower

amount of variance. The minimization formula of the sum of squared resid-

uals or the log likelihood is affected by the penalty term. If redundant

variables remain in the model, it basically generates extra variance without

extra predictive power.
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3.2.2 Ridge regression method

The ridge regression bounds the square of the coefficients by the L2-norm.

This implies that the sum of all squared elements in the Π matrix is smaller

than an arbitrary non-zero value z representing the L2-norm boundary on

the coefficients. This implies
∑k
m=1

∑kp
n=1 Π2

m,n < z. The advantage of

the ridge penalization is that it can shrink parameters and create grouping

effects. This means that correlated variables in the model attain coeffi-

cients that are more in the vicinity of each other. This is the so-called

de-correlation step. However, the disadvantage is that the model will not

get a more parsimonious representation, since all variables will remain in

the model. This means that the ridge regression is not able to select vari-

ables in the model. Especially in terms of selecting the amount of p lags

and right sparsity, this is of crucial importance.

3.2.3 Lasso method

The lasso method improves in this by putting irrelevant coefficients to zero

and as such eliminate variables from the model. The lasso method penalizes

the absolute value of the coefficients by the L1-norm. This implies that∑k
m=1

∑kp
n=1 |Πl| < s, where s is a non-zero value. In this way, lags of

variables that are superfluous in the model can be simply left out. As

the lasso estimation do not attain the oracle properties, the adaptive lasso

method is proposed. The adaptive lasso method applies heterogeneous

shrinking parameters across coefficients. This means that the strength of

penalty differs across coefficients. The intuition behind this is that smaller

coefficients are less relevant and are therefore penalized more heavily than

the bigger coefficients.
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3.2.4 Adaptive elastic net

The elastic net penalization method, also called a hybrid penalization method,

is a weighted convex combination of the ridge penalization and the lasso

penalization. Despite the fact that the lasso method improves in the vari-

able selection part, it behaves worse in cases that the amount of variables

k, p lags (k2p parameters) in the model exceeds the amount of observations

n. Also, in cases of multicollinearity. Zou and Hastie (2005) show that fore-

casts by ridge regressions outperformed the predictions of the lasso method.

These two issues are relevant for the VAR setting, especially for macro-

economic variables. This is because the macroeconomic data frequency is

mostly on a low-frequency basis, e.g. on a quarterly basis. In addition,

the set of variables within the field of macroeconomics can be large and

they are likely to exhibit coherence. The paper of Furman (2014) shows

that the adaptive elastic net is a good method to estimate VAR models

consistently, even in cases where the parameter space is large and where

the lagged variables exhibit a certain degree of correlation.

3.2.5 Multi-step elastic net

Thus far Zou (2006) has shown that the adaptive lasso estimation method

performs better than the regular lasso method in terms of coefficient estima-

tion, because the heterogeneous weights make sure that relevant variables

are not equally heavily biased as the irrelevant ones. The adaptive elastic

net improves compared to the adaptive lasso by incorporating an extra reg-

ularization parameter, which makes sure that the variable selection is done

more carefully, especially in the case of multicollinearity. This means that

in high-dimensional settings, more regularization parameters are required

to obtain better estimations as mentioned by Xiao and Xu(2015). This can
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be achieved by iterating the adaptive elastic net over different stages where

the tuning parameters and weights change in each iteration r.

Xiao and Xu (2015) show that by iterating r times the adaptive elastic

net for variable selection, a sparser model can be attained. Particularly

in small sample cases, a sparser model is recommended. This is because

in a finite small sample, the model cannot learn sufficiently from the data

to estimate the coefficients in the unsparse model efficiently. This would

obviously result in poor forecasts.

If the chosen maximum lag order is bigger than the maximum lag order

according to the DGP, then the elastic net and lasso methods are able to

shrink some of the coefficient matrix to zero on an individual level. How-

ever, they do not always select the correct lag order as a group. Therefore

it results in an unstructured sparse coefficient matrix Π where some coef-

ficients belong to the active set S1 and others to the inactive set S0. The

indicator value 1 stands for coefficients that are not shrunk towards a zero

value. The indicator value of 0 stands for coefficients that are shrunk to-

wards zero. Figure 1 shows the graphical illustration of the problem. The

DGP I use as example, consists of two variables with n = 100 observations

and a VAR(1) coefficient matrix ΠDGP of

ΠDGP =

0.7 0.2

0.2 0.7

 ,Σν =

1 0

0 1

 (3)
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Fig. 2: Sparsity plot generated of the VAR coefficients estimated by the enet-VAR model
generated by own code. I set the user defined maximum lag length arbitrarily on 4. The
DGP is, however, a VAR(1) process.

Figure 1 shows that 6 out of 16 (= 37.50%) coefficients of Π
3x12

=

Π1
3x3
∩Π2

3x3
∩Π3

3x3
∩Π4

3x3
are shrunk to zero and thus fall in the inactive set S0.

They are graphically depicted as white blocks. my aim is to find Π1 ∈ S1

and Π2∪Π3∪Π4 ∈ S0. However, I find that only some coefficients, in this

case Π2 and Πkp=5 ∈ Π3 are turned to zero.

The simulation study in section 3.6 elaborates on this matter in more

detail with several high dimensional multivariate DGPs. The weighting

term ω
(r)
m,n updates in each iteration r. Following the paper of Zou and

Hastie (2005) and Zou and Zhang (2009) and after some rewriting, the

optimization problem adopted to the multi-step elastic net function can be

described in the following way for the VAR framework.

Π(r)
elastic = (1 + λ

(r)
2
kT

)×

argmin
Π

{
T∑
t=1

k∑
m=1

kP∑
n=1

((Ym,t −Π(r)
m,nQn,t)2 + λ

(r)
1 ω(r)

m,n|Π(r)
m,n|+ λ

(r)
2 Π2,(r)

m,n )
}
,

(4)

where λ1 is the penalty term for the lasso method and λ2 the penalty

term for the ridge regression. The term ωm,n defines the heterogeneous lasso

penalization weights on the coefficients. This term takes care for heavier
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penalization of the smaller coefficients, and, softer penalization of the larger

coefficients. In order to cope with the double shrinkage, I need to inflate

the elastic net estimator. This is because the elastic net is estimated in a

two stage procedure as explained by Zou and Hastie (2005). The first stage

consists of estimating the ridge coefficients for each value of λ2. The second

stage consists of estimating the lasso coefficients conditioned on the ridge

coefficients, λ2 and λ1. This double shrinkage incurs biased coefficients

leading to poor forecasts. Following the paper of Furman (2014) I pre-

multiply the elastic net equation 4 by the factor (1+ λ2
kT ). Parameter k is

the amount of equations that is being estimated at once in the VAR model,

and, T the amount of time-series observations. The papers of Zou and

Zhang (2009) and Furman (2014) elaborate more on this matter.

The initial weights for the adaptive lasso and adaptive elastic net are

determined by |Πinitial
m,n |−δ, where |Πinitial

m,n | are the initial estimates of the

coefficients by OLS or ridge regression, and, δ a positive constant number.

The paper of Zou and Zhang (2009) suggests that I can let δ ∈ (0.5, 1, 2),

however I remain with the proposition of Xiao and Xu (2015) to let δ = 1.

The additional step of the multi-step adaptive elastic net is that the

adaptive elastic net for variable selection is conducted iteratively whereby

the weights ω(r)
m,n are updated in each iteration r. The weight in iteration

r > 1 is determined by |Π(r−1)
m,n × λ(r−1)α(r−1)|. In order to make the esti-

mation of the tuning parameters more feasible, I should rephrase equation

4 and introduce the term α which is the fraction of the total penalty be-

longing to the lasso method. That is, α = λ1
λ1+λ2

, and, (1 − α) = λ2
λ1+λ2

.

In addition, I aggregate λ1 and λ2 to λ. This means that λα = λ1 and

λ(1− α) = λ2.

The advantage of this re-parametrization is that I can better specify the

two-dimensional searching grid of the tuning parameters, as α is specified
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on the interval [0,1]. So, instead of finding the parameters λ1 ∈ (0,∞) and

λ2 ∈ (0,∞) in a two-dimensional grid, I simplified it to a two-dimensional

searching grid for which λ ∈ (0,∞) and α ∈ (0, 1). This allows us to

reformulate equation (4) into,

Π(r)
elastic = (1 + λ

(r)
2
kT

)×

argmin
Π

{
T∑
t=1

k∑
m=1

kP∑
n=1

((Ym,t −Π(r)
m,nQn,t)2 + λ(r)(α(r)ω(r)

m,n|Π(r)
m,n|+ (1− α(r))Π2,(r)

m,n )
}
,

(5)

The overview below shows that different values for parameters λ, ω and

α lead to different estimation models. The models can vary between OLS,

lasso, adaptive lasso, elastic net and adaptive elastic net. In case I iterate

r> 1 times over the adaptive elastic net VAR model, then I get the adaptive

elastic net VAR model.

ifλ = 0, r = 0, ω(r)
m,n = 0 and α = 0 → VAR OLS

ifλ > 0, r = 0, ω(r)
m,n = 1 and α = 1 → VAR lasso

ifλ > 0, r = 1, ω(r)
m,n 6= 1 and α = 1 → VAR adaptive lasso

ifλ > 0, r = 0 and α = 0 → VAR ridge regression

ifλ > 0, r = 0, ω(r)
m,n = 1 and α ∈ (0, 1) → VAR elastic net

ifλ > 0, r = 1, ω(r)
m,n 6= 1 and α ∈ (0, 1) → VAR adaptive elastic net

ifλ > 0, r ∈ (1, .., R], ω(r)
m,n 6= 1 and α ∈ (0, 1) → VAR multi-step aenet

3.2.6 Optimization algorithm

There are two major methods to estimate the elastic net model. On the

one hand there is the LARS algorithm as discussed by Efron et al. (2004),

which calculates the whole solution path for the coefficients. On the other
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hand, there is the coordinate descent method as proposed by Friedman,

Hastie, Höfling, et al. (2007) and Friedman, Hastie, and Tibshirani (2010).

This method does not calculate the whole solution path of coefficients, but

rather iteratively updates each coefficient Πm,n at a time while fixing the

others until the convergence criterion has been met. The cyclic coordinate

descent method as discussed in the paper of Wu, Lange, et al. (2008) is a

famous numerical optimization method for solving penalized functions.

The advantages of the coordinate descent method compared to LARS

method are that the computation time is shorter and the estimation more

robust. This method is often used for functions with a lasso type of penal-

ization. The argument is that the lasso part in the optimization problem

is convex but not differentiable. However, this problem can be split up,

such that the global minimum can be found. Suppose that I can split

the equation in two parts. The first part denoted as L(Π) is the SSR

and the second part denoted as P(Π) the penalty term. I can define the

formula as L(Π) +P (Π). For the sake of convenience, I consider each vari-

able m separately. Lm,t(Π) =
∑T
t=1 (Ym,t −

∑k
m=1

∑kP
n=1 Πm,nQn,t)2. The

penalty term Pm(Π) for variable m is denoted as λ
∑kp
n=1 (αωm,n|Πm,n| +

(1 − α)Π2
m,n). Since there exists no analytical solution for the lasso part

of penalty term P (Π), I apply a numerical optimization procedure, the so-

called coordinate descent algorithm. The basic idea behind this algorithm

is to conduct a scalar optimization. I can achieve this by optimizing each

coefficient of the Π matrix, while holding all other coefficients constant.

The paper of Tseng (2001) confirms that the global convergence can be

reached by solving the partitioned subproblems within the framework of

the coordinate descent method. Suppose that I want to optimize the VAR

model by the cyclical coordinate descent method, I require some inputs.

As the DGP is unknown to the researcher, he puts in an own indication of
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the maximum lag order. Before I can use the coordinate descent algorithm

to update the coefficient matrix Π, I need to provide the algorithm an ini-

tial estimation of the coefficients. This is in turn based on the specified

maximum lag order. I initialized the Π matrix with only ones in the cells.

The first step is then to restrict the model by excluding the lagged

series h Qn=h and exclude the coefficient Πm,n=h. The next step is to

calculate the residuals of this restricted model as Wm,n 6=h,t, also called the

partial residual. Subsequently, I plot the residuals of the restricted model

Wm,n 6=h,t on the lagged series Qn=h that has been excluded from the full

model. The result is a preliminary estimation of Πm,n=h. Finally this

preliminary estimator goes through the soft-threshold operator and scaled

by the product of the ridge penalty term λ(1−α) andQ2
n=h. The latter part

is the variance of Qn=h
2. The idea of the soft-threshold operator is that

the preliminary scalar coefficient estimation is shrunk to zero if the absolute

value of the estimation is smaller than a pre-defined constant term γ×ωm,n.

In my case γ is defined as the product of λα. This is the effect of the

lasso part of the elastic net. Secondly, the soft-threshold operator shrinks

the absolute value of coefficients if their value exceeds that of γ × ωm,n.

By scaling the coefficient estimate after the soft-threshold operator by the

variance of Qn=h, the more the preliminary estimate will be shrunk in a

quadratic way. This is the effect of the ridge regression part of the elastic

net. Appendix 8.1 will elaborate on the derivation of the elastic net model

in a VAR framework in detail. The resulting estimator Π̂m,n=h is given in

equation 3.2.6.

2As Qn=h has been standardized, I can mathematically conclude that the square Q2
n=h

is equal to the variance.
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Π̂m,n=h = ST (
∑T

t=1 Wm,n 6=h,tQn=h,t;λαωm,n)
λ(1−αωm,n)

∑T

t=1 Q2
n=h,t

(6)

I conduct a pathwise coordinate descent strategy on the estimation of

the VAR elastic net model. This means that I calculate solutions based

on a sequence of lambdas and alphas. Lambda can range in a sequence

from λmax until λmin, where λmax entails the relatively highest level of pe-

nalization in the L1-norm and λmin relatively the least. Following Nichol-

son, Matteson, and Bien (2014), I use λmax = elog(max(QY )) and λmin =

elog(max(QY ))/R, where R is for the depth of the lambda grid and I put

R = 102. Due to the required computation time, I only choose for a length

of the lambda grid M = 5. For the alpha values I use αmin = 0.75 and

αmax = 0.95 with a step size of 0.1 such that the length of alpha grid is 3.

As the coordinate descent method finds the solution by iterating, I

therefore take a convergence rate of ε = 10−4 where ε is the scaled abso-

lute maximum difference between the Πnew and Πold following Nicholson,

Matteson, and Bien (2014).

As I also have a L2-penalization norm and therefore have the α to

balance between the lasso and ridge penalization, I also calculate different

solutions based on different values of α. I can create the solution path

by fixing α at a certain value and find solutions for different values of λ

conditioned on the level of α.

3.2.7 Multi-step AEN algorithm

From the inspiration of the paper of Xiao and Xu (2015), I adjust and

redefine the algorithm in the following stepwise way such that it fits my
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VAR elastic net framework.

Step 1: Initialize the weight scalar ωm,n with m ∈ [1,....,k] and n ∈

[1,....,kp]

Step 2: In the iteration for r ∈ [1,....,R]; Estimate the elastic net equa-

tion (5) for which in the initialization the coefficient estimation Π̂m,n is a

function of the ridge or ordinary least square regression, and, the weight

scalar ωm,n is initially put to a constant value of 1. From the first iteration

onward, Π(r≥1)(λ, α) is a function of the tuning parameters. The weights

can be updated by: ω(r)
m,n = |Π(r−1)

m,n × λ(r−1)α(r−1)|−δ.

It is important to note that after each iteration the amount of coeffi-

cients gets smaller implying that the amount of lags gets smaller as well

until I reach the point of convergence where poptimal ⊆ pmax . My aim is

that the algorithm should be able to turn all abundant coefficients to the

inactive set S0 and retain only the coefficients of the true lags and variables

in the active set S1.

Regarding the convergence criterion of the multi-step adaptive elastic

net iterations, I define it in the similar way as for the coordinate descent

algorithm, also with ε = 10−4.

3.3 Specification of the maximum lag length pmax

Prior to applying the penalized methods on the estimation of the coefficients

in the VAR model, it is important to first have an indication of what the

maximum lag length, say, pmax might be. After the specification of pmax ,

the penalized methods are able to filter out the redundant variables which

includes lags of own and other variables in the model, such that the model

becomes sparser.

By inspection at the serial correlation plots of the variables at its own

past values, an initial guess of pmax might be deduced. Also, considering
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the time-series frequency might give an indication of pmax .

In this paper I therefore consider the serial correlation as guidance for

the maximum lag length pmax . However in the simulation study, I choose

for a lag length bigger than what the serial correlation plots imply. That

is because I want to investigate whether the multi-step adaptive elastic net

is able to recognize the correct sparsity pattern by itself. This also implies

finding the true lag length. This means that if I find a serial correlation

of order 4 in quarterly data, then I take for pmax a multiple of 4, e.g.

8. Because if data is correlated with its previous year, then it might be

correlated with two years back as well.

3.4 Specification of the tuning parameters

3.4.1 Specification of the penaly searching grid

I also need to specify the searching grid for the penalty terms λ and α. I let

α range from 0.50 to 1 by incrementing with a step size of 0.1. The reason

why I opt for a relatively higher α is that the variable selection results

from the lasso penalization. Therefore, I give a large weight to the lasso

penalization. The paper of Tabassum and Ollila (2017) affirms that the

interval of α ∈ [0.5,0) is not that interesting as in that case the solutions

will more likely move towards ridge regression solutions and as such will

not result in clear variable selection. Following the papers of Nicholson,

Matteson, and Bien (2014) and Friedman, Hastie, and Tibshirani (2010)

I let λ decrement in a logarithmic-linear way. Where λmax represents the

value for which all coefficients Πm,n ∀m,n are zero.
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3.4.2 Data-based selection of penalty parameters λ, α

As e.g. used in Zou and Hastie (2005) for finding the tuning parameters α

and λ, I apply the crossvalidation technique accordingly. However, due to

the time dependence structure, the normal crossvalidation technique is not

appropriate anymore. I opt for a rolling window estimation of the penalty

parameter as explained in the paper of Song and Bickel (2011). This is

because there is auto-correlation present in the data, which causes the data

not to be independently identically distributed anymore. The underlying

assumption of the traditional cross-validation technique is that the data

should be independently identically distributed. For (V)AR models it is

important to let the model be trained by past contiguous clustered data in

order to take the sequential nature of time into account and to avoid the

look-ahead bias that could occur if one would use future data as training

input. I opt accordingly for a rolling crossvalidation technique as in line

with the papers of Nicholson, Matteson, and Bien (2014) and Song and

Bickel (2011). The idea is that the dataset is split up in three equivalent

parts. The subperiods are calculated as T1 = bT3 c and T2 = b2T
3 c. The

period from t = 1 until t = T1 − 1 is used to initialize the model, whereas

the period from t = T1 until t = T2 − 1 is used for selecting the penalty

parameters. The third period from T2 until T is used for the evaluation of

the one step ahead forecasts.

1 T1 T2 T

Initialization Estimation Evaluation

I accordingly evaluate on the basis of one-step ahead forecasts. The

proxy for the performance in terms of prediction is the MSFE.
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MSFE(λ, α) = 1
T2 − 1− T1

T2−1∑
t=T1

(
k∑

m=1
(Ŷ λ,α
m,t+1 − Ym,t+1)2 (7)

3.5 Conventional information criterion on VAR models

The idea behind the information criterions AIC and BIC is that they tend

to strike a balance between a good fit and the parsimony of a model. The

practical difference between both information criterions is that the BIC pe-

nalizes model complexity heavier than the AIC does. Under the assumption

that the errors are normally distributed, the information criterions can be

defined in the following way as described in the paper of Luetkepohl (2009).

AIC = T ln | Σ̃ | +2(pk2 + k), (8)

BIC = T ln | Σ̃ | +(ln T)(pk2 + k), (9)

where T is the amount of observations, Σ̃ν is the estimated covariance

matrix of Σν which resembles the kxk covariance matrix of εt as introduced

in equation 1. The covariance matrix is defined as

Σν = 1
T

T∑
t=1

νtν
T
t , (10)

whereby the analogy for the estimated covariance matrix holds.

The penalty term is for the AIC a constant factor of 2, whereas for the

BIC model it is ln T. The factor after the penalty term, pk2 + k, resembles

the amount of parameters to estimate in the VAR(p) model. Altogether,

this shows that the penalty terms of the information criterions exhibit a

positive function with the dimension of the model, and, that the BIC crite-

rion model penalizes the complexity of the model relatively heavier. Among
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others Kuha (2004) recommends the usage of both methods as complemen-

tary for the model selection procedure.

3.6 Simulation study

3.6.1 Setup

The aim is to simulate from several data generating processes following

Kock and Callot (2015) with different true lag orders, different amount of

variables, different levels of sparsity and different degree of stationarity. The

particular focus is on large multivariate models, where the aim is to show

how the models perform compared to small multivariate models. Different

methods are evaluated in terms of sparsity and forecast performance.

As mentioned in the introduction, several literature studies show that

the penalized estimation models are proper dimension reduction techniques

for VAR models. The focus therefore lies on the comparison between these

estimation techniques. Furman (2014) shows that the adaptive elastic net

performs accurate forecasts within the VAR framework and the multi-step

adaptive elastic net is an extension to it. Therefore I only focus on the

comparison between the single-step elastic net with the multi-step elastic

net. The techniques that are taken into consideration are elastic net (enet),

adaptive elastic net with ridge weights (aenetR), adaptive elastic net with

lasso weights (aenetL) and the multi-step adaptive elastic net (maenet).

For all DGPs, I use a time-invariant diagonal covariance matrix for the

error term denoted as Σν with 0.10 as diagonal entries. The amount of

simulation draws is R = 100.

It is important that the VAR model from which the DGP is simulated,

is stationary. In order to establish stationarity, it is important that the

condition |I− (
∑p
l=1 λ

lΠl)| = 0 is met. Following Kock and Callot (2015),
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I use for DGP1 and DGP3 parameters generating stationary time series.

However, for DGP2 I use parameters that generate data close to unit root.

In contrast to Kock and Callot (2015), I let the amount of variables

only be in the limited set k ∈ [5, 20] for DGP1 and DGP3, and the amount

of time series observations be in the set T ∈ [100, 1000] due to the required

computation time, whereas they have a more expansive grid running from

k = 5 to k = 50. Recall that the amount of parameters to be estimated

grows quadratically in the amout of variables k. For DGP2, I use the set

k ∈ [5, 15] because of its complexity and that it is close to unit root requiring

more computation power for estimating the coefficients.

DGP1 is based on a sparse V ARk(1) process where each variable is

only dependent on its own previous lag with coefficient 0.5. This is a

fairly simple case to consider, although very practical. The emphasis here

is on the sparsity, since it is a diagonal VAR(1) coefficient matrix with

zeroes on all the off-diagonal elements. One could consider this model

as k separate AR(1) models collected in one VAR(1) coefficient matrix

Π1. This type of models are interesting for variables that are collected on

a monthly or quarterly basis and have a strong correlation with its own

previous lag. Those are especially variables with a temporary behaviour.

This might be interesting for financial variables where for instance a short-

term momentum effect is present in the data.

DGP2 is based on a V ARk(4) process and has a diagonal block matrix

structure with block size of 5x5. This means that sets of variables exhibit

a grouped structure, which is common in the field of macroeconomics. The

entries in each block of Π1 consist of the value 0.15 and the entries in

each block of Π4 -0.10. The coefficient matrices Π2 and Π3 are zero ma-

trices. The largest root is 0.98, which implies a persistent behaviour in

the time series and is close to unit root. This structure is in accordance
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with macroeconomic models based on quarterly data, where they exhibit

a strong coherence with the past observations with a certain persistent be-

haviour. This is especially applicable in cases where for instance grouped

macroeconomic variables are intertemporally related to each other but not

to the variables outside the groups. Note that equation 3.6.1 represents

a block matrix of 2x2. This is only used for illustration purposes, since

blocks of 5x5 would take too much space to depict. Note that DGP2 is

constructed for lag 1 and 4 as block diagonals of 5x5. That means that the

dimension of the matrix is a multiplication of 5.

DGP3 is based on a V ARk(1) process with (−1)|m−n|ψ|m−n|+1 and ψ =

0.4 on the entries of the Π1 matrix. The term |m−n| displays the absolute

distance with respect to the diagonal element of row m. This means that

the diagonal elements are valued as 0.4 and the values on the off diagonal

elements decrease exponentially in relation to the diagonal elements. In this

situation the sparsity assumption is violated as none of the elements are

zero. The further the off diagonal elements lie, the smaller the coefficients

become. The aim for this DGP is to consider how the penalized methods

perform in terms of sparsity and forecast performance despite the fact that

the true DGP is not sparse. Equation 13 depicts the Π1 matrix for k = 5

variables. The practical relevance of such a VAR model is visible in cases

where macroeconomic or financial variables are still intertemporally related

but also sorted on the level of correlation they exhibit. That means that if

variable k gets information from the previous lag of variable k−1 and k+1,

it gets less information from k − 2 or k + 2 and even lesser from k − 3 or

k + 3. That means that variables that are less coherent are placed further

away from the diagonal and as such have a weaker intertemporal relation

to the current variable k.

Considering that the true lag is unknown to the researcher, I use for
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DGP1 and DGP3 the initialization guess for the potential maximum lag

length as p.max = 2, since the data is generated on the basis of first order

serial correlation in the data. That means that variables are related to

their values in the previous quarter. For DGP2 the initial guess is set as

p.max = 8, because this data is generated on the basis of the fourth order

serial correlation. That means that the values of the current quarter are

related to the values of the previous year, say, four quarters back. Given

the fact that a researcher do not know the true lag, a guess could be made

on the basis of the serial correlation. In this case, there is serial correlation

at lag 4, thus lag 8 is a logical choice as well as data of eight quarters back

might be of relevance as well. The aim is to show if the applied model is

capable of selecting the right amount of lags by putting the redundant lags

to zeroes and more importantly, finding the right sparsity pattern.

DGP 1: This dataset is generated by a sparse V ARk(1) process with

a VAR coefficient matrix of

ΠDGP1
1 =


0.5

. . .

0.5

 (11)

DGP 2: This dataset is generated by a V ARk(4) process

ΠDGP2
1 =



0.15 0.15

0.15 0.15

0.15 0.15

0.15 0.15


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ΠDGP2
4 =



−0.10 −0.10

−0.10 −0.10

−0.10 −0.10

−0.10 −0.10


(12)

DGP 3: This dataset is generated by a non-sparse V ARk(1) process

with a VAR coefficient matrix of

ΠDGP3
1 =



0.40 −0.16 0.06 −0.03 0.01

−0.16 0.40 −0.16 0.06 −0.03

0.06 −0.16 0.40 −0.16 0.06

−0.03 0.06 −0.16 0.40 −0.16

0.01 −0.03 0.06 −0.16 0.40


(13)

In order to evaluate the performance of the multi-step adaptive enet

algorithm, the following criteria are used which are partly based on the

paper of Kock and Callot (2015), Tibshirani (1996), Zou and Hastie (2005)

and the relatively more recent paper of Schnücker (2019).

Inclusion of true model

By this criterion I want to measure if the resulting coefficient matrix con-

tains the true active coefficients, say Strue1 ⊆ Smodel1 . This is proxied by

an indicator variable where that takes value 1 if this criterion is met and 0

otherwise. Subsequently, the results are averaged over R simulations.

1
R

R∑
r=1

I(Strue1 ⊆ Smodel1 ). (14)
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The share of inclusion of the relevant variables

This proxy is used to measure the performance of the model by evaluating

the accuracy of selecting relevant variables. In mathematical terms it can

be defined

1
R

R∑
r=1

( 1
length(Smodel1 )

k∑
m=1

kp∑
n=1

I(Π̂m,n = 1,Πm,n = 1)) (15)

Evaluating sparsity

Interesting is to evaluate the sparsity of the model. This can be done by

counting all the nonzero coefficients. Then the result can be averaged over

all R simulations. In mathematical terms it can be defined as

1
R

R∑
r=1

(
k∑

m=1

kp∑
n=1

I(Πm,n 6= 0)) (16)

Mean squared error The mean squared error is the squared deviation

of the estimated coefficient Π̂m,n compared to the the true coefficient Πm,n

averaged over all Monte Carlo replications.

MSE(λ, α) = 1
R

R∑
r=1

(
k∑

m=1

kp∑
n=1

(Π̂λ,α
m,n −Πm,n)2) (17)

Mean squared forecast error The mean squared forecast error is the

squared deviation of the estimated variable Ŷm h-periods ahead compared to

the the true value Ym averaged over all Monte Carlo replications. Following

the paper of Kock and Callot (2015) I apply an one-step ahead forecast

window, thus h = 1.
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MSFE(λ, α) = 1
R

R∑
r=1

( 1
T2 − h− T1

T2−h∑
t=T1

(
k∑

m=1
(Ŷ λ,α
m,t+h − Ym,t+h)

2

) (18)

4 Simulation results

As introduced in the methodology section, I use three different DGPs to

show the performance of several models. The aim is to show the perfor-

mance of the multi-step adaptive elastic net compared to the single step

(adaptive) elastic net methods.

DGP1 is generated by a sparse VAR(1) process, whereas DGP2 is gener-

ated by a block-VAR(4) model and DGP3 by a non-sparse VAR(1) model.

For DGP2, the largest amount of parameters should be estimated. That

is k2 ∗ p.max(= 8), which amounts for k = 5 to 200 parameters and for

k = 15 to 1,800 parameters. For DGP1 and DGP3, however, it reduces to

50 respectively 800 parameters.

All results are based on the average of the amount of simulations. This is

R = 100 for DGP1 and DGP3 and R = 25 for DGP2. Although I am aware

that the amount of simulations for DGP2 is low for statistical conclusions,

it nevertheless provides useful insights with consistent estimates. Because it

still shows the performance of themaenet estimator compared to the others

with results that converge in probability over the amount of simulation runs.

Overall the results show that the multi-step adaptive net performs bet-

ter in terms of sparsity, share of relevant variables and difference between

the estimated and true coefficient values. The forecast performance stays

relatively the same, while the model has become much sparser using the
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multi-step adaptive elastic net. The model in general performs better in a

VAR(1) setting compared to a VAR(4) model. When the sample increases,

the multi-step adaptive elastic net in general provides better results than

in a low time dimension. I can infer this from the improvement in the share

of relevant variables, evaluating the level of sparsity and mean squared dis-

tance from true coefficients. Even in the high-dimensional case with k = 20

variables, the model is capable of getting a much sparser model while keep-

ing the forecast performance more or less in line with the other competitive

methods or even improves.
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Table 1: DGP1 simulation results

DGP1

active variables
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
oracle 5.00 5.00 oracle 20.00 20.00
OLS 50.00 50.00 OLS 800.00 800.00
enet 42.23 42.03 enet 656.09 668.27
aenetL 6.68 6.42 aenetL 74.24 43.00
aenetR 17.08 14.98 aenetR 233.79 201.12
maenet 6.22 6.06 maenet 43.85 39.29

sparsity
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
oracle 0.00 0.00 oracle 0.00 0.00
OLS 0.00 0.00 OLS 0.00 0.00
enet 19.50 19.41 enet 379.35 379.47
aenetL 30.51 29.26 aenetL 709.91 713.21
aenetR 30.24 31.32 aenetR 564.15 595.85
maenet 29.30 28.83 maenet 723.47 711.82

share of relevant
variables
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
oracle 1.00 1.00 oracle 1.00 1.00
OLS 0.10 0.10 OLS 0.03 0.03
enet 0.12 0.12 enet 0.03 0.03
aenetL 0.78 0.80 aenetL 0.27 0.47
aenetR 0.30 0.35 aenetR 0.08 0.10
maenet 0.82 0.84 maenet 0.45 0.52

inclusion of
true model
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
oracle 1.00 1.00 oracle 1.00 1.00
OLS 1.00 1.00 OLS 1.00 1.00
enet 1.00 1.00 enet 0.91 1.00
aenetL 0.93 1.00 aenetL 0.75 1.00
aenetR 1.00 1.00 aenetR 0.63 1.00
maenet 0.94 1.00 maenet 0.63 1.00

MSE from true PI
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
oracle 0.000 0.000 oracle 0.000 0.000
OLS 0.587 0.049 OLS 14.865 0.854
enet 0.444 0.045 enet 9.247 0.753
aenetL 0.127 0.007 aenetL 1.154 0.069
aenetR 0.210 0.015 aenetR 3.952 0.207
maenet 0.125 0.007 maenet 1.356 0.069

MSFE
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
oracle oracle
OLS OLS
enet 0.874 0.771 enet 1.124 0.724
aenetL 0.821 0.764 aenetL 0.809 0.749
aenetR 0.820 0.767 aenetR 0.912 0.737
maenet 0.869 0.771 maenet 0.815 0.749

lag selection
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
AIC 1.01 1.00 AIC 1.16 1.00
BIC 1.00 1.00 BIC 1.00 1.00
enet 2.00 2.00 enet 2.00 2.00
aenetL 1.52 1.61 aenetL 2.00 2.00
aenetR 2.00 2.00 aenetR 2.00 2.00
maenet 1.47 1.47 maenet 2.00 2.00

This table presents the overview of the R = 100 simulation results of DGP1. The majority
of the criterion is evaluated against different models: oracle, OLS, enet, aenetL, aenetR and
maenet where oracle stands for knowing the true DGP matrix, OLS for an ordinary least
squares estimation of the coefficient matrix, enet for elastic net, aenet for adaptive elastic net
with weights based on initial lasso L or ridge R weights.
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Table 2: DGP2 simulation results

DGP2

active variables
k = 5 k = 15

T = 100 T = 1000 T = 100 T = 1000
oracle 50.00 50.00 oracle 150.00 150.00
ols 200.00 200.00 ols 1380.00 1800.00
enet 148.00 170.46 enet 1042.29 1420.04
aenetL 26.54 72.23 aenetL 109.33 331.50
aenetR 49.46 75.39 aenetR 260.33 355.92
maenet 16.92 45.15 maenet 52.08 136.92

sparsity
k = 5 k = 15

T = 100 T = 1000 T = 100 T = 1000
oracle 0.00 0.00 oracle 0.00 0.00
ols 0.00 0.00 ols 0.00 0.00
enet 46.77 49.62 enet 798.88 749.63
aenetL 145.92 122.23 aenetL 1689.00 1459.71
aenetR 125.85 122.23 aenetR 1529.50 1437.21
maenet 154.85 127.46 maenet 1747.29 1552.75

share of relevant
variables
k = 5 k = 15

T = 100 T = 1000 T = 100 T = 1000
oracle 1.00 1.00 oracle 1.00 1.00
ols 0.25 0.25 ols 0.11 0.08
enet 0.28 0.29 enet 0.11 0.11
aenetL 0.55 0.69 aenetL 0.36 0.44
aenetR 0.45 0.66 aenetR 0.21 0.42
maenet 0.60 0.96 maenet 0.46 0.89

inclusion of
true model
k = 5 k = 15

T = 100 T = 1000 T = 100 T = 1000
oracle 1.00 1.00 oracle 1.00 1.00
OLS 1.00 1.00 OLS 0.00 1.00
enet 0.00 1.00 enet 0.00 0.71
aenetL 0.00 0.46 aenetL 0.00 0.00
aenetR 0.00 0.46 aenetR 0.00 0.00
maenet 0.00 0.00 maenet 0.00 0.00

MSE from true PI
k = 5 k = 15

T = 100 T = 1000 T = 100 T = 1000
oracle 0.000 0.000 oracle 0.000 0.000
OLS 4.149 0.225 OLS NA 2.261
enet 1.613 0.219 enet 7.216 1.783
aenetL 1.166 0.149 aenetL 4.128 0.682
aenetR 1.161 0.153 aenetR 5.306 0.790
maenet 1.486 0.144 maenet 5.110 0.697

MSFE
k = 5 k = 15

T = 100 T = 1000 T = 100 T = 1000
oracle oracle
OLS OLS
enet 0.579 0.406 enet 0.774 0.341
aenetL 0.465 0.456 aenetL 0.378 0.372
aenetR 0.533 0.516 aenetR 0.765 0.374
maenet 0.567 0.405 maenet 0.755 0.393

lag selection
k = 5 k = 15

T = 100 T = 1000 T = 100 T = 1000
AIC 3.69 4.00 AIC 5.33 4.00
BIC 1.08 4.00 BIC 2.67 1.92
enet 8.00 8.00 enet 8.00 8.00
aenetL 6.85 7.85 aenetL 7.83 8.00
aenetR 8.00 8.00 aenetR 8.00 8.00
maenet 6.46 5.00 maenet 7.58 6.63

This table presents the overview of the R = 25 simulation results of DGP2. The majority of the
criterion is evaluated against different models: oracle, OLS, enet, aenetL, aenetR and maenet
where oracle stands for knowing the true DGP matrix, OLS for an ordinary least squares
estimation of the coefficient matrix, enet for elastic net, aenet for adaptive elastic net with
weights based on initial lasso L or ridge R weights.
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Table 3: DGP3 simulation results

DGP3

active variables
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
oracle 25 25 oracle 400 400
ols 50 50 ols 800 800
enet 43.59 44.46 enet 645.815 671.472
aenetL 11.76 19.70 aenetL 87.426 109.792
aenetR 20.26 25.79 aenetR 232.167 229.528
maenet 10.23 18.38 maenet 55.741 96.547

sparsity
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
oracle 0 0 oracle 0 0
ols 0 0 ols 0 0
enet 0 0 enet 0 0
aenetL 0 0 aenetL 0 0
aenetR 0 0 aenetR 0 0
maenet 0 0 maenet 0 0

share of relevant
variables
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
oracle 1.00 1.00 oracle 1 1
ols 0.50 0.50 ols 0.5 0.5
enet 0.53 0.54 enet 0.509 0.514
aenetL 0.85 0.89 aenetL 0.69 0.832
aenetR 0.72 0.79 aenetR 0.571 0.665
maenet 0.88 0.92 maenet 0.772 0.896

inclusion of
true model
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
oracle 1.00 1.00 oracle 1 1
OLS 1.00 1.00 OLS 1 1
enet 0.11 0.38 enet 0 0
aenetL 0.00 0.00 aenetL 0 0
aenetR 0.00 0.00 aenetR 0 0
maenet 0.00 0.00 maenet 0 0

MSE from true PI
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
oracle 0.000 0 oracle 0 0
OLS 0.564 0.051 OLS 14.487 0.831
enet 0.430 0.047 enet 8.381 0.75
aenetL 0.333 0.033 aenetL 1.976 0.209
aenetR 0.320 0.031 aenetR 4.003 0.273
maenet 0.343 0.034 maenet 2.422 0.214

MSFE
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
oracle oracle
OLS OLS
enet 0.841 0.722 enet 1.230 0.633
aenetL 0.827 0.720 aenetL 0.847 0.610
aenetR 0.822 0.719 aenetR 1.060 0.615
maenet 0.837 0.720 maenet 0.874 NA

lag selection
k = 5 k = 20

T = 100 T = 1000 T = 100 T = 1000
AIC 1.00 1.00 AIC 1.037 1
BIC 1.00 1.00 BIC 1 1
enet 2.00 2.00 enet 2 2
aenetL 1.76 1.88 aenetL 2 2
aenetR 2.00 2.00 aenetR 2 2
maenet 1.70 1.82 maenet 2 2

This table presents the overview of the R = 25 simulation results of DGP3. The majority of the
criterion is evaluated against different models: oracle, OLS, enet, aenetL, aenetR and maenet
where oracle stands for knowing the true DGP matrix, OLS for an ordinary least squares
estimation of the coefficient matrix, enet for elastic net, aenet for adaptive elastic net with
weights based on initial lasso L or ridge R weights.
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4.1 Parameter estimation

For evaluating the performance in terms of parameter estimation, I consider

the bias and estimation errors as proxy.

In order to visualize the accuracy of parameter estimation by the differ-

ent methods, I follow the paper of Kock and Callot (2015) by considering

the first parameter in the Π matrix denoted as Π[1, 1]. However, instead of

depicting density graphs as they do, I opt for boxplots. The reason for this

choice is that boxplots show the distribution of the data with the median

as center gauge. As the amount of simulation R = 100 is not much and

therefore the average value of Π[1, 1] might be biased, a more robust proxy

for the center of Π[1, 1] estimates like the median is more appropriate. The

median is less sensitive to the variability in the simulation set. Moreover,

I only choose to discuss the boxplots of the high dimensional settings, as

this is where the focus particularly on is.

The boxplots in figure 3 show that the true Π[1, 1] is 0.5 for DGP1, which

is a sparse VAR(1) process. Furthermore, it seems that in a small sample

the OLS, enet and aenetL are downward biased with average median values

of 0.37, 0.36 and 0.38. Coefficient estimates by the aenetL andmaenet seem

to be closer to the true value of 0.5, where maenet provides an average

median with the closest estimate of 0.44. Considering the boxplot below in

figure 3, all methods perform approximately equal in terms of parameter

estimation and converge towards 0.50 with a current median value of 0.49.

Only the maenet estimates are correct with a median of 0.5. This is the

same as the true value of Π[1, 1]. Interesting as well is to note that as the

sample gets larger, the spread in the estimation becomes smaller. In terms

of statistics, this implies consistent estimators.

Table 1 of DGP1 shows that the deviation from the true Π is the largest
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for the OLS and the smallest for the maenet and thereafter for the aenetL.

This pattern is visible in the small k = 5 as well as in the large dimension

k = 20. This pattern is visible in the small sample T = 100 as well as in the

large sample T = 1000. Interesting to see is that all methods learn from

the data as the sample size increases resulting in lower estimation errors.

The reason that the OLS and enet show the highest errors is that the OLS

do not shrink the coefficients like the penalization methods do and as such

estimates all coefficients including the redundant ones. For the enet, how-

ever, the penalties are not efficiently chosen as it is the case for the adaptive

variants such as aenetL and aenetR. The reason that the aenetL shows

lower deviation errors than aenetR is that aenetL uses the lasso estimates

as initial weighting estimation matrix applying a stronger variable selec-

tion than using the ridge regression estimates as initial weighting matrix.

The maenet improves this by iterating the estimation steps using updated

weighting matrices in each iteration r until the solutions converge.

Table 2 of DGP2, which is a sparse VAR(4) process, shows slightly

different results. Although OLS shows again the highest deviation from

the true Π, maenet does not show the best results anymore in terms of

deviation from true Π. It appears that aenetL performs on average better,

except for k = 5, T = 100 where the aenetR seems to perform better on

average instead. Given the low set of simulations, this last result might be

a coincidence.

The boxplots of DGP2 in figure 4 show that all penalized methods

except enet heavily penalizes the Π[1, 1] to 0 in small samples (T = 100).

The OLS estimate shows a high median biased estimate for Π[1, 1] with a

value of over 0.50 for k = 15, T = 100. It seems that the penalized methods

have difficulties with correctly estimating the coefficients in small samples

with high dimensional settings.
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Table 3 shows the simulation results for DGP3, which is a non-sparse

VAR(1) process. It is obvious that the maenet does not show the lowest

deviation from the true Π[1, 1] anymore. This might be because this DGP is

not sparse and as such no variables need to be selected, but only estimated.

Due to the iteration procedure, maenet might unjustifiably turn coefficients

to zero or shrink them too much. For k = 5, aenetR performs the best. This

might be explained from the fact that the DGP is constructed such that the

off-diagonal elements decrease exponentially from the diagonal. As k = 5

is a low dimensional setting, the off-diagonal elements are not that close

to zero and a softer penalty is more appropriate. However for k = 20, the

aenetL and maenet performs better than aenetR. This can be explained

from the fact that the matrix for k = 20 with size 20x20 is much bigger

than for k = 5 with 5x5 and therefore the distance of elements towards the

diagonal increases. As the amount of elements with a growing distance to

the diagonal increases and the coefficient is an exponential decreasing func-

tion from the diagonal element, the values on the outer off-diagonal might

be close to zero for which a zero coefficient estimate (variable deselected)

would be better instead of a biased nonzero value. Therefore, the methods

that impose a stronger variable selection, seem to be preferred.

The boxplots of DGP3 in figure 5 show for k = 20 that the maenet

estimates Π[1, 1] are the least biased estimates with a value of 0.34 in small

samples. Moreover, it seems that maenet shows an unbiased estimate for

Π[1, 1] with a value of 0.4 being the same as the true Π[1, 1] value. All

estimators seem to be consistent, where the maenet estimator seems to

be consistent and unbiased for T = 1000 (large sample). The consistency

seems to be stronger for the adaptive elastic net variants compared to the

normal elastic net and OLS by considering the spreads of the estimators

for T = 1000.
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Fig. 3: Simulation plots for Π[1,1] with k = 5 and k = 20 (large dimension) and T = 100 (small sample) and
T = 1, 000 (large sample). Π estimated by enet, aenetL, aenetR and maenet.
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Fig. 4: Simulation plots for Π[1,1] with k = 5 (small dimension) and k = 15 (high dimension) for T = 100 (small sample)
and T = 1, 000 (large sample). Π estimated by OLS, enet, aenetL, aenetR and maenet.
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Fig. 5: Simulation plots for Π[1,1] with k = 20 (large dimension) and T = 100 (small sample) and T = 1, 000 (large
sample). Π estimated by enet, aenetL, aenetR and maenet.
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4.2 Sparsity performance

In order to evaluate the performance in terms of sparsity, I consider the

numerical results from table 1 of DGP1, table 2 of DGP2 and table 3 of

DGP3 the active variables, level of sparsity, share of relevant variables and

the inclusion of true model. In addition, I consider the graphical coefficient

plots in figure 6 of DGP1, figure 7 of DGP2 and figure 8 of DGP3.

4.2.1 Active variables

For DGP1 it is visible that the maenet provides the amount of active vari-

ables that is the closest to the true amount of active variables in all settings

where the dimension varies from k = 5 tot k = 20 and where the sample

varies from T = 100 tot T = 1000. The good follow up is by the aenetL

because of its lasso weights as input resulting in a stronger variable selec-

tion than aenetR does. It is also visible that OLS and aenet performs

the worst, which is logical since the OLS does not perform variable selec-

tion and enet does not perform efficient variable selection because of the

homogeneous weights used for all parameters. Interesting to note is that

maenet strongly outperforms the other methods when k = 20. However,

as the sample size increases from T = 100 to T = 1000, the performance of

maenet and aenetL gets closer.

For DGP2 it is remarkable that for small samples, maenet estimates

too many parameters as zero while they are actually nonzero. The adaptive

single step elastic net seems to perform better in terms of estimating the

correct amount of active variables. However, when the sample size increases

from T = 100 to T = 1000, it seems that maenet is the most accurate.

For DGP3, on contrary, maenet underestimates the amount of variables

in all cases. Here it seems that aenetR is the best among the estimators.
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This can be explained from the fact that DGP3 is generated from a non-

sparse VAR(1) process where all coefficients within lag 1 are actually active.

The aim is only to put the coefficients on zero for lag 2, because we use

p.max = 2, but none for lag 1 which is different from DGP1 and DGP2.

That means that there is appearantly no need for a strong variable selection

regime such as aenetL or more restrcivtive the maenet.

4.2.2 Sparsity plots

For this subsection I consider the sparsity plots of DGP1, DGP2 and DGP3

in figures 6, 7 respectively 8. In all cases it is visible that maenet presents

the sparsest coefficient plot. It becomes particularly visible for small sam-

ples where the distinction between methods is more evident. The methods

seem to get closer results as the sample size increases. This finding is

mainly relevant for macroeconomic datasets with small sample sizes that

are generated from a sparse model. The sparsity plots are supported by the

numerical results under the row sparsity of the tables where it is visible

that maenet is the sparsest model followed by aenetL. Exception is for

DGP3 where for some strange reason no numerical results are available,

however, the figures show that maenet provides the sparset model as well

for DGP3.

In addition, fraction of relevant variables also show that maenet has

the highest rate in all case, which implies that it performs a good variable

selection. It is also consistent as it moves more towards 1 as the sample

size increases.
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Fig. 6: Simulation plots for the Π coefficient matrix of DGP1 with k = 20 (large dimension) and T = 100 (small
sample) and T = 1, 000 (large sample). A representation of the coefficient plot estimated by enet, aenetL, aenetR and
maenet.
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Fig. 7: Simulation plots for the Π coefficient matrix of DGP2 with k = 20 (large dimension) and T = 100 (small sample)
and T = 1, 000 (large sample). A representation of the coefficient plot estimated by enet, aenetL, aenetR and maenet.
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Fig. 8: Simulation plots for the Π coefficient matrix of DGP3 with k = 20 (large dimension) and T = 100 (small
sample) and T = 1, 000 (large sample). A representation of the coefficient plot estimated by enet, aenetL, aenetR and
maenet.
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4.2.3 Inclusion of true model

Considering the share of relevant variables, it is remarkable that all pe-

nalized models have a high rate of simulation runs that include the true

model. This result increases along the increment of the sample size, but

decreases along the increment of the dimension. All OLS runs contain the

true model, which is logical as the OLS does not perform variable selection

and the DGP is just a diagonal matrix with 0.5 on the entries.

However, it seems that alle estimation methods have difficulties finding

the true model for DGP2 in the small sample, even the OLS. However, as

the sample size increases, the methods have a higher probability of finding

the true model, except the maenet. Apparently, maenet estimates a too

sparse model as can be seen from the active variables as well. So it seems

to oversimplify models resulting from DGPs constructed from correlated

block matrices.

For DGP3, it is remarkable that none of the penalized methods but enet

has a chance to find the true model for k = 5. However, when the dimension

increases to k = 20, also enet is not able to find the true model anymore.

Conform the expectations, OLS has a probability of 100% of finding the

true model. Because of the non-sparse construction of DGP3 whereby none

of the coefficients are zero, penalized methods are not well suited for finding

the true model as they apply variable selection to a certain extent while

they should not.

4.3 Lag selection performance

In this subsection I evaluate on the lag selection performance. There are two

strands of lag selection methods. One strand consists of the conventional

methods such as AIC and BIC. The second is based on the penalized
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estimation methods. I define the lag selection procedure in the latter one

as follows. I divide the estimated Π in p.max lags. Then I consider each of

them as separate matrices. Subsequently, I start counting from p.max to

p = 1 meaning that if I start with p.max then I look for matrix Πp.max if all

coefficients are estimated as zero. If yes, I consider the estimated amount

of lags as p.max − 1 repeatedly until I end up at a nonzero matrix. The

nonzero matrix belonging to that lag is considered as the estimated lag.

Note that the regularized estimator already implies the lag selection where

each variable might have a different lag where some or all lags in between

might not be relevant at all. The reason that I still opt for setting whole

matrices to zero by the aforementioned two-step procedure is that I assume

the data to come from the same DGP with the same serial correlation over

time.

The conventional lag selection criterions, such as the AIC and BIC,

are overall the most accurate in selecting the right lag size. Although, for

DGP2 it seems that BIC selects on average a smaller lag. For k = 5 the

right lag is selected on average when the sample size increases to T = 1000

implying consistency. However, against all odds it does not happen when

the dimension increases to k = 15.

Considering the penalized methods, it is interesting to see that they all

overestimate the amount of lags for all DGPs. However, maenet shows the

smallest amongst the overestimated lags, being closer to the true one.

It is interesting to note that for DGP2 where we take p.max = 8, being

much higher than the true one, maenet is the only penalized method show-

ing lag estimations that gets smaller as the sample size increases. However,

for DGP1 and DGP3 where we take p.max = 2, it is remarkable that the

amount of lags on average increases or remain the same as the sample size

increases. It probably has difficulties with finding the exact lag. It might
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perform well in terms of finding a lower lag than the true one, however,

when the p.max is so closely defined to the true lag then it does not find

the exact one on average.

4.4 Forecast performance

In terms of forecast performance, it is notable that the forecast errors de-

crease as a function of sample size. That basically means that as T moves

from 100 to 1000, the estimators have a bigger sample to learn from in order

to make the predictions. In all cases it seems that the increase in sample

size has a stronger impact on forecast improvement for high dimensional

settings such as k = 15 and k = 20 compared to the situation of the low

dimension such as k = 5.

Overall, maenet has more or less the same performance as the other

penalization methods, especially for large samples T = 1000. For DGP2 it

is remarkable that aenetL performs the best for the small sample T = 100.

The enet performs in small samples the worst among the other penalized

estimators because of the inefficient homogeneous penalty weights.

At least themaenet outperforms the enet for all DGPs with all different

settings. Moreover, it is remarkable that for the high dimension k = 20(and

k = 15) and small sample T = 100, maenet outperforms the other methods

except for aenetL.

5 Empirical analysis

In this section I discuss the empirical results for applying an appropriate

model to estimate the parameters and forecast. Looking at Table 4 it is

visible that the maenet provides relatively the sparsest model with at last

93 active coefficients. The forecast performance is approximately the same
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as that for the enet, while gaining much in estimation efficiency. The enet

estimation method has 1854 active coefficients, which is approximately 20

times as much as for the maenet. This is also visible in the plot of Figure

9.

For estimating the VAR model on this empirical dataset, I use as

p.max = 5. The reason for this choice is that we deal with quarterly

data and therefore I expect that the true lag amount is 4. If that is the

case then the fifth lag would be penalized by the methods.

Considering the structure in the plot of Figure 9, it seems that the

VAR(1) largely follows a diagonal structure. However, the structure of the

remainder of the coefficient matrix looks noisy. Possibly a VAR(1) model

could be sufficient for this empirical dataset. For discussing the economic

interpretation of the coefficients, I use the maenet coefficient matrix.

Considering the four lags, it is remarkable that variables 4,5,7,8,9,10,12,14

and 15 follow a diagonal VAR(1) structure. Those are predominantly vari-

ables about personal consumption of services and nondurable goods (4,5),

residential and nonresidential fixed investment (7,8,9,10) and government

receipts and spending (14,15). All of them are negatively correlated to its

previous lag, except for government spending.

In addition, personal consumption is negatively influenced by govern-

ment expenditures of the previous quarter. This might be explained from

the fact that if the government increases its expenses, inflation might rise

resulting in lower personal consumption. Also, GDP (1) is positively influ-

enced by personal consumption of services four quarters (one year) back.

The economic reasoning for this is that if demand for services increases,

people are getting educated over a period e.g. one year resulting in more

appropriate employees and as such a higher GDP now.

Also, the growth of government expenditures and investment is nega-
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tively influenced by the personal consumption and positively influenced by

the residential fixed investment (10) of the previous quarter. The economic

reasoning for this is that as the personal consumption increases, employ-

ment opportunities increase and therefore the government gets more rev-

enue based on more employees paying taxes over their salaries and tax

revenues based on the products. Therefore, the government do not neces-

sarily spend or invest that much to stimulate the economy anymore. For

the second relation, one can note that when a country invests, there is some

time and money needed before it can harvests from its investments. That

is where the government might help by stimulating the investments.

Finally, exports are positively related to investments of four quarters

back. The economic reasoning for this is that if a country invests in the de-

velopment of products or services, it might improve its competitive position

with other countries resulting in better exports over time.

Note that I do not discuss the significance of the coefficients as boot-

straps are required to make statistical statements by reducing the proba-

bility of coincidence.

Table 4: Empirical results where the forecast performance and sparsity are depicted.

MSFE active coefs

enet 1.541 1854
aenetL 1.385 579
aenetR 1.292 817
maenet 1.457 93
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Fig. 9: Plots of the Π coefficient matrix of the empirical dataset with k = 22 (large
dimension) and T = 127 (small sample). A representation of the coefficient plot estimated
by the adaptive elastic net based on lasso weights and the multi-step adaptive elastic net.

6 Conclusion

The aim of this paper is to analyze if the multi-step adaptive elastic net

(maenet) is able to provide the accurate VAR model compared to the other

methods. I also consider its forecast performance and the gain in sparsity. A

simulation study is conducted based on a VAR(1) sparse, VAR(4) a sparse

block diagonal matrix and a VAR(1) non-sparse DGP.

The key finding in this paper is that the maenet method is capable

of recognizing a sparse coefficient matrix being relatively close to the true

coefficient matrix in a relative small sample. The simulation studies show

that conditioned on a small sample, the other penalized methods do not

show such a sparse model. This implies that this model provides consistent

estimates at a higher rate. Because when the sample size increases, it

converges faster to the true model compared to the others except for the

situation where the DGP is based on a non-sparse VAR model with many
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redundant variables. In this case, maenet excludes these variables from

the model and aenetR would be more appropriate because of its softer

penalization algorithm.

This finding is incredibly useful for macroeconomic researchers. They

oftentimes have to deal with a high dimensional dataset with relatively few

datapoints as macroeconomic data is mostly on a quarterly basis resulting

in a difficult quest for the true model. This requires a high consistent rate

meaning that the algorithm should learn fast from relatively few data.

In terms of lag selection, maenet is in general able to be closer to the

true lag compared to its single-step elastic net variants.

Much gain in efficiency can be achieved as the fraction of relevant vari-

ables is the highest with approximately the same or even better forecasts’

performance as the other methods.

Altogether, this enlightens the current literature in this perspective,

since there has been no study so far that focuses on the benefits by com-

bining the multi-step adaptive elastic net with VAR model estimation.
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7 Limitations and recommendations

One of the limitations of this research has been the simulation study. In

the future, it would be interesting to test this method on a broader variety

of simulated datasets with a much higher dimension, e.g. k = 50 or even

k = 100 like the paper of Kock and Callot(2015) conducted. The reason

that it could not be conducted so extensively in this thesis is due to my

processing power of the computer. It has difficulties with handling such

high dimensional settings.

Future research for optimizing the adaptive weights in themaenet could

be interesting as well. One could think of selecting much more efficient input

weights to reach a much faster convergence for the Π coefficient matrix

estimation.

Another recommendation for future studies is to investigate the robust-

ness of the model with respect to the selected guessed maximum lag length,

say p.max. I initially considered this for my study of this model, however

the calculation power is too demanding for my system.

Last point for future studies is to consider the consistency of thismaenet

method in the VAR context.

It would also be interesting to consider a two-step estimation method.

In the first step themaenet estimation method can be used to find a sparser

model. In the second step another method could be used for estimating the

active coefficients in S1 found by the penalized estimation method maenet,

in the most efficient way where the prediction performance can be improved.

That is where the future research probably could focus on.

53



8 Appendix

8.1 Derivation of the adaptive elastic net for VAR models

This section discusses the derivation of the coordinate descent method for

applying the elastic net model on VAR models. I got inspired by the paper

of Nicholson, Matteson, and Bien (2014) where they did the derivation for

a lasso-VAR model. I used the analogy of reasoning to derive the estimator

for the elastic-net model.

First of all I denote the squared residuals of variable m of the VAR

model as Lm. Suppose that I consider the residuals of a VAR model on

variable g and suppose that I want to estimate Πg,h which is the effect

of the h-th row of the lagged variable matrix Q on the current value of

variable g. The residuals can then be denoted as Lm=g,t = (Ym=g,t −∑kP
n=1 Πm=g,n6=hQn6=h,t − Πm=g,n=hQn=h,t)2. Denote Wm=g,n6=h,t as the

residual of the restricted VAR model for variable g, also called the par-

tial residual in which the effect of the h-th row of the lagged matrix Q

is excluded. Denote Pm,n(Π) as the penalty part of the loss function for

coefficient Πm,n. Now I can re-write the squared residual for variable g as

Lm=g,t in the following equation.

Lg,t(Π) = (Wg,n6=h,t −Πg,hQh,t)2 (19)

If I rewrite the quadratic term in equation 19, I get the following equa-

tion.

Lg,t(Π) = W 2
g,n6=h,t + Π2

g,hQ2
h,t − 2Wg,n6=h,tΠg,hQh,t (20)

Pg,h(Π|λ, α, ω) = λ(αωg,h|Πg,h|+ (1− αωg,h)Π2
g,h), (21)
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Now I aim to minimize function f(Π) = 1
2Lg,t(Π)+Pg,h(Π). Note that

I added the factor of 1
2 in front of Lg,t. I did this to make the derivation

more convenient. In mathematical terms this does not change the location

of the global minimum and therefore will not affect my outcome.

δfg,h(Π|λ, α, ω) = min
Πg,h

[12

T∑
t=1

Lg,t(Π) + Pg,h(Π|λ, α, ω)] (22)

and the subgradient of Lg,h(Π) + Pg,h(Π|λ, α, ω) is denoted as follows.

P ′g,h(Π|λ, α, ω) = λαωg,hψ(Πg,h) + 2λ(1− αωg,h)Πg,h, (23)

L′g,t(Π) = 2Πg,hQ2
h,t − 2Wg,n 6=h,tQh,t, (24)

whereby

ψ(Πg,h) =


sign(Πg,h) if Πg,h 6= 0

[−1, 1] if Πg,h = 0

In order to assure that I have a global minimum for Πg,h in equation 22,

the condition 0 ∈ δfg,h should hold. As I take the first derivative of a

quadratic loss function, this condition implies that the first derivative of

fg,h is zero for a specific value of Πg,h. After some algebraic rewriting, I

get the following result for the VAR adaptive elastic net estimator Π̂g,h.

Π̂g,h =



∑T

t=1 Wg,n 6=h,tQh,t−λαωg,hψ(Πg,h)
2λ(1−αωg,h)+

∑T

t=1 Q2
h,t

if Π̂g,h > λαωg,h

0 if |Π̂g,h| ≤ λαωg,h∑T

t=1 Wg,n6=h,tQh,t+λαωg,hψ(Πg,h)
2λ(1−αωg,h)+

∑T

t=1 Q2
h,t

if Π̂g,h < λαωg,h
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(25)

I can translate the nonlinear estimator Πg,h in equation 8.1 to the soft

threshold ST operator, where ST (a, b) = sign(a) ∗max(|a| − b). For the

estimator it boils down to the following equation.

Π̂g,h = ST (Wg,n6=h,tQh,t, λαωg,h)
2λ(1− αωg,h) +

∑T
t=1 Q2

h,t

(26)

8.2 Ridge estimation within VAR framework

For the adaptive elastic net estimation, there are two possibilities for the

weighting matrices. On the one hand I can use the Π matrix being esti-

mated from the lasso method on the VAR model. That is when α = 1 in

equation 5. I use the coordinate descent algorithm to estimate this Π ma-

trix. On the other hand by following the paper of Kock and Callot (2015),

I can make use of the weighting matrix being estimated by the ridge regres-

sion technique where predictors are to a certain extent decorrelated. This is

the case when α = 0. The estimation is as follows. As this is an quadratic

optimization, I decide to leave the proof behind as this derivation is quite

similar as for the normal OLS.

Π̂ = YQ′(Q′Q + λI)−1 (27)
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9 Program codes in R

9.1 Functions

1 # ############ FUNCTIONS ##############

2

3 # LOAD PACKAGES

4

5 library ( tsDyn ) # for sorting data

6 library (vars) # for estimating var model

7 library ( rlist )

8 library ( BigVAR ) # for simulating VAR data

9 library ( tidyverse )

10 library ( lattice )

11 library ( corrplot )

12 library ( abind ); library ( magic ) # for block matrix

13

14 # -------------------- #

15

16 ## Soft - thresholding algorithm for elastic net in VAR Models

17

18 soft_ threshold <- function (z, gamma ){

19 #coef is a scalar coefficient such as B_ij

20 # gamma is the hyperparameter , which is calculated as lambda * alpha

21

22 if(z < -gamma ) {z = z + gamma } # shrink coef

23 else if(z > gamma ) {z = z - gamma } # shrink coef

24 else {z = 0} # eliminate coef

25

26 return (z)}

27

28 # ------------------- #

29

30 # The coordinate descent algorithm applicable for standardized VAR

data

31 ## Got my inspiration from LASSO -VAR(p) algorithm of Nicholson (2014)

32

33 adap_enet_VAR <- function ( input .data , p.max , initial = c(" normal ","

adaptive "),
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34 PI_ini , PI_weight ,

35 weight _ input = c(" lasso ", " ridge ", "none"),

M, R, eps ,

36 alpha .min , alpha .max , lambda .grid , step.

size){

37

38

39 # Setting default values for arguments

40

41 if ( missing (p.max)) {p.max = 8}

42 if ( missing (M)) {M = 5} #is needed for the length of the lambda

grid

43 if ( missing (eps)) {eps = 10^ -4}

44 if ( missing ( alpha .min)) { alpha .min <- 0.75} # since we want to

attach at least 75 percent to the lasso part for variable

selection

45 if ( missing ( alpha .max)) { alpha .max <- 0.95} # since we don ’t want

that the elastic net solely depends on the lasso part.

46 if ( missing (step.size)) {step.size <- 0.1}

47 if ( missing (R)) {R <- 100} # is needed for the depth of the lambda .

grid

48 if ( missing ( initial )) { initial = " normal "}

49 if ( missing ( weight _ input )) { weight _ input = "none"}

50

51

52

53 # Initialize the weightings

54 weight = 1

55 delta <- 1 # chosen conform paper of Xiao (2015)

56

57

58 ## Initialization of the data (with aid of vars package )

59

60 var_ check <- VAR( input .data ,p=p.max ,type="none")

61 datmat _ check <- var_ check $ datamat

62 Y_ tilde <- t( scale ( datmat _ check [ ,(1: ncol( input .data))]))

63 Q_ tilde <- t( scale ( datmat _ check [ , -(1: ncol( input .data))]))

64 YQ_ tilde <- rbind (Y_tilde ,Q_ tilde )

65 QY <- Q_ tilde %*% t(Y_ tilde ) # matrix product of Z_ tilde

and t(Y_ tilde )
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66 k <- nrow(Y_ tilde )

67 kp.max <- nrow(Q_ tilde ); T <- ncol(Y_ tilde )

68

69

70 if ( missing (PI_ini)) {PI_ini <- matrix (rep (1 ,(k*kp.max)), nrow=k,

ncol=kp.max)}

71 if ( missing (PI_ weight ) && weight _ input == " lasso ")

72 {PI_ weight <- PI_ini

73 PI_ weight <- adap_enet_VAR2( input .data , p.max = p.max ,

74 initial = initial ,

75 alpha .min = 1, alpha .max = 1,

76 R = R)$PI_ optimal # adaptive with

lasso input

77 }

78

79 if ( missing (PI_ weight ) && weight _ input == " ridge ")

80 {PI_ weight <- PI_ini

81 PI_ weight <- adap_enet_VAR2( input .data , p.max = p.max ,

82 initial = initial ,

83 alpha .min = 0, alpha .max = 0,

84 R = R)$PI_ optimal # adaptive with

ridge input

85 }

86

87

88 # penalty grid

89 alpha .grid <- sort(seq( alpha .min , alpha .max ,step.size), decreasing =

TRUE)

90 lambda .grid <- exp(seq(log(max(QY)),log(max(QY))/R, length .out = M))

91

92 # looping through sequence of penalty grids , where lambda is

conditioned on alpha

93 PI_old <- PI_new <- PI_ini

94 VAR_ array <- list (); counter = 1 # storage of PI_new and

referring residual

95

96 ptm <- proc.time () # starts stopwatch

97

98

99 for (a in 1: length ( alpha .grid)){
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100 alpha = alpha .grid[a]

101

102 for (m in 1:M){ # looping through M iterations for lambda

conditioned on specific value for alpha

103 lambda <- lambda .grid[m]

104

105 #### Run coordinate descent algorithm if alpha !=0

106 Y_ tilde .used = Y_ tilde

107 Q_ tilde .used = Q_ tilde

108

109 #### Run coordinate descent algorithm when alpha != 0

110 if( alpha != 0){PI_new <- coordesc _enet(PI_old = PI_old , Y_ tilde

= Y_ tilde .used , Q_ tilde = Q_ tilde .used ,

111 initial = initial , PI_ weight = PI_

weight , lambda = lambda , alpha =

alpha , delta = delta )}

112

113 #### Calculate analytically the result when alpha == 0; ridge

regression

114 if ( alpha == 0) {PI_new = Y_ tilde %*% t(Q_ tilde ) %*% solve ((Q_

tilde %*% t(Q_ tilde )) + lambda *diag (1, nrow = kp.max))} #

ridge solution

115

116

117 error _new <- Y_ tilde - PI_new %*% Q_ tilde

118 PI_old <- PI_new

119

120

121 # store in results in a big list

122 VAR_ array [[ counter ]] <- list(PI.est = round (PI_new ,2) , lambda .

est = round (lambda ,2) , alpha .est = alpha , delta = delta ,

123 residuals2 = round (sum(t( colSums (

apply ( error _new , 1, function (x

) x^2)))) ,2),

124 iteration = counter )

125

126 counter = counter + 1

127

128 } # end M ( lambda ) loop

129
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130 } # end alpha loop

131

132 # Create report based on optimization algorithm

133

134 VAR.lag.df = as.data. frame (do.call(rbind , lapply (VAR_array , unlist )

)) # convert the big list into a dataframe

135 VAR.lag.df = unique (VAR.lag.df) # remove duplicates

136 VAR.lag.df = dplyr :: arrange (VAR.lag.df , residuals2 ,desc( alpha .est))

137

138 # Return PI matrix of the lowest SSR

139 PI_ optimal = matrix (as. numeric ( unlist (VAR.lag.df [1 ,1:(k^2*p

.max)])), nrow = k, ncol = kp.max)

140 lambda _ optimal = as. numeric ( unlist (VAR.lag.df [1 ,]$ lambda .est))

141 alpha _ optimal = as. numeric ( unlist (VAR.lag.df [1 ,]$ alpha .est))

142

143 proc.time () - ptm # end of stopwatch

144

145 return (list(PI_ optimal = PI_optimal ,

146 alpha _ optimal = alpha _optimal , lambda _ optimal = lambda _

optimal ))}

147

148 # ----------------------- #

149

150 # Mulit -step adaptive elastic net for VAR models algorithm

151

152 multi _step_enet_VAR <- function ( input .data , R, p.max , alpha .min ,

alpha .max , eps){

153

154 if ( missing (eps)) {eps <- 10^ -4}

155

156 PI_ weight <- PI_ maenet _old <- PI_ maenet _ini <- adap_enet_VAR( input .

data = input .data , R = R, p.max = p.max , alpha .min = alpha .min ,

alpha .max = alpha .max , initial = " adaptive ")$PI_ optimal

157 max. difference = 1

158 counter . maenet = 1

159

160 while (max. difference > eps){

161

162

163 result . algorithm <- adap_enet_VAR( input .data = input .data ,
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164 R = R, PI_ weight = PI_weight ,

165 p.max = p.max , alpha .min =

alpha .min , alpha .max =

alpha .max ,

166 initial = " adaptive ")

167

168 PI_ maenet _new <- result . algorithm $PI_ optimal

169 max. difference = max (( abs(as. vector (PI_ maenet _old) - as. vector (PI

_ maenet _new)))/(1+ abs(as. vector (PI_ maenet _old))))

170 PI_ maenet _old = PI_ maenet _new

171 PI_ weight = PI_ maenet _old

172 counter . maenet = counter . maenet + 1

173

174 }

175

176 alpha _ optimal = result . algorithm $ alpha _ optimal

177 lambda _ optimal = result . algorithm $ lambda _ optimal

178

179

180 return (list(PI_ optimal _ maenet = PI_ maenet _new , alpha _ optimal =

alpha _optimal ,

181 lambda _ optimal = lambda _ optimal ))}

182

183

184 # ----------------------- #

185

186 ## Coordinate descent algorithm for elastic net on VAR models

187

188 coordesc _enet <- function (PI_old , Y_tilde , Q_tilde , initial = c("

normal ", " adaptive "), PI_weight , lambda , alpha , delta ){

189

190 # COORDINATE DESCENT UPDATE : update each coordinate of the PI matrix

given lag , lambda , alpha , row i and column j

191

192 k <- nrow(Y_ tilde ); kp.max <- nrow(Q_ tilde ); T <- ncol(Y_ tilde

)

193

194 weight = 1

195
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196 if ( missing (PI_old)) {PI_old <- matrix (rep (1 ,(k*kp.max)), nrow=k,

ncol=kp.max)}

197 PI_new <- PI_old

198

199 if ( missing (PI_ weight )) {PI_ weight <- PI_old}

200

201 gamma <- lambda * alpha # hyperparameter

202 correction .enet <- 1+(( lambda *(1- alpha ))/(T*k)) # to correct for

double shrinkage /bias correcting

203

204 R.vec <- rep(NA , length .out=T) # Initiate a Tx1 vector for partial

residuals

205 max. difference <- 1

206 eps <- 10^ -4

207

208 while (max. difference > eps){

209

210 for(i in 1:k){

211 for (j in 1: kp.max){

212

213 PI.Q_ex_j <- PI_old[i,-j] %*% Q_ tilde [-j ,]

214 R.vec <- t(Y_ tilde [i ,] - PI.Q_ex_j) # vector of

restricted ( model ) residuals

215 Q_j_ squared <- t(Q_ tilde [j ,]) %*% (Q_ tilde [j ,])

216

217 PI_ij_hat <- (Q_ tilde [j ,] %*% R.vec) # plot of restricted

( model ) residuals on j th row of original Z mat

218 PI_ij_hat = bound (PI_ij_hat) # such that there exists no Inf or

-Inf values

219

220 ### weights for normal part

221 if ( initial == " normal ") { weight = 1}

222

223 if ( initial == " adaptive ") { weight = abs(PI_ weight [i,j]* gamma )

^(- delta )}

224

225 if (is. finite (PI_ weight [i,j]))

226 {PI_new[i,j] = correction .enet*(( soft_ threshold (PI_ij_hat

, ( gamma * weight )) / ((2* lambda *(1 -( alpha * weight )))+Q_j_

squared )))}
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227 if(!is. finite (PI_ weight [i,j]))

228 {PI_new[i,j] = 0}

229

230 max. difference = max (( abs(as. vector (PI_old) - as. vector (PI_new)

))/(1+ abs(as. vector (PI_old))))

231

232 PI_old[i,j] = PI_new[i,j] # update the old PI matrix

233

234

235 } #end j loop

236

237 if (abs(sum(PI_new[i ,])) > 1) {PI_new[i ,] = normalize (PI_new[i ,])

}; PI_old = PI_new

238

239 } #end k loop , thus whole PI matrix is updated

240

241 } #end while loop

242

243 return (PI_new)}

244

245 # ------------------------ #

246 #

247 # ------------------------ #

248

249 ## Cross - validation for VAR models with Elastic -Net

250 # By means of this time - dependent cross validation we want to

optimize the hyperparameters lambda and alpha of this model

251

252 enet_VAR_cval <- function ( input .data , p.max ,

253 initial = c(" normal "," adaptive "), weight _

input =c(" lasso ", " ridge "),

254 alpha .min , alpha .max ,

255 R){

256

257

258 # Create time intervals

259 T_full <- length ( input .data [ ,1]) - p.max

260 T1 <- floor (T_full/3)

261 T2 <- floor (T_full/3*2)

262
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263 length . window = T1

264 length .eval = T2 - T1

265 length . fcast = T_full - T2

266

267

268 # Load and prepare dataset

269 var_ check <- VAR( input .data ,p=p.max ,type="none")

270 datmat _ check <- var_ check $ datamat

271 Y_ tilde _full <- t( scale ( datmat _ check [ ,(1: ncol( input .data))]))

272 Q_ tilde _full <- t( scale ( datmat _ check [ , -(1: ncol( input .data))]))

273

274 MSFE_ matrix = matrix (NA , nrow = length .eval , ncol = 3)

275 colnames (MSFE_ matrix ) <- c("MSFE", " alpha ", " lambda ")

276

277

278 # train the parameters in block T1 +1 to T2

279

280 for (t in 1: length .eval)

281 {

282

283 algo_est_init <- adap_enet_VAR( input .data = input .

data[t:( T1+t -1+4) ,],

284 initial = initial ,

weight _ input =

weight _input ,

285 R = R, p.max = p.max ,

286 alpha .min = alpha .min ,

alpha .max = alpha

.max)

287 eval_ position <- T1 + t

288

289 Y_ tilde _ train <- algo_est_init$Y_ tilde

290 Q_ tilde _ train <- algo_est_init$Q_ tilde

291

292 PI_ train <- algo_est_init$PI_ optimal

293

294 alpha _ train <- algo_est_init$ alpha _ optimal

295 lambda _ train <- algo_est_init$ lambda _ optimal

296
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297 Y_ train _ fcast <- PI_ train %*% Q_ tilde _full[,eval_

position ]

298 fcast _ train _err <- Y_ tilde _full[,eval_ position ] - Y_

train _ fcast

299

300 MSFE_ matrix [t ,1] <- sum( fcast _ train _err ^2)

301 MSFE_ matrix [t ,2] <- alpha _ train

302 MSFE_ matrix [t ,3] <- lambda _ train

303

304 }

305

306 for ( parameters in 1: length .eval) {

307

308 alpha _eval = MSFE_ matrix [ parameters ,2]

309 lambda _eval = MSFE_ matrix [ parameters ,3]

310

311 for ( observation in 1: length . fcast ) {

312

313 fcast _ position = T2 + observation

314 Y_ tilde _eval = matrix (Y_ tilde _full[, fcast _ position ], ncol

=1)

315 Q_ tilde _eval = matrix (Q_ tilde _full[, fcast _ position ], ncol

=1)

316

317 begin . window = fcast _ position - length . window

318 end. window = fcast _ position

319

320 if ( alpha .min != 0 && alpha .max != 0)

321 {PI_eval = coordesc _enet(Y_ tilde = Y_ tilde _full[, begin .

window :end. window ],

322 Q_ tilde = Q_ tilde _full[, begin .

window :end. window ],

323 initial = initial ,

324 alpha = alpha _eval ,

325 lambda = lambda _eval ,

326 delta = 1)

327 }

328

329 if ( alpha .min == 0 && alpha .max == 0)

330 {
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331 PI_eval <- adap_enet_VAR2( input .data = input .data[ begin .

window :( end. window +p.max) ,], p.max = p.max ,

332 initial = initial ,

333 alpha .min = 0, alpha .max = 0,

334 R = R)$PI_ optimal

335 }

336

337

338

339 eval_ error = Y_ tilde _eval - PI_eval %*% Q_ tilde _eval

340 MSFE_eval_ matrix [ parameters , observation ] = sum(eval_ error ^2)

341 }

342

343 }

344

345 MSFE_eval_avg = cbind ( rowMeans (MSFE_eval_ matrix ), MSFE_ matrix

[,2], MSFE_ matrix [ ,3])

346 colnames (MSFE_eval_avg) = c("MSFE", " alpha ", " lambda ")

347

348 # find parameters with minimum MSFE

349 optimal _ parameters = MSFE_eval_avg[ which .min(MSFE_eval_avg [ ,1])

,2:3]

350

351

352

353 return (list(MSFE_matrix , MSFE_eval_avg , optimal _ parameters ))}

354

355 # ------------------------ #

356

357 bound <- function (x){

358

359 # this function is meant for censoring the weights such that it can

’t take extreme values .

360 if(!is. finite (x)) {x = 0}

361 if(is. finite (x) && x == -Inf) {x = -10^100}

362 if(is. finite (x) && x == Inf) {x = 10^100}

363

364 return (x)}

365

366
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367 # ------------------------ #

368

369 ## Forecast function

370

371 forecast <- function ( input .data ,

372 reg_type = c("ols", " penalized "),

373 initial = c(" adaptive ", " normal "),

374 weight _ input = c(" ridge ", " lasso ","none"), p.max

, R,

375 alpha , lambda ,

376 iter) {

377

378

379 # Create time intervals

380 T_full <- length ( input .data [ ,1]) - p.max

381 T1 <- floor (T_full/3)

382 T2 <- floor (T_full/3*2)

383

384 length . window = T2

385 length . fcast = T_full - length . window

386

387 # Initialize dataset

388 var_ check <- VAR( input .data ,p=p.max ,type="none")

389 datmat _ check <- var_ check $ datamat

390 Y_ tilde _full <- t( scale ( datmat _ check [ ,(1: ncol( input .data))]))

391 Q_ tilde _full <- t( scale ( datmat _ check [ , -(1: ncol( input .data))]))

392

393

394 SFE. error <- matrix (NA , nrow = length .fcast , ncol=nrow(Y_ tilde _full

))

395

396 for ( observation in 1: length . fcast ) {

397

398 fcast _ position = T2 + observation

399 Y_ tilde _ fcast = matrix (Y_ tilde _full[, fcast _ position ], ncol =1)

400 Q_ tilde _ fcast = matrix (Q_ tilde _full[, fcast _ position ], ncol =1)

401

402 begin . window = 1

403 end. window = length ( input .data [ ,1]) -length . fcast

404
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405 input .eval = input .data[ begin . window :end.window ,]

406

407 if(reg_type!="ols" || reg_type!="ols_ oracle "){

408 # PI_eval <- adap_enet_VAR( input .data = input .eval , p.max = p.

max ,

409 # initial = initial , weight _ input =

weight _input ,

410 # alpha .min = alpha , alpha .max = alpha ,

411 # R = R)$PI_ optimal }

412

413 PI_eval = PI_ input }

414

415 if(reg_type =="ols"){

416 PI_eval <- Bcoef (VAR( input .data = input .eval ,p=p.max ,type="none"

))

417

418 }

419

420 if(reg_type =="ols_ oracle "){

421 PI_eval = PI_org

422

423 }

424

425 fc_ error = Y_ tilde _ fcast - PI_eval %*% Q_ tilde _ fcast

426 SFE. error [ observation ,] = fc_ error ^2

427 }

428

429 MSFE <- mean(SFE. error )

430

431 return (MSFE)}

432 # -------------------------- #

433

434 # normalize vector

435

436 normalize <- function ( vector ) { vector / sqrt(sum( vector ^2))}

437

438 # -------------------------- #

439

440 compare _true_est_vars <- function (PI_org , PI_est)

441
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442 {

443

444 k = nrow(PI_org)

445 p = ncol(PI_org)/k

446 p.max = ncol(PI_est)/k

447 kp.max = k*p.max

448

449 PI_full_org <- matrix (0, nrow=k,ncol=kp.max)

450 PI_full_org [ ,1: ncol(PI_org)] = PI_org

451

452

453 PI_true_vec <- as. vector (PI_full_org)

454 PI_est_vec <- as. vector (PI_est)

455

456 true_ active _ index <- which (PI_true_vec!=0)

457 est_ active _ index <- which (PI_est_vec!=0)

458 est_ active <- length (est_ active _ index )

459

460 match _ count <- est_ active _ index %in% true_ active _ index

461

462 frac_ relevant _vars <- length ( which ( match _ count == TRUE))/ length ( match

_ count )

463

464 true_ included <- true_ active _ index %in% est_ active _ index

465 true_ included = all(true_ included == TRUE)

466

467 diff_est_true <- sum (( PI_est_vec -PI_true_vec)^2)

468

469

470 # correct sparsity

471

472 zeroes _ model = which (PI_est == 0)

473 zeroes _DGP = which (PI_org == 0)

474

475 corr_ spars = length ( which ( zeroes _ model != zeroes _DGP))

476

477

478 summary _ table <- matrix (NA , ncol =5)

479 summary _ table [ ,1] = est_ active

480 summary _ table [ ,2] = frac_ relevant _vars
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481 summary _ table [ ,3] = true_ included

482 summary _ table [ ,4] = diff_est_true

483 summary _ table [ ,5] = corr_ spars

484

485 colnames ( summary _ table ) = c("est_act_vars", "frac_rel_vars", "true_

included ", "SE_PI", "corr_ spars ")

486

487 return ( summary _ table )}

488

489 # ------------------------ #

490

491

492 # The coordinate descent algorithm applicable for standardized VAR

data

493 ## Got my inspiration from LASSO -VAR(p) algorithm of Nicholson (2014)

494

495 adap_enet_VAR2 <- function ( input .data , p.max , initial = c(" normal ","

adaptive "),

496 PI_ini , PI_weight ,

497 weight _ input = c(" lasso ", " ridge ", "none"),

M, R, eps ,

498 alpha .min , alpha .max , lambda .grid , step.

size){

499

500

501 # Setting default values for arguments

502

503 if ( missing (p.max)) {p.max = 8}

504 if ( missing (M)) {M = 5} #is needed for the length of the lambda

grid

505 if ( missing (eps)) {eps = 10^ -4}

506 if ( missing ( alpha .min)) { alpha .min <- 0.75} # since we want to

attach at least 75 percent to the lasso part for variable

selection

507 if ( missing ( alpha .max)) { alpha .max <- 0.95} # since we don ’t want

that the elastic net solely depends on the lasso part.

508 if ( missing (step.size)) {step.size <- 0.1}

509 if ( missing (R)) {R <- 100} # is needed for the depth of the lambda .

grid

510 if ( missing ( initial )) { initial = " normal "}
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511 if ( missing ( weight _ input )) { weight _ input = "none"}

512

513

514

515 # Initialize the weightings

516 weight = 1

517 delta <- 1 # chosen conform paper of Xiao (2015)

518

519

520 ## Initialization of the data (with aid of vars package )

521

522 var_ check <- VAR( input .data ,p=p.max ,type="none")

523 datmat _ check <- var_ check $ datamat

524 Y_ tilde <- t( scale ( datmat _ check [ ,(1: ncol( input .data))]))

525 Q_ tilde <- t( scale ( datmat _ check [ , -(1: ncol( input .data))]))

526 YQ_ tilde <- rbind (Y_tilde ,Q_ tilde )

527 QY <- Q_ tilde %*% t(Y_ tilde ) # matrix product of Z_ tilde

and t(Y_ tilde )

528 k <- nrow(Y_ tilde )

529 kp.max <- nrow(Q_ tilde ); T <- ncol(Y_ tilde )

530

531

532 if ( missing (PI_ini)) {PI_ini <- matrix (rep (1 ,(k*kp.max)), nrow=k,

ncol=kp.max)}

533 if ( missing (PI_ weight ) && weight _ input == " lasso ")

534 {PI_ weight <- PI_ini

535 PI_ weight <- adap_enet_VAR2( input .data , p.max = p.max ,

536 initial = initial ,

537 alpha .min = 1, alpha .max = 1,

538 R = R)$PI_ optimal # adaptive with lasso

input

539 }

540

541 if ( missing (PI_ weight ) && weight _ input == " ridge ")

542 {PI_ weight <- PI_ini

543 PI_ weight <- adap_enet_VAR2( input .data , p.max = p.max ,

544 initial = initial ,

545 alpha .min = 0, alpha .max = 0,

546 R = R)$PI_ optimal # adaptive with ridge

input
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547 }

548

549

550 # penalty grid

551 alpha .grid <- sort(seq( alpha .min , alpha .max ,step.size), decreasing =

TRUE)

552 lambda .grid <- exp(seq(log(max(QY)),log(max(QY))/R, length .out = M))

553

554 # looping through sequence of penalty grids , where lambda is

conditioned on alpha

555 PI_old <- PI_new <- PI_ini

556 VAR_ array <- list (); counter = 1 # storage of PI_new and

referring residual

557

558 ptm <- proc.time () # starts stopwatch

559

560

561 for (a in 1: length ( alpha .grid)){

562 alpha = alpha .grid[a]

563

564 for (m in 1:M){ # looping through M iterations for lambda

conditioned on specific value for alpha

565 lambda <- lambda .grid[m]

566

567 #### Run coordinate descent algorithm if alpha !=0

568 Y_ tilde .used = Y_ tilde

569 Q_ tilde .used = Q_ tilde

570

571 #### Run coordinate descent algorithm when alpha != 0

572 if( alpha != 0){PI_new <- coordesc _enet(PI_old = PI_old , Y_ tilde

= Y_ tilde .used , Q_ tilde = Q_ tilde .used ,

573 initial = initial , PI_

weight = PI_weight ,

lambda = lambda ,

alpha = alpha , delta

= delta )}

574

575 #### Calculate analytically the result when alpha == 0; ridge

regression
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576 if ( alpha == 0) {PI_new = Y_ tilde %*% t(Q_ tilde ) %*% solve ((Q_

tilde %*% t(Q_ tilde )) + lambda *diag (1, nrow = kp.max))} #

ridge solution

577

578

579 error _new <- Y_ tilde - PI_new %*% Q_ tilde

580 PI_old <- PI_new

581

582

583 # store in results in a big list

584 VAR_ array [[ counter ]] <- list(PI.est = round (PI_new ,2) , lambda .

est = round (lambda ,2) , alpha .est = alpha , delta = delta ,

585 residuals2 = round (sum(t( colSums (

apply ( error _new , 1, function (x

) x^2)))) ,2),

586 iteration = counter )

587

588 counter = counter + 1

589

590 } # end M ( lambda ) loop

591

592 } # end alpha loop

593

594 # Create report based on optimization algorithm

595

596 VAR.lag.df = as.data. frame (do.call(rbind , lapply (VAR_array , unlist )

)) # convert the big list into a dataframe

597 VAR.lag.df = unique (VAR.lag.df) # remove duplicates

598 VAR.lag.df = dplyr :: arrange (VAR.lag.df , residuals2 ,desc( alpha .est))

599

600 # Return PI matrix of the lowest SSR

601 PI_ optimal = matrix (as. numeric ( unlist (VAR.lag.df [1 ,1:(k^2*p

.max)])), nrow = k, ncol = kp.max)

602 lambda _ optimal = as. numeric ( unlist (VAR.lag.df [1 ,]$ lambda .est))

603 alpha _ optimal = as. numeric ( unlist (VAR.lag.df [1 ,]$ alpha .est))

604

605 proc.time () - ptm # end of stopwatch

606

607 return (list(PI_ optimal = PI_optimal ,
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608 alpha _ optimal = alpha _optimal , lambda _ optimal = lambda _

optimal ))}

609

610 # ############ END OF FUNCTIONS ################

./Codes_New/Nasser_functions_v2.R

75
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