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Feature selection, or variable selection, is an important task that is needed within a lot of

disciplines. This study applies deep learning on the selection of features using a proposed model.

This study contributes to existing literature by examining the performance of a recurrent neural

network in a model where both knockoffs of features, or almost identical copies of variables, and

the true features are combined within one model framework. This model is used for variable

selection purposes where a controlled false discovery rate is used. A simulation study shows

that adding additional information with a recurrent neural network does not seem to improve

a selection of a subset of features and that combining both knockoff features and true features

does only give an advantage to subset selection in case of a feedforward neural network.
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1 Introduction

Modeling and feature selection (variable selection) take a prominent role in the assessment of

econometric models. Companies and regulating entities use feature selection to get more accurate

models that are used for decision-making. Feature selection can lead to subset selection and

model simplification. Feature selection can be done using parametric statistical tools and non-

parametric statistical tools. One non-parametric variant is the use of a neural network algorithm

(Arnerić, Šestanović, & Aljinović, 2014). Neural networks (NNs) are networks consisting of

neurons from the nervous system and the use of neural network models has been extended over

the years to several fields, like e.g. astronomy, bionics, Information Technology, economics and

econometrics. Neural networks are a set of machine learning methods, where machine learning

can be seen as a subfield of artificial intelligence.

NN models are used for non-linear models and are applicable for forecasting purposes (e.g.

Franses and Draisma (1997)), classification, recognition purposes and regressions (Cheng & Tit-

terington, 1994; Gómez-Ramos & Venegas-Mart́ınez, 2013). NN models are no estimation mod-

els, which use Maximum Likelihood estimation, but which make use of the backpropagation

algorithm (Rumelhart, Hinton, & Williams, 1986). This backpropagation algorithm can be seen

as a gradient method (Gómez-Ramos & Venegas-Mart́ınez, 2013) when a feedforward neural

network with multiple hidden layers, also known as a Multilayer Perceptron (MLP) (Arnerić et

al., 2014), is used. The advantage of using NNs, without having to depend on prior information,

to select relevant features of a dataset is a favourable aspect (Chong, Han, & Park, 2017).

NNs form a graphical representation of nodes from a process that flows from input to output with

in-between processes that influence the input nodes until the output is reached. Architectures

of NNs depend on the interconnectedness between the nodes, the configuration of the nodes and

the nature of the operations at each node reliable on the problem at hand (Cook & Smalter Hall,

2017). NNs are build upon the concept of a perceptron, which has three layers. The input layer

directs the input into the second computational layer (the hidden layer), which processes the

inputs. The output layer is the third layer with nodes that contain the output (Gradojevic &

Yang, 2000). Activation functions can be used to determine which neurons should be turned

on or off inside a hidden layer (Kuan, 2006). Activation functions are not necessary to build

a working NN (Kuan, 2006), but are used such that the network does not fold together into a

linear model and such that an NN is one of the possible choices for modeling the data.

The feedforward neural network (FNN) is considered to be the basis for other adaptations of

NNs. An extension on the FNN is the recurrent neural network (RNN), which is a network which

has a memory such that nodes from a previous step in the network will be taken into account

in the following steps (Elman, 1990), which gives an advantage of the RNN compared to FNNs

to create long temporal structures (Sundermeyer, Alkhouli, Wuebker, & Ney, 2014). In other

words: The RNN is a dynamic form of a neural network algorithm in the way the information

1



Introduction 2

of the hidden layer from the previous step is incorporated into the model again for determining

the output (Cook & Smalter Hall, 2017).

There are several variants of the RNN model, including, among others: Real-Time Recurrent

Learning (Sutskever, 2013; Williams & Zipser, 1989), Time-Delay Neural Network (Waibel,

Hanazawa, Hinton, Shikano, & Lang, 1989), Long-Short Term Memory (Hochreiter & Schmid-

huber, 1997), Echo-State Network (Jaeger & Haas, 2004), Elman Network (Elman, 1990; Kuan

& Liu, 1995; Kuan, 2006; Sitte & Sitte, 2002) and Jordan Neural Network (Jordan, 1986, 1997;

Kuan, 2006). This paper will focus on the Elman neural network. In contrast to the Jordan

network, where the updated output is again used in the next step when updating the weights, the

Elman neural network (ENN) looks more at the internal neural responses and takes the hidden

layer nodes from the previous step into account in the hidden layer in the next step during the

training process (Kuan, 2006).

Given that in reality, not all information may be relevant for explaining the output (Foygel Barber

& J. Candès, 2015; Cook & Smalter Hall, 2017; Jianming, 1998; Gao & Jojic, 2016; Rohwer,

1990; Gradojevic & Yang, 2000), this paper tries to complement the problem of filtering out

relevant features/variables by using the model-X knockoffs framework in combination with a

DeepPINK (Deep feature selection using Paired-Input Nonlinear Knockoffs) model framework

introduced by (Candès, Fan, Janson, & Lv, 2018). The model-X knockoffs framework is in

essence used to create copies which are almost identical to the original X-variables of a dataset,

whereas DeepPINK is used to combine these copies in combination with the original variables in

order to verify if this method may be beneficial for selecting relevant features in a dataset. The

mathematical derivation of the model-X knockoffs and DeepPINK framework will be outlined in

section 2. The model-X knockoffs framework will be combined with an ENN. In other words:

This study will try to accommodate a solution to the problem of feature selection for

an RNN by using a model-X knockoffs framework in combination with a DeepPINK

model framework, where the objective of this study lies in examining to what extent

the algorithm can be improved in terms of feature selection by employing these

frameworks into an RNN.

This way the proposed method may lead to dimension reduction by selecting the relevant features

(Herbrich, Keilbach, Graepel, Bollmann-sdorra, & Obermayer, 1998) while using the memory

property of an RNN. Gençay and Liu (1997) compare the relative prediction performance of the

ENN (Elman, 1990) with the FNN. They find that the ENN predicts with a smaller noise than

the FNN. This study will test if the error for selecting features will be smaller when applying a

combination of the model-X knockoffs framework and the DeepPINK model framework for an

RNN.

A knockoff filter will be implemented in order to get model-X knockoff features. The knockoff

filter was first introduced by Foygel Barber and J. Candès (2014, 2015) as variable selection

method to control the FDR (the false discovery rate or the expected number of false discov-

eries relative to all discoveries) in a statistical linear model where the number of observations

is at least as high as the number of variables. An advantage of using the knockoffs framework

is that the framework can be used in combination with several test statistics. In the work of
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Foygel Barber and J. Candès (2016) they use the knockoffs framework in a two-stage model

which was used for FDR control in high-dimensional linear models, where the number of vari-

ables is higher than the number of observations. Katsevich and Sabattiy (2018) embedded the

knockoff filter to a multilayer knockoff filter (MKF), where they combine the multilayer knock-

offs framework of Foygel Barber and J. Candès (2015) and the framework for multilayer FDR

control of Foygel Barber and Ramdas (2016). This way they try to have FDR control for a

large number of variables where they take the possibility of grouping of important variables

into account. Foygel Barber, J. Candès, and J. Samworth (2019) look at the model-X knockoffs

framework where the distribution of a subset with p features is not known for sure and needs to

be estimated. The p features are used to derive p knockoff copies of the original features in order

to check if there are not too many irrelevant features chosen to explain the dependent outcome

(Foygel Barber et al., 2019). Romano, Sesia, and J. Candès (2018) use deep-generative models for

sampling approximate knockoffs in case the distribution is not specified. A Metropolis-Hastings

formulation is used in the work of Bates, Candès, Janson, and Wang (2019) for sampling knockoff

variables. Sesia, Katsevich, Bates, Candès, and Sabatti (2019) develop a method that is used to

localize causal genetic variants and to control the FDR with knockoff copies for the genotypes as

controls. In this study the model-X knockoffs will be created as was done in the study of Candès

et al. (2018) and Lu, Fan, Lv, and Stafford Noble (2018).

The objective of this study is to develop a machine learning technique for combining the model-X

knockoffs framework with the DeepPINK model framework into an ENN, where a supervised

learning method will be applied. Supervised learning methods do require to have knowledge of

the underlying modeling process. This means that the model will map given input to known

output. The accuracy in feature selection within the proposed model will be assessed by looking

at error rates. Up until now, research using the DeepPINK model framework has only focused

on the filtering of input variables in combination with an FNN (Lu et al., 2018). The extension

of the existing literature in this study is relevant for practical purposes as well as for scientific

purposes, which will be interesting for data scientists and data analysts who work with NNs.

This study will give an answer to the following questions:

• Will an ENN algorithm combined with the model-X knockoffs framework and the Deep-

PINK model framework prove to be better in feature selection than an ENN where only

the knockoffs are used as variables?

• What differences in feature selection arise when considering an FNN with model-X knock-

offs and DeepPINK?

• Will varying the initial settings alter conclusions regarding feature selection, where the

number of hidden layers, number of observations and number of features (variables) will

be varied?

A simulation study will be developed to assess how well the proposed model performs in selecting

features compared to other NNs when subjected to several forms of model-X knockoffs and several

levels of non-zero signals for the parameters. The outcomes of all examined models will be used

to assess the reliability with the mean squared error and mean squared prediction error. An
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empirical application will be done using the proposed model to see how the model performs on

real data.

The remainder of this study is structured as follows: Section 2 will discuss the proposed model

and the methodology behind this model. Techniques for measuring the performance and accuracy

of the proposed model will also be discussed. In section 3 the results with the use of the proposed

model will be given where a simulation study will be implemented in order to assess the reliability

of the outcomes from the model. Subsequently, I will give a brief outline of the used data and

an empirical analysis will be performed on the data to examine how well the model performs

in practice. Section 4 will conclude the research after which some recommendations for further

research will be given.



2 Methodology

Before outlining the methodology that is used in this paper, I will start with defining the ENN and

then I will follow with the extension of the ENN using a combination of the model-X knockoffs

framework and the DeepPINK framework. Comparison tests and measures for accuracy and

performance are discussed.

2.1 Recurrent neural networks

For simplicity, I will assume that the set of nodes in the proposed model is finite, where the

set of nodes can also be infinite (de Paula, 2016). Note that a link between nodes can also be

self-referential, such that a node links to itself, and that two nodes can have a reciprocal link,

such that the relationship between the nodes goes both ways (de Paula, 2016). For this paper I

assume that the network is directed (only a link from one node to the other exists and not the

other way around) and weighted. Hence, I do not assume that there are also non-existent links

within the network (Chandrasekhar, 2016). The configuration of the model that is used in this

paper, regarding the number of hidden layers, number of nodes and activation function is given

in Appendix A.

The fully connected ENN with U hidden layers, one input variable and one output variable can

graphically be depicted as follows (Sutskever, 2013):
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Here the N × 1 vector It is the input at step t in the training process for t = 1, ..., T updates

for one variable with N observations, the N × 1 vector Hu
t is the uth hidden layer node at step

t for u = 1, ..., U hidden layers and the N × 1 vector Ot is the output neuron at step t. This

architecture is fully connected as all hidden layer nodes have context units (Lobbrecht, Dibike,

& Solomatine, 2005), which also means that the number of weights and context units depend on

the number of nodes in the network and in the hidden layer, respectively. One should keep in

mind that the convergence of the weights is done at a faster rate when there are fewer neurons

compared to the number of data points (Herbrich et al., 1998).

The ENN with 1 hidden layer could be defined as follows for the t-th step (Binner, Elger, Nilsson,

& Tepper, 2005; Chappelier, Gori, & Grumbach, 2001):

νt = w1,t−1It + b1 +Ht−1

Ht = f(νt)

Ot = wU+1,t−1Ht

(2.1)

Here f(·) is a non-linear activation function. For the first run, when t = 1, the weights with

subscript t − 1 are the initialized weights before any update has been done in the training

process. The context unit Ht−1 is not yet present during the first step in the training process.

That is, the weight of the context unit is set to 0 instead of 1 during the first step of the training

process before any update of the weights (Elman, 1990). This representation is one of a recurrent

network, given that it is dynamic in the way that hidden layer nodes for the previous step in the

training process are used to determine the hidden layer nodes at the current step. The context

unit does affect all nodes within a hidden layer in the proposed model in this study, in line with

(Elman, 1990). The ReLU function for one node in the hidden layer at update step t is defined

as:

f(νt) = max(0, νt)

f ′(νt) =

1,

0,

 if νt > 0

if νt ≤ 0
for t = 1, ..., T,

(2.2)

where each value within the N × 1 vector f ′(νt) is set to 1 or 0 according to the threshold. The

derivative of the ReLU activation function is used to get the change in slope in order to see the

relevance of the change in the weight (Chong et al., 2017; Sun, 1999).

The formulation of the ReLU function shows that the outcome of the activation function deter-

mines which of the nodes from the hidden layer(s) are important, where the size of importance

is seen by the weight when a hidden layer node is set to 1 and where the node is not important

if the node is set to 0, regardless of the weight corresponding to the node.
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2.2 Model-X knockoffs and the false discovery rate

This paper will use the false discovery rate (FDR) to calculate threshold values in order to filter

out irrelevant variables. Benjamini and Hochberg (1995) state that the number of falsely rejected

null hypotheses are inversely related to the seriousness of the loss that arises from falsely rejected

hypotheses. To this end, they develop a measure to look at the expected proportion of errors

due to falsely rejected hypotheses (call this E(FDP)), which is introduced as the FDR. The FDR

is a measure to control for Type I errors (Benjamini & Hochberg, 1995), where Type I errors

are known as the errors that occur when falsely rejecting hypotheses, while these are actually

true. In the study of Benjamini and Hochberg (1995) the FDR is formulated as the number of

type I errors (call this V ) proportional to the sum of (1) the number of type I errors and (2) the

number of justified rejected hypotheses (call the latter S):

FDR := E(FDP ) = E

[
V

(V + S)

]
, (2.3)

where he assumption is that 0
0 = 0 (Lu et al., 2018).

The model in this paper will be used to do feature selection. To this end, a dataset needs to be

taken into account. Assume that there exists a dataset {X,y} with k+1 independent identically

distributed (i.i.d.) random variables and N observations, where X ∈ RN×k is a feature matrix

and y ∈ RN is the response vector. The purpose of the model in this paper is to find those X

variables/features which can capture the outcomes in y the most. The restriction N > k will

be put on the dataset, given that it is desired that there will be as less identification problems

in estimating the parameters as possible (Foygel Barber & J. Candès, 2015). The model in this

paper can be seen as an ordinary least squares (OLS) problem as an NN also aims to minimize

the estimation errors.

Most methods for FDR control cannot be used in the neural network framework as these methods

use p-values to investigate the Type I errors and as meaningful p-values cannot be obtained (Lu

et al., 2018). Lu et al. (2018) try to use the model-X knockoffs framework as an alternative

to using p-values, which can then be used as control in the selection of variables by comparing

the feature importance between the true and the copied variables. y is assumed to depend on

a subset with p < k features of X. In line with Candès et al. (2018), say that there is an

N × p matrix XS = (x1, ...xp)
T ⊂ X with p < k features which have the model-X knockoffs

X̃S = (x̃1, ...x̃p)
T .

To get FDR control in a neural network setting, one can look at the model-X knockoffs framework

(Lu et al., 2018; Candès et al., 2018). The knockoffs framework is used to make copied features

which can then function in this study as input in a neural network framework combined with

the true features. The knockoff copies are made such that the correlation structure of the

copies resemble the correlation structure of the true variables in order to minimize the FDR

(Foygel Barber & J. Candès, 2014, 2015). Candès et al. (2018) allocate two properties to the

model-X knockoffs:
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1. For any subset with p variables (call this subset A), it holds that (XS , X̃S)swap(A)
d
=

(XS , X̃S), such that ∀i ∈ A the swapped xi and x̃i have the same distribution (denoted

by
d
=) as in the case where these are not swapped.

2. X̃S ⊥ y|XS , such that the knockoff-X X̃S is independent of the outcome y|XS .

By comparing the model-X knockoffs with the original features at some target level q, FDR

control can be achieved (Lu et al., 2018; Candès et al., 2018). The FDR is controlled at target

level q = {0,1}. The target level q means that the FDR is to be at most q irrespective of the

parameters in the model (Foygel Barber & J. Candès, 2015). The relevant knockoffs are found

by using knockoff statistics li = gi(di, d̃i) ∀i ∈ {1, ..., p} (Candès et al., 2018), which are used

as a measure for selection via a threshold to select which features are assumed to be relevant

(Foygel Barber & J. Candès, 2015). Here di and d̃i are respectively scalar measures for the

importance of the features of xi and x̃i and g(·, ·) is an anti-symmetric function. Lu et al. (2018)

sort the absolute scalar knockoff statistics |li| > 0 in descending order and use a threshold value

to determine if the calculated knockoff statistics are higher than a user-specified target FDR level

q ∈ (0, 1). That is, the pairwise couples (xi, x̃i) will be selected with the help of the knockoff

statistics, using a threshold based on the desired FDR level, to filter the most important features

at a certain level. The knockoff test statistic is used to check if the threshold is exceeded. If a

knockoff test statistic occurs several times, I start with taking the first until the last knockoff

variable having that particular test statistic. As threshold values, two measures can be taken

(Lu et al., 2018), which are a threshold for controlling the modified filter (equation (2.4)) of the

FDR and one for the exact FDR (equation (2.5)):

θ = min

{
α ∈ D, |{i : li ≤ −α}|

max(1, |{i : li ≥ α}|)
≤ q
}
, (2.4)

θ+ = min

{
α ∈ D, 1 +

|{i : li ≤ −α}|
max(1, |{i : li ≥ α}|)

≤ q
}
, (2.5)

where D = |li| for i = {1, .., p}, α is the set of sorted absolute knockoff statistics in descending

order and where | · | is the absolute number of times the expression inside the curly brackets

holds. If the ratio inside the curly brackets gets larger than the specified target FDR q, then the

corresponding variable i is selected as a relevant variable.

Either all variables are disposed (p = 0) or chosen (p = k) as the p important features. α is equal

to zero when the target FDR is set to q = 1 and infinite when FDR = 0, which means that the

threshold is determined by the setting of the FDR level. This means that there is no threshold

when the target FDR level is set to 1 (=100% of the variables are found to have a significant

effect), such that all knockoff copies are selected as relevant and that, when the target FDR is

0% (q = 0), no knockoff copies are selected as q is always lower than the calculated fraction

in equation (2.4) and equation (2.5). In this study I have based the algorithm, for making the

thresholds, on the algorithm that is used in the knockoff package in R Core Team (2019), where

this package is developed by and used in the study of Candès et al. (2018).

 https://CRAN.R-project.org/package=knockoff
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2.3 Model framework

This paper will combine the model-X knockoffs framework with the ENN. Using a subset of p

model-X knockoffs allows for selecting features with a controlled FDR. To create the knockoffs the

data is assumed to follow a multivariate Gaussian distribution, such that approximate model-

X Gaussian knockoffs are used as in the study of Candès et al. (2018) and Lu et al. (2018).

This means that XS ∼ N (0,Σ) with variance-covariance matrix Σp×p. A characteristic of the

variance-covariance matrix in a multivariate normal distribution is that the matrix is positive

definite. This means that all elements in the variance-covariance matrix are above 0, such that

Σ−1 exists. The feature matrix (the matrix with the original variables) will be normalized

such that each diagonal element of Σ = (XS)TXS , taken as Σii = ||xi||2 = 1 ∀i ∈ {1, ..., p}
(Foygel Barber & J. Candès, 2015). The assumption is that Σ = (X̃S)T X̃S and (XS)T X̃S = Σ−
diag(s) (Foygel Barber & J. Candès, 2014). This leads to knockoffs, with a correlation structure

comparable to the correlation structure of the true features (Lu et al., 2018; Foygel Barber &

J. Candès, 2015), X̃S = XS(I − diag(s)Σ−1) − ṼD, with Ṽ an orthonormal N × p matrix

(which also means that the columns in the matrix are orthogonal) and with DTD = 2diag(s)−
diag(s)Σ−1diag(s) a Cholevsky decomposition such that:

X̃S |XS ∼ N (XS − diag(s)Σ−1XS , 2diag(s)− diag(s)Σ−1diag(s)), (2.6)

where diag(s) is a diagonal matrix made with a p × 1 vector s with all positive elements with

the additional condition that the conditional variance-covariance matrix stays positive definite.

The joint distribution of the true features and the knockoffs can then be denoted as (Lu et al.,

2018):

(XS , X̃)S ∼ N

((
0

0

)
,

(
Σ Σ− diag(s)

Σ− diag(s) Σ

))
. (2.7)

The value of s needs to be as large as possible in order to prevent a too large resemblance between

the true feature xi and the corresponding knockoff x̃i. This leads to a larger statistical power of

the used method in this paper (Lu et al., 2018; Foygel Barber & J. Candès, 2015).

The covariance in the distribution of X̃S |XS is based on the derivation of the Schur complement

(Foygel Barber & J. Candès, 2014) to ensure that the covariance matrix is invertible. If Σ is in-

vertible, it should hold that for matrix A =

(
Σ Σ− diag(s)

Σ− diag(s) Σ

)
the Schur complement

of Σ in A is derived as (Carlson, 1986):
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Σ− (Σ− diag(s))Σ−1(Σ− diag(s))

= Σ− (ΣΣ−1 − diag(s)Σ−1)(Σ− diag(s))

= Σ− (ΣΣ−1Σ−ΣΣ−1diag(s)− diag(s)Σ−1Σ + diag(s)Σ−1diag(s))

= Σ− (IΣ− Idiag(s)− diag(s)I + diag(s)Σ−1diag(s))

= Σ−Σ + 2diag(s)− diag(s)Σ−1diag(s)

= 2diag(s)− diag(s)Σ−1diag(s).

s is the solution to the maximization problem: 2Σ − diag(s) > 0, 0 ≤ s ≤ 1. This is to ensure

that matrix A is positive definite as a positive definite matrix also has a positive determinant.

For matrix A the determinant must be bigger than zero. Hence, the following must hold:

ΣΣ− (Σ− diag(s))(Σ− diag(s)) > 0

⇐⇒ΣΣ−ΣΣ + 2Σdiag(s)− diag(s)diag(s) > 0

⇐⇒2Σdiag(s)− diag(s)diag(s) > 0

⇐⇒(2Σ− diag(s))diag(s) > 0

⇐⇒2Σ− diag(s) > 0.

The knockoffs are created using the knockoff package, where the maximization of s is done

using semidefinite programming with the package Rdsdp (R Core Team, 2019). All k generated

knockoff variables will be taken and the p relevant knockoffs will be selected at the end of each

epoch during the training process after running the knockoffs and original variables in an ENN.

The knockoff variables and original variables will be sorted in a decreasing manner using the

absolute knockoff statistics, before combining these variables as input in an ENN. The approach

in this paper differs from the approach done in Lu et al. (2018), where Lu et al. (2018) already

selected the p relevant knockoffs after making them and then used these knockoffs inside an

FNN.

Graphically the fully connected ENN with a DeepPINK framework and model-X knockoffs would

look as follows for variable and knockoff variable i:

 https://CRAN.R-project.org/package=knockoff
https://cran.r-project.org/web/packages/Rdsdp/index.html
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The N × 1 vectors xi and x̃i (i = 1, ..., k) are respectively vectors for the original features

(variables) and the corresponding knockoff variables with scalar filter weights of respectively zi

and z̃i. Each pairwise couple is an N × 1 vector Ft that forms a node in the pairwise-coupling

layer. Here Ft for update step t is only one variable in the pairwise-coupling layer and more

nodes are present when using more than one variable in this model for each update step t of

the training process. The algorithm for an ENN with integrated knockoff filters is formulated in

Algorithm 1. The proposed model will be referred to as ‘EDP’ in this paper. The configuration

and some terminology of the training process in this study are given in Appendix B.

The derivation of the feedforward part in Algorithm 1 from the ENN input layer and further is

based on the mathematical derivation in the study of Pham and Liu (1996) and Chong et al.

(2017), where the output of each hidden layer is influenced by all past and current hidden nodes

(Kuan, 2006). The bias term always has a value of 1 (Rumelhart et al., 1986). For this study I

did not implement a bias term in EDP in line with the FNN with DeepPINK in Lu et al. (2018).

The initial values in the k × 1 filter weight vector z and the k × 1 knockoff filter weight vector

z̃, as well as the initial values for all weights in every layer in the model, are randomly set in
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Algorithm 1 Using the original variables and model-X knockoffs inside an Elman neural network

Precondition: The variables in the N × k matrix X are multivariate Guassian

1: Make an N × k knockoffs matrix X̃ from the original input X
2: for e← 1 to E do . E: number of epochs
3: for f ← 1 to F do . F : number of folds
4:

5: Initialize weights
6:

7: Start training process . see Appendix B
8: while t < updates do . updates: number of updates in the training process
9: Start forward pass

10: for i← 1 to k do . k: number of variables
11: F it ← zitxi + z̃itx̃i . Pairwise-coupling layer
12: Git ← f(F it ) . f(·): ReLU function
13: end for
14: for i← 1 to k do
15: Rit ← w0,t �Git . ENN input layer
16: Iit ← f(Rit)
17: end for
18: for i← 1 to k do
19: for j ← 1 to numvar do
20: ν1,it ←

∑p
j=1 w

j,i
1,t−1I

j
t + b1 +H1,j

t−1 . 1st hidden layer, b�: bias term

21: H1,i
t ← f(ν1,it )

22: end for
23: end for
24: if U = 2 then . U : number of hidden layers
25: for i← 1 to k do
26: for j ← 1 to numvar do
27: νu,it ←

∑p
j=1 w

j,i
u,t−1H

u−1,j
t + bu +Hu,i

t−1 . 2nd hidden layer, u = 2

28: Hu,i
t ← f(νu,it )

29: end for
30: end for
31: end if
32: for i← 1 to k do
33: Ot ←

∑k
i=1 w

i
U+1,t−1H

U,i
t . Output layer

34: end for
35: End forward pass
36:

37: Backpropagation . see Appendix C
38: end while
39: End training process
40:

41: Calculate feature importance measures and knockoff statistics after each
batch . See Section 2.3.2

42:

43: Selecting the relevant knockoffs
44:

45: Use the same algorithm as the forward pass for the test set
46: end for
47: end for
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the range of (-0.5, 0.5) with half of the weights within the range (-0.5, 0) and half within the

range (0, 0.5). The weights are initialized this way as otherwise the outcome of the weights may

get too large or too low after convergence during the training process. The first run is always a

forward pass, such that there are no updates yet in the RNN.

The nodes in the input layer after the pairwise-coupling layer are not determined by the sum of

nodes of the previous layer, but each filtered input is connected separately to one node in the

ENN input layer. As the k×1 vector w0,t contains the weights after the pairwise-coupling layer,

the number of weights is the same as the number of variables, given that the DeepPINK filter

combines k true variables and k knockoffs into k filtered input nodes. In line with Pham and

Liu (1996) I decide not to use an activation function in the output layer.

2.3.1 Regularization of the weights

The standard backpropagation algorithm (Rumelhart et al., 1986) will be implemented for up-

dating the weights after each training update using gradient descent (see Appendix C) as this is

considered to be a robust approach for supervised mapping, where the term mapping refers to

finding the parameters, given the input and desired output. The error function will be used to

derive the gradient (derivative) through backpropagation (Chong et al., 2017; Cao, Wang, Ming,

& Gao, 2017).

The error from the backpropagation will be calculated by taking the quadratic cost function (or

loss function) in line with Pham and Liu (1996) and Nabian and Meidani (2019). The quadratic

error will be calculated as:

Et =
1

2
(ytrain −Ot)2, (2.8)

where ytrain is the desired output in the training set and Ot is the calculated output at update

step t in the training process.

During the updates of the weights in the training process the context units may also become

unstable or saturated, which means that the weights need to be controlled during the training

process (Koskela, 2003). Given that the least absolute shrinkage and selection operator (LASSO)

L1-regularization is commonly used for controlling weights when using NNs for feature selection

purposes (Nagpal, 2017), this paper will use L1-regularization as weight decay method in combi-

nation with the loss function in line with Lu et al. (2018). The regularization will be conducted

by taking the cost function:

C = EL1
t = Et + λ||Wt||, (2.9)

where Et is the loss function at update step t during training, λ ∈ [0,∞) is a hyperparameter

used as penalty term to prevent the weights for being too large and where ||W|| is the length

of W = {w0,w1, . . . ,wU ,wU+1}. Here ||W|| is considered to be the norm of ||W|| (Nabian &

Meidani, 2019). This norm can be defined by the expression
√
〈W,W〉 =

√
W �W = |W| =
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∑
i,j |wi,j |, where 〈·, ·〉 is the inner product, � is the dot-product (or element-wise multiplication

of the matrices) and | · | is the absolute, not to confuse with the sign for the determinant of a

matrix. Nabian and Meidani (2019) set the penalty term to 0.5, which will also be the choice

in this study. The higher the penalty term will be set, the lower the calculated weights and

the lower the variance (Nusrat & Jang, 2018). In case bias terms were used in the model, note

that only the weights would be subject to regularization and the bias terms in the model would

remain unregularized (Nabian & Meidani, 2019).

As the L1-regularization scales the additional term with a constant term this allows for sparsity

in the weights which means that more of the weights are shrunk to zero (Nabian & Meidani,

2019; Foygel Barber & J. Candès, 2015). In other words more nodes are getting a weight of

zero in the model after each update as means of removing irrelevant characteristics from the

model. This regularization method differs from the dropout regularization technique (Nabian &

Meidani, 2019), which removes nodes randomly which will not have an effect during the following

update.

2.3.2 Feature importance

The network basically learns through updating the weights during training (Gradojevic & Yang,

2000; Lobbrecht et al., 2005). The more epochs, the more accurate the outcomes should become

and the smaller the error. From the second update till the last update the hidden layer is updated

recurrently, where each recurrent hidden layer node has a weight of 1 (Elman, 1990). The 1× 1

filter weights zi and z̃i will compete against each other during the training process and the k× 1

feature importance measures d and d̃ will be determined as follows (Lu et al., 2018), where the

last updated weights (update T ) are used:

di = vizi,

d̃i = viz̃i, for i = 1, ..., k features,
(2.10)

where the scalar vi is the i-th element of ν = w0,T �
(
(
∏U
u=1 wu,T )wU+1,T

)
with U the number

of hidden layers and wU+1 the vector with the output weights. In case no DeepPINK framework

is applied, then only vi is taken, where only the knockoffs are used in an ENN model framework.

This choice can be made as the calculated weights under an L1-regularization are minimized and

as the importance measures are then determined by the relative importance between the true

variables and the knockoff variables, which makes it possible to use this calculated weight matrix

as a relative importance measure also in the case where no pairwise-coupling layer is assumed.

With the updated importance measures, the knockoff statistics will be calculated at the end of

every epoch (as seen in Algorithm 1) in order to see if the relevance of the features (variables)

change. Calculating the knockoff statistics after every epoch will allow the filter weights to

compete against each other during training. All variables are used at every update during the

training process. The knockoff statistics are calculated after all updates within an epoch have

been completed in order to check per epoch which variables are assumed to be relevant.
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As said earlier, the knockoff statistics will have an anti-symmetry property, which means that,

when the i-th feature importance measure is swapped with its knockoff counterpart, this will

only change the sign of the outcome of the i-th knockoff statistic li. When the value of li is

large and positive, this means that the true feature is considered to be relevant for explaining

the outcomes of the model, while it is not considered to be relevant otherwise. The knockoff

statistics will be calculated by li(X, X̃,y) = |di| − |d̃i| (Foygel Barber & J. Candès, 2016) as I

want to cancel out the effect of a negative value for the importance measures and want to see

the effect of the measures, regardless of the sign of these importance measures. I will not take

the absolute value of the calculated knockoff statistic when no DeepPINK filter is implemented,

otherwise all knockoff statistics would be positive. Both the knockoff statistics and the feature

importance measures will vary when varying the algorithm of the model (Lu et al., 2018). The

knockoff statistics will be updated during the training process, where they will change with the

change of the updated weights at the end of each epoch.

2.4 Comparison with other models

In this study the prediction performance of the Elman Network combined with the model-X

knockoffs framework and the DeepPINK framework will be compared against:

• The Elman Network with model-X knockoffs without a DeepPINK model framework.

• FNN with model-X knockoffs and DeepPINK.

2.4.1 Performance metrics

One wants to find a set of weights which minimizes the distance between fitted values and the

values in the training set. If the model performs well, the updated weight should lie closely to

the old weight after each update. Also, the sign should not change (Sun, 1999). For measuring

the prediction performance, one can look at three measures: (1) Calibration measures in order to

test for a bias in the predictions; (2) Measures of overall performance to examine the difference

between the predictions and the true values; (3) Measures of model discrimination which test

for the ability of the model to separate different outcomes classes (Steyerberg et al., 2010).

In the test set the true y variables will be taken as benchmark of performance. As a measure

for overall performance, the mean squared prediction error (MSPE) (equation (2.13)) will be

used to test for prediction accuracy in the test set as this measure is usually applicable in cases

where prediction performance is tested in datasets for which no robust estimation is necessary.

Here lies the assumption that the dataset is not subject to excessive outliers. In case there are

outliers, the MSPE can get inflated. The mean absolute prediction error (MAPE) may then be a

better choice as a prediction performance measure. However, the MAPE still has the drawback

that the same weights are given to all observations in the calculation of the measure. Hence, the

MSPE will be used and will be calculated as:
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MSPEf,e =
1

N − S

N−S∑
i=1

(yi,test − ŷi,test)2, (2.11)

where �̂ is the estimated outcome, N is the total samples (instances) in the dataset, S is the

number of samples in the training set and N − S is the number of samples in the test set. This

is the MSPE for fold f and for epoch e in the training process.

The MSPE is calculated over each fold by taking the mean over all E epochs per fold of the

MSPEf,e measure (equation (2.12)). Subsequently, the mean over all F folds will be taken in

order to get one MSPE outcome. In line with Lu et al. (2018) the feature importance will be

compared between the different models by examining the knockoff statistics and the number of

selected features.

MSPEf =
1

E

E∑
e=1

MSPEf,e, (2.12)

MSPE =
1

F

F∑
f=1

MSPEf , (2.13)

Note that one cannot calculate measures which use the Likelihood, e.g. the AIC or the BIC, as

NNs do not make use of a Likelihood function to estimate the parameters. It will be possible to

look at the mean squared error (or any other form of it like the root mean squared error) during

a simulation study, where benchmark parameters can be introduced, which allows to compare

these benchmark parameters to the estimated weights.



3 Results

3.1 Simulation design

In order to test for accuracy a simulation study will be conducted. Given the mathematical

workload that is needed to run the EDP and the other NNs, ENN and FNN with a DeepPINK

filter, the simulation will be repeated 2 times. The default value for creating the folds for the

training set is set to 2 folds, the number of batches that are created, is 2 and the number of

epochs is 2. Data with 60 observations and 30 features will be generated using a data generating

process (DGP), where this DGP reflects the true population. The objective of the simulation

study is to verify to what extent the EDP can find the true parameter values in a simulated

environment. Hence, the population serves as a benchmark for data that will be contaminated,

such that one can see how the ENN can be improved with the use of the EDP model and how

the estimations will alter. Note that the higher the values are set the more reliable the outcomes

would be. In this study I have chosen these default values due to the high mathematical workload

it would take to run all simulations. As DGP the following model will be chosen:

y = Xβ + ε, (3.1)

where y ∼ N (Xβ, I) ∈ RN is the output vector, β ∈ Rk is the parameter vector, ε ∼ N (0, 1), the

features xi for i = 1, ..., k are randomly generated such that the matrix X ∈ RN×k, containing

all k features, are Gaussian and X ∼ N (0, I). This DGP will be subjected to contamination in

the data, which will be introduced by using different feature correlations and different levels of

non-zero signals in the parameter vector (Foygel Barber & J. Candès, 2015).

The knockoff features will be generated in a way that X̃ ∼ N (0, Σ̃γ), where σ̃γ,i,j = γ|i−j| for

correlation levels γ = 0, 0.1, ..., 0.9. In case γ = 0, Σ̃0 = I, the identity matrix (Foygel Barber

& J. Candès, 2015). The true DGP values for the dependent variable y are derived by using

the true features X. The dependent variable y will then be used together with the generated

knockoff feature vectors x̃i in the models to estimate the parameters. The estimated coefficients

will then be compared with the true DGP coefficients.

To introduce sparsity, true DGP coefficients β are generated by randomly allocating non-zero

signals from a sequence of 10 to 30 signals with steps of 10 within the simulation. Places in

β which are not getting a non-zero signal are kept 0. The non-zero signals for the true DGP

coefficients are randomly set within the range (-1.5, 1.5) in line with Lu et al. (2018). For the

knockoffs the FDR level is fixed at 0.20 (= 20%). Testing for several correlations between the

features and for several sparsity levels is crucial to see if alternating the correlations between

17
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the features matter in selecting the features and to investigate if having zero signals leads to

substantially different parameter estimations.

As measure for accuracy of the estimated weights the mean squared error (MSE) will be used,

which can be formulated as:

MSEf =
1

R

R∑
r=1

(βDGP,type,r − β̂test,type,r)2, (3.2)

with R the number of simulation runs, type = {10, 20, 30} for the number of non-zero signals

and f = 1, ...F folds.

For the estimated weights the mean of the knockoff statistics over all epochs are taken for each

test set (equation (3.3) and equation (3.4)). The knockoff statistics are, hence, used as measures

for the relative importance of each feature.

β̂test,type,e,r = li(X, X̃,y)test,type,e,r, for e = 1, ..., E epochs and r = 1, ..., R simulations. (3.3)

β̂test,type,r =
1

E

E∑
e=1

β̂test,type,e,r. (3.4)

This choice is made because for the feature importance measures the importance between the

links inside an ENN (and the filter weights in case the DeepPINK filter is implemented) is used,

which can then be seen as a measure for the relative importance of a feature for explaining

the output, which can then also be interpreted as the total weight or the β coefficient of that

particular feature for explaining the output variable.

These coefficients are subtracted from the true DGP coefficients, the square is taken from this

outcome, after which the mean over all simulations are taken to get the MSE per test set

(equation (2.13)). The mean is taken over the MSE of all test sets, 1F
∑F
f=1MSEf , in order to

get one MSE outcome per non-zero signal level and correlation level.

Call the number of selected knockoff variables pf,type,e,r for the number of selected variables

after each training process for a number of non-zero signals used at epoch e and simulation r.

These variables are selected within each examined model. The mean over the number of selected

variables after all epochs per training set is taken, pf,type,r = 1
E

∑E
e=1 pf,type,e,r, after which the

mean is taken over all simulations for each training set, pf,type = 1
r

∑R
r=1 pf,type,r, to get the

number of selected variables for each training set. The ceiling value is then taken for the mean

over all training sets, ptype = d 1f
∑F
f=1 pf,typee, in order to prevent the method for selecting less

relevant variables than possible as selecting less relevant variables can lead to parsimony, which

could bias the results into getting preferred outcomes.

MSPEf,e,r =
1

N − S

N−S∑
i=1

(yi,test,r − ŷi,test,r)2, (3.5)
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MSPEf,r =
1

E

E∑
e=1

MSPEf,e,r, (3.6)

For the MSPE measures, the measure is first calculated per fold f and per epoch e at simulation

run r (equation (3.5)), after which the mean for this calculated measure is taken over all the

epochs per fold to get to the MSPE for each fold at simulation r (equation (3.6)). Subsequently,

the mean is taken over the R simulations in order to get the MSPE for each fold over all

simulations, denoted by MSPEf,sim = 1
R

∑R
r=1MSPEf,r. Lastly, the mean is taken over each

fold to get one MSPE measure MSPEsim = 1
F

∑F
f=1MSPEf,sim.
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3.1.1 Simulation results

Table 3.1: Simulation results for one hidden layer and the modified FDR

This table gives the statistical results for a simulation study with a 2-fold cross-validation.

The number of features that are taken is 30 with 3 sparsity levels.

Each training set and test set are generated using 2-fold cross-validation.

The simulation is done 2 times, where each training set

is being split into 2 batches and where the number of epochs is 2.

The outcomes are given for an FNN and an ENN with 1 hidden layer,

where the modified FDR is being controlled.

ENN, 1 hidden layer, modified FDR is controlled

MSPE MSE Number of selected features

feature correlation non-zero signals non-zero signals non-zero signals

10 20 30 10 20 30 10 20 30

0 11.403 17.270 26.727 0.885 0.900 0.909 30 30 30

0.1 9.136 17.147 26.937 0.887 0.896 0.895 30 30 30

0.2 9.468 17.242 26.905 0.889 0.893 0.906 30 30 30

0.3 9.483 17.229 26.991 0.889 0.896 0.903 30 30 30

0.4 9.483 17.393 26.880 0.894 0.903 0.902 30 30 30

0.5 9.610 17.709 27.177 0.894 0.900 0.903 30 30 30

0.6 9.664 17.686 27.200 0.896 0.904 0.904 30 30 30

0.7 9.480 17.239 26.998 0.902 0.910 0.905 30 30 30

0.8 9.849 17.787 27.036 0.910 0.916 0.909 30 30 30

0.9 9.851 17.916 27.317 0.904 0.918 0.909 30 30 30

EDP, 1 hidden layer, modified FDR

0 11.198 20.125 24.836 0.870 0.675 0.675 28 28 28

0.1 9.335 20.134 24.775 0.674 0.675 0.675 28 28 28

0.2 9.261 20.124 24.876 0.674 0.675 0.675 28 28 28

0.3 9.263 20.175 24.853 0.674 0.675 0.675 28 28 28

0.4 9.268 20.145 24.829 0.674 0.675 0.675 28 28 28

0.5 9.281 20.157 24.866 0.674 0.675 0.675 28 28 28

0.6 9.251 20.134 24.825 0.674 0.675 0.675 28 28 28

0.7 9.255 20.125 24.803 0.674 0.675 0.675 28 28 28

0.8 9.266 20.153 24.856 0.674 0.675 0.674 28 28 28

0.9 9.330 20.174 24.834 0.674 0.675 0.675 28 28 28

FNN with DeepPINK filter, 1 hidden layer, modified FDR

0 11.202 20.129 24.849 0.870 0.674 0.675 28 28 28

0.1 9.336 20.135 24.785 0.674 0.674 0.674 28 28 28

0.2 9.262 20.122 24.883 0.674 0.674 0.674 28 28 28

0.3 9.263 20.170 24.857 0.674 0.674 0.675 28 28 28

0.4 9.269 20.149 24.841 0.674 0.674 0.674 28 28 28

0.5 9.282 20.158 24.874 0.674 0.674 0.674 28 28 28

0.6 9.252 20.134 24.833 0.674 0.674 0.674 28 28 28

0.7 9.254 20.122 24.809 0.674 0.674 0.674 28 28 28

0.8 9.266 20.150 24.865 0.674 0.674 0.674 28 28 28

0.9 9.330 20.171 24.845 0.674 0.674 0.674 28 28 28
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Table 3.2: Simulation results for two hidden layers and the modified FDR

This table gives the statistical results for a simulation study with a 2-fold cross-validation.

The number of features that are taken is 30 with 3 sparsity levels.

Each training set and test set are generated using 2-fold cross-validation.

The simulation is done 2 times, where each training set

is being split into 2 batches and where the number of epochs is 2.

The outcomes are given for an FNN and an ENN with 2 hidden layers,

where the modified FDR is being controlled.

ENN, 2 hidden layers, modified FDR is controlled

MSPE MSE Number of selected features

feature correlation non-zero signals non-zero signals non-zero signals

10 20 30 10 20 30 10 20 30

0 14.454 15.906 26.731 0.922 0.773 0.776 29 30 29

0.1 8.699 16.803 28.155 0.779 0.780 0.775 29 29 29

0.2 8.169 16.665 28.594 0.777 0.772 0.773 29 29 29

0.3 7.292 15.379 26.013 0.772 0.781 0.778 29 29 29

0.4 6.659 16.051 26.562 0.775 0.769 0.771 29 29 29

0.5 6.642 15.366 25.924 0.772 0.775 0.776 29 29 29

0.6 6.098 15.005 25.708 0.777 0.777 0.776 30 29 29

0.7 7.816 15.891 28.702 0.780 0.779 0.787 29 29 29

0.8 7.513 16.245 28.954 0.779 0.774 0.785 29 29 29

0.9 6.472 14.746 26.320 0.781 0.775 0.777 30 29 29

EDP, 2 hidden layers, modified FDR

0 11.278 16.966 24.083 0.878 0.910 0.911 30 30 30

0.1 7.981 17.057 24.079 0.910 0.910 0.911 30 30 30

0.2 7.964 17.000 24.044 0.910 0.910 0.911 30 30 30

0.3 7.967 17.007 24.020 0.910 0.910 0.911 30 30 30

0.4 7.945 17.006 23.913 0.910 0.910 0.911 30 30 30

0.5 7.986 17.035 23.997 0.910 0.910 0.911 30 30 30

0.6 7.993 17.000 23.989 0.910 0.910 0.911 30 30 30

0.7 8.066 17.090 24.128 0.910 0.910 0.911 30 30 30

0.8 8.032 17.058 24.150 0.910 0.910 0.911 30 30 30

0.9 8.044 17.014 24.011 0.910 0.910 0.911 30 30 30

FNN with DeepPINK filter, 2 hidden layers, modified FDR

0 11.260 16.965 24.177 0.8780 0.909 0.909 30 30 30

0.1 7.975 17.063 24.152 0.909 0.909 0.909 30 30 30

0.2 7.952 17.004 24.117 0.909 0.909 0.909 30 30 30

0.3 7.971 17.019 24.131 0.909 0.909 0.909 30 30 30

0.4 7.943 17.017 24.057 0.909 0.909 0.909 30 30 30

0.5 7.987 17.032 24.087 0.909 0.909 0.909 30 30 30

0.6 8.003 16.997 24.099 0.909 0.909 0.909 30 30 30

0.7 8.053 17.096 24.235 0.909 0.909 0.909 30 30 30

0.8 8.031 17.069 24.228 0.909 0.909 0.909 30 30 30

0.9 8.054 17.026 24.140 0.909 0.909 0.909 30 30 30
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Table 3.3: Simulation results for one hidden layer and the exact FDR

This table gives the statistical results for a simulation study with a 2-fold cross-validation.

The number of features that are taken is 30 with 3 sparsity levels.

Each training set and test set are generated using 2-fold cross-validation.

The simulation is done 2 times, where each training set

is being split into 2 batches and where the number of epochs is 2.

The outcomes are given for an FNN and an ENN with 1 hidden layer,

where the exact FDR is being controlled.

ENN, 1 hidden layer, exact FDR is controlled

MSPE MSE Number of selected features

feature correlation non-zero signals non-zero signals non-zero signals

10 20 30 10 20 30 10 20 30

0 11.403 17.270 26.727 0.885 0.900 0.909 30 30 30

0.1 9.136 17.147 26.937 0.887 0.896 0.895 30 30 30

0.2 9.468 17.242 26.905 0.889 0.893 0.906 30 30 30

0.3 9.483 17.229 26.991 0.889 0.896 0.903 30 30 30

0.4 9.483 17.393 26.880 0.894 0.903 0.902 30 30 30

0.5 9.610 17.709 27.177 0.894 0.900 0.903 30 30 30

0.6 9.664 17.686 27.200 0.896 0.904 0.904 30 30 30

0.7 9.480 17.239 26.998 0.902 0.910 0.905 30 30 30

0.8 9.849 17.787 27.036 0.910 0.916 0.909 30 30 30

0.9 9.851 17.916 27.317 0.904 0.918 0.909 30 30 30

EDP, 1 hidden layer, exact FDR

0 11.198 20.125 24.836 0.870 0.675 0.675 30 30 30

0.1 9.335 20.134 24.775 0.674 0.675 0.675 30 30 30

0.2 9.261 20.124 24.876 0.674 0.675 0.675 30 30 30

0.3 9.263 20.175 24.853 0.674 0.675 0.675 30 30 30

0.4 9.268 20.145 24.829 0.674 0.675 0.675 30 30 30

0.5 9.281 20.157 24.866 0.674 0.675 0.675 30 30 30

0.6 9.251 20.134 24.825 0.674 0.675 0.675 30 30 30

0.7 9.255 20.125 24.803 0.674 0.675 0.675 30 30 30

0.8 9.266 20.153 24.856 0.674 0.675 0.674 30 30 30

0.9 9.330 20.174 24.834 0.674 0.675 0.675 30 30 30

FNN with DeepPINK filter, 1 hidden layer, exact FDR

0 11.202 20.129 24.849 0.870 0.674 0.675 30 30 30

0.1 9.336 20.135 24.785 0.674 0.674 0.674 30 30 30

0.2 9.262 20.122 24.883 0.674 0.674 0.674 30 30 30

0.3 9.263 20.170 24.857 0.674 0.674 0.675 30 30 30

0.4 9.269 20.149 24.841 0.674 0.674 0.674 30 30 30

0.5 9.282 20.158 24.874 0.674 0.674 0.674 30 30 30

0.6 9.252 20.134 24.833 0.674 0.674 0.674 30 30 30

0.7 9.254 20.122 24.809 0.674 0.674 0.674 30 30 30

0.8 9.266 20.150 24.865 0.674 0.674 0.674 30 30 30

0.9 9.330 20.171 24.845 0.674 0.674 0.674 30 30 30
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Table 3.4: Simulation results for two hidden layers and the exact FDR

This table gives the statistical results for a simulation study with a 2-fold cross-validation.

The number of features that are taken is 30 with 3 sparsity levels.

Each training set and test set are generated using 2-fold cross-validation.

The simulation is done 2 times, where each training set

is being split into 2 batches and where the number of epochs is 2.

The outcomes are given for an FNN and an ENN with 2 hidden layers,

where the exact FDR is being controlled.

ENN, 2 hidden layers, exact FDR is controlled

MSPE MSE Number of selected features

feature correlation non-zero signals non-zero signals non-zero signals

10 20 30 10 20 30 10 20 30

0 14.454 15.906 26.731 0.922 0.773 0.776 30 30 30

0.1 8.699 16.803 28.155 0.779 0.780 0.775 30 30 30

0.2 8.169 16.665 28.594 0.777 0.772 0.773 30 30 30

0.3 7.292 15.379 26.013 0.772 0.781 0.778 30 30 30

0.4 6.659 16.051 26.562 0.775 0.769 0.771 30 30 30

0.5 6.642 15.366 25.924 0.772 0.775 0.776 30 30 30

0.6 6.098 15.005 25.708 0.777 0.777 0.776 30 30 30

0.7 7.816 15.891 28.702 0.780 0.779 0.787 30 30 30

0.8 7.513 16.245 28.954 0.779 0.774 0.785 30 30 30

0.9 6.472 14.746 26.320 0.781 0.775 0.777 30 30 30

EDP, 2 hidden layers, exact FDR

0 11.278 16.966 24.083 0.878 0.910 0.911 30 30 30

0.1 7.981 17.057 24.079 0.910 0.910 0.911 30 30 30

0.2 7.964 17.000 24.044 0.910 0.910 0.911 30 30 30

0.3 7.967 17.007 24.020 0.910 0.910 0.911 30 30 30

0.4 7.945 17.006 23.913 0.910 0.910 0.911 30 30 30

0.5 7.986 17.035 23.997 0.910 0.910 0.911 30 30 30

0.6 7.993 17.000 23.989 0.910 0.910 0.911 30 30 30

0.7 8.066 17.090 24.128 0.910 0.910 0.911 30 30 30

0.8 8.032 17.058 24.150 0.910 0.910 0.911 30 30 30

0.9 8.044 17.014 24.011 0.910 0.910 0.911 30 30 30

FNN with DeepPINK filter, 2 hidden layers, exact FDR

0 11.260 16.965 24.177 0.878 0.909 0.909 30 30 30

0.1 7.975 17.063 24.152 0.909 0.909 0.909 30 30 30

0.2 7.952 17.004 24.117 0.909 0.909 0.909 30 30 30

0.3 7.971 17.019 24.131 0.909 0.909 0.909 30 30 30

0.4 7.943 17.017 24.057 0.909 0.909 0.909 30 30 30

0.5 7.987 17.032 24.087 0.909 0.909 0.909 30 30 30

0.6 8.003 16.997 24.099 0.909 0.909 0.909 30 30 30

0.7 8.053 17.096 24.235 0.909 0.909 0.909 30 30 30

0.8 8.031 17.069 24.228 0.909 0.909 0.909 30 30 30

0.9 8.054 17.026 24.140 0.909 0.909 0.909 30 30 30
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Overall, these results show that the MSPE and the MSE increase when the non-zero signals

increase. The MSE does decrease when using an ENN with 2 hidden layers (Table 3.2 and

Table 3.4), though, when the non-zero signals increase. These outcomes imply that the range

that is chosen for the true DGP coefficients is higher than the estimated parameters (which

fluctuate closer around zero) in case of an increase of the errors when the non-zero signals

increase.

There is no clear pattern noticeable in the MSE and MSPE when the feature correlations rise,

implying that varying the feature correlations would not clearly lead to better or worse feature

selection. One would expect that a high feature correlation would lead to less features being

selected using the proposed model and, thus to a better subset selection. The models with

DeepPINK seem to give less precise outcomes concerning the higher MSPE and MSE than the

ENN without DeepPINK when 2 hidden layers are used (Table 3.2 and Table 3.4).

Regarding feature selection with DeepPINK and one hidden layer, it seems that less relevant

features are selected when the modified FDR measure is being used as threshold (Table 3.1)

for selecting the relevant features compared to the exact FDR (Table 3.3) that was introduced

by Benjamini and Hochberg (1995). The use of 1 hidden layer and using DeepPINK and the

modified FDR threshold give lower MSE compared to when the models with 2 hidden layers are

being used (Table 3.2), where the EDP and FNN with DeepPINK select the same number of

variables and perform both approximately the same in terms of MSPE and MSE (Table 3.1) and

where the ENN has lower MSE and MSPE values for 2 hidden layers than an ENN with one

hidden layer (Table 3.1 vs Table 3.2).

These results imply that the weights and the dependent variable estimated in a model with

one hidden layer are closer to the true DGP values, because of respectively a lower MSE and

MSPE, indicating that a model with 2 hidden layers is too complex. These outcomes, including

the outcome that an FNN with DeepPINK performs better with one hidden layer compared to

an ENN and an EDP with one hidden layer because of lower errors, are also expected, given

that the DGP that is formulated is a linear model and, hence, a simpler model would suffice

for estimation. The additional information added at each hidden layer with context units does

seem to improve the estimations and combining both the knockoff features with the true features

seems to lead to a selection of less features, such that the proposed model selects (a subset of)

features which may be sufficiently relevant for explaining the output.

When testing on 50 features with 100 observations, one can see that when using 1 hidden layer,

that the MSE are higher for most of the cases compared to the model with 30 features for

the models with DeepPINK, while the MSPE is lower (Table D.1 compared to Table 3.1 and

Table D.3 compared to Table 3.3). For the model without DeepPINK this is the other way

around. These results imply that the weights are predicted with a higher error and the outcomes

with a lower error when using DeepPINK with 1 hidden layer in a DGP with more variables in

the generated dataset, while this is the other way around when not using a DeepPINK filter.

For the models with 2 hidden layers the MSE and MSPE are lower for the models with DeepPINK

(Table D.2 compared to Table 3.2 and Table D.4 compared to Table 3.4), while it is higher when

looking at the ENN. In particular the ENN does not perform well when using more features and
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these results cannot be seen as being reliable. The models with one hidden layer do not select a

subset of the 50 features, while the EDP and FNN with DeepPINK select slightly less variables

when the modified FDR is being used with 2 hidden layers (Table D.2) at a lower MSPE and

MSE than the models with 1 hidden layer and modified FDR (Table D.1). These outcomes

may indicate that more complex models are needed for feature selection when more features are

added into a dataset and that it may be desired to use more batches and more folds to reduce

the error measures.

3.2 Empirical application

Data will be used to do an empirical analysis on the introduced model. The purpose of doing

this analysis is to see how the models will perform on real data. The reliability, robustness and

adaptability of a neural network is determined by the range, quality source and quantity of the

used dataset (Lobbrecht et al., 2005), which also emphasizes the need to use a dataset that is

large enough. For an empirical analysis a filtered genotype-phenotype correlation dataset for

testing on drug susceptibility used in the studies of Rhee, Gonzales, Rami Kantor, Ravela, and

Shafer (2003) and Rhee et al. (2006) is implemented. Drug susceptibility data has been collected

from the Human immunodeficiency virus Drug Resistance Database from Stanford University.

The EDP model will be used to test on feature selection and, hence, identifying mutations that

are related to drug resistance in HIV-1 protease. As dependent response variable logarithmic

values for the drug resistance level to the protease inhibitor LPV will be used. The feature

matrix is a matrix of ones and zeros for 43 features and 1550 instances, where a value of one

points to a mutation caused by the drug that was adhered to fight the HIV virus. Because of

the high mathematical workload it takes to get the outcomes, 2 epochs, 2 batches and 2 folds

will be used and an FDR level of 0.20 will be taken.

Table 3.5: MSPE and number of selected features for the dataset

This table gives the statistical results for a study with 2-fold cross-validation on drug susceptibility data

retrieved from Human immunodeficiency virus Drug Resistance Database from Stanford University.

The dataset consists of 43 independent variables, 1 dependent variable with values for the

drug resistance level to the protease inhibitor LPV and 1550 observations.

Each training set and test set are generated using 2-fold cross-validation.

Each training set is being split into 2 batches and the number of epochs is 2.

The outcomes are given for an FNN and an ENN with 1 hidden layer and with 2 hidden layers,

where either the modified FDR or the exact FDR is being controlled.

ENN EDP FNN with DeepPINK filter

MSPE test Selected MSPE test Selected MSPE test Selected

1 hidden layer, modified FDR 2.042* 42 1.282 42 1.296 42

2 hidden layers, modified FDR 75449.100* 42 1.091 43 1.313 43

1 hidden layer, exact FDR 1.716* 43 1.282 43 1.296 43

2 hidden layers, exact FDR 75449.100* 43 1.091 43 1.313 43

* The test errors for the first fold are large which yields an MSPE of 150886.700. For the second fold the MSPE is 11.508.

https://hivdb.stanford.edu/
https://hivdb.stanford.edu/
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The results for all examined models in Table 3.5 show that, when using 1 hidden layer with the

modified FDR, less features are selected as relevant features. The ENN does not seem to give

reliable results when 2 hidden layers are used regarding the MSPE. A possible explanation could

be that using an ENN with 2 hidden layers is too complex to use for these results. Looking at

the models with 1 hidden layer, the EDP estimates with the lowest MSPE for this dataset. The

addition of a recurrent property and a DeepPINK filter, hence, seems to estimate the outcomes

better.



4 Concluding remarks

The objective of this paper was to investigate if feature selection (variable selection) can be

improved with the use of an RNN combined with model-X knockoffs and a DeepPINK model

framework. Overall, the outcomes in this study show that an FNN with DeepPINK performs

better with one hidden layer compared to an ENN and an EDP with one hidden layer. The use

of 1 hidden layer seems to lead to less features being selected as a subset and leading to lower

MSPE and MSE compared to the case where the models with 2 hidden layers are being used.

When more features and observations are used more complex models may be needed for feature

selection. The additional information added in an RNN via a context unit does not seem to

improve the estimations, but combining both the knockoff features with the true features seems

to lead to a selection of less features.

4.1 Future research

Whether the proposed model performs better than other variants depends upon the configuration

of the algorithm and conclusions may alter when altering the architecture of the model even to

a small extent. The algorithm of NNs are dependent upon the choice of the type of network

(e.g. also the number of nodes in each layer), the activation functions in the layers and in the

output layer (e.g. a softmax function), the choice of a regularization method for determining

the parameters and the method of data representation (Chong et al., 2017). One has to make

a trade-off between using too much or too few hidden layers. In this study no bias terms are

used within the model which could also have influenced the outcomes and the conclusions. In

contrast to the models used, data-driven models do not need the underlying modeling process.

Unsupervised learning methods use the aspect of organizing the features, such that unknown

patterns, regularities and classifications can be found (Lobbrecht et al., 2005). No desired output

is required for these types of learning methods.

The choice of the calculation of the knockoff statistics, choice of the feature importance measures

in case no DeepPINK framework is used and initialization of the weights are also of importance

when the architecture of the model is made. The weights are not updated using stochastic

gradient descent, but standard gradient descent (Sundermeyer et al., 2014). The LSTM could

also be combined with the DeepPINK model framework in order to allow for stochastic weights.

In the empirical analysis, when using an ENN without DeepPINK (so when only the knockoffs

are taken into an ENN), it seems that the MSPE is large in the first fold when using 2 hidden

layers. It seems that using 2 hidden layers is too complex to model the knockoffs. I have only used

the created knockoffs of the variables in an ENN model in line with Lu et al. (2018) where they
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also only used the knockoffs in an FNN without DeepPINK. These results may alter when using

the original variables, which is also a more logical choice and which is left for future research.

Regarding the simulation study, the range of the true DGP coefficients in the simulation could

also be alternated as test, as was done in Foygel Barber and J. Candès (2015), where this study

only looked at the signal effect of the model by setting some signals to zero. Also, a non-linear

DGP can be tested to see if this makes any difference. This study has not varied in FDR levels

to see if this makes any difference, because the focus was on testing if the outcomes on feature

selection would differ substantially for different models at a fixed FDR level. Future research

can also look at varying FDR levels. A cross-validation has been done in this study where

future research can also look at another setting for the folds. More reliable outcomes may be

obtained when one increases the number of epochs, folds and batches, which may lead to a better

convergence of the weights. The initialization of the weight parameters, FDR level, number of

batches, batch size, ratio between the test and the training sample, learning rate, epochs, number

of hidden layers, number of observations and number of features can be varied, where this study

has not varied all settings due to the mathematical workload to run all simulations.

This study has looked at the MSE and MSPE as performance statistics as it is not directly

possible to derive p-values from the estimated weights inside an NN. Future research could maybe

have a look at using a bootstrap procedure to simulate a distribution of the weights inside an

NN by resampling from the observed weights and by deriving a 95% confidence interval as means

of testing null hypotheses for the size of the weights.

This paper has looked at the proposed model with the standard backpropagation algorithm. A

possible extension could be to investigate the model performance in the case of time series where

the weights are trained with the recurrent Newton algorithm (Gençay & Liu, 1997; Werbos,

1990), with the backpropagation through time (BPTT) algorithm (Sundermeyer et al., 2014)

or with a real-time recurrent learning algorithm (Yümlü, Gürgen, & Okay, 2005). Dynamic

values for the penalty term at the L1-regularization (Sun, 1999) using a dynamic learning rate

(Herbrich et al., 1998) could also give more insights. One can also stop the number of times to go

through the training set by setting a threshold based on e.g. the change (or lack of change) in the

quadratic error, where this study has used a fixed number of batches to update the weights during

the training process. Data snooping can also give additional insights into using the proposed

model, where the researcher uses statistical inference on empirical data. Further research is

desired in order to get more insights into the use of neural networks and its characteristics.



A Configuration of the ENN

The standard architecture of the RNN has three set of weights at each step in the training

process (Sutskever, 2013): One set of weights containing the weights which connect the input

layer and the hidden layer, one set with weights going from the hidden layer to the output layer

and one set with weights from the hidden layer at the previous time point (or previous step) to

the current hidden layer. The node in the hidden layer, which is again used at the next step and

which has an effect on the hidden layer at the next step, is also called the context unit and this

node characterizes the recurrent property of the NN (Lobbrecht et al., 2005). The weights are

calculated such that the previous states of the network are taken into account (Koskela, 2003)

and the weights are updated during a training process, which is explained in section 2.

The context unit could be processed by an exponential decay function as choice for an activation

function, such that the effect of the context unit would decline during the updates of the weights

(Koskela, 2003). In a mathematically enhanced neural network the activation would not only

have a zero or a one for activation of a node, but there would also be intermediate steps in the

range (0,1) regarding the activation like the logistic function (Kuan, 2006), with the requirement

that the activation function is bounded (Kuan, 2006). In line with Lu et al. (2018) I have chosen

to use the ReLU activation function instead, as this activation function works best as a general

approximator.

The choice of a ReLU activation function to process the hidden layer nodes can be motivated by

the finding that it is known to provide faster learning inside the network compared to sigmoid

functions, while the network performance stays the same or can even be improved (Chong et

al., 2017). The choice of a non-linear activation function can be motivated by the fact that a

linear activation function does not have as additional advantage that learning is possible because

a derivative does not exist for the backpropagation algorithm and, thus, the weights are not

updateable when using a linear activation function.

In order to select which nodes die and through which nodes the data will run through, the param-

eters (weights) will be estimated during the training process which identifies which parameters

and variables are needed for the prediction of the output in the test data (Cook & Smalter Hall,

2017; Lobbrecht et al., 2005). Usually the training process could be used to identify which nodes

are relevant for further estimation with the use of implicit regularization. Implicit regularization

can be defined in this study as adding information to the weights in an NN to prevent overfitting

based on the process itself, e.g. using parameter sharing in convolution layers or stochastic gra-

dient descent. In contrast, explicit regularization methods determine more clearly the outcome

of the weights using, e.g, weight decay or dropout (Hernández-Garćıa & König, 2018).

When estimating the weights problems with overfitting can arise. Overfitting happens when

there is a high variance in the parameters which may lead to predictions being outside of the
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range of the training data. Overfitting can happen when the model is too complex (has too

many hidden layers) (Sun, 1999) and when there are too much free parameters (the degree or

number of non-zero weights) to estimate. In the latter case the model will start memorizing the

outcomes instead of predicting them (Gradojevic & Yang, 2000). To prevent overfitting, weight

decay will be used as explicit regularization technique on the errors of the parameters. This

regularization technique works by adding a penalty term to the loss function in order to reduce

the size of the weights (Sun, 1999). This way the weights shrink at each training update, such

that the calculated parameters during training will be controlled to take on small values (Nabian

& Meidani, 2019). On the other hand, one needs to take into account that if the model is not

complex enough, this will lead to underfitting (large bias in the output) (Sun, 1999; Gradojevic

& Yang, 2000). Over- and underfitting also occur in case the training data is not sufficient in

size (Nusrat & Jang, 2018).

The order of the model is based on the number of hidden nodes, which will be the number of

states in the model (Elman, 1990). One rule of thumb for the choice of the number of nodes

in the hidden layer is that it should be between the number of input nodes and the number of

output nodes (Heaton, 2008). However, given that the ReLU activation function is used in the

proposed model, this allows for turning off nodes which are not assumed to be of importance

into mapping to the output. In line with Lu et al. (2018) the number of variables (number of

nodes) in all layers in the proposed model is assumed to be the same as the number of hidden

nodes in each of the hidden layers. The output layer will consist of one node.

Regarding the number of hidden layers, having too many hidden layers may lead to problems

for the training process like finding local minima and slow convergence of the parameters (Cao

et al., 2017). Having zero hidden layers amounts to the use of the model only in case of linear

modeling problems. In the case of having one hidden layer, the model can be used while there

is continuous mapping from one finite space (e.g. the feature space) to another finite space (e.g.

the output space). Having two hidden layers may be useful for smooth mapping (Heaton, 2008).

The activation function that is used here is not the smooth variant, which could imply that

having one hidden layer would be sufficient for the proposed model. Heaton (2008) highlights

that the given reasons in his paper for the choice of 0, 1 or 2 hidden layers are meant for an

FNN. For the sake of simplicity, I will also use 1 and 2 hidden layers for the proposed RNN in

this study. This means that the proposed RNN in this study will have at least 2 set of weights

after the filter: One set of weights from the filtered input to the hidden layer and one from the

hidden layer to the output.



B Training the model

Training is done to determine the contribution of each pairwise couple and to calculate the

weights in the layers. For the purpose of training the data in order to estimate the weights, the

dataset will be split into a training set and a test set (hold-out sample). The training set will

also be split into batches, where the weights will be estimated within each batch and updated

at the end of each batch. A common approach for choosing the batch size during training is by

choosing a fixed size.

Assume that a sample consists of one row (one observation/instance). This implies that the

whole dataset consists of N samples in a dataset while the training sample consists of many rows

altogether of the dataset (many samples) (Brownlee, 2018). Take 1 < S < N samples as the

training sample. A batch of size 1 ≤ b ≤ S would then amount to having b samples within one

batch and having S
b batches within one training sample. In this case the dataset would have a

test set with N − S samples.

For this study I have chosen to use c folds for creating the training set from the N instances,

instead of choosing a fixed training sample. For each fold, the original sample will be randomly

partitioned into c sub-samples. This means that the algorithm will be going through c−1 training

sets and 1 test set. All chosen sets of the dataset are used for both training and validation, and

each set is used for validation exactly once. As an example, say, that the dataset consists of

N = 100 instances. Let’s say that c = 10 folds. I will iterate the number of folds from 1 to 10,

making each fold the test set and making the folds that are not c the training set. Then the

training set would have S = N − N
c = 100− 100

10 = 90 instances, where each 10 instances would

be taken as test set and the remaining 90 instances are taken as training set. The procedure

for selecting the training set and test set can also be seen as a c-fold cross-validation, which is

approximately the same approach as in Rhee et al. (2006), who train and test NNs, among other

learning methods, in their study with the use of a 5-fold cross-validation.

For the batch size within each training set I will take a ratio of 1
number of batches , creating the

specified number of batches of size b = S
number of batches . This means that the training will be

done for c training sets where each training set will be divided into the specified number of

batches, such that a total of number of batches ∗ c batches will be created. After each batch of

size b the weights will be updated, which means that a batch will be taken into the model to

calculate the weights before taking the next batch into the model.

The weight parameters will be calculated within the batches inside the training set. These

batches will be gone through for a number of epochs, where the number of epochs is the number

of times to go through the entire training set. The number of epochs can be set to an integer

value between one and infinity. One can also stop the number of times to go through the training

set by setting a threshold based on e.g. the change (or lack of change) in the quadratic error.
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This gives number of batches∗ c∗epochs batches during the whole training process, which is also

the total number of updates performed. The update for each batch will be done for a number of

epochs, where the algorithm goes over the whole training set for a number of epochs. Repeating

the procedure for a number of epochs would on average lead to the desired outcomes. Therefore,

in order to determine the classification rule from the test set, the cross-validation will be done

repeatedly. After the training process the found parameters (weights) are then used in the test

sample to determine the accuracy of deriving the output in the test sample (Sun, 1999).



C Backpropagation

The backpropagation algorithm is used to update the weights during the training process. In

this part the algorithm will be derived that is needed for the EDP, the proposed model. First,

define the following relation for the derivative of a random scalar weight w:

∂|w|
∂w

=

+1,

−1,

 if w > 0

if w < 0.
(C.1)

From this relation one can see that the node has no effect at all when a weight is zero, which means

that no derivative has to be calculated when the weight is set to zero because no regularization

is possible in this case.

The backpropagation will start with finding the partial derivative of the quadratic error function

for each i-th (i = 1, ...k variables) weight between the last hidden layer in the model and the

output node (Rumelhart et al., 1986; Pham & Liu, 1996) wiU+1,t which is:

∂EL1
t

∂wiU+1,t−1
=

[
∂Et
∂Ot

]T
∂Ot

∂wU+1,t−1
+ λ

∂|wiU+1,t−1|
∂wiU+1,t−1

=
[
− (ytrain −Ot)

]T ∂Ot
∂wiU+1,t−1

+ λ
∂|wiU+1,t−1|
∂wiU+1,t−1

=
[
− (ytrain −Ot)

]T
HU,i
t + λ

∂|wiU+1,t−1|
∂wiU+1,t−1

=


[
(Ot − ytrain)

]T
HU,i
t + λ,[

(Ot − ytrain)
]T
HU,i
t − λ,

 if wiU+1,t−1 > 0

if wiU+1,t−1 < 0

= C ′(wiU+1,t−1).

Here �T is the transpose, which is taken for the layer errors that are calculated later. Now,

define the following relation:

Lq̃ =


∏
q∈(U−1,U−2,...,q̃)

(∑
i
∂Hq+1,i

∂νq+1,i
t

∂νq+1,i
t

∂Hq,i

)
=
∏
q∈(U−1,U−2,...,q̃)

(∑
i f
′(νq+1,i

t )wj,iq+1,t−1

)
,

1,

 if 1 ≤ q̃ < U

if q̃ = U

for i = 1, ..., k,

(C.2)

with U the number of hidden layers and i the i-th node corresponding to the i-th feature.

The derivative of the cost function with respect to the i-th weight from the 1-st hidden layer,
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connecting the j-th node Ij in the input layer of the ENN with the i-th node ν1,i in the first

hidden layer (when q̃ = 1 in equation (C.2)), can be defined as:

∂Et

∂wj,i1,t−1
=

[
∂Et
∂Ot

∂Ot

∂HU,i
t

L1 ∂H
1,i
t

∂ν1,it

]T
∂ν1,it

∂wj,i1,t−1
+ λ

∂|wj,i1,t−1|
∂wj,i1,t−1

=

[
(Ot − ytrain)wiU+1,t−1

∏
q∈(U−1,...,1)

(∑
i

f ′(νq+1,i
t )wj,iq+1,t−1

)
f ′(ν1,it )

]T
Ijt + λ

∂|wj,i1,t−1|
∂wj,i1,t−1

=


[
(Ot − ytrain)wiU+1,t−1

∏
q∈(U−1,...,1)

(∑
i f
′(νq+1,i

t )wj,iq+1,t−1

)
f ′(ν1,it )

]T
Ijt + λ,[

(Ot − ytrain)wiU+1,t−1
∏
q∈(U−1,...,1)

(∑
i f
′(νq+1,i

t )wj,iq+1,t−1

)
f ′(ν1,it )

]T
Ijt − λ,

 if wj,i1,t−1 > 0

if wj,i1,t−1 < 0

= C ′(wj,i1,t−1).

In case U = 1, there is only 1 hidden layer for which the weight is the weight between the input

layer of the ENN model and the first hidden layer. The derivative of the cost function for the

U -th hidden layer (when q̃ = U in equation (C.2)) would be:

∂Et

∂wj,iU,t−1
=

[
∂Et
∂Ot

∂Ot

∂HU,i
t

LU
∂HU,i

t

∂νU,it

]T
∂νU,it

∂wj,iU,t−1
+ λ

∂|wj,iU,t−1|
∂wj,iU,t−1

=
[
(Ot − ytrain)wiU+1,t−1f

′(νU,it )
]T
HU−1,j
t + λ

∂|wj,iU,t−1|
∂wj,iU,t−1

=


[
(Ot − ytrain)wiU+1,t−1f

′(νU,it )
]T
HU−1,j
t + λ,[

(Ot − ytrain)wiU+1,t−1f
′(νU,it )

]T
HU−1,j
t − λ,

 if wj,iU,t−1 > 0

if wj,iU,t−1 < 0

= C ′(wj,iU,t−1).

From the U − 1-st hidden layer all the way back to the second hidden layer, the derivative of the

cost function in the q̃-th hidden layer would amount to:

∂Et

∂wj,iq̃,t−1
=

[
∂Et
∂Ot

∂Ot

∂HU,i
t

Lq̃
∂H q̃,i

t

∂ν q̃,it

]T
∂ν q̃,it

∂wj,iq̃,t−1
+ λ

∂|wj,iq̃,t−1|
∂wj,iq̃,t−1

=

[
(Ot − ytrain)wiU+1,t−1

∏
q∈(U−1,...,q̃))

(∑
i

f ′(νq+1,i
t )wj,iq+1,t−1

)
f ′(ν q̃,it )

]T
H q̃−1,j
t + λ

∂|wj,iq̃,t−1|
∂wj,iq̃,t−1

=


[
(Ot − ytrain)wiU+1,t−1

∏
q∈(U−1,...,q̃)

(∑
i f
′(νq+1,i

t )wj,iq+1,t−1

)
f ′(ν q̃,it )

]T
H q̃−1,j
t + λ,[

(Ot − ytrain)wiU+1,t−1
∏
q∈(U−1,...,q̃)

(∑
i f
′(νq+1,i

t )wj,iq+1,t−1

)
f ′(ν q̃,it )

]T
H q̃−1,j
t − λ,

 if wj,iq̃,t−1 > 0

if wj,iq̃,t−1 < 0

= C ′(wj,iq̃,t−1).

The derivative of the cost function for the i-th weight for the ENN input layer is derived as

follows:
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∂Et
∂wi0,t−1

=

[
∂Et
∂Ot

∂Ot

∂HU,i
t

L1 ∂H
1,i
t

∂ν1,it

∂ν1,it
∂Iit

∂Iit
∂Rit

]T
∂Rit

∂wi0,t−1
+ λ

∂|wi0,t−1|
∂wi0,t−1

=

[
(Ot − ytrain)wiU+1,t−1

∏
q∈(U−1,...,1)

(∑
i

f ′(νq+1,i
t )wj,iq+1,t−1

)
f ′(ν1,it )wj,i1,t−1f

′(Iit)

]T
Git + λ

∂|wi0,t−1|
∂wi0,t−1

=



[
(Ot − ytrain)wiU+1,t−1

∏
q∈(U−1,...,1)

(∑
i f
′(νq+1,i

t )wj,iq+1,t−1

)
f ′(ν1,it )wj,i1,t−1f

′(Iit)

]T
Git + λ,[

(Ot − ytrain)wiU+1,t−1
∏
q∈(U−1,...,1)

(
f ′(νq+1,i

t )wj,iq+1,t−1

)
f ′(ν1,it )wj,i1,t−1f

′(Iit)

]T
Git − λ,

 if wi0,t−1 > 0

if wi0,t−1 < 0

= C ′(wi0,t−1).

The derivative of the cost function for the i-th filter weight for the pairwise-coupling layer will

be determined as follows, where the same derivation is used for z̃it−1:

∂Et
∂zit−1

=

[
∂Et
∂Ot

∂Ot

∂HU,i
t

L1 ∂H
1,i
t

∂ν1,it

∂ν1,it
∂Iit

∂Iit
∂Rit

∂Rit
∂Git

∂Git
∂F it

]T
∂F it
∂zit−1

+ λ
∂|zit−1|
∂zit−1

=

[
(Ot − ytrain)wiU+1,t−1

∏
q∈(U−1,...,1)

(∑
i

f ′(νq+1,i
t )wj,iq+1,t−1

)
f ′(ν1,it )wj,i1,t−1f

′(Iit)w
i
0,tf
′(F it )

]T
xi + λ

∂|zit−1|
∂zit−1

=



[
(Ot − ytrain)wiU+1,t−1

∏
q∈(U−1,...,1)

(∑
i f
′(νq+1,i

t )wj,iq+1,t−1

)
f ′(ν1,it )wj,i1,t−1f

′(Iit)w
i
0,tf
′(F it )

]T
xi + λ,[

(Ot − ytrain)wiU+1,t−1
∏
q∈(U−1,...,1)

(∑
i f
′(νq+1,i

t )wj,iq+1,t−1

)
f ′(ν1,it )wj,i1,t−1f

′(Iit)w
i
0,tf
′(F it )

]T
xi − λ,

 if zit−1 > 0

if zit−1 < 0

= C ′(zit−1).

As the derivatives of the cost functions make use of duplicate calculations, as seen from equa-

tion (C.2) and from the derivation of the derivatives, these duplicate calculations from the pre-

vious layer can be used to calculate the derivatives at the next layers and, thus, to simplify the

derivation. In this paper I will apply the formulas for calculating the derivatives C ′(wiU+1,t−1),

C ′(wj,iq,t−1), C ′(wj,i1,t−1) and C ′(wi0) as follows:

1. First the layer errors without regularization will be calculated as:

(a) EO,t = (Otrain,t − ytrain),

where EO,t−1 is the output layer error going back from the output layer to the last

hidden layer, ytrain is the true output in the training set and Otrain,t is the predicted

output for the training set.

(b) EHU,i
t

= EO,tw
i
U+1,t−1f

′(νU,it ),

where EHU,i
t

is the U -th hidden layer error for the i-th node going back from the U -th

hidden layer to the U − 1-st hidden layer, wiU+1,t−1 is the scalar output weight from
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the previous training update which connects the i-th node from the last hidden layer

with the output node at t−1 and where f ′(·) is the derivative of the ReLU activation

function. This expression also holds when the number of hidden layers is 1 in the

model. In that case steps 1c and 1d do not have to be derived.

(c) EH q̃,j
t

= EO,tw
j
U+1,t−1

∏
q∈(N−1,...,q̃)

(∑
i f
′(νq+1,i

t )wj,iq+1,t−1

)
f ′(ν q̃,jt )

=
∑
iEH q̃+1,i

t
wj,iq̃+1,t−1f

′(ν q̃,jt ),

for q̃ going back from the U − 1-st hidden layer to the second hidden layer. Here

EH q̃,j
t

is the hidden layer error going back from the q̃-th hidden layer to the q̃ − 1-st

hidden layer for the i-th node in the q̃-th hidden layer, νq+1,i
t−1 is the i-th hidden node

not processed by the ReLU activation function and wj,iq+1,t−1 is the weight connecting

the j-th node from the last hidden layer with the i-th node of the following hidden

layer.

(d) EH1,j
t

= EO,tw
j
U+1,t−1

∏
q∈(N−1,...,1)

(∑
i f
′(νq+1,i

t )wj,iq+1,t−1

)
f ′(ν1,jt )

=
∑
iEH2,i

t
wj,i2,t−1f

′(ν1,jt ) if the number of hidden layers is at least 2,

where EH1,j
t

is the hidden layer error from the j-th node going back in the first hidden

layer to the ENN input layer.

(e) EI1,jt
= EO,tw

j
U+1,t−1

∏
q∈(U−1,...,1)

(∑
i f
′(νq+1,i

t )wj,iq+1,t−1

)
f ′(ν1,it )wj,i1,t−1f

′(Ijt )

=
∑
iEH1,i

t
wj,i1,t−1f

′(Ijt ),

where EI1,jt
is the ENN input layer error going back from the ENN input layer to the

pairwise-coupling layer.

(f) EF 1,j
t

= EO,tw
j
U+1,t−1

∏
q∈(U−1,...,1)

(∑
i f
′(νq+1,i

t )wj,iq+1,t−1

)
f ′(ν1,it )wj,i1,t−1f

′(Ijt )wj0,tf
′(F jt )

=
∑
iEH1,i

t
wj,i1,t−1f

′(Ijt )wj0,tf
′(F jt ),

where EF 1,j
t

is the pairwise-coupling layer error going back from the pairwise-coupling

layer to the input layer for the true features and the knockoffs.

2. Then the cost of the derivative of the weights will be calculated by minimizing the loss

function (in this paper the quadratic cost function is taken as loss function), which can be

seen as the product of the current layer error and the current layer input. The derivative

of the regularization part will be included:

(a)

C ′(wiU+1,t−1) =

(EO,t)
THU,i

t + λ,

(EO,t)
THU,i

t − λ,

 if wiU+1,t−1 > 0

if wiU+1,t−1 < 0
,

where C ′(wiU+1,t−1) is the derivative of the cost function for the output weight which

connects the i-th node in the last U -th hidden layer and the output node. When t = 1

one looks at the change of the updated weight at t = 1 compared to the initialized

weight at t = 0.

(b)

C ′(wj,iU,t−1) =

(EHU,i
t

)THU−1,j
t + λ,

(EHU,i
t

)THU−1,j
t − λ,

 if wj,iU,t−1 > 0

if wj,iU,t−1 < 0
,
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where C ′(wj,iU,t−1) is the derivative of the cost function for the last hidden layer which

connects the j-th node in the U − 1-st hidden layer with the i-th node in the U -th

hidden layer.

(c)

C ′(wj,iq̃,t−1) =

(EH q̃,i
t

)TH q̃−1,j
t + λ,

(EH q̃,i
t

)TH q̃−1,j
t − λ,

 if wj,iq̃,t−1 > 0

if wj,iq̃,t−1 < 0
,

where C ′(wj,iq̃,t−1) is the derivative of the cost function for the weights in the second

hidden layer until the last hidden layer. This step does not need to be made when

the number of hidden layers in the model is 1.

(d)

C ′(wj,i1,t−1) =

(EH1,i
t

)T Ijt + λ,

(EH1,i
t

)T Ijt − λ,

 if wj,i1,t−1 > 0

if wj,i1,t−1 < 0
,

where C ′(w1,t−1) is the derivative of the cost function for the weights connecting the

ENN input layer with the first hidden layer at step t− 1.

(e)

C ′(wi0,t−1) =

(EI1,it
)TGit + λ,

(EI1,it
)TGit − λ,

 if wi0,t−1 > 0

if wi0,t−1 < 0,
,

where C ′(w0) is the derivative of the cost function for the weights connecting the

pairwise-coupling layer with the ENN input layer.

(f)

C ′(zit−1) =

(EF 1,i
t

)Txi + λ,

(EF 1,i
t

)Txi − λ,

 if zit−1 > 0

if zit−1 < 0
,

where C ′(z) is the derivative of the cost function for the filter weights connecting the

ENN input layer with the true features. The derivation goes in the same way for z̃it−1

where x̃i is used insetad of xi. Regarding 2d, 2e and 2f, the layer error in 1b must be

used instead of the layer error in 1d, when the number of hidden layers is 1.

The weights will be updated as (Gómez-Ramos & Venegas-Mart́ınez, 2013; Pham & Liu, 1996;

Nabian & Meidani, 2019):

1. wiU+1,t = wiU+1,t−1 − lrate ∗ C ′(wiU+1,t−1),

where wiU+1,t−1 is the updated output weight connecting the i-th node in the U -th hidden

layer and the output node and where lrate is the user-specified learning rate. For this

algorithm a learning rate of 0.001 will be used in updating the weights in line with Lu et

al. (2018).

2. wj,iq̃,t = wj,iq̃,t−1 − lrate ∗ C ′(w
j,i
q̃,t−1),

where wj,iq̃,t is the updated weight in the q̃-th hidden layer connecting the j-th node in the

q̃-th hidden layer with the i-th node in the q̃ + 1-st hidden layer.
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3. wj,i1,t = wj,i1,t−1 − lrate ∗ C ′(w
j,i
1,t−1),

where wj,i1,t is the updated weight connecting the j-th node in the ENN input layer with

the i-th node in the first hidden layer.

4. wi0,t = wi0,t−1 − lrate ∗ C ′(wi0,t−1),

where wi0,t is the updated weight connecting the pairwise-coupling layer with the ENN

input layer.

5. zit = zit−1 − lrate ∗ C ′(zit−1),

where zit is the updated weight connecting xi with the pairwise-coupling layer, where again

the same derivation holds for z̃it.



D Simulation on 50 features

Table D.1: Simulation results for one hidden layer and the modified FDR for 50 features

This table gives the statistical results for a simulation study with a 2-fold cross-validation.

The number of features that are taken is 50 with 5 sparsity levels.

Each training set and test set are generated using 2-fold cross-validation.

The simulation is done 2 times, where each training set

is being split into 2 batches and where the number of epochs is 2.

The outcomes are given for an FNN and an ENN with 1 hidden layer,

where the modified FDR is being controlled.

ENN, 1 hidden layer, modified FDR is controlled

MSPE MSE Number of selected features

feature correlation non-zero signals non-zero signals non-zero signals

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

0 42.737 58.329 56.062 52.414 73.227 0.999 0.835 0.838 0.794 0.824 50 50 50 50 50

0.1 30.589 36.596 42.919 47.763 56.702 0.809 0.786 0.797 0.803 0.784 50 50 50 50 50

0.2 64.922 62.145 62.044 66.721 92.339 0.920 0.844 0.827 0.849 0.883 50 50 50 50 50

0.3 46.163 48.569 53.789 71.742 84.151 0.833 0.805 0.817 0.872 0.882 50 50 50 50 50

0.4 52.394 48.464 51.110 57.962 73.500 0.865 0.806 0.811 0.819 0.842 50 50 50 50 50

0.5 38.136 47.321 42.177 51.593 57.559 0.820 0.812 0.804 0.812 0.795 50 50 50 50 50

0.6 61.130 55.455 52.881 58.364 81.424 0.881 0.827 0.812 0.816 0.851 50 50 50 50 50

0.7 62.781 66.099 52.932 69.803 89.585 0.869 0.855 0.793 0.838 0.880 50 50 50 50 50

0.8 22.661 31.900 35.845 42.833 49.926 0.782 0.781 0.792 0.795 0.775 50 50 50 50 50

0.9 26.211 33.686 34.865 44.467 50.653 0.790 0.785 0.788 0.800 0.774 50 50 50 50 50

EDP, 1 hidden layer, modified FDR

0 9.812 18.180 24.286 32.264 35.766 0.834 0.829 0.830 0.829 0.830 50 50 50 50 50

0.1 8.538 18.295 24.245 32.372 35.726 0.830 0.829 0.830 0.829 0.829 50 50 50 50 50

0.2 8.514 18.179 24.104 32.190 35.472 0.830 0.829 0.830 0.829 0.830 50 50 50 50 50

0.3 8.456 18.135 24.129 32.196 35.647 0.830 0.829 0.830 0.829 0.829 50 50 50 50 50

0.4 8.560 18.349 24.375 32.426 35.699 0.830 0.830 0.830 0.829 0.830 50 50 50 50 50

0.5 8.498 18.217 24.225 32.305 35.795 0.830 0.829 0.830 0.829 0.829 50 50 50 50 50

0.6 8.552 18.361 24.178 32.417 35.695 0.830 0.830 0.830 0.829 0.830 50 50 50 50 50

0.7 8.579 18.317 24.199 32.334 35.747 0.829 0.830 0.830 0.829 0.830 50 50 50 50 50

0.8 8.462 18.282 24.338 32.222 35.770 0.830 0.829 0.830 0.829 0.829 50 50 50 50 50

0.9 8.508 18.363 24.257 32.374 35.801 0.830 0.829 0.830 0.829 0.830 50 50 50 50 50

FNN with DeepPINK filter, 1 hidden layer, modified FDR

0 9.828 18.081 24.277 32.279 35.855 0.834 0.829 0.830 0.830 0.830 50 50 50 50 50

0.1 8.542 18.178 24.211 32.335 35.815 0.829 0.829 0.829 0.829 0.829 50 50 50 50 50

0.2 8.511 18.106 24.112 32.215 35.571 0.829 0.829 0.830 0.830 0.830 50 50 50 50 50

0.3 8.457 18.024 24.123 32.195 35.756 0.829 0.829 0.830 0.829 0.829 50 50 50 50 50

0.4 8.556 18.262 24.371 32.421 35.770 0.829 0.829 0.830 0.830 0.830 50 50 50 50 50

0.5 8.505 18.146 24.216 32.297 35.850 0.829 0.829 0.829 0.829 0.829 50 50 50 50 50

0.6 8.550 18.308 24.192 32.434 35.743 0.829 0.830 0.830 0.830 0.830 50 50 50 50 50

0.7 8.571 18.226 24.178 32.359 35.811 0.829 0.829 0.829 0.830 0.830 50 50 50 50 50

0.8 8.465 18.194 24.310 32.250 35.870 0.829 0.829 0.829 0.829 0.829 50 50 50 50 50

0.9 8.517 18.269 24.239 32.439 35.939 0.829 0.829 0.829 0.829 0.829 50 50 50 50 50
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Table D.2: Simulation results for two hidden layers and the modified FDR for 50 features

This table gives the statistical results for a simulation study with a 2-fold cross-validation.

The number of features that are taken is 50 with 5 sparsity levels.

Each training set and test set are generated using 2-fold cross-validation.

The simulation is done 2 times, where each training set

is being split into 2 batches and where the number of epochs is 2.

The outcomes are given for an FNN and an ENN with 2 hidden layers,

where the modified FDR is being controlled.

ENN, 2 hidden layers, modified FDR is controlled

MSPE MSE Number of selected features

feature correlation non-zero signals non-zero signals non-zero signals

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

0 12748.048 7785.567 19817.368 8567.161 8904.998 11.179 6.454 29.329 8.719 10.633 50 50 50 50 50

0.1 9050.837 11047.582 11763.750 8816.723 11936.829 7.058 8.438 12.301 8.761 10.057 50 50 50 50 50

0.2 9035.429 11386.579 6974.194 7480.472 7828.812 7.007 7.890 7.097 6.951 7.034 50 50 50 50 50

0.3 5325.572 4973.869 6183.011 7666.736 5374.245 6.803 5.231 5.895 11.921 6.131 50 50 50 50 50

0.4 5961.887 4974.074 6383.218 6315.341 7489.379 6.393 5.655 6.197 6.181 7.163 49 50 50 50 50

0.5 9496.756 11004.166 17846.911 7581.465 13738.172 7.016 8.291 17.377 6.218 9.226 50 50 50 50 50

0.6 3902.138 3660.489 3697.651 5609.213 5932.143 5.483 4.860 4.717 5.868 6.759 50 50 50 50 50

0.7 5832.897 5321.545 3709.758 12557.563 11488.628 6.091 5.405 5.411 15.768 11.497 50 50 50 50 50

0.8 5700.071 4656.630 6901.040 3966.379 3873.061 6.059 6.089 6.261 4.740 5.562 50 50 50 50 50

0.9 16073.362 5861.295 19589.736 8961.790 7024.310 12.554 6.719 52.755 8.410 7.885 50 50 50 50 50

EDP, 2 hidden layers, modified FDR

0 10.586 16.862 22.029 30.065 40.446 0.841 0.633 0.632 0.634 0.631 49 49 48 49 48

0.1 7.177 16.446 21.920 29.754 39.996 0.633 0.633 0.632 0.634 0.631 49 49 48 49 48

0.2 7.400 16.559 21.973 29.771 40.214 0.633 0.633 0.632 0.634 0.631 49 49 48 49 48

0.3 7.840 17.684 22.239 30.384 40.588 0.633 0.633 0.632 0.634 0.631 49 49 48 49 48

0.4 7.410 16.550 22.090 30.029 40.372 0.633 0.633 0.632 0.634 0.631 49 49 48 49 48

0.5 7.589 17.219 21.975 30.317 40.598 0.633 0.633 0.632 0.634 0.631 49 49 48 49 48

0.6 7.270 16.638 22.132 30.205 40.442 0.633 0.633 0.632 0.634 0.631 49 49 48 49 48

0.7 7.474 17.227 22.277 30.379 40.608 0.633 0.633 0.632 0.634 0.631 49 49 48 49 48

0.8 7.569 16.934 21.931 30.406 40.137 0.633 0.633 0.632 0.634 0.631 49 49 48 49 48

0.9 7.519 17.261 22.131 30.130 40.235 0.633 0.633 0.632 0.634 0.631 49 49 48 49 48

FNN with DeepPINK filter, 2 hidden layers, modified FDR

0 9.760 15.819 21.953 30.037 39.881 0.840 0.640 0.640 0.640 0.640 49 49 49 49 49

0.1 6.823 15.778 22.083 30.105 39.936 0.640 0.640 0.640 0.640 0.640 49 49 49 49 49

0.2 6.847 15.761 22.024 30.056 39.949 0.640 0.640 0.640 0.640 0.640 49 49 49 49 49

0.3 6.868 15.822 22.092 30.213 39.946 0.640 0.640 0.640 0.640 0.640 49 49 49 49 49

0.4 6.809 15.772 22.067 30.187 40.054 0.640 0.640 0.640 0.640 0.640 49 49 49 49 49

0.5 6.796 15.773 21.980 30.172 39.969 0.640 0.640 0.640 0.640 0.640 49 49 49 49 49

0.6 6.798 15.740 22.040 30.162 40.022 0.640 0.640 0.640 0.640 0.640 49 49 49 49 49

0.7 6.827 15.752 21.984 30.207 40.012 0.640 0.640 0.640 0.640 0.640 49 49 49 49 49

0.8 6.842 15.759 21.951 30.109 39.972 0.640 0.640 0.640 0.640 0.640 49 49 49 49 49

0.9 6.806 15.739 21.971 30.023 39.847 0.640 0.640 0.640 0.640 0.640 49 49 49 49 49
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Table D.3: Simulation results for one hidden layers and the exact FDR for 50 features

This table gives the statistical results for a simulation study with a 2-fold cross-validation.

The number of features that are taken is 50 with 5 sparsity levels.

Each training set and test set are generated using 2-fold cross-validation.

The simulation is done 2 times, where each training set

is being split into 2 batches and where the number of epochs is 2.

The outcomes are given for an FNN and an ENN with 1 hidden layer,

where the exact FDR is being controlled.

ENN, 1 hidden layer, exact FDR is controlled

MSPE MSE Number of selected features

feature correlation non-zero signals non-zero signals non-zero signals

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

0 42.737 58.329 56.062 52.414 73.227 0.999 0.835 0.838 0.794 0.824 50 50 50 50 50

0.1 30.589 36.596 42.919 47.763 56.702 0.809 0.786 0.797 0.803 0.784 50 50 50 50 50

0.2 64.922 62.145 62.044 66.721 92.339 0.920 0.844 0.827 0.849 0.883 50 50 50 50 50

0.3 46.163 48.569 53.789 71.742 84.151 0.833 0.805 0.817 0.872 0.882 50 50 50 50 50

0.4 52.394 48.464 51.110 57.962 73.500 0.865 0.806 0.811 0.819 0.842 50 50 50 50 50

0.5 38.136 47.321 42.177 51.593 57.559 0.820 0.812 0.804 0.812 0.795 50 50 50 50 50

0.6 61.130 55.455 52.881 58.364 81.424 0.881 0.827 0.812 0.816 0.851 50 50 50 50 50

0.7 62.781 66.099 52.932 69.803 89.585 0.869 0.855 0.793 0.838 0.880 50 50 50 50 50

0.8 22.661 31.900 35.845 42.833 49.926 0.782 0.781 0.792 0.795 0.775 50 50 50 50 50

0.9 26.211 33.686 34.865 44.467 50.653 0.790 0.785 0.788 0.800 0.774 50 50 50 50 50

EDP, 1 hidden layer, exact FDR

0 9.812 18.180 24.286 32.264 35.766 0.834 0.829 0.830 0.829 0.830 50 50 50 50 50

0.1 8.538 18.295 24.245 32.372 35.726 0.830 0.829 0.830 0.829 0.829 50 50 50 50 50

0.2 8.514 18.179 24.104 32.190 35.472 0.830 0.829 0.830 0.829 0.830 50 50 50 50 50

0.3 8.456 18.135 24.129 32.196 35.647 0.830 0.829 0.830 0.829 0.829 50 50 50 50 50

0.4 8.560 18.349 24.375 32.426 35.699 0.830 0.830 0.830 0.829 0.830 50 50 50 50 50

0.5 8.498 18.217 24.225 32.305 35.795 0.830 0.829 0.830 0.829 0.829 50 50 50 50 50

0.6 8.552 18.361 24.178 32.417 35.695 0.830 0.830 0.830 0.829 0.830 50 50 50 50 50

0.7 8.579 18.317 24.199 32.334 35.747 0.829 0.830 0.830 0.829 0.830 50 50 50 50 50

0.8 8.462 18.282 24.338 32.222 35.770 0.830 0.829 0.830 0.829 0.829 50 50 50 50 50

0.9 8.508 18.363 24.257 32.374 35.801 0.830 0.829 0.830 0.829 0.830 50 50 50 50 50

FNN with DeepPINK filter, 1 hidden layer, exact FDR

0 9.828 18.081 24.277 32.279 35.855 0.834 0.829 0.830 0.830 0.830 50 50 50 50 50

0.1 8.542 18.178 24.211 32.335 35.815 0.829 0.829 0.829 0.829 0.829 50 50 50 50 50

0.2 8.511 18.106 24.112 32.215 35.571 0.829 0.829 0.830 0.830 0.830 50 50 50 50 50

0.3 8.457 18.024 24.123 32.195 35.756 0.829 0.829 0.830 0.829 0.829 50 50 50 50 50

0.4 8.556 18.262 24.371 32.421 35.770 0.829 0.829 0.830 0.830 0.830 50 50 50 50 50

0.5 8.505 18.146 24.216 32.297 35.850 0.829 0.829 0.829 0.829 0.829 50 50 50 50 50

0.6 8.550 18.308 24.192 32.434 35.743 0.829 0.830 0.830 0.830 0.830 50 50 50 50 50

0.7 8.571 18.226 24.178 32.359 35.811 0.829 0.829 0.829 0.830 0.830 50 50 50 50 50

0.8 8.465 18.194 24.310 32.250 35.870 0.829 0.829 0.829 0.829 0.829 50 50 50 50 50

0.9 8.517 18.269 24.239 32.439 35.939 0.829 0.829 0.829 0.829 0.829 50 50 50 50 50
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Table D.4: Simulation results for two hidden layers and the exact FDR for 50 features

This table gives the statistical results for a simulation study with a 2-fold cross-validation.

The number of features that are taken is 50 with 5 sparsity levels.

Each training set and test set are generated using 2-fold cross-validation.

The simulation is done 2 times, where each training set

is being split into 2 batches and where the number of epochs is 2.

The outcomes are given for an FNN and an ENN with 2 hidden layers,

where the exact FDR is being controlled.

ENN, 2 hidden layers, exact FDR is controlled

MSPE MSE Number of selected features

feature correlation non-zero signals non-zero signals non-zero signals

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

0 12748.048 7785.567 19817.368 8567.161 8904.998 11.179 6.454 29.329 8.719 10.633 50 50 50 50 50

0.1 9050.837 11047.582 11763.750 8816.723 11936.829 7.058 8.438 12.301 8.761 10.057 50 50 50 50 50

0.2 9035.429 11386.579 6974.194 7480.472 7828.812 7.007 7.890 7.097 6.951 7.034 50 50 50 50 50

0.3 5325.572 4973.869 6183.011 7666.736 5374.245 6.803 5.231 5.895 11.921 6.131 50 50 50 50 50

0.4 5961.887 4974.074 6383.218 6315.341 7489.379 6.393 5.655 6.197 6.181 7.163 50 50 50 50 50

0.5 9496.756 11004.166 17846.911 7581.465 13738.172 7.016 8.291 17.377 6.218 9.226 50 50 50 50 50

0.6 3902.138 3660.489 3697.651 5609.213 5932.143 5.483 4.860 4.717 5.868 6.759 50 50 50 50 50

0.7 5832.897 5321.545 3709.758 12557.563 11488.628 6.091 5.405 5.411 15.768 11.497 50 50 50 50 50

0.8 5700.071 4656.630 6901.040 3966.379 3873.061 6.059 6.089 6.261 4.740 5.562 50 50 50 50 50

0.9 16073.362 5861.295 19589.736 8961.790 7024.310 12.554 6.719 52.755 8.410 7.885 50 50 50 50 50

EDP, 2 hidden layers, exact FDR

0 10.586 16.862 22.029 30.065 40.446 0.841 0.633 0.632 0.634 0.631 50 50 50 50 50

0.1 7.177 16.446 21.920 29.754 39.996 0.633 0.633 0.632 0.634 0.631 50 50 50 50 50

0.2 7.400 16.559 21.973 29.771 40.214 0.633 0.633 0.632 0.634 0.631 50 50 50 50 50

0.3 7.840 17.684 22.239 30.384 40.588 0.633 0.633 0.632 0.634 0.631 50 50 50 50 50

0.4 7.410 16.550 22.090 30.029 40.372 0.633 0.633 0.632 0.634 0.631 50 50 50 50 50

0.5 7.589 17.219 21.975 30.317 40.598 0.633 0.633 0.632 0.634 0.631 50 50 50 50 50

0.6 7.270 16.638 22.132 30.205 40.442 0.633 0.633 0.632 0.634 0.631 50 50 50 50 50

0.7 7.474 17.227 22.277 30.379 40.608 0.633 0.633 0.632 0.634 0.631 50 50 50 50 50

0.8 7.569 16.934 21.931 30.406 40.137 0.633 0.633 0.632 0.634 0.631 50 50 50 50 50

0.9 7.519 17.261 22.131 30.130 40.235 0.633 0.633 0.632 0.634 0.631 50 50 50 50 50

FNN with DeepPINK filter, 2 hidden layers, exact FDR

0 9.760 15.819 21.953 30.037 39.881 0.840 0.640 0.640 0.640 0.640 50 50 50 50 50

0.1 6.823 15.778 22.083 30.105 39.936 0.640 0.640 0.640 0.640 0.640 50 50 50 50 50

0.2 6.847 15.761 22.024 30.056 39.949 0.640 0.640 0.640 0.640 0.640 50 50 50 50 50

0.3 6.868 15.822 22.092 30.213 39.946 0.640 0.640 0.640 0.640 0.640 50 50 50 50 50

0.4 6.809 15.772 22.067 30.187 40.054 0.640 0.640 0.640 0.640 0.640 50 50 50 50 50

0.5 6.796 15.773 21.980 30.172 39.969 0.640 0.640 0.640 0.640 0.640 50 50 50 50 50

0.6 6.798 15.740 22.040 30.162 40.022 0.640 0.640 0.640 0.640 0.640 50 50 50 50 50

0.7 6.827 15.752 21.984 30.207 40.012 0.640 0.640 0.640 0.640 0.640 50 50 50 50 50

0.8 6.842 15.759 21.951 30.109 39.972 0.640 0.640 0.640 0.640 0.640 50 50 50 50 50

0.9 6.806 15.739 21.971 30.023 39.847 0.640 0.640 0.640 0.640 0.640 50 50 50 50 50
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