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Abstract

Emerging markets allow investors to profit from their increasing economic prosperity

through publicly traded assets, thereby enabling them to earn superior returns. How-

ever, there are also significant risks involved with investing in emerging market assets

which are often not well understood. This requires investors to follow a careful asset

allocation approach that identifies risk and return accurately. In this paper I propose a

novel methodology for asset allocation in emerging markets that succeeds at identifying

interesting future return opportunities and constructs portfolios accordingly. My meth-

odology yields superior portfolios that outperform the local index and the 1
N

-portfolio.

My approach entails the Wasserstein Generative Adversarial Network to predict and the

Non-Dominated Sorting Genetic Algorithm II with Monte Carlo to forecast closing prices

for emerging market assets and construct emerging market portfolios, respectively. The

emerging markets under consideration are South Africa and Russia, the most import-

ant emerging market countries in the EMEA region. I construct portfolios representing

the most important industrial segments in the associated countries, each targeting differ-

ent risk-return preferences. The portfolios are constructed from the mean-semivariance

frontier. I find that the risk-averse and risk-seeking Russian portfolios outperform the

benchmark and the local index and that the risk-averse portfolio in South Africa beats

the local index, however all insignificantly. The latter can largely be attributed to the

limited size of the data set, which adds an extra layer of complexity to this research.

Keywords: Emerging Markets, Generative Adversarial Networks, Wasserstein Distance,

Non-Dominated Sorting Genetic Algorithm II, Mean-Semivariance Optimization
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1 Introduction

Investors consider emerging market assets as a unique and attractive investment due to

the superior return opportunities that come along with investing in these assets. However,

there are also significant risks involved, which are often not well understood. Emerging

markets are frequently exposed to tail events caused by political upheaval or natural

disasters that seriously slow down their growth and thus negatively impact asset prices.

Moreover, emerging market assets often have a short history of public trading. The ab-

sence of a reliable track record causes investors to struggle with identifying the fair value

of these assets. On the other hand, the rewards can outweigh the risks: if investors

correctly identify an opportunity, they can greatly profit from the increasing economic

prosperity. The unstable and immature character of assets in emerging markets requires

a careful approach regarding their allocation. Existing techniques are often too simplistic

and do not capture their unstable and immature behavior accurately. In this paper, I pro-

pose a methodology for the construction of emerging market portfolios that acknowledges

the unstable and immature character of emerging markets and operates accordingly. My

methodology entails a deep learning architecture for the prediction of asset closing prices

and a multiobjective evolutionary algorithm with Monte Carlo for the construction of

portfolios that target asymmetric risk-return preferences. Through combining the meth-

ods, my approach successfully deals with the unstable and immature character of assets

in emerging markets and yields superior portfolios that outperform the local index and

the 1
N

-portfolio. I apply this methodology to the two most important emerging markets

countries in EMEA (Europe - Middle East - Africa): South Africa and Russia.

Markowitz (1952) elaborates on the construction of portfolios and introduces the mean-

variance framework. He explains that the process of portfolio construction can be divided

into two stages. The first stage considers predicting the performance of the securities

that are available to be incorporated into the portfolio. The second stage considers the

decision-making process for portfolio construction. In this research, I address both stages

as I am convinced they are intertwined, i.e. the portfolio optimization problem is based

on the information that can be derived from the probability distribution of the securities

from the first stage. To clarify this: the popular Markowitz framework forms its allocation

solely based on mean and variance (Markowitz, 1952). The only probability distribution

that is fully characterized by mean and variance is the normal distribution, so by using
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the Markowitz framework for portfolio construction, you implicitly assume Gaussian asset

returns (Tobin, 1958).

To address the first stage, I implement a deep learning architecture to predict asset

closing prices. I deploy a Wasserstein Generative Adversarial Network (WGAN). WGANs

have previously been used for language models and image recognition (Arjovsky et al.,

2017; Gulrajani et al., 2017), and for the prediction of financial time series (Mariani et al.,

2019; K. Zhang et al., 2019; M. Zhang et al., 2012). In this research, the assets under

consideration are stocks and indices and I predict up to 20 days (i.e. 1 month) ahead. The

Generative Adversarial Network (GAN) was introduced by Goodfellow et al. (2014) and

encompasses two Neural Networks: the generator and the discriminator. The generative

model generates fake data points, while the discriminator decides upon the fit of the fake

data with the real data. As GANs are found to have an unstable training process, the

WGAN was introduced by Arjovsky et al. (2017). The WGAN exhibits a stable training

process and produces robust results under various hyperparameter settings.

Previous research in the space of stock price prediction focuses on both traditional

econometric techniques as well as machine learning techniques. Regarding traditional

econometric techniques, the Geometric Brownian Motion is one of the most popular mod-

els to generate asset paths (Hull, 2003). This model requires input variables such as

the mean and variance, which are estimated by looking at historical price information.

A recurrent problem in financial markets is that history does not accurately represent

the future. Moreover, the variance is assumed to be constant over time, and the simu-

lated path is assumed to be continuous. However, often both assumptions do not hold

in real-world dynamics as the asset variance changes over time and asset paths often

exhibit jumps, especially in emerging market space, caused by unpredictable events or

news updates (Bekaert et al., 1998). There are also other functions that can be imple-

mented to predict closing prices instead of the Geometric Brownian Motion. However,

these functions all have in common that they pose restricted assumptions on the general

pattern and the noise terms of the closing prices. Moreover, to find distribution that de-

scribes the closing prices best, maximum likelihood estimation (i.e. minimization of the

Kullback-Leibler (KL) divergence) is often used (Arjovsky et al., 2017). This technique

has its drawbacks for both high-dimensional problems as well as problems restricted to

low-dimensional manifolds. In complex high-dimensional problems, maximizing the log-
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likelihood becomes either unfeasible or inaccurate due to the large amount of parameters

that need to be optimized (Salakhutdinov & Hinton, 2009). We also encounter problems

with maximum likelihood estimation in situations where the distributions are supported

by low-dimensional manifolds (up to 4-dimensional) in high-dimensional spaces. For dis-

tributions supported by low-dimensional manifolds, you can observe that the manifolds of

both the model as well as the true distribution either intersect transversally (yielding the

intersection to have measure 0 in both manifolds) or not intersect at all. In both cases,

the KL divergence vanishes causing the maximum likelihood problem to be degenerate.

An extensive explanation of this phenomenon can be found in Appendix A. Adding a

noise term to the model distribution could alleviate this problem, however, this negat-

ively impacts the quality of the generated samples (Arjovsky et al., 2017). There is a

strong use case for WGAN instead of traditional econometric techniques as it does not

perform maximum likelihood estimation, and therefore, it is feasible in high-dimensional

spaces, even if the real distribution is supported by low-dimensional manifolds. In emer-

ging market space, the upside of using WGANs over traditional econometric techniques

is even amplified, as this architecture does not pose restricted assumptions on the noise

terms and loss functions, and because it is able to analyze hidden patterns and to capture

nonlinear relations in the data.

In the field of machine learning, architectures such as Artificial Neural Networks

(ANNs) and Support Vector Machines (SVMs) (Kara et al., 2011), and Long Short-

Term Memory (LSTM) Networks and Convolutional Neural Networks (CNNs) (Selvin et

al., 2017), have been deployed. However, GAN, and especially WGAN, is preferred over

these single network architectures as it models the uncertainty of the market as a whole

rather than forecasting single stocks, and enables us to investigate various simulation runs

to identify possible future market scenarios. K. Zhang et al. (2019) and Zhou et al. (2018)

both propose GAN architectures to predict closing prices of financial instruments, and

Mariani et al. (2019) propose the WGAN architecture. Whereas K. Zhang et al. (2019)

forecast various regressors for the closing price and Zhou et al. (2018) forecasts the dir-

ection (up or down), Mariani et al. (2019) forecast closing prices directly. In this work, I

deploy an architecture that is inspired by the architecture from Mariani et al. (2019), as

their architecture yields promising results for the developed market portfolios. i.e. their

architecture significantly outperforms the Markowitz framework.
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To address the second stage, I introduce a portfolio optimization framework that

captures the behavior of the asset returns generated by WGAN. Portfolio optimization

techniques focus on solving a multiobjective function. The multiobjective function yields

the efficient frontier, i.e. the Pareto front. The Pareto front resembles a trade-off between

portfolio risk and return. To find the Pareto front, we need to specify functions that

approximate risk and return. In this work, I use the mean of the portfolio return as a

measure for return. The risk measure can be derived from the investor’s utility function.

As a measure of risk, I use the semivariance which is able to capture the volatile, skewed,

and asymmetric behavior of the return distribution of the emerging market assets as it

takes into account higher-order moments (Markowitz, 1991). It does so by only capturing

downward deviation, which makes sense in this application as investors only worry about

losing. Mariani et al. (2019) implement the mean-variance framework. The mean-variance

framework has been one of the most influential models in the history of finance, however,

it is sometimes criticized as it assumes quadratic utility preferences. Thereby, implicitly

it assumes Gaussian stock returns (Tobin, 1958). As with the normality assumption

for stock returns, the quadratic utility function is characterized solely by the mean and

variance parameters. The variance measures the probability of an upward or downward

move equally, i.e. it assumes that the underlying distribution of returns is symmetric.

These assumptions are unlikely to materialize in the setting of asset return distributions

in emerging market space, as return distributions are often skewed with many outliers

due to the unstable character of these markets.

Following my procedure, I show that WGAN succeeds at predicting the general pat-

tern of the asset closing prices, but that it underestimates their semivariance. Moreover,

I demonstrate that the portfolios in the Russian market outperform both the local index

as well as the benchmark portfolio (i.e. the 1
N

-portfolio) up to 55% and 40% compounded

return respectively for an investment period of 21 months. In South Africa, only the port-

folio that follows a risk-averse approach outperforms the local index and the benchmark

portfolio returns remain superior. The risk-averse approach considers a portfolio with a

return that is 16,7% bigger than the lowest estimated return. However, due to the limited

size of the data set, I do not accomplish to get significant results.

To summarize, the contribution of this research to the existing literature is twofold.

Firstly, I extend the work of Mariani et al. (2019) by combining the WGAN architecture
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with the mean-semivariance framework, which accounts for higher-order moments in the

asset return distributions and captures the asymmetric desirability for variance that in-

vestors exhibit. Secondly, the methodology is applied to emerging market assets, which

brings along additional difficulties with respect to developed market assets due to their

unstable and immature character.
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2 Literature Review

Emerging market assets are often considered as a separate asset class in portfolio man-

agement, due to their unique behavior compared to developed market assets. Bekaert

et al. (1998) show there are a significant skewness and kurtosis in the returns of emerging

market assets. They conclude that the normal distribution for asset returns is not suitable

for emerging market asset returns, and therefore, they suggest that portfolio optimization

techniques in the presence of non-normality should be investigated further.

Deep learning techniques offer an elegant method to approximate asset return distri-

butions. In the field of single network deep learning techniques, there is a distinction

between the Feedforward Backpropagation Neural Networks and the Recurrent Neural

Networks (RNNs). The Feedforward Backpropagation Network does not take into ac-

count the sequence in which inputs are presented. On the contrary, in the nodes of the

RNN there exists a feedback mechanism that enables the network to use information from

previous patterns along with the present inputs, i.e. RNNs can learn spatiotemporal pat-

terns. Long Short-Term Memory (LSTM) models were first introduced by Hochreiter and

Schmidhuber (1997) as a slightly modified candidate for the RNN architecture. RNNs

often face the problem of vanishing gradients during training. LSTMs overcome this

by using memory cells. They are designed to model temporal sequences and long-range

dependencies more accurately than RNNs, by implementing memory cells composed of

gates. These memory cells distinguish between long-term and short-term time-dependent

information. Jiang et al. (2018) perform a time series analysis on the closing prices of the

Dow Jones Index and the Shanghai Composite Index. They implement both an RNN and

LSTM model and find that the LSTM model fits the data better than the RNN model.

Besides the LSTM model, Convolutions Neural Networks (CNNs) are also used in the set-

ting of time series analysis. CNNs belong to the class of the Feedforward Backpropagation

Neural Networks and contain one or more convolutional layers, which apply a convolution

operation on the input of the respective layer. This operation allows for the identification

of deep dependence structures with relatively few parameters. Through the application of

kernels, CNNs can capture both spatial and temporal dependence structures, depending

on the direction in which the kernels are applied. Selvin et al. (2017) implement the CNN

architecture for stock price forecasting. They compare the performance of the CNN model

with a sliding window implementation with respect to the LSTM and RNN models. They
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find that the CNN performs better as it only uses the given input sequence and adjusts its

prediction according to the patterns occurring in the current window. On the contrary,

the LSTM architecture identifies both long and short term dependencies and uses these

for prediction. As the environment of stock price forecasting is highly dynamical, it is not

always a good idea to include long-term dependencies in the prediction of stock prices as

these dependencies might develop over time.

As pointed out by Mariani et al. (2019), single network techniques lack a stochastic

component that models the uncertainty that comes along with forecasting stock prices. To

solve this issue, they propose the Wasserstein Generative Adversarial Network (WGAN)

with convolutional layers for the generator as well as the discriminator. The WGAN

is a multi-network deep learning architecture consisting of a generator network and a

discriminator network. By training the generator and the discriminator simultaneously,

the generator aims to generate data points that approach the real data points as good as

possible, thereby adjusting its generative process based on the discriminator’s feedback.

The discriminator tells the generator to what extent the synthetic data points fit the

real data points (Arjovsky et al., 2017). Mariani et al. (2019) use the historical daily

closing prices for a set of portfolio assets. Conditioning on this information, they model

the uncertainty and simulate various asset paths reflecting the most recent information as

well as the uncertainty associated with predictions in the financial markets. They show

that their methodology is capable of generating asset paths under various scenarios and

that their predictions are updated based on the most recent market information, thereby

not assuming that the future probability density function equals the historical probability

density function. K. Zhang et al. (2019) also propose a methodology for stock market

prediction with a GAN. They use an LSTM network for the generator and a Multilayer

Perceptron (MLP) for the discriminator. However, instead of considering a set of assets

simultaneously, they only look at S&P500 Index data. Zhou et al. (2018) deploy the

LSTM network for the generator and the CNN for the discriminator. However, they

again generate future values for only one asset at a time.

One major difficulty with training (W)GANs is mode collapse, also called the Helvetica

scenario. If this occurs, the generator produces the same data points over and over again.

One solution is to make the discriminator function 1-Lipschitz, i.e., the absolute value of

the first derivative of the discriminator loss is smaller than or equal to 1, across its whole
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domain. To enforce this constraint, Arjovsky et al. (2017) implement weight clipping.

Gulrajani et al. (2017) propose a method to enforce Lipschitz constraints alternative to

weight clipping. They penalize the norm of the gradient of the discriminator loss with

respect to its input: the Wasserstein GAN Gradient Penalty (WGAN-GP) framework.

They argue that two problems arise with weight clipping. The first problem is that

the discriminator loss is pushed towards much simpler functions that do not incorporate

higher-order moments in the data distribution. The second problem is the presence of

exploding and vanishing gradients. Gulrajani et al. (2017) show that the WGAN-GP

framework performs better than the WGAN framework proposed by Arjovsky et al. (2017)

in terms of training speed and sample quality.

In the field of asset allocation, the mean-variance framework, also referred to as the

Modern Portfolio Theory (MPT), is widely used (Markowitz, 1952). The MPT shows

both that the investor should diversify and that he should maximize expected return.

The portfolio with the maximum expected return is not necessarily the one with minimum

variance. There is a trade-off between expected return and variance, i.e. an investor can

take on extra risk (increase the portfolio’ variance) resulting in a higher expected return

according to its risk appetite. The traditional Markowitz framework fails to capture

higher-order moments in the return distributions, as it restricts its risk assessment to

the variance measure. Moreover, it treats upward and downward movements equally.

However, investors prefer upward movements in stock returns, whereas they consider

downward movements as undesirable. Therefore, I discuss some alternative risk measures

for the variance, namely the Value at Risk (VaR), the Conditional Value at Risk (CVar),

and the semivariance.

The VaR is a widely used alternative risk measure for the variance. The VaR treats

downward movements differently with respect to the desired upward movements and can

be calculated in a variety of manners, which entail both parametric and nonparametric

approaches (Linsmeier & Pearson, 1996). The variance-covariance method is a parametric

approach and places strong assumptions on the return distribution. The historical sim-

ulation method and Monte Carlo simulation are nonparametric methods. The historical

simulation method assumes that the past reflects the future, whereas the Monte Carlo

simulation simulates several possible future scenarios and approximates the VaR based on

these simulations. Campbell et al. (2001) propose VaR to measure risk as a replacement
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for the variance for portfolios consisting of assets with non-normal asset returns, and show

that making parametric assumptions on the VaR measure greatly affects the outcomes.

The CVaR, or Expected Shortfall, is a VaR based measure that overcomes some lim-

itations of the VaR. The VaR is not a coherent risk measure as it lacks subadditivity and

convexity. As the CVaR is coherent, it eases mathematical computations. However, Lim

et al. (2011) show that the mean-CVaR optimization framework does not yield robust

results due to estimation errors in the mean and CVaR and that this is even amplified

for heavily tailed distributions. Therefore, despite that the CVaR is coherence, it does

not necessarily improve the outcomes with respect to the non-coherent VaR measure.

Moreover, Markowitz (2010) shows that a small shift in probability distributions result

in different optimal portfolio compositions, as both the VaR and CVaR measures are not

continuous functions of the probability distribution. This new portfolio, however, does

not necessarily yield significantly better results in terms of utility. Because of their dis-

continuous behavior, Markowitz (2010) argues that the VaR and CVaR should not replace

the traditional risk measure, the variance.

To handle the asymmetric desirability of gains and losses and the higher-order mo-

ments in the return distribution, Markowitz (1991) proposes the semivariance as a sub-

stitute for the variance. The major challenge in the implementation of the semivariance

is the existence of endogeneity between the portfolio semivariance matrix and the weights

given to each asset. Whereas mean-variance problems have easy-to-use closed-form solu-

tions, mean-semivariance problems cannot be solved analytically, so numerical algorithms

are required. Markowitz et al. (1993) implement the Critical Line Algorithm to com-

pute the mean-semivariance frontier. By including additional variables, they tackle the

endogeneity problem. They show that it takes the Critical Line Algorithm twice as long

to compute the mean-semivariance frontier compared to the mean-variance frontier. An-

other tool that is often used in the field of portfolio optimization is the multiobjective

evolutionary algorithm (MOEA). MOEAs aim at finding a set in the field of portfolio

optimization of Pareto optimal solutions in one single run. The Pareto front is the set of

solutions of the multiobjective optimization problem where an objective function can only

improve at the expense of the value of another objective function (Macedo et al., 2017).

There are a lot of different MOEAs. With MOEAs, there is no single algorithm that

consistently outperforms the other ones, and the performance is mainly studied experi-
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mentally. Macedo et al. (2017) propose the Non-Dominated Sorting Genetic Algorithm

II (NSGA-II) and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). By using

these techniques, the endogeneity problem is tackled by construction as the asset weights

are known a priori since they are generated by the algorithm in the previous iteration.

They conclude that NSGA-II outperforms SPEA2, as NSGA-II stimulates diversity as

it approaches the Pareto front due to its fast nondominated sorting procedure, whereas

SPEA2 shrinks the solutions to the middle of the Pareto front.

Li and Zhang (2008) argue that the shape of the Pareto front determines the per-

formance of the MOEA to a large extent. They introduce a set of test problems and

investigate the performance of various MOEAs for complicated Pareto sets. They find

that MOEAs experience a lot of difficulties in finding the solutions for complicated Pareto

fronts. Therefore, they introduce the MOEA with Decomposition (MOEA/D). This tech-

nique decomposes the multiobjective optimization problem into single-objective optimiza-

tion subproblems and simultaneously optimizes these subproblems. Moreover, they intro-

duce a differential evolution (DE) and polynomial mutation operator with this technique,

MOEAD/D-DE, and also for NSGA-II, i.e. NSGA-II-DE. They show that MOEA/D-

DE outperforms NSGA-II-DE for complex Pareto shapes due to the decomposition of

the multiobjective problem. H. Zhang et al. (2018) propose MOEA/D with Constraint

Programming (MOEA/D-CP) to solve optimization problems in the field of portfolio op-

timization. MOEA/D-CP is based on MOEA/D and introduces a constraint on the weight

vector to generate an evenly distributed set of weight vectors. Therefore, their optimiz-

ation problem includes a set of additional restrictions. They assign a bigger weighting

to recent price information as this information greatly determines the future price of the

reference price calculation. Moreover, they introduce upper and lower limits to each as-

set’s share in the portfolio. By introducing these additional restrictions, the shape of the

Pareto optimal solution becomes extremely complex. They show that the MOEA/D-CP

performs much better than the MOEA/D. One major drawback of both the MOEA/D

and the MOEA/D-CP algorithms is the extensive and barely insightful parameter set

that these algorithms require. Therefore, implementing this algorithm only pays off for

complex Pareto fronts that cannot be solved by less parameter intense MOEAs.
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3 Data

This section describes the data that is used in this research, followed by a brief discussion

on how the data is used for training and testing the deep learning architecture.

In this research, I use daily closing prices for two types of financial instruments: stocks

and indices. I consider two portfolios. The first portfolio consists of South Africa assets

and focuses on mining and materials companies. The second portfolio focuses on Russian

oil and gas companies. Both sectors are extremely important for the local economies,

and therefore, many foreign investors are interested in investing in these sectors to profit

from the country’s increasing economic prosperity. Moreover, I include the JSE All Share

Index (ALSI) in the South African portfolio and the MOEX Russia Total Return Index

(MCFTR) in the Russian portfolio. These indices reflect the overall performance of the

South African and Russian stock markets, respectively. Investing in these assets is con-

sidered to be less risky compared to investing in individual stocks as they comprise a set

of assets, which introduces diversification opportunities.

To obtain the daily closing prices of the stocks in the emerging market portfolios, I use

the Global - Daily dataset from the Compustat - Capital IQ database on the Wharton

Research Data Services (WRDS) website (Wharton Research Data Services, 2020). The

shares’ closing prices are obtained using their corresponding ISIN code. The stocks to

be included in both portfolios must meet the following set of criteria: (1) the stock

should be publicly tradeable in the period under consideration, i.e. 2010-02-01 to 2019-

05-31; (2) the stock should be publicly tradeable on the local stock exchange in the local

currency, as in this research I consider single-currency portfolios with their associated

assets trading on the same exchange; (3) the float-adjusted market cap should be at

least $2 billion: I restrict the portfolios to mid and large-cap stocks, as small-cap stocks

often exhibit illiquid characteristics, and I want to avoid trading issues regarding liquidity

constraints. The portfolio constituents for this research are listed in Table 1. The period

under consideration is 2010-02-01 to 2019-05-31, i.e. 2, 435 observations for the South

African portfolio and 2, 437 for the Russian portfolio due to a small discrepancy in stock

market holidays.

As WRDS does not provide daily index data for emerging market regions, I extract

the index data directly from the local stock exchange websites, i.e. the daily closing

prices for the MOEX Russia Total Return index are obtained from the Moscow Exchange
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website (Moscow Exchange, 2020), and the daily closing prices for the JSE All Share

Index are obtained from the Johannesburg Stock Exchange website (Johannesburg Stock

Exchange, 2020). Both indices are capitalization-weighted, which means that the index

constituents are weighted according to their market capitalization, i.e. the value of their

outstanding shares. The indices under consideration are both total return indices. Total

return indices reinvest dividends back into the index. This methodology increases the

accuracy of the performance representation of the index as there is accounted for stocks

that do not issue dividends, and instead, reinvest their earnings (if applicable) back into

the company. In total return indices, therefore, dividend-paying and non-dividend paying

stocks are treated equally. The JSE All Share Index (ALSI) consists of 164 companies.

The MOEX Russia Total Return Index (MCFTR) consists of approximately 50 stocks.

(a) The South African portfolio. Sector: mining and materials

Company name Symbol ISIN CODE Type

African Rainbow Minerals ARM ZAE000054045 Share

Anglo American Platinum Limited AMS ZAE000013181 Share

AngloGold Ashanti ANG ZAE000043485 Share

Assore Limited ASR ZAE000146932 Share

Gold Fields Limited GFI ZAE000018123 Share

Kumba Iron Ore Limited KIO ZAE000085346 Share

JSE All Share Index ALSI I1ZAF003 a Index

aThe ticker instead of the ISIN code as this is used by the database

(b) The Russian portfolio. Sector: oil and gas

Company name Symbol ISIN CODE Type

Gazprom GAZP RU0007661625 Share

Lukoil LKOH RU0009024277 Share

Novatek NVTK RU000A0DKVS5 Share

Rosneft ROSN RU000A0J2Q06 Share

Surgutneftegas SNGS RU0008926258 Share

Tatneft-3 TATN RU0009033591 Share

MOEX Russia Total Return Index MCFTR RU000A0JWY86 Index

Table 1. The emerging market assets
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In Table 2, general statistics are summarized for the return of each portfolio constituent

in the South African and Russian portfolios. The asset returns are calculated from the

daily closing prices, thereby accounting for dividend payments:

Ri,t =
Pi,t − Pi,t−1 +Di,t

Pi,t−1

, (1)

where Ri,t represents the return for stock i at time t, Pi,t the closing price for stock i at

time t, and Di,t the dividend payment of stock i at time t (which is set to 0 if there is

no dividend payment). For the indices, D = 0 as I consider total return indices. We see

that all asset returns have skewnesses different from 0 and kurtoses larger than 3. This

indicates that the normality assumption for asset returns is not feasible for this asset

selection.

(a) The South African portfolio. All stocks have a positive skewness, except for ANG. AMS, ANG, GFI

and KIO have a kurtosis larger than 3.

Symbol Mean Stdev Kurtosis Skewness

ARM 0.00046 0.00050 3.34 0.32

AMS 0.00033 0.00050 4.52 0.69

ANG 0.00022 0.00053 2.99 0.45

ASR 0.00064 0.00069 118.12 -4.49

GFI 0.00030 0.00056 4.28 0.28

KIO 0.00084 0.00060 10.35 0.79

ALSI 0.00037 0.00020 1.34 -0.12

(b) The Russian portfolio. All stocks have a positive skewness. GAZP and NVTK have a kurtosis larger

than 3, and ROSN and TATN have a kurtosis that is substantially lower than 3.

Symbol Mean Stdev Kurtosis Skewness

GAZP 0.00035 0.00033 7.96 0.47

LKOH 0.00078 0.00030 3.16 0.04

NVTK 0.00107 0.00039 9.87 0.05

ROSN 0.00050 0.00033 2.09 0.26

SNGS 0.00020 0.00033 2.92 0.23

TATN 0.00107 0.00040 2.34 0.32

MCFTR 0.00051 0.00026 5.55 -0.64

Table 2. The mean, standard deviation, kurtosis, and skewness for each constituent return in

the portfolios. The normality assumption is not feasible.
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To get the overall performance of WGAN, the data set is split into two sets: the train

set and the test set. Following Chong et al. (2017), I use an 80-20 split between the

train and the test data. First, the model is trained on the train subset. During training,

the weights and biases in each layer are optimized. These parameters are fixed at their

optimal values, and subsequently, the model is tested on the test subset. I predict up to

20 days, conditioning on historical price information of the last 40 days. I use a rolling

window to split both the train and test data into samples of 60 days. As I have 2, 435

observations covering the period 2010-02-01 to 2019-05-31 for the South African portfolio,

I have 1, 948 observations in the train set, covering the period 2010-02-01 to 2017-07-19,

and 487 observations in the test set, covering the period 2017-02-20 to 2019-05-31. This

yields 1, 889 samples for the train set, and 428 samples for the test set. For the Russian

portfolio, I have 2, 437 observations. This means that I have 1, 949 observations in the

train set, and 488 observations in the test set, yielding 1, 890 samples in the train set, and

429 in the test set.
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4 Methodology

This section gives an extensive explanation of the methodology implemented to optimize

the asset allocation for emerging market portfolios. First, I elaborate on the Neural

Network architecture that is deployed to forecast the closing prices of the assets in the

portfolios, starting with explaining the architecture, followed by discussing the problem-

specific model setup. Secondly, I address the framework that is used to construct the

portfolios.

4.1 Asset Price Forecasting

4.1.1 Wasserstein Generative Adversarial Network

In this research, I deploy the Wasserstein Generative Adversarial Network (WGAN) for

the prediction of asset closing prices. WGAN is a variation of GAN that avoids vanish-

ing gradients during training by implementing the Wasserstein distance rather than the

Jensen-Shannon (JS) divergence as with traditional GANs.

The main idea of GAN is that it generates samples from stochastic input that ap-

proximate real data samples accurately, without knowing the probability density function

of the data explicitly. GAN consists of two neural networks: the generator and the dis-

criminator. The generator generates samples and the discriminator distinguishes between

generated samples and samples from the data. Hereby the discriminator assigns the value

1 if it considers samples to be real (i.e. from the data) and 0 if it considers them to be

fake (i.e. generated by the generator). By using feedback from the discriminator while

training the generator, the distribution of the generator is optimized such that it ap-

proximates the real data distribution better. The discriminator and generator are being

trained simultaneously. Goodfellow et al. (2014) explain that the GAN solves a minimax

two-player game:

min
G

max
D

L(G,D) = Ex∼Pr(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))]

= Ex∼Pr(x)[logD(x)] + Ex∼Pg(x)[log(1−D(x))],

(2)

where L represents the loss function of the GAN, G represents the generator, D represents

the discriminator, pr the data distribution (i.e. the real distribution), pz the stochastic

distribution, and pg the generator distribution. From Equation 2, you can see that the
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stochastic variables are passed through the generator. In this research, I sample z from

the standard uniform distribution, i.e. z ∼ U(0, 1), as this distribution is often used for

sampling purposes for a broad range of distributions via inverse transform sampling.

In the minimax two-player game of GANs, the generator can only win at the expense

of the discriminator, and the other way around. The discriminator aims to maximize the

probability of correctly identifying samples as being real or fake, whereas the generator

optimizes its distribution function such that it produces samples that match samples

from the real data as good as possible, thereby minimizing E[log(1 − D(G(z)))]. If the

generator succeeds at generating realistic samples, the discriminator struggles to identify

whether samples come from the real or generative distribution.

In the traditional GAN architecture, under the optimal discriminator, minimizing with

respect to the discriminator boils down to minimizing the Jensen-Shannon (JS) divergence.

However, minimizing this divergence in this application often leads to vanishing gradients,

as the probability distributions of the generator and discriminator are supported by low-

dimensional manifolds in a high-dimensional space (Arjovsky & Bottou, 2017). Therefore,

Arjovsky et al. (2017) propose the WGAN, which deploys the Wasserstein distance rather

than the JS divergence measure. The huge advantage of using the Wasserstein distance

is that it still produces an accurate measure of distance even when the probability dis-

tributions are supported by low-dimensional manifolds. An elaborate explanation of the

problem with the JS divergence is described in Appendix A. The Wasserstein distance is

described by:

W (Pr, Pg) = inf
γ∼Π(Pr,Pg)

E(x,y)∈γ[||x− x̄||], (3)

where Π(Pr, Pg) denotes the set of all joint distributions γ(x, x̄) whose marginals are

respectively Pr (the data distribution) and Pg (the generative distribution). Pg generates

x̄ = G(z|XG), z ∼ p(z), i.e. z is conditioned on XG. The Wasserstein distance is the

minimum cost of transporting mass when converting Pg into Pr. For all possible joint

distributions γ(x, x̄) ∈ Π(Pr, Pg), a real sample (x) and a generative sample (x̄) can be

obtained, and, therefore, the distance can be calculated. By taking the expectation of all

samples x and x̄ from the same joint distribution, and subsequently taking the infimum

across all joint distributions, the Wasserstein distance is computed.

As it is impossible to evaluate infγ∼Π(Pr,Pg) analytically, Arjovsky et al. (2017) suggest
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an alternative form by using the Kantorovich-Rubinstein duality:

W (Pr, Pg) = sup
||f ||L≤1

Ex∼Pr [f(x)]− Ex̄∼Pg [f(x̄)], (4)

where ||f ||L ≤ 1 represents a set of 1-Lipschitz functions. A function f is 1-Lipschitz

continuous if for any two elements x1 and x2 in the domain of f , it holds that: |f(x1)−

f(x2)| ≤ |x1 − x2|, i.e. the absolute value of the derivative of f is smaller than or equal

to 1. By implementing a Lipschitz constraint on f , the maximum rate of change of

the function is restraint. In this application, f represents the discriminator network. It

makes sense to restrict the rate of change of the discriminator as it needs to provide

constructive feedback to the generator during training. To get rid of the supremum

function, Arjovsky et al. (2017) define a function that is parameterized by the vector

w, i.e. fw. fw still represents the discriminator, now explicitly parameterized by w.

With a Neural Network, we can approximate almost all the possible f from Equation 4.

Therefore the maximum accurately approximates the supremum, which translates into an

alternative, more practical, form for Equation 4, namely:

W (Pr, Pg) ≈ max
w:||fW ||L≤1

Ex∼Pr [fw(x)]− Ex̄∼Pg [fw(x̄)]. (5)

Here, we can restrain the derivative of f with respect to an arbitrary input x, i.e. ∂fw
∂x

to 1. Taking the maximum yields the following WGAN loss function, in terms of the

discriminator:

L = Ex∼Pr [D(x)]− Ex̄∼Pg [D(x̄)]. (6)

4.1.2 Gradient Penalty

Equation 6 is the output of the discriminator (i.e. the discriminator loss) and is also

called the critic. To enforce the 1-Lipschitz constraint on the loss function L, I deploy the

Wasserstein GAN Gradient Penalty (WGAN-GP) framework, introduced by Gulrajani et

al. (2017). Following Proposition 1, convex combinations between samples of the real and

generated distributions have a gradient norm equal to 1. Adding a term that increases

the discriminator loss if ||∇x̂D(x̂)|| deviates from 1, with x̂ a convex combination between

a real and generated sample, therefore enforces the 1-Lipschitz constraint. This yields the

following expression for the discriminator loss function:

L = Ex̄∼Pg [D(x̄)]− Ex∼Pr [D(x)] + λEx̂∼Px̂
[(||∇x̂D(x̂)|| − 1)2], (7)
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where (||∇x̂D(x̂)|| − 1)2 represents the regularization term that penalizes a deviation of

the norm of the gradient of the discriminator loss with respect to its input from 1. x̂ reads

x̂ = εx+ (1− ε)x̄ with ε ∼ U [0, 1].

Proposition 1 (Gulrajani et al., 2017) Let Pr and Pg be two distributions in X , a com-

pact metric space. Then there is a 1-Lipschitz function f ∗ which is the optimal solution

of max||f ||L≤1Ex∼Pr [f(x)]−Ex̄∼Pg [f(x̄)]. Let π be the optimal coupling between Pr and Pg

defined as the minimizer of W (Pr, Pg) = infπ∈Π(Pr,Pg) E(x,x̄)∼π[||x− x̄||] where Π(Pr, Pg) is

the set of joint distributions π(x, x̄) whose marginals are Pr and Pg, respectively. Then,

if f ∗ is differentiable, π(x = x̄) = 0, and x̂ = εx + (1 − ε)x̄ with 0 ≤ ε ≤ 1, it holds that

P(x,x̄)∼π[∇f ∗(x̂) = x−x̂
||x−x̂|| ] = 1.

As Gulrajani et al. (2017) found that a two-sided penalty on the gradient norm (i.e.

the discriminator loss gradient norm should go towards 1 rather than staying below 1)

increases the performance of the WGAN-GP discriminator loss, I also apply a two-sided

penalty in this work. λ is set to 10 (Gulrajani et al., 2017).

The main difference between the GAN and the WGAN is the function of the discrim-

inator. In the GAN, the discriminator classifies samples as being real or fake. On the

contrary, in the WGAN framework, the discriminator scores the realness of fakeness of a

given input sample. Inspired by the reinforcement learning community, the discriminator

is often renamed to the critic, as in reinforcement learning the loss function which meas-

ures how good the input is, is called the critic. In this research, I will use the discriminator

specification.

Training the generator aims at minimizing the distance between the real data distribu-

tion and the generative distribution. Therefore, scoring the realness and fakeness of input

better describes the overall goal of the network, as the feedback the WGAN discriminator

provides is more constructive with respect to the feedback from its GAN counterpart. Ar-

jovsky et al. (2017) show that this yields a training process more stable and less sensitive

to the model architecture and the hyperparameter settings. Translating this into Neural

Network layers, this means that the last layer in the WGAN discriminator network is a

Dense layer with a linear activation function rather than the Sigmoid activiation function

as with GANs. To give a concrete example: a GAN discriminator would say “I am 95%

confident this is a sample coming from the real data”, whereas the WGAN discriminator

would say “This sample looks 5 times better than the previous fake input sample, even
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though it still looks 7 times worse than a real input sample”. Therefore, as the WGAN

discriminator describes the process of improvement with respect to previous generative

values, the WGAN discriminator is better able to teach the generator how it should adjust

its parameters to improve the quality of its generated samples.

4.1.3 Model Setup

The main idea of a Neural Network is to create a mapping between an input and an output

layer, through a series of hidden layers. Each layer consists of neurons. The neurons apply

mathematical operations on the inputs they receive and subsequently push the result of

this operation through the implementation of an activation function onto the next layer.

In this research, I consider two types of layers: the Dense Layer and the Convolutional

layer. The relation between the neurons in Dense layers described by:

γlj =
M l−1∑
i=1

wlija
l−1
i + blj m ∈ {1, ...,M l} l ∈ {1, .., L}

alj = f(γlj) m ∈ {1, ...,M l} l ∈ {1, .., L},

(8)

where the subscript j and superscript l reflect that we are looking at the jth neuron in

the lth layer, with l ranging from 1 to L, the number of layers, and j ranging from 1 to

M l, the number of neurons in layer l. a is the activation value of a neuron, w the weights

by which activation values from the previous layer get multiplied, and b the bias term.

For Convolutional layers, the relation between neurons can be described by:

γlj =

k+s(j−1)∑
i=1+s(j−1)

conv1D(wli, a
l−1
i ) + blj m ∈ {1, ...,M l} l ∈ {1, .., L}

alj = f(γlj) m ∈ {1, ...,M l} l ∈ {1, .., L},

(9)

where conv1D denotes the one-dimensional convolution operation, s the stride, and k the

kernel size. One-dimensional Convolutional Neural Networks (CNNs) are an effective tool

to process time series and outperform other network architectures (e.g. LSTM) in terms

of both quality of the results and network performance (Selvin et al., 2017). Therefore,

in this research, I process the time series using CNNs, in which the networks process the

time information by convolving along the time dimension. Equation 9 differs on three

important aspects from Equation 8. Firstly, we have an extra operation on the input

weights and values, i.e. the convolution operation. Secondly, we sum over k, the kernel
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size, instead of n, the number of neurons in the previous layer: whereas in Equation

8 we see that each neuron from the previous layer is connected to the next layer (i.e.

fully connected), in CNNs each neuron in the next layer is connected to a small region

of the previous layer. The size of this region is described by the kernel size. The next

layer is formed by sliding the kernel over the previous layer. The number of neurons that

this window gets displaced in each iteration is called the stride. Thirdly, the weights are

independent of the input neuron, i.e. weights are shared among neurons. Weight sharing

reduce computational costs as we have lesser weights to backpropagate on. Applying the

kernel in the temporal dimension translates in the ability of the kernel to detect structures

across time.

In Figure 1a, you can see a schematic overview of the generator. The XG-matrix

of the generator has dimensions [n x k], where n denotes the number of observations

and k denotes the number of assets in the portfolio. In this research, I take historical

information up to 40 days (n = 40) and I consider seven assets in both portfolios (k = 7).

Inspired by Mariani et al. (2019), I construct the generator consisting of two subparts: the

conditioning and the simulation part. The conditioning part takes in n normalized daily

closing prices of k assets. Optimization techniques work better after normalization, as

difficulties arise with raw closing prices. The difference in scales across the stocks’ closing

prices will cause optimization techniques to assign disproportional high weight values to

large input values, causing unstable training. Therefore, in this research, the daily closing

prices are normalized to the [−1, 1] using min-max normalization.

I firstly implement a set of one-dimensional CNN layers. The last layer of the con-

ditioning part is a Dense layer with an output dimension of k. The Dense layer output

is then concatenated with the excess value (ϕ) of each asset: ϕi =
Pi,max−Pi,min

Pi,mean
where

Pi,max, Pi,min and Pi,mean are respectively the maximum, minimum and mean value of the

price of asset i during the time window under consideration. I add this excess value to

minimize the information loss from the normalization. The conditioning part outputs a

vector of length 2k. This information serves as conditioning information for the simula-

tion part. WGAN generates data from an input of random variables (z). In this research,

we condition these variables on historical information, i.e.:

Ŷ G = G(z|XG), (10)

where Ŷ G are the simulated future closing prices by WGAN and z is a stochastic vector
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generated from the standard uniform distribution. Applying various transposed one-

dimensional convolutional operations in the simulation part on this information, yields

the matrix Ŷ G of future closing prices with dimensions [f x k], where f represents the

number of future days. In this research, I predict up to 20 days ahead (f = 20). I make

250 simulations for future closing prices (S = 250), thereby generating future closing

prices under various scenarios captured by z. Thus, for each simulation, a new sample

is drawn from the standard uniform distribution. In Figure 1b, you can see a schematic

overview the discriminator. The discriminator uses either a matrix that fully consists

of real market data (XD) or a matrix that consists of a concatenation of real market

data, and synthetic data generated by the generator (X̂D). The discriminator deploys

a CNN architecture to score the realness and fakeness of the input data. Following the

WGAN-GP framework the discriminator loss is described by Equation 7.

From Equation 8 and Equation 9, you can see that each neuron requires an activa-

tion function a. Inspired by Goodfellow et al. (2016), I implement the ReLU (max(0, x))

activation function for the neurons in the generator and the Leaky ReLU activation func-

tion for the neurons in the discriminator. Goodfellow et al. (2016) argue that the ReLU

activation function is an appropriate default choice as the ReLU is easily optimized with

a large and consistent derivative at its active points and a second derivative equal to zero

in almost all situations. However, with ReLU we often face the Dying ReLU problem,

i.e. by construction, outputs are equal to zero for each input ≤ 0. For these neurons,

there are no gradient flows, and thus network performance gets affected if the number of

dead neurons is large. To alleviate the Dying ReLU problem, the Leaky ReLU activation

function is implemented, for which the slope is set to a for x ≤ 0, causing a leak that

extends the range of ReLU. An elaborative description of the architecture is described in

Appendix C.

The training procedure of the WGAN-GP framework is described in Algorithm 1. I

train the network for 11 hours straight. Optimizing the discriminator for each optimization

of the generator is computationally prohibitive and would result in overfitting, i.e. the

generator should not be trained too much without updating the discriminator. In this

research, the number of discriminator iterations per generator iteration, ndiscr, is set to 5

(Gulrajani et al., 2017).

The weights and biases for each neuron in a Neural Network are optimized through
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(a) Schematic representation of the generator.

The generator consists of the conditioning and

simulation part.

(b) Schematic representation of the discrimin-

ator

Figure 1. Schematic overviews of the generator and the discriminator

minimizing the loss function. This loss function is set by the researcher and is minimized

using the backpropagation (BP) algorithm (Leung & Haykin, 1991). The BP algorithm

consists of two steps. In the first step, the output is calculated using the layered archi-

tecture, the weights with their input values, and biases. In the second step, the errors

are calculated and propagated back to the earlier layers. The weights are updated ac-

cordingly. The optimization problem in Neural Networks is non-convex, meaning that the

loss function does not have a global optimum. The absence of a global optimum makes

the optimization complex, as you have to distinguish between local and global optima.

Moreover, as the optimization problem in Neural Networks is high-dimensional, the prob-

ability of getting stuck in saddle points is substantial. Saddle points are more problematic

than local minima, as local minima can yield a relatively good solution, whereas saddle

points are surrounded by small gradients such that the BP algorithm is not able to up-

date its parameters. To converge to the global optimum, the optimization technique plays

an important role. For example, you can include momentum and an adaptive learning

rate in the optimization algorithm. By including momentum, the optimization process

is speed up by taking the average gradient with respect to previous gradients. By in-

cluding adaptive learning rates, the optimization process performs updates depending on

the importance of each parameter. Adam optimization is an adaptive moment estimation

optimization technique that computes adaptive learning rates for each parameter and in-

cludes momentum by keeping an exponentially decaying average of past gradients. In this

research, I use the Adam optimizer with learning rate 2 × 10−5, and β1 = 0.5, β2 = 0.9

(Mariani et al. (2019), Gulrajani et al. (2017)). In Appendix B, you can find an extensive

explanation of this optimization procedure.

A huge advantage of the WGAN-GP architecture is its ability to deploy a stable
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training process that is robust under various hyperparameter settings (Gulrajani et al.,

2017). In this work, I follow the hyperparameter settings proposed in previous research.

For example, the number of Convolutional layers is set to 4 and 5 for the generator and the

discriminator respectively, as proposed by (Mariani et al., 2019) and extensively described

in Appendix C.

During training, the discriminator provides feedback to the generator, with the object-

ive to minimize the Wasserstein distance between generated samples x̄ and real samples

x, conditioned on historical information XG. In other words, during training the gener-

ator learns the probability distribution of the data through receiving feedback from the

discriminator. After training, I simulate 250 runs from the standard uniform distribu-

tion and pass these through the generator, thereby simulating possible future scenarios

the closing prices for each scenario. Traditional econometric methods rely on restricted

assumptions on the noise terms of the asset returns, and do not succeed at predicting clos-

ing prices for different assets in one simulation run, while capturing non-linear iterations

between the different assets. WGAN, however, does not pose restricted assumptions on

the asset return distributions, captures the stochastic component (i.e. noise) that comes

into play when predicting asset’ closing prices without imposing restricted assumptions

on the behavior of this noise, and considers interactions between the assets through the

implementation of both vanilla as well as transpose Convolutional layers.

4.1.4 Robustness Check

The superior portfolio performance that can be achieved by implementing GANs for the

construction of future asset prices does not come for free, as GANs structures tend to

be unstable due to the nonlinear dynamics in the training algorithm (see Algorithm 1),

causing adversarial training often failing to converge towards an equilibrium (Mariani et

al., 2019). Moreover, the results depend on the weight initialization, which is randomly

set. Traditional robustness checks (e.g. by Mariani et al. (2019)) include multiple training

iterations and subsequently evaluating the median portfolio performance. However, due

to the limited capacity of my local engine, I propose an alternative, however suboptimal,

check. The check comprises of evaluating the forecasting performance of WGAN on 3

sets: the original test set, the test set with closing prices +10%, and the test set with

closing prices −10%.
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Algorithm 1: WGAN-GP with Adam

Set λ = 10, ndiscr = 5, α = 2e−5, β1 = 0.5, β2 = 0.9

Initialize w0 (discriminator parameters) and θ0 (generator parameters)

while θ has not converged do

for t = 1, ..., ndiscr do

for i = 1, ...,m do

Sample real data x ∼ Pr, latent variable z ∼ p(z), a random number

ε ∼ U [0, 1]

x̄← Gθ(z|XG)

x̂← εx+ (1− ε)x̄

 L(i) ← Dw(x̄)−Dw(x) + λ(||∇x̂Dw(x̂)|| − 1)2

end

w ← Adam(∇w
1
m

∑m
i=1  L(i), w, α, β1, β2)

end

Sample the latent variables for the next iteration z(i) ∼ p(z) for i = 1, ...,m

θ ← Adam(∇θ
1
m

∑m
i=1−Dw(Gθ(z)), θ, α, β1, β2)

end
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4.2 Portfolio Construction

4.2.1 Multiobjective Optimization Problem

In this research, the criteria for asset allocation are mean and semivariance. The mean

illustrates the expected return, and the semivariance serves as an approximation for risk.

The semivariance only considers adverse deviations and is defined as (Markowitz, 1991):

SP,B = E[min(0, RP − C)2] =
1

T

T∑
t=1

[min(0, RP,t −B)]2, (11)

where RP is the portfolio return, B is a benchmark, and T is the number of periods.

In this research, I call a set of weights that is assigned to the portfolio constituents a

diversification. Once we know the diversification x, we can calculate the portfolio return

as follows:

RP,t(wx, Ŷ G) = w′xRt(Ŷ G), (12)

where RP,t is the overall portfolio return at day t, Rt is the return vector that includes

the returns of the assets at day t, determined by Ŷ G, the matrix with closing prices

predicted by WGAN (Equation 10), and wx = (w1,x, w2,x, ..., wk,x) a vector of weights for

diversification x. From Equation 11 and Equation 12, we see that the semivariance is

endogeneous, i.e. it depends on the weights given to each assets, and a change in weights

leads to a change in periods during which the portfolio return under- and outperforms

the benchmark B.

WGAN yields a set of future closing prices simulations, N . I calculate the daily return

of the assets (Ri,t(Ŷ G)) for each simulation by
Pi,t−Pi,t−1

Pi,t−1
, where Pi,t is the closing price

of asset i at day t, extracted from the matrix ŶG. Calculating the daily returns yields an

[(f − 1) x k] matrix, as in this research, I forecast asset prices for a time window of f

days for k assets.

Taking into account the return and risk objectives, this yields the following multiob-

jective optimization problem (Macedo et al., 2017):

max E[wx|RP ] =
k∑
i=1

wi,xE[Ri] =
T∑
t=1

k∑
i=1

wi
Ri,t

T
(13)

min S(wx|RP ) =
k∑
i=1

k∑
j=1

wi,xwj,xSP,B (14)
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subject to:

wi,x ≥ 0, i ∈ {1, ..., k}
k∑
i=1

wi,x = 1 (15)

where P stands for portfolio, wi,x is the weight for asset i for diversification x in the

portfolio, RP is the portfolio return, Ri,t is the return of asset i in simulation for day t,

and k is the number of assets, S is the semivariance as defined in Equation 11, and T is

the total amount of days. Here, I take B = E[RP,f ], and T = f , the number of days I

forecast ahead.

To solve the multiobjective problem, I implement a multiobjective evolutionary al-

gorithm (MOEA), as this overcomes the endogeneity problem introduced by the semivari-

ance (Equation 11) by construction. The MOEA algorithm calculates the semivariance

for a large number of iterations. In each iteration, the weights are known a priori as they

are already generated by the algorithm in the previous iteration. Knowing these weights,

we can calculate the portfolio return and implement this in Equation 11 (Macedo et al.,

2017).

The shape of the mean-semivariance frontier is comparatively straightforward, as there

are only two restrictions on the weights, i.e. portfolio weights are non-negative and should

add up to one (Equation 15). Therefore, for this frontier, there is a strong use case for

using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II).

NGSA-II yields a diversification strategy based on all the WGAN asset price simu-

lations S, i.e. a set of weights with Pareto-optimal diversifications, x ∈ X(S), with the

number of WGAN simulations S equals 250. This strategy presents a set of diversific-

ations that tradeoff risk and return, i.e. a higher level of risk yields a higher level of

expected return. The overall portfolio return for diversification x can be calculated by

Equation 12. It is up to the investor which diversification strategy to choose, based on

its risk preferences. With MOEAs it is important to verify whether the frontier that is

found by the algorithm actually is the optimal frontier. To verify this, I perform a Monte

Carlo (MC) simulation that generates 3, 000 additional weights elaborating on the weights

given by the NSGA-II algorithm: 1, 000 weights elaborate on the weights of the riskiest

portfolio, 1, 000 weights elaborate on the weights of the most risk-averse portfolio, and

1, 000 weights elaborate on a random point on the frontier.
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4.2.2 Model Evaluation

The goal of the methodology described is to come up with a diversification that earns the

highest portfolio return possible for a certain level of risk. To evaluate the model, I intro-

duce two investment approaches and track their associated returns. The first investment

approach is considered to be the risk-averse approach, i.e. the approach for which the

investor prefers a low-risk portfolio. The second approach is the risk-seeking approach.

The risk-seeking investor has a high-risk tolerance and desires to earn superior returns.

Inspired by Mariani et al. (2019), I quantify both approaches by introducing a set of risk

levels η ∈ [1, ..., Z], where Z = 12. Here, Z = 1 belongs to the most risk-averse strategy,

and Z = 12 belongs to the riskiest strategy. For the risk-averse approach, I set η = 2 and

for the risk-seeking approach, I set η = 10. I then identify the risk-averse and risk-seeking

portfolio based on the returns on the optimal frontiers found by NSGA-II and MC, i.e.

the corresponding return for each risk-level is calculated by:

R(η) = Rmin +
η(Rmax −Rmin)

Z
, (16)

whereR(η) is the return for risk level η and Rmin andRmax are the minimum and maximum

return levels on the frontiers, respectively. I consider a 20-day (1 month) investment

horizon.

I compare these portfolio returns against the index returns for each portfolio (i.e. JSE

All Share Index for the South African allocation and MOEX Russia Total Return Index

for the Russian allocation), and against a benchmark portfolio. The benchmark is the

1
N

-portfolio. This portfolio assigns equal weight to each asset in the portfolio. The 1
N

-

portfolio has a good track record regarding out-of-sample performance in the traditional

mean-variance framework. DeMiguel et al. (2009) investigate the out-of-sample perform-

ance for fourteen parametric models that implement the mean-variance framework, and

compares their performance with the 1
N

-portfolio in terms of Sharpe ratio and turnover.

They conclude that none of these models consistently outperform the 1
N

-portfolio.

27



5 Results

In this section, I firstly provide the forecasting results of the deep learning architecture,

i.e. the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-

GP). Thereafter, I elaborate on the fronts constructed by the Non-Dominated Sorting

Genetic Algorithm II (NSGA-II) and the Monte Carlo (MC) simulations. To conclude, I

document the performance of the risk-averse and risk-seeking portfolios.

5.1 Deep Learning Architecture

The WGAN-GP framework yields losses for the generator and the discriminator. As ex-

plained in Section 4, the discriminator implements the Wasserstein distance. The discrim-

inator aims to correctly distinguishing between real samples and fake samples. It assigns

positive values for real samples and negative values for fake samples. The overall discrim-

inator loss is given in Equation 7 and can be summarized as Dloss = floss− rloss + penalty,

where floss represents the discriminator output for fake samples, rloss represents the dis-

criminator output for real samples, and the penalty term represents a regularization to

enforce the Lipschitz constraint, as described in Section 4. From Figure 2a and Figure 2b,

you can see that for both the Russian and the South African data, the discriminator loss

is stabilized and minimized. For the Russian data, the loss stabilizes at around -4, for the

South African data at around -5. The left Figure of Figure 2a and Figure 2b represent the

losses for the first 200 training iterations, the right Figure of 2a and Figure 2b represent

the losses from training iteration 200 onwards.

A positive discriminator value for fake samples (floss) can mean two things: either the

generator succeeds at generating high-quality samples such that it becomes extremely hard

for the discriminator to assign a negative values to these samples, or the discriminator is

not well-trained, meaning that it simple cannot distinguish between real and fake samples

because of its low distinguishing power.

The generator loss is calculated as Gloss = −floss. From Figure 2a, you can see that for

the Russian assets, the generator loss is increasing and ends at around 2.5. This means

the generator does not accomplish to generate samples that are characterized as real by

the discriminator. Therefore, either the generator is bad-performing or the discriminator

is extremely powerful. For the South African data, the generator loss becomes negative,
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(a) The Russian asset data. The discriminator

loss is stabilized and minimized at around -4.

The generator loss is increasing, and has a value

of around 2.5 at the end of training.
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(b) The South African asset data. The dis-

criminator loss is stabilized and minimized at

around -5. The generator loss is decreasing, and

has a value of around -1 at the end of training.

Figure 2. The discriminator and generator loss for the Russian and South African asset data.

The left Figures represent the losses for the first 200 training iterations, the right Figures rep-

resent the losses from training iteration 200 onwards.

ending at -1, meaning that the discriminator assigns positive values (so real sample values)

to fake samples. Therefore, in this market, either the generator succeeds at generating

high-quality samples, or the discriminator is not performing well. However, for both

markets, the generator loss is not very reliable as it exhibits large swings and is not

stabilized at the end of the training period.

The penalty term for both the South African as well as the Russian data is almost

equal to 0, meaning that in the discriminator is (almost) 1-Lipschitz continuous.

In Figure 3a and Figure 3b, you can see the predictions of WGAN for the closing prices

of the African and Russian stocks. I run 250 simulations, of which the average across all

these simulations is depicted here. The predictions are up to 20 days ahead, i.e. to
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construct these plots I have concatenated 21 time frames each consisting of 20 days. This

results in 420 observations which cover the period 2017-09 to 2019-04. From the plots, we

see that WGAN succeeds at predicting the general pattern of the closing prices. Moreover,

we see that the WGAN underestimates the variability of the closing prices, i.e. during a

period of heavy fluctuations the WGAN chooses to take a conservative view and aims at

predicting the correct closing prices at the end of its forecasting period. This behavior

is better visible if we look at the normalized forecasted closing prices in Figure 4a and

Figure 4b. I depict 3 randomly chosen simulations from the 250 simulations performed.

You can see that for the South Africa data, WGAN is immune to large price shocks

and most of the times yields a final normalized price level that accurately represents the

realized normalized final level. For the Russia data, we see that for one scenario, WGAN

predicts a large swing upwards, and subsequently predicts more conservative values. This

also explains the low predicted semivariance values in Table 3a and Table 3b, i.e. the

low predicted semivariances indicates that the algorithm underestimates the closing price

variability.

(a) The South African assets

Semivariance / Stock ARM AMS ANG GFI KIO ASR ALSI

Historical (×10−3) 12.3 7.32 9.12 11.2 12.9 14.7 1.67

Predicted (×10−3) 1.33 0.48 0.94 0.38 0.76 2.35 0.05

Realized (×10−3) 5.85 3.70 4.17 5.41 6.19 6.98 0.82

(b) The Russian assets

Semivariance / Stock GAZP LKOH NVTK ROSN SNGS TATN MCFTR

Historical (×10−3) 3.14 3.32 4.01 3.78 2.56 4.29 1.88

Predicted (×10−3) 0.25 0.66 0.15 1.11 0.50 0.57 0.27

Realized (×10−3) 1.58 1.60 1.96 1.83 1.19 1.98 0.90

Table 3. The historical, predicted, and realized semivariance for the assets. WGAN is underes-

timating the return variability as the predicted semivariance is lower than the realized semivari-

ance.

Moreover, you can see from Figure 3 that a period of relatively stable closing price

predictions is followed by a quite heavy shock upwards or downwards, yielding in a move-

ment resembling a stairs. This behavior can be assigned to the denormalization process

rather than to the mechanics of the network. In Section 7, I discuss suggestions to im-
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prove the network. These improvements aim at, among others, mitigating the effect of

the denormalization process, and, therefore, at reducing the stairs-like appearance of the

closing price predictions.
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(a) South African stocks in the mining and materials sector
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(b) Russian stocks in the oil and gas sector

Figure 3. The realized and 20-day ahead predicted closing prices of the stocks. The predictions

cover the period 2017-09 to 2019-04.
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(a) Normalized predicted (dashed) and realized (solid) for GFI (left) and ANG (right) covering

the period 2017-09-14 to 2017-12-06.
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(b) Normalized predicted (dashed) and realized (solid) for GAZP (left) and LKOH (right)

covering the period 2017-11-09 to 2018-01-31.

Figure 4. Predicted and realized closing prices for 2 stocks in the South African mining and

materials market as well as the Russian oil and gas market.

In this research, WGAN is designed to predict up to 20 days ahead. From Table 4a,

you can see that, in general, WGAN is not leaning towards an overly bullish or bearish

view on South African assets, as it succeeds at predicting both upwards and downwards

movements. However, for ALSI, WGAN is having an bullish view as it predicts 3, 650 up-

ward movement whereas only 2, 250 upward movements are realized. As a result, WGAN

performs worst at predicting this constituent with only 44.8% of correctly predicted dir-

ections. From Table 4b shows that WGAN is bearish on Russian assets, as it predicts

more downward movements than actually realized for all constituents except for SNGS.

For SNGS, the number of upward swings predicted approximately equals the number of

upward swings realized, however, its timing is wrong approximately 30% of the times.

It exhibits the best performance for TATN, with 83.5% correctly predicted movements,

which can partly be explained by the large amount of realized downward movements
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(3, 248) from which WGAN only missed 36.

To get a better insight in the overall predicting performance for different time horizons

of WGAN, you can find the performance for 4 different time horizons, i.e. 1 day, 1 week

(5 days), 2 weeks (10 days), and 1 month (20 days), together with the general return

characteristics, in Appendix D.

(a) The South African portfolio

Constituent ARM AMS ANG GFI KIO ASR ALSI

% correct 66.3 61.7 81.2 77.4 71.3 74.6 44.8

predicted/realized up down up down up down up down up down up down up down

up 1,316 835 1,250 508 1,588 323 1,465 403 1,918 675 1,783 614 1,500 2,150

down 684 2,165 1,250 1,992 662 2,677 535 2,597 832 1,825 717 2,136 750 850

(b) The Russian portfolio

Constituent GAZP LKOH NVTK ROSN SNGS TATN MCFTR

% correct 68.1 52.6 68.5 66.0 60.9 83.5 61.2

predicted/realized up down up down up down up down up down up down up down

up 1,349 275 278 19 845 249 1,444 479 2,004 1,059 1,169 36 802 87

down 901 2,225 1,772 2,481 1,405 2,751 1,306 2,021 996 1,191 831 3,214 1,698 2,413

Table 4. Characteristics and performance of WGAN per portfolio constituent

5.1.1 Robustness Check

From Table 5, you can see that WGAN has similar results in terms of the percentage

of correctly predicted upward and downward movements when the data is adjusted by

adding and subtracting 10% with respect to the original data. The biggest difference is

only 5.1%, which is for AMS. For the unadjusted closing prices, WGAN yields a score of

61.7%, whereas for the closing prices that are adjusted +10%, it yields 66.8%.
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(a) The South African assets

Constituent ARM AMS ANG GFI KIO ASR ALSI

unadjusted 66.3 61.7 81.2 77.4 71.3 74.6 44.8

+10% 66.3 66.8 81.6 82.2 71.5 74.2 44.8

10% 66.6 61.9 81.7 82.0 71.2 74.7 45.1

(b) The Russian assets

Constituent GAZP LKOH NVTK ROSN SNGS TATN MCFTR

unadjusted 68.1 52.6 68.5 66.0 60.9 83.5 61.2

+10% 72.4 52.6 68.8 65.7 65.6 83.6 61.0

-10% 72.5 52.5 68.9 66.3 65.8 83.6 61.6

Table 5. The robustness check for WGAN. The results for data varying between the −10% and

+10% range are stable.

5.2 NSGA-II with Monte Carlo

With the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), portfolios are formed

for various risk-return preferences by constructing the mean-semivariance frontier. With

multiobjective evolutionary algorithms (MOEAs) it is important to verify whether the

frontier that is found by the algorithm actually is the optimal frontier. To verify this,

I perform a Monte Carlo (MC) simulation. In Figure 5, three different scenarios of the

performance of NSGA-II (green) and the MC simulations (blue, purple, red) are shown for

the Russian market. MC generates 3, 000 additional weights elaborating on the weights

given by the NSGA-II algorithm: 1, 000 elaborate on the weights of the riskiest portfolio

(blue), 1, 000 elaborate on the weights of the most risk-averse portfolio (purple), and

1, 000 elaborate on a random point on the frontier (red). In all scenarios, the frontier

that is constructed by NSGA-II is optimal. However, NSGA-II does not yield the entire

optimal frontier. Therefore, when constructing the portfolios, I include the MC portfolios

that extend the optimal frontier. In Figure 6, you can find the frontiers from Figure 5

that are obtained after a careful selection that combines NSGA-II and MC portfolios. In

Appendix F, you can find the full set of frontiers. I obtain frontiers for every 20 days

in the test period, as WGAN is designed to predict up to 20 days ahead. This yields

42 frontiers: 21 for the South African allocation and 21 for the Russian allocation. The

mean return on the frontiers is small and often negative. This is due to both that WGAN
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(a) Example 1: the frontier for 2017-10.

The NSGA-II frontier is extended, the
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(b) Example 2: the frontier for 2018-04.

The NSGA-II frontier is extended and in-

ferior frontiers are formed.
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(c) Example 3: the frontier for 2018-11.

The NSGA-II frontier is extended, the

inefficient part is formed, and inefficient

portfolios are formed within the efficient

frontier.

Figure 5. Three mean-semivariance frontiers constructed by NSGA-II (green) and extended by

MC (red, purple, blue). The MC simulations confirm that the frontier that is found by NSGA-II

is optimal but not complete.

underestimates the return variability (Table 3b) as well as the bearish view of WGAN on

the Russian stock market (Table 4b).

5.3 Risk-Averse and Risk-Seeking Portfolios

In this research, I construct a portfolio for two types of investors: the risk-averse and

risk-seeking investor. On a scale from 1 to 12, where a higher number reflects a higher

risk tolerance, the risk-averse investor has a risk tolerance of 2, whereas the risk-seeking

investor has a risk tolerance of 10.

From Figure 6, you can see that on the frontier, the risk-seeking investor chooses the

portfolio with a relatively high semivariance, whereas the risk-averse investor chooses the
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(a) Front 1: covers 2017-10. (b) Front 2: covers 2018-04.

(c) Front 3: covers 2018-11.

Figure 6. Three final frontiers. The risk-averse investor (green) chooses a low-risk portfolio and

agrees upon lower returns. The risk-seeking investor (red) aims to earn superior returns. The

total set of final frontiers can be found in Appendix F.

one with the lower semivariance, thereby also accepting a lower return.

In Figure 7, you can see the stock allocation for both investors in the South African and

Russian stock market. From Figures 7a and 7b, you can see that the algorithm assigns a

higher index weight to the risk-seeking investor compared to the risk-averse investor. This

is because of its attractive risk-return characteristics predicted by WGAN. From Table

4a, you can see that WGAN is extremely bullish on the index constituent (i.e. ALSI),

with 3, 650 predicted upward movements from which only 2, 250 are realized. ARM is

also predicted to have attractive risk-return characteristics. It predicts 2, 151 upward

movements, from which 2, 000 are realized. Moreover, its semivariance is underestimated

by 78%, resulting in a semivariance that equals 1.33 × 10−3. This explains why the

algorithm favors both ALSI as well as ARM.

For both investors, the algorithm barely assigns weight to ASR. From Table 3a and

Table 4a, it becomes clear that the algorithm, on one hand, succeeds at identifying the

high associated downward risk (with a predicted semivariance only approximately 3 times

smaller than the realized semivariance), and on the other hand, that it has a bearish view

on this stock (with 2, 853 predicted downward movements, and only 2, 750 realized).
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WGAN considers ASR as an unattrative investment and therefore allocates almost no

wealth to this stock during the entire investment period.

The view that the algorithm constructs turns out to be a profitable one but it is

insignificantly underperforming with respect to the 1
N

-portfolio (Table 6a): following this

allocation leads to a compounded return of 48% (t-statistic = -0.22) for the risk-averse

investor and 5% (t-statistic = -1.51) for the risk-seeking investor, whereas the 1
N

-portfolio

yields 52% compounded return. The risk-averse portfolio does outperform the JSE All

Share Index, but also insignificantly with a t-statistic of 1.45 (Figure 8a). The risk-

seeking investor underperforms with respect to the local index, but not significantly as

the corresponding t-statistic equals -0.01.

Considering the allocations in the Russian market (Figure 7c and Figure 7d), I would

like to highlight a few interesting results. First of all, it becomes clear that WGAN alloc-

ates an enormous part to NVTK for the risk-seeking investor, whereas for the risk-averse

investor it rather divides most of its allocation among NVTK, SNGS, and GAZP. However,

the risk-averse allocation is versatile. For example, 70% of the allocation was assigned to

GAZP in 2018-10, whereas the position is reduced to almost 0% in the consecutive month.

The huge allocation for the risk-seeking investor to NVTK is driven by the low predicted

overall semivariance (0.15× 10−3, see Table 3b), which results in a attractive risk-return

characteristics. Although NVTK has the lowest forecasted semivariance, assigning a large

chunck of your allocation to a single stock is a risky move. The choice for LKOH and

GAZP for the risk-averse investor is rather interesting. LKOH has the highest rate of

wrongly predicted downward movements, indicating that WGAN is extremely bearish on

this stock. GAZP has worse risk-return performance compared to NVTK, as its perceived

risk is almost twice as big (2.51 × 10−2 see Table 3b) as for NVTK whereas the amount

of predicted upward movements is only 1.5 as big as for NVTK (see Table 4b). However,

Table 3 and Table 4b only show general characteristics, not period specific. As the LKOH

and GAZP allocations vary a lot across different periods, it is reasonable to argue that

NSGA-II only allocates wealth to these stocks in prosperous times.

The allocation to SNGS is not stable either, but does not exhibit fluctuations as large

as with LKOH and GAZP. With the highest rate of both correctly (2, 004) and falsely

(1, 059) upward predicted movements (Table 4b), indicating that WGAN is bullish on this

stock, and a relatively high predicted semivariance (4.96×10−2, Table 3b), it is reasonable

37



2017/0
9
2017/1

1
2018/0

1
2018/0

3
2018/0

5
2018/0

7
2018/0

9
2018/1

1
2019/0

1
2019/0

3
0.0

0.2

0.4

0.6

0.8

1.0
Al
lo
ca
tio

n
ARM
AMS
ANG
GFI
KIO
ASR
JSE Index

(a) South African portfolio: risk-averse

allocation
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(b) South African portfolio: risk-seeking

allocation
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(c) Russian portfolio: risk-averse alloca-

tion
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(d) Russian portfolio: risk-seeking alloc-

ation

Figure 7. Allocations for the risk-averse and risk-seeking investor in the Russian and South

African stock market. The investment period covers 2017-09 to 2019-04.

to conclude that NSGA-II carefully assigns parts of the risk-averse portfolio to SNGS.

Moreover, for both investors, it assigns small weights to the index constituent. This

can be explained by the extremely bearish view on MCFTR, as WGAN predicts 4, 111

downward swings whereas only 2, 500 are realized (Table 4b).

The risk-averse and risk-seeking portfolios by WGAN for the Russian oil and gas mar-

ket both outperform the 1
N

-portfolio, by 15% and 40% respectively (Figure 8b). However,

the outperformance is not significant, with t-statistics of 0.59 and 1.14 for the risk-averse

and risk-seeking investors respectively (Table 6b). The portfolios also insignificantly out-

perform the local index, with an outperformance of 30% (t-statistic = 1.27) for the risk-

averse investor and 55% (t-statistic = 1.68) for the risk-seeking investor.
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folio outperforms the index by 39%. The 1
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(b) The Russian WGAN risk-averse and risk-

seeking portfolios outperform the 1
N -portfolio

by 15% and 40% respectively.

Figure 8. The performance of the WGAN risk-averse and risk-seeking portfolios compared to

the 1
N -portfolio and the index.

Mean Stdev Sharpe t-stat Index t-stat Benchmark

Risk-Averse 0.0188 0.0532 0.04 1.45 -0.22

Risk-Seeking 0.0020 0.0591 -0.25 -0.01 -1.51

Index 0.0021 0.0319 -0.47 x -2.77

Benchmark 0.0214 0.0614 0.07 1.44 x

(a) The South African portfolios

Mean Stdev Sharpe t-stat Index t-stat Benchmark

Risk-Averse 0.0237 0.0357 0.19 1.27 0.59

Risk-Seeking 0.0302 0.0447 0.30 1.68 1.14

Index 0.0138 0.0249 -0.13 x -0.97

Benchmark 0.0191 0.0293 0.07 0.83 x

(b) The Russian portfolios

Table 6. Return statistics for the risk-averse and risk-seeking allocations, compared with the 1
N -

portfolio and the local index. The mean, standard deviation, and Sharpe ratio are for a 20-day

(i.e. 1 month) time scale.

39



6 Conclusion

In this research, I propose a novel methodology consisting of a deep learning architec-

ture (WGAN) combined with a multiobjective evolutionary algorithm with Monte Carlo

to optimize asset allocation in emerging market space. I find that WGAN succeeds at

predicting the general pattern of the closing prices, however, that it underestimates the

variability of the closing prices. This is explained by the behavior of WGAN in forecasting

periods during which closing prices fluctuate heavily. WGAN then chooses to focus on

predicting the correct closing price at the end of the forecasting period, thereby paying

less attention to the fluctuations in between. This results in high percentages of correctly

predicted up- and downward movements, with up to 81.2% in the South African stock

market and 83.5% in the Russian stock market. However, the semivariance is consistently

underestimated, having its worst performance for GFI in South Africa, with a predicted

semivariance of 0.38 whereas the realized semivariance is 5.41.

Moreover, I find that the risk-averse and risk-seeking portfolio in Russia outperforms

both the benchmark as well as the local index by 15% and 40% compounded return

respectively for the benchmark and by 30% and 55% respectively for the local index. The

outperformance is not significant, with t-statistics for the risk-averse portfolio of 0.59 and

1.27 for the benchmark and local index respectively, and for the risk-seeking portfolio

of 1.14 and 1.68. For the South African market, I find that the risk-averse portfolio

outperforms the local index with 39% compounded return and that its performance is

inferior with respect to the benchmark (-3% compounded return difference). Both results

are again insignificant: t-statistics equal 1.45 and -0.22 respectively. The results for the

risk-seeking investor are disappointing, with underperformance with respect to both the

local index as well as the benchmark. Again, these results are insignificant with t-statistics

of -0.01 and -1.51 respectively. Since the risk-seeking investor aims to earn superior returns

by taking on extra risk, it is disappointing that it even underperforms with respect to the

risk-averse investor. The underperformance can be explained by the huge dependence on

the index constituent for this allocation, which performs not as good as WGAN predicted.

The insignificance of the results can be explained by the limited size of the data set that

was available for the emerging market assets in this research.
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7 Discussion

In this section, I would like to discuss my research and suggest topics for further research.

Firstly, I would like to comment on the generator loss of WGAN in both markets.

The generator loss has not stabilized by the end of the training period yet, with training

covering 11 hours, yielding over 4, 000 training iterations. To extend this research, one

could improve WGAN by implementing techniques that aim to improve the training

stability, for example by implementing Spectral Normalization (Miyato et al., 2018).

Secondly, increasing attention has been paid to include econometric techniques (e.g.

deseasonalization) into Neural Network architectures, the so-called hybrid models. For

example, Smyl et al. (2018) introduces the Exponential Smoothing-Recurrent Neural Net-

work (ES-RNN) architecture. With this architecture, he won the renowned Makridakis

(M) Competition, one of the most important events in the field of forecasting. What dis-

tinguishes the M competition from other forecasting competitions is that developers are

challenged to come up with strategies that solely focus on time series forecasting, thereby

not considering additional regressors. This perfectly elaborates on this research, as I do

not take into account additional regressors either. I encourage further research to focus

on extending the architecture proposed in this research with an econometric component

to cover seasonal patterns, thereby enhancing forecasting performance.

Besides this, I would like to highlight one last area for further consideration concern-

ing WGAN. In this research, for the random input of the generator, I sample from the

standard uniform distribution. From a statistical point of view, this makes sense as the

standard uniform distribution is the most universal distribution among all probabilities

distributions, and, therefore, eminently deployed to sample from more specific distribu-

tions by inverse transform sampling. However, I find that with this distribution the

various simulations exhibit similar characteristics and are quite conservative in their pre-

dictions. Mariani et al. (2019) sampled from the standard normal distribution and their

predictions are less conservative, with simulations representing various extreme market

scenarios. One could investigate the effect of different sampling distributions and conclude

on a distribution that gives optimal results for emerging market studies.

Moreover, in Section 1, I highlight that one of the main contributions to the existing

literature is that the WGAN architecture together with NSGA-II and MC is applied to

emerging market data. The emerging market data adds an extra layer of difficulty to this
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research, as emerging markets are immature markets, causing the exposure to reliable,

historical data to be restricted. In Section 3, I document the conditions the securities

should satisfy to be eligible for inclusion in this research, thereby aiming to increase

the reliability of the data that is considered in this research. However, to make these

conditions feasible, I restrict the period under consideration from 2010-02-01 to 2019-

05-31. WGAN requires an extensive training set to minimize the loss function, thereby

solving for the optimal network parameters (i.e. the weights and biases). This leads to

a reduction in the size of the final test set to only 21 months. Although the results are

promising, with outperformance in terms of compounded return of up to 40%, this research

fails to get conclusive results. This can largely be explained by the limited range of the

test period, and, therefore, I encourage further research to implement data augmentation.

The last point for discussion concerns the multiobjective evolutionary algorithm (MOEA)

deployed in this research, i.e. the Non-Dominated Sorting Genetic Algorithm II (NSGA-

II). As shown in Section 5, NSGA-II yields the optimal frontier, however it fails to yield

the entire frontier. This problem is resolved by performing Monte Carlo (MC) simu-

lations alongside NSGA-II. However, an MOEA that yields the entire optimal frontier

directly is preferred. Macedo et al. (2017) find complete and optimal fronts for the mean-

semivariance problem using NSGA-II. One could investigate the impact of emerging mar-

ket data on the performance of NSGA-II and implement its findings accordingly, in order

to come up with a superior technique to construct portfolios in emerging market space.
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A Drawbacks of Traditional GANs

In this Appendix, I elaborate on the challenges that arise in the training process of the

original GAN framework. The challenges include vanishing gradients in the loss function

and unstable training of the generator, both causing the generative samples to be of bad

quality.

From Equation 2 in Chapter 4, you can see that the GAN loss function reads (Good-

fellow et al., 2014):

Ex∼Pr [log(D(x)] + Ex∼Pg [log(1−D(x))], (17)

where D represents the discriminator, Pr the real distribution, and Pg the distribution

of the generator. Intuitively, it would make sense to first find an optimal discriminator

before optimizing the generator, as you would expect the discriminator to give reliable

feedback to the generator once it is trained optimally. However, as will be explained

below, generator updates gets worse as the discriminator gets better. Under the optimal

discriminator, the problem with log(1 − D(x)) is that it saturates early in the training

process, when the generated data is still very poor and, therefore, the discriminator rejects

these samples with high confidence. You will then see D(x) → 0 for x ∼ Pg, yielding

log(1 − D(x)) → log(1) = 0. To solve this, Goodfellow et al. (2014) do the −log(D(x))

trick, i.e. they replace Ex∼Pg [log(1−D(x))] with Ex∼Pg [−log(D(x))]. However, this form

causes unstable training as it involves the asymmetric KL divergence. As both forms raise

problems during the training process, WGAN has been proposed as a suitable alternative

for the GAN by Arjovsky et al. (2017).

Firstly I will elaborate on the problem that arises with the first notation of the loss

function. Secondly, I will elaborate on the problem with the second notation. I will

comment on the problems that arise under the optimal discriminator. To get an expression

for the optimal discriminator, I investigate from Equation 17 the contribution to the

overall loss of an arbitrary sample x, i.e. Pr(x)log(D(x)) + Pg(x)log(1 −D(x)). By first

taking the derivative with respect to D(x) and then setting the derivative equal to 0, I

find the following expression for the optimal discriminator:

D∗(x) =
Pr(x)

Pr(x) + Pg(x)
. (18)

From this Equation, you see that the optimal discriminator only looks at the relative

ratio between the likelihood of the sample coming from the generative distribution and
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the real distribution. At the point that the generative distribution fully follows the real

distribution, Pr(x) = Pg(x), the optimal discriminator expresses its indecisiveness by

giving an output value of 0.5 as the chance is half-half that x comes from either the real

or generative distribution.

The problem with Ex∼Pg
[log(1−D(x))]

Implementing Equation 18 in Equation 17, we get:

Ex∼Pr log(
Pr(x)

1
2
[Pr(x) + Pg(x)]

) + Ex∼Pg log(
Pg(x)

1
2
[Pr(x) + Pg(x)]

)− 2log(2). (19)

Next, I write this equation in terms of the Kullback-Leibler (KL) and Jensen-Shannon

(JS) divergence (Arjovsky & Bottou, 2017). The KL divergence reads: KL(P1||P2) =

Ex∼P1log(P1

P2
) and the JS divergence reads: JS(P1||P2) = 1

2
KL(P1||P1+P2

2
)+1

2
KL(P2||P1+P2

2
).

Therefore, I get the following expression for the loss function of under the optimal dis-

criminator (Arjovsky & Bottou, 2017):

Ex∼Pr [log(D∗(x)] + Ex∼Pg [log(1−D∗(x))] = 2JS(Pr||Pg)− 2log(2). (20)

From this Equation, you see that minimizing Equation 17 boils down to minimizing the

JS divergence when the discriminator is optimal. This implicates a minimization of the

distance between Pg and Pr and therefore, yields a network generating fake samples that

approach the real samples as accurately as possible.

However, the JS divergence vanishes when Pr and Pg have disjoint supports or when

their supports lie in low-dimensional manifolds (Arjovsky & Bottou, 2017). This leads

to a constant loss function under the optimal discriminator (Equation 20), i.e. -2log(2).

The gradient then equals 0, which means that the generator is unable to learn from the

optimal discriminator. In other words, we experience diminishing gradients during in the

generator during GAN training as the discriminator gets better, eventually leading to a

gradient equal to 0 under the optimal discriminator. This makes it extremely hard to

train in the GAN using the loss function described in Equation 17.

Having stated that the JS divergence vanishes if the supports of Pr and Pg either are

disjoint or lie in low-dimensional manifolds, I will now explain why this is the case. For

disjoint supports, the samples from Pr and Pg do not share a neighborhood, causing the

KL divergence, and thereby the JS divergence, to vanish. This is also the case when the
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supports of Pr and Pg lie in non-matching low-dimensional manifolds. If the two manifolds

are perfectly matched, this would not be the case, however, the chance that this occurs

is 0 as for extremely small perturbations this property is already violated. Arjovsky and

Bottou (2017) prove that two manifolds intersect transversally or don’t intersect at all

in the presence of an arbitrarily small random perturbations. This means that the two

manifolds do not perfectly match and implicates that their intersection is a finite union

of manifolds with dimensions lower than the dimension of the manifolds of Pr and Pg,

meaning that their intersection has null-measure in both manifolds. This again implicates

the KL divergence measure to vanish, which means that the JS divergence measure also

vanishes.

The problem with Ex∼Pg
[−log(D(x))]

To illustrate the problem with the loss function in terms of Ex∼Pg [−log(D(x))], I rewrite

Ex∼Pg [−log(D(x))] in terms of the KL and JS divergence. First, I implement Equation

18 in the KL divergence, to get the KL divergence in terms of the optimal discriminator:

KL(Pg||Pr) = Ex∼Pg log(1−D∗(x))− Ex∼Pg log(D∗(x)). (21)

Next, I combine Equation 20 with Equation 21, to get:

Ex∼Pg [−log(D∗(x))] = KL(Pg||Pr)− Ex∼Pg [log(1−D∗(x))]

Ex∼Pg [−log(D∗(x))] = KL(Pg||Pr)− 2JS(Pr||Pg) + 2log(2) + Ex∼Pg log(D∗(x)), (22)

where the last two terms in Equation 22 are independent of the generative distribution

and therefore can be left out of consideration when optimizing the discriminator loss.

The first two terms contradict each other, i.e. the first part wants to pull Pr toward Pg

whereas the second part wants to push Pg away from Pr two times harder, i.e. the minus

in front of the JS enforces Pg and Pr to be different. Moreover, if we solely consider

the KL divergence, we also encounter problems due to the asymmetric character of this

divergence. The extreme case for Pr(x) > Pg(x), meaning that the sample x has a

higher probability of coming from the data than from the generator, is Pr(x) > 0 and

Pg(x) → 0. This yields a KL divergence measure that is going to infinitiy, which means

a severe punishment on the network if the generator does not cover parts of the real data

distribution. The extreme case for Pr(x) < Pg(x), i.e. the generator outputs a sample
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that does not resemble the data well, is Pr(x) → 0 and Pg(x) > 0. This yields a KL

divergence measure that is going to 0, which means an extremely low punishment on the

network if the generator generates fake looking samples. This means that the network is

severely punished if it generates a broad spectrum of samples, including some real-looking

samples, thereby failing to describe the whole real data distribution, as this results in a

KL divergences approaching infinity. Therefore, the network favors generating rather safe

fake looking samples p that approximate the real sample to a certain extent, instead of

trying to improve on these samples by exploring a large set of possibilities. This effect is

described as mode collapse and often occurs in GANs.
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B Adam Optimizer

In this Appendix, I elaborate on the optimization technique that is used in this research:

namely the Adam optimizer.

Adam optimization is an adaptive moment estimation optimization technique that

computes adaptive learning rates for each parameter and includes momentum by keep-

ing an exponentially decaying average of past gradients. The weights and biases of the

network that minimize the loss are the optimal parameters. Stochastic Gradient Descent

(SGD) is an optimization method used for the optimization of the loss function in neural

network architectures. The SGD algorithm calculates the gradient of the loss function for

a parameter value and then takes a small step into the direction of the negative gradient

to get an updated value for the parameter. The partial derivatives of the loss functions

with respect to the weights and biases, i.e. ∂ϑ
∂wl

ij
and ∂ϑ

∂blj
serve as input for the optimizer.

As calculating the gradient itself is computationally intense for a large number of observa-

tions, SGD uses a random subsample of observations, i.e. a mini-batch. If the subsample

is taken large enough, the average gradient over the mini-batch approximates the average

gradient of the whole sample.

The gradient is then used to update the parameter value (Kingma & Ba, 2014):

θnew = θold − α∇θϑ(θ), (23)

where θnew represents the updated parameter value, θold the old parameter value, α the

learning rate, and ∇θϑ(θ) the gradient.

The partial derivatives with respect to the weights and bias, i.e. ∂ϑ
∂wl

ij
and ∂ϑ

∂blj
, serve

as input parameters for the optimizer. In vector notation for layer l, they and can be

expressed as follows:

∂ϑ

∂bl
=

∂ϑ

∂al
∂al

∂γ l
∂γ l

∂bl
∂ϑ

∂W l
=

∂ϑ

∂al
∂al

∂γ l
∂γ l

∂W l
. (24)

In Equation 24, you can see the term ∂ϑ
∂al

∂al

∂γl in both partial derivative expressions. I

define this term as the shared error slj:

slj =
∂ϑ

∂alj

∂alj
∂γlj

=
∂ϑ

∂alj
f ′(γlj). (25)
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Or in vector notation:

sl = ∇aϑ� f ′(γ l), (26)

where ∇aϑ is a vector with n partial derivatives ∂ϑ
∂al

j
for all the n neurons in the layer,

f ′(γl) the partial derivatives f ′(γlj) for j ∈ 1, ..., n, and � the Hadamard product. Next,

I define the shared error in layer l in terms of the shared error in layer l + 1:

sl = ((wl+1)Tsl+1)� f ′(γ l). (27)

From Equation 27, you can see that the weight matrix facilitates the transportation of the

shared error backward through the network, i.e. from layer l+ 1 to layer l. By taking the

Hadamard product with f ′(γ l), you can also include the effect on the activation function

in layer l. Combining Equation 26 and 27, I obtain the following expressions for ∂ϑ
∂wl

ij
and

∂ϑ
∂blj

:

∂ϑ

∂wlij
= al−1

k slj
∂ϑ

∂blj
= slj. (28)

The Adam optimizer is an adaptive optimization method, which means that it updates

the learning rate for each parameter. On the contrary, SGD deploys a constant learning

rate. To get the expression for the adaptive learning rate, I firstly estimate the first and

second order moment by means of exponentially moving averages:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t ,

(29)

where m and v are moving averages, g the gradient, and β1 and β2 hyperparameters of

the Adam optimizer. In this research, I set β1 equal to 0.9 and β2 to 0.999, these are

default values and rarely adjusted.

Equation 29 now describes the relation between t−1 and t. If we expand this relation

ranging from t = 0 to t = t we get: mt = (1−β1)
∑t

i=0 β
t−i
1 gi and vt = (1−β2)

∑t
i=0 β

t−i
2 g2

i .

Taking the expectation, including a correction ζ as we approximate gi by gt and using the

formula for the sum of a finite geometric series, yields:

E[mt] = E[gt](1− βt1) + ζ1

E[mt] = E[gt](1− βt1) + ζ2.
(30)
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Equation 29 describes the estimates of the first and second moments of the gradient,

m and v respectively. We want these moments to approximate the true first and second

moment of the gradient, i.e.:

E[mt] = E[gt] E[vt] = E[g2
t ]. (31)

By combining Equation 30 and Equation 31 I get the following biased corrected es-

timators for the first and second moments:

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

. (32)

Equation 32 is then used to scale the learning rate individually for each parameter by

the weight parameter wt:

wt = wt−1 − η
m̂t√
v̂t + ε

, (33)

where η is the step size, and ε an error term.
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C Architecture

In this Appendix, I provide details on the WGAN networks, i.e. the generator and the

discriminator.

The Generator

The generator consists of a conditioning and simulation part, as depicted in Figure 1a

in Section 4. In Table 7, you can find an outline of the layers in the generator. The

layers use the ReLU activation function. Layers 1 to 7 form the conditioning part. The

simulation part consists of layers 10 to 13. The convolutional layers have stride 2 and

kernel size 5, and cover 7 channels as both portfolios consist of 7 assets. Moreover, the

padding methodology in the first 2 convolutional layers is set to valid. Valid padding

adjusts the input size of the convolutional layer if the original size is not compatible with

the kernel size and stride settings by discarding input values. In convolutional layers No.

3 and No. 4, the padding methodology is set to same. Same padding adds zeros in a

symmetric manner to the beginning and end of the input values to match the input size

with the kernel and stride settings. Followed by a flatten layer which translates the three-

dimensional output of the last convolutional layer into its two-dimensional equivalent, the

conditioning part is concluded by a dense layer.

Next, I have 2 input layers to incorporate the excess values and the random values.

The processed historical closing prices and the excess values serve as conditioning inform-

ation for WGAN. Conditioning the random values on this information, it is processed by

one Dense layer and two transpose convolutional layers, which compress the number of

channels, thereby allowing the channels (i.e. the closing prices of the assets) to interact.

The Discriminator

The discriminator consists of five consecutive convolutional layers, again with stride 2

and kernel size 5. For the first 3 layers I apply valid padding and for the last 2 layers

I apply same padding. The convolutional layers are followed by a Flatten layer which

downsizes the output of the last convolutional layer to concatenate it with the excess

values. After concatenation the discriminator produces a single output, the critic value,

using the dense layer with linear activation. Except for layer No. 9 (the final dense
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layer), the layers deploy the leaky ReLU activation function. Through the convolutions,

the number of channels is increased whereas the temporal direction gets downsized. The

latter is necessary as the discriminator outputs a single value for each batch rather than

a time series.

Table 7. The generator network

Layer no. Layer type Output shape Comments

1 Input layer (batches, 40, 7) Normalized closing prices

2 1D Conv (batches, 18, 7)

3 1D Conv (batches, 7, 7)

4 1D Conv (batches, 2, 7)

5 1D Conv (batches, 1, 7)

6 Flatten (batches, 7)

7 Dense (batches, 7)

8 Input layer (batches, 7) Asset excess values

9 Input layer (batches, 14) Random values: z ∼ U(0, 1)

10 Dense layer (batches, 20)

11 Reshape (batches, 20, 28)

12 1D Conv Transpose (batches, 20, 14)

13 1D Conv Transpose (batches, 20, 7)

Table 8. The discriminator network

Layer no. Layer type Output shape Comments

1 Input layer (batches, 60, 7) Real or fake data

2 1D Conv (batches, 28, 7)

3 1D Conv (batches, 12, 14)

4 1D Conv (batches, 4, 28)

5 1D Conv (batches, 2, 56)

6 1D Conv (batches, 1, 112)

7 Flatten (batches, 112)

8 Input layer (batches, 7) Asset excess values

9 Dense layer (batches, 1)
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D Forecasting Performance

This Appendix shows the forecasting performance of WGAN for four different horizons.

From Table 9, you can see that there is no horizon outperforming across all constituents.

The 10-day horizon is outperforming for ARM, AMS, KIO, ASR, and ALSI. However,

for ANG and GFI the 20-day horizon performs best. For the constituents of the Russian

portfolio, the forecasting performance of WGAN is not consistently superior for one ho-

rizon either (Table 10). For GAZP, ROSN, SNGS and MCFTR, the 10-day horizon is

superior. For LKOH and NVTK the 5-day horizon performs best, and for WGAN shows

the best performance for the 20-day horizon for TATN.
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Table 9. Characteristics and performance of the WGAN per constituent of the South Africa

portfolio for four different time horizons.
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Table 10. Characteristics and performance of the WGAN per constituent of the Russian portfolio

for four different time horizons.
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E Robustness

This Appendix shows the forecasting performance of WGAN in case the closing prices are

slightly modified with respect to the original closing prices. By means of forecasting based

on the adjusted closing prices and evaluating this performance, I assess the robustness of

WGAN. If the performance across slight modifications match, I can conclude that WGAN

is robust.

From Table 11, Table 12, and Table 9 (Appendix D), you can see that for the South

African market, the WGAN performance is quite stable with percentages varying up to

5.1%. For example, for AMS, the 20-day results is 66.8% for the +10% adjusted closing

prices, 61.9% for the −10% adjusted closing prices, and 61.7% for the original closing

prices. For KIO, the 10-day results is 82.8% for the +10% adjusted closing prices, 84.2%

for the −10% adjusted closing prices, and 79.6% for the original closing prices. For the

other constituents, the results are even less variable.

From Table 13, Table 14, and Table 10 (Appendix D), you can see that for the Russian

market WGAN also performs steadily across varying closing prices. The largest perform-

ance difference you can see for ROSN 20-day, with 65.7% for adjusted closing prices +10%,

66.3 for adjusted closing prices −10%, and 66.0% for the unadjusted closing prices.

Overall, I conclude that WGAN performs steadily for various closing price inputs.

59



A
R

M
A

M
S

A
N

G
G

F
I

K
IO

A
S
R

A
L

S
I

1
d
ay

ah
ea

d

%
co

rr
ec

t
72

.3
73

.2
69

.3
66

.9
75

.8
72

.3
66

.5

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

15
,8

94
16

,0
02

18
,8

77
11

,5
12

26
,3

47
15

,1
55

36
,4

28
16

,5
74

31
,8

47
13

,9
82

33
,7

37
16

,8
78

27
,7

08
18

,0
56

d
ow

n
12

,3
56

61
,4

98
15

,1
23

59
,4

88
15

,1
53

47
,8

45
17

,3
22

35
,1

76
10

,9
03

49
,2

68
11

,0
13

43
,6

22
14

,7
92

43
,4

44

5
d
ay

s
ah

ea
d

%
co

rr
ec

t
76

.0
83

.5
79

.8
75

.5
77

.9
72

.7
74

.0

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

4,
97

2
2,

08
3

4,
50

4
1,

09
5

4,
91

3
1,

50
3

7,
03

8
1,

49
8

5,
78

4
3,

25
3

6,
97

4
2,

50
9

7,
30

9
3,

32
0

d
ow

n
2,

52
8

10
,4

17
2,

24
6

12
,4

05
2,

58
7

11
,2

47
3,

21
2

8,
25

2
1,

21
6

9,
99

7
3,

02
6

7,
74

1
1,

69
1

7,
68

0

10
d
ay

s
ah

ea
d

%
co

rr
ec

t
78

.1
84

.1
79

.4
71

.3
82

.8
79

.3
81

.0

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

2,
00

4
1,

50
2

2,
05

2
67

9
2,

51
8

37
9

3,
30

0
49

4
3,

28
7

1,
05

4
3,

14
9

1,
52

0
4,

30
0

1,
25

1

d
ow

n
74

6
5,

99
8

94
8

6,
57

1
1,

73
2

5,
62

1
2,

45
0

4,
00

6
71

3
5,

19
6

60
1

4,
98

0
70

0
3,

99
9

20
d
ay

s
ah

ea
d

%
co

rr
ec

t
66

.3
66

.8
81

.6
82

.2
71

.5
74

.2
44

.8

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

1,
30

8
82

7
1,

25
0

49
2

1,
58

6
30

4
1,

45
9

39
2

1,
91

1
65

7
1,

77
3

62
6

1,
49

9
2,

14
7

d
ow

n
69

2
2,

17
3

1,
25

0
2,

25
8

66
4

2,
69

6
54

1
2,

85
8

83
9

1,
84

3
72

7
2,

12
4

75
1

85
3

Table 11. Characteristics and performance of the WGAN per constituent of the South Africa

portfolio for four different time horizons, for closing prices adjusted +10%.

60



A
R

M
A

M
S

A
N

G
G

F
I

K
IO

A
S
R

A
L

S
I

1
d
ay

ah
ea

d

%
co

rr
ec

t
72

.2
73

.3
69

.2
67

.0
75

.9
72

.2
66

.9

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

15
,8

99
16

,0
81

18
,8

83
11

,4
92

26
,3

24
15

,2
51

36
,4

72
16

,4
94

31
,9

97
14

,0
46

33
,7

23
16

,9
22

27
,8

66
18

,0
12

d
ow

n
12

,3
51

61
,4

19
15

,1
17

59
,5

08
15

,1
76

47
,7

49
17

,2
78

35
,2

56
10

,7
53

49
,2

04
11

,0
27

43
,5

78
14

,6
34

43
,4

88

5
d
ay

s
ah

ea
d

%
co

rr
ec

t
76

.1
83

.5
79

.7
75

.6
77

.9
72

.9
74

.1

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

4,
97

6
2,

06
9

4,
50

2
1,

09
4

4,
89

1
1,

49
6

7,
06

1
1,

49
5

5,
79

1
3,

26
9

7,
00

9
2,

50
2

7,
33

4
3,

32
4

d
ow

n
2,

52
4

10
,4

31
2,

24
8

12
,4

06
2,

60
9

11
,2

54
3,

18
9

8,
25

5
1,

20
9

9,
98

1
2,

99
1

7,
74

8
1,

66
6

7,
67

6

10
d
ay

s
ah

ea
d

%
co

rr
ec

t
78

.1
84

.2
79

.5
71

.3
84

.2
79

.3
81

.2

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

1,
98

5
1,

47
6

2,
05

8
68

0
2,

51
4

36
6

3,
30

9
50

0
3,

28
2

1,
08

3
3,

14
1

1,
51

5
4,

31
0

1,
23

5

d
ow

n
76

5
6,

02
4

94
2

6,
57

0
1,

73
6

5,
63

4
2,

44
1

4,
00

0
71

8
5,

16
7

60
9

4,
98

5
60

9
4,

01
5

20
d
ay

s
ah

ea
d

%
co

rr
ec

t
66

.6
61

.9
81

.7
82

.0
71

.2
74

.7
45

.1

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

1,
31

2
81

4
1,

25
1

50
5

1,
59

8
31

1
1,

46
8

41
2

1,
90

4
66

4
1,

80
6

63
5

1,
50

0
2,

13
2

d
ow

n
68

8
2,

18
6

1,
24

9
2,

24
5

65
2

2,
68

9
53

2
2,

83
8

84
6

1,
83

6
69

4
2,

11
5

75
0

86
8

Table 12. Characteristics and performance of the WGAN per constituent of the South Africa

portfolio for four different time horizons, for closing prices adjusted −10%.

61



G
A

Z
P

L
K

O
H

N
V

T
K

R
O

S
N

S
N

G
S

T
A

T
N

M
C

F
T

R

1
d
ay

ah
ea

d

%
co

rr
ec

t
68

.3
76

.1
71

.8
75

.6
63

.4
77

.5
65

.4

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

22
,2

86
16

,3
33

6,
26

4
15

,1
55

12
,2

11
17

,7
29

34
,0

44
11

,9
36

42
,1

18
15

,8
98

19
,1

75
9,

84
6

7,
72

4
20

,0
93

d
ow

n
16

,2
14

50
,9

17
8,

23
6

75
,3

45
11

,0
39

64
,7

71
11

,2
06

47
,0

64
21

,8
82

25
,8

52
12

,8
25

63
,9

04
14

,0
26

62
,4

07

5
d
ay

s
ah

ea
d

%
co

rr
ec

t
78

.4
76

.1
75

.4
75

.3
69

.3
75

.4
67

.2

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

5,
46

4
2,

58
5

1,
23

7
2,

58
0

3,
31

0
3,

53
9

7,
08

7
3,

33
6

8,
36

0
4,

08
4

3,
47

1
3,

20
3

2,
65

8
4,

54
3

d
ow

n
1,

78
6

10
,4

15
2,

01
3

14
,1

70
1,

44
0

11
,9

61
1,

66
3

8,
16

4
2,

14
0

5,
66

6
1,

77
9

11
,7

97
1,

84
2

10
,9

57

10
d
ay

s
ah

ea
d

%
co

rr
ec

t
79

.5
73

.8
68

.1
78

.5
82

.5
79

.3
72

.4

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

2,
83

9
1,

19
0

1,
14

6
58

6
1,

99
5

1,
76

9
3,

83
9

1,
54

3
4,

71
3

1,
26

0
2,

21
3

1,
33

2
2,

39
5

1,
46

9

d
ow

n
91

1
5,

31
0

1,
85

4
6,

41
4

1,
50

5
4,

98
1

66
1

4,
20

7
53

7
3,

74
0

78
7

5,
91

8
1,

35
5

5,
03

1

20
d
ay

s
ah

ea
d

%
co

rr
ec

t
72

.4
52

.6
68

.6
65

.7
65

.6
83

.6
61

.0

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

1,
33

2
28

2
27

8
14

87
0

26
8

1,
42

9
47

9
2,

00
2

1,
05

8
1,

17
8

37
80

5
10

2

d
ow

n
91

8
2,

46
8

1,
72

2
2,

48
6

1,
38

0
2,

73
2

1,
32

1
2,

02
1

74
8

1,
44

2
82

2
3,

21
3

1,
69

5
2,

39
8

Table 13. Characteristics and performance of the WGAN per constituent of the Russian portfolio

for four different time horizons, for closing prices adjusted +10%.

62



G
A

Z
P

L
K

O
H

N
V

T
K

R
O

S
N

S
N

G
S

T
A

T
N

M
C

F
T

R

1
d
ay

ah
ea

d

%
co

rr
ec

t
68

.3
76

.1
71

.7
75

.7
63

.4
77

.5
65

.5

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

22
,2

46
16

,2
79

6,
25

4
15

,1
56

12
,2

07
17

,8
47

34
,0

03
11

,8
48

42
,1

08
15

,8
52

19
,1

96
9,

87
3

7,
77

3
20

,0
66

d
ow

n
16

,2
54

50
,9

71
8,

24
6

75
,3

44
11

,0
43

64
,6

53
11

,2
47

47
,1

52
21

,8
92

25
,8

98
12

,8
04

63
,8

77
13

,9
77

62
,4

34

5
d
ay

s
ah

ea
d

%
co

rr
ec

t
78

.4
76

.4
75

.0
75

.4
69

.3
75

.5
67

.3

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

5,
46

3
2,

58
7

1,
26

8
2,

54
3

3,
30

6
3,

61
9

7,
09

8
3,

32
4

8,
34

6
4,

06
7

3,
46

5
3,

18
5

2,
64

2
4,

51
5

d
ow

n
1,

78
7

10
,4

13
1,

98
2

14
,2

07
1,

44
4

11
,8

81
1,

65
2

8,
17

6
2,

15
4

5,
68

3
1,

78
5

11
,8

15
1,

85
8

10
,9

85

10
d
ay

s
ah

ea
d

%
co

rr
ec

t
79

.7
74

.3
68

.7
78

.5
82

.5
80

.3
73

.5

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

2,
81

0
1,

13
6

1,
13

6
52

0
1,

95
3

1,
66

2
3,

81
6

1,
51

7
4,

70
4

1,
24

4
2,

21
6

1,
23

3
2,

41
1

1,
38

0

d
ow

n
94

0
5,

36
4

1,
86

4
6,

48
0

1,
54

7
5,

08
8

68
4

4,
23

3
54

6
3,

75
6

78
4

6,
01

7
1,

33
9

5,
12

0

20
d
ay

s
ah

ea
d

%
co

rr
ec

t
72

.5
52

.5
68

.9
66

.3
65

.8
83

.6
61

.6

p
re

d
ic

te
d
/r

ea
li
ze

d
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n
u
p

d
ow

n

u
p

1,
33

5
27

8
27

8
20

87
1

25
6

1,
45

0
47

0
2,

00
5

1,
04

9
1,

17
2

35
82

3
89

d
ow

n
91

5
2,

47
2

1,
72

2
2,

48
0

1,
37

9
2,

74
4

1,
30

0
2,

03
0

74
5

1,
45

1
82

8
3,

21
5

1,
67

7
2,

41
1

Table 14. Characteristics and performance of the WGAN per constituent of the Russian portfolio

for four different time horizons, for closing prices adjusted −10%.
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F Frontiers from NSGA-II and MC

This Appendix shows the Pareto fronts for time intervals of 20-days as the portfolios are

rebalanced every 20 days according to the investor’s risk-return preferences. This means

that we require a new allocation every 20 days, yielding 21 fronts for the investing period

that covers 420 days, i.e. from 2017-09 to 2019-04. In Figure 9 and Figure 10, you can

find the final frontiers for all 20 time periods.
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Figure 9. Mean-semivariance frontiers: relevant portfolios extracted from the NSGA-II simula-

tions as well as the MC simulations. The red portfolio represents the risk-seeking investor. The

green portfolio represents the risk-averse investor.
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Figure 10. Mean-semivariance frontiers for the Russian stocks: relevant portfolios extracted

from the NSGA-II simulations as well as the MC simulations. The red portfolio represents the

risk-seeking investor. The green portfolio represents the risk-averse investor.
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