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Abstract

This paper examines the key drivers of delta-hedged option returns by employing the Instru-

mented principal component analysis (IPCA) on a panel dataset of 1776 companies listed

on American exchanges from 2005 to 2014. The basic IPCA constructed in Kelly et al.

(2017) is improved by implementing three regularization techniques to obtain a more par-

simonious model and two robust methods to account for the problem of heteroskedasticity

and outliers in the data. Investment, profit to total assets, return on assets and earnings per

share were statistically significant in explaining returns. Where the first two characteristics

were positively associated with returns, the latter two were negatively related. Parsimonious

models yielded better fit out-of-sample while robust methods did not outperform the OLS

method in-sample nor out-of-sample. Even though returns are on average negative, tangency

portfolios based on out-of-sample IPCA strategies yielded positive returns and exhibited low

downside based on value at risk.

Keywords— IPCA, option returns, regularized and robust models
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1 Introduction
Since the issuance of the first stock of the United East Indian Company (VOC) in the early

1600s, people wanted to invest to increase their amount of wealth. When more stocks became

available people needed to decide which stock will yield the highest return and therefore needed

to know which characteristics of a company drive stock returns. It took almost 350 years before

the amount of research on the drivers of stock returns exploded. The first real breakthrough was

the one-factor model constructed by Sharpe (1964) and Lintner (1975) that included the market

risk factor, which became the well-known Capital Asset Pricing Model (CAPM). The CAPM

stated that return on assets depends on their exposure to market risk. This model got extended

twice by Fama and French. Their first extension included a size and a value factor as in Fama

and French (1992). Two decades later Fama and French (2015) added a profitability and an

investment factor to their model which now included five factors that all had some explanation

why returns differ across assets. Afterward, the five-factor model became the standard and has

been extended by a variety of factors of which the most common are momentum and reversal

research by Jegadeesh and Titman (1993) and Jegadeesh (1990) respectively. Altogether, in the

last 40 years a large number of factors were introduced to explain expected stock returns.

In contrast, limited research has been performed on the characteristics that drive delta-hedged

option returns (from now on returns in contrast to stock returns) even though the volume of op-

tions being traded has increased significantly over recent decades. A possible reason for the

limited amount of research according to Horenstein et al. (2018) is that options are merely

viewed as a leveraged manner to buy a stock. However, the limited risk profile this type of

hedged securities exhibit, simply due to its construction, makes it an exceptional investment for

low-risk type investors. To ascertain that the investor obtains the highest return possible given

his risk profile, a framework needs to be utilized that explains the main drivers of returns.

To determine which characteristics influence returns, we construct a type of option return that

is normally considered in this type of research, namely monthly delta-hedged option returns.

This type of return represents the risk premium related to disadvantageous variance risk which

is constructed similar to Cao and Han (2013) and Horenstein et al. (2018) by buying a call and

delta-hedged daily with the underlying stock during a one-month period. This dataset consists

of 1776 companies listed on the main America exchanges including the NYSE and NASDAQ

between 2005 and 2014.

The importance of different characteristics on expected returns was investigated by applying
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the principal component analysis (PCA) in Horenstein et al. (2018). This statistical method

transforms a return matrix of observations that are possibly correlated into a set of linearly un-

correlated factors. The disadvantage of this method is that due to this statistical transformation

the latent factors lack economic meaning and no information of the non-return characteristics is

used. Therefore, the authors investigated how these orthogonal latent factors are related to a

set of long-short portfolios based on characteristics. However, this conversion analysis requires a

priori correct specification of the factors, which is exactly what needs to be researched. Further-

more, the PCA is a static model and therefore can not take into account the time-varying nature

of the relationship between characteristics and return. For instance, Duesenberry (1965) found

that econometric relationships often exhibit structural instability. Moreover, Fama and French

(1993) discovered that there is a difference in returns for companies with different characteristics

such as size, growth rates, and book-to-market value. Since companies evolve over time from

small to large firms or vice versa, it would be logical to incorporate time-varying parameters.

Furthermore, a static model is unsuitable for a conditional asset pricing model which is impor-

tant for the typical investor, since they seek to optimize their portfolio and corresponding return

every month.

Cao and Han (2013) investigated the relationship between returns and characteristics by us-

ing a Fama-MacBeth procedure defined in Fama and MacBeth (1973). The Fama-MacBeth

follows a two-step procedure where first the effect of a variable on the cross-section of option

returns is determined, the corresponding beta of the characteristic is then subsequently averaged

such that the significance can be tested. The disadvantage of this method is that a large number

of parameters need to be estimated.

Kelly et al. (2019) discuss in their paper about stock returns the instrumented principal compo-

nent analysis (IPCA), this is a factor model that explains stock returns by time-varying parame-

ters and implementing time-variant characteristics. With the IPCA the two disadvantages of the

PCA are tackled in the following way. The first weakness, lack of economic meaning, is addressed

by modeling the factor loadings as a function of large set characteristics that have been proven to

be important in literature. Hence this framework contributes to our understanding of which set

of instruments drives returns without imposing that the factor structure is known beforehand.

Furthermore, by allowing the factor loadings to be time-variant, the second disadvantage of the

PCA is solved and yields two benefits. First, the framework provides the opportunity to incor-

porate time-varying parameters and therefore yields a model that better matches the dynamic
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behavior of firm characteristics over time. Second, the structure allows for the estimation of a

conditional factor model.

The IPCA can be evaluated as a generalization of the Fama-MacBeth model that uses L fac-

tors to construct a relationship between L characteristics and the option return. However, when

a reduced specification is used where K < L factors are used, a substantially more parsimonious

model is obtained that solves the problem of the large set of estimators in the Fama-MacBeth.

Although the IPCA model is not yet applied to any other type of returns than stock returns,

we strongly believe this model is also suitable for option returns because both option and stock

returns share commonalities and use a very similar dataset of characteristics. First, the dataset

used in this paper and in Kelly et al. (2019) consists of panel data with a finite amount of

characteristics, second both dependent variables are heavy-tailed monthly returns with a mean

of around 0. Furthermore, Horenstein et al. (2018) and Cao et al. (2017) showed that there do

exist characteristics that drive returns. Hence, we conclude that since the two datasets share

important commonalities and literature confirms the importance of instruments in modeling op-

tion returns, IPCA exhibits the properties needed to be a correct method for investigating our

research question: ‘What characteristics influence delta-hedged option returns’.

Apart from understanding the relationship between the characteristics and returns, our sec-

ond interest lies in enhancing the IPCA model by using shrinkage techniques and tackling the

unfavorable consequences of heteroskedasticity and extreme tails. We will research whether

shrinkage techniques yield better out-of-sample fit than the basic variant and if these models

determine the same characteristics to be important in the construction of the loadings and be

statistically significant. Moreover, we expect that adjusting the ordinary least squares (OLS)

to a robust counterpart that satisfies all assumptions such as the Huber loss or weighted least

squares (WLS) results in better out-of-sample estimates.

To incorporate the wishes of a low-risk investor, not only a good out-of-sample fit is needed,

but also a trading strategy that yields a high return to risk with a limited downside. Trading

strategies are based either on a tangency portfolio or an anomaly portfolio. The tangency portfo-

lio is derived from an optimal combination of risk factors obtained from the IPCA models which

achieves the highest Sharpe ratio, whereas the anomaly portfolio is constructed on the anomaly

loadings of the unrestricted IPCA model. The high return to risk is examined by the Sharpe

ratio whereas the downside is investigated by the Value at Risk (VaR) metric.
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The main results we found are that investments, profit to total assets, return on assets, and

earnings per share are statistically significant instruments in explaining variation in returns.

The first two characteristics were positively related to returns, whereas the latter two were nega-

tively related. Moreover, the IPCA showed to have superior performance compared to the PCA,

possibly caused by the inclusion of time-varying non-return characteristics. Supervised machine

learning techniques showed a slight positive effect out-of-sample, whereas robust methods did

not improve upon the IPCA. The tangency portfolio exhibited a positive return which increased

even further when a ridge or lasso technique was applied and the VaR analysis established the

belief that the downside was minimized to around 0. Therefore, trading strategies based on

delta-hedged option returns are interesting for low-risk investors.

The main contribution to research is the extension of the application of IPCA on a new as-

set class, delta-hedged option returns. Moreover, existent methods that have been previously

combined with certain factor models, but have never been integrated with IPCA, are constructed

in this paper resulting in a major advancement in theoretical research on IPCA models. These

extensions include regularization and robust techniques to cope with the problem of a large set of

parameters or not satisfied assumptions of the OLS respectively. Moreover, the out-of-sample in-

vestigation of the IPCA in Kelly et al. (2019) is extended with the VaR analysis which facilitates

the evaluation of the downside risk of the model.

Apart from the paper’s theoretical contributions, it also has an exceptional practical benefit

for investors. The investor can calculate the expected return of its option based on the firm’s

present characteristics as well as use the instruments that have shown to be statistically signifi-

cant in explaining returns in their strategy to achieve a high Sharpe ratio with a low downside risk.

The remaining sections of the paper are outlined as follows. Section 2 presents the IPCA method

and its extensions, establishes a test to determine the importance of variables, investigates the

performance of the model, discusses forecasting methods and the VaR. Section 3 considers the

data related to returns and characteristics. Section 4 shows the results of the IPCA and its

extensions on the model and characteristic level. Section 5 concludes with a summary of the

methods and results.

2 Methodology
This section starts with discussing which methods we apply to establish the relationship between

characteristics and returns. First, we start with the PCA which is the time-invariant no instru-

ments counterpart of the IPCA. Second, when we understand how this model works, we can

4



include these two aforementioned features and construct the IPCA. Third, we use shrinkage and

selection methods to derive a more parsimonious model that might improve forecasts. Fourth,

the OLS method is adjusted for outliers by means of a Huber loss function and tries to tackle

the problem of heteroskedasticity by replacing OLS by WLS.

When we have constructed all models, we create asset pricing tests to determine which char-

acteristic is important in explaining returns. These tests consist of a likelihood ratio test for

the calculation of p-value and F-values of the characteristics and marginal R2. Subsequently,

we evaluate how well all the characteristics together explain the variation in returns and ex-

pected returns by utilizing the R2 metrics. To evaluate if a profitable trading strategy with

low-downside can be constructed by utilizing the models, out-of-sample fit, Sharpe ratios, and

VaR are examined. The section is completed by a robustness check that considers whether the

relationships between the characteristics are similar for different models.

2.1 PCA

To assess the performance of our main model, the IPCA, we should naturally contrast this model

to its static counterpart that does not include any instruments which is the PCA. To construct

the PCA we use characteristic-managed portfolio returns (xt) introduced in Kelly et al. (2019)

as dependent variable that is defined as

xt+1 :=
1

Nt
Z

T

t rt+1, (1)

where xt+1 : R(L×1), Nt, Zt : RL×Nt and rt+1 : RNt×1 are respectively the return on a

characteristic-managed portfolio at time t + 1, the number of options at time t, all options

characteristics at time t and the individual return at time t + 1. The characteristic-managed

portfolio return is the return on a portfolio weighted by the characteristics and normalized by
1
Nt

such that the portfolio volatility is not affected by the number of companies available at time

t. Even though our data is unbalanced, we only need option returns that are available for two

consecutive periods. However, if we would have considered individual returns for the PCA we

could only include options that are available every time period because otherwise the dependent

variable’s dimension would differ monthly and therefore a principal component would not exist.

Hence the well-known static model constructed similarly as in Connor and Korajczyk (1988)

with characteristic-managed portfolio returns is

xt = βft + εt, (2)

where β : RL×K , ft : RK×1 and εt are the loadings, the statistical orthogonal factors, and the

errors respectively.
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To find the optimal parameters β and ft we need to minimize:

min
β,ft

T∑
t=1

(xt − βft)
T

(xt − βft). (3)

Taking the first-order conditions to ft yields:

βT(xt − βft) = 0 ⇐⇒ ft = (βTβ)−1β
T
xt. (4)

Subsequently, we substitute ft into Equation (3) and obtain the concentrated form of the objec-

tive function for β

max
β

tr(
T∑
t=1

(β
T
β)−1β

T
xtx

T

t β). (5)

In this particular case, the PCA solution for β are the first K eigenvectors of the portfolio returns

second moment
∑T

t=1 xtx
T

t .

The PCA framework can be enhanced by making the loadings of the PCA dependent on time-

varying characteristics which boils down to the IPCA.

2.2 IPCA - Theoretical framework

We start the theoretical framework from the ground up, by investigating the very origin of the

factor models. Subsequently, we make the loadings dependent on the information about the

company and discuss all the features of the model. Lastly, we discuss the requirements needed

for successful estimation.

To find a suitable factor model for option returns we utilize a framework similar to Kelly et al.

(2019). We start by examining the Euler equation with the stochastic discount factor for in-

vestment returns. Only the no-arbitrage assumption is necessary to ensure the existence of a

stochastic discount factor which satisfies for any asset return the following equation

E(mt+1ri,t+1|It) = 0 ⇐⇒ E(mt+1ri,t+1|It) =
covt(mt+1ri,t+1)

vart(mt+1)︸ ︷︷ ︸
βi,t

(−vart(mt+1)

Et(mt+1)
)︸ ︷︷ ︸

λt

, (6)

where mt+1 is the discount factor at time t+ 1, ri,t+1 is the excess return for company i at time

t+ 1, and It indicates the information set at time t. We define the first part as the loading (βi,t)

which can be viewed as the amount of exposure to the systematic risk factors. Moreover, the

second part can be seen as the price of risk (λt) related to the aforementioned factors. Given that

mt+1 depends on a linear function of ft+1 Equation (6) is transformed into a factor model with

as dependent variable excess returns in line with the methods used in Ross (1976) and Hansen

and Richard (1987)

ri,t+1 = αi,t + β
T

i,tft+1 + εi,t, (7)
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where βi,t : R1×K is the time-varying and option specific counterpart of the constant loading β

and the constant and error term are respectively αi,t and εi,t. Moreover we assume E(εi,t|It) = 0,

E(εi,tfi,t|It) = 0K×1, E(ft+1|It) = λt and αi,t = 0 for all i and t. It follows that with Equa-

tion (7) the first flexibility feature of the factor loading, time-varying βi,t, is met. Now we

implement the second feature by modeling the loading βi,t as a function of non-return instru-

ments/characteristics (zi,t) and obtain the IPCA model specification as defined in Kelly et al.

(2019):

ri,t+1 = αi,t + βi,tft+1 + εi,t+1 where εi,t+1 ∼WN(0, σ2
i ), (8)

where αi,t = zTitΓα + ηi,t, βi,t = zTitΓβ + ui,t and εi,t+1 = ηi,t + ui,tft+1.

As Equation (8) describes, the relationship between return i at time t + 1 (ri,t+1) is deter-

mined by an intercept (αi,t) and a slope coefficient for K factors (βi,t : R1×K) that both depend

on L characteristics (zi,t : RL×1) and their corresponding weights (Γα : RL×1 and Γβ : RL×K).

Moreover, the contemporaneous common risk factor (ft+1 : RK×1) can be seen as a proxy of

sorted portfolio returns dependent on the loadings βi,t. Besides these estimated parameters the

unexplained part is the error for option i at time t + 1 (εi,t+1) that is a function of errors in

the loadings ηi,t and ui,t : R1×K . With ui,t we acknowledge that risk exposure of the assets

might not be fully retrievable by the instruments, a similar idea holds for ηi,t which allows for

idiosyncratic mispricing unassociated with both the instruments and the risk factor.

As described before, the IPCA is a factor model consisting of varying loadings that depend

on characteristics. Including instruments lead to several important benefits. First, the instru-

ment contributes to the model’s efficiency even if the instruments are time-invariant as was

discovered by Fan et al. (2016). Second, because the characteristics are time-varying, this yields

time-variant loadings which leads to a dynamic factor model. With a dynamic factor model

one can estimate a conditional return model. Lastly, and most importantly, the inclusion of

characteristics helps in identifying what the real drivers of returns are and therefore can answer

the main research question: ‘Which characteristics explain option returns’.

The linear relation between the characteristics and the dynamic loadings is found by estimating

the matrix Γ̃ := [Γα,Γβ] : RL×(K+1). In previous empirical research, a substantial amount of

characteristics have shown to exhibit some degree of power in explaining the variation across

returns. Therefore, a matrix is constructed that serves the purpose of reducing the high amount

of characteristics for a substantial number of companies to a small matrix. If these character-

istics are informative but noisy about the dynamic loadings, they are still able to improve the
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model since the noise can be averaged out and the signal separated and identified. While Γ̃ is

time-invariant and equal for every company, it dynamically makes portfolios based on the time-

varying characteristics that are firm-specific. For instance, when a firm is small at the beginning

of the sample and becomes large over time, the value of the dynamic betas that depend on the

time-variant characteristic and constant Γ changes. This causes the firm to have a different

predicted return in the beginning of the sample compared to the end of the sample, hence the

risk-return identity can still be met.

Note that constructing sorted portfolios dynamically is also possible with the method from

Horenstein et al. (2018). However, when a portfolio is constructed based on several characteris-

tics and the number of characteristics explodes, their portfolio construction relying on test assets

becomes infeasible.1

When the return characteristic relation is not driven by compensation for exposure to the la-

tent risk factors, the characteristic does not exhibit risk and allocates the compensation to the

intercept αi,t. Hence, this contributes to the possibility that αi,t 6= 0 and therefore to the pos-

sibility of the existence of an anomaly. The estimation of αi,t is conducted by finding a linear

combination of the characteristics and the matrix Γα that is best able to describe the conditional

returns while simultaneously controlling for the instruments in βi,t. If the characteristics align

differently to the intercept than to the systematic risk factor, there is anomalous compensation

for the delta-hedged option return beyond systematic risk.

The risk factors ft+1 capture the variation in returns that can not be arbitraged away. These can

be viewed as returns on the dynamic portfolios constructed by βi,t. While we allow the number

of characteristics to be large, the amount of risk factors is to be chosen small.

Several requirements need to be met for successful estimation of the parameters in IPCA ac-

cording to Kelly et al. (2017) these are as follows

• First, the instrument should be orthogonal to the errors, that is E(zi,tεi,t) = 0L×1. This

assumption can be met by assuming that E(zi,tηi,t) = 0L×1 and E(z
T

i,tui,tft+1) = 0L×1.

This condition is comparable to the instrumental variable exclusion restriction that is often

made in similar settings and ensures consistency.

• Second, several moments of the characteristics, returns, and a combination of the two need
1For instance, when the single sort method with 63 characteristics is used 63 portfolios are needed, while for

double sort 263 portfolios are needed.
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to exist. These are E(‖ftft‖2)), E(‖zi,tεi,t‖2)), E(‖zi,tz
T

i,t‖2), E(Ωz,ε
t ), E(‖zi,tz

T

i,t‖2‖ftft‖2),

and their conditional at time t variants of these moments, where Ωz,ε
t is the covariance

between the characteristics and the error. This assumption is important since it guarantees

that ΓβZ
T

t ZtΓβ is nonsingular and bounded which is needed in the first-order condition

of the IPCA, where instruments data for Nt companies is Zt : RL×Nt .

• Third, the parameter space of Γ̃ is compact and away from rank deficient, which is the

det(Γ̃T
Γ̃) > 0. This is required in the identification assumption of the IPCA.

• Fourth, zi,t is bounded and det(Ωz,z) > 0.

• The last assumption is the central limit theorem, where we assume
1√∑T
t=1Nt

∑
i,t

vec(z
T

i,tei,tf̃t
T

)
d−→ N(0,Ωzef ), (9)

where Ωzef = var(vec(z
T

i,tei,tf̃t
T

)).

2.3 Basic IPCA model

As discussed before our main model is the IPCA model as described by Equation (8), in this

subsection we will cover two versions of this model. The first version is the restricted model,

this model assumes that the αi,t = 0 in Equation (8). This means that there do not exist

characteristics with a risk-free return, hence no anomalies. The second model that is discussed

is the unrestricted model, here we assume that αi,t in Equation (8) is not restricted to 0, and

therefore this model allows for the existence of anomalies.

2.3.1 Estimation of the restricted IPCA (Γα =0L×1)

In this part, we investigate the restricted model, and therefore set αi,t = 0 ∀i, t in Equation (8).

We have to estimate two parameters Γβ and ft+1 in the equation

ri,t+1 = z
T

i,tΓβft+1 + ε∗i,t+1. (10)

In matrix form for Nt companies at time t it becomes

rt+1 = ZtΓβft+1 + ε∗t+1, (11)

where rt+1 : R(Nt×1), Zt : R(Nt×L), Γβ : R(L×K), ft+1 : R(K×1) and ε∗t+1 : R(Nt×1). Subsequently,

we try to minimize sum of squared errors as shown below

Lols(rt+1,Zt,Γβ,ft+1) = min
Γβ ,{ft+1}

1

2

T−1∑
t=1

(rt+1 −ZtΓβft+1))T (rt+1 −ZtΓβft+1). (12)

Equation (12) searches for Γβ and {ft+1}t=1,...,T−1 given a sample of {ri,t}t=2,...,T , {zi,t}t=1,...,T−1

that minimize the sum of squared errors over all i and t.
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The first-order condition of Lols(ri,Zt, Γ̂β,ft+1) with respect to ft+1 and given Γ̂β is

f̂t+1 = (Γ̂
T

βZ
T

t ZtΓ̂β)−1Γ̂
T

βZ
T

t rt+1 ∀t (13)

and for known {f̂t+1}t=1,...,T−1, we can transform Equation (12) to

Lols(rt+1,Zt,Γβ, f̂t+1) = min
Γβ

1

2

T−1∑
t=1

(rt+1−Zt⊗ f̂
T

t+1vec(Γ
T

β ))T (rt+1−Zt⊗ f̂
T

t+1vec(Γ
T

β )). (14)

Subsequently, we take the first-order condition with respect to vec(ΓT

β )

vec(Γ
T

β ) = (
T−1∑
t=1

[Zt ⊗ f̂
T

t+1]
T

[Zt ⊗ f̂
T

t+1])−1(
T−1∑
t=1

[Zt ⊗ f̂
T

t+1]
T
rt+1)

2
=

(
T−1∑
t=1

Z
T

t Zt ⊗ f̂t+1f̂
T

t+1)−1(
T−1∑
t=1

[Z
T

t rt+1 ⊗ f̂t]).

(15)

3 Since the companies in our sample do not have an observation every month, we have an unbal-

anced sample and hence the matrix multiplication of ZT

t and rt+1 is not always possible. The

reason for missing observations are: the company is not listed on an exchange every month during

our entire sample period due to for instance an initial public offering, bankruptcy, taking private

during our sample period or there did not exist any option that met our requirements, as defined

in Section 3. Kelly et al. (2019) showed that the IPCA problem can be approximately solved by

using a singular value decomposition (SVD) on characteristic-managed portfolio returns defined

in Equation (1) instead of the raw returns.

We can simplify the first-order conditions resulting from Equation (12) by using 1
T

∑T
t=1Z

T

t Zt

instead of ZT

t Zt ∀t. When this approach is used Γβ is equal to the K first eigenvectors of matrix∑T−1
t=1 xtxt. And ft+1 would be simplified to the first K principal components of the matrix

with managed portfolios for the entire sample X : R(L×T ) as defined in X := [x1,x2, . . . ,xT ].

Although these values for Γβ and ft+1 are not the exact solution of Equation (12) they offer a

good starting point (Γ(0)
β and f (0)

t+1), especially when the values of the characteristics do not differ

substantially over the time period which means for all t 1
T

∑T
t=1Z

T

t Zt ≈ Z
T

t Zt. To be certain

that our algorithm does not converge to a local minimum, we add a small random error to the

previously defined starting points and subsequently iterate n times between Equation (13) and

(15) until the difference between Γ
(n)
β , Γ

(n−1)
β and f (n)

t+1, f
(n−1)
t+1 are negligible for each element of

the vector or matrix. When this process is repeated several times with slightly different starting

values and still converges to the same optimal Γ
(n)
β and f (n)

t+1, we can be more certain that these

parameters are indeed part of the global optima than in the scenario where we did not consider

this randomness.
3by Kronecker product rules (1) the transpose property rule (A⊗B)

T

= A
T

⊗B
T

and (2) by mixed-product
property (A

T

⊗B
T

)(A⊗B) = A
T

A⊗B
T

B where the mixed property implies (A⊗B)C = AC⊗B for matrices
A, B and C

10



Rotational unidentification is a known issue in latent factor models as described in Kelly et al.

(2019), for instance for any nonsingular R : R(K×K) the combination of ΓβR and R−1ft+1 is

also a solution of Equation (12). Hence, without any restrictions on Γβ and ft+1 the IPCA

algorithm has severe difficulty finding the optimal solution because at every iteration another

’optimal’ solution is found. Therefore we follow Kelly et al. (2019) and Kelly et al. (2017) and

restrict the parameters at every iteration such that R does not affect our solution and hence the

factors do not jump around. The unidentifaction problem is solved by imposing the following

restrictions Γ
T

βΓβ = Ik, E(ft) ≥ 0 and cov(ft) = A where ai,j = 0 if i 6= j and ai,i > ai+1,i+1.

Note that these assumptions do not affect the sum of errors or change the economic meaning of

the parameters.

2.3.2 Estimation of unrestricted model IPCA (Γα 6= 0L×1)

In the unrestricted model we allow for the possibility that characteristics explain part of the

return without bearing systematic risk, hence this model exhibits an anomaly feature. This

translates to the unrestricted model having an intercept and is defined as follows

rt+1 = Z
T

t Γα +Z
T

t Γβft+1 + ε∗t+1. (16)

First we define [Γα,Γβ] := Γ̃ : RL×(K+1) and [1,ft+1] := f̃t+1 : R(K+1)×1. Subsequently, by

taking first-order conditions the optimal ft+1 given Γ̂ is determined by

ft+1 = (Γ̂
T

βZ
T

t ZtΓ̂β)−1Γ̂
T

βZ
T

t (rt+1 −ZtΓ̂α). (17)

Logically, the constant part of f̃t+1 is unaffected and remains 1 throughout the whole iteration

procedure. Moreover, in order to calculate the optimal Γ̃, we slightly adjust Equation (15) by

replacing Γβ with Γ̃ and ft+1 with f̃t+1. Note that Γ̃ will always have at least two columns of

which the first one will be related to Γα and the remainder of the columns will be related to Γβ .

Apart from the identification restrictions imposed by the unrestricted model, we need additional

restrictions to ensure a unique solution, hence we restrict Γα to be orthogonal to Γβ that is

Γ
T

αΓβ = 01×K . To achieve this result we conduct the following steps. We use the estimated pair

of gammas from the unrestricted version of Equation (15) to find the new Γα = (IL −ΓβΓ
T

β )Γα

and the new ft = ft + Γ
T

βΓα. When these equations are used, the risk loadings can describe as

much as possible of the options mean returns. Moreover, the intercept gets only assigned the

orthogonal residual left over from the total return prediction of the instruments.

11



2.4 Regularized IPCA models

As described in Kelly et al. (2019), IPCA has a dimension reduction feature. For instance, when

one risk factor is added, the number of estimated parameters increases with L+T and when one

characteristic is added K additional parameters need to be estimated. While this seems high,

it is substantially lower than PCA which increases with (T + N) for every additional factor.

For a model that consists of 63 characteristics, 4 factors and a period of 112 months, we still

obtain many parameters (Np) of Np = LK +TK = 63× 4 + 112× 4 = 700 parameters, of which

a considerable amount is not necessary due to low statistical significance or magnitude of the

characteristic.

In order to find a model with a more parsimonious structure, several supervised machine learn-

ing techniques can be used. The two most famous techniques are the ridge and least absolute

shrinkage and selection operator (lasso) regression. Although both techniques share some com-

monalities such as an objective function that penalizes the sum of the coefficients, they also differ

in several ways such as the fierceness of their restrictions. The ridge regression is discussed first,

subsequently we explain the lasso regression. The last function that is considered is the elastic

net which is a combination of the ridge and lasso.

Note that one of the common practices according to Marquardt and Snee (1975) for the ridge

regression and Tibshirani (1996) for the lasso is the standardization of the instruments. This

involves two components, (1) centering which sets the mean to 0, and (2) scaling which trans-

forms the values of the variables such that all variables have equal variances. Centering has

the advantage that it removes unnecessary ill-conditioning and hence reduces variance inflation.

Scaling makes interpretation easier since the magnitude of the coefficients does not depend on

the scale of the characteristic.

2.4.1 Ridge regression

The ridge regression constructed by Tikhonov et al. (1963) penalizes the number of regression

coefficients by using the square of the magnitude of these coefficients as the penalty. Adding the

penalty φridge(λ) = 1
2λ

∑L
l=1

∑K
l=1 γ

2
β,l,k with ridge parameter λ ∈ [0, 1] to the objective of the

restricted IPCA as in Equation (12) yields:

Lridge(rt,Zt,Γβ,ft+1, λ) = min
Γ,{ft+1}

1

2

T−1∑
t=1

(rt+1−ZtΓβft+1)T (rt+1−ZtΓβft+1)+
1

2
λ

L∑
l=1

K∑
l=1

γ2
β,l,k.

(18)
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Note that we do not penalize the ft factor, because of two reasons. First, these values correspond

to the return on the ’sorted’ portfolio and hence is not our aim to shrink to zero. Second, we are

interested in understanding the most important drivers of returns, which can be inspected by the

magnitude and statistical significance of the Γβ coefficients. The ridge parameter λ determines

the weight that is given to the penalty function, a higher value for λ corresponds to more weight

and therefore more coefficients close to zero. The coefficients of Γβ do not become 0, and hence

there is model shrinkage but no model selection. The minimization of Equation (18) yields the

optimal Γridgeβ defined in the equation below

V ec(Γβ
ridgeT) = [(

T−1∑
t=1

(Z
T

t Zt)⊗ f̂t+1f̂
T

t+1) + λILK ]−1(
T−1∑
t=1

[Zt ⊗ f̂
T

t+1]
T
rt+1), (19)

where ILK : RLK×LK is the identity matrix of dimension LK.

The previously defined orthonormality identification restriction on Γβ was imposed to find a

unique set of Γβ and ft+1. However, with the ridge regression, we want to achieve that the sum

of squared elements of Γβ is lower than in the scenario when no penalty is considered. Hence,

we relax the assumption on Γβ to merely orthogonality whereas we restrict the factors to be

orthonormal instead of orthogonal with decreasing elements. This method ensures that we still

find a unique solution.

When the optimal set of Γridgeβ (λ) and f ridget (λ) is found, we normalize them such that it is

easier to compare the Γβ(λ) for different λ. This normalization is conducted by the following

procedure. First, we compute the variance-covariance matrix of the factors for the standard IPCA

case (λ = 0) based on Equation (13) and their identification assumptions and define it as R =

ff
T

: RK×K which is a positive definite matrix. Second, we use thisR matrix to uncover the nor-

malized weights (NW (λ) : RK×K) defined as NW (λ)) = (R(f ridge(λ)f ridge
T

(λ))−1)
1
2 . Third,

calculate the normalized ridge parameters Γridge,nβ (λ) = Γridgeβ (λ)NW (λ) and f ridge,nt (λ) =

NW (λ)−1f ridget (λ).4 Note that this does not affect the predicted returns in any way since the

product of NW and inverse of NW yield an identity matrix and hence is only used for com-

parison purposes. To conclude, we have now achieved that the normalized risk factors based on

the ridge regression have an equal variance to the standard case, whereas the coefficients in the

Γridge,nβ (λ) matrix are smaller in total.

4A
1
2 for matrix A : Rn×n is calculated utilizing a Cholesky decomposition A = U

T

U
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2.4.2 Lasso operator

The lasso regression considers a penalty function with an absolute value of the coefficients instead

of a square. This results in the possibility that the coefficients become equal to zero, instead

of near-zero as in the ridge regression. Therefore, the lasso decides which variables should be

removed from the model and provides an additional possibility to infer which characteristics

are most important in explaining the variation in returns. The penalty function is defined as

φlasso(λ) = λ
∑L

l=1

∑K
l=1 |γβ,l,k| which is added to IPCA objective Equation (12) and therefore

the lasso objective equation becomes

Llasso(rt,Zt,Γβ,ft+1, λ) = min
Γ,{ft+1}

T−1∑
t=1

(rt+1−ZtΓβft+1))T (rt+1−ZtΓβft+1)+λ

L∑
l=1

K∑
l=1

|γβ,l,k|.

(20)

When λ is relatively large, this objective function will set a large number of parameters γβ,l,k to

zero instead of almost zero as in the ridge regression. Hence, this model will lead to a reduced

form of the IPCA which we call sparse instrumented principal component analysis (SIPCA)

which is the advanced version of the sparse principal component analysis (SPCA) constructed by

Zou et al. (2006). The downside of the lasso method according to Owen (2007) is that when a set

of strongly correlated characteristics with large effects is used in the model, it is inclined to set

a high portion or all except one of the characteristics to zero. Moreover, according to Tibshirani

(1996) the lasso regression is outperformed by the ridge regression when the number of observa-

tions exceeds the number of coefficients to be estimated and when there exist high correlations

between the characteristics. With the lasso we mainly want to use the variable selection feature,

and therefore can impose the same identification assumptions as normally.

To derive the Γβ and ease implementation we transform Equation (20) into

Llasso(rt,Zt,Γβ,ft+1, λ) = min
Γ,{ft+1}

1

2

T−1∑
t=1

(rt+1−Zt⊗f
T

t+1vec(Γ
T

β ))T(rt+1−Zt⊗f
T

t+1vec(Γ
T

β ))+λ
LK∑
j=1

|γβ,j |.

(21)

When both functions are convex and continuous we can according to Rockafellar (1970) use

Moreau-Rockafellar theorem and split the combined derivative into two parts ∂(Llasso) = ∂Lols+

∂φlasso(λ). Since both parts of Equation (21) are convex and continuous everywhere except

at 0 we can implement their theorem for all values excluding 0. Hence we need to treat

γβ,l,k = 0 differently. Since the coordinate descent step procedure described in Friedman

et al. (2010) is commonly used in the practice of finding optimal parameters in a lasso set-

ting, we also use this method. We initially focus on the first part of Equation (21) which

notation is slightly changed (Ct = Zt ⊗ f
T

t+1 : RNt×LK) to obtain neater equations as in
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L(rt, zt,Γβ,ft+1) =
1

2

T−1∑
t=1

(rt+1 −Ctvec(Γ
T

β ))
T

(rt+1 −Ctvec(Γ
T

β ))

=
1

2

T−1∑
t=1

(rt+1 − (ct,1, ct,2, . . . , ct,LK)(γβ,1, γβ,2, . . . , γβ,LK)T)
T

(rt+1 − (ct,1, ct,2, . . . , ct,LK)(γβ,1, γβ,2, . . . , γβ,LK)T)

=
1

2

T−1∑
t=1

(rt+1 − (ct,1γβ,1, ct,2γβ,2, . . . , ct,LKγβ,LK))
T

(rt+1 − (ct,1γβ,1, ct,2γβ,2, . . . , ct,LKγβ,LK))

=
1

2

T−1∑
t=1

(rt+1 −
LK∑
j=1

(ct,jγβ,j))
T

(rt+1 −
LK∑
j=1

(ct,jγβ,j)).

In order to find the optimal γβ,lk we take first-order conditions of L(ri,t, zi,t,Γβ,ft+1) to γβ,lk
∂L(ri,t, zi,t,Γβ,ft+1)

∂γβ,lk
= −

T−1∑
t=1

cT
t,k(rt+1−

LK∑
j=1

ct,jγβ,j) = −
T−1∑
t=1

cT
t,k(rt+1−

∑
j 6=lk

ct,jγβ,j −ct,kγβ,lk)

= −
T−1∑
t=1

cT
t,k(rt+1 −

∑
j 6=lk

ct,jγβ,j) + γβ,lk

T−1∑
t=1

cT
t,kct,k = −pk + γβ,lkzk, (22)

where pk =
∑T−1

t=1 c
T
t,k(rt+1 −

∑
j 6=lk ct,jγβ,j) and zk =

∑T−1
t=1 c

T
t,kct,k are used to ease notation.

Subsequently, we add the partial derivative of the OLS and the penalty and set it to 0
∂Llasso

∂γβ,lk
=
∂Lols

∂γβ,lk
+
∂Lpenalty

∂γβ,lk
= 0 ⇐⇒ −pk + γβ,lkzk + ∂γβ,lkλ|γβ,lk| = 0. (23)

This results in three different equations depending on the value of γβ,lk, including special case

γβ,lk = 0

0 =


−pk + γβ,lkzk − λ if γβ,lk < 0

| − pk − λ,−pk + λ| if γβ,lk = 0

−pk + γβ,lkzk + λ if γβ,lk > 0

We take into account that the closed interval of the second scenario should contain 0 to ensure

that γβ,lk is a global minimum. Therefore the system of equations is transformed to:

1

zk
(pk, λ) =


pk+λ
zk

if pk < −λ

0 if −λ ≤ pk ≤ λ
pk−λ
zk

if pk > λ

Since all necessary equations are defined, we can perform the following iterative procedure

that gives us γβ,lk

Algorithm 1: Coordinate descent step algorithm.

• For k = 1, . . . ,KL;

• Calculate pk =
∑T−1

t=1 c
T
t,k(rt+1 −

∑
j 6=lk ct,jγβ,j);

• Calculate zk =
∑T−1

t=1 c
T
t,kct,k;

• Set γβ,lk = 1
zk

(pk, λ).

Subsequently, we take the vector of {γβ,i}i=1,...,LK as given and compute the vector ft using the

normal first-order condition Equation (13) and repeat the algorithm until convergence. Lastly,
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note that similarly to the normal IPCA, this algorithm only contains companies that have an

observation for two consecutive periods.

2.4.3 Elastic net

A hybrid version of the lasso and ridge is the elastic net method. This method overcomes some

of the downsides of the lasso and the ridge method. The penalty function used in the elastic

net estimation leads to variable selection and coefficient shrinkage and hence allows for highly

correlated instruments. The penalty of this method according to Zou and Hastie (2005) is defined

as

φen(γ, λ, ρ) = λρ

LK∑
j=1

|γβ,j |+
1

2
λ(1− ρ)

LK∑
j=1

γ2
β,j , (24)

where hyperparameter ρ ∈ [0, 1] determines the percentage that is allocated to the lasso penalty

and the remainder (1−ρ) is assigned to the ridge. Similarly as in the ridge and lasso, the penalty

is added to the basic IPCA model objective Equation (12) and therefore becomes

Llasso(rt,Zt,Γβ,ft+1, λ) = min
Γ,{ft+1}

T−1∑
t=1

(rt+1−ZtΓβft+1))T (rt+1−ZtΓβft+1)+λρ
LK∑
j=1

|γβ,j |+
1

2
λ(1−ρ)

LK∑
j=1

γ2
β,j .

(25)

To find the optimal Γβ in an elastic net setting, a similar framework as the lasso in Section

2.4.2 that is slightly adjusted for the different penalty function can be applied. Hence we split

the elastic net objective equation into the OLS part and the penalty function. The first part as

shown in Equation (22) yielded ∂LOLS
∂γlk

= −plk + γlkzlk, whereas the second part is now adjusted

to ∂φen

∂γlk
= ∂γlkλρ|γlk|+ λ(1− ρ)γlk. Together this leads to the following system of equations

0 =


−plk + γlkzlk − λρ+ λ(1− ρ)γlk if γlk < 0

| − plk − λρ,−plk + λρ| if γlk = 0

−plk + γlkzlk + λρ+ λ(1− ρ)γlk if γlk > 0

(26)

And by adjusting the equation it follows that

γlk =


plk+λρ

zlk+λ(1−ρ) if plk < 0 and λρ < |plk|

0 if λρ ≥ |plk|
plk−λρ

zlk+λ(1−ρ) if plk > 0 and λρ < |plk|

(27)

This expression is similar to Donoho and Johnstone (1994) apart from the fact that they nor-

malized zk to 1. Algorithm 1 from Section 2.4.2 that uses Equation (27) in the fourth step is

applied to find the complete matrix Γβ .

2.5 Robust IPCA models

One of the assumptions we made in Equation (8) was that the errors of the model were white

noise εi,t+1 ∼ WN(0,σi) for every asset i. White noise errors are (1) serially uncorrelated and
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(2) normally distributed N(0, σi). The Durbin Watson test for panel data (dpd) can be applied

to test autocorrelation in the errors. This statistics investigates how well the lagged error value

(εi,t) explains εi,t+1 that is

dpd =

∑N
i=1

∑Ti−1
t=1 (εi,t+1 − εi,t)2∑N

i=1

∑Ti
t=1 ε

2
i,t+1

(28)

where dpd ∈ [0, 4]. A dpd around 0, 2 or 4 indicates respectively strong positive, no, or strong

negative correlation. To understand whether assumption (2) holds, we investigate the Normal

Q-Q plots of the restricted IPCA model by individual options and of the whole dataset.

Although an OLS framework has favorable properties, wrong results can be obtained when the

assumptions are not satisfied. For instance, OLS is very sensitive to outliers in the variables and

given that our data consists of returns that are often heavy-tailed we should consider a robust

regression. A Huber loss function can tackle the problem of outliers whereas the heteroskedas-

ticity problem can be solved by WLS. Another method to solve these problems is using white

standard errors instead of regular standard errors in the calculation of the p-values and F-values

of the characteristics. We proceed first with the robust regression and explain the second method

in Section 2.6.

2.5.1 Huber loss function

In order to tackle the problem of extreme observations, a modified OLS model with Huber loss

function is constructed by Huber (1992). The Huber loss framework from Gu et al. (2019) is

applied on the regular IPCA as in Equation (12) that together yields:

LHuber(ri,t, zi,t,Γβ,ft+1, ξ) = min
Γβ ,{ft+1}

∑
i

∑
t

H(ri,t+1 − z
T

i,tΓβft+1, ξ), (29)

where LHuber(ri,t, zi,t,Γβ,ft+1, ξ) : R× R1×L × RL×K × RK×1 × R 7→ R and H(.) : R× R 7→ R is

the Huber Loss function defined below

H(x, ξ) :=

 1
2x

2 if |x| ≤ ξ

ξ|x| − 1
2ξ

2 if |x| > ξ

where ξ is a tuning constant that is set to a value such that a high-efficiency level is achieved while

simultaneously aiming for protection against outliers. The protection against outliers is achieved

because the Huber loss is a combination of a squared loss function and absolute loss function for

small and large errors respectively. Now we know the properties of the Huber loss function we

can relate it to the general M-estimation case that is used to obtain a robust regression by Fox

and Weisberg (2002). The minimization equation used in their M-estimation method is defined

by

LM (yi,xi, b) =

n∑
i=1

ρ(yi − x
T

i b), (30)
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where yi, xi : RL×1, b : RL×1 are the dependent variable, covariates and coefficients respectively.

The function ρ() : R× RL×1 × RL×1 7→ R needs to satisfy the following properties:

• Always non-negative ρ(e) > 0;

• Equal to zero when its argument is zero, p(0) = 0;

• Symmetric ρ(e) = ρ(−e);

• Monotone in |ei|, p(ei) ≥ p(ej) for |ei| > |ej |.

All these properties are satisfied for the Huber Loss function, therefore we can implement the

technique of Fox and Weisberg (2002) and generalize it to panel data instead of cross-sectional

data. The substitution of our variables into their framework yields equation
Nt∑
i=1

ρ(ri,t+1 − z
T

i,tΓβft+1). (31)

This equation serves the purpose of calculating the risk factor ft+1 which can be transformed to

an equation that is easier for the computation of the loadings Γβ as in
T−1∑
i=1

Nt∑
i=1

ρ(ri,t+1 − z
T

i,t ⊗ f
T

t+1vec(Γ
T

β )). (32)

Subsequently, we derive the influence curve which is the derivative of p(e) defined by ψ(e) = p(e)′.

When the influence curve is applied to the previously defined equations the first-order conditions

that give the optimal values of the parameters are obtained:
∂ρ(ri,t+1, zi,t,Γβ,ft+1)

∂ft+1
=

Nt∑
i=1

ΓT
β zi,tψ(ri,t+1 − z

T

i,tΓβft+1) = 0K×1 (33)

and
∂ρ(ri,t+1, zi,t,Γβ,ft+1)

∂vec(Γ
T

β )
=

T−1∑
i=1

Nt∑
i=1

zi,t ⊗ ft+1ψ(ri,t+1 − z
T

i,t ⊗ f
T

t+1vec(Γ
T

β )) = 0LK×1. (34)

To ease the calculations, the influence curve is transformed to a weight function, that is wi,t :=

ψ(ei,t)
ei,t

which can take the values:

wi,t :=

 1 if |ei,t| ≤ ξ
ξ
|ei,t| if |ei,t| > ξ

(35)

The second case describes that if the error is larger than the tuning constant, less weight is

assigned to this observation. Similar to Fox and Weisberg (2002) we use a tuning constant that

depends on the data that is equal to 1.345σ̂ where σ̂ = median(
|ei,t|

0.6745). The benefit of this

procedure according to Jiang et al. (2019) is that a higher efficiency level can be achieved.

We have obtained a formulation for the weight that is contributed to each observation given

a tuning constant and an error, subsequently we need to define the weight adjusted equations

for the parameters and transform them to obtain an expression for Γβ and ft+1

Γ̂T
βZ

T

t Wt(rt+1 −ZtΓ̂βft+1) = 0K×1

⇐⇒ Γ̂
T

βZ
T

t Wtrt+1 = Γ̂
T

βZ
T

t WtZtΓ̂βft+1 ⇐⇒ ft+1 = (Γ̂
T

βZ
T

t WtZtΓ̂β)−1Γ̂
T

βZ
T

t Wtrt+1
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and
T−1∑
i=1

Z
T

t ⊗ f̂t+1Wt(rt+1 −Zt ⊗ f̂
T

t+1vec(Γ
T

β )) = 0LK×1

⇐⇒
T−1∑
i=1

Z
T

t ⊗ f̂t+1Wtrt+1 =
T−1∑
i=1

Z
T

t ⊗ f̂t+1WtZt ⊗ f̂
T

t+1vec(Γ
T

β )

⇐⇒ vec(Γ
T

β ) = (
T−1∑
i=1

Z
T

t ⊗ f̂t+1WtZt ⊗ f̂
T

t+1)−1
T−1∑
i=1

Z
T

t ⊗ f̂t+1Wtrt+1

⇐⇒ vec(Γ
T

β ) = (
T−1∑
i=1

Z
T

t WtZt ⊗ f̂t+1f̂
T

t+1)−1
T−1∑
i=1

Z
T

t Wtrt+1 ⊗ f̂t+1.

As can be seen in the Equation (35) the estimated parameter wi,t depends on the errors while

the system of equations above show that errors depend on the estimated parameters the weight

matrix Wt : RNt×Nt with weights wi,t on its diagonal, Γβ and ft+1. Therefore an iterative

algorithm, the iteratively reweighted least-squares (IRLS) is required for the calculation of wi,t,

Γβ and ft+1 as shown below:

Algorithm 2: Huber modified OLS.

We start with the optimal values of Γ∗β and f∗t+1 obtained by running the IPCA based on the

normal OLS as in Equation (12).

1. Calculate residual e(j)
i,t and the corresponding weight w(j)

i,t (e) = w(e
(j)
i,t );

2. Solve the following two equations

ft+1 = (Γ̂
T

βZ
T

t WtZtΓ̂β)−1Γ̂
T

βZ
T

t Wtrt+1 ∀t (36)

vec(Γ
T

β ) = (
T−1∑
i=1

Z
T

t WtZt ⊗ f̂t+1f̂
T

t+1)−1
T−1∑
i=1

Z
T

t Wtrt+1 ⊗ f̂t+1; (37)

3. We iterate this procedure until convergence of both parameters is achieved.

2.5.2 Weighted least squares

Where the Huber loss function robustness feature is mainly focused on solving the problem

of outliers, the WLS main focus is on heteroskedasticity. The whole structure as previously

established in the Huber loss section can be applied with a minor alteration made to the weights.

For the first iteration, the errors based on the normal OLS IPCA model as in Equation (12) are

used subsequently, we follow the steps defined below

Algorithm 3: WLS.

1. For every t the variance-covariance matrix Σt of the errors is calculated;

2. The weight matrix is set equal to the inverse of the variance-covariance matrix Wt = Σ−1
t ;

3. Equations (36) and (37) are used to calculate the parameters;
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4. Based on these new parameters the errors are calculated and the algorithm is started from the

beginning until convergence is reached.

This algorithm is constructed in a similar way as the feasible weighted least squares (FWLS)

which is a version of the WLS where the covariance of the errors is unknown. For large samples,

the FWLS is asymptotically more efficient than OLS when the covariance of the error term is con-

sistently estimated. The FWLS has according to Greene (2003) two main disadvantages. First,

when either the sample is not sufficiently large or the covariance is not consistently estimated, it

can be less efficient than OLS. Second, the weights are unknown and therefore when the weights

are estimated based on a small sample size this can lead to bad regression analysis. However,

we have to note that according to Kelly et al. (2017) IPCA exhibits due to its parsimonious

parameterization of Γ̃ a convergence rate of
√
NT , while PCA has a convergence rate of

√
T

because of its company-by-company time-series regression. Therefore, a smaller sample for the

IPCA WLS variant is needed than when the PCA WLS variant is used.

2.6 Asset pricing tests

The main goal of this paper is about finding the drivers of option returns. We distinguish be-

tween two cases, the first case investigates which characteristics are statistically significant in

explaining returns and are not related to risk factors while the second case examines which char-

acteristics are statistically significant in the explanation of returns and are related to risk factors.

First, we will test whether there exist instruments that are not related to risk factors but con-

tribute to explaining the returns. Formally this means the existence of characteristics that cause

the hypothesis Γα = 0L×1 to be rejected. Moreover, when we have established the belief that

Γα 6= 0L×1, we will investigate which characteristic or set of characteristics is most important in

rejecting the hypothesis.

Second, we investigate which characteristics have high explanation power in the variation in

returns and are related to risk factors. This means we test the joint hypothesis of γβ,l = 0K×1

and calculate their corresponding F-values. Lastly, we inspect the significance level of every

characteristic for every individual factor by making use of the hypothesis γβ,l,k = 0, where

γβ,l = [γβ,l,1, . . . , γβ,l,K ].

2.6.1 Testing the significance of Γα

In this section, we discuss the framework of testing whether there exists an anomaly where char-

acteristics are not associated with risk factors but do contribute in explaining the variation in

returns. If this scenario holds, the restricted model is incorrectly specified and yields a worse fit
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compared to the unrestricted model. We start by investigating whether hypothesis Γα = 0L×1 is

true. If this hypothesis is rejected we subsequently want to determine which characteristic or set

of characteristics is most responsible for rejecting Γα = 0L×1, hence inspecting γα,l = 0. It fol-

lows that our null hypothesis isH0: Γα = 0L×1 and the alternative hypothesis isH1 : Γα 6= 0L×1.

Note that testing Γα is different from jointly testing αi,t since αi,t = z
T

i,tΓα + ηi,t, includes an

error term ηi,t. Hence, the hypothesis test allows for mispricing only if the mispricing is not

related to the characteristics zi,t.

The following procedure that is in line with Kelly et al. (2019) is used to determine whether

the null hypothesis is rejected. First, we estimate the unrestricted model as in Equation (16)

that includes the possibility of an anomaly and store the values of Γ̂α Γ̂β and {f̂t+1}T−1
t=1 . To

compare the models under different hypotheses, Wald statistics are often used. The Wald statis-

tic is an approximation of the likelihood ratio and is almost equal to the t-test or an F-test when

the number of observations is large. Second, we use a Wald-type test statistic to determine the

significance levels of the intercept coefficients Γα. This test is defined as the product of the

estimated gammas of the intercepts, that is

Wα = Γ̂
T

αΓ̂α.

Third, we utilize the bootstrap method to obtain a sample of Γα. The bootstrap method is con-

ducted using managed portfolios xt instead of raw returns rt, because it is less computationally

expensive to resample L instead of Nt values while still being correctly specified. The reason

is that for calculating the parameters Γ̃ and ft+1 managed portfolio returns, ZT

t rt+1, are used.

However, managed portfolio returns cannot be used for WLS and Huber because their weight

matrix depends on the errors and vice versa as shown in Algorithm 2 and 3. Thus, the bootstrap

method needs to be adjusted which is explained at the end of Section 2.6.1.

In the first step of the bootstrap method, we obtain the errors of the unrestricted model

which are the differences between the actual return and the return predicted by the model

rt+1 − (ZtΓα +ZtΓβft+1) = εt+1 ⇐⇒ Z
T

t rt+1 − (Z
T

t ZtΓα +Z
T

t ZtΓβft+1) = Z
T

t εt+1 = νt+1,

where we define νt+1 : RL×1 to be the residuals of the managed portfolio. The benefit of rewrit-

ing this equation is that in this way we can resample the managed portfolios returns xt+1 by

adjusting the error νt+1.

The second step involves obtaining the bootstrapped portfolio returns based on the unrestricted

estimates and error νt+1 but excluding Γα as defined in the following equation

x
(b)
t+1 = (Z

T

t Zt)Γ̂βf̂t+1 + ν̃
(b)
t+1, (38)
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where ν̃(b)
t+1 = s

(b)
t+1ν̂ι(b)t+1

. Moreover, s(b)
t+1 is the value from a Student’s t-distribution with 5 degrees

of freedom and unit standard deviation (t5) for bootstrap number b and ν̂
ι
(b)
t+1

is the managed

portfolios error at time ι(b)t+1. The variable ι
(b)
t+1 is a resampled vector consisting of a sequence from

1 to T − 1 which indicates the time index of the error. Moreover, every time index is sampled

without replacement and therefore can only be taken once. Since our dataset consists of return

data that according to Schwert and Seguin (1990) often suffers from heteroskedasticity, we used

a Student’s t-distribution instead of a normal distribution for s(b)
t+1 which according to Goncalves

and Kilian (2004) tackles the lack of efficiency problem in heteroskedastic data.

When all the Γ
(b)
α ∀ b ∈ {1, . . . , 1000} are obtained the Wald-like statistics for these boot-

strapped values are computed W (b)
α = Γ(b)T

αΓ
(b)
α . Next, the corresponding F-value is computed

by 1
1000

∑1000
b=1 1(W

(b)
α > Wα), where 1(A) is an indicator value which is 1 if the statement A is

true and 0 otherwise. When the F-value indicates that Γα 6= 0L×1, we can subsequently deter-

mine which characteristic is most responsible for rejecting the null hypothesis by inspecting γα,l.

The process of testing this hypothesis is explained in greater detail in Section 2.6.3.

As discussed before we use this procedure for all models except the Huber loss model and the

WLS. These two models use the same framework but some slight adjustments are made to the

equations to incorporate the special features of these two loss functions. First, raw returns in-

stead of portfolio returns are used when calculating the returns. Because in Equations (36) and

(37) ZT

t Wtrt+1 is used instead of ZT

t rt+1 where the former depends on the weight matrix that

depends on an error term. Since a change inWt causes the parameters to change we need to use

raw returns even though this slows down our algorithm substantially. Second, a normal distri-

bution is used instead of a t-distribution for the WLS, since the weight matrix already accounts

for heteroskedasticity.

2.6.2 Testing the significance of γβ,l

Apart from knowing whether there exists an anomaly as discussed in Section 2.6.1, it is also

interesting to understand which characteristics are statistically significant in the explanation of

returns. This analysis on the statistical significance level of one characteristic is conducted while

controlling for the other instruments. Moreover, a similar framework as for Γα is used to perform

inference on γβ,l from Equation (15). Our null hypothesis is that all coefficients related to the

characteristic l are zero, hence our null hypothesis isH0 : [γβ,1,γβ,2, . . . ,γβ,l−1,01×K ,γβ,l+1, . . . ,γβ,L]
T

and our alternative hypothesis is H1 : [γβ,1,γβ,2, . . . ,γβ,l−1,γβ,l,γβ,l+1, . . . ,γβ,L]
T , where γβ,l 6=
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01×K .

In a similar fashion as in Section 2.6.1, we first estimate the model under the alternative hypoth-

esis and store parameters Γβ and {ft+1}T−1
t=0 and residuals {d̂t}Tt=1. Subsequently, we calculate

a Wald-type statistic Wβ,l = γ̂β,lγ̂
T

β,l. Next, we implement the same bootstrapping method as

performed previously to conduct inference, that is when determining the significance of charac-

teristic l we use the estimated Γβ under the alternative hypothesis and set the lth block to zero

and obtain Γ̃β = [γβ,1, γ̂β,2, . . . , γ̂β,l−1,01×K , γ̂β,l+1, . . . , γ̂β,L]
T . Based on these parameters, we

calculate the managed portfolios x̃bt+1 = ZtΓ̃βf̂t+1 + d̃t
b
. These managed portfolios can subse-

quently be used in Equation (13) and (15) to recalculate Γβ . Lastly, the Wald-like statistic for

γ
(b)
β,l is calculated for every bootstrap, combining all these b bootstrapped statistics and compar-

ing it to the Wβ,l similarly as with Γα gives us the F-value of instrument l.

Another manner of assessing the importance of a certain characteristic is by using the marginal

R2 method as discussed in Kelly et al. (2019). This method involves calculating the difference of

total model R2 and the same model where the coefficients of Γβ corresponding to characteristic

l are set to 0 which results in R2
−l. Therefore, the marginal R2

m,l for characteristic l is defined as

R2
m,l := R2 −R2

−l. (39)

2.6.3 Testing the significance of γα,l and γβ,l,k

For the determination of γα,l 6= 0, we perform the same testing procedure as for γβ,l but with a

small alteration. We consider the constant vector Γα instead of Γβ , hence γβ,l = 01×K becomes

γα,l = 0. When one compares this to the renowned ‘GRS-test’ as in Gibbons et al. (1989) there

are several noticeable differences. First, with the GRS-test one knows which asset is mispriced,

whereas this test shows which characteristic contributes (most) to the mispricing and hence which

characteristic yields a statistically significant return unrelated to the risk factors. Second, the

αi in the GRS are the intercepts obtained after the regression and are therefore a residual, while

our unrestricted IPCA model is a model on its own. Hence, when we reject the null hypothesis

of Γα = 0L×1 we know that that the unrestricted model is better specified than the restricted

version.

Kelly et al. (2019) showed that different factors give importance to different characteristics in

terms of the magnitude of their loadings in Γβ , which led us to believe that there might also be

differences in terms of significance. Hence, the hypothesis of γβ,l,k = 0 is evaluated. We proceed
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by utilizing a similar framework as before. First, we estimate the model based on γβ,l,k 6= 0,

afterward we calculate the corresponding Wald statistic Wβ,l,k = γ2
β,l,k. Subsequently, we set

γβ,l,k = 0, compute the managed portfolios and based on these recalculate Γβ of which γ(b)
β,l,k can

be extracted. Lastly, we use the same test to investigate the significance level of characteristic l

for factor k.

2.7 In-sample performance

Apart from the significance of the individual instruments, it is also of crucial importance to

evaluate how well the characteristics together are able to explain returns, which naturally leads

to the coefficient of determination (R2). With the R2 statistic we can compare and contrast

models based on how well the combination of characteristics (zi,t), factor loadings [Γα,Γβ], and

risk factor (ft+1) explain the variation in returns. This paper uses two types of R2 in line with

Kelly et al. (2019) to determine and compare the performance of the models. Hence the ‘total

R2’ is defined by

R2
total := 1−

∑
i,t(ri,t+1 − zT

i,t(Γ̂α + Γ̂βf̂t+1))2∑
i,t r

2
i,t+1

. (40)

This type of R2 evaluates how much of the variance in the returns is explained by the dynamic

conditional loadings (z
T

i,tΓ) together with contemporaneous risk factors (ft).

The ‘predictive R2’ is the second measure that we consider and is defined as

R2
predictive := 1−

∑
i,t(ri,t+1 − zT

i,t(Γ̂α + Γ̂βλ̂))2∑
i,t r

2
i,t+1

, (41)

where the constant risk price λ = E(ft+1) is the unconditional expectation of the contempora-

neous time series ft+1. With this statistic we can investigate how well the estimated conditional

expected returns explain the variation in realized returns. Note that dynamics of the returns in

IPCA are driven by two dependent components, zT

i,tΓ̃ and ft+1, hence no separate identification

of risk price dynamics is possible. Therefore, when we use the constant risk price, predictions

are solely based on dynamic instrumented loadings.

To obtain the portfolio fit, one simply replaces ri,t+1 with xi,t+1 and zT
i,t with zi,tz

T
i,t

2.8 Out-of-sample performance

This section discusses the out-of-sample fit of the models, the Sharpe ratio based on the con-

struction of tangency portfolios and anomaly portfolios, and the downside risk utilizing the VaR.
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2.8.1 Out-of-sample fit

The main part of this paper discusses the importance of discovering which set of characteristics

contributes to the explanation of delta-hedged option returns in-sample. However, in order to

find a trading strategy that yields high profits while maintaining a low-risk profile we need to

understand how well our model performs out-of-sample. To perform the forecasts a recursive

backward-looking estimation procedure similar to Kelly et al. (2019) will be conducted, that is

only information up to time t is used to make the forecast for time t + 1. Hence, we estimate

the dynamic loading as usual with information up to time t based on Equation (15) or their

regularized or robust counterparts and obtain Γ̂β,t. Subsequently, we estimate the out-of-sample

realized factor return f̂t+1|t where for the basic and regularized models Equation (13) changes to

f̂t+1|t = (Γ̂
T

β|tZ
T

t ZtΓ̂β|t)
−1Γ̂

T

β|tZ
T

t rt+1. (42)

The f̂t+1|t is the return at time t + 1 based on the portfolio construction at time t, since all

the terms apart from rt+1 are based on information at time t. One can view this portfolio

construction and return calculation in a similar way as the portfolio sorts technique that was

used by for instance Jegadeesh and Titman (1993). The assets are first sorted in a portfolio

and subsequently in the post-formation period the return of this sorted portfolio is calculated.

For the robust methods, Equation (36) is adjusted in a similar fashion as above and therefore

includes the weight matrix.

To assess the predictability of the out-of-sample returns one computes the out-of-sample total

R2 by replacing ZtΓ̂β in Equation (40) that computes the in-sample R2 by r̂t+1 = ZtΓ̂β|tf̂t+1|t.

Similarly, the out-of-sample predictive R2 uses the price of risk λt : RK×1 instead of λ in Equa-

tion (41), where λt = 1
t

∑t
i=1 fi. Because λt does not depend on any information beyond time

t, we can truly say this coefficient of determination is based on out-of-sample predictions.

Since several researchers showed that out-of-sample performance can be improved when a par-

simonious model is used, we investigate if this is also true for our models. Hence, we compare

the basic IPCA model including all characteristics with two more parsimonious models. The

first model only uses characteristics that have been proven to be statistically significant in the

in-sample estimation, whereas the second model only uses instruments that have not been set to

0 by the lasso in-sample estimation.
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2.8.2 Sharpe ratio based on tangency and anomaly portfolio

Apart from using the factors for comparing the out-of-sample fit of the different models, these

can also be utilized in the construction of portfolios for trading strategies. Therefore we can

evaluate which model yields the highest return out-of-sample and should be implemented by the

investor. The first type of trading strategy is based on tangency portfolios constructed by the

out-of-sample risk factors of the model based on the following algorithm

Algorithm 4: Tangency portfolio return algorithm.

• Denote t̃ = {t̃1, t̃2, . . . , T̃} as the out-of-sample dates that are equidistant.

• Calculate Γβ|t̃j based on information up to and including t̃j and compute out-of-sample f̂ ˜tj+1|t̃j

based on Equation (42) or adjusted with the weight matrix Wt.

• Calculate the tangency weight (πt̃j : RK) defined as πt̃j = 1

ιTΣ̃f̂
t̃j

µ̃f̂
t̃j

Σ̃−1

f̂t̃j
µ̃f̂t̃j

where µ̃f̂t̃j
=

1
t̃j

∑t̃j
i=t̃1

fi and Σ̃f̂t̃j
= f1:t̃j

f
T

1:t̃j
. The construction of the risk factors only depends on informa-

tion up to time t̃j and standardize the tangency weights such that these sum to 1.

• We form the tangency portfolio return based on Brandt et al. (2009) where the investor chooses

weights at time t̃j according to the tangency formulation and obtains a post-formation return at

t̃j+1 of rt̃j+1
defined as rt̃j+1

= πt̃j f̂t̃j+1|t̃j .

Another interesting portfolio is the anomaly portfolio, which is based on the loadings of the

anomaly parameter Γα and therefore utilizes all information associated to return without bearing

risk exposure. We construct anomaly weights based on information up to time t for companies

that have observations in two consecutive periods similar as Kelly et al. (2019) that is

πant = Zt(Z
T

t Zt)
−1Γα|t, (43)

where πant : RNt×1 are the weights of the anomaly portfolio. Subsequently, we multiply this with

the return at time t+ 1 for the firms to get the anomaly portfolio return (rt+1,p)

rt+1,p = πant
T
rt+1. (44)

This portfolio assigns more weight to companies in the portfolio that have a large value for char-

acteristic l that has a positive γαl. This means that weights are given based on how high the

expected return is beyond risk-based compensation for a characteristic.

To investigate whether a risk factor, tangency portfolio, or anomaly portfolio based on delta-

hedged option returns is an attractive asset class we need to take both risk and return into

account. A solution that is suitable for this problem is the unconditional Sharpe ratio because

it incorporates the mean and the standard deviation of the portfolio’s return. The Sharpe ratio
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for factor i is defined similarly to Lettau and Pelger (2018) as

Sh(fi) :=
µf i
σf i

, (45)

where µf i = E(fi) = 1
T

∑T−1
i=1 = ft+1,i and Σf 1 = var(f1) = 1

T

∑T−1
i=1 ft+1,ift+1,i. When the

factor is replaced by the tangency or anomaly portfolio return, one obtains the Sharpe ratio of

these portfolios.

2.8.3 VaR

Section 2.8.2 showed a method to construct the tangency portfolio and the anomaly portfolio

and its corresponding return and Sharpe ratio. However, an average investor not only bases its

portfolio on return and variation in risk but is also interested in a measure that evaluates its

risk in extreme events such as crises. This naturally leads to the utilization of the Value at Risk

(VaR) measure, as described in Jorion (2000), for the tangency portfolio return. To calculate

the VaR, a sample of returns is needed. This sample can be obtained by applying a similar

bootstrap method as was conducted for the p- and F-values in Section 2.6.1. Hence, we add a

random shock to the observed value of the managed portfolio return as shown in the equation

below

x̃
(b)
t+1 = Z

T

t rt+1 +Z
T

t ε
∗
t+1. (46)

We calculate the bootstrapped managed portfolio returns (x̃(b)
t+1) for all the out-of-sample dates

for a large number of bootstrap iterations based on Equation (46). Subsequently, we can calculate

the out-of-sample factor returns using these bootstrapped returns in Equation (42). The last

step involves the application of Algorithm 4 which yields the tangency portfolio returns. When

all the bootstrapped tangency portfolio returns are collected, a distribution of the returns can

be obtained out of which the VaR can be computed, which is defined as

V aR1−α(rt+1) := inf
x∈R
{x : Pr(rt+1 ≤ x) ≥ 1− α}. (47)

According to Bayer (2018), one key problem with forecasting VaR is the dependence on data

in the model’s performance. In financial markets that are stable a more parsimonious model

is plausible to outperform a very parameterized model, whereas in financial crises the opposite

might hold. Therefore, we will investigate the discrepancies in model performance between

regularized models and the normal IPCA model.

2.9 Robustness

Since our main investigation of the relationships between the characteristics and returns heavily

depends on data, it is critical to ascertain the credibility of the coefficients and their specification.
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This is especially important in forecasting since the inclusion or exclusion of one period represents

a larger part of the out-of-sample period than one period in the in-sample estimation period.

Therefore, we use a modelling dataset consisting of either 75 or 90 observations. Furthermore,

to mitigate the threat of model misspecification, a wide array of models is used to evaluate the

relationship between instruments and return. Especially, the lasso and elastic net are able to

investigate misspecification because most models include a different set of characteristics.

3 Data
In this section the data that is used to model the delta-hedged option returns is discussed. First,

we discuss how this type of return can be calculated and discuss their summary statistics. Second,

we consider the data of the characteristics. Finally, we will explain which features influenced our

decisions to consider some observations as outliers and therefore were deleted from our sample.

3.1 Delta-hedged option returns

For the calculation of the delta-hedged option returns, we used near the money option with a

maturity of approximately one month. These option returns had the following features: price

(Ct), the delta of the option (∆t), the corresponding stock price from 1776 companies listed on

major American exchanges including the NYSE and NASDAQ (St), and the risk-free rate of a

ten year US treasury rate (rft) from Optionmetrics which share similar features with Horen-

stein et al. (2018). This dataset ranges from January 2005 till June 2014 and consists of 61,120

monthly delta-hedged call option returns.

To get a dataset that does not heavily depend on outliers and unrealistic data we applied a

filtering procedure similar to Horenstein et al. (2018). First, illiquid options that had the follow-

ing features were removed: zero trade volume, a bid or ask price of zero or an average bid and

ask price below 0.125. Second, since our paper focuses on the volatility and risk premium and

not on the early exercise premium we exclude returns of call options that would have received

a dividend in that particular month. As a result, our American type call options can be viewed

as European type call options. Third, options with a higher ask than bid are excluded. Fourth,

only near the money options are used, that is the moneyness ranges between 0.8 and 1.2. Lastly,

options with volatility lower than 0.1 or higher than 1 are excluded.

The process of calculating these types of returns based on the framework of Horenstein et al.

(2018) will be discussed below. The gain of delta-hedged option i at time t with maturity t+ τ

(Πi
t,t+τ ) consists of the gain of the option Cit+τ −Cit in excess of the delta hedges to the changes
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in the stock price (dS) and the risk-free rate earned by this portfolio

Πi
t,t+τ = Cit+τ − Cit −

∫ t+τ

t
∆i
udSu −

∫ t+τ

t
rf(Ciu − Siu

∂Cu
∂Siu

)du. (48)

To use the delta-hedged gain as the dependent variable in Equation (8), we need to discretize

Equation (48) into

Πi
t,t+τ = Cit+τ − Cit −

N−1∑
n=0

∆tn(Stn+1 − Stn)−
N−1∑
n=0

dnrftn
365

(Citn −∆tnStn), (49)

where ∆tn is the delta of the option at time tn, rftn is the risk-free rate at time tn and dn are the

number of days between tn and tn+1. Hence, we need to construct an algorithm that dynamically

hedges Ci N times. Since there are large discrepancies between gains due to a variety of prices,

we divided the delta-hedged gain by the amount invested which results in the delta-hedged re-

turn, that is ri,t =
Πit,t+τ

∆tSt−Ot .

When applying Equation (49), we obtain a delta-hedged return for every unique option that

has at least two observations. Ideally, we would like to have options that start at the beginning

of the month and lasts till the end of the month, which makes the returns more comparable since

they do not depend on the timing and time period. Hence, when an option starts at the end of

month t and has several observations in month t+ 1, the return will be calculated from the first

observation in month t + 1 till the last observation in month t + 1. For the same purpose, we

discard observations that are not in the 3- to 5-week range. Subsequently, for every month and

every unique company that has more than one return that satisfies the restrictions, we keep the

observation that is closest to at-the-money at time of maturity (tN ) with at least a remainder of

20 days of maturity at time tN .

Table 1 below shows detailed information about the option returns.

Table 1: Characteristics of monthly delta-hedged option returns.

Call options

gain return moneyness

min -16.8785 -0.2837 0.8002
1st Qu -0.3091 -0.0265 0.9745
Median -0.1181 -0.0097 0.9975
Mean -0.1070 -0.0104 0.9980

3rd Qu 0.0633 0.0041 1.0193
Max 19.93 1.1630 1.1996

Note: This table displays the summary statistics of the main features of the option returns. The
amount of options returns calls by year are respectively 2005: 7040 2006: 8001 2007: 8753 2008: 7767
2009: 7712 2010: 8473 2011: 8231 2012: 7957 2013: 8241 2014: 3777.

Similar to Horenstein et al. (2018) and Cao et al. (2017) our mean of delta-hedged option

returns are negative and seem to have fat tails of which the last feature is common in return data.

A dependent variable that is non-normal can cause the errors to be non-normally distributed.
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Although the estimates of βi,t in Equation (8) by OLS remain unbiased with heteroskedasticity,

inference is often problematic and it lacks efficiency because the homoskedasticity assumption in

Gauss-Markov Theorem does not hold. Therefore we test if the errors are normally distributed

by evaluating the Normal Q-Q plot of the options. Moreover, the errors are tested on serially

correlation by inspecting the Durbin-Watson statistics as in Equation (28). When the errors

are serially correlated the OLS method does not yield a minimum variance estimator and the

coefficients are biased.

Figure 5 in Appendix B.1 shows that for all 9 randomly chosen companies the errors, based

on the restricted basic 4-factor IPCA model as in Equation (11), are heavy-tailed and therefore

we reject that the errors for all 1776 companies follow a normal distribution. Figure 6 in Ap-

pendix B.1 depicts that when all assets are considered simultaneously extreme heavy tails are

shown. The dpd value for the restricted and unrestricted model with 1 to 4 risk factors ranges

from 1.69 to 1.95 which is around 2, therefore almost no autocorrelation between the errors

exists. Combining these two observations leads us to conclude that the errors are not normally

distributed but do not exhibit autocorrelation. Therefore, the two methods that account for

heteroskedasticity, the wild bootstrap and WLS are appropriate.

3.2 Characteristics

As was previously discussed in Section 2.2 and explained by Kelly et al. (2019), it is beneficial

to have a large number of characteristics that are informative even though some might be noisy

or even spurious, because the noise is possibly averaged out when aggregating the instruments.

Thus, we include a large number of characteristics that have been proven to be important in

either equity returns or option returns.

Vasquez and Xiao (2018) found that default risk based on default probability or credit rat-

ings is monotonically negatively related to delta-hedged equity option returns. Hence, it would

be logical to include characteristics that are associated with the riskiness of a security. For

instance, debt-to-market capitalization can be included as instrument in the IPCA since it is

commonly viewed as proxy for riskiness. Furthermore, we use 5 characteristics that Cao et al.

(2017) showed to be important in explaining option gains such as stock reversal, momentum,

the size of the company, profitability, and cash-to-asset ratio. They found that option gains

are positively related to reversal, momentum, size, and profitability and negatively related to

cash-to-asset.
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Moreover, we include variables that are related to trading frictions such as idiosyncratic

volatility and liquidity of the underlying or the option. Cao and Han (2013) found that option

returns are negatively monotonically related to idiosyncratic volatility in the underlying security

because options with high idiosyncratic volatility are harder to hedge and market makers demand

higher compensation for offering these type of options. Furthermore, they found that less liquid

options yield lower returns which is also due to the difficulty of hedging these types of options.

These aforementioned characteristics are also used in the analysis on stock returns by Kim

et al. (2019). We complement this set of instruments with the remaining characteristics men-

tioned in this paper. In total, a dataset consisting of 62 characteristics and one constant with a

similar time period as the option returns is considered which is sourced from Kim et al. (2019).

To give structure to this high number of characteristics, these are divided into groups simi-

lar to Kim et al. (2019): (1) Past returns, (2) Investment, (3) Profitability, (4) Intangibles, (5)

Value, and (6) Trading frictions. The instruments belonging to these categories are listed and

explained in detail in Table 8 in Appendix A.

To reduce the effects of outliers and implement the common practice for parsimonious mod-

els discussed in Section 2.4, we standardize the characteristics in the following manner similar

to Kelly et al. (2019). First, we calculate the rank of certain characteristic for option i at time

t (zi,t,l) based on sorting the set of characteristics zt,l from high to low. Second, we transform

the ranks by dividing by the number of available options Nt at time t and subtract a half. This

procedure results in that all values of characteristics l are in the set [−0.5, 0.5]. We perform the

same method for all time periods t ∈ {1, . . . , T} and all L characteristics.

Note that in contrast to Horenstein et al. (2018), we do not include an index as characteristics.

Hence, we stay in line with Kelly et al. (2019) to only include a constant in the characteristics Zt

used in Equation (11) to incorporate the shared variation of all the returns at time t. The reason

for not including both a constant and an index in the model is that the optimal parameters

cannot be found because the inverse of the first part of Equation (13), due to Zt, is undefined. 5

3.3 Determination of the number of factors

It is important to have a model that performs well both in-sample as well as out-of-sample. It is

shown in Ledolter and Abraham (1981) that a non-parsimonious model yields higher forecasting
5Consider matrices A and B where A has no full rank and hence has a determinant (det) of 0. Then by

det(AB)=det(A)det(B) it follows det(AB)=0 and hence the inverse of matrix AB is undefined.
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errors. Moreover, Box et al. (1970) preached for a parsimonious model because it is easier to

understand and because every parameter exhibits an estimation error. Hence, we strive for a

parsimonious model and therefore need to assess how many risk factors to include.

The most common and simple method was developed by Cattell (1966) where one visually

investigates a scree plot of the eigenvalues of the covariance of the managed portfolio returns

XX
T , where X is the matrix based on Equation (1) consisting of all periods. When performing

this method on Figure 7 in Appendix B.1, it is clear that the importance of the factors shrinks

substantially between 1 and 2, and that the factors after the 4th factor do almost not contribute to

the total eigenvalue. Because this visual investigation is subjective and not clear in all situations,

Ahn et al. (2018) constructed the Eigenvalue Ratio (ER) test which is a more mathematical

and objective method. The ER test finds the optimal number of factors based on changes in

eigenvalues of managed portfolios. We define the kth eigenvalue of matrix XXT
: RLXL by

˜µLT,k = λk(XX
T

) and the optimal number of factors by k̃ER = argmax
k<kmax

˜µLT,k
˜µLT,k+1

. Figure 8 in

Appendix B.1 shows that there is a steep decline from the third factor onwards, hence our focus

lies on the first three factors and the fourth factor serves as a robustness check.

Where we constructed a method for the determination of the number of factors, Kelly et al.

(2019) did not use such a method. They simply explained that the number of factors is kept

small, with a maximum of 6 factors. Their results showed that there is only a slight increase in

R2 when 5 or 6 factors are used.

4 Results
The results section is split into two parts, where the first part discusses the basic IPCA model

as in Section 2.3 and the second discuss the IPCA extensions of regularized and robust models

from Section 2.4 and 2.5 respectively. In the basic IPCA and the regularized models we will first

try to answer the main research question: ‘What characteristics influence delta-hedged option

returns’. The investigation is structured as follows. First, we inspect the coefficients, significance

levels, and individual R2 for the basic model. Second, we examine the existence of an anomaly by

researching whether there are instruments that are not related to the risk factors but contribute

in explaining returns. Third, we investigate the in-sample and out-of-sample performance based

on the R2, Sharpe ratios, and VaR from Section 2.7 and 2.8. Lastly, we compare the results

of the basic IPCA model with their extensions which allows us to answer the research question

whether regularized or more robust methods perform better than basic models.

32



4.1 Basic IPCA

The features of the basic IPCA are discussed in this part including the coefficients and significance

levels of the characteristics as well as the fit and performance of the trading strategies all based

on Equations (11) and (16).

4.1.1 Coefficients and significance

Figure 1: Estimates of Γβ for the restricted 4-factor model.
Note: The estimates of Γβ related to the second risk factor of the restricted 4-factor model as defined
in Equation (11) are shown. A red bar indicates a value that is in absolute terms larger than 0.2 and
different patterns are used for different categories.

Figure 1 for the first risk factor and Figures 9 till 11 in Appendix for the remaining three factors

show the loadings Γβ of the characteristics based on the restricted 4-factor model, which refers

to the IPCA model that imposes Γα = 0L×1 as described in Equation (11). The first factor

exhibits the largest loadings in terms of magnitude on sales-to-total assets (sat), costs of goods

sold and selling, general and administrative expenses to total assets (ol). Since we have imposed

the expected value of ft to be non-negative, companies with large sat have large positive betas

on factor 1 and therefore a higher return.6 The same idea holds for ol but then the opposite

relationship holds. Hence the first risk factor is related to both total assets and profit (sales -
6This imposition on ft does not restrict the economic meaning but serves to find a unique solution as discussed

in Section 2.3.1.
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costs). Higher profits increase the option return which affirms the result in Cao et al. (2017),

while total assets yield an indifferent effect.

Factor 2 exhibits large magnitudes for size (size), cash-to-total assets (c), and sales-to-cash

(S2C), where the first one is positive and the latter two are negative. Hence, it seems that cash,

size, total assets, and sales are important variables in the constitution of this factor. The signs

of the first two variables suggest that a larger size or an increase in total assets lead to higher

returns possibly because larger companies have a lower chance of default and therefore yield

higher returns as Vasquez and Xiao (2018) suggested. Furthermore, an increase in cash leads

to either lower or higher returns. Sales also seem to have a negative effect on returns. Lastly,

the negative sign of cash-to-total assets confirms the result in Cao et al. (2017) that higher

cash-to-total assets yields lower option returns.

Factor 3 has a large magnitude for market capitalization (lme), return on assets (roa), and

sales-to-lagged net operating assets (ato) next to the constant. All these characteristics have a

positive sign, hence higher returns, sales and market capitalization lead to higher option returns,

while larger assets or net operating assets lead to lower option returns. It follows that market

capitalization as a proxy for size yields the same positive result as described in Cao et al. (2017).

The last factor has large loadings on lme and total assets (at) where the first is negative and

the second positive. Hence, this suggests that a value strategy that is mainly based on taking

a long position in companies with high book-to-market value and a short position in companies

with a low value leads to higher returns.

The coefficients of the unrestricted IPCA model are shown in Figure 12 to 16 in Appendix

C.1.1. When considering the unrestricted model, we are mainly interested in the coefficients and

the significance of the anomaly loading Γα. The loading informs us how much weight is given

to a characteristic related to this factor, hence a larger value corresponds to a larger anomaly

effect. We have imposed the anomaly factor to have a periodic return of 1 in Equation (16) which

does not change the economic meaning but serves to pin down a unique solution. Therefore, the

weights are substantially lower on the anomaly factor than on the other risk factors that have an

expected return of around 0.01. For the loadings of the anomaly factor we find a large positive

magnitude for lme, roa, sat, which shows that a positive value for market capitalization, assets, or

return on assets yield high anomaly return. In contrast, a large negative magnitude is found for

the standard deviation of volume (std_volume) which shows more volatile trade volumes reduce

the return beyond systematic risk. Higher volatility corresponds to investors being uncertain

about the value of the stocks and are therefore perceived as riskier. Lastly, for the loadings
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on the risk factors we observe quantitatively different but similar results as for the unrestricted

model for characteristics: sat, ol, size, and lme, where sales-to-assets and costs-to-assets are re-

spectively positive and negative, the instrument size and market capitalization vary by factor.

Therefore, the risk factors loadings of the restricted and unrestricted model share commonalities.

Next to the magnitude of the relationship, it is also important to investigate which character-

istics are statistically significant in explaining returns based on their F-values and p-values and

are perceived as major characteristics in explaining returns based on the marginal R2. We start

with the importance of the characteristic for all the risk factors, that is F-values and marginal

R2. Subsequently, we attempt to identify whether there exist characteristics that are statistically

significant for an individual factor based on their p-values, and hence contribute in explaining

variation in returns. Lastly, we inspect if the hypothesis Γα = 0L×1 holds. In the scenario that

the hypothesis is rejected we further investigate which characteristic is most responsible for this

rejection.

Table 2: P-values of the characteristics of the restricted model.

Characteristic/k 1 2 3 4 Characteristic/k 1 2 3 4

Past returns Value
cum_return_1_0 0.98 0.32 0.88 0.92 a2me 0.52 0.69 0.55 0.76
cum_return_6_2 0.96 0.69 0.86 0.90 beme 0.81 0.66 0.44 0.40
cum_return_12_2 0.69 0.72 0.94 0.98 c 0.80 0.32 0.07 0.18
cum_return_12_7 0.62 0.76 0.96 0.96 c2d 0.46 0.60 0.74 0.80
cum_return_36_13 0.94 0.23 0.76 0.82 d_so 0.58 0.74 0.82 0.78

debt2p 0.64 0.80 0.74 0.86
Investment e2p 0.52 0.78 0.92 0.88
investment 0.02 0.00 0.00 0.00 free_cf 0.90 1.00 0.60 0.46
d_ceq 0.90 0.54 0.76 0.85 ldp 0.39 0.12 0.24 0.40
dpi2a 0.10 0.22 0.27 0.48 nop 0.82 0.96 0.77 0.73
d_shrout 0.82 0.92 0.99 0.78 o2p 0.60 0.74 0.87 0.80
ivc 0.70 0.83 0.86 0.94 q 0.64 0.88 0.92 0.94
noa 0.09 0.32 0.40 0.55 sales_g 0.94 0.42 0.66 0.78

size 0.57 0.68 0.60 0.80
Profitability s2p 0.86 0.98 0.98 0.98
ato 0.12 0.32 0.01 0.00
cto 0.82 0.64 0.88 0.96 Trading frictions
d_dgm_dsales 0.78 0.42 0.98 0.20 at 0.77 0.32 0.40 0.73
eps 0.07 0.31 0.26 0.20 beta 0.28 0.18 0.14 0.22
ipm 0.35 0.40 0.60 0.15 beta_daily 0.40 0.26 0.34 0.55
pcm 0.68 0.88 0.30 0.13 dto 0.98 0.98 0.50 0.61
pm 0.68 0.97 0.69 0.40 idio_vol 0.70 0.98 0.98 0.91
prof 0.96 0.98 0.92 0.36 lme 0.84 0.52 0.74 0.14
rna 0.98 0.76 0.10 0.14 lturnover 0.16 0.13 0.30 0.26
roa 0.30 0.01 0.08 0.12 rel_to_high_price 0.88 0.90 0.88 0.87
roc 0.70 0.60 0.80 0.24 ret_max 0.72 0.49 0.85 0.94
roe 0.47 0.16 0.32 0.30 spread_mean 0.44 0.16 0.55 0.56
roic 0.66 0.59 0.89 0.86 std_turn 0.04 0.10 0.22 0.30
s2c 0.77 0.30 0.18 0.29 std_volume 0.08 0.26 0.41 0.45
sat 0.10 0.16 0.06 0.04 suv 1.00 0.96 0.91 0.29

total_vol 0.34 0.42 0.77 0.60
Intangibles prc 0.38 0.38 0.33 0.38
aoa 0.11 0.02 0.16 0.27 ret 0.47 0.30 0.38 0.64
ol 0.04 0.10 0.06 0.14 moneyness 0.73 0.18 0.38 0.41
tan 0.48 0.48 0.03 0.10
oa 0.41 0.67 0.92 0.78 constant 0.00 0.00 0.00 0.00

Note: The p-values for the characteristics of Γβ displayed are based on the restricted model with k
systematic risk factors as defined in Equation (11). The p-values are based on the equations in Section
2.6.2. Moreover, a bold value indicates that the significance level is below 10%.
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Table 2 shows that the following characteristics are statistically significant at the 10% level

for at least two of the four models: investment, (ato), (roa), (sat), (ol), standard deviation of

turnover (std turn), and the constant. Hence, the characteristics are widely spread out over the

different groups, but profitability seems to be the most important category. The importance of

this group is because the pricing of returns is related to the risk profile of the company which is an

important predictor for returns as was suggested by Cao et al. (2017). Moreover, instruments that

are also significant for equity returns such as characteristics related to profit and return to assets

are significant for delta-hedged option returns too. Although according to Jegadeesh and Titman

(1993) and Jegadeesh (1990) momentum and reversal characteristics seem to be important in

the explanation of equity returns, this is not the case for delta-hedged option returns. Where

according to Hong and Stein (1999) strategies on momentum and reversal work for equities

because these are based on investors trading in the historical direction of the stock, investors

have probably not as widely implemented these strategies for delta-hedged option returns and

therefore fail to work. Another explanation is that the momentum and reversal feature of stock

returns do not translate to option returns.

Lastly, statistical significance and magnitude of the coefficient characteristics seem to be re-

lated with ato, roa, sat, and ol being both statistically significant as well as having a large effect

on the constitution of the risk factor.

As was discussed in Section 2.6.2 the marginal R2
m,l as defined in Equation (39) can be used

to identify the importance of an instrument l in explaining returns.

Table 3: Marginal decrease in R2 for the restricted 4-factor model.

Characteristic R2
m,l Stat. sign. Characteristic R2

m,l Stat. sign. Characteristic R2
m,l stat. sign.

constant 0.1211 * pcm 0.0007 s2c 0.0006
ato 0.0015 * tan 0.0007 * prc 0.0005
rna 0.0010 ** beta 0.0006 ldp 0.0004
ol 0.0009 ** ret 0.0007 roa 0.0004 **
sat 0.0009 * c 0.0006 ** std_volume 0.0003 **
investment 0.0008 * eps 0.0006 ** std_turn 0.0003 **

Note: The R2
m,l are based on the restricted 4-factor model as in Equation (11). Note that the sum of

all R2
m,l is not necessary R

2 because of the correlation of the variables. When variables x and y are
strongly correlated, excluding x results in that y can explain more. Moreover, * indicates that the
characteristic was statistically significant at the 10% level for the restricted 4-factor model, whereas
** indicates that it was statistically significant for another restricted model that did not include 4
factors.

Table 3 depicts 18 variables that solely explain most of the variation in the returns in terms of

marginal R2
m,l for the restricted 4-factor model based on Equation (11). It confirms that the con-

stant is very important in explaining expected returns, hence the returns of different companies
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at the same time share a significant commonality unrelated to any of the other 62 characteristics.

But we also have to note that the constant is not related to any other variable, while all the

other characteristics are to a certain degree related.7 The two most important categories based

on the marginal R2
m,l metric are the profitability and trade friction category which contribute

respectively seven and five characteristics to the 18 most important instruments. This confirms

the previous results that profitability and trading frictions are the most important groups in

terms of their ability to explain variation in returns. Moreover, Table 3 shows the robustness

for a high number of characteristics because they contributed substantially to the increase in R2

and were statistically significant in restricted IPCA models. Similarly, Figures 1, 9, and Table 3

show that sales-to-cash (s2c) has a substantial influence on the constitution of the risk factors

in terms of their magnitude and on the R2.

Table 2 based on the restricted IPCA model defined as in Equation (11) shows that once the

IPCA model is extended with another risk factor, the characteristics might change from sig-

nificant to insignificant or vice versa. A possible reason is that the instrument is statistically

significant for one factor and insignificant for the other and the combination turns out to be

insignificant. Hence, where we previously looked at the importance of characteristics for the con-

stitution of all the risk factors, which was based on magnitude, we now examine how significant a

characteristic is for one risk factor to explain the returns. Table 9 in Appendix C.1.1 depicts the

p-values and F-values of the characteristics. The F-value can be observed as a weighted function

of the p-values related to the individual risk factors, hence these F-values often lay between the

lowest p-value and the highest p-value of the individual factors. Characteristics that have been

statistically significant for at least five out of the combined set of ten p-values and four F-values

are: investment, roa, sat, eps, and ol. The characteristics investment and sat have a positive

association with return and the remainder a negative relationship with return as shown in Table

10 in Appendix C.1.1. Moreover, we also conclude that different risk factors of a model have

different instruments that are statistically significant contributors in the explanation of returns.

Lastly, we discuss the p-values of the anomaly factor of the unrestricted models. Table 11

in Appendix C.1.1 shows that a substantial amount of characteristics are not related to the risk

factor but do explain variation in the returns via the anomaly factor, hence the hypothesis of a

non-existent anomaly is rejected. Especially variables in trading frictions and profitability are
7This means that when excluding characteristic a which is correlated with characteristic b does not decrease

the R2 as much because the variation that was previously explained by omitted characteristic a is now partly
explained by b.
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often statistically significant. Instruments noa, EPS, sat, ldp, lme, std_volume, prc, and ret

and the constant are statistically significant for all the models at the 5% level. Moreover, we

observe that on average the p-values slightly increase when a factor is added and are not robust

which leads to the belief that part of the anomaly return is actually related to risk.

4.1.2 In-sample fit

This subsection considers how well the characteristics explain the variation in returns and ex-

pected returns in-sample.

Table 4: Total and predicted R2 in-sample of the restricted and unrestricted model.

Total R2 Predicted R2

Individual returns (rt) Portfolio returns (xt) Individual returns (rt) Portfolio returns (xt)

k Γα = 0 Γα 6= 0 Γα = 0 Γα 6= 0 Γα = 0 Γα 6= 0 Γα = 0 Γα 6= 0

1 0.1901 0.2045 0.8927 0.9144 0.0720 0.0810 0.3487 0.3655
2 0.2133 0.2202 0.9283 0.9310 0.0794 0.0808 0.3627 0.3649
3 0.2273 0.2315 0.9430 0.9445 0.0797 0.0807 0.3635 0.3644
4 0.2366 0.2407 0.9487 0.9494 0.0797 0.0807 0.3629 0.3645

Note: The R2 displayed are based on the restricted Γα = 0 and unrestricted Γα 6= 0 IPCA model
with k systematic factors as defined in Equations (11) and (16). The total R2 and predictive R2 are
calculated based on Equation (40) and (41) respectively.

Table 4 shows that when the number of risk factors increases the total R2 of both, restricted

and unrestricted, as well as raw returns and portfolio returns increase. However, this increase in

model fit is at a decreasing rate which is a logical consequence of the identification assumption

made in Section 2.3 where the covariance matrix of the factors has descending diagonal elements.

This means that the first factor has the highest variance and therefore the highest explanation

power. Moreover, it shows that if at least 3 factors are included, almost all variation in returns

is explained by the IPCA model since the increase in total R2 from the 3- to 4-factor model is

low.

Moreover, the fit of the unrestricted model performs better for all model specifications, be-

cause the unrestricted model has one additional factor. Even though this factor is constant it

helps to explain the variation of the returns. The higher total R2 of the unrestricted model can

be logically explained because the hypothesis Γα = 0L×1 is rejected. However, the constant

factor of the unrestricted model does not perform as well as the factors of the restricted model,

as one can observe when comparing the total R2 of the restricted model with k + 1 risk factors

to unrestricted model with k risk factors and one constant factor. The difference in fit between

the restricted and unrestricted model is negatively related to the number of risk factors, this

might be partly caused by an increase in the p-value for the Γα = 0L×1 hypothesis. Lastly, the
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restricted 4-factor model captures 98% of the unrestricted model, hence suggesting the minor

contribution of anomaly loading on the 4-factor model.

Our IPCA method is based on OLS and therefore targets the total R2 directly. This essen-

tially means that the risk factors are constructed based on the criteria that they need to explain

as much as possible of the variation in returns. Since the method is established on returns and

not expected returns, the predicted R2 is not optimized. Table 4 suggests that the IPCA exhibits

risk factors that can explain risk compensation across the options.

The total and predicted R2 of the characteristics-managed portfolio returns are high which is in

line with the findings of Kelly et al. (2019). This suggests that the managed portfolios that func-

tion as test assets exhibit the power to explain systematic risk and differences in expected returns.

Table 12 in Appendix C.1.2 shows that in-sample IPCA performs better than PCA, this differ-

ence is most substantial when few factors are considered. However, when 4 factors are considered

the effect of time-varying parameters and implementation of instruments seems to be marginal.

4.1.3 Out-of-sample analysis

In order to investigate if a trading strategy constructed based on the basic IPCA exhibits good

fit and is lucrative, we investigate the R2, the Sharpe ratio, and the VaR. The usual structure

of splitting the dataset into two parts is used, where the first part is the modeling dataset and

the second the forecasting dataset. In the modeling dataset the parameters are estimated, while

the forecasting dataset serves as out-of-sample observations. The modeling dataset consists of 75

or 90 observations which corresponds to around 65 to 80% of the total number of observations

and increases with one observation every period until we reach the end of the forecast period

T = 112. The estimation accuracy in terms of R2 for both restricted and unrestricted models

are shown in Table 5.

Table 5: Out-of-sample R2 for the basic IPCA model.

Individual returns (rt) Portfolio returns (xt)

Total R2 Predicted R2 Total R2 Predicted R2

k Γα = 0 Γα 6= 0 Γα = 0 Γα 6= 0 Γα = 0 Γα 6= 0 Γα = 0 Γα 6= 0

1 0.1338 0.0843 0.0750 0.0837 0.8517 0.5279 0.4531 0.4923
2 0.1466 0.0809 0.0823 0.0834 0.8926 0.4715 0.4829 0.4900
3 0.1536 0.0766 0.0827 0.0833 0.9009 0.4277 0.4851 0.4899
4 0.1567 0.0788 0.0832 0.0834 0.9062 0.4208 0.4881 0.4897

Note: The R2 displayed are based on the restricted (Γα = 0) or unrestricted (Γα 6= 0) IPCA model
with k systematic factors. The total R2 and predictive R2 are calculated based on Equation (40)
and (41) that are slightly adjusted as described in Section 2.8. Moreover, t=90 is used as the first
out-of-sample date.
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It follows from Tables 4 and 5 that the IPCA model not only performs strong in-sample

but also out-of-sample since the decrease in R2 is not too substantial. Therefore, our model

exhibits the feature that it is good at explaining the most important drivers of returns in-sample

as well as out-of-sample. Furthermore, the table shows that the R2 out-of-sample increases with

a decreasing rate when more factors are used as was expected by imposing that every factor

should explain less than the previous factor and also confirms what Figure 8 in Appendix B.1

suggested. Especially the increase from the first to the third factor seems important. Moreover,

the predicted R2 that is based on λt seems to be relatively high compared to the predicted R2

in-sample, suggesting a good out-of-sample fit for expected returns. The reason for this might be

a combination of two reasons where the former is related to the risk factors and the latter to the

risk loadings. First, the in-sample λ is based on information at time t+1 but also at information

later than t + 1 which seems to be less useful than or even contradictory to past information.

Second, similarly as for the risk factors, Γβ,t might be better estimated by not including future

information. However, the second effect is definitely less important, because otherwise the total

R2 of the out-of-sample would also be higher than the total R2 in-sample.

Moreover, the out-of-sample statistics in Table 13 in Appendix C.1.3 show that the IPCA almost

always outperforms the PCA which is similar to the findings for stock returns in Kelly et al.

(2019). Note that for estimation of managed portfolios the same amount of parameters are used

for IPCA as PCA, whereas normally for raw returns we would expect that the IPCA’s dimension

reduction feature would cause IPCA to outperform the PCA more substantially.

Table 6: Sharpe ratios for the basic IPCA model.

k f1 f2 f3 f4 ftang fα
1 1.13 x x x 1.13 0.30
2 1.60 0.46 x x 1.76 0.35
3 1.36 0.63 0.59 x 1.74 0.30
4 0.85 0.91 0.27 0.50 1.94 0.38

Note: All the out-of-sample monthly Sharpe ratios are calculated based on Equation (45). fi stands
for factor i, ftang for the tangency portfolio based on algorithm 4 and fα is based on Equation (43)
and (44). All factors are based on the restricted model with k factors as in Equation (11) apart from
the anomaly factor that is based on the unrestricted model as in Equation (16). Moreover, t=90 is
used as the first out-of-sample date.

Table 6 depicts high Sharpe ratios for the tangency portfolio and for the individual factors

implying that the IPCA is able to capture a large portion of the co-movement between the options

and can successfully align the expected returns with the factor loadings. Moreover, these Sharpe

ratios seem to be in line with the results of Cao et al. (2017), who found monthly Sharpe ratios for

delta-hedged option returns between 0.01 and 2 for portfolios sorted on different characteristics.
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Even though the mean of the returns is negative, the Sharpe ratio of the tangency portfolio is

positive, because it exhibits a diversification feature and exploits the idiosyncratic risk in the

portfolio. Moreover, the Sharpe ratio increases when a factor is added because the tangency

portfolio has more freedom in choosing the optimal weights when more factors can be used. As

expected, the tangency Sharpe ratio always exceeds the maximum of their individual factors,

because an optimal weight for the factors is chosen based on risk and return.

The table also shows that the Sharpe ratios based on the IPCA pure-alpha portfolio are

smaller than based on the tangency portfolio. Hence, it suggests that arbitrage possibilities

show low potential. Note that this superfluity of the arbitrage factor is confirmed by Table 5

that shows that the total R2 out-of-sample is lower than the restricted variant.

To assess how the IPCA performs in extreme events such as crises, a VaR is considered.

Figure 2: VaR of the restricted basic IPCA model.
Note: The VaR is calculated based on Equation (46) that uses the tangency portfolio returns as
defined in Algorithm 4 for the restricted IPCA model.

Figure 2 shows that on average the returns of the tangency portfolio seem promising especially

considering that the average option return is negative. When more risk factors are included, a

lower maximum monthly return can be obtained but the downside has decreased too.

We conclude that a trading strategy based on the basic IPCA model that uses tangency portfolios

seems favorable given the limited downside and the high unconditional Sharpe ratio. However,

since no transaction costs are incorporated in the tangency returns, the actual returns will be
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lower especially when the tangency portfolio depends on characteristics that change frequently.

4.2 Regularized IPCA model

This subsection considers the more parsimonious model of the basic IPCA by utilizing the ridge,

lasso, and elastic net as defined in Equations (18), (20) and (25).

4.2.1 Coefficients and significance

In the previous subsection we have established which instruments are important in construct-

ing the risk loadings and explaining the variation in returns. To investigate how robust these

observations are we compare them with regularized models that have a selection feature.

Tables 14 till 17 in Appendix C.2.1 show the minimum, mean, and maximum of the coefficients

based on the lasso model for 5 different penalty parameters λ. For most models and most

instruments the sign of the minimum is not different than that of the maximum, therefore

indicating robustness. However, this robustness decreases when more factors are taken into

consideration because the model has more possibilities to reach a high R2. Moreover, we observe

that the value and trading frictions categories seem to have the largest impact on the constitution

of the loadings. This is as expected due to the nature of this category and is in line with Cao

et al. (2017). The most important instruments seem to be price (prc), size, book to market

(beme), Price to 52-week high price (rel_to_high_price) and beta. Where price, size, beme,

and rel_to_high_price have a positive relationship with returns, the relationship between beta

and return is unclear. Moreover, Table 18 in Appendix C.2.1 shows how often an instrument

is set to 0 by the lasso and therefore is not selected to be important in the constitution of the

loadings. We observe next to the aforementioned characteristics that roa, at, lturnover, ret_max,

and total_vol also seem to be important, since these are infrequently set to 0.

We are particularly interested if the most important characteristics that constitute the port-

folios of the 4-factor model depicted in Figure 1 and 9 to 11 in Appendix C.1.1 are robust. Table

17 shows that when a λ unequal to zero is considered, a substantial number of characteristics

that have turned out to be important in the constitution of the factors in the basic IPCA model

switch sign and have a lower weight in absolute value terms. Hence, we conclude that the port-

folio constitution can substantially differ between model specifications.

When comparing the 5 characteristics (investment, roa, sat, eps, and ol) that were often sta-

tistically significant in Table 9 in Appendix C.1.1 with the robustness check from the lasso as in

Tables 14 till 17 in Appendix C.2.1, we find that these 5 characteristics are not entirely stable
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showing sometimes different signs for different model specifications. However, the mean of the

coefficient based on the robustness analysis does often correspond with the signs of the 5 afore-

mentioned characteristics based on the basic IPCA model as shown in Table 10 in Appendix

C.1.1.

4.2.2 In-sample fit

In this part we discuss the in-sample fit of the three special cases of the elastic net. First, we

discuss the elastic variant with hyperparameter ρ = 0, which is essentially a ridge regression.

Subsequently, we deal with the special case ρ = 1 which is a lasso and lastly we discuss the

elastic net scenario where the hyperparameter is between 0 and 1.

Ridge

In the ridge regression we try to find the optimum in the trade-off between variance and biased-

ness. When the assumptions of the OLS are satisfied then by the Gauss-Markov theorem the

covariance of the ridge estimator Γβ is reduced compared to the OLS variant, while the bias is

increased. Figure 3 shows that indeed compared to the normal OLS (λ = 0), the covariance of

the estimators decreases. When λ increases, the values of the parameters are more and more

centered around 0 which is as expected since parameters that are not zero are fiercer punished

in the objective equation.

Figure 3: Coefficients Γβ distribution of the restricted ridge 1-factor model.
Note: The coefficients of the restricted ridge 1-factor model are based on Equation (19). The distri-
bution focuses more on values around 0 when λ increases. The third quartile of the absolute value
shrinks from 0.042 to 0.03 when λ increases from 0.01 to 0.7.
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To assess the quality of the model and the effect of the penalty function we assess the in-

sample R2. Table 19 in Appendix C.2.2 shows that a similar pattern is visible for the ridge as

the basic model. That is when the number of factors increases, the fit increases and that the

predicted R2 is around a third of the total R2. When λ increases both the total and predicted

R2 decreases for raw and portfolio returns. The basic model always outperforms the ridge model

on total R2, but the difference decreases when more factors are considered. The reason is that

a model with a large number of parameters benefits more, however still not sufficiently, from

shrinkage.

Lasso and elastic net

When we evaluated the properties of lasso and elastic net, we found that due to the nature of

the penalty, the coefficients of Γβ are in theory set to 0 when they do not contribute sufficiently

to the reduction of squared errors.

Figure 4: Amount of values of the γ vector equal to zero for elastic net restricted 1-factor IPCA model.
Note: The coefficients of the elastic net restricted 1-factor IPCA model are based on Equation (27).
The distribution focuses more on values around 0 when λ and/or ρ increase.

Figure 4 shows empirically that when ρ increases and hence more weight is attributed to the

lasso, the number of elements of Γβ that are set equal to 0 increases. This shows that the lasso

has a more severe penalty function than the ridge. Moreover, the graph shows that an increase

in λ also results in an increase of values that are set to 0 because a larger weight is attributed

to the penalty function in the objective equation.

Table 20 in Appendix C.2.2 depicts the normal pattern for the in-sample total R2, where an
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increase in penalty weight λ decreases the R2. Moreover, it shows that when ρ increases, which

means that more weight is attributed to setting the parameters equal to 0 instead of near 0, the

total R2 decreases. In contrast to the linear relationship in the total R2, the predicted R2 shows

a pattern where the highest R2 is on the diagonal high ρ and low λ till low ρ and high λ. This

result can be interpreted as that the existence of a constraint is beneficial when it is not too

fierce (high ρ and λ) nor too weak (low ρ and λ). Hence, the elastic net often outperforms the

lasso and the ridge. Table 21 in Appendix C.2.2 shows for the 2-factor model a relatively similar

pattern where shrinkage and selection should not be too firm.

4.2.3 Out-of-sample analysis

Empirical research by Bayer (2018) has shown that out-of-sample estimation based on regular-

ized models often perform better because the effect of overfitting that causes poor performance

out-of-sample is reduced. Moreover, he found that in a quiet period, ridge regression performs

better in terms of VaR when no variable selection is needed, whereas in a period of financial

crises, lasso and elastic net perform better due to the selection feature.

Ridge

Table 22 in Appendix C.2.3 shows that occasionally a slightly better fit is achieved when the

parameters are shrinked for the 2 and 4-factor model. A possible reason is that these models

might exhibit larger parameter instability and therefore a shrinkage of the parameters has a

beneficial effect.

Apart from fit, we also examine the Sharpe ratio of the ridge and contrast it to previous methods.

Table 23 in Appendix C.2.3 shows that an increase in λ generally increases the Sharpe ratio until

the penalty parameter reaches 0.2 and afterward decreases. Hence, a value of around 0.2 for the

ridge parameter is most beneficial when we consider a trading strategy that both accounts for

return and risk.

A trading strategy should not only yield a good mean-variance ratio but also have a limited

downside in risky periods such as crisis which is especially important for low-risk investors. Fig-

ure 17 in Appendix B.3 shows a similar pattern as the basic IPCA where more factors yield

more stable returns and a lower risk profile. The downside risk decreases when a higher λ is

considered. However, to achieve a higher upward potential for the 3-factor model, the penalty

parameter should be adjusted to a value between 0.1 and 0.3.

45



Lasso and reduced model based on p-values

To obtain a parsimonious model that according to Ledolter and Abraham (1981) can increase

out-of-sample fit a two-step method is used based on two distinct methods. The first method

selects the characteristics based on p-values that were statistically significant (lower than 0.1) in

the restricted IPCA and uses this reduced set of characteristics to calculate the out-of-sample fit

R2. Whereas the second method uses the characteristics that were not set to 0 by the in-sample

estimation of the lasso, in the out-of-sample estimation.

Table 24 in Appendix C.2.3 shows that a regularization based on lasso often improves the fit

out-of-sample for restricted models including more than 1 factor and λ between 0.01 and 0.7.

Moreover, the difference becomes larger when more factors are considered because then the basic

IPCA model includes too many parameters and hence overfits. The unrestricted model benefits

even more from a severely reduced model specification, possibly explained by the larger set of

parameters, due to the inclusion of the anomaly factor, that normally needs to be estimated.

The fit of the portfolio returns as depicted in Table 25 in Appendix C.2.3 also benefits from a

reduced model, this is probably because the test assets that are being used as dependent variable

in the reduced formation are based on fewer characteristics that exhibit variation that can be

more easily explained by the same set of characteristics. In other words, characteristics that

exhibit variation that is hard to explain and therefore construct test assets that are harder to

explain are removed from the estimation model. Since these observations hold for different time

periods the results are robust.

In terms of the Sharpe ratio, the reduced models sometimes outperformed the basic variant

as depicted in Table 26 in Appendix C.2.3. When few factors are considered a lasso model based

on a low penalty parameter occasionally outperforms the basic model whereas for 3 or 4 risk

factors a higher penalty parameter is needed for the lasso to outperform the basic. This is a

logical consequence of the beneficial feature of the lasso that performs well when there are too

many parameters that need to be estimated.

Figure 18 in Appendix B.3 shows that when a higher penalty parameter λ and therefore

fewer characteristics are considered, the downside risk is often lower but also decreases the

upward potential.
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4.3 Robust IPCA model

This subsection discusses the robust version of the basic IPCA based on OLS by using either

a Huber loss function to tackle the problem of outliers or WLS to solve the heteroskedasticity

problem as defined in Algorithm 2 and 3.

4.3.1 In-sample fit

Table 7: R2 based on robust methods.

Total R2 Predicted R2

Individual returns (rt) Portfolio returns (xt) Individual returns (rt) Portfolio returns (xt)

k OLS Huber WLS OLS Huber WLS OLS Huber WLS OLS Huber WLS
1 0.1901 0.1277 0.1709 0.8927 0.6483 0.8255 0.0720 0.0414 0.0732 0.3487 0.1826 0.3531
2 0.2133 0.1426 0.1907 0.9283 0.6838 0.8826 0.0794 0.0437 0.0781 0.3627 0.1879 0.3616
3 0.2273 0.1529 0.2060 0.9430 0.7160 0.9128 0.0797 0.0476 0.0772 0.3635 0.2007 0.3609
4 0.2366 0.1570 0.2127 0.9487 0.7239 0.9210 0.0797 0.0481 0.0780 0.3629 0.2026 0.3608

Note: The R2 displayed are based on the restricted OLS, Huber, and WLS IPCA model with k
systematic factors as defined in Equation (11) and Algorithms 2 and 3. The total R2 and predictive
R2 are calculated based on Equation (40) and (41) respectively.

Table 7 shows that the R2 is almost always lower for the IPCA based on the two robust methods,

Huber and WLS, than the basic IPCA based on OLS. The only exception is where the WLS

1-factor model has a higher predicted R2 than the other models. According to Greene (2003),

the reason for the poorer fit might be due to the estimation of the weights. Because when there

exists substantial uncertainty about the weights, the wrong observation might have received a

large weight which results in low efficiency and hence a low R2.

4.3.2 Out-of-sample analysis

We established that the in-sample performance of robust methods does seldom contribute to an

improved fit, which was as expected. However, research showed that a more robust method can

increase the out-of-sample fit. Table 27 in Appendix C.3.1 shows that the basic model beats

almost always the Huber and the WLS model. Hence, either the outliers and heteroskedasticity

in the data do not substantially affect the performance or the weights that were estimated in the

robust methods were instable. The latter is a possible reason because the model is applied on

empirical data that does not have a substantial number of observations every month.

Since both start dates show lower Sharpe ratios for WLS and Huber than the basic OLS

indicated by Table 28 in Appendix C.3.1, the results are robust and investors are better of by

not implementing these robust methods in their trading strategy. The reason for the lower Sharpe

ratio is probably the instability of the weights as explained before.
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4.4 Comparison with stock returns

It is interesting to examine whether option returns can be better described by IPCA than stock

returns and whether the same relationships between returns and instruments are established.

The comparison in association between characteristics and returns is based on three metrics:

the signs, p-values and F-values of the instruments, whereas the model’s performance of the two

asset classes is contrasted based on R2 and Sharpe ratio. In this comparison we use Kelly et al.

(2019) as reference material. Note that they used data on 12,813 firms with 36 characteristics

ranging from July 1962 to May 2014. Hence, there are noticeable differences in the dataset at

first glance. However, we have to bear in mind that we have seen that different time-periods

do not necessarily lead to different sample fits, and that a substantial number of variables are

either correlated or do not contribute to improving the sample fit as was shown by the two-step

method. Hence, the differences in the sample period and the number of characteristics might

not have a large effect on the output.

The loadings of the market capitalization, value of the assets, and market beta were described

as important for stock returns and option returns. However, we did not find a contribution of

the momentum and reversal characteristic, a possible cause is that momentum for stocks does

not affect option returns or the non-existence of trading strategies that exploit momentum and

reversal instruments.

The statistical significance of the instruments for option returns was often in-line with stock

returns, apart from the past return category. Characteristics that were important for option

returns but not for equity returns were profits or their individual parts revenue and costs as well

as cash. A possible explanation is that one can argue that a higher profit and cash position

yield a lower default probability which has been important in the explanation of option returns

according to Cao et al. (2017).

The values for the total and predicted R2 in-sample and out-of-sample seemed to exhibit

similar patterns: these metrics increase with factors, where the unrestricted model outperformed

the restricted model and values that were relatively similar. However, a noticeable difference

existed in predicted R2. The predicted R2 for option returns seemed to be substantially higher,

a reason can be that due to the hedging feature the options risk factor ft is more stable, which

causes the price of risk λ and risk factor ft to be relatively similar.

Lastly, the yearly Sharpe ratios of the tangency returns based on stock returns were similar

to the monthly counterpart. When we would convert the monthly Sharpe ratios of the options to

yearly, we would obtain substantially higher Sharpe ratios. This indicates that a trading strategy
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based on options might be favorable next to or as a substitution of stocks.

5 Further research
Similar to Kelly et al. (2019) and Horenstein et al. (2018) we do not include transaction costs,

hence optimal trading strategies that involve high monthly turnover might not be optimal when

accounted for transaction costs. Since the most important category for the constitution of load-

ings is trading frictions which is probably positively related to turnover this might have an

unfavorable effect on the tangency portfolio returns and therefore on the Sharpe ratio. Further-

more, Cao et al. (2017) found that characteristics behave in the same way for delta-hedged call

option returns as for put option returns. It might be interesting to examine if this also holds for

the IPCA model.

6 Conclusion
The first part answers the key research question of the paper: which characteristics explain

delta-hedged option returns. Subsequently, the second part consists of the comparison between

different models and methods based on in-sample and out-of-sample fit, Sharpe ratios, and VaR.

The IPCA restricted model found that based on regularization techniques the price of the stock,

size of the company, book-to-market value, price relative to the 52-week high price, and beta

have a large magnitude for the factor loading and therefore are important in the constitution

of the risk factors ft portfolios. The first four instruments are positively related to returns,

whereas the relationship between the latter characteristic and returns is unstable. In contrast,

the sorted anomaly portfolio is mainly driven by market capitalization and standard deviation

of volume. The first instrument is positive suggesting that larger companies have higher option

returns beyond what is related to the risk exposure, which is similar to Cao et al. (2017). The

latter characteristic is negative indicating that lower volume increases return beyond the risk

exposure, possibly caused by the difficulty of hedging an option when it is traded infrequently.

Moreover, the characteristics that best describe returns based on their p and F-values are

investment, sales to total assets (sat), return on assets, earnings per share, and costs to total

assets (ol). Where the first two instruments are positively related to returns and the latter three

negatively. One can view sat and ol as profit to total assets which has a positive relation with

returns.

Most of the variables that showed to be important in the portfolio constitution or explanation

of variation in returns were also important in the marginal R2.

The in-sample total R2 of the IPCA ranged from 0.19 for the 1-factor restricted model to 0.24
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for the 4-factor unrestricted model. Almost all models indicated that to explain returns around

3 to 4 factors are needed, because the increase in the in-sample R2 when an additional factor is

added decreases substantially from the three to four-factor model. Moreover, the anomaly factor

decreases in importance when more factors are considered.

The regularized models were often not able to beat the basic version, hence selection and

shrinkage methods in-sample are not necessary. Moreover, the robust methods also underper-

formed the basic version, possibly due to the uncertainty of the weights.

The out-of-sample R2 showed that the IPCA is able to explain a substantial amount of vari-

ation in returns out-of-sample because there is only a minor decrease compared to the in-sample

R2. The out-of-sample monthly Sharpe ratios seemed promising having relatively high values

compared to the equity returns yearly Sharpe ratio variant in Kelly et al. (2019) and option re-

turn models based on sorted portfolios Cao et al. (2017). Moreover, we found that the tangency

portfolio has higher Sharpe ratios when more factors are considered due to its diversification

feature. The downside risk based on VaR of the IPCA is limited especially when more than 1

factor is considered.

Shrinking the coefficients to 0 with the ridge method increased the fit when the penalty

parameter λ was not too high. Moreover, a higher Sharpe ratio on the tangency portfolio can

be obtained when λ is around 0.2 and the downside risk compared to the basic variant can be

decreased when a λ between 0.1 and 0.3 is considered. Hence, the shrinkage method which shrinks

the coefficients slightly is useful for both explaining the variation in return and constructing a

trading strategy.

Furthermore, selection methods based on the two-step procedure also proved their worth

with a substantially better fit when λ is between 0.01 and 0.7. This is especially evident when

either 3 or 4 factors are considered since the basic IPCA finds it difficult to estimate a large set

of parameters due to the instability such a large set causes to their coefficients. Apart from fit,

Sharpe ratios also increased when either few factors and a small penalty parameter or 3 to 4

factors with a large penalty parameter were considered. Hence, a more parsimonious model can

increase out-of-sample fit as well as offer a better trading strategy when the number of factors

and the value of the penalty parameter are carefully chosen.

Robust methods did not increase fit out-of-sample nor yield a higher Sharpe ratio possibly

caused by a similar reason as in the in-sample estimation. We conclude that even though some

OLS assumption are not satisfied, accounting for these with the WLS or Huber Loss function

did not increase performance.
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Appendices
A Characteristics

Table 8: Characteristics grouped in categories - abbreviation and their meaning.

Past-returns Value
(1) r2_1 return 1 month before prediction (31) A2ME Total assets to Size
(2) r6_2 return from 6 to 2 months before prediction (32) BEME Book to Market ratio
(3) r12_2 return from 12 to 2 months before prediction (33) C Cash to AT
(4) r12_7 return from 12 to 7 months before prediction (34) C2D Cash to total liabilities
(5) r36_13 return from 36 to 13 months before prediction (35) ∆ SO Log change in split-adjusted shares outstanding

(36) Debt2P Total debt to Size
Investment (37) E2P Income before extraordinary items to Size
(6) Investment % change in AT (38) Free CF Free cash flow to BE
(7) ∆ CEQ % change in BE (39) LDP Trailing 12-months dividends to price
(8) ∆ PI2A Change in PP&E and inventory over lagged AT (40) NOP Net payouts to Size
(9) ∆ Shrout, % changes in shares outstanding (41) O2P Operating payouts to market cap
(10) IVC Change in inventory over average AT (42) Q Tobin’s Q
(11) NOA Net-operating assets over lagged AT (43) S2P Sales to price

(44) sales_g Growth of sales
Profitability
(12) ATO Sales to lagged net operating assets Trading frictions
(13) CTO Sales to lagged total assets (45) AT Total assets
(14) ∆(∆GM-∆Sales Delta% change in gross margin and % change in sales (46) Beta Correlation x ratio of vols
(15) EPS earnings per share (47) Beta daily CAPM beta using daily returns
(16) IPM Pre-tax income over sales (48) DTO De-trended Turnover - market Turnover
(17) PCM Sales minus costs of goods sold of sales (49) Idio vol Idiosyncratic vol of FF 3 factor model
(18) PM OI after depreciation over sales (50) LME Price times shares outstanding
(19) Prof Gross profitability over BE (51) Size Lagged size variable
(20) RNA OI after depreciation to lagged net operating assets (52) Lturnover Last months volume to shares outstanding
(21) ROA Income before extraordinary items to lagged AT (53) Rel_to_high price Price to 52 week high price
(22) ROC Size + longterm debt - total assets to cash (54) Ret_max Maximum daily return
(23) ROE income before extraordinary items to lagged BE (55) Spread Average daily bid-ask spread
(24) ROIC Return on invested capital (56) Std. turnover Standard deviation of daily turnover
(25) S2C Sales to cash (57) Std. volume Standard deviation of daily volume
(26) SAT Sales to total assets (58) SUV Standard unexplained volume

(59) Total vol Standard deviation of daily return
Intangibles (60) price, Price of the stock
(27) AOA Absolute value of operating accruals (61) return, Return on the stock
(28) OL Costs of goods sold + SG&A tot total assets (62) moneyness, Option price to strike
(29) Tan Tangibility
(30) OA Operating accruals

Note: The variables are based on the paper of Kim et al. (2019). This paper discusses how the
instruments are exactly constructed in more detail.
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B Figures

B.1 Preliminary analysis

Figure 5: Errors of restricted 4-factor model of 9 different assets with more than 100 observations.
Note: The Q-Q method explained in Section 3.1 is used to assess whether the errors of the restricted
4-factor model as defined in Equation (11) are normally distributed for 9 different options.
Since the line is not linear at the minimum and maximum, we reject the assumption that the errors
are normally distributed.
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Figure 6: Errors of restricted 4 factor model for all assets.
Note: The Q-Q method explained in Section 3.1 is used to assess whether the errors of the restricted
4-factor model as defined in Equation (11) are normally distributed for all options.
Since the line is not linear at the minimum and maximum, we reject the assumption that the errors
are normally distributed.

Figure 7: Value of the eigenvalue. Figure 8: Eigenvalue ratio.
Note: The Eigenvalue ratio method explained in Section 3.3 is used to assess how many factors to
include. The eigenvalues are based on the covariance matrix of the managed portfolio returns.
Since there is a substantial decline from factor 3 to 4 and factor 4 to 5, a maximum of 4 factors are
included. Where the fourth factor serves the purpose of last check.
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B.2 Basic IPCA

Figure 9: Estimates of Γβ for the restricted 4-factor model.
Note: The estimates of Γβ related to the second risk factor of the restricted 4-factor model as defined
in Equation (11) are shown. A red bar indicates a value that is in absolute terms larger than 0.2 and
different patterns are used for different categories.
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Figure 10: Estimates of Γβ for the restricted 4-factor model.
Note: The estimates of Γβ related to the third risk factor of the restricted 4-factor model as defined
in Equation (11) are shown. A red bar indicates a value that is in absolute terms larger than 0.2 and
different patterns are used for different categories.

Figure 11: Estimates of Γβ for the restricted 4-factor model.
Note: The estimates of Γβ related to the fourth risk factor of the restricted 4-factor model as defined
in Equation (11) are shown. A red bar indicates a value that is in absolute terms larger than 0.2 and
different patterns are used for different categories.
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Figure 12: Estimates of Γβ for the unrestricted 4-factor model.
Note: The estimates of Γβ related to the first risk factor of the unrestricted 4-factor model as defined
in Equation (16) are shown. A red bar indicates a value that is in absolute terms larger than 0.2 and
different patterns are used for different categories.

Figure 13: Estimates of Γβ for the unrestricted 4-factor model.
Note: The estimates of Γβ related to the second risk factor of the unrestricted 4-factor model as
defined in Equation (16) are shown. A red bar indicates a value that is in absolute terms larger than
0.2 and different patterns are used for different categories.
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Figure 14: Estimates of Γβ for the unrestricted 4-factor model.
Note: The estimates of Γβ related to the third risk factor of the unrestricted 4-factor model as defined
in Equation (16) are shown. A red bar indicates a value that is in absolute terms larger than 0.2 and
different patterns are used for different categories.

Figure 15: Estimates of Γβ for the unrestricted 4-factor model.
Note: The estimates of Γβ related to the fourth risk factor of the unrestricted 4-factor model as
defined in Equation (16) are shown. A red bar indicates a value that is in absolute terms larger than
0.2 and different patterns are used for different categories.
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Figure 16: Estimates of Γα for the unrestricted 4-factor model.
Note: The estimates of Γα related to the anomaly factor of the unrestricted 4-factor model as defined
in Equation (16) are shown. A red bar indicates a value that is in absolute terms larger than 0.2 and
different patterns are used for different categories.
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B.3 Regularized models

Figure 17: Distribution of the tangency portfolio returns based the restricted ridge model.
Note: The distribution of the monthly returns of the tangency portfolio based on the restricted ridge
model are displayed. The returns are based on tangency portfolios defined in Algorithm 4 that is
based on the ridge model as in Equation (18).
A higher penalty parameter λ corresponds to lower downside risk and more factors decreases the
variation in monthly returns.
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Figure 18: Distribution of the tangency portfolio returns based the reduced lasso factor model.
Note: The distribution of the monthly returns of the tangency portfolio based on the lasso model are
displayed. The returns are calculated using tangency portfolios defined in Algorithm 4 that is based
on the lasso model as in Algorithm 1.
A higher penalty parameter λ often corresponds to lower downside risk and more factors decreases
the variation in monthly returns.
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C Tables

C.1 Basic IPCA

C.1.1 Coefficients and significance
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Table 9: P-value of the characteristics for Γβ of the restricted model.
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Note: The p-values of the characteristics are shown based on the restricted model with k systematic
risk factors as defined in Equation (11). pi.j indicates the p-value for risk factor i of a model with j
risk factors, whereas the F.i indicates the F-value based on all risk factors of the i-factor model.
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Table 10: Coefficients of statistically significant characteristics of the restricted models.

characteristic / risk factor f1 f2.1 f2.2 f3.1 f3.2 f3.3 f4.1 f4.2 f4.3 f4.4
constant -0.336 -0.159 -0.420 -0.043 -0.127 -0.478 -0.039 -0.070 -0.304 -0.377
ato 0.108 0.104 0.066 -0.073 0.246 0.107 -0.075 0.202 0.255 -0.005
investment -0.132 0.014 -0.248 -0.010 0.062 -0.240 0.020 0.083 -0.118 -0.205
aoa -0.060 0.018 -0.117 0.009 0.020 -0.106 0.026 0.031 -0.074 -0.058
roa 0.164 -0.054 0.383 -0.036 -0.065 0.363 -0.103 -0.116 0.253 0.282
lturnover -0.145 -0.025 -0.158 0.021 -0.054 -0.153 0.045 -0.033 -0.155 -0.118
beta -0.069 -0.013 -0.152 -0.047 0.037 -0.164 -0.025 0.048 -0.073 -0.164
ldp 0.047 0.091 -0.003 0.029 0.089 0.033 0.051 0.073 0.039 0.021
c 0.046 -0.144 0.239 0.041 -0.291 0.253 -0.041 -0.324 0.082 0.207
dpi2a 0.062 0.019 0.082 0.028 -0.019 0.085 0.011 -0.042 0.063 0.051
tan 0.025 0.051 -0.031 -0.036 0.139 -0.028 -0.009 0.134 0.044 -0.046
ol -0.518 -0.476 -0.209 -0.605 -0.053 -0.114 -0.590 0.128 -0.128 -0.051
std_volume -0.190 -0.167 -0.106 -0.082 -0.070 -0.179 -0.051 0.020 -0.228 -0.076
rna 0.002 -0.043 0.030 0.092 -0.183 0.008 0.090 -0.162 -0.138 0.081
eps -0.155 -0.146 -0.051 -0.003 -0.216 -0.057 0.011 -0.161 -0.240 0.044
roe -0.069 0.060 -0.201 0.044 0.074 -0.205 0.035 0.042 0.035 -0.279
pcm -0.035 -0.021 -0.035 0.090 -0.148 -0.028 0.025 -0.215 0.055 -0.103
ret 0.038 0.073 -0.023 0.073 0.007 0.025 0.069 -0.005 0.018 0.018
sat 0.474 0.558 0.007 0.670 0.106 -0.074 0.719 -0.041 -0.062 0.000
sales_g -0.004 -0.052 0.038 -0.061 0.005 0.007 -0.061 0.029 0.001 0.008

Note: The coefficients of the restricted factor model with 1 to 4 risk factors as defined in Equation
(11) are displayed. Only characteristics that were statistically significant for a risk factor for two
different models were included. Subsequently we ranked the characteristics from low to high based on
their average p-value. fi.j indicates risk factor j of model with i factors. Values in bold denote that
the characteristic was statistically significant for that specific risk factor. When all the bold values
were positive or negative for a characteristic, the cell of characteristics name is indicated in green or
red respectively.
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Table 11: P-value of the characteristics for Γα of the unrestricted model.

characteristic / k 1 2 3 4 1 2 3 4

Past returns Value
cum_return_1_0 0.82 0.58 0.32 0.5 a2me 0.03 0.04 0.04 0.02
cum_return_6_2 0.24 0.16 0.08 0.1 beme 0.6 0.54 0.27 0.62
cum_return_12_2 0.21 0.3 0.21 0.38 c 0.08 0.12 0.3 0.2
cum_return_12_7 0.18 0.16 0.36 0.71 c2d 0.02 0.04 0 0
cum_return_36_13 0.12 0.35 0.36 0.74 d_so 0.77 0.86 0.38 0.96

debt2p 0.04 0.06 0.04 0
Investment e2p 0.64 0.77 0.02 0.01
investment 0.9 0.49 0 0 free_cf 0.76 0.71 0.42 0.88
d_ceq 0.48 0.64 0.02 0.01 ldp 0 0 0.04 0
dpi2a 0.22 0.13 0.02 0.01 nop 0.66 0.92 0 0
d_shrout 0 0 0 0 o2p 0.12 0.1 0.17 0.02
ivc 0.86 0.9 0.16 0.11 q 0.34 0.24 0.42 0.18
noa 0 0 0 0 sales_g 0 0 0.04 0.05

size 0 0.02 0 0.05
Profitability s2p 0.18 0.1 0 0
ato 0.04 0.01 0 0
cto 0.12 0.04 0 0.1 Trading frictions
d_dgm_dsales 0.95 0.6 0 0 at 0.08 0.14 0.04 0.01
eps 0.04 0.02 0.08 0 beta 0.5 0.08 0.66 0.79
ipm 0.01 0.02 0 0 beta_daily 0.47 0.72 0.11 0.43
pcm 0.32 0.24 0.03 0.14 dto 0.12 0.34 0.01 0.05
pm 0.32 0.08 0.02 0.02 idio_vol 0.2 0.88 0.44 0.53
prof 0.26 0.34 0.06 0.01 lme 0.01 0 0.02 0
rna 1 0.89 0.62 0.09 lturnover 0.39 0.98 0.08 0.01
roa 0.7 0.32 0 0 rel_to_high_price 0.27 0.22 0.57 0.92
roc 0.56 0.35 0.24 0.02 ret_max 0.84 0.91 0.12 0.25
roe 0.28 0.38 0.12 0.59 spread_mean 0.57 0.77 0.04 0.28
roic 0.44 0.42 0.34 0.76 std_turn 0 0.01 0 0
s2c 0.04 0.03 0.01 0.01 std_volume 0 0 0 0

suv 0.18 0.36 0.08 0.47
Intangibles total_vol 0.29 0.64 0.7 0.73
sat 0 0 0 0 prc 0.01 0.01 0.01 0
aoa 0.96 0.67 0.04 0.05 ret 0 0 0.7 0.58
ol 0 0 0.03 0.01 moneyness 0.01 0 0.12 0.2
tan 0.07 0.02 0.06 0.02
oa 0.81 0.44 0.32 0.21 constant 0 0 0 0

Note: The p-values for all 63 characteristics of Γα are displayed based on the unrestricted model with
k systematic risk factors as defined in Equation (16). A green cell indicates that this value is below
0.1 and therefore statistically significant at the 10 % level.

C.1.2 In-sample fit

Table 12: In-sample R2 for managed portfolios (xt) comparison between IPCA and PCA.

Total R2 portfolio return (xt) Predicted R2 portfolio return (xt)
k Γα = 0 Γα 6= 0 PCA Γα = 0 Γα 6= 0 PCA
1 0.8927 0.9144 0.8502 0.3487 0.3655 0.3437
2 0.9283 0.931 0.905 0.3627 0.3649 0.3603
3 0.943 0.9445 0.9326 0.3635 0.3644 0.3612
4 0.9487 0.9494 0.9451 0.3629 0.3645 0.3618

Note: The R2 displayed are based on the restricted Γα = 0 and unrestricted Γα 6= 0 IPCA model and
restricted with k systematic factors in Equations (11), (16) and (2). The total R2 and predictive R2

are calculated based on Equation (40) and (41) respectively. For ease of comparison a colour scheme
is used where a high R2 is indicated in green and a low R2 in red.
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C.1.3 Out-of-sample analysis

Table 13: Out-of-sample R2 for managed portfolio return (xt) comparison between IPCA and PCA.

Total R2 portfolio return (xt) Predicted R2 portfolio return (xt)
k Γα = 0 Γα 6= 0 PCA Γα = 0 Γα 6= 0 PCA
1 0.8517 0.5279 0.8104 0.4531 0.4923 0.4263
2 0.8926 0.4715 0.8956 0.4829 0.49 0.4772
3 0.9009 0.4277 0.9185 0.4851 0.4899 0.4758
4 0.9062 0.4208 0.9265 0.4881 0.4897 0.4761

Note: The R2 displayed are based on the restricted (Γα = 0) and unrestricted (Γα 6= 0) IPCA model
and PCA with k systematic factors. The total R2 and predictive R2 are calculated based on Equation
(40) and (41) that are slightly adjusted as described in Section 2.8. For ease of comparison a colour
scheme is used where a high R2 is indicated in green and a low R2 in red.

C.2 Regularized IPCA models

C.2.1 Coefficients and significance
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Table 14: Coefficients of Γβ of the lasso 1-factor restricted model.

factor 1
characteristics Min. Mean Max
Past returns
cum_return_1_0 -0.0009 -0.0002 0
cum_return_6_2 -0.0482 -0.0125 0
cum_return_12_2 -0.056 -0.0147 0
cum_return_12_7 -0.0203 -0.0041 0
cum_return_36_13 -0.0349 -0.0127 0
Investment
investment -0.0648 -0.0138 0
d_ceq 0 0.0005 0.0026
dpi2a 0 0.01 0.0498
d_shrout -0.0283 -0.0057 0
ivc -0.0137 -0.0027 0
noa 0 0.0439 0.1043
Profitability
ato 0 0.0406 0.0774
cto -0.046 -0.0092 0
d_dgm_dsales 0 0.0007 0.0035
eps -0.093 -0.0213 0
ipm 0 0.0065 0.0323
pcm 0 0.0275 0.1058
pm 0 0.0051 0.0255
prof 0 0.0148 0.0456
rna 0 0.0106 0.0529
roa 0 0.0595 0.0776
roc -0.0634 -0.0127 0
roe 0 0.0235 0.0461
roic -0.0125 0.0023 0.024
s2c -0.0023 0.0167 0.045
Intangibles
sat 0 0.0021 0.0103
aoa -0.05 -0.0117 0
ol 0 0.035 0.1033
tan 0 0 0
oa 0 0.0003 0.0013
Value
a2me 0 0.001 0.005
beme 0 0.0144 0.0632
c -0.0814 -0.0302 0
c2d 0 0.0116 0.0262
d_so -0.0216 -0.0105 0
debt2p 0 0.0028 0.0138
e2p -0.0177 -0.0035 0
free_cf 0 0.0008 0.0041
ldp 0 0.0435 0.0814
nop 0 0.0009 0.0033
o2p 0 0.0281 0.0629
q -0.0184 -0.007 0
sales_g -0.0384 -0.0078 0
Trading frictions
size 0 0.1114 0.1824
s2p 0 0.0126 0.0413
at -0.0995 -0.0199 0
beta -0.1576 -0.1356 -0.0731
beta_daily -0.0783 -0.0396 0
dto 0 0.0003 0.0017
idio_vol 0 0.0164 0.0822
lme -0.0189 -0.0038 0
lturnover -0.2311 -0.1714 0
rel_to_high_price -0.0168 -0.0034 0
ret_max -0.0642 -0.0482 0
spread_mean -0.0379 -0.0076 0
std_turn 0 0.0349 0.1246
std_volume -0.0428 -0.0096 0
suv -0.0182 -0.0036 0
total_vol -0.1478 -0.0545 0
prc 0.0123 0.3551 0.474
ret 0 0.0439 0.122
moneyness -0.0364 -0.0073 0
constant -0.9862 -0.8388 -0.7064

Note: The minimum, mean and maximum of the coefficients of the characteristics of the lasso restricted
1-factor model are shown based on Algorithm 1 with λ = {0.01, 0.1, 0.2, 0.3, 0.7}. Red indicates a low value
and green indicates a high value.
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Table 15: Coefficients of Γβ of the lasso 2-factor restricted model.

factor 1 factor 2
Characteristics Min. Mean Max. Min. Mean Max.
Past returns
cum_return_1_0 -0.0016 0.0289 0.0974 0 0 0
cum_return_6_2 -0.0269 0.0026 0.0424 0 0 0
cum_return_12_2 -0.0484 -0.0112 0.0055 0 0 0
cum_return_12_7 -0.0251 -0.0073 0 0 0 0
cum_return_36_13 -0.0024 0.0223 0.1138 0 0 0
investment
investment -0.0307 0.0322 0.1432 0 0 0
d_ceq 0 0.0012 0.0045 0 0 0
dpi2a 0 0.0098 0.0485 0 0 0
d_shrout -0.0018 0.0168 0.086 0 0 0
ivc -0.0149 0.0001 0.0155 0 0 0
noa -0.0994 0.0112 0.0673 0 0.0006 0.003
Profitability
ato 0.0094 0.047 0.0896 0 0.0008 0.0041
cto -0.0313 -0.0005 0.0289 0 0 0
d_dgm_dsales -0.0827 -0.0193 0 0 0 0
eps -0.1256 -0.0468 0 0 0 0
ipm 0 0.0278 0.06 0 0 0
pcm -0.0248 0.021 0.1034 0 0 0
pm 0 0.0328 0.0672 0 0 0
prof 0 0.0351 0.0708 0 0 0
rna 0 0.0102 0.0502 0 0 0
roa -0.1139 -0.0019 0.0565 0 0.0096 0.0357
roc -0.0532 -0.0108 0 0 0 0
roe 0.0036 0.0204 0.0462 0 0.0001 0.0004
roic -0.0074 0.0035 0.0251 0 0.0077 0.0172
s2c 0 0.0033 0.0143 0 0.0096 0.0398
Intangibles
sat 0 0.0025 0.0121 0 0 0
aoa -0.0049 0.046 0.1355 0 0 0
ol -0.1842 -0.0521 0.0322 0 0 0
tan -0.0032 0.0449 0.1176 0 0 0
oa -0.038 -0.0073 0.0015 0 0 0
Value
a2me -0.0029 0.0178 0.0612 0 0 0
beme 0 0.2069 0.397 0 0 0
c -0.0909 -0.0459 -0.0012 -0.0157 -0.005 0
c2d -0.0252 -0.001 0.0081 0 0.0001 0.0006
d_so -0.0247 -0.0126 -0.0003 -0.0016 -0.0003 0
debt2p -0.0046 0.0388 0.0958 0 0 0
e2p -0.002 0.0102 0.0379 0 0.0043 0.0168
free_cf -0.0261 -0.0052 0 0 0 0
ldp 0.0794 0.1683 0.2351 0 0.0138 0.0514
nop 0 0 0 0 0 0
o2p 0.0008 0.0246 0.061 0 0.0092 0.0362
q -0.0401 -0.0214 0 0 0 0
sales_g -0.0473 -0.0096 0 0 0 0
Trading frictions
size 0.2237 0.3511 0.5302 0 0.3621 0.8731
s2p 0.0027 0.0171 0.0381 0 0.0003 0.0013
at -0.0837 0.0125 0.1048 -0.0001 0.0213 0.0853
beta -0.0988 0.0773 0.3115 -0.5148 -0.1678 -0.0109
beta_daily -0.0291 0.0517 0.1524 0 0 0
dto -0.0062 -0.0016 0 0 0 0
idio_vol -0.083 -0.008 0.0428 -0.005 -0.0013 0
lme -0.0077 0.0154 0.0491 -0.0005 0.0463 0.1247
lturnover -0.1739 -0.0097 0.2441 -0.2132 -0.0981 -0.0192
rel_to_high_price -0.0025 0.0236 0.1204 0 0 0
ret_max -0.0387 -0.0027 0.0644 -0.1075 -0.04 -0.0043
spread_mean -0.0032 0.05 0.169 0 0 0
std_turn -0.1483 -0.0091 0.0928 0 0 0
std_volume -0.0133 0.0177 0.0879 0 0 0
suv -0.0008 0.0075 0.0383 0 0 0
total_vol -0.0339 -0.0096 0.0174 -0.3992 -0.1211 -0.0037
prc 0.1825 0.4088 0.5495 0.2178 0.406 0.6449
ret 0.013 0.0885 0.161 0 0.001 0.0048
moneyness -0.0062 0.051 0.1338 0 0 0
constant -0.7916 -0.2416 0.4716 -0.9474 -0.1243 0.4871

Note: The minimum, mean and maximum of the coefficients of the characteristics of the restricted lasso
2-factor model are shown based on Algorithm 1 with λ = {0.01, 0.1, 0.2, 0.3, 0.7}. Red indicates a low value
and green indicates a high value.
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Table 16: Coefficients of Γβ of the lasso 3-factor restricted model.

factor 1 factor 2 factor 3
Characteristics Min. Mean Max. Min. Mean Max. Min. Mean Max.
Past returns
cum_return_1_0 -0.0004 0.0361 0.0904 -0.0028 -0.0006 0 0 0 0
cum_return_6_2 -0.0137 0.0276 0.1176 0 0.0741 0.2479 0 0 0
cum_return_12_2 -0.0365 0.0281 0.1866 0 0.0267 0.1335 0 0 0
cum_return_12_7 -0.0302 -0.0103 0 0 0 0 0 0 0
cum_return_36_13 -0.0081 0.0243 0.1084 0 0 0.0001 0 0 0
investment
investment -0.1088 0.0115 0.1739 -0.0143 -0.0029 0 0 0 0
d_ceq -0.007 0.0089 0.048 0 0 0 0 0 0
dpi2a -0.0009 0.013 0.0528 0 0 0 0 0 0
d_shrout -0.0022 0.0245 0.0646 0 0 0 0 0 0
ivc -0.0221 0.0003 0.0279 0 0 0 0 0 0
noa -0.1047 0.0272 0.089 -0.0112 0.0023 0.0218 0 0 0
Profitability
ato -0.0307 0.0344 0.0839 -0.0144 0.0042 0.0341 0 0 0
cto -0.0332 -0.0015 0.0156 0 0 0 0 0 0
d_dgm_dsales -0.0881 -0.0183 0.0014 0 0 0 0 0 0
eps -0.1241 -0.0506 -0.0027 0 0.0012 0.0061 0 0 0
ipm -0.0246 0.021 0.0637 -0.0029 -0.0006 0 0 0 0
pcm -0.0722 0.0599 0.2135 -0.0058 -0.0012 0 0 0 0
pm -0.091 0.0146 0.095 -0.0039 -0.0008 0 0 0 0
prof 0.0065 0.0555 0.0986 0 0.001 0.005 0 0 0
rna -0.0051 0.017 0.0495 0 0 0 0 0 0
roa -0.1268 0 0.0476 -0.0026 0.0274 0.0837 -0.032 0.0847 0.192
roc -0.05 -0.0099 0.0017 0 0 0 0 0 0
roe -0.1602 -0.0065 0.0648 -0.005 0.0012 0.0063 -0.001 0.0017 0.0095
roic -0.0069 0.0053 0.0277 0 0.0029 0.0147 -0.0023 0.0039 0.022
s2c -0.0004 0.0008 0.0036 -0.0004 0.0177 0.0745 -0.0119 0.1327 0.3685
Intangibles
sat -0.0003 0.0023 0.0083 0 0 0 0 0 0
aoa -0.0079 0.0515 0.1331 -0.0385 -0.0077 0 0 0 0
ol -0.2253 0.0003 0.2165 0 0.0048 0.0239 0 0 0
tan -0.1424 0.016 0.1539 -0.0166 -0.0033 0 0 0 0
oa -0.1439 -0.0288 0.0013 0 0 0 0 0 0
Value
a2me -0.0364 0.0086 0.0504 -0.0614 -0.006 0.0341 -0.1849 0.0799 0.5167
beme 0.0623 0.2132 0.3788 -0.1505 -0.03 0.0003 -0.0026 0.0052 0.0285
c -0.1002 -0.0413 0.0034 -0.0597 -0.0099 0.0125 0 0 0
c2d -0.0416 0.0111 0.0666 -0.0022 0.0026 0.0142 -0.0023 0.0038 0.0214
d_so -0.0242 -0.0069 0.0217 -0.0134 -0.0019 0.0042 0 0 0
debt2p -0.0051 0.0427 0.1034 -0.0359 -0.0072 0.0001 -0.0006 0.0013 0.0069
e2p -0.0071 0.007 0.0351 -0.0005 0.0038 0.0184 0 0 0
free_cf -0.0231 -0.0089 0 0 0 0 0 0 0
ldp -0.1717 0.111 0.2952 -0.0828 0.0018 0.0877 -0.0077 0.0156 0.0859
nop -0.0138 -0.0023 0.002 0 0.0001 0.0004 -0.0001 0.0001 0.0006
o2p -0.0091 0.0191 0.0654 -0.0055 0.0107 0.0308 -0.0043 0.0072 0.0405
q -0.0546 -0.0121 0.0486 0 0.0008 0.004 0 0 0
sales_g -0.1718 -0.0397 0.0407 0 0.0002 0.0008 0 0 0
Trading frictions
size -0.096 0.2908 0.5376 -0.2342 0.1538 0.7838 -0.1403 0.3553 0.9545
s2p -0.0087 0.03 0.0818 -0.0051 0.001 0.0096 0 0 0
at -0.086 0.0146 0.1099 -0.0382 0.0129 0.1138 -0.3795 -0.0229 0.2425
beta -0.0771 0.0898 0.2876 -0.1851 -0.0769 0.0023 -0.7686 -0.1742 0.053
beta_daily -0.0364 0.0723 0.1527 -0.0512 -0.0146 0 -0.1407 0.0113 0.1681
dto -0.0503 0.0189 0.1426 0 0 0 0 0 0
idio_vol -0.0857 -0.0084 0.0525 0 0 0 0 0 0
lme -0.002 0.0287 0.0878 -0.0141 0.0124 0.0866 0 0 0
lturnover -0.1583 0.0207 0.2654 -0.229 -0.0866 0.0045 -0.3438 -0.046 0.1891
rel_to_high_price 0.0017 0.1103 0.4083 0 0.3871 0.9875 0 0 0
ret_max -0.0369 0.0016 0.0635 -0.0634 -0.0242 0.001 -0.2478 -0.0587 0.0315
spread_mean -0.0631 0.0349 0.1919 -0.0163 -0.0033 0 0 0 0
std_turn -0.1392 -0.0124 0.0957 -0.0022 -0.0004 0 0 0 0
std_volume -0.0034 0.0365 0.0921 -0.0085 -0.0017 0 0 0 0
suv -0.0284 0.0069 0.0631 0 0 0 0 0 0
total_vol -0.0278 -0.005 0.0095 -0.0504 -0.0166 0.0017 -0.3772 -0.0713 0.0452
prc 0.122 0.3804 0.5566 -0.048 0.314 0.5003 -0.0068 0.2067 0.6678
ret 0.0231 0.1317 0.3139 -0.0008 0.0213 0.0762 0 0 0
moneyness -0.0054 0.0518 0.1315 -0.0382 -0.0076 0 0 0 0
constant -0.7168 -0.025 0.4775 -0.8279 -0.2165 0.4639 -0.8094 -0.023 0.5578

Note: The minimum, mean and maximum of the coefficients of the characteristics of the restricted lasso
3-factor model are shown based on Algorithm 1 with λ = {0.01, 0.1, 0.2, 0.3, 0.7}. Red indicates a low value
and green indicates a high value.

72



Table 17: Coefficients of Γβ of the lasso 4-factor restricted model.

factor 1 factor 2 factor 3 factor 4
Characteristics Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max.
Past returns
cum_return_1_0 -0.0002 0.0321 0.1007 -0.0012 0.0005 0.0046 0 0 0 0 0 0
cum_return_6_2 -0.0155 0.031 0.1158 -0.0016 0.0638 0.2172 -0.1429 0.0171 0.2083 0 0.1127 0.5634
cum_return_12_2 -0.0369 0.033 0.139 0 0.0289 0.1032 0 0 0 0 0 0
cum_return_12_7 -0.0829 0.0182 0.2208 0 0 0 0 0 0 0 0 0
cum_return_36_13 -0.0281 0.0206 0.1141 -0.0003 0.0001 0.0004 0 0 0 0 0 0
investment
investment -0.1145 -0.0019 0.1787 -0.0088 0.0031 0.0323 0 0 0 0 0 0
d_ceq -0.0046 0.0088 0.0374 0 0 0 0 0 0 0 0 0
dpi2a -0.0093 0.0138 0.0527 0 0 0 0 0 0 0 0 0
d_shrout -0.1441 0.0571 0.3531 0 0 0 0 0 0 0 0 0
ivc -0.031 -0.0046 0.0329 0 0 0 0 0 0 0 0 0
noa -0.1173 0.032 0.1221 -0.007 0.0037 0.0239 -0.0013 0.0004 0.0035 0 0 0
Profitability
ato -0.0187 0.034 0.085 -0.0082 0.0062 0.0373 -0.002 0.0007 0.0054 0 0 0
cto -0.0338 0.0029 0.0356 0 0 0 0 0 0 0 0 0
d_dgm_dsales -0.1872 0.0114 0.3238 0 0 0 0 0 0 0 0 0
eps -0.1238 -0.0492 -0.0029 -0.0022 0.0005 0.0033 0 0 0 0 0 0
ipm -0.0295 0.0222 0.0621 -0.0015 -0.0002 0.001 0 0 0 0 0 0
pcm -0.0867 0.0694 0.3141 -0.0039 -0.0006 0.0025 0 0 0 0 0 0
pm -0.1048 0.0115 0.088 -0.0021 -0.0003 0.0014 0 0 0 0 0 0
prof -0.1134 0.0486 0.1973 0 0.02 0.0686 0 0 0 0 0 0
rna -0.002 0.0162 0.0493 0 0 0 0 0 0 0 0 0
roa -0.1209 0.0015 0.0481 -0.005 0.0108 0.0577 -0.0031 0.0839 0.2359 0 0.0097 0.0484
roc -0.0497 -0.0148 0.012 0 0 0 0 0 0 0 0 0
roe -0.127 -0.0176 0.0662 -0.0026 0.0011 0.0076 -0.0004 0.0001 0.0011 0 0 0
roic -0.0078 0.0068 0.0242 0 0 0 0 0 0 0 0 0
s2c -0.0064 0.0001 0.0048 0 0.0037 0.0183 -0.001 0.0003 0.0027 0 0 0
Intangibles
sat -0.0066 0.0029 0.013 0 0 0 0 0 0 0 0 0
aoa -0.0077 0.0298 0.1333 -0.0332 0.0117 0.1224 0 0 0 0 0 0
ol -0.2365 0.0352 0.2909 -0.715 -0.0608 0.4553 0 0 0 0 0 0
tan -0.1026 0.0006 0.1504 -0.0088 0.0031 0.0326 0 0 0 0 0 0
oa -0.1525 -0.037 0.0042 0 0 0 0 0 0 0 0 0
Value
a2me -0.0391 -0.0033 0.0268 -0.0157 0.0366 0.1456 -0.565 -0.0224 0.5081 -0.3356 0.1006 0.578
beme -0.0768 0.1319 0.3595 -0.1107 0.0836 0.3968 -0.7716 -0.1396 0.1245 -0.0237 0.1111 0.2289
c -0.1559 -0.0436 0.1024 -0.0522 -0.0093 0.0076 -0.0076 -0.001 0.0028 0 0 0
c2d -0.0418 0.0126 0.0626 -0.0015 0.0006 0.004 -0.0002 0.0001 0.0006 0 0 0
d_so -0.029 -0.0067 0.0202 -0.0149 -0.0025 0.0031 -0.0022 -0.0003 0.0008 0 0 0
debt2p -0.0228 0.0198 0.0714 -0.0316 0.0191 0.1163 -0.0045 0.016 0.0538 -0.024 0.0084 0.0488
e2p -0.0356 0.0014 0.0351 0 0.0023 0.0115 -0.0006 0.0002 0.0017 0 0 0
free_cf -0.0235 -0.0101 0 0 0 0 0 0 0 0 0 0
ldp -0.2754 0.0592 0.2886 -0.0585 0.0305 0.1864 -0.0042 0.0014 0.0114 0 0 0
nop -0.007 -0.0015 0.0009 0 0 0 0 0 0 0 0 0
o2p -0.0885 0.0208 0.0828 -0.003 0.006 0.0324 -0.0017 0.0006 0.0047 0 0 0
q -0.0514 -0.0114 0.0404 -0.0014 0.0003 0.0021 0 0 0 0 0 0
sales_g -0.2124 -0.0453 0.0429 -0.0007 0.0002 0.0011 0 0 0 0 0 0
Trading frictions
size -0.0659 0.1764 0.4366 -0.1779 0.289 0.7962 -0.1239 0.2266 0.7283 -0.3523 0.1824 0.6998
s2p -0.0131 0.0418 0.1174 -0.5012 -0.0961 0.0369 -0.0004 0.0002 0.0012 0 0 0
at -0.0865 -0.0082 0.0601 -0.0519 0.0458 0.2115 -0.5053 -0.086 0.0476 -0.4868 -0.1586 0.0237
beta -0.0732 0.0361 0.2473 -0.1145 -0.0042 0.2841 -0.3433 -0.0679 0.101 -0.4983 -0.0997 0
beta_daily -0.0339 0.05 0.1736 -0.042 0.0155 0.1565 -0.0002 0 0.0003 0 0 0
dto -0.0459 0.0304 0.1088 0 0 0 0 0 0 0 0 0
idio_vol -0.0932 -0.0078 0.0487 0 0 0 0 0 0 0 0 0
lme -0.0021 0.0316 0.1396 -0.025 0.0508 0.1775 -0.6581 -0.0545 0.4685 -0.6562 0.0151 0.4941
lturnover -0.1607 -0.0193 0.261 -0.176 -0.0178 0.1464 -0.1288 -0.0297 0.017 0 0.0318 0.1588
rel_to_high_price -0.0012 0.1155 0.313 -0.0073 0.2582 0.7356 -0.073 0.2102 0.9636 -0.0592 0.2253 0.469
ret_max -0.0347 -0.009 0.0109 -0.0423 -0.0017 0.0654 -0.1957 -0.0465 0.0173 -0.2078 -0.0416 0
spread_mean -0.087 0.0203 0.191 -0.0104 0.0036 0.0382 0 0 0 0 0 0
std_turn -0.145 -0.0208 0.093 -0.0015 -0.0002 0.001 0 0 0 0 0 0
std_volume -0.0063 0.0409 0.1131 -0.0058 0.0021 0.0215 0 0 0 0 0 0
suv -0.0357 0.0067 0.0602 0 0 0 0 0 0 0 0 0
total_vol -0.0263 -0.0033 0.0118 -0.0352 -0.0069 0.0008 -0.0051 -0.0006 0.0019 0 0 0
prc 0.0322 0.3622 0.5567 0.0314 0.2759 0.4972 -0.0999 0.1225 0.3089 -0.0198 0.2156 0.4831
ret -0.0709 0.1428 0.4776 0.0001 0.0361 0.101 -0.0017 0.0006 0.0045 0 0 0
moneyness -0.0201 0.0274 0.1222 -0.0296 0.0104 0.109 0 0 0 0 0 0
constant -0.7235 -0.0798 0.3369 -0.7996 0.0424 0.4547 -0.7761 -0.1557 0.1277 -0.5905 -0.0573 0.2432

Note: The minimum, mean and maximum of the coefficients of the characteristics of the restricted lasso
4-factor model are shown based on Algorithm 1 with λ = {0.01, 0.1, 0.2, 0.3, 0.7}. Red indicates a low value
and green indicates a high value.
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Table 18: Percent of times the parameter of the characteristic is set to 0 in the lasso restricted model.

Characteristic/k 1 2 3 4 Characteristic/k 1 2 3 4
past returns value
cum_return_1_0 80 60 60 60 a2me 80 60 0 0
cum_return_6_2 60 60 40 20 beme 60 60 40 0
cum_return_12_2 60 60 60 60 c 40 20 40 40
cum_return_12_7 80 80 80 80 c2d 40 40 20 45
cum_return_36_13 60 80 60 60 d_so 40 40 40 45
investment debt2p 80 60 40 0
investment 60 60 60 60 e2p 80 40 60 65
d_ceq 80 80 80 80 free_cf 80 80 80 80
dpi2a 80 80 80 80 ldp 20 20 20 40
d_shrout 80 80 80 80 nop 60 100 60 80
ivc 80 80 80 80 o2p 20 20 20 40
noa 40 40 40 40 q 60 60 60 60
profitability sales_g 60 80 60 60
ato 40 40 40 40 size 20 20 0 0
cto 80 80 80 80 trading friction
d_dgm_dsales 80 80 80 80 s2p 60 40 40 45
eps 60 60 60 60 at 80 20 0 0
ipm 80 60 60 60 beta 0 0 0 20
pcm 60 60 60 60 beta_daily 20 60 20 40
pm 80 60 60 60 dto 80 80 80 80
prof 40 60 60 60 idio_vol 80 60 80 80
rna 80 80 80 80 lme 80 20 40 0
roa 20 20 0 20 lturnover 20 0 0 20
roc 80 80 80 80 rel_to_high_price 80 80 40 0
roe 20 40 20 45 ret_max 20 0 0 20
roic 60 40 60 80 spread_mean 80 60 60 60
s2c 40 40 20 65 std_turn 60 60 60 60
sat 80 80 80 80 std_volume 60 60 60 60
intangibles suv 80 80 80 80
aoa total_vol 20 0 0 40
ol 60 60 60 60 prc 0 0 0 0
tan 100 60 60 60 ret 40 40 40 40
oa 80 80 80 85 moneyness 80 60 60 60

constant 0 0 0 0

Note: Percent of times the parameter is set to zero by the lasso restricted model with k risk factors
as defined in Algorithm 1 is displayed. A low percentage (lower or equal to 20% is indicated in green)
therefore indicates that the characteristic is not often set to zero and therefore is important in the
explanation of returns.
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C.2.2 In-sample fit

Table 19: R2 in-sample based on ridge restricted model.

Total R2 individual return (rt) Predicted R2 individual return (rt )

k / λ 0 0.1 0.2 0.3 0.7 k / λ 0 0.1 0.2 0.3 0.7
1 0.1901 0.1864 0.186 0.1856 0.1844 1 0.072 0.0694 0.0689 0.0686 0.0677
2 0.2133 0.2089 0.2078 0.2067 0.2028 2 0.0794 0.0782 0.0777 0.0771 0.0751
3 0.2273 0.2202 0.2182 0.2162 0.2104 3 0.0797 0.0789 0.0781 0.0773 0.0749
4 0.2366 0.2263 0.2238 0.221 0.2133 4 0.0797 0.0788 0.0783 0.0776 0.075

Total R2 managed portfolio return (xt) Predicted R2 managed portfolio return (xt)

k / λ 0 0.1 0.2 0.3 0.7 k / λ 0 0.1 0.2 0.3 0.7
1 0.8927 0.8775 0.8765 0.8757 0.8731 1 0.3487 0.3395 0.3386 0.3377 0.3346
2 0.9283 0.9232 0.9233 0.9228 0.9184 2 0.3627 0.3623 0.362 0.3613 0.3574
3 0.943 0.9396 0.9398 0.9393 0.9333 3 0.3635 0.3637 0.3631 0.3621 0.3576
4 0.9487 0.9448 0.9458 0.9469 0.9398 4 0.3629 0.3634 0.3632 0.3626 0.3578

Note: The in-sample R2 for the restricted ridge model are depicted for different penalty parameters
λ. The total R2 and predictive R2 are calculated based on Equation (40) and (41) respectively. For
ease of comparison a colour scheme is used where a high R2 is indicated in green and a low R2 in red.

Table 20: R2 in-sample for elastic net 1-factor model.

Total R2 individual return (rt) Predicted R2 individual return (rt)

ρ / λ 0.01 0.1 0.2 0.3 0.7 ρ / λ 0.01 0.1 0.2 0.3 0.7
0 0.1897 0.1864 0.186 0.1856 0.1844 0 0.0703 0.0694 0.0689 0.0686 0.0677
0.25 0.1855 0.1854 0.1851 0.1848 0.1842 0.25 0.0704 0.0706 0.0706 0.0706 0.0704
0.5 0.1856 0.1851 0.1842 0.1839 0.1838 0.5 0.0705 0.0706 0.0702 0.0696 0.0688
0.75 0.1856 0.1847 0.1841 0.1838 0.1832 0.75 0.0705 0.0703 0.0694 0.0682 0.0669
1 0.1855 0.1843 0.1824 0.1789 0.1744 1 0.0706 0.0686 0.0652 0.0617 0.0583

Total R2 managed portfolio return (xt) Predicted R2 managed portfolio return (xt)

ρ / λ 0.01 0.1 0.2 0.3 0.7 ρ / λ 0.01 0.1 0.2 0.3 0.7
0 0.8927 0.8775 0.8765 0.8757 0.8731 0 0.3482 0.3395 0.3386 0.3377 0.3346
0.25 0.8881 0.8879 0.8876 0.8874 0.8871 0.25 0.3484 0.3487 0.3488 0.3488 0.3486
0.5 0.8881 0.8876 0.8872 0.8872 0.8872 0.5 0.3486 0.3488 0.3484 0.3469 0.3449
0.75 0.8881 0.8875 0.8874 0.8869 0.8849 0.75 0.3487 0.3485 0.3466 0.3431 0.339
1 0.888 0.8876 0.8811 0.8679 0.8525 1 0.3491 0.3443 0.3332 0.3204 0.3083

Note: R2 for the 1 factor restricted model in-sample based on elastic net. The total R2 and predictive
R2 are calculated based on Equation (40) and (41) respectively. The total R2 for raw returns decreases
when λ increases and when ρ increases. The predicted R2 mostly decreases when λ increases, however
this does not hold for ρ is 0.25 or 0.5. It seems that for these values of ρ an optimum lies between
λ 0.1 and 0.3. For ease of comparison a colour scheme is used where a high R2 is indicated in green
and a low R2 in red.

75



Table 21: R2 in-sample for elastic net 2-factor model.

Total R2 individual return (rt) Predicted R2 individual return (rt)

ρ / λ 0.01 0.1 0.2 0.3 0.7 ρ / λ 0.01 0.1 0.2 0.3 0.7
0 0.2053 0.2056 0.2053 0.2053 0.204 0 0.0758 0.0761 0.0758 0.0759 0.0758
0.25 0.2053 0.2056 0.2053 0.2053 0.2023 0.25 0.0758 0.0761 0.0758 0.0759 0.0755
0.5 0.2055 0.2056 0.2051 0.2042 0.2023 0.5 0.076 0.0761 0.076 0.0758 0.0755
0.75 0.2055 0.2046 0.2051 0.2042 0.1947 0.75 0.076 0.0757 0.076 0.0758 0.0728
1 0.2056 0.2046 0.204 0.2014 0.1947 1 0.0761 0.0757 0.0758 0.0753 0.0728

Total R2 managed portfolio return (xt) Predicted R2 managed portfolio return (xt)

ρ / λ 0.01 0.1 0.2 0.3 0.7 ρ / λ 0.01 0.1 0.2 0.3 0.7
0 0.9241 0.9243 0.9242 0.9242 0.9228 0 0.3596 0.3597 0.3597 0.3598 0.3595
0.25 0.9241 0.9242 0.9242 0.9242 0.9226 0.25 0.3596 0.3596 0.3597 0.3598 0.3596
0.5 0.9243 0.9242 0.9238 0.9227 0.9226 0.5 0.3597 0.3596 0.3599 0.3596 0.3596
0.75 0.9243 0.9231 0.9238 0.9227 0.9136 0.75 0.3597 0.3589 0.3599 0.3596 0.3548
1 0.9243 0.9231 0.9228 0.9221 0.9136 1 0.3597 0.3589 0.3595 0.3597 0.3548

Note: R2 for the 2 factor restricted model in-sample based on elastic net. The total R2 and predictive
R2 are calculated based on Equation (40) and (41) respectively. The total R2 for raw returns almost
always decreases when λ increases and when ρ increases. The predicted R2 does not differ substantially
between the different parameters, however we do observe that higher values are centered more around
ρ 0.25 and 0.5 and that an increase in λ yields more often than not a decrease in predicted R2. For
ease of comparison a colour scheme is used where a high R2 is indicated in green and a low R2 in red.

C.2.3 Out-of-sample analysis

Table 22: R2 out-of-sample based on ridge restricted model with λ.

Total R2 Predicted R2

Individual returns (rt) Individual returns (rt)
k Basic λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.7 Basic λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.7
1 0.1338 0.1337 0.1336 0.1336 0.1335 0.075 0.0749 0.0747 0.0746 0.0743
2 0.1466 0.1468 0.147 0.147 0.1472 0.0823 0.0825 0.0825 0.0825 0.0825
3 0.1536 0.1534 0.1532 0.1531 0.1528 0.0827 0.0829 0.0829 0.0829 0.0827
4 0.1567 0.1565 0.1571 0.1572 0.1565 0.0832 0.0832 0.0835 0.0837 0.0835

Managed portfolio return (xt) Managed portfolio return (xt)
k Basic λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.7 Basic λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.7
1 0.8517 0.8514 0.8512 0.851 0.8506 0.4531 0.4524 0.4519 0.4516 0.4506
2 0.8926 0.893 0.8933 0.8936 0.8942 0.4829 0.4825 0.4824 0.4824 0.4823
3 0.9009 0.9013 0.9015 0.9016 0.902 0.4851 0.4848 0.4846 0.4844 0.4839
4 0.9062 0.9075 0.9071 0.9101 0.9104 0.4881 0.4876 0.4881 0.4874 0.4867

Note: The out-of-sample R2 for the restricted ridge model are depicted for different penalty param-
eters λ. The total R2 and predictive R2 are calculated based on Equation (40) and (41) that are
slightly adjusted as described in Section 2.8. For ease of comparison a colour scheme is used where a
high R2 is indicated in green and a low R2 in red.
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Table 23: R2 out-of-sample sharpe ratios of restricted ridge model t=90.

λ k=1 k=2 k=3 k=4
tangency f1 tangency f1 f2 tangency f1 f2 f3 tangency f1 f2 f3 f5

0.01 1.1267 1.1267 1.7500 1.5991 0.4616 1.7173 1.4052 0.5726 0.5829 1.9257 1.0245 0.7437 0.6681 0.3121
0.1 1.1252 1.1252 1.7561 1.5779 0.4727 1.6988 1.5188 0.2036 0.5072 1.9383 1.2556 0.4859 0.5633 0.2637
0.2 1.1238 1.1238 1.7610 1.5674 0.4762 1.8022 1.2765 0.5042 0.3875 2.0051 1.2593 0.4647 0.3241 0.3821
0.3 1.1226 1.1226 1.7671 1.5740 0.4559 1.7325 1.1481 0.8506 0.0673 1.9572 1.1350 0.5324 0.5743 0.2389
0.7 1.1189 1.1189 1.8108 1.6646 0.0523 1.7381 1.1318 0.3288 0.6985 1.8092 1.1379 0.2863 0.2805 0.7292

Note: The out-of-sample Sharpe ratios of the tangency portfolios based on the restricted ridge model
defined in Equation (18) are shown. The table shows that when more factors are considered the
Sharpe ratio of the tangency portfolio often increases. Moreover, for the three and four factor model
a λ of around 0.2 is optimal, whereas for 2 factors a high penalty parameter is better.

Table 24: Out-of-sample R2 for individual returns (rt) comparison.

t=90 Restricted Unrestricted
Total R2 individual returns (rt) Total R2 individual returns (rt)

k Basic P-value λ=0.01 λ=0.1 λ=0.2 λ=0.3 λ=0.7 Basic P-value λ=0.01 λ=0.1 λ=0.2 λ=0.3 λ=0.7
1 0.1338 0.128 0.1338 0.1342 0.1327 0.1309 0.1273 0.0843 0.1298 0.0843 0.1175 0.1098 0.1317 0.1349
2 0.1466 0.141 0.1466 0.1476 0.1479 0.1457 0.1385 0.0809 0.1351 0.0796 0.1226 0.0701 0.103 0.1152
3 0.1536 0.1478 0.1536 0.1522 0.1531 0.1508 0.1498 0.0766 0.139 0.0766 0.1127 0.1397 0.1487 0.1481
4 0.1567 0.1541 0.1575 0.1562 0.1571 0.1574 0.1524 0.0788 0.1517 0.0783 0.1139 0.1429 0.1548 0.1479

Predicted R2 individual returns (rt) Predicted R2 individual returns (rt)
k Basic P-value λ=0.01 λ=0.1 λ=0.2 λ=0.3 λ=0.7 Basic P-value λ=0.01 λ=0.1 λ=0.2 λ=0.3 λ=0.7
1 0.075 0.068 0.075 0.0745 0.0732 0.0718 0.0703 0.0837 0.0732 0.084 0.0842 0.0843 0.0827 0.0768
2 0.0823 0.077 0.0823 0.0827 0.0827 0.0801 0.075 0.0834 0.0783 0.0835 0.0835 0.0844 0.0828 0.078
3 0.0827 0.0794 0.0827 0.0834 0.0839 0.0826 0.081 0.0833 0.0803 0.0833 0.084 0.0849 0.0831 0.0818
4 0.0832 0.0837 0.0831 0.0835 0.0842 0.082 0.0792 0.0834 0.0848 0.0834 0.0838 0.0847 0.082 0.0793

t=75 Restricted Unrestricted
Total R2 individual returns (rt) Total R2 individual returns (rt)

k Basic P-value λ=0.01 λ=0.1 λ=0.2 λ=0.3 λ=0.7 Basic P-value λ=0.01 λ=0.1 λ=0.2 λ=0.3 λ=0.7
1 0.1405 0.1384 0.1406 0.1421 0.1406 0.1401 0.1375 0.0897 0.1042 0.0896 0.1216 0.1118 0.1383 0.1439
2 0.1545 0.1487 0.1547 0.1568 0.154 0.1516 0.1454 0.0892 0.1152 0.0877 0.1316 0.0837 0.113 0.1248
3 0.1645 0.1618 0.1645 0.1667 0.1662 0.1624 0.161 0.0887 0.1522 0.0887 0.1196 0.1489 0.1585 0.1589
4 0.1687 0.1656 0.1688 0.1697 0.17 0.1693 0.1626 0.0863 0.1612 0.0872 0.1254 0.1501 0.1643 0.1573

Predicted R2 individual returns (rt) Predicted R2 individual returns (rt)
k Basic P-value λ=0.01 λ=0.1 λ=0.2 λ=0.3 λ=0.7 Basic P-value λ=0.01 λ=0.1 λ=0.2 λ=0.3 λ=0.7
1 0.0418 0.0367 0.0418 0.0417 0.0408 0.0398 0.0386 0.0494 0.0428 0.0494 0.0497 0.0493 0.0484 0.0444
2 0.0483 0.0433 0.0483 0.049 0.0476 0.0455 0.0436 0.0494 0.0443 0.0495 0.0498 0.0497 0.0483 0.0453
3 0.0487 0.0454 0.0487 0.0492 0.0488 0.0484 0.0472 0.0494 0.0459 0.0494 0.05 0.0497 0.0493 0.0483
4 0.0486 0.0492 0.0489 0.0493 0.0492 0.0478 0.0458 0.0492 0.0501 0.0494 0.0499 0.0496 0.0478 0.046

Note: The total R2 and predictive R2 are calculated based on Equation (40) and (41) that are slightly
adjusted as described in Section 2.8. Three different methods are utilized for comparison purpose.
Basic represents the normal IPCA model based on all characteristics, the p-value represents the model
only including characteristics that have shown to be statistically significant at the 10% level, and the
last models depicted by λ are based on the lasso method. Moreover, the t = x indicates that x is the
start of the out-of-sample sample. For ease of comparison a colour scheme is used where a high R2 is
indicated in green and a low R2 in red.
From this table we can conclude that (1) a restricted model that is more parsimonious based on lasso
does often increase out-of-sample fit (λ ∈ {0.1, 0.2}, but excluding too many characteristics often
yields lower performance (λ = 0.7). Moreover, (2) the unrestricted model shows that including all
characteristics is really affecting the performance negatively, a reduced format based on both lasso as
well as p-value technique is increasing the fit substantially.
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Table 25: Out-of-sample R2 for managed portfolio return (xt) comparison.

t=90 Restricted Unrestricted
Total R2 managed portfolio return (xt) Total R2 managed portfolio return (xt)

k Basic P-value λ = 0.01 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.7 Basic P-value λ = 0.01 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.7
1 0.8517 0.9698 0.8524 0.9076 0.9342 0.9463 0.9776 0.5279 0.9822 0.5241 0.7442 0.7033 0.8934 0.9878
2 0.8926 0.9682 0.8926 0.9267 0.9566 0.9708 0.991 0.4715 0.9698 0.4605 0.7578 0.3916 0.6419 0.7946
3 0.9009 0.9643 0.9009 0.9297 0.9604 0.9702 0.9834 0.4277 0.9392 0.4277 0.6973 0.8916 0.965 0.9791
4 0.9062 0.9543 0.9078 0.9339 0.9578 0.9851 0.9913 0.4208 0.9441 0.4183 0.682 0.8891 0.9822 0.9818

Predicted R2 managed portfolio return (xt) Predicted R2 managed portfolio return (xt)
k Basic P-value λ = 0.01 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.7 Basic P-value λ = 0.01 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.7
1 0.4531 0.441 0.4517 0.452 0.4661 0.4717 0.4562 0.4923 0.4716 0.4924 0.491 0.5049 0.5105 0.479
2 0.4829 0.4772 0.4818 0.4937 0.5036 0.5067 0.4869 0.49 0.479 0.4895 0.5004 0.5093 0.5154 0.4941
3 0.4851 0.4842 0.4851 0.4959 0.5035 0.5012 0.4943 0.4899 0.4782 0.4899 0.4999 0.507 0.5035 0.4962
4 0.4881 0.4803 0.4883 0.4962 0.4992 0.4921 0.4835 0.4897 0.4847 0.4898 0.4978 0.5005 0.4933 0.4846

t=75 Restricted Unrestricted
Total R2 managed portfolio return (xt) managed portfolio return (xt) total R2

k Basic P-value λ = 0.01 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.7 Basic P-value λ = 0.01 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.7
1 0.8686 0.9782 0.8698 0.9219 0.9412 0.9539 0.98 0.5977 0.7023 0.5945 0.7702 0.7364 0.907 0.9859
2 0.9034 0.9712 0.9034 0.9341 0.9596 0.9696 0.9807 0.5683 0.8384 0.5585 0.7958 0.5519 0.7294 0.8294
3 0.921 0.974 0.921 0.9462 0.9706 0.9792 0.988 0.5508 0.9482 0.5508 0.7335 0.9068 0.9676 0.9847
4 0.9251 0.9688 0.9258 0.9494 0.9693 0.9879 0.994 0.5286 0.9608 0.5307 0.7521 0.8923 0.9747 0.9851

Predicted R2 managed portfolio return (xt) Predicted R2 managed portfolio return (xt)
k Basic P-value λ = 0.01 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.7 Basic P-value λ = 0.01 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.7
1 0.3598 0.3379 0.3579 0.3504 0.3617 0.3647 0.3473 0.3884 0.354 0.387 0.3755 0.3862 0.3888 0.3613
2 0.3813 0.3592 0.3796 0.3821 0.3857 0.386 0.371 0.387 0.3632 0.3854 0.3872 0.3906 0.3926 0.3751
3 0.3844 0.366 0.3844 0.3845 0.3858 0.3838 0.3743 0.3872 0.3678 0.3872 0.3869 0.3873 0.3859 0.3761
4 0.3853 0.3685 0.3858 0.3842 0.3828 0.371 0.3651 0.3868 0.371 0.3867 0.3867 0.3839 0.3713 0.3655

Note: The total R2 and predictive R2 are calculated based on Equation (40) and (41) that are slightly
adjusted as described in Section 2.8. Three different methods are utilized for comparison purpose.
Basic represents the normal IPCA model based on all characteristics, the p-value represents the model
only including characteristics that have shown to be statistically significant at the 10% level, and the
last models depicted by λ are based on the lasso method. Moreover, the t = x indicates that x is the
start of the out-of-sample sample. For ease of comparison a colour scheme is used where a high R2 is
indicated in green and a low R2 in red.
From this table we can conclude that (1) a model that is more parsimonious based on either lasso or
p-values does increase out-of-sample fit for returns. This is partly due to portfolios being constructed
based on the most important variables that can be explained best. Moreover, (2) expected returns
often yield better fit when a lasso technique with λ parameters between 0.1 and 0.3 is considered.
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Table 26: Sharpe ratio of basic and reduced (based on 2-step procedure) restricted models.

Sharpe ratio with start date t=90
k Basic p-value λ=0.01 λ=0.1 λ=0.2 λ=0.3 λ=0.7
1 1.130 1.0584 1.1248 1.1129 1.1042 1.0983 1.1068
2 1.76 1.5509 1.7638 1.7647 1.7401 1.7298 1.6025
3 1.74 1.6004 1.7389 1.8194 1.7449 1.7111 1.6516
4 1.940 1.7826 1.932 1.8316 1.7649 2.0341 1.9888

Sharpe ratio with start date t=75
k Basic p-value λ=0.01 λ=0.1 λ=0.2 λ= 0.3 λ= 0.7
1 0.8225 0.7822 0.8238 0.8243 0.8201 0.8135 0.8085
2 1.4798 1.339 1.4779 1.4864 1.4215 1.3724 1.3864
3 1.477 1.3883 1.477 1.4796 1.3673 1.4849 1.472
4 1.613 1.4657 1.5887 1.4599 1.4408 1.6889 1.5503

Note: The Sharpe ratios for a start date t = 90 and t = 75 are displayed for the basic restricted and
their reduced models based on the two-step method. The basic column represents the Sharpe ratios
based on the restricted model, the p-value column based on only characteristics that were significant
at the 10% level, and λ = x columns are based on characteristics that are not set to 0 when penalty
parameter of x is used. For ease of comparison a colour scheme is used where a high Sharpe ratio is
indicated in green and a low Sharpe ratio in red.
The table shows that for 1 or 2 risk factors the reduced model based on a lasso procedure can
beat the basic model for λ = 0.01 or λ = 0.1 whereas for more risk factors the reduced model
sometimes outperforms the basic for varying lambda but with a focus on relatively higher lambdas.
Note that the model that is reduced based on p-values does not perform well, probably because too
few characteristics are included in the model.
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C.3 Robust IPCA models

C.3.1 Out-of-sample analysis

Table 27: Out-of-sample R2 comparison between basic and robust methods.

Restricted (t=90) Restricted (t=90)
Total R2 individual returns (rt) Total R2 managed portfolio return (xt)

k Basic Huber WLS k Basic Huber WLS
1 0.1338 0.1306 0.1286 1 0.8517 0.8324 0.8455
2 0.1466 0.1359 0.1456 2 0.8926 0.8447 0.8861
3 0.1536 0.1507 0.1514 3 0.9009 0.8987 0.9028
4 0.1567 0.1544 0.1544 4 0.9062 0.8994 0.9051

Restricted (t=90) Restricted (t=90)
Predicted R2 individual returns (rt) Predicted R2 managed portfolio return (xt)

k Basic Huber WLS k Basic Huber WLS
1 0.075 0.0631 0.0729 1 0.4531 0.3853 0.4678
2 0.0823 0.0643 0.0799 2 0.4829 0.3909 0.4751
3 0.0827 0.0701 0.0805 3 0.4851 0.4181 0.4717
4 0.0832 0.0711 0.0813 4 0.4881 0.4236 0.4731

Restricted (t=75) Restricted (t=75)
Raw returns Portfolio returns

k Basic Huber WLS k Basic Huber WLS
1 0.1405 0.1411 0.1256 1 0.8686 0.8649 0.8387
2 0.1545 0.1459 0.1536 2 0.9034 0.8754 0.9029
3 0.1645 0.1592 0.1629 3 0.921 0.9167 0.9215
4 0.1687 0.164 0.1696 4 0.9251 0.919 0.9309

Restricted (t=75) Restricted (t=75)
Raw predicted returns Portfolio predicted returns

k Basic Huber WLS k Basic Huber WLS
1 0.0418 0.0285 0.0401 1 0.3598 0.2895 0.3576
2 0.0483 0.0298 0.0442 2 0.3813 0.2941 0.3738
3 0.0487 0.0348 0.0464 3 0.3844 0.3152 0.3756
4 0.0486 0.0358 0.0472 4 0.3853 0.3197 0.3762

Note: The total R2 and predictive R2 are calculated based on Equation (40) and (41) that are slightly
adjusted as described in Section 2.8. Three different methods are utilized for comparison purpose.
Basic represents the normal IPCA model based on all characteristics, the two other methods, Huber
and Ridge, are the robust counterpart. Moreover, the t = x indicates that x is the start of the
out-of-sample sample. For ease of comparison a colour scheme is used where a high R2 is indicated
in green and a low R2 in red.
From this table we can conclude that (1) robustness based on Huber does not improve fit out-of-
sample for neither returns nor expected returns. Moreover (2) the WLS does outperform the basic
model very infrequently.
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Table 28: Sharpe ratio comparison robust methods for restricted model.

Restricted model t=90 Restricted model t=75
k basic WLS Huber k basic WLS Huber
1 1.13 1.1461 1.0955 1 0.8225 0.938 0.8085
2 1.76 1.5167 1.4298 2 1.4798 1.2944 1.1495
3 1.74 1.6782 1.7327 3 1.477 1.2758 1.4325
4 1.94 1.5268 1.5764 4 1.613 1.4161 1.2943

Note: The Sharpe ratio displayed are based on the tangency portfolios of the restricted OLS, Huber
and WLS IPCA model with k systematic factors as defined in Equations (11) and Algorithms 2 and 3.
For the calculation of the tangency return factors Algorithm 4 is used. Moreover, the t = x indicates
that x is the start of the out-of-sample sample. For ease of comparison a colour scheme is used where
a high Sharpe ratio is indicated in green and a low Sharpe ratio in red.

81


	Introduction
	Methodology
	PCA
	IPCA - Theoretical framework
	Basic IPCA model
	Estimation of the restricted IPCA (  =0L 1) 
	Estimation of unrestricted model IPCA (  =0L 1) 

	Regularized IPCA models
	Ridge regression
	Lasso operator
	Elastic net

	Robust IPCA models
	Huber loss function
	Weighted least squares

	Asset pricing tests
	Testing the significance of  
	Testing the significance of   
	Testing the significance of ,l and ,l,k

	In-sample performance
	Out-of-sample performance
	Out-of-sample fit
	Sharpe ratio based on tangency and anomaly portfolio
	VaR

	Robustness

	Data
	Delta-hedged option returns
	Characteristics
	Determination of the number of factors

	Results
	Basic IPCA
	Coefficients and significance
	In-sample fit
	Out-of-sample analysis

	Regularized IPCA model
	Coefficients and significance
	In-sample fit
	Out-of-sample analysis

	Robust IPCA model
	In-sample fit
	Out-of-sample analysis

	Comparison with stock returns

	Further research
	Conclusion
	References
	Appendices
	Characteristics
	Figures
	Preliminary analysis
	Basic IPCA
	Regularized models

	Tables
	Basic IPCA
	Coefficients and significance
	In-sample fit
	Out-of-sample analysis

	Regularized IPCA models
	Coefficients and significance
	In-sample fit
	Out-of-sample analysis

	Robust IPCA models
	Out-of-sample analysis



