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ABSTRACT

A known challenge in producing reliable real-time output gap estimates is that initial measure-

ments of real output suffer from data revisions. Therefore, after reviewing several existing output

gap estimation methods, this paper introduces an updated estimation method that models data

revisions to real output jointly with the dynamics of real output. More specifically, I propose to

combine a state-space representation of the dynamics of true output with a state-space represen-

tation of uncertain output data. Based on a real-time data set of real U.S. output, the real-time

estimates from the joint model considerably outperform those from other models. Furthermore, the

real-time estimates from a multivariate joint model, which incorporates economic information in

the form of a Phillips curve, are more reliable than those of the univariate joint model—indicating

that incorporating such economic information is useful. These results provide a promising basis for

models that combine perhaps more complex true output dynamics with those of uncertain output

data, and are relevant to academics and practitioners alike.
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I. Introduction

The output gap—the difference between an economy’s actual and potential output—is relevant

to many macroeconomic models and policy problems, particularly those of monetary nature. A

positive output gap could be a signal that the economy is overheating, requiring tightening monetary

policy, whereas a negative output gap reflects slack in the economy (Kara et al., 2007). The ability

to give reliable (real-time) estimates of the output gap is therefore of interest to central banks,

government institutions, and international organizations alike. For instance, the output gap is

often used as a predictor variable in models of inflation. Furthermore, research on monetary

policy has suggested that central banks use the Taylor rule, which involves the output gap, when

setting interest rates (Álvarez and Gómez-Loscos, 2018). It is not surprising, then, that Rudebusch

(2001) and Ehrmann and Smets (2003) find unreliable estimates of the output gap to have a direct

impact on optimal monetary policy. In fact, Orphanides (2003) argues that unreliable real-time

estimates have caused monetary policymakers to misrepresent the output gap and thereby create

an inflationary or disinflationary bias.

One challenge in measuring the output gap is that potential output is unobserved and hence

needs to be estimated. The potential output of an economy is generally defined as the highest

level of real GDP that can be produced and sustained over the long term without giving rise

to inflation (Okun, 1963). While this is unobserved, there are numerous methods for estimating

potential output from an actual output series, which can be broadly categorized into univariate and

multivariate methods. Univariate methods simply estimate potential output from actual output

without incorporating information from other economic variables, such that no assumptions about

the structure of the economy have to be made. On the contrary, multivariate methods employ

economic theory to incorporate information contained in other variables related to the output gap

(St-Amant and Van Norden, 1997).

Univariate methods can be further divided into whether they use filters—such as the Hodrick-

Prescott (1997) filter, band-pass filters, or wavelet filtering—or models, such as linear detrending,

the Beveridge-Nelson (1981) decomposition using ARIMA models, structural time series models,

or Markov switching models (Álvarez and Gómez-Loscos, 2018). Since these methods do not

incorporate information from other economic variables, the resulting potential output estimates

can be better interpreted as the “trend” of an actual output series. Therefore, they are purely

statistical and not consistent with the Okun (1963) definition of potential output. Nevertheless,

univariate methods are relatively easy to implement and can be applied as long as output data is

available, even when data on other economic variables is not (Blagrave et al., 2015).

The most prevalent multivariate methods are based on Okun’s law (Evans, 1989), production

functions (e.g. Havik et al., 2014), the Blanchard-Quah (1989) decomposition through supply and

demand shocks, the Phillips curve (Kuttner, 1994), the natural rate of interest (Laubach and

Williams, 2003), real business cycle models (King et al., 1991), or dynamic stochastic general

equilibrium models (Vetlov et al., 2011). The production function approach, which relates output

to capital, labor, and total factor productivity, is particularly common in practice and used by
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institutions such as the European Commission (Havik et al., 2014). While this method adds

economic structure to potential output, it involves de-trending the total factor productivity series.

The resulting potential output estimates therefore have practically the same properties as those

resulting from applying the same (univariate) de-trending method directly to output data (Blagrave

et al., 2015). Among academics, dynamic stochastic general equilibrium (DGSE) models gained

popularity in recent years. Nonetheless, this approach is difficult to apply in practice and requires

substantial modeling skills and implementation time (Blagrave et al., 2015).

Besides having to estimate potential output, another challenge in estimating the output gap

is that initial measurements of real output suffer from data revisions. For real-time output gap

estimates to be reliable, it is therefore crucial that they do not change much when the underlying

output data is revised. It can be expected that real-time estimates are improved when possible

future data revisions are taken into account. Therefore, Garratt et al. (2008) and Clements and

Galvão (2012) have focused on forecasting post-revision output data through vector-autoregressive

(VAR) models of past real-time data. Other researchers take a state-space approach by relating

published output data with bias and measurement errors to their unobserved true values (e.g.

Jacobs and Van Norden, 2011; Cunningham et al., 2012). After predicting how output data will

be revised or estimating the true output values, common estimation methods can be applied to

the forecasted post-revision data or estimated true output values in an attempt to improve the

real-time estimates of the output gap.

In this paper, I first review several widely used as well as more recently proposed estimation

methods for the output gap—which each assume different dynamics for the real output process

or take on a different definition of real output—to examine their performance using recent output

data. The widely used methods that are reviewed are the univariate Hodrick-Prescott (HP) filter,

Beveridge-Nelson (BN) decomposition, and Watson model and the multivariate Kuttner model.

The former two are particularly common and often used as benchmark methods in the literature,

and the Watson model and Kuttner model (which is a multivariate version of the Watson model in

that it adds a Phillips curve) serve as a base for the estimation method proposed in this paper. In

addition, I review a method for estimating the output gap that takes into account possible future

revisions to the underlying output data through a VAR model of past real-time data.

After reviewing the existing methods, I introduce an updated estimation method for the output

gap that models data revisions to real output jointly with the dynamics of real output. More

specifically, I propose to combine a state-space representation of the dynamics of true output,

such as those by Watson (1986) or Kuttner (1994), with a state-space representation of uncertain

output data, such as that by Cunningham et al. (2012). That way, rather than the two-step

procedure described above of predicting how output data will be revised and then applying a

common estimation method to the forecasted post-revision data, the output gap can immediately

be extracted. While Orphanides and Norden (2002) famously find that the unreliability of real-time

output gap estimates is mostly due to the parameter instability of the used estimation methods

rather than to data revisions, the proposed model may be expected to be less affected by either of
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these issues. That is, since the parameters of the proposed model are estimated based on a “true”

output series that does not get revised much over time, they should be more stable.

To assess the performance of the different estimation methods, I use a data set constructed

by Croushore and Stark (2001). This data set consists of quarterly vintages, or records, from Q4

1965 to Q1 2020 of real output of the United States available in real time at quarterly intervals

since Q1 1947. Two main performance criteria are adapted: (1) an estimation method should give

output gap estimates that are reliable in real time and do not change much when new information

becomes available, and (2) real-time estimates should have predictive power over inflation in order

to ensure that they have economic content (Camba-Mendez and Rodriguez-Palenzuela, 2003). I find

that the real-time estimates from the HP filter and Watson model have relatively poor reliability,

whereas the estimates from the BN decomposition almost seem like noise. On the other hand,

the real-time estimates from the joint Watson and Kuttner models considerably outperform those

from their original counterparts. Also interesting is that the real-time estimates from both the

original and the joint Kuttner model are more reliable than those of the corresponding Watson

models, indicating that incorporating economic information in the form of a Phillips curve is useful.

Similar to the findings by Orphanides and Norden (2002), data revision plays a rather small role

in the unreliability of real-time estimates, and most of the revision is attributable to parameter

instability of the estimation methods instead. As expected, however, especially the parameters of

the joint Kuttner model are indeed more stable than those of its original counterpart, resulting in

more reliable real-time estimates. Overall, these results provide a promising basis for models that

combine perhaps more complex true output dynamics with those of uncertain output data.

The rest of this paper is organized as follows. Section II presents the data that is used to examine

the estimation methods applied in this research. Section III introduces the estimation methods and

describes how their performance is assessed. Section IV reports the results of the analyses carried

out on the estimation methods and discusses how they relate to the existing literature. Section V

concludes and indicates directions for future research.

II. Data

To assess the reliability of estimation methods for the output gap in real time, a data set is

needed which contains real-time output data as it was available on any given date in the past.

To that end, I use the “Real GNP/GDP (ROUTPUT)” data set constructed by Croushore and

Stark (2001), which is available online via the Real-Time Data Research Center of the Fed-

eral Reserve Bank of Philadelphia (https://www.philadelphiafed.org/research-and-data/

real-time-center/real-time-data/data-files).

The data set consists of quarterly vintages, or records, since Q4 1965 of real output of the

United States available in real time at quarterly intervals since Q1 1947. In other words, for each

quarterly vintage from Q4 1965 to the present, the data set includes historical quarterly data since

Q1 1947 on real U.S. output as it was available in published sources in the middle (thus, on the
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15th day of the second month) of that quarterly vintage. Real U.S. output is published with a

lag of one quarter, such that the first estimate of output in quarter t becomes available in vintage

t + 1. The data set therefore has 217 vintages (equal to the number of quarters between Q4 1965

and Q1 2020) and between 75 and 292 observations per vintage (as more recent vintages have more

historical data). Most of the data set is complete, but for a few vintages—all quarters of 1992 and

1996, Q1 1997, Q4 1999, and Q1 2000—the historical data up to around 1960 is missing. Overall,

this results in a total of 39,464 observations. Note that for the vintages with missing data, the

estimation methods are only applied to the available data.

Figure 1 visualizes how real U.S. output for a given quarter is revised over time. Each line

represents a quarter between Q4 1947 (the very bottom line) and Q1 2020 (the very top line). It

becomes clear that revisions to initial data releases can be quite large and continue to be made

many quarters into the future. In fact, due to new information, output data is almost always

revised in the first few quarters after it is initially released, and annual revisions published in July

can affect up to the past three years of data. The plot also reveals that revisions are sometimes

made to all quarters in unison, for instance in Q4 1999. These are benchmark revisions involving

conceptual or methodological changes (Jacobs and Van Norden, 2011).

Figure 1. Revisions in Real Output Over Time. A visualization of how real U.S. output for
a given quarter is revised over time. Each line represents a quarter between Q4 1947 and Q1 2020.

Since multivariate estimation methods of the output gap also incorporate information from

other economic variables, some additional data is needed for some of the methods applied in this

paper. More specifically, I calculate the quarterly inflation rate based on the Consumer Price Index

(CPI), which is obtained from the same online database as the output data. Following Orphanides

and Norden (2002), since CPI data is not revised in a way that output data is, I only use the CPI

data from the most recent vintage (Q1 2020).

Table 1 provides summary statistics for the macroeconomic data used in this research. It is

clear that real output is positively skewed, in that it experiences exponential growth. For that
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reason, the estimation methods used in this paper will be applied to the log of real output. The

table also reports p-values of augmented Dickey-Fuller (ADF) tests at different lags, which test

the null hypothesis that the data series has a unit root and is thus non-stationary. Note that for

output data, the ADF tests are performed on the most recent vintage. Since the resulting p-values

for (the log of) real output are highly insignificant, the presence of a unit root cannot be rejected.

The inflation rate, however, seems to be a stationary process for which up to eight lags may contain

predictive information on how the series will change over time.

Table 1. Summary Statistics for Macroeconomic Data.

Min Median Max ADF(2) ADF(4) ADF(8) ADF(12)

Real output (US$) 306.40 3,050.70 19,219.80 0.912 0.902 0.932 0.917
Log real output 5.72 8.02 9.86 0.666 0.902 0.794 0.930
Inflation rate (%) -3.42 0.72 4.16 0.010 0.010 0.038 0.360

Minimum, median, and maximum values for the macroeconomic data, and p-values of augmented
Dickey-Fuller (ADF) tests at different lags. For output data, the ADF tests are performed on the
most recent vintage.

III. Methodology

Measuring the output gap requires an estimate of potential output. Potential output is unob-

served, but there are numerous methods for estimating it. This section first presents some existing

methods that are reviewed in this paper. Then, an updated estimation method for the output gap

is introduced. Lastly, I discuss the methodology behind assessing the performance of the different

methods. In what follows, yt denotes the log of real output at time t, ygt denotes its trend (or

growth) component, and yct denotes the cyclical component.

A. Existing Estimation Methods for the Output Gap

The existing estimation methods for the output gap that I review in this paper are a selection

of widely used as well as more recently proposed methods, which each assume different dynamics

for the real output process or take on a different definition of potential output. The widely used

methods that are reviewed are the univariate Hodrick-Prescott filter, Beveridge-Nelson decompo-

sition, and Watson model and the multivariate Kuttner model. In addition, I review a method

for estimating the output gap that takes into account possible future revisions to the underlying

output data through a vector-autoregressive (VAR) model of data vintages.

A.1. Hodrick-Prescott filter

The Hodrick-Prescott (HP) filter is a univariate filtering approach that can be used to decompose

the log of real output into the sum of a trend and a cyclical component, such that yt = ygt + yct .
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This approach assumes that the trend is stochastic and varies smoothly over time (Álvarez and

Gómez-Loscos, 2018). The trend is obtained by solving the following minimization problem, which

balances the variation in the cyclical component (or the trend’s fit to the original series; first term)

with the variation in the second difference of the trend component (or the trend’s smoothness;

second term):

{ygt }Tt=0 = arg min

T∑
t=1

(yt − ygt )2 + λ

T∑
t=1

((ygt+1 − y
g
t )− (ygt − y

g
t−1))

2, (1)

where λ, which has to be set by the user, represents a smoothness parameter that penalizes the

variation in the trend. A larger smoothness parameter results in a smoother trend (St-Amant and

Van Norden, 1997). As suggested by Hodrick and Prescott (1997), I set λ = 1, 600 for quarterly

data.

Despite the fact that the HP filter is simple, widely applicable, and easy to reproduce, it has

been criticized by many for suffering from the so-called end-of-sample problem. When decomposing

an observation, the HP filter places equal importance on past and future observations, making it

two-sided symmetric (Garratt et al., 2008). The filter is therefore only optimal at the observation

in the middle of the sample. Towards either end of the sample, the filter becomes more and more

one-sided. As a result, Mise et al. (2005) show that while the filter remains unbiased, it becomes

inefficient. This poor performance of the HP filter at the end of the sample is a large drawback

when estimating the output gap, as this is the part of the sample most relevant for policymakers

(St-Amant and Van Norden, 1997).

A.2. Beveridge-Nelson decomposition

The Beveridge-Nelson (BN) decomposition is a univariate model-based approach that can be

used to break down the log of real output into additive trend and cyclical components. This

approach assumes that the log of real output is non-stationary, which seems reasonable based on

the augmented Dickey-Fuller (ADF) tests from Table 1, but that its first differences are stationary.

Indeed, an ADF test on the first difference of the log of real output returns highly significant test

statistics—suggesting stationarity—up to many lags (p-value = 0.010 even at lag order 12). The

BN decomposition starts by modeling these first differences as an autoregressive integrated moving

average (ARIMA) process as follows:

∆yt = δ +
θq(L)

φp(L)
εt

= δ + ψ(L)εt

= δ + ψ(1)εt + ψ̃(L)εt,

where δ is the mean of the process, θq(L) is a lag polynomial of the order q for the moving average,

φp(L) is a lag polynomial of the order p for the autoregression, and εt ∼ i.i.d. N(0, σ2ε). In this
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research, p = 1 and q = 2 lead to the ARIMA model with the lowest Akaike Information Criterion

(AIC), based on the output data from the most recent vintage, and will thus be used. The last

step, where clearly ψ̃(L) = ψ(L) − ψ(1), allows the first difference of the log of real output to be

decomposed into the first difference of the trend component and the first difference of the cyclical

component, such that

∆ygt = δ + ψ(1)εt

∆yct = ψ̃(L)εt.

Note that the first difference of the trend component follows a random walk with drift. The resulting

trend component can be expressed as

ygt =
θq(1)

φp(1)

φp(L)

θq(L)
yt, (2)

from which it is clear that the trend is a weighted average of past and current, but not future,

observations. Beveridge and Nelson (1981) interpret this trend component in terms of the long-run

forecast of output, which is quite different from the perspective of the HP filter.

Even though the forecasting perspective of the BN decomposition approach allows the trend to

be readily interpreted as potential output (Garratt et al., 2008), there are a few disadvantages of

using this approach to estimate the output gap. First, the trend and cycle components are driven

by the same shock, so their innovations are perfectly correlated. Furthermore, the variance of the

innovations in the trend component may be larger than the innovation in the data, resulting in a

too noisy trend. Lastly, it may be that multiple specifications of the ARIMA model fit the data

rather well, even though they result in quite different decompositions (Álvarez and Gómez-Loscos,

2018). In this research, however, changing the ARIMA specification is not found to have a large

impact on the results and their interpretation.

A.3. Watson model

Watson (1986) models the trend of the log of real output as a random walk with drift and the

cycle as an AR(2) process, thereby allowing for persistence in the business cycle, as follows:

yt = ygt + yct (3)

ygt = µy + ygt−1 + et (4)

yct = φ1y
c
t−1 + φ2y

c
t−2 + ut, (5)

where µy is a constant, and et ∼ i.i.d. N(0, σ2e) and ut ∼ i.i.d. N(0, σ2u) are uncorrelated. This

so-called univariate unobserved components model implies that real output is difference stationary

and can be decomposed into an integrated trend component and a stationary cycle component,

which seems reasonable according to the ADF tests from Table 1. The parameters of the model—
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φ1, φ2, σ
2
e , and σ2u—can be estimated by Maximum Likelihood (ML) through the use of a Kalman

filter on a state-space representation of the model (see e.g. Harvey, 1990). In order to do so, the

model in (3)–(5) is first rewritten in state-space form, such that

xt = Zαt + εt (observation equation) (6)

αt+1 = Fαt +Rηt (state equation), (7)

where in this case xt = yt, εt ∼ N(0, H), ηt ∼ N(0, Q), and α1 ∼ N(α1, P1) are independent, H is

zero, R is the identity matrix of size 4, and the state vector αt and system matrices F , Q, and Z

are defined as

αt =


ygt
yct

yct−1
µy

 , F =


1 0 0 1

0 φ1 φ2 0

0 1 0 0

0 0 0 1

 , Q =


σ2e 0 0 0

0 σ2u 0 0

0 0 0 0

0 0 0 0

 , and Z =
[
1 1 0 0

]
.

Before applying the Kalman filter recursions to this state-space model, I define a prior dis-

tribution of the initial state vector, α1, according to the methodology by Virmani (2004). More

specifically, I take estimates for yg1 and yc1 from the output of the HP filter and estimate µy by

applying OLS to (4) using the trend component from the HP filter. Table 2 presents the prior

distribution of the initial state vector for the most recent vintage. Since the state vector includes

an observation from one period back, the Kalman filter starts at the second observation. After

running the filter as described by Harvey (1990), the model parameters can be estimated through

ML by minimizing the negative of the following log-likelihood function:

logL = −np
2

log 2π − 1

2

n∑
t=1

(log
∣∣ZPtZ ′∣∣+ (xt − Zαt)′(ZPtZ ′)−1(xt − Zαt)),

where n is the number of observations, and p is the dimension of xt. In order to support the

algorithm in finding suitable parameter estimates, I define initial parameter estimates by performing

OLS on (4) and (5) using the growth and trend components from the HP filter, which again follows

the methodology by Virmani (2004). The resulting initial model parameters for the most recent

vintage are also presented in Table 2. Note that the φ’s indeed imply that the cycle component is

stationary yet highly persistent. Furthermore, in terms of variance, shocks to the cycle are quite

a bit larger than shocks to the trend. Lastly, the estimated drift term of 0.0078 for the trend

component, similar to that reported by Watson (1986), suggests an average annualized growth rate

of 3.14 percent.

A.4. Kuttner model

Kuttner (1994) adds a Phillips curve to the univariate Watson model in order to incorporate

more information. The resulting multivariate unobserved components model ensures that potential
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Table 2. Initialization of Watson Model
Parameters and State Vector Distribution.

Initial State Vector Distribution

ygt yct yct−1 µy

α1 7.6025 0.0121 0.0254 0.0078
P1 0.4441 0.0002 0.0002 2× 10−8

Initial Model Parameters

σe σu φ1 φ2

0.0026 0.0077 1.1643 -0.3699

Initial values for the parameters and for the state
vector distribution of the Watson model for the
most recent vintage.

output can be interpreted as the level of output at which inflation is constant, which is consistent

with the definition by Okun (1963). The economic theory behind this is that a positive output

gap suggests tight product and labor markets, causing inflation to increase in the short-run. On

the other hand, when a negative output gap implies slack in product and labor markets, inflation

generally decreases in the short-run (Álvarez and Gómez-Loscos, 2018). Therefore, in addition to

(3)–(5), Kuttner (1994) includes a Phillips-curve equation that shows a positive relation between

the change in the inflation rate, ∆πt, and the lagged output gap, yct−1, as follows:

∆πt = µπ + γ∆yt−1 + βyct−1 + vt + δ1vt−1 + δ2vt−2 + δ3vt−3,

where µπ is a constant, and vt ∼ i.i.d. N(0, σ2v) may be correlated to ut from (5). As can be seen, the

change in the inflation rate is assumed to follow a MA(3) process, and lagged real output growth,

∆yt−1, is included to capture its positive correlation with inflation (Kuttner, 1994). Since Kuttner

(1994) based this specification on data from 1954 to 1992, it is not necessarily the best fit for the

more recent data used in this paper. Table 3 presents estimates of different MA specifications of the

inflation data used in this paper, using the growth component from the HP filter for yct−1. For each

model, the standard error (SE), test statistic from a Ljung-Box Q test on 16 lags of the residuals

(Q(16)), and Aikaike Information Criterion (AIC) are reported.

An autocorrelation plot of the change in the inflation rate suggests starting with a model of

five lags, as shown in the first row of Table 3. It becomes clear that four lags are significant, which

is in fact not consistent with Kuttner (1994)’s specification of only three lags. What is consistent,

however, is that only one lag of real output growth is significant. While not reported, various AR

specifications were also tested, but the best AR model—two AR lags and one lag of real output

growth—has a higher AIC, residual autocorrelation, and standard error (AIC = 591.4076, Q(16) =

33.0488, and SE = 0.6564) than the MA models and is thus disregarded. ARMA specifications were
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Table 3. Estimated MA Specifications of Inflation.

Parameter Estimates Estimation Statistics

µπ β δ1 δ2 δ3 δ4 δ5 γ1 γ2 SE Q(16) AIC

(1)
-0.0009 1.4265 -0.6092 -0.1547 0.1644 -0.1955 -0.0551

0.6515 23.1957 593.5774
(0.0059) (1.1328) (0.0593) (0.0712) (0.0665) (0.0737) (0.0604)

(2)
-0.0009 1.4546 -0.6233 -0.1298 0.1494 -0.2417

0.6524 23.9882 592.4073
(0.0061) (1.1032) (0.0571) (0.0650) (0.0617) (0.0522)

(3)
-0.0426 1.4031 -0.6368 -0.1231 0.1739 -0.2246 9.6946 -4.5600

0.6384 23.1106 579.7605
(0.0207) (1.2197) (0.0582) (0.0657) (0.0658) (0.0538) (4.4855) (4.6736)

(4)
-0.0451 0.9782 -0.6465 -0.1221 0.1751 -0.2315 5.5675

0.6421 23.4296 583.1158
(0.0190) (1.0922) (0.0573) (0.0661) (0.0646) (0.0525) (2.2659)

Estimates of different MA specifications of the change in the inflation rate, each of the form ∆πt =
µπ + βyct−1 + δ(L)vt + γ(L)∆yt−1. SE refers to the model standard error, Q(16) refers to the
test statistic from a Ljung-Box Q test on 16 lags of the residuals, and AIC refers to the Akaike
Information Criterion. The values in parentheses denote standard errors.

also not found to improve on the pure MA specifications. I therefore continue with the following

MA(4) specification of the Phillips-curve equation as part of the Kuttner model:

∆πt = µπ + γ∆yt−1 + βyct−1 + vt + δ1vt−1 + δ2vt−2 + δ3vt−3 + δ4vt−4, (8)

where vt ∼ i.i.d. N(0, σ2v) may be correlated to ut from (5).

Similar to the Watson model, the Kuttner model can be estimated through the use of a Kalman

filter on a state-space representation of the model. In (6) and (7), now xt = [yt ∆πt]
′, R is the

identity matrix of size 12, and the state vector αt and system matrices F , Q, and Z are defined as

αt =



ygt
yct

yct−1
vt

vt−1

vt−2

vt−3

vt−4

µy

µπ

yt−1

yt−2



, F =



1 0 0 0 0 0 0 0 1 0 0 0

0 φ1 φ2 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0



, Q =



σ2e 0 0 0 0 0 0 0 0 0 0 0

0 σ2u 0 σuv 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 σuv 0 σ2v 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



,

and Z =

[
1 1 0 0 0 0 0 0 0 0 0 0

0 0 β 1 δ1 δ2 δ3 δ4 0 1 γ −γ

]
.

The prior distribution of the initial state vector and the initial model parameter estimates for

running the Kalman filter on the most recent vintage are presented in Table 4. Following Virmani

(2004), I set the initial values for the MA terms in the state vector to their expectation (zero) and

take the rest of the initial values from OLS estimates of (8).
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The multivariate Kuttner model has the advantage of incorporating information contained in

other variables related to the output gap. In particular, the output gap resulting from the Kuttner

model is the one most consistent with observed inflation, given the specification of the real output

processes. Nevertheless, incorporating such information only improves the output gap estimates

if the underlying economic theory is valid. Furthermore, a drawback that remains with filtering

methods, which was already discussed in Section III.A.1, is the end-of-sample problem.

Table 4. Initialization of Kuttner Model Parameters and State Vector Distribution.

Initial State Vector Distribution

ygt yct yct−1 vt vt−1 vt−2 vt−3 vt−4 µy µπ yt yt−1

α1 7.6130 -0.0004 0.0122 0 0 0 0 0 0.0078 -0.0451 7.6146 7.6173
P1 0.4441 0.0003 0.0003 0.4123 0.4123 0.4123 0.4123 0.4123 2× 10−8 0.0004 0.4445 0.4445

Initial Model Parameters

β δ1 δ2 δ3 δ4 γ σe σu σv σuv φ1 φ2

0.9782 -0.6465 -0.1221 0.1751 -0.2315 5.5675 0.0026 0.0077 0.6421 0.0006 1.1643 -0.3699

Initial values for the parameters and for the state vector distribution of the Kuttner model for the
most recent vintage.

A.5. Vintage-Based VAR Model

Since data on real output is prone to revisions, it can be expected that real-time estimates of

the output gap become more reliable when possible future revisions to the underlying output data

are taken into account. Therefore, before applying an output gap estimation method to output

data, Clements and Galvão (2012) first forecast how this output data will be revised in the future

through VAR models of data vintages. In order to do so, they use output growth rates rather

than output levels because the former are likely to be more robust to level changes resulting from

benchmark revisions. The growth rate observed at t using data from vintage t+ 1 is calculated as

gt+1
t = 400 (yt+1

t − yt+1
t−1). Assuming that newly released data is revised over the subsequent k − 1

quarters, after which it remains unrevised, the observations t− k+ 1 through t in vintage t+ 1 can

be modeled by a vintage-based VAR model as follows:

gt+1 = µ +
l∑

i=1

Γi g
t+1−i + εt+1, (9)

where gt+1 =
[
gt+1
t gt+1

t−1 . . . g
t+1
t−k+1

]′
, gt+1−i =

[
gt+1−i
t−i gt+1−i

t−1−i . . . g
t+1−i
t−k+1−i

]′
, and µ and εt+1 are

k × 1 vectors. Following Clements and Galvão (2012), I set the autoregressive order to l = 1 and

the number of revisions to k = 14, such that the three annual revisions are captured regardless

of in which quarter the data was first published. Clements and Galvão (2012) also consider other

specifications of the VAR model that take into account that the pattern of revisions to a given

observation may depend on the quarter in which the observation was first released. However, these
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models are not found to outperform the model presented in (9) and are thus not considered here.

The parameters of (9) can be estimated by applying OLS to each individual equation, where

the first equation models newly released data, the second equation models data that has been

revised once, and so on. Starting with vintage Q4 1969, I estimate the parameters for each vin-

tage based on all the vintages preceding it, in the form of an expanding window. I then use the

estimated parameters for each vintage t+ 1 to create h-step ahead forecasts for that vintage. The

h-step ahead forecast of gt+1+h is defined as gt+1+h|t+1 =
[
g
t+1+h|t+1
t+h g

t+1+h|t+1
t+h−1 . . . g

t+1+h|t+1
t+h−k+1

]′
≡

E(gt+1+h |gt+1, gt, . . . ). An h-step ahead forecast thus consists of a prediction of the newly released

gt+h, a prediction of gt+h−1 after its first revision, and so forth until the prediction of gt+h−k+1

after its final revision. Similar to Clements and Galvão (2012), I calculate h-step ahead forecasts

iteratively for h = 1 to h = 27 for each vintage. The set of the last elements of each of these h-step

ahead forecasts form the post-revision forecast for the vintage: g
t+2|t+1
t+2−k , . . . , g

t+k|t+1
t , g

t+k+1|t+1
t+1 ,

. . . , g
t+28|t+1
t+28−k . As a result, a post-revision data set is created that not only contains forecasted

post-revision values of the last k−1 observations in each vintage of the original data set (remember

that the values before this are assumed to remain unrevised), but also forecasted post-revision

values of the k future observations for each vintage. This method may therefore not only improve

real-time estimates of the output gap by taking into consideration data revisions, but possibly also

by decreasing the end-of-sample problem.

After calculating the post-revision output growth rates, I convert them back to the log of real

output such that a common output gap estimation method can be applied. To best compare the

performance of the vintage-based VAR model with the model that is proposed later on in this

paper, the estimation method that is applied is the Watson model. Note that the reason why the

Kuttner model is not applied is because it would require either predicting the future inflation rate

or shortening the sample period.

B. An Updated Estimation Method for the Output Gap

Forecasting post-revision output data through VAR models of data vintages is not the only way

to take into account the effect of data revisions when estimating the output gap. There is a large

body of literature on modeling revisions to output (and other macroeconomic) data. While various

papers have indeed focused on vintage-based VAR models (e.g. Garratt et al., 2008; Clements and

Galvão, 2012), such models assume that newly released data is revised over the subsequent k − 1

quarters and remains unrevised afterwards. In practice, however, data does not necessarily remain

unrevised. Therefore, some papers take a state-space approach by relating published output data to

their unobserved true values (e.g. Jacobs and Van Norden, 2011; Cunningham et al., 2012). Similar

to the vintage-based VAR approach to estimating the output gap, after estimating the true output

values through a state-space model, common output gap estimation methods can be applied in an

attempt to improve the real-time estimates of the output gap. Hence, both of these approaches

require a two-step procedure of (1) predicting post-revision output data and (2) applying an output

gap estimation method to this data.
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Rather than a two-step procedure, this paper examines the potential of modeling data revisions

to real output jointly with the dynamics of real output, so that the output gap can immediately

be extracted. To that end, I propose to combine a state-space representation of the dynamics of

true output, such as those by Watson (1986) or Kuttner (1994), with a state-space representation

of uncertain output data, such as that by Cunningham et al. (2012). More specifically, I add

another unobserved component, namely the true value of output, to the state vector of the Watson

and Kuttner models. Along the lines of Cunningham et al. (2012), let y∗t denote the log of the

unobserved true value of real output at time t (i.e. the true value of yt). This true output is

assumed to follow the processes in (3)–(5) of the Watson or Kuttner models. Furthermore, if yt+nt

is the estimate of y∗t in vintage t+ n for n = 1, ..., T − t, then

yt+nt = y∗t − κn + wt, (10)

where κn is the bias in estimates of maturity n and wt ∼ N(0, σ2w) is the measurement error in the

estimate of y∗t . The reason for allowing the bias to differ with the maturity of the estimate is that

the estimate is assumed to improve in each successive vintage, such that the bias decreases as the

estimate matures (Cunningham et al., 2012). In fact, bias is measured as

κn = κ1(1 + τ)n−1, (11)

where τ represents the rate at which bias decreases as the estimate matures. Outside the scope of

this paper but interesting for future research would be to assume that the measurement error wt

is both serially correlated and heteroskedastic. This is because the measurement errors made in a

certain vintage may be correlated with each other, and they may be heteroskedastic (decreasing)

with respect to maturity for the same reason that bias decreases with maturity (see Cunningham

et al., 2012, for further details).

Assuming that true output y∗t can be modeled by the Watson (1986) dynamics as in (3)–(5), the

joint Watson model can be written in the state-space form of (6) and (7), where xt = yTt represents

the estimate of true output in the vintage of interest T . Furthermore, H = σ2w, Q is the identity

matrix of size 2, and the state vector αt and system matrices F , R, ηt, and Z are defined as

αt =



y∗t

yg,∗t
yc,∗t
yc,∗t−1
µy∗

κT−t


, F =



0 1 φ1 φ2 1 0

0 1 0 0 1 0

0 0 φ1 φ2 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1
1+τ


, R =



σe σu

σe 0

0 σu

0 0

0 0

0 0


,

ηt =

[
et

ut

]
, and Z =

[
1 0 0 0 0 −1

]
.
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The joint Kuttner model follows similarly and can be found in Appendix A. While the joint models—

like the original models—only consider data from the vintage of interest T , the parameters related

to bias and measurement errors, i.e. those in (10)–(11), are estimated based on previous vintages

as I will describe below. This way, experience from past data revisions can be exploited. Note

that this requires the assumption that the parameters related to bias and measurement errors are

constant across vintages.

Similar to the original models, the joint models can be estimated by ML through the use of a

Kalman filter. I set the prior distribution of the initial state vector and the initial model estimates

for running the Kalman filter in the same way as for the original models, but based on an estimated

true output series rather than the actual output series. In order to estimate the true output series,

the expected revisions to each value in the actual output series need to be determined. As indicated

in (10), these revisions are assumed to differ with the maturity of the output estimate. Therefore,

to determine the expected revisions, I first calculate the revision over the J quarters subsequent

to each output estimate in the data set. I set J to one-third of the number of preceding vintages,

such that much of the revision is captured while retaining enough output estimates for the revisions

to be representative of the entire data set (Cunningham et al., 2012). Next, for each maturity, I

calculate the average revision to output estimates of that maturity. Using these average revisions

per maturity, I estimate the bias parameters in (11), which turn out to be κ1 = 1.1442 and

τ = −0.0047 for the most recent vintage. Finally, I estimate the true output series by adding the

expected revision, as calculated using the estimated (11), to the actual output series.

C. Assessing the Performance of the Estimation Methods

To assess the performance of the above-mentioned estimation methods, I use two main criteria as

proposed by Camba-Mendez and Rodriguez-Palenzuela (2003). First, an estimation method should

give output gap estimates that are reliable in real time such that appropriate policy decisions can

be made. It is therefore crucial that they do not change much when the underlying output data

is revised. The second criteria is that the real-time estimates should have predictive power over

inflation in order to ensure that they have economic content.

To determine the extent to which real-time estimates are reliable and do not change much over

time, I use a methodology similar to that of Orphanides and Norden (2002). More specifically,

I first apply each estimation method to the output series of the most recent vintage (Q1 2020),

which results in a series of “final” estimates of the output gap. Next, I create a series of “real-time”

estimates by applying the estimation methods to each quarterly vintage from Q4 1969 (because the

vintage-based VAR and joint models require an initial period over which to estimate the parameters

for the first vintage) and then constructing a new series comprising the first estimate of the output

gap for each point in time. Part of the difference between the “real-time” and “final” estimates

is due to data revision and part of it is due to parameter revision. To make this distinction, I

construct a series of “quasi-real” estimates whereby the estimate in a given quarter is calculated

based on only the observations up to that quarter as they were available in vintage Q1 2020. Hence,
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• Total revision: difference between “final” and “real-time” estimates

• Data revision: difference between “quasi-real” and “real-time” estimates

• Parameter revision: difference between “final” and “quasi-real” estimates.

Finally, for estimation methods based on Kalman filtering, the “final” estimates are the Kalman-

smoothed estimates of the relevant series while the corresponding Kalman-filtered estimates make

up another series, namely the “quasi-final” estimates. For these methods, parameter revision is

calculated as the difference between the “quasi-final” and “quasi-real” estimates. The difference

between the “quasi-final” and “final” estimates indicates the relevance of new information in esti-

mating the output gap given the existing parameters.

After constructing the different series of estimates, I plot them against each other for analysis.

Particular focus is on the correlation between the real-time and final estimates of the different meth-

ods. Furthermore, following Camba-Mendez and Rodriguez-Palenzuela (2003), to test whether the

real-time and final series have the same statistical properties, I perform the Pesaran and Timmer-

mann (1992) test of directional accuracy—which tests whether the two series have equal signs—and

an F-test of equal variances. With regard to the various types of revision, I examine their size and

persistence in terms of autocorrelation under the different estimation methods. Since the reliability

of real-time output gap estimates is presumably most relevant around turning points of the business

cycle (Orphanides and Norden, 2002), I also compare the revisions to these estimates in the three

months centered about business cycle peaks as dated by the National Bureau of Economic Research

(NBER) across the estimation methods.

To assess real-time output gap estimates’ predictive power over inflation, a natural inclination

would be to use the Phillips-curve equation in (8) to predict the inflation rate. However, since

output is published with a lag of one quarter, yct is not yet available at t to be able to predict the

inflation rate at t+ 1. Therefore, I adopt a methodology similar to that of Kamada (2005) instead.

That is, I calculate the one-step-ahead prediction of the inflation rate as

πt+1 = πet+1 + ζyc,et+1 + ωt+1, (12)

where πet+1 and yc,et+1 are the expected inflation rate and expected output gap, respectively, and

ωt ∼ i.i.d. N(0, σ2ω). The expected inflation rate and output gap are calculated as

πet+1 =
α
∑3

i=0 πt−i
4

+
(1− α)

∑7
i=4 πt−i

4
(13)

yc,et+1 =
m∑
i=0

ψiy
c
t−i. (14)

Hence, the predicted inflation rate depends on both past inflation rates and past output gaps.

Note that since output is published with a lag of one quarter, however, I estimate (12) under the

restriction that ψ0 = 0. The model parameters are estimated based on the first half of the sample,

such that out-of-sample predictions can be made for the second half of the sample. Since output
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gap estimates differ per estimation method, the parameters of the above model clearly also differ

for each estimation method. This also means that for each estimation method, a different number

of lags of output gap estimates in (14) is optimal. Given that this optimal number is found to be

between two and four lags (where two lags implies that only one output gap estimate is included,

as the first lag has coefficient ψ0 = 0), I examine prediction models with two, three, and four lags

of output gap estimates.

After generating the one-step-ahead out-of-sample predictions of the inflation rate based on

each output gap estimation method, following Camba-Mendez and Rodriguez-Palenzuela (2003),

I compare their performance in terms of root mean square error (RMSE) to that of a random

walk with drift and to that of an AR model without past output gaps (i.e. with ζ = 0 in (12)).

More specifically, for the random walk with drift, I calculate Theil statistics as the RMSE of the

prediction model divided by the RMSE of the random walk. A Theil statistic above 1 therefore

indicates that the prediction model has lower prediction accuracy than a random walk. For the

simple AR model, which is hard to outperform (Camba-Mendez and Rodriguez-Palenzuela, 2003),

I calculate the RMSE of the prediction model minus the RMSE of the AR model. Lastly, I perform

Diebold and Mariano (1995) tests of equal predictive ability on the prediction model versus the

benchmark models.

IV. Results

This section presents the results of the analyses performed on the output gap estimation methods

as described in Section III. First, I discuss some general results from the different methods and

how they compare to each other. Then, I analyze revisions to real-time estimates from the different

methods and the predictive power of these estimates over inflation. Lastly, attention is given to

the parameter (in)stability of the different estimation methods. Note that, to make the output

gap estimates from different estimation methods comparable, they are expressed as a percentage

of potential output.

Before comparing the output gap estimates from the different estimation methods, Figure 7 in

Appendix B plots the trend component of the log of real output for the most recent vintage under

several methods, zoomed in on different time periods. It appears that the HP filter calculates a

rather smooth trend, whereas the BN decomposition more closely follows the actual output series.

Furthermore, the potential output resulting from both the Watson and especially the Kuttner

model stays relatively stable when actual output goes down during for instance the financial crisis

of 2008.

A. Comparison of the Estimation Methods

Figure 2 plots the real-time and final estimates of the output gap from the different estimation

methods. The difference between these series of estimates, or the total revision, is also plotted.

The shaded periods indicate recessions as defined by the NBER. The resulting plots are comparable

16



Figure 2. Output Gap Estimates and Their Revisions. Plots of final and real-time estimates
of the output gap and their total revisions under the different estimation methods. The shaded
periods indicate NBER recessions.
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to those by Orphanides and Norden (2002). The estimation methods tend to move upwards or

downwards together, although more closely so for the final estimates, and generally indicate a

negative output gap around recessions as should be expected. Only the BN decomposition results

in rather different measures of the output gap. In fact, this method returns positive output gap

estimates around recessions, whereas the estimates during non-recession periods almost seem like

Table 5. Summary Statistics for the Output Gap.

Mean SD Min Median Max COR

HP filter
Final -0.0047 0.1635 -0.5408 -0.0038 0.4322 1.0000
Quasi real -0.0108 0.1711 -0.4540 0.0196 0.4308 0.5481
Real time -0.0150 0.2226 -0.9854 0.0280 0.5213 0.5379

BN decomposition
Final 0.0075 0.0636 -0.2428 0.0080 0.2271 1.0000
Quasi real 0.0136 0.0588 -0.2125 0.0131 0.2243 0.9909
Real time 0.0249 0.0985 -0.3439 0.0159 0.7465 0.7226

Watson model
Final -0.0006 0.0889 -0.3028 -0.0056 0.2375 1.0000
Quasi final -0.0224 0.0720 -0.2358 -0.0223 0.1310 0.7517
Quasi real -0.1986 0.1575 -0.6168 -0.1839 0.1791 0.4356
Real time -0.2048 0.2276 -1.2318 -0.1548 0.2406 0.4578

VAR-Watson model
Final -0.0014 0.1954 -0.6637 -0.0066 0.5486 1.0000
Quasi final -0.0334 0.1315 -0.4266 -0.0279 0.2536 0.7434
Quasi real -0.1729 0.1602 -0.6138 -0.1597 0.1792 0.5165
Real time -0.1943 0.2589 -1.3449 -0.1412 0.5201 0.5091

Joint Watson model
Final 0.0079 0.3139 -0.8717 -0.0245 0.7540 1.0000
Quasi final -0.0884 0.2063 -0.6965 -0.1066 0.3607 0.8424
Quasi real -0.0211 0.1860 -0.5913 0.0039 0.3836 0.7590
Real time -0.0674 0.2203 -0.8132 -0.0581 0.4266 0.7655

Kuttner model
Final 0.0410 0.2037 -0.6627 0.0233 0.5469 1.0000
Quasi final -0.0261 0.1611 -0.4171 -0.0341 0.3514 0.6629
Quasi real -0.1622 0.1724 -0.7150 -0.1408 0.1983 0.5966
Real time -0.1929 0.2114 -0.9784 -0.1578 0.2685 0.5939

Joint Kuttner model
Final -0.0005 0.3080 -0.9081 -0.0464 0.6782 1.0000
Quasi final -0.0007 0.2342 -0.6825 0.0080 0.4864 0.9385
Quasi real -0.0215 0.2067 -0.5688 0.0095 0.3596 0.7353
Real time -0.0369 0.2302 -0.6816 -0.0056 0.4248 0.8033

Basic summary statistics for estimates of the output gap from the different es-
timation methods. The final column reports correlation with the final estimate
under that method.
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noise. While the estimates during recessions are later revised downward, their final estimates are

also still positive. The real-time estimates around recessions of the other estimation methods tend

to be revised upward. In other words, their initial estimates seem to have been too negative. This

can be explained by the end-of-sample problem, as the trend is more responsive to temporary shocks

to output at the end of the sample than in the middle of the sample.

Table 5 reports summary statistics for estimates of the output gap from the different estimation

methods, including their correlation with the final estimate. The numbers confirm what Figure 2

has already suggested: with a standard deviation between 0.05 and 0.10, the estimates from the

BN decomposition are less volatile than those from the other estimation methods. The real-time

estimates from the HP filter and Watson model seem to have relatively poor reliability, in that they

have a correlation of only 0.54 and 0.46, respectively, with their final estimates. The VAR-Watson

model performs better than the original Watson model on that measure, but with a correlation

of 0.77, the joint Watson model performs even better. The joint Kuttner model also produces

real-times estimates that correlate considerably more with their final estimates than do those of its

original counterpart. Further interesting to note is the extremely high correlation of 0.99 between

the quasi-real and final estimates from the BN decomposition, which can be readily explained from

the fact that the BN decomposition does not use future observations. The quasi-real estimates are

constructed from the same vintage as the final estimates, but use only the observations up to the

relevant quarter. Since later observations would not be used by the BN decomposition anyway, the

quasi-real and final estimates are essentially the same.

To better show the correlation between the different series of estimates from each estimation

method, Figure 3 plots the series for each method separately. Apart from the noisy estimates from

the BN decomposition, it is clear that the series of estimates from the joint Watson model and

especially the joint Kuttner model move most closely together. These are already some promising

results for the usefulness of these joint models, but it gets even better when looking at the reliability

statistics presented in Table 6. Not only do the real-time estimates from the joint Watson and

Kuttner models have a higher correlation with their final estimates than do those from their original

counterparts, the proportion of times that they have opposite signs is also much lower (0.16 and

0.12 for the joint Watson and Kuttner models, respectively, versus 0.44 and 0.46 for the original

Watson and Kuttner models). While the Pesaran and Timmermann (1992) test rejects for all

estimation methods except for the Watson model that the signs of the real-time and final estimates

are independent, it does so by far most strongly for the two joint models. The reported NS and

NSR are the standard deviation and root mean square, respectively, of the total revision divided

by the standard deviation of the final estimate. These statistics serve as proxies for the real-

time estimates’ noise-to-signal ratio (Orphanides and Norden, 2002) and are relatively low for the

two joint models, suggesting a lower noise component. When it comes to the F-test of equal

variances, the hypothesis that the real-time and final estimates have equal variances is rejected for

all estimation methods except for the original Kuttner model. Interestingly, however, the real-time

estimates of the joint models have a lower variance than their final estimates (as indicated by the
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Figure 3. Estimates of the Output Gap by Method. Plots of the different series of estimates
of the output gap from the different estimation methods. The shaded periods indicate NBER
recessions. Figure continues on Pages 21–22.
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Figure 3. Estimates of the Output Gap by Method. Plots of the different series of estimates
of the output gap from the different estimation methods. The shaded periods indicate NBER
recessions. Figure continued from Page 20 and continues on Page 22.
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Figure 3. Estimates of the Output Gap by Method. Plots of the different series of estimates
of the output gap from the different estimation methods. The shaded periods indicate NBER
recessions. Figure continued from Pages 20–21.

F-statistic below 1) while this is the other way around for the other estimation methods. A final

observation is that in contrast to the findings by Orphanides and Norden (2002), the estimates from

both the original and the joint Kuttner model are more reliable across all reported statistics than

those of the corresponding Watson models. This indicates that incorporating economic information

in the form of a Phillips curve is useful.

Table 6. Reliability Statistics for the Estimation Methods.

COR NS NSR OPSIGN PT p-value F p-value

HP filter 0.5379 1.1783 1.1770 0.3861 3.3460 0.0004 1.8527 0.0000
BN decomposition 0.7226 1.0785 1.1100 0.2376 7.2598 0.0000 2.4037 0.0000
Watson model 0.4578 2.2840 3.2357 0.4406 1.4455 0.0742 6.5619 0.0000
VAR-Watson model 0.5091 1.1858 1.5405 0.4208 2.7465 0.0030 1.7548 0.0001
Joint Watson model 0.7655 0.6465 0.6882 0.1584 9.7767 0.0000 0.4928 0.0000
Kuttner model 0.5939 0.9189 1.4693 0.4554 3.9201 0.0000 1.0771 0.5989
Joint Kuttner model 0.8033 0.5982 0.6083 0.1188 10.8528 0.0000 0.5585 0.0000

Reliability statistics for the different estimation methods. COR is the correlation between the
real-time and final estimates. NS is the standard deviation of the total revision divided by that
of the final estimate. NSR is the root mean square of the total revision divided by the standard
deviation of the final estimate. OPSIGN is the proportion of times that the real-time and final
estimates have opposite signs. PT is the test statistic from the Pesaran and Timmermann (1992)
test of directional accuracy between the real-time and final estimates. F is the test statistic from
a test of equal variances of the real-time and final estimates.
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B. Revisions to Real-Time Estimates

Since it is crucial that real-time estimates do not change much when the underlying output data

is revised in order for appropriate policy decisions to be made, I analyze the revisions to real-time

estimates from the different estimation methods. Table 7 reports summary statistics for the total,

data, and parameter revisions to real-time estimates of the output gap from the different estimation

Table 7. Summary Statistics for the Revisions to Real-Time Estimates.

Mean SD RMS Min Median Max AR

HP filter
Total revision 0.0103 0.1927 0.1925 -0.4016 -0.0069 0.5423 0.9212
Data revision 0.0043 0.0915 0.0914 -0.2348 -0.0016 0.5314 0.7882
Parameter revision 0.0060 0.1592 0.1589 -0.4105 -0.0165 0.3606 0.9640

BN decomposition
Total revision -0.0174 0.0686 0.0706 -0.5906 -0.0098 0.2415 0.3664
Data revision -0.0112 0.0678 0.0685 -0.5754 -0.0047 0.2426 0.3876
Parameter revision -0.0061 0.0095 0.0113 -0.0438 -0.0051 0.0306 0.5429

Watson model
Total revision 0.2042 0.2030 0.2875 -0.1050 0.1857 0.9958 0.8627
Data revision 0.0062 0.1522 0.1520 -0.4108 -0.0034 0.9376 0.6615
Parameter revision 0.1763 0.1388 0.2241 -0.1835 0.1881 0.4788 0.8186

VAR-Watson model
Total revision 0.1928 0.2317 0.3010 -0.2430 0.1547 0.8632 0.8316
Data revision 0.0214 0.1880 0.1887 -0.4263 0.0000 0.7796 0.5990
Parameter revision 0.1395 0.1476 0.2029 -0.3934 0.1611 0.4696 0.6813

Joint Watson model
Total revision 0.0753 0.2029 0.2160 -0.3360 0.0296 0.5709 0.9234
Data revision 0.0463 0.1138 0.1226 -0.3593 0.0279 0.5856 0.8181
Parameter revision -0.0673 0.0894 0.1117 -0.2754 -0.0672 0.2725 0.8565

Kuttner model
Total Revision 0.2339 0.1872 0.2993 -0.3248 0.2219 0.8373 0.8385
Data revision 0.0308 0.1166 0.1203 -0.2326 0.0172 0.4647 0.4533
Parameter revision 0.1361 0.1429 0.1971 -0.3694 0.1102 0.5657 0.7355

Joint Kuttner model
Total revision 0.0364 0.1842 0.1873 -0.3678 0.0355 0.6554 0.8761
Data revision 0.0154 0.1019 0.1028 -0.3710 0.0117 0.4333 0.5930
Parameter revision 0.0209 0.1057 0.1074 -0.2250 0.0018 0.4615 0.8332

Basic summary statistics for the total, data, and parameter revisions to real-time estimates
of the output gap from the different estimation methods. Total revision is the difference
between “final” and “real-time” estimates, data revision is the difference between “quasi-
real” and “real-time” estimates, and parameter revision is the difference between “final”
(or “quasi-final” for estimation methods based on Kalman filtering) and “quasi-real” esti-
mates. RMS and AR are the root mean square and first-order autocorrelation, respectively,
of the revision series.
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Figure 4. Revisions to Real-Time Estimates by Method. Plots of real-time estimates of the
output gap from the different estimation methods and their total, data, and parameter revisions.
Figure continues on Pages 25–26.
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Figure 4. Revisions to Real-Time Estimates by Method. Plots of real-time estimates of the
output gap from the different estimation methods and their total, data, and parameter revisions.
The shaded periods indicate NBER recessions. Figure continued from Page 24 and continues on
Page 26.
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Figure 4. Revisions to Real-Time Estimates by Method. Plots of real-time estimates of the
output gap from the different estimation methods and their total, data, and parameter revisions.
The shaded periods indicate NBER recessions. Figure continued from Pages 24–25.

methods, including the root mean square (RMS) and first-order autocorrelation (AR), and Figure

4 plots these revisions for each method separately.

On average, except for those of the BN decomposition, the revisions are positive and highly

persistent with many of the autocorrelations above 0.80. For the HP filter, VAR-Watson model, and

original Watson and Kuttner models, negative output gaps are often revised upward with almost

the same magnitude, such that the final estimates are close to zero. The revisions for the joint

Watson and Kuttner models show much less of a pattern relative to the real-time estimates. When

decomposing the total revision, it becomes clear that only the BN decomposition has a relatively

high average data revision of -0.011 percent compared to an average total revision of -0.017 percent.

While data revision does play a role for the other estimation methods, similar to the findings by

Orphanides and Norden (2002), it is rather small and less variable than the total revision. Instead,

most of the revision is attributable to parameter instability of the methods, which will be elaborated

on later in this section.

Since the reliability of real-time output gap estimates is presumably most relevant around

turning points of the business cycle (Orphanides and Norden, 2002), Table 8 provides the revisions

to these estimates in the three months centered about NBER business cycle peaks. Except for those

of the BN decomposition, the real-time estimates around peaks of all methods are underestimated

(on average more so than the real-time estimates over the entire sample period) and later revised

upward. With an average total revision of 0.42 percent around peaks, the VAR-Watson model

underestimates the output gap most severely—which may be due to underestimation of post-

revision actual output around business cycle peaks. The underestimation by the joint Watson

model and especially the joint Kuttner model is least severe, with average total revisions of 0.17

and 0.09 percent, respectively.
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Table 8. Summary Statistics for the Revisions to Real-Time
Estimates around Peaks.

Mean SD RMS Min Median Max

HP filter 0.2682 0.0990 0.2850 0.0076 0.2905 0.4208
BN decomposition -0.0340 0.0713 0.0774 -0.2402 -0.0197 0.0458
Watson model 0.3618 0.1909 0.4070 0.0387 0.3453 0.6774
VAR-Watson model 0.4236 0.2344 0.4814 -0.0383 0.4957 0.8632
Joint Watson model 0.1737 0.1759 0.2443 -0.1691 0.2348 0.4616
Kuttner model 0.2802 0.1396 0.3116 0.0875 0.2966 0.5445
Joint Kuttner model 0.0875 0.2428 0.2526 -0.2257 0.1278 0.6554

Basic summary statistics for the total revisions to real-time estimates of the
output gap in the three months centered about NBER peaks from the different
estimation methods. RMS is the root mean square of the revision series.

C. Predicting Inflation with Real-Time Estimates

To examine whether the real-time estimates from the different estimation methods are not only

reliable but also have economic content, I test their predictive power over inflation. Table 9 presents

statistics on the accuracy of one-step-ahead out-of-sample predictions of the inflation rate, using

varying lags of output gap estimates from the different estimation methods. The RMSE of the

prediction models including lags of the output gap is smaller than that of a random walk with

drift, as indicated by the Theil statistics below 1. According to the Diebold and Mariano (1995)

test, however, the hypothesis that the prediction accuracy is the same as that of a random walk

cannot be rejected for any of the models. Nevertheless, regardless of the number of output lags

included in the prediction model, those including output gap estimates from the joint Watson and

Kuttner models have the lowest Theil statistics (0.82 and 0.83, respectively, for two output lags)

and hence the best prediction accuracy.

Table 9. Inflation Prediction Accuracy of Real-Time Output Gap Estimates.

2 Output Gap Lags 3 Output Gap Lags 4 Output Gap Lags

Theil D-M RRMSE D-M Theil D-M RRMSE D-M Theil D-M RRMSE D-M

HP filter 0.8597 0.2785 0.0224 0.0452 0.8589 0.2760 0.0218 0.0479 0.8588 0.2757 0.0217 0.0394
BN decomposition 0.8759 0.3383 0.0364 0.0014 0.8689 0.3136 0.0304 0.0008 0.8705 0.3192 0.0317 0.0008
Watson model 0.8366 0.2086 0.0026 0.8762 0.8267 0.1881 -0.0060 0.0021 0.8297 0.2001 -0.0033 0.4570
VAR-Watson model 0.8413 0.2209 0.0066 0.6495 0.8450 0.2286 0.0098 0.5107 0.8310 0.1993 -0.0022 0.2187
Joint Watson model 0.8171 0.1677 -0.0142 0.3910 0.8163 0.1659 -0.0149 0.3653 0.8155 0.1646 -0.0156 0.3378
Kuttner model 0.8617 0.2899 0.0242 0.2866 0.8548 0.2655 0.0182 0.3983 0.8583 0.2771 0.0212 0.3444
Joint Kuttner model 0.8300 0.2006 -0.0031 0.8768 0.8285 0.1966 -0.0043 0.8301 0.8197 0.1773 -0.0120 0.5350

Accuracy of one-step-ahead out-of-sample predictions of the inflation rate, using varying lags of
output gap estimates. Theil statistics are the root mean squared error (RMSE) of a prediction
model divided by that of a random walk, and RRMSE denotes the relative RMSE of a prediction
model minus that of an AR model without lags of the output gap. The D-M columns contain
p-values corresponding to the Diebold and Mariano (1995) test of equal predictive ability.
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When an AR model without lags of the output gap is used as a benchmark, the prediction

models that do include output gap estimates from either of the joint models still outperform. The

RMSE of the prediction models including two output lags from the joint Watson model and joint

Kuttner model are lower by 0.014 and 0.003, respectively, than the RMSE of the AR benchmark

model. This differs from the results of Kamada (2005), who finds that none of the prediction models

including output gap estimates outperform a simple AR model. The outperformance reported here

is not statistically significant based on the Diebold and Mariano (1995) test, except for that of the

prediction model including three output gap lags from the Watson model. Nonetheless, given that

a simple AR model is hard to outperform (Camba-Mendez and Rodriguez-Palenzuela, 2003), the

results reported here are rather encouraging.

For illustration, Figure 5 plots the one-step-ahead in-sample (before split) and out-of-sample

(after split) predictions of the inflation rate using an AR model with two lags of output gap estimates

from the joint Watson model. Clearly, the predictions closely follow those of an AR model without

lags of the output gap. The predictions based on the other estimation methods are very similar

and shown in Figure 8 in Appendix C.

Figure 5. Inflation Predictions Based on the Joint Watson Model. A plot of one-step-
ahead in-sample (before split) and out-of-sample (after split) predictions of the inflation rate—using
a random walk, an AR model without lags of the output gap, and an AR model with two lags of
output gap estimates from the joint Watson model.

D. Parameter Stability of the Estimation Methods

Since Orphanides and Norden (2002) suggest that most of the revision to real-time estimates

is attributable to parameter instability of the estimation methods rather than to data revisions, it

is interesting to address and compare the parameter stability of the different estimation methods.

Some reasons why parameters change are that the underlying data on which they are estimated

is revised or that new data is added. To single out the effect of the latter, Figure 6 plots the
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Figure 6. Parameter Estimates Within Final Vintage. Plots of maximum likelihood esti-
mates of some of the parameters of the output gap estimation methods. Parameters for a particular
reference date are estimated based on the data up to that date as available in the final vintage.
Hence, these are the parameters used to construct the “quasi-real” output gap estimates. Plots of
the other parameters are in Appendix D.
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maximum likelihood estimates of some of the parameters for each reference date based on the data

up to that date as available in the final vintage (plots for the other parameters can be found in

Appendix D). Hence, at each successive reference date, one data point is added, but the existing

data does not change. Note that these are the same parameters used to construct the “quasi-real”

output gap estimates at each reference date.

It is clear that especially the parameters of the joint Kuttner model are more stable than those

of its original counterpart. That is, the parameters of the joint Kuttner model follow the same trend

as those of the original Kuttner model, but do so in a much smoother fashion. A likely explanation

for this finding is that the parameters of the joint model are estimated based on a “true” output

series for which, unlike for the actual output series used in the original model, new data added at

each successive vintage contains less bias. Table 10 reports the means and standard deviations of

the parameters. While the plots are more obvious, the numbers also indicate that the parameters

of the joint models generally have a lower standard deviation than those of the original models.

For instance, the standard deviation of φ1 is 0.06 under the original Kuttner model but only 0.03

under the joint Kuttner model. For completion, Table 11 and Figure 10 in Appendix E also report

the parameter estimates across vintages, which not only change because new data is added but also

because the underlying data is revised. Clearly, the parameters are more unstable across vintages

than within a vintage, but those of the joint Kuttner model are still less volatile than those of the

original Kuttner model.

Table 10. Parameter Estimates Within Final Vintage.

Watson Model VAR-Watson Model Joint Watson Model Kuttner Model Joint Kuttner Model

Mean SD Mean SD Mean SD Mean SD Mean SD

φ1 1.2736 0.0484 1.2496 0.0578 1.2664 0.0417 1.2846 0.0621 1.2634 0.0345
φ2 -0.3325 0.0285 -0.3342 0.0285 -0.3437 0.0319 -0.3647 0.0559 -0.3438 0.0317
β 1.1438 0.4593 1.0926 0.4428
δ1 -0.5390 0.0831 -0.5402 0.0736
δ2 -0.1773 0.0698 -0.1823 0.0657
δ3 0.2731 0.0780 0.2894 0.0691
δ4 -0.3731 0.1163 -0.3758 0.1200
γ 8.8523 1.7731 9.4755 1.5727
σuv 0.0001 0.0005 0.5847 0.0004

Means and standard deviations of maximum likelihood estimates of the parameters of the output
gap estimation methods. Parameters for a particular reference date are estimated based on the
data up to that date as available in the final vintage. Hence, these are the parameters used to
construct the “quasi-real” output gap estimates.

Even though the parameters of the joint Kuttner model are less volatile than those of the original

model, they still change quite a bit when new data is added. Sometimes, this may be because

the optimization method gets stuck in a local minimum. Indeed, because of the large number

of parameters, the quasi-Newton method used in this research may not adequately isolate the

global minimum. Future research may therefore examine whether using techniques like simulated
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annealing lead to more stable parameters (Planas and Rossi, 2000). Besides this, however, output

data series that span different periods often require different parameters or even different model

specifications due to changing economic relations. For example, Section III.A.4 already showed that

the original Kuttner (1994) specification of the Phillips-curve equation is not the best fit for the

more recent data used in this paper. Therefore, a natural next step for future research is to allow

the parameters of the proposed estimation methods to vary over time (e.g. Kara et al., 2007).

V. Conclusion

This paper has reviewed several existing estimation methods for the output gap and proposed

an updated method that models the dynamics of real output jointly with data revisions to real

output. The widely used Hodrick-Prescott (HP) filter is found to produce real-time output gap

estimates with relatively poor reliability, which is likely due to the end-of-sample problem, whereas

the estimates from the Beveridge-Nelson (BN) decomposition seem to perform quite fine according

to the used performance criteria but do not contain much economic information. Defining potential

output as the long-run forecast of output, like the BN decomposition does, therefore does not seem

to be appropriate. Applying the Watson model to a data set that contains post-revision output

data as forecasted by a VAR model of past data vintages, rather than to the original data set,

improves real-time output gap estimates. Yet, the joint Watson model proposed in this paper that

combines the Watson model with a state-space model that relates published output data to their

unobserved true values performs even better. I also find that incorporating economic information

in the form of a Phillips curve is useful, as the real-time estimates from both the original and the

joint Kuttner model are more reliable than those of the corresponding Watson models.

The outperformance of the joint models proposed in this paper is due not only to the fact

that they take into account data revisions, but also to their increased parameter stability. Rather

than using the Watson or Kuttner model as a base, the joint model could also be implemented

with more complex unobserved-components models of output, such as that by Alichi (2015). The

results in this paper certainly provide a promising basis for doing so. Nevertheless, a few limitations

and suggestions for future research are due to be mentioned. First of all, the model parameters

have been assumed to be constant over time, but changing economic relations often call for different

parameters or even different model specifications. Therefore, a natural next step for future research

is to allow the parameters to vary over time. Also interesting for future research would be to assume

that the measurement error in published output data is both serially correlated and heteroskedastic

as suggested by Cunningham et al. (2012). This is because the measurement errors made in a

certain vintage may be correlated with each other, and they may be heteroskedastic (decreasing)

with respect to maturity. Another way to allow for richer dynamics in the measurement error

would be to examine to what extent the measurement error should be seen as “noise”, “news”, or

“spillover” and model it as such, as in Jacobs and Van Norden (2011). Such model enhancements

can be expected to improve upon the already promising results in this paper even more.
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Appendix A. State-Space Form of Joint Kuttner Model

As proposed in Section III.B, data revisions to real output and the Kuttner (1994) dynamics of

real output can be jointly modeled in the state-space form of (6) and (7), where xt =
[
yTt ∆πt

]′
,

Q is the identity matrix of size 3, and the state vector αt and system matrices F , R, ηt, Z, and H

are defined as

αt =



y∗t

yg,∗t
yc,∗t
yc,∗t−1
vt

vt−1

vt−2

vt−3

vt−4

µy∗

µπ

y∗t−1
y∗t−2
κT−t



, F =



0 1 φ1 φ2 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 φ1 φ2 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
1+τ



, R =



σe ruu ruv

σe 0 0

0 ruu ruv

0 0 0

0 ruv rvv

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



,

ηt =

etut
vt

 , Z =

[
1 0 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 β 1 δ1 δ2 δ3 δ4 0 1 γ −γ 0

]
, and H =

[
σ2w 0

0 0

]
.

Note that it holds that (see Hindrayanto et al., 2014):

σ2u = r2uu + r2uv

σ2v = r2vv + r2uv

σuv = ruuruv + rvvruv.
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Appendix B. Trend of the Log of Real Output

Figure 7. Trend of the Log of Real Output. Plots of the trend component of the log of real
output for the most recent vintage under several estimation methods, zoomed in on different time
periods.
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Appendix C. Inflation Predictions by Estimation Method

Figure 8. Inflation Predictions by Estimation Method. Plots of one-step-ahead in-sample
(before split) and out-of-sample (after split) predictions of the inflation rate—using a random
walk, an AR model without lags of the output gap, and an AR model with two lags of output gap
estimates from the different estimation methods. Figure continues on Page 35.
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Figure 8. Inflation Predictions by Estimation Method. Plots of one-step-ahead in-sample
(before split) and out-of-sample (after split) predictions of the inflation rate—using a random
walk, an AR model without lags of the output gap, and an AR model with two lags of output gap
estimates from the different estimation methods. Figure continued from Page 34.
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Appendix D. Parameter Estimates Within Final Vintage

Figure 9. Parameter Estimates Within Final Vintage. Plots of maximum likelihood es-
timates of the parameters of the output gap estimation methods. Parameters for a particular
reference date are estimated based on the data up to that date as available in the final vintage.
Hence, these are the parameters used to construct the “quasi-real” output gap estimates. Figure
continues on Page 37.
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Figure 9. Parameter Estimates Within Final Vintage. Plots of maximum likelihood es-
timates of the parameters of the output gap estimation methods. Parameters for a particular
reference date are estimated based on the data up to that date as available in the final vintage.
Hence, these are the parameters used to construct the “quasi-real” output gap estimates. Continued
from Page 36.
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Appendix E. Parameter Estimates Across Vintages

Table 11. Parameter Estimates Across Vintages.

Watson Model VAR-Watson Model Joint Watson Model Kuttner Model Joint Kuttner Model

Mean SD Mean SD Mean SD Mean SD Mean SD

φ1 1.2905 0.0749 1.2803 0.0814 1.2923 0.0628 1.3171 0.0900 1.2871 0.0558
φ2 -0.3525 0.0558 -0.3546 0.0556 -0.3550 0.0532 -0.3912 0.0766 -0.3603 0.0622
β 1.1867 0.7398 1.1180 0.7219
δ1 -0.5632 0.0771 -0.5631 0.0727
δ2 -0.1584 0.0628 -0.1614 0.0573
δ3 0.2517 0.0757 0.2693 0.0655
δ4 -0.3394 0.1134 -0.3455 0.1075
γ 7.9611 1.6650 8.7508 1.4053
σuv 0.0002 0.0005 0.5879 0.0004

Means and standard deviations of maximum likelihood estimates of the parameters of the output
gap estimation methods. Parameters for a particular vintage date are estimated based on the data
available in that vintage. Hence, these are the parameters used to construct the “real-time” output
gap estimates.
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Figure 10. Parameter Estimates Across Vintages. Plots of maximum likelihood estimates
of the parameters of the output gap estimation methods. Parameters for a particular vintage date
are estimated based on the data available in that vintage. Hence, these are the parameters used to
construct the “real-time” output gap estimates. Figure continues on Pages 40–41.
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Figure 10. Parameter Estimates Across Vintages. Plots of maximum likelihood estimates
of the parameters of the output gap estimation methods. Parameters for a particular vintage date
are estimated based on the data available in that vintage. Hence, these are the parameters used to
construct the “real-time” output gap estimates. Figure continued from Page 39 and continues on
Page 41.
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Figure 10. Parameter Estimates Across Vintages. Plots of maximum likelihood estimates
of the parameters of the output gap estimation methods. Parameters for a particular vintage date
are estimated based on the data available in that vintage. Hence, these are the parameters used to
construct the “real-time” output gap estimates. Figure continued from Pages 39–40.
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