
ERASMUS UNIVERSITY ROTTERDAM
Erasmus School of Economics

Sparse Cholesky-GARCH models1
Master Thesis Quantitative Finance

J.P.F.M. Kemper (432081)

432081jk@student.eur.nl

Supervisor:

Dr. J.W.N. Reuvers

Second assessor:

Dr. A.A. Naghi

Date final version:

September 8, 2020

Abstract

This thesis examines sparse Cholesky-Garch (CHAR) models. The main problem of the

CHAR models is the high-dimensionality of the parameter vector. A penalization method

is used to deal with this high-dimensionality. This method introduces sparsity in the

parameters of the CHAR models, which results in reduced complexity in the models.

The standard CHAR models are compared with these sparse variants. In the simulation

study, this thesis finds that the sparse CHAR models give in general lower mean absolute

error (MAE) and mean squared error (MSE) values. In the empirical study, the sparse

and standard CHAR models are implemented in a portfolio management application. In

general, the portfolios that use sparse CHAR models give a higher Sharpe ratio (SR) and

Sortino ratio (SoR) value. Therefore the conclusion is that in both the simulation and

the empirical study, the sparse CHAR models generally perform better than the standard

CHAR models. Hence, the potential of using sparse CHAR models is showed in this

thesis.

1The content of this thesis is the sole responsibility of the author and does not reflect the view of the
supervisor, second assessor, Erasmus School of Economics or Erasmus University.

Contents

1 Introduction 1

2 Methodology 3

2.1 The CHAR models . 3

2.1.1 The full QMLE method . 5

2.1.2 The multi-step QMLE method . 6

2.2 Penalization method . 8

2.2.1 Penalty functions . 8

2.2.2 The penalized likelihood function 9

2.2.3 Algorithm via local quadratic approximations 10

2.2.4 Selection of the tuning parameters via cross-validation 12

3 Monte Carlo simulation study 13

3.1 The DGP of the simulation . 13

3.2 Simulation performance measures . 14

3.3 Simulation results . 15

4 Empirical study 21

4.1 Data . 21

4.2 Markowitz portfolios and performance measures 22

4.3 Empirical results . 23

5 Conclusion 27

6 Discussion 29

1 Introduction

Estimating the covariance matrix is an essential part of multivariate analysis. This matrix

is crucial for financial applications and has been used for financial purposes, e.g. in asset

pricing, risk and portfolio management (Bai & Shi, 2011). In the last example, the covari-

ance matrix has been used, for instance, in the Markowitz portfolio framework (Markowitz

& Todd, 2000). The global minimum variance (gmv) and the tangency portfolio are a part

of this portfolio framework. The portfolio weights of these portfolios rely on an estimate

of the covariance matrix. Hence, properly estimating this matrix is important for the

weights and therefore, the performance of the portfolio. The autoregressive conditional

heteroscedasticity (ARCH) and generalized autoregressive conditional heteroskedasticity

(GARCH) models have become the standard tools to estimate the time-varying variance

(Engle, 2001). The GARCH model is extended to a multivariate GARCH model to un-

derstand the comovements of financial returns (Silvennoinen & Teräsvirta, 2009).

This thesis investigates new multivariate GARCH models, namely the Cholesky-GARCH

(CHAR) models. These models are based on the Cholesky decomposition and are pro-

posed by Darolles, Francq, and Laurent (2018). The CHAR models have advantages, e.g.

it allows for equation-by-equation (EbE) estimation, which is computationally fast. How-

ever, these models also have drawbacks. The main disadvantage of the models is that the

dimensionality of the parameter vector grows quickly when additional assets are incorpo-

rated in the model. This thesis uses the penalization method from Fan and Li (2001) to

deal with this high-dimensionality. This penalization method introduces sparsity in the

parameter vector of the CHAR models. This sparsity in the parameter vector results in

reduced model complexity. This thesis examines the performance of these sparse CHAR

models and compares these sparse models with the standard CHAR models.

The CHAR models, which can estimate the covariance matrix is proposed by Darolles

et al. (2018). They propose two methods to estimate the parameters of the CHAR models,

namely the full and the multi-step quasi-maximum likelihood estimate (QMLE) method.

The full method estimates the full parameter vector and the multi-step method estimates

the parameters EbE. This latter method is computationally more convenient than the

full method. For both methods, they derive invertibility conditions. These conditions

guarantee that the time-varying conditional covariance matrix of the returns is invertible.

They propose four different specifications of the CHAR model, and they conclude that

the CHAR models outperform a model with constant betas and the dynamic conditional

beta model from Engle (2016).

Even before Darolles et al. (2018) proposed the CHAR models, the Cholesky decom-

position was already used in the GARCH models. Dellaportas and Pourahmadi (2012)

1

examine Cholesky-GARCH models with different ways of ordering (simple, AIC, best and

worst ordering) on exchange rates data. These Cholesky-GARCH models in this paper

are different from the CHAR models. They use the mean absolute deviation (MAD), and

the root mean square error (RMSE) as performance measures to compare the Cholesky-

GARCH model with other models (e.g. dynamic conditional correlation, diagonal-vec

and matrix diagonal GARCH). These performance measures compare the obtained ele-

ments of the covariance matrix from the model with a reliable proxy, namely the elements

of the realized covariation matrix used by Andersen, Bollerslev, and Lange (1999) and

Barndorff-Nielsen and Shephard (2004). Dellaportas and Pourahmadi (2012) found rela-

tive low MAD and RMSE values for all Cholesky-GARCH models with different ways of

ordering. Hence, this paper shows the potential of using the Cholesky decomposition in

the GARCH models.

Some papers differ in how the parameters of the CHAR models are estimated from

Darolles et al. (2018). For instance, Valizadeh and Rezakhah (2018), propose a stochastic

structure for dependency components in the CHAR models and use a linear regression

model as a state-space model and use the kalman filter for estimation of the regression

parameters. They find that the stochastic CHAR models perform better compared to

other models (e.g. DCC-GARCH, CGARCH and CLGARCH) based on MAE and MSE.

This thesis combines the CHAR models with the penalization method proposed by

Fan and Li (2001). This penalization method introduces sparsity in the parameter vector,

which results in decreased model complexity. Fan and Li (2001) examine three penalty

functions, namely the hard thresholding, the lasso and the smoothly clipped absolute

deviation (SCAD) penalty function. These penalty functions do not have continuous

second-order derivatives. Therefore, the penalized likelihood function cannot be maxi-

mized using standard numerical procedures. Hence, an algorithm is proposed to obtain

the parameter vector that maximizes the penalized likelihood function. They further dis-

cuss two methods to select the tuning parameters, namely five-fold cross-validation and

generalized cross-validation. They show in their simulation that their proposed estima-

tors perform as well as the oracle procedure for variable selection. They find that the

penalized likelihood with the SCAD penalty function gives the best performance.

Sparse versions of the multivariate GARCH models have been previously examined

by, for instance, Wu and Dhaene (2016). They use the lasso regularization to introduce

sparsity. This lasso regularization penalizes the off-diagonal elements of the coefficient

matrices. To select the tuning parameters, they use cross-validation, which is similar to

Fan and Li (2001). They find that the sparse DCC outperforms the diagonal DCC. They

further find that the sparse BEKK model outperforms the diagonal BEKK model. Hence,

they show the potential of introducing sparsity in multivariate GARCH models.

2

This thesis examines the effect of introducing sparsity in four different specifications

of the full and multi-step CHAR model proposed by Darolles et al. (2018). These sparse

versions are obtained by using the penalization algorithm via local quadratic approxi-

mations proposed by Fan and Li (2001). Two different penalty functions are examined,

namely the hard thresholding and the SCAD penalty function. The sparse CHAR models

are first examined in a Monte Carlo simulation study. The goal in this study is to deter-

mine whether the covariance matrices obtained by these sparse versions are closer to the

theoretical covariance matrices than the standard CHAR models. After this Monte Carlo

simulation, these sparse CHAR models are examined in an empirical study. In this study,

the obtained covariance matrices are implemented in the Markowitz portfolio framework.

The goal of the empirical study is to determine whether sparse CHAR models result in

better-performing portfolios compared to the standard CHAR models.

In the Monte Carlo simulation study, this thesis finds that the sparse CHAR models,

in general, outperformed the standard CHAR models. This simulation study shows that

the penalization method introduces sparsity on only the parameters that should be zero

according to the Data Generating Process (DGP). Hence, the penalization algorithm

sets the correct parameters equal to zero. In the empirical study, this thesis finds in

general better performing portfolios when the sparse CHAR models are used. In both

the simulation and empirical study, specification 1 of the CHAR model with the SCAD

penalty function gives the best results. In conclusion, the potential of using sparse CHAR

models instead of standard CHAR models is showed in this thesis.

This thesis is organized as follows. Section 2 explains the methodology. The DGP, the

performance measures and the results of the Monte Carlo simulation study are discussed

in Section 3. The empirical study is examined in Section 4. This thesis ends with the

conclusion and discussion in respectively Section 5 and Section 6.

2 Methodology

This methodology section starts with explaining the CHAR models in Section 2.1. Sec-

tion 2.2 discusses the penalization method and the penalty functions that are used.

2.1 The CHAR models

Before explaining the CHAR models from Darolles et al. (2018), first, some notation is

introduced. Let εt = (ε1t, . . . , εmt)
′ denote a vector of returns and these returns satisfy a

general volatility model of the form

εt = Σ
1/2
t (ϑ)ηt, t = 1, . . . , n (2.1)

3

where ηt is a sequence of i.i.d. random vectors with zero mean and identity covariance

matrix and Σt (ϑ) a covariance matrix parametrized by a d-dimensional parameter vector

ϑ. The goal of the CHAR models is to estimate this covariance matrix Σt (ϑ).

The CHAR models are multivariate GARCH models, which is based on the Cholesky

decomposition:

Σt (ϑ) = Σt = Lt (ϑ)Gt (ϑ)L′t (ϑ) , (2.2)

where Lt (ϑ) is lower unitriangular (i.e. a lower triangular matrix with ones on the

diagonal), with `ij,t at the row i and column j. Furthermore, in (2.2) is Gt (ϑ) a diagonal

matrix. For instance, in the case that the number of assets is equal to three (m = 3), the

matrices are defined as follows:

Lt =

 1 0 0

`21,t 1 0

`31,t `32,t 1

 ,Bt =

 1 0 0

−β21,t 1 0

−β31,t −β32,t 1

 and Gt =

 g1,t 0 0

0 g2,t 0

0 0 g3,t

 ,

where Bt = L−1
t . Hence, if one obtain the elements of Bt, one, therefore indirect obtains

Lt.

The elements of Bt (ϑ) and Gt (ϑ) can be obtained by using four specifications of the

conditional betas βij,t and the conditional variances gi,t. Darolles et al. (2018) proposed

these specifications and they are shown in Table 1.

Table 1: The four specifications of the conditional conditional variances gi,t for i = 1, . . . ,m
and betas βij,t for any index (i, j) in the set Tm. This set is defined as Tm = {(i, j) :
i = 2, . . . ,m and j = 1, . . . , i − 1}. The factor vk,t is the k-th element of the vector
vt = (v1t, . . . , vmt)

′, which is an orthogonal vector on the returns at time t. This factor vt
can be obtained by using vt = Btεt. In this table x+ and x− are defined as x+ = max(x, 0)
and x− = min(x, 0), respectively. The parameters associated with the conditional variance are
constrained to be positive.

Specification Conditional variances gi,t and betas βij,t

1
gi,t = ωi + γi+

(
ε+1,t−1

)2
+ γi−

(
ε−1,t−1

)2
+
∑i

k=2 α
(k)
i v2

k,t−1 + bigi,t−1

βij,t = $ij + ςij+ε
+
1,t−1 + ςij−ε

−
1,t−1 +

∑i
k=2 τ

(k)
ij vk,t−1 + cijβij,t−1

2
gi,t = ωi + γi+

(
ε+1,t−1

)2
+ γi−

(
ε−1,t−1

)2
+ αiv

2
i,t−1 + bigi,t−1

βij,t = $ij + ςij+ε
+
1,t−1 + ςij−ε

−
1,t−1 + τijvi,t−1 + ξijvi,t−1v1,t−1 + cijβij,t−1

3
gi,t = ωi + γi+

(
ε+1,t−1

)2
+ γi−

(
ε−1,t−1

)2
+ αiv

2
i,t−1 + bigi,t−1

βij,t = $ij + ςij+ε
+
1,t−1 + ςij−ε

−
1,t−1 + τijvi,t−1 + ξijvi,t−1vj,t−1 + cijβij,t−1

4
git = ωi +

∑m
k=1

{
α

(k)
i+

(
ε+k,t−1

)2
+ α

(k)
i−
(
ε−k,t−1

)2}
+ bigi,t−1

βij,t = $ij + τijεi,t−1εj,t−1 + cijβij,t−1

4

What stands out in Table 1 is that specification 4 is fundamentally different from

specifications 1-3. Specification 4 only depends on past observations, while the other

specifications also depend on the factors vt. As can be seen in Table 1, the difference

between specifications 1-3 is only in the factors vt. Specification 1 depends on more

factors than specifications 2 and 3 for both gi,t and βij,t. Furthermore, specifications 2

and 3 are defined the same for the conditional variance gi,t. The difference between these

specifications for the conditional betas βij,t is that specification 2 depends on vi,t−1vj,t−1

and specification 3 on vi,t−1v1,t−1. For m = 2 only β21,t is considered, according to the

set T2. Therefore, specifications 2 and 3 are exactly the same, because in this case,

vi,t−1vj,t−1 = vi,t−1v1,t−1.

Now the construction of the parameter vector ϑ is discussed. Only the parameters of

specification 1 in Table 1 are considered for the construction of ϑ. However, the same

steps can be followed for the parameters of the other specifications. The vector of the

parameters involving the conditional variance git is defined as θ(1) = (ω1, γ1+, γ1−, b1)′ and

θ(i) =
(
ωi, γi+, γi−, α

(2)
i , . . . , α

(i)
i , bi

)′
, (2.3)

for i = 2, ...,m. Now, the parameters involving the conditional betas are examined. For

(i, j) ∈ Tm set

ϕ(ij) =
(
$ij, ςij+, ςij−, τ

(2)
ij , . . . , τ

(i)
ij , cij

)′
(2.4)

and set ϕ(i) =
(
ϕ(i1)′ , . . . ,ϕ(i,i−1)′

)′
, which contains all the parameters involving the i-

th row of the conditional betas. Thereafter, let ϑ(1) = θ(1) and ϑ(i) =
(
θ(i)′ ,ϕ(i)′

)′
for

i = 2, . . . ,m. Finally, by adding all ϑ(i) for i = 1, . . . ,m in a vector, ϑ =
(
ϑ(1)′ , . . . ,ϑ(m)′

)′
is obtained, which contains all the parameters involving specification 1.

2.1.1 The full QMLE method

The full QMLE method estimates the full parameter vector ϑ. First, Σ̃t (ϑ) is defined

as:

Σ̃t (ϑ) = Σ (εt−1, . . . , ε1, ε̃0, ε̃−1, . . . ;ϑ) , (2.5)

where ε̃i for i ≤ 0 are arbitrary fixed initial values. The matrices L̃t (ϑ), G̃t (ϑ) and

B̃t (ϑ) are similarly defined.

The QMLE of ϑn is defined as any measurable solution of:

ϑ̂n = arg min
ϑ∈Θ

Õn(ϑ), (2.6)

5

where Θ is a compact parameter space which contains ϑ and Õn(ϑ) is defined as:

Õn(ϑ) =
1

n

n∑
t=1

q̃t(ϑ), (2.7)

with

q̃t(ϑ) = ε′tB̃
′
t(ϑ)G̃−1

t (ϑ)B̃t(ϑ)εt +
m∑
i=1

log g̃it(ϑ). (2.8)

Since G̃t (ϑ) is a diagonal matrix, the inverse matrix G̃−1
t (ϑ) is easy to derive. By

using standard numerical procedures, ϑ̂n in (2.6) can be found. After that, by using

this estimated parameter vector, Gt(ϑ̂n) and Bt(ϑ̂n) (and therefore Lt(ϑ̂n) by taking

the inverse) can be constructed. Finally, (2.2) is used to construct the covariance matrix

Σt(ϑ̂n).

2.1.2 The multi-step QMLE method

The multi-step QMLE method is computationally more convenient than the full QMLE

method. The multi-step method estimates the parameters EbE, instead of the full pa-

rameter vector as a whole. This method becomes even more impressive when the number

of assets m increases because the computation time will be shorter compared to the full

method. The explanation of the multi-step method is only considered for specification 1

in Table 1. However, similar steps can be followed for the other specifications.

In step 1 of the multi-step method, the QMLE of ϑ
(1)
n is defined as the solution of:

ϑ̂(1)
n = arg min

ϑ(1)∈Θ(1)

Õ(1)
n

(
ϑ(1)

)
, (2.9)

where Θ(1) is a compact parameter space which contains ϑ(1) and Õ
(1)
n

(
ϑ(1)

)
is defined

as:

Õ(1)
n

(
ϑ(1)

)
=

1

n

n∑
t=1

q̃1t

(
ϑ(1)

)
(2.10)

where, in accordance with (2.8), q̃1t

(
ϑ(1)

)
is defined as:

q̃1t

(
ϑ(1)

)
=

ε21t
g̃1t (ϑ(1))

+ log g̃1t

(
ϑ(1)

)
, where g̃1t

(
ϑ(1)

)
= ω1,t−1 + b1g̃1,t−1

(
ϑ(1)

)
, (2.11)

where ωi,t = ωi+γi+
(
ε+1,t
)2

+γi−
(
ε−1,t
)2

corresponds to the conditional variance in Table 1.

In step 2 the QMLE of ϑ
(2)
n is defined as the solution of:

ϑ̂(2)
n = arg min

ϑ(2)∈Θ(2)

Õ(2)
n

(
ϑ(2)

)
, (2.12)

6

where again Θ(2) is a compact parameter space which contains ϑ(2) and Õ
(2)
n

(
ϑ(2)

)
is

defined as:

Õ(2)
n

(
ϑ(2)

)
=

1

n

n∑
t=1

q̃2t

(
ϑ(2)

)
(2.13)

where, again in accordance with (2.8), q̃2t

(
ϑ(2)

)
is defined by:

q̃2t

(
ϑ(2)

)
=
ṽ2

2t

(
ϕ(2)

)
g̃2t (ϑ(2))

+ log g̃2t

(
ϑ(2)

)
, (2.14)

g̃2t

(
ϑ(2)

)
= ω2,t−1 + α

(2)
2 ṽ2

2,t−1

(
ϕ(2)

)
+ b2g̃2,t−1

(
ϕ(2)

)
, (2.15)

ṽ2t

(
ϕ(2)

)
= ε2t − β̃21,t

(
ϕ(2)

)
ε1t, (2.16)

β̃21,t

(
ϕ(2)

)
= ω̄21,t−1 + τ

(2)
21 ṽ2,t−1

(
ϕ(2)

)
+ c21β̃21,t−1

(
ϕ(2)

)
, (2.17)

where ω̄ij,t = $ij + ςij+ε
+
1,t−1 + ςij−ε

−
1,t−1 corresponds to the conditional betas in Table 1

and ωi,t is defined as before.

After step 1 and 2, the QMLE of ϑ
(i)
n for i = 3, . . . ,m can be found. This i-th step

for i = 3, . . . ,m depends on the QMLE in previous steps ϕ(−i) =
(
ϕ(i−1)′ , . . . ,ϕ(2)′

)
and

denote ϑ(+i) =
(
ϑ(+i)′ ,ϕ(−i)′). The QMLE of ϑ

(i)
n , for i = 3, . . . ,m, is defined as the

solution of:

ϑ̂(i)
n = arg min

ϑ(+i)∈Θ(+i)

Õ(i)
n

(
ϑ(+i)

)
, (2.18)

where again Θ(+i) is a compact parameter space which contains ϑ(+i) and Õ
(i)
n

(
ϑ(+i)

)
is

defined as:

Õ(i)
n

(
ϑ(+i)

)
=

1

n

n∑
t=1

q̃it
(
ϑ(+i)

)
(2.19)

where q̃it
(
ϑ(+i)

)
is defined by:

q̃it
(
ϑ(+i)

)
=
ṽ2
it

(
ϕ(+i)

)
g̃it (ϑ(+i))

+ log g̃it
(
ϑ(+i)

)
, (2.20)

g̃it
(
ϑ(+i)

)
= ωi,t−1 +

i∑
k=2

α
(k)
i ṽ2

k,t−1

(
ϕ(+k)

)
+ big̃i,t−1

(
ϑ(+i)

)
, (2.21)

ṽkt
(
ϕ(+k)

)
= εkt −

k−1∑
j=1

β̃kj,t
(
ϕ(+k)

)
εjt, (2.22)

7

β̃ij,t
(
ϕ(+i)

)
= ω̄ij,t−1 +

i∑
k=2

τ
(k)
ij ṽk,t−1

(
ϕ(+k)

)
+ cijβ̃ij,t−1

(
ϕ(+i)

)
, (2.23)

where ωi,t and ω̄ij,t is defined as before. By using standard numerical procedures (2.9),

(2.12) and (2.18) can be solved.

For m = 2, the full and the multi-step method give the same results because

Õn(ϑ) = Õ(1)
n

(
ϑ(1)

)
+ Õ(2)

n

(
ϑ(2)

)
. (2.24)

However, in general these two methods give different results.

2.2 Penalization method

The parameter vector is d-dimensional. For instance, the number of parameters in spec-

ification 1 in Table 1 is d = m(m + 1)(m + 5)/3. Hence, d = O(m3) and therefore, the

number of parameters d increases rapidly, when the number of assets m increases. The

penalization method from Fan and Li (2001) is used to deal with this high-dimensionality.

The goal of this method is to reduce model complexity by setting small coefficients to zero.

Therefore, this method introduces sparsity in the parameter vector. The CHAR models

with sparsity in the parameter vector due to the penalization method are called the sparse

CHAR models. In this section, two different penalty functions in the penalization method

are considered, which are explained in the next subsection.

2.2.1 Penalty functions

The hard thresholding penalty function is:

pλ(|ϑj|) = λ2 − (|ϑj| − λ)2I [|ϑj| < λ] , (2.25)

where λ is a tuning parameter and I[·] is an indicator function that is equal to one when

|ϑj| < λ and zero otherwise. The hard thresholding penalty function has the lowest

penalty function value when |ϑj| < λ and the difference between |ϑj| and λ is large.

This difference is the largest when |ϑj| = 0. Consequently, this penalty function sets

small parameters equal to zero. This hard thresholding penalty function treats large

absolute parameter values different than small absolute parameter values, which can be

seen in (2.25) by the indicator function. The hard thresholding penalty function does not

simultaneously satisfy the unbiasedness, sparsity and continuity properties of a proper

penalty function (Fan & Li, 2001).

8

The SCAD penalty function satisfies the properties of a proper penalty function bet-

ter compared to the hard thresholding penalty function. Therefore, this SCAD penalty

function is promising. The SCAD penalty function is as follows:

pλ(ϑj) =


λ|ϑj| if |ϑj| ≤ λ
2aλ|ϑj |−ϑ2j−λ2

2(a−1)
if λ < |ϑj| ≤ aλ

λ2(a+1)
2

otherwise

, (2.26)

where α and λ are tuning parameters with α > 2 and λ > 0. The SCAD penalty function

is equal to the lasso penalty function when |θj| ≤ λ. The lasso penalty function is defined

as pλ(θj) = λ|θj|. Because the SCAD penalty function is equal to the lasso penalty

function when |θj| ≤ λ, and because the lasso penalty function does not simultaneously

satisfy the properties of a proper penalty function this thesis does not investigate this lasso

penalty function. Similar to the hard thresholding penalty function, the SCAD penalty

function treats large parameters different than small parameters, which is also not the

case for the lasso penalty function. Moreover, the SCAD penalty function sets small and

mid-size coefficients equal to zero, but large coefficients remain untouched.

2.2.2 The penalized likelihood function

The penalized likelihood function is obtained by adding n
∑d

j=1 pλ(|ϑj|) to the likelihood

function of the full and the multi-step method. For instance, the penalized likelihood

function ÕPen,n(ϑ) of the full QMLE method is:

ÕPen,n(ϑ) = Õn(ϑ) + n
d∑
j=1

pλ(|ϑj|), (2.27)

where Õn(ϑ) is defined as before in (2.6), n is the number of observations , and d is the

number of parameters in ϑ. When penalty functions are incorporated in the model the

QMLE of ϑn is defined as the solution of:

ϑ̂n = arg min
ϑ∈Θ

ÕPen,n(ϑ), (2.28)

where Θ is a compact parameter space which contains ϑ and ÕPen,n(ϑ) is defined in

(2.27).

In (2.24) is claimed that the full and the multi-step method give the same results for

m = 2. This result does not hold when considering the penalized likelihood functions.

9

The sum of these penalized likelihood functions in step 1 and 2 in the multi-step is:

Õ
(1)
Pen,n(ϑ(1))+Õ

(2)
Pen,n(ϑ(2)) =

Õ(1)
n (ϑ(1)) + n

d1∑
i=1

pλ1(|ϑi|) + Õ(2)
n (ϑ(2)) + n

d2∑
k=1

pλ2(|ϑk|),
(2.29)

where Õ
(i)
n (ϑ(i)) is defined as before in respectively (2.9) and (2.12) for i = 1 and

i = 2, di is the number of parameters in the i-th step, and λi is the value of the tuning

parameter in the i-th step. The equations (2.27) and (2.29) are equal when

n
d∑
j=1

pλ(|ϑj|) = n

d1∑
i=1

pλ1(|ϑi|) + n

d2∑
k=1

pλ2(|ϑk|). (2.30)

Only when all the tuning parameters are the same (2.30) holds. Therefore, the penal-

ized likelihood functions of the full and the multi-step method are in general, not equal

for m = 2. Hence, these two methods do not have to result in the same solution.

2.2.3 Algorithm via local quadratic approximations

As already mentioned, solving (2.6), (2.9), (2.12) and (2.18) can be done by standard

numerical procedures. However, solving, for instance, (2.28) cannot be done by these

standard numerical procedures. These standard procedures cannot be used because the

penalty functions in (2.25) and (2.26) do not have continuous second derivatives. Hence,

another method is needed to find ϑ̂n in (2.28). The algorithm proposed by Fan and Li

(2001) is used to find these parameters, which uses local quadratic approximations.

This algorithm is as follows. Suppose that one has an initial parameter vector ϑ0

that is close to ϑ̂n in (2.28). If |ϑj0| is very close to zero, set ϑ̂j = 0. The parameter

ϑj0 is set equal to zero when |ϑj0| < 10−3. When a parameter is set equal to zero, this

parameter is no longer included in the algorithm. If ϑj0 is not close to zero, it can be

locally approximated by a quadratic function:

[pλ(|ϑj|)]]′ = p′λ(|ϑj|)sgn(ϑj) ≈ {p′λ(|ϑj0|)/|ϑj0|}ϑj, (2.31)

when ϑj 6= 0. The first and second partial derivatives of the likelihood function for the full

and multi-step QMLE method, respectively discussed in Section 2.1.1 and Section 2.1.2,

are continuous. Therefore, the term Õn(ϑ0) in the penalized likelihood function in (2.27)

can be locally approximated by a quadratic function. This term can be transformed into

a quadratic minimization problem where the Newton-Raphson algorithm can be used.

10

Now, the penalized likelihood function in (2.27) can be locally approximated by:

Õn(ϑ0) +∇Õn(ϑ0)′(ϑ− ϑ0) +
1

2
(ϑ− ϑ0)′∇2Õn(ϑ0)(ϑ− ϑ0) +

1

2
nϑ′Σλ(ϑ0)ϑ, (2.32)

where

∇Õn(ϑ0) =
∂Õn(ϑ0)

∂ϑ
, ∇2Õn(ϑ0) =

∂2Õn(ϑ0)

∂ϑ∂ϑ′
, (2.33)

and

Ωλ(ϑ0) = diag{p′λ(|ϑ10|)/|ϑ10|, . . . , p′λ(|ϑd0|)/|ϑd0|}, (2.34)

where p′λ(·) is the derivative of the penalty function with respect to ϑj0.

The theoretical values of ∇Õn(ϑ0) and ∇2Õn(ϑ0) in (2.33) are computationally ex-

pensive. This computational expensiveness is due to the iterative nature of the likelihood

function, as can be seen in, e.g. (2.7) and Table 1. The conditional variances and be-

tas rely on the past variances and betas, respectively; therefore, the parameters occur

often in the likelihood function. Hence, a less computationally expensive method is used.

This method is the finite difference method from Ames (2014), which can approximate

∇Õn(ϑ0) and ∇2Õn(ϑ0).

The first derivative of Õn(ϑ0) with respect to ϑj0, is approximated, when h is close to

zero, by:

∂Õn(ϑ0)

∂ϑj0
≈ Õn(ϑj0 + h)− Õn(ϑj0 − h)

2h
, (2.35)

where Õn(ϑj0 + h) = Õn(ϑ10, . . . , ϑj0 + h, . . . , ϑd0) and h = 10−3.

The second-order approximation of Õn(ϑ0) with respect to ϑj0 is as follows:

∂2Õn(ϑ0)

∂ϑj0∂ϑ′j0
≈ Õn(ϑj0 + h)− 2Õn(ϑ0) + Õn(ϑj0 − h)

h2
, (2.36)

where Õn(ϑj0 +h) and h are defined as before. The second-order approximation of Õn(ϑ0)

with respect to ϑj0 and ϑi0 is as follows:

∂2Õn(ϑ0)

∂ϑj0∂ϑ′i0
≈Õn(ϑj0 + h, ϑi0 + h) + Õn(ϑj0 − h, ϑi0 − h)

4h2

− Õn(ϑj0 + h, ϑi0 − h) + Õn(ϑj0 − h, ϑi0 + h)

4h2
,

(2.37)

where Õn(ϑj0 + h, ϑi0 + h) = Õn(ϑ10, . . . , ϑj0 + h, . . . , ϑi0 + h, . . . , ϑd0) and h is as defined

before.

11

The solution of the quadratic problem in (2.32) is:

ϑ1 = ϑ0 −
{
∇2Õn(ϑ0) + nΩλ(ϑ0)

}−1{
∇Õn(ϑ0) + nUλ(ϑ0)

}
, (2.38)

where Uλ(ϑ0) = Ωλ(ϑ0)ϑ0. The parameters corresponding to the specification of the

conditional variance in Table 1 are constrained to be positive. To satisfy this constraint,

the absolute value is taken when a parameter corresponding to the conditional variance

become negative in ϑ1.

The solution of minimizing the penalized likelihood function in (2.27) is obtained by

repeated use of (2.38) until the parameters are converged. The parameters are considered

to be converged if the estimator satisfies the following condition:∣∣∣∣∂Õn(ϑ̂0)

∂ϑj
+ np′λ(|ϑ̂j0|)sgn(ϑ̂j0)

∣∣∣∣ < 10−3, (2.39)

for nonzero elements of ϑ̂0.

2.2.4 Selection of the tuning parameters via cross-validation

The selection of the tuning parameters in the penalty function is essential because it deter-

mines the level of penalization on the parameters. These tuning parameters are selected

using cross-validation, similarly as Wu and Dhaene (2016). This cross-validation method

is explained for the case where the penalty function relies on both tuning parameters λ

and α, e.g. the SCAD penalty function in (2.26). However, the same can be done for the

hard thresholding penalty function in (2.25), which only rely on λ. Before explaining the

cross-validation steps, one first chooses a predetermined training sample and validation

sample. After that, the cross-validation steps can be used and is as follows:

1. Determine a two-dimensional grid for the tuning parameters λ and α;

2. For all the different combinations of λ and α in the grid, the optimal parameter

vector ϑ is estimated using the training sample;

3. Compute the unpenalized likelihood on the validation sample, using the different

combinations of λ and α in the grid with their corresponding parameter vector ϑ

calculated in step (ii);

4. Choose the combination of tuning parameters that minimizes this unpenalized like-

lihood.

The chosen training and validation sample and the chosen grids for the different

penalty functions are described in Section 3 and Section 4, for respectively the Monte

Carlo simulation and the empirical study.

12

3 Monte Carlo simulation study

This section investigates the methods explained in Section 2 in a Monte Carlo simulation

study. First, the DGP of the simulation is explained. After that, the used performance

measures in the simulation are explained. This section ends with the results of the simu-

lation study.

3.1 The DGP of the simulation

The DGP from Darolles et al. (2018) is used to obtain simulated returns and is as follows.

Consider a stochastic process for the returns εt = (ε1t, . . . , εmt) = Σ
1/2
t ηt, where Σ

1/2
t =

B−1
t G

1/2
t with Gt = G = ω0Im, ηt

i.i.d.∼ (0, Im) and βij,t = $ + τ
(i)
ij vi,t−1 for (i, j) ∈ Tm.

This simulation is examined for m = 2, and the number of observations is n = 2000. The

described model can be written more compactly:

βt := β21,t = $ +
(

0 τ
(2)
21

)
vt−1

= $ +
(

0 τ
(2)
21

)(1 0

−β21,t−1 1

)
εt−1

= w∗t−1 + St−1β21,t−1,

(3.1)

with w∗t = $ + τ
(2)
21 ε2,t and St = −τ (2)

21 ε1,t.

The parameters in the DGP are set as follows: ω0 = 2, $ = 0.5 and τ
(i)
ij = 0.5 for

(i, j) ∈ T2. The algorithm via local quadratic approximations works faster when the initial

parameter vector ϑ0 is close to the solution. Therefore, ϑ0 is constructed as follows. Set

ϑ0 in accordance with the DGP, hence set ωi,0 = 2 for i = 1, 2, $ij,0 = 0.5 and τ
(i)
ij,0 = 0.5

for (i, j) ∈ T2. The other parameters for the conditional gi,t and βij,t for the different

specifications in Table 1 are set equal to 0.1. This value of 0.1 is chosen because this

value is large enough to not set immediately equal to zero by the algorithm and the initial

parameters are expected to be closer to the solution, which leads to an algorithm that

works faster.

The first 90% of the observations are used as training sample and the remaining

10% of the observations as a validation sample in the cross-validation steps in Sec-

tion 2.2.4. This means that observations t = 1, . . . , 1800 are used as training sample

and t = 1801, . . . , 2000 as validation sample.

13

3.2 Simulation performance measures

The first performance measure is the MAE and is as follows:

MAEt = M−1

m∑
i=1

i∑
j=1

|σ̂2
ijt − σ2

ijt|, (3.2)

where M =
[
m × (m − 1)/2 + m

]
the number of examined elements, m is the number

of assets, σ̂2
ijt is the (i, j)-th element of Σt (ϑ) at time t, and σ2

ijt is the (i, j)-th element

of the theoretical covariance matrix Σt according to the DGP explained in Section 3.1.

As can be seen, by the index of the summations in (3.2), the off-diagonal elements are

examined once. The average over time t is considered to obtain an MAE value. The lower

the MAE value, the better the performance of the model because the elements of Σt (ϑ)

are closer to the elements of the theoretical covariance matrix Σt.

The next performance measure is the MSE:

MSEt = M−1

m∑
i=1

i∑
j=1

(σ̂2
ijt − σ2

ijt)
2, (3.3)

where M , m, σ̂2
ijt and σ2

ijt are defined as before. This performance measure considers the

squared difference between the elements of Σt (ϑ) and theoretical covariance matrix Σt.

Again, the average over time t is considered to obtain an MSE value. Similar to the MAE,

the performance of the model is better when the MSE is lower.

The third performance measure is the Fraction of Parameters that are correctly esti-

mated as Zero (FPZ). This performance measure examines the fraction of parameters that

are indeed estimated equal to zero following the DGP and the total number of parameters

that should be equal to zero following the DGP. The estimated parameters can be close to

zero, but not exactly zero (e.g. when no penalty functions are used), therefore estimated

parameters less than 10−3 are considered as ‘zeros’. The FPZ performance measure is as

follows:

FPZ =

∑p
j=1 I [|ψj| < 10−3]

p
, (3.4)

where I[·] is an indicator function that is equal to one when |ψj| < 10−3 and zero otherwise,

p is the number of total parameters that should be equal to zero following the DGP and

ψ ⊆ ϑ, where ψ is a vector that contains the parameters that should be equal to zero.

For instance, following the DGP explained in Section 3.1, using specification 1 in Table 1

ψ is defined as ψ = {γ1+, γ1−, b1, γ2+, γ2−, α
(2)
2 , b2, ς21+, ς21−, c21}. Hence, the number of

parameters that should be equal to zero in this example is p = 10. Models with high FPZ

values are considered as better-performing models because these models estimate the

14

parameters that should be equal to zero correctly according to DGP. The penalization

method reduces model complexity by setting small coefficients to zero. Therefore, it is

expected that the FPZ is higher for sparse CHAR models than standard CHAR models.

The last performance measure is the Fraction of Parameters that are correctly esti-

mated as Non-Zero (FPNZ). This performance measure is similar to the FPZ performance

measure, but this performance measure considers the parameters that should be non-zero

according to the DGP. The FPNZ performance measure is as follows:

FPNZ =

∑r
j=1 I [|ζj| > 10−3]

r
, (3.5)

where I[·] is an indicator function that is equal to one when |ζj| > 10−3 and zero otherwise,

r is the number of total parameters that should be non-zero following the DGP and ζ ⊆ ϑ,

where ζ is a vector that contains the parameters that should be non-zero. For example,

using specification 1 in Table 1 and the DGP, ζ is defined as ζ = {ω1, ω2, $21, τ
(2)
21 }. Hence,

the number of parameters that should be non-zero is r = 4. This performance measure

is especially interesting when considering sparse CHAR models because this performance

measure gives information about whether there is not too much sparsity in the parameters.

For instance, it could be that parameters are set equal to zero while according to the DGP,

these parameters are supposed to be non-zero. Similar to the FPZ performance measure,

models with high FPNZ values are considered as better-performing models, because these

models do not set the non-zero parameters equal to zero.

3.3 Simulation results

First, the effect of the tuning parameters on the unpenalized likelihood is considered.

Figure 1 shows the unpenalized likelihood values in the validation sample for different

values of λ for the first specification for the full and multi-step method. All subfigures

in Figure 1 show similar shapes. This shape is the following: when λ is low, there is too

little penalization, which leads to a higher variance. Therefore, the unpenalized likelihood

is higher. When λ is high, there is too much penalization, which leads to a higher bias

and therefore a higher unpenalized likelihood. The tuning parameter, which leads to the

minimum unpenalized likelihood has a perfect trade-off between variance and biasness.

What further stands out in Figure 1 is that the unpenalized likelihood does not differ

much when the value of λ changes. This is also shown in Figure 2 for a larger range of

the tuning parameter for the hard thresholding penalty in the full method, but this figure

is similar for the SCAD penalty and the multi-step method. Figure 2 shows that the

unpenalized likelihood is approximately the same for various values of λHard.

15

0.1013 0.10135 0.1014 0.10145 0.1015 0.10155 0.1016 0.10165 0.1017

3.3056495

3.30565

3.3056505

3.305651

3.3056515

3.305652

3.3056525

3.305653

(a) The full method using the hard thresholding
penalty function.

0.048 0.049 0.05 0.051 0.052 0.053 0.054 0.055

3.305652

3.305654

3.305656

3.305658

3.30566

3.305662

3.305664

3.305666

(b) The full method using the SCAD penalty func-
tion and αSCAD = 2.1.

0.10001 0.10004 0.10007 0.1001 0.10013 0.10016 0.10019

1.5742

1.5743

1.5744

1.5745

1.5746

1.5747

1.5748

1.5749

1.575

(c) The first step of the multi-step method using
the hard thresholding penalty function.

0.0476 0.0478 0.048 0.0482 0.0484 0.0486 0.0488 0.049

1.57436

1.574365

1.57437

1.574375

1.57438

1.574385

1.57439

1.574395

1.5744

(d) The first step of the multi-step method using
the SCAD penalty function and αSCAD,1 = 2.1.

0.10062 0.10063 0.10064 0.10065 0.10066 0.10067

1.701259062

1.701259064

1.701259066

1.701259068

1.70125907

1.701259072

1.701259074

1.701259076

1.701259078

1.70125908

(e) The second step of the multi-step method using
the hard thresholding penalty function.

0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23

1.7012589778

1.7012589779

1.701258978

1.7012589781

1.7012589782

1.7012589783

1.7012589784

1.7012589785

(f) The second step of the multi-step method using
the SCAD penalty function and αSCAD,2 = 2.1.

Figure 1: The unpenalized likelihood values in the validation sample for different values of the
tuning parameter λ using the first specification for the full method and step one and two of the
multi-step method.

16

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Figure 2: The unpenalized likelihood values for a larger range of λHard using the hard thresh-
olding penalty function for the full method.

Table 2 shows the used grids for the tuning parameters for the full and multi-step

method. From this table, one can observe that the chosen range is quite large. This

large range is chosen because the optimal tuning parameter may be different in each

simulation. The chosen steps between the points are also quite large. However, one can see

in Figure 2 that the unpenalized likelihood is approximately the same for different values

of λ. Therefore, despite the large steps between the points, the unpenalized likelihood

value is similar to the minimal unpenalized likelihood. To obtain the minimal unpenalized

likelihood, one can choose for smaller steps between the points. However, this leads to

longer computation time, and the results do not change much.

Table 2: The chosen grids for the tuning parameters of the hard thresholding and the SCAD
penalty function for the full method and the first and second step of the multi-step method.
These grids are used for all specifications. For example, λHard = {0.01 : 0.1 : 0.61} means the
first point in the grid is 0.01 and the last point in the grid is 0.61 with steps of 0.1 between the
points.

Penalty Full Method Step 1 Step 2

Hard λHard = {0.01 : 0.1 : 0.61} λHard,1 = {0.01 : 0.1 : 2.01} λHard,2 = {0.01 : 0.05 : 0.61}

SCAD
λSCAD = {0.01 : 0.05 : 0.36} λSCAD,1 = {0.01 : 0.1 : 1.01} λSCAD,2 = {0.01 : 0.02 : 0.29}
αSCAD = {2.1 : 1 : 4.1} αSCAD,1 = {2.1 : 1 : 4.1} αSCAD,2 = {2.1 : 1 : 4.1}

Table 3 shows the performance measures for the full and the multi-step method. This

table shows lower MAE and MSE values when penalty functions are incorporated in the

model, except for specification 4. Table 3 further shows that the FPZ is equal to one for

all specifications when penalty functions are incorporated for both the full and multi-step

method. This FPZ value of one means that all parameters that should be equal to zero,

according to the DGP, are estimated as zero. Furthermore, the FPNZ values are close

17

to one for both the full and the multi-step method, except for specification 4. Hence,

the penalization method sets almost all the correct parameters equal to zero using both

penalty functions for specification 1 and 2/3.

From Table 3 one can observe that specification 1 has lower MAE and MSE values than

the other specifications. Specification 4 gives significant higher MAE and MSE values.

As can be seen in Table 1, specification 4 is different compared to the other specifications.

This specification depends only on past observations and the other specifications also on

the factor vt. By looking at the parameter estimates in the simulation, the conclusion is

that the simulation DGP is not compatible for specification 4. The obtained parameters

by this specification are not close to the values these parameters should be according to

the DGP. This not compatibleness of specification 4 can be the reason for the high MAE

and MSE values. Furthermore, this can also be the reason why the FPNZ values for

specification 4 are not close to one. These low FPNZ values mean that parameters are

set equal to zero while following the DGP, these parameters are non-zero. Hence, there

is too much penalization on the parameters for this specification.

Table 3 further shows that the full method and the multi-step method give similar

results when no penalty functions are incorporated in the model. These similar results are

as expected because according to (2.24), the two methods are the same when m = 2. The

minimal differences in results can be explained by the settings of the standard numerical

procedures. When penalty functions are incorporated in the model, the full and multi-step

method do not necessarily have to obtain the same results according to (2.30). However,

Table 3 shows that the results of the two methods are similar when penalty functions are

incorporated in the model, except for specification 4 for the SCAD penalty. In this case,

the multi-step method obtains lower MAE and MSE values than the full method.

The last notable thing from Table 3 is that both penalty function performs approx-

imately the same. The SCAD penalty function for specification 4 in the full method

gives higher MAE and MSE values than the hard thresholding penalty. However, the

multi-step method using the SCAD penalty for all specifications gives lower MAE and

MSE values than the hard thresholding penalty. The multi-step method using the SCAD

penalty function for specification 1 gives a lower MSE value than the hard thresholding

penalty. Hence, the multi-step method using the SCAD penalty function and specification

1 performs the best. The main result is that the sparse CHAR models give in general

lower MAE and MSE values than the standard CHAR models.

18

Table 3: The performances of the models in the simulation study. The first two column shows
which specification and which penalty is used. The None penalty function corresponds to the
standard CHAR model, which means no penalty function is included in the model. Note that
for m = 2, specifications 2 and 3 are equal.

Full Method Multi-step Method
Specification Penalty MAE MSE FPZ FPNZ MAE MSE FPZ FPNZ

1
None 0.114 0.037 0.353 0.999 0.113 0.037 0.359 0.998
Hard 0.074 0.018 1.000 0.999 0.074 0.018 1.000 0.999

SCAD 0.074 0.018 1.000 0.999 0.073 0.017 1.000 0.999

2/3
None 0.119 0.042 0.370 0.998 0.118 0.042 0.375 0.997
Hard 0.078 0.026 1.000 0.998 0.078 0.026 1.000 0.998

SCAD 0.076 0.022 1.000 0.999 0.076 0.022 1.000 0.999

4
None 0.861 2.023 0.417 0.990 0.861 2.027 0.424 0.991
Hard 0.926 2.232 1.000 0.582 0.926 2.232 1.000 0.582

SCAD 0.937 2.272 1.000 0.552 0.923 2.220 1.000 0.596

Table 4 shows the average value of the tuning parameters. What stands out in this

table is that the average values of the full method are different from the average values of

step 1 and 2 of the multi-step method. Because of this, the small differences between the

full and multi-step method when penalty functions are incorporated in Table 3 (e.g. the

SCAD penalty for specification 4) are understandable, because according to (2.30) the

methods give only the same results when the tuning parameters are the same. Table 3

showed that the results of the full and multi-step method when penalty functions are

incorporated are similar. These similar results are thus found despite differences in the

average values of the full method and the first and second step of the multi-step method.

However, the similar results in the full and multi-step method can be explained by the

fact that the unpenalized likelihood in the validation sample is similar for different values

of the tuning parameter, as can be seen in Figure 2. Therefore, the results can be similar

despite the difference in tuning parameters.

19

Table 4: The average value of the tuning parameters for the full and multi-step method for the
two penalty functions for each specification.

Method Tuning parameter Specification 1 Specification 2/3 Specification 4

λHard 0.266 0.261 0.268
Full λSCAD 0.138 0.136 0.141

αSCAD 2.124 2.124 2.488

λHard,1 0.909 0.890 0.407
Step 1 λSCAD,1 0.456 0.444 0.248

αSCAD,1 2.100 2.100 2.112

λHard,2 0.289 0.282 0.273
Step 2 λSCAD,2 0.108 0.120 0.104

αSCAD,2 2.622 2.442 2.724

This thesis claimed that the multi-step CHAR models are faster to compute than the

full CHAR models. The computation times of the full and the multi-step method are

examined now for the standard CHAR models, and the algorithm for the sparse CHAR

models explained in Section 2.2.3. The estimation of the complete parameter vector using

the full standard CHAR models took approximately 11.45 seconds. The estimation of the

parameters in step 1 of the multi-step standard CHAR models took approximately 0.1

seconds. Step 2 took approximately 0.19 seconds. The computation time of step 2 is

larger than the step 1, which is as expected because step 2 estimates more parameters

than step 1. Hence, the estimation of the complete parameter vector took approximately

0.29 seconds for the multi-step standard CHAR models, which is almost forty times faster

than the full standard CHAR models.

The algorithm in Section 2.2.3 to obtain the parameters of the sparse CHAR models

took for the full method using the hard thresholding penalty function approximately 1.25

seconds for one grid-point. The same algorithm took for the hard thresholding penalty

function in step 1 of the multi-step method approximately 0.09 seconds, and in step 2,

approximately 0.4 seconds for one grid-point. Hence, the total computation time of the

multi-step sparse CHAR models for the total parameter vector for one grid-point using

the hard thresholding penalty function is approximately 0.49 seconds, which is more than

2.5 times faster than the full sparse CHAR models.

For the SCAD penalty function, step 1 in the multi-step method took approximately

0.1 seconds and step 2 approximately 0.35 seconds for one grid-point. Hence, the total

computation time for the multi-step sparse CHAR models for the SCAD penalty function

is approximately 0.45 seconds for one grid-point. The algorithm took for the full sparse

CHAR models approximately 1.30 seconds for one grid-point. Hence the full sparse CHAR

models are almost three times slower than the multi-step sparse CHAR models. Hence,

20

for all models, the multi-step method is faster to compute than the full method.

4 Empirical study

This section examines the methods explained in Section 2 in an empirical study. First,

the data used in this study is considered. After that, the Markowitz portfolios and the

performance measures are explained. This section ends with the results of this empirical

study.

4.1 Data

In this empirical application study, four assets (m = 4) are examined, namely: JPMorgan

Chase & Co, Apple Inc, AT&T Inc and Microsoft. The daily returns from 01/01/2010

till 01/01/2020 are examined. Consequently, the number of observations is n = 2515.

Furthermore, the one-year treasury bill is used as a risk-free rate. The four daily returns

series are shown in Figure 3.

2010 2012 2014 2016 2018 2020
-10

-8

-6

-4

-2

0

2

4

6

8

10

D
a

ily
 r

e
tu

rn
s
 i
n

 %

(a) The daily returns of JPMorgan Chase & Co.

2010 2012 2014 2016 2018 2020
-15

-10

-5

0

5

10

15

D
a

ily
 r

e
tu

rn
s
 i
n

 %

(b) The daily returns of Apple Inc.

2010 2012 2014 2016 2018 2020
-10

-8

-6

-4

-2

0

2

4

6

8

10

D
a

ily
 r

e
tu

rn
s
 i
n

 %

(c) The daily returns of AT&T Inc.

2010 2012 2014 2016 2018 2020
-15

-10

-5

0

5

10

15

D
a

ily
 r

e
tu

rn
s
 i
n

 %

(d) The daily returns of Microsoft.

Figure 3: The daily returns for the four stocks from 01/01/2010 till 01/01/2020.

21

The observations t = 1, . . . , 750 are used as training sample and the observations

t = 751, . . . , 1000 are used as validation sample for the cross-validation steps explained

in Section 2.2.4. Hence, the remaining observations are used to construct Σt(ϑ) and this

matrix is implemented in the Markowitz portfolios.

4.2 Markowitz portfolios and performance measures

The first Markowitz portfolio considered is the gmv portfolio. This portfolio is the port-

folio with the lowest possible return variance. The portfolio weight at time t is as follows:

wgmv,t =
Σt (ϑ)−1 ι

ι′Σt (ϑ)−1 ι
, (4.1)

where ι is a (4× 1) vector of ones.

The second portfolio is the tangency portfolio. This portfolio can be found on the

intercept point of the Capital Market Line (CML) and the efficient frontier. The weight

of this portfolio is:

wtan,t =
Σt (ϑ)−1 µ̃t

ι′Σt (ϑ)−1 µ̃t
, (4.2)

where µ̃t is a (4×1) vector of mean excess returns determined by the last 1000 observations

and ι defined as before.

The 1/N portfolio is used as a benchmark portfolio. This portfolio has the same weight

for each asset; four assets are considered; thus, the weight is equal to 1/4 for each asset.

Only the multi-step method is considered in this empirical study because this method is

faster to compute when more assets are considered, and therefore this method is preferred

in practice. Re-balancing the portfolio weights in (4.1) and (4.2) daily is too expensive

(e.g. transaction costs) and therefore not interesting in practice. Therefore, portfolios are

re-balanced every thirty days.

The algorithm explained in section 2.2.3, is faster when the initial parameter vector

ϑ0 is close to the solution. Therefore, ϑ0 is set equal to the parameter vector obtained

by the standard CHAR model. However, parameter values below 10−3 are immediately

set equal to zero and values close to zero but larger than 10−3 may be set equal to zero

relatively quickly. Therefore, parameter values below 0.1 are set equal to 0.1. By doing

this, ϑ0 is close to the solution, but there is some space left for the algorithm.

Four performance measures compare the portfolios. The first performance measure is

the daily mean return of the portfolio. The second performance measure is the annual

standard deviation. Portfolios with a low standard deviation are considered as proper

22

performing portfolios because investors are in general risk-averse. The third performance

measure is the annual SR. The annual SR is the average excess return earned per unit of

volatility:

SR =
√

252× Rp −Rf

σp
, (4.3)

where Rp is the average return of the portfolio, Rf is the average risk-free rate and σp is

the standard deviation of the portfolios excess return. A higher SR value indicates that

the excess return is higher per unit of volatility. Therefore a portfolio with a higher SR

is considered as a better performing portfolio.

The last performance measure is the SoR:

SoR =
Rp −Rf

σd
, (4.4)

where Rp and Rf are defined as before and σd is the standard deviation of the downside.

The standard deviation of the downside is the standard deviation that considers the

returns smaller than Rf . The SoR is similar to the SR, but instead of the entire risk,

the SoR only considers the standard deviation of the downside risk. Positive volatility

is beneficiary for investors. Therefore the SoR may give a better view of a portfolios

risk-adjusted-performance.

4.3 Empirical results

First, the unpenalized likelihood is considered for different values of the tuning parameters.

Figure 4 and Figure 5 show these unpenalized likelihood values in the validations sample

for different values of the tuning parameter λ. One can observe similar figures compared

to the simulation study. When λ is low, there is too little penalization and when λ is

high there is too much penalization. Figure 4 and Figure 5 show similarities compared to

Figure 2, where the unpenalized likelihood is approximately the same for different values

of λ. One could derive the exact minimum similar to Figure 1. However, doing this is not

necessary as changes in the unpenalized likelihood are small, and therefore the result is

not different.

The chosen grids for the cross-validation steps explained in section 2.2.4 are as follows:

λHard,i = λSCAD,i = {0.001 : 0.001 : 0.3} for i = 1, 2, 3, 4 (4.5)

and

αSCAD,i = {2.1 : 1 : 4.1} for i = 1, 2, 3, 4. (4.6)

23

0.148 0.151 0.154 0.157 0.16 0.163 0.166

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

(a) The first step of the multi-step method using
the hard thresholding penalty function.

0.013 0.016 0.019 0.022 0.025 0.028 0.031

2.24

2.245

2.25

2.255

(b) The second step of the multi-step method us-
ing the hard thresholding penalty function.

0.019 0.02 0.021 0.022 0.023 0.024 0.025

0.89

0.892

0.894

0.896

0.898

0.9

0.902

0.904

0.906

0.908

0.91

(c) The third step of the multi-step method using
the hard thresholding penalty function.

0.013 0.014 0.015 0.016 0.017 0.018

2.266

2.2662

2.2664

2.2666

2.2668

2.267

2.2672

2.2674

2.2676

2.2678

2.268

(d) The fourth step of the multi-step method using
the hard thresholding penalty function.

Figure 4: The unpenalized likelihood values in the validation sample for different values of the
tuning parameter λHard using the first specification and the multi-step method in the empirical
study.

24

0.07 0.072 0.074 0.076 0.078 0.08

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

(a) The first step of the multi-step method using
the SCAD penalty function and αSCAD,1 = 2.1.

0.006 0.008 0.01 0.012 0.014 0.016

2.24

2.242

2.244

2.246

2.248

2.25

2.252

2.254

2.256

2.258

2.26

(b) The second step of the multi-step method us-
ing the SCAD penalty function and αSCAD,2 =
2.1.

0.009 0.01 0.011 0.012

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

(c) The third step of the multi-step method using
the SCAD penalty function and αSCAD,3 = 2.1.

0.022 0.023 0.024 0.025 0.026 0.027 0.028

2.21

2.215

2.22

2.225

2.23

2.235

2.24

2.245

2.25

(d) The fourth step of the multi-step method using
the SCAD penalty function and αSCAD,4 = 2.1.

Figure 5: The unpenalized likelihood values in the validation sample for different values of the
tuning parameter λSCAD using the first specification and the multi-step method in the empirical
study.

Table 5 shows the fraction of the number of parameters that are estimated as zero

and the total number of parameters. This table shows that this fraction is higher when

penalty functions are incorporated. This higher fraction obtained when penalty functions

are incorporated is as expected because the idea of using the penalization method is to

introduce sparsity in the parameter vector. The SCAD penalty function has a higher

fraction compared to the hard thresholding penalty function except for specification 4,

which means that this penalty function sets more parameters to zero. The highest fraction

is obtained using specification 1 and the SCAD penalty function. What further stands out

in Table 5 is that the fraction is quite large (values around 0.4) when no penalty functions

are incorporated in the model, which means that quite a lot parameter estimates are

below 10−3.

25

Table 5: The fraction of the number of parameters that are estimated as zero and the total
number of parameters. Similar to the FPZ in (3.4), parameters less than 10−3 are considered
as zero.

Penalty None Hard SCAD

Specification 1 0.400 0.650 0.800
Specification 2 0.429 0.679 0.696
Specification 3 0.446 0.678 0.714
Specification 4 0.483 0.638 0.621

Table 6 shows the results of the performances of the portfolios. The SR and SoR are

higher when penalty functions are incorporated in the model, except for the gmv portfo-

lio using specification 1 combined with the hard thresholding penalty and the tangency

portfolio using specification 2 combined with both penalty functions. However, in general,

the portfolios that used the sparse CHAR models performed better.

What Table 6 further shows is that the means of the tangency portfolios are higher than

the means of the gmv portfolios, which is as expected. However, the gmv portfolios have

lower standard deviations compared to the tangency portfolios, which is also as expected

because the gmv portfolio has the lowest possible return variance by construction.

One can observe from Table 6 that the best performing gmv portfolio is the portfolio

using specification 1 and the SCAD penalty. This table also shows that the tangency

portfolio also performs best using this specification and penalty function. This result is

similar to the Monte Carlo simulation study, where it is found that specification 1 of the

multi-step CHAR model with the SCAD penalty function performs best. One can observe

from Table 5 that the SCAD penalty function in specification 1 has the most sparsity in

the parameter vector, which leads in this study to better performing portfolios.

The Monte Carlo simulation study finds that specification 4 performed less compared

to the other specifications. However, in this empirical study, Table 6 shows that this

specification performs quite well, especially when the penalty functions are incorporated

in the model for the tangency portfolio.

By comparing the hard thresholding penalty with the SCAD penalty, Table 6 shows

that for the gmv portfolio, the hard thresholding penalty gives better results except for

specification 1. However, these differences are not large. Similar results hold for the

tangency portfolio, except that the SCAD penalty function gives better results for speci-

fication 1 and 4.

26

Table 6 further shows that the 1/N portfolio outperformed all other portfolios. Only

the tangency portfolios using the SCAD penalty function and specification 1 and both

penalty functions in specification 4 give similar results as this portfolio. However, the

main result is that in general, the portfolios using the sparse CHAR models perform

better than the portfolios using the standard CHAR models.

Table 6: The results of the performances of the portfolios. The performance measures are the
daily mean return (×103), the annualized standard deviation, the annualized SR and the SoR.
The annualized standard deviation and SR are calculated by multiplying the daily standard
deviation and SR by

√
252. Note that all performance measures are calculated by the returns

expressed as a decimal. The None penalty function corresponds to the standard CHAR model,
which means no penalty function is included in the model, and Spec. stands for Specification.

GMV Portfolio Tangency Portfolio
Spec. Penalty Mean(×103) St. dev SR SoR Mean(×103) St. dev SR SoR

None 0.653 0.152 1.026 1.601 1.047 0.277 0.922 1.560
1 Hard 0.626 0.149 1.004 1.564 0.857 0.191 1.089 1.824

SCAD 0.728 0.147 1.193 1.913 0.849 0.166 1.242 2.054
None 0.667 0.159 1.006 1.564 1.120 0.394 0.696 1.053

2 Hard 0.641 0.149 1.031 1.619 0.820 0.429 0.463 0.811
SCAD 0.629 0.149 1.010 1.595 0.774 0.465 0.402 0.712
None 0.642 0.153 1.006 1.565 1.084 0.245 1.082 1.813

3 Hard 0.727 0.149 1.174 1.841 0.983 0.209 1.148 1.909
SCAD 0.639 0.148 1.030 1.620 0.875 0.193 1.103 1.825
None 0.616 0.154 0.953 1.484 1.391 0.857 0.399 0.568

4 Hard 0.694 0.149 1.119 1.800 0.950 0.188 1.226 2.016
SCAD 0.695 0.149 1.120 1.798 0.961 0.190 1.231 2.030

1/N Portfolio 0.825 0.157 1.275 2.054

5 Conclusion

This thesis examines sparse CHAR models. These models are considered for four speci-

fications and two different penalty functions. These sparse CHAR models are examined

first in a Monte Carlo simulation study and after that in an empirical study.

In the simulation study, the models are investigated for a small setup when m = 2.

In this study the obtained Σt (ϑ) by the sparse and standard CHAR models are com-

pared with the theoretical covariance matrix Σt using the MAE and MSE. This Monte

Carlo simulation study finds that the sparse CHAR models give lower MAE and MSE

values, except for specification 4. These low MAE and MSE values mean that introducing

sparsity in the parameter vector of the CHAR models leads to better performing mod-

els. Especially, the multi-step sparse CHAR model using specification 1 and the SCAD

penalty function performs the best. This simulation study finds that specification 4 is not

compatible with the DGP. This thesis finds in this study FPZ values equal to one for the

sparse CHAR models. These high FPZ values mean that all parameters that should be

27

equal to zero, according to the DGP, are estimated as zero. What this thesis further finds

is that the FPNZ values are close to one, except for specification 4. Hence, the sparse

CHAR models set, except for specification 4, almost all the correct parameters equal to

zero. The full and multi-step method perform approximately the same in this study,

which is as expected when examining the standard full and multi-step CHAR models

when m = 2 according to (2.24). However, when examining the sparse CHAR models,

the full and multi-step method only give the same results when the tuning parameters of

the full and multi-step method are equal, according to (2.30). Similar results are found for

both methods even though the tuning parameters of the full and multi-step method are

not equal, which is shown in Table 4. The last conclusion this thesis can draw from the

simulation study is that the multi-step method is faster to compute than the full method.

This result holds for both the sparse and standard CHAR models.

After the Monte Carlo simulation study, this thesis investigates the sparse and stan-

dard CHAR models in an empirical study. The number of assets is increased to m = 4,

compared to the simulation study. In this empirical setting, only the multi-step method

is investigated because this method is faster to compute and therefore more useful in

practice. In general, the portfolios that use the sparse CHAR models have a higher SR

and SoR value. Hence, introducing sparsity in the parameter vector of the CHAR models

lead to better performing portfolios. Similar as in the simulation study, the sparse CHAR

model using specification 1 and the SCAD penalty performs the best. Only the tangency

portfolio using specification 1 and the SCAD penalty gives similar results as the 1/N

portfolio. However, the equally weighted 1/N portfolio outperforms all other portfolios

in this study.

28

6 Discussion

The first discussion point is that this thesis investigates only two penalty functions. How-

ever, the methods in this thesis can also be used for other penalty functions, e.g. the

lasso, adaptive lasso and the minimax concave penalty (MCP) function. Including these

penalty functions in the CHAR models could lead to different results.

The second discussion point is that this thesis investigates both in the Monte Carlo

and the empirical setting the models with relatively few assets, respectively m = 2 and

m = 4. However, the sparse CHAR models can also be used when a larger number of

assets is considered. The expectation is that more assets in the models lead to better

results because the model complexity decreases relative more compared to fewer assets.

Therefore it is expected that the sparse CHAR models have more effect when considering

more assets. Nevertheless, this thesis shows the potential of using the sparse CHAR

models instead of the standard CHAR models.

29

References

Ames, W. F. (2014). Numerical methods for partial differential equations. Academic

press.

Andersen, T. G., Bollerslev, T., & Lange, S. (1999). Forecasting financial market volatil-

ity: Sample frequency vis-a-vis forecast horizon. Journal of Empirical Finance,

6 (5), 457–477.

Bai, J., & Shi, S. (2011). Estimating high dimensional covariance matrices and its

applications. Annals of Economics and Finance, 12 (2), 199–215.

Barndorff-Nielsen, O. E., & Shephard, N. (2004). Econometric analysis of realized co-

variation: High frequency based covariance, regression, and correlation in financial

economics. Econometrica, 72 (3), 885–925.

Darolles, S., Francq, C., & Laurent, S. (2018). Asymptotics of Cholesky-GARCH models

and time-varying conditional betas. Journal of Econometrics , 204 (2), 223–247.

Dellaportas, P., & Pourahmadi, M. (2012). Cholesky-GARCH models with applications

to finance. Statistics and Computing , 22 (4), 849–855.

Engle, R. F. (2001). GARCH 101: The use of ARCH/GARCH models in applied econo-

metrics. Journal of Economic Perspectives , 15 (4), 157–168.

Engle, R. F. (2016). Dynamic conditional beta. Journal of Financial Econometrics ,

14 (4), 643–667.

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of the American Statistical Association, 96 (456), 1348–

1360.

Markowitz, H. M., & Todd, G. P. (2000). Mean-variance analysis in portfolio choice and

capital markets (Vol. 66). John Wiley & Sons.

Silvennoinen, A., & Teräsvirta, T. (2009). Multivariate GARCH models. In Handbook of

financial time series (pp. 201–229). Springer.

Valizadeh, T., & Rezakhah, S. (2018). Flexible Cholesky-GARCH model with time

dependent coefficients. arXiv preprint arXiv:1805.11268 .

Wu, J., & Dhaene, G. (2016). Sparse multivariate GARCH. Discussion paper series,

DPS16. 11 , 1–17.

30

List of Tables

1 Table of the conditional variances and betas of the four specifications . . . 4

2 Table of chosen grids for the tuning parameters 17

3 Table of the results of the performance measures in the simulation 19

4 Table of average value of the tuning parameters 20

5 Table of the fraction of zero parameters and the total in the emprical study 26

6 Table of the results in the empirical study 27

List of Figures

1 Figure of the unpenalized likelihood values for different values of the tuning

parameters . 16

2 Figure of a larger range of λHard . 17

3 Figure of the daily returns of four stocks 21

4 Figure of the unpenalized likelihood values for different values of the Hard

tuning parameter in empirical study . 24

5 Figure of the unpenalized likelihood values for different values of the SCAD

tuning parameter in empirical study . 25

i

	Introduction
	Methodology
	The CHAR models
	The full QMLE method
	The multi-step QMLE method

	Penalization method
	Penalty functions
	The penalized likelihood function
	Algorithm via local quadratic approximations
	Selection of the tuning parameters via cross-validation

	Monte Carlo simulation study
	The DGP of the simulation
	Simulation performance measures
	Simulation results

	Empirical study
	Data
	Markowitz portfolios and performance measures
	Empirical results

	Conclusion
	Discussion

