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Chapter 1

Introduction

The creation of rosters in public transport is a complex decision problem, where the preferences

of the employees are balanced against cost efficiency. This problem is also familiar for Nether-

lands Railways (Nederlandse Spoorwegen in Dutch, abbreviated as NS), which is the major

public transport operator in the Netherlands. More than 1.3 million passengers travel with NS

on a daily basis. To facilitate this, NS employs a workforce of more than 20,000 people to

support and operate their services, including 3,000 train drivers.

In case the services of NS are suspended, for example due to strikes, this has a large societal

impact. These nationwide strikes took place numerous times in the past, until the conflict ended

with the introduction of the Sharing-Sweet-and-Sour rules (Abbink et al., 2005), which state

that (un)popular work is equally distributed over groups of employees. These rules, which

were agreed upon by both NS and the labour unions, are aimed at increasing the quality of

work. NS incorporated these rules in their crew planning process using Operations Research

(OR) techniques. However, these new rules cannot prevent all strikes, see for example the 24

hours strike of 2019, which disrupted the train network in the Netherlands1. Although OR

techniques cannot solve every conflict, they do play an important role in increasing employee

satisfaction, which indirectly influences the probability of having a strike as well.

The rostering of employees is an important part of the crew planning process. In the liter-

ature, the assignment of duties to employees is known as the Crew Rostering Problem (CRP).

Public transport companies, including NS, often consider the Cyclic CRP (CCRP), in which

each crew member performs a different part of the roster in a sequential order. However, some

stages of constructing the rosters are still conducted manually NS. This is a time consuming

1https://www.ad.nl/binnenland/treinverkeer-en-ov-grote-steden-plat-op-28-mei~a8530fd4/

1
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task, not only due to the large amount of crew members and duties, but also because of the

large amount of rules (from the labour unions) and preferences that should be taken into ac-

count. Furthermore, the Sharing-Sweet-and-Sour rules are also incorporated into the rostering

process, by making all rosters equally attractive for all crew members within a crew base. A

first step in making an integrated approach, while simultaneously accounting for the fairness

and attractiveness of the rosters, was made by Breugem (2020). Starting with (manually cre-

ated) roster templates containing duty and rest day patterns, a method that assigns the duties

to the actual rosters is developed. The quality of the rosters is assessed by considering a set of

duty attributes.

The CCRP is often solved sequentially, see for example Sodhi and Norris (2004), Lezaun

et al. (2006) and Hartog et al. (2009). Only recently, there is a trend to integrate all steps in the

crew rostering approach (Xie and Suhl, 2015; Breugem, 2020). The concepts of attractiveness

and fairness of the rosters are well known in the literature. However, Breugem (2020) is the

first to explore the trade-off between the two. This shows that the integrated crew rostering

process, while taking into account attractiveness and fairness, is still considered a non-trivial

problem and solving it requires state-of-the-art OR techniques.

In this thesis, we take the final step to integrate the crew rostering process for a single

crew base at NS. This approach uses only two inputs: the available duties to be covered and

the employees, who are divided over several roster groups. The model is solved in a single

step, such that no manual intervention is required to obtain the crew rosters. The quality of the

obtained rosters are evaluated on similar duty characteristics as in Breugem (2020).

The model is applied on a real-life instance from the NS crew base in Amersfoort. Employ-

ing this solution approach, we show that it is possible to solve the integrated crew rostering

problem in a reasonable amount of time. Furthermore, using a sensitivity analysis we illustrate

how attractiveness and fairness can be increased in the obtained rosters.

The remainder of this thesis is organised as follows. Firstly, Chapter 2 explains the current

crew planning process at NS in more detail. This is followed by Chapter 3, which reviews

the current literature regarding the CCRP. Chapters 4 and 5 introduce the mathematical model

and present the implementation details, respectively. Afterwards, Chapter 6 compares several

strategies to solve the CCRP on instances from NS. After fixing the best performing strategy, a

sensitivity analysis is performed in Chapter 7. Finally, conclusions are drawn and recommen-

dations for future research are given in Chapters 8 and 9.
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Chapter 2

Problem description

In this chapter, we provide a short description of NS and the different levels of decision prob-

lems that it faces. Afterwards, we delve into the crew planning process and introduce the

relevant concepts. Next, the properties and constraints regarding the crew roster are intro-

duced. Finally, we give an overview of the current crew rostering process at NS and we put the

contribution of this thesis into perspective.

2.1 Railway planning problems at NS
In railway planning, four phases can be distinguished based on their corresponding time hori-

zon: strategic planning, tactical planning, operational planning and operational control (Ab-

bink, 2014). Strategic planning is used for long term decision making that influence the goals

and objectives over a longer period. Examples include the investment decisions for the location

and size of physical facilities, which are planned years in advance. Tactical planning involves

the efficient allocation of the available resources, where the time span ranges from a few months

up to a year. This typically concerns problems such as the construction of a general timetable

or crew schedule. These generic timetables are then finalised in the operational planning stage,

resulting in day-to-day schedules. Lastly, operational control adjusts the timetables in real-time

to address any unanticipated disturbances.

All these planning phases have different characteristics, such as planning horizon, objective

and level of detail. Therefore, each phase requires its own specialised solution approach. For

example, strategic planning requires accurate forecasts over a long period of time. On the other

hand, tactical and operational planning need to allocate the resources as efficiently as possible.

These problems are often encountered in the OR literature. Lastly, operational control requires
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fast decision making in order to decrease delay when a disturbance happens. At NS the situation

is no different and various approaches are used to solve the above mentioned problems, ranging

from mathematical programming techniques to simulation studies. We refer to Huisman et al.

(2005) and Kroon et al. (2009) for a more thorough discussion.

In this thesis, we only consider the tactical planning for the train drivers and conductors,

which are collectively referred to as crew members. The planning of the crew is divided into

two phases: crew scheduling and crew rostering. In the former phase the Crew Scheduling

Problem (CSP) is solved. This involves the construction of duties, which are defined as blocks

of work that can be performed by a crew member. Figure 2.1 gives an example of a duty. Each

duty starts and ends at the same station. Furthermore, each duty should contain a sufficient

meal break time (denoted by the star) and is not allowed to exceed 9.5 hours. The second phase,

which is crew rostering, assigns these duties to the crew. At NS, these duties are constructed in a

centralised process. Afterwards, the duties are allocated to the crew bases, which subsequently

create their own rosters in a decentralised manner.

Figure 2.1: Example of a possible duty. For each block the departure and/or arrival station is given.
This duty visits the cities of Zwolle (Zl), Utrecht (Ut), Rotterdam (Rtd) and Groningen (Gn).

In crew scheduling, it is important to create duties that do not violate the collective labour

agreement, while minimising the operational costs. Constraints ensure for example that the

duty length is not violated or that the meal break is sufficiently long. Since the duties are linked

to a certain departure and arrival station, this implies that the duties are linked to a specific

crew base. To improve the overall quality, the Sharing-Sweet-and-Sour rules are incorporated

in the centralised scheduling process (Abbink et al., 2005). These rules divide the popular and

unpopular work over the crew bases as fairly as possible. The scheduling process is solved

using a column generation approach. The crew scheduling problem is solved as a generic

annual plan and changes are only made six times per year. This means that the crew schedules

for a specific day are only adjusted slightly. In this way, the crew members know what is

expected from them months in advance.

Three criteria can be used to evaluate the quality of the end result of the crew planning

phase: efficiency, fairness and attractiveness (Breugem, 2020). Efficiency is defined as the min-
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imum number of employees that is necessary. Fairness is enforced through the Sharing-Sweet-

and-Sour rules, which make sure that the popular and unpopular work are equally distributed

over the crew bases. These first two criteria are mostly relevant for the crew scheduling phase.

However, fairness can also be enforced on a crew base level by ensuring that the work is fairly

divided over the roster groups within a crew base. Finally, attractiveness is based on the final

roster, for example rest times and variation of the roster play an important part here.

2.2 Crew rostering
In crew rostering, the constructed duties have to be combined into sequences, satisfying several

constraints determined by the labour agreement. These constraints relate to the number of

working hours, days off or rest times. Furthermore, NS uses cyclic rosters, meaning that each

week, all employees work on a different roster within a so-called roster group. A possible

cyclic roster is visualised in Figure 2.2. The switching between rosters occurs in a fixed order.

For example, in week 1 the first employee works on row 1 and the second employee works on

row 2. In week 2 the first employee works on roster 2 and the second employee works on row

3. This means that the number of rows in a roster is equal to the number of employees in that

roster group. In this way, all employees from the same group cycle through the roster, such that

at the end of the cycle all employees have performed all duties. This means, that if an employee

completed the roster in week 5, then next week it will continue working on the roster in week 1.

The rows correspond to single working weeks and the columns represent the day of the week.

Each cell can be interpreted as a single working day for an employee. This working day can

have several types: regular duty, day off and the so-called WTV, CO and RES days.

Figure 2.2: Example of a basic schedule for a group with five members.
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On a regular duty day there are three types of possible duties: early (E), late (L) or night

(N). The WTV day is technically a day off, except that the crew member can opt to sell this

day off and work instead. A CO day is also a day off, which can be earned by a crew member

in case their working hours on certain time slots (e.g. during the weekend or early/night shifts)

exceed a certain threshold. The CO day becomes a working day in case the crew member does

not work enough hours. Finally, a RES day is defined as a day on which the crew member

should be available, in case the work of a fellow crew member has to be taken over (e.g. due to

illness or holiday).

Furthermore, the rosters have to satisfy an extensive list of rules, based on the collective

labour agreement. Also, the attractiveness of the rosters is taken into account by using roster

preferences obtained from the employees. Lastly, the (un)popular duties are equally spread

over the roster groups by making use of so-called duty attributes.

2.2.1 Collective labour agreement

Below are the most important rules and regulations from the collective labour agreement (CLA)

from NS.

1. The rest time after each duty should be at least 12 hours. After a night duty, which ends

later than 2:00 a.m., the rest time should be at least 14 hours. Minimum rest time after

three or more consecutive night duties is 46 hours.

2. There should be two rest days per week on average. A day off is a period of at least 30

hours. In general, the length of a rest day is 6 hours plus the number of rest days times

24 hours.

3. There should be a rest period of at least 36 hours in each period of 7x24 hours. Or there

should be a rest period of at least 72 hours in each period of 14x24 hours. These rules

are enforced using a rolling horizon for all periods of 7x24 (or 14x24) hours.

4. There is a maximum of 7 days with consecutive duties. WTV and RO do not count as a

duty.

5. The average working time per week is at most 40 hours.

6. There is a maximum of 36 night duties per 16 weeks.
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7. At least once every three weeks there is a so-called Red Weekend. This rest period lasts

at least 60 hours and starts before Saturday at 12:00 a.m. and ends after Monday 4:00

a.m.. This is also implemented using a rolling horizon.

2.2.2 Roster preferences

Rosters that take into account the following properties are often preferred by the crew members.

1. Train drivers need to drive on each line that they are allowed to drive on. If they do not

use a certain line for a period of time they lose their license to drive there. A similar rule

holds for the type of trains, the train driver has to use certain train types at least once,

otherwise they lose knowledge on how to control that specific train type.

2. Make a free weekend as long as possible.

3. If possible, WTV-days are spread over different days in the week and are only scheduled

once every two weeks.

4. Two or more consecutive days off are preferred.

5. A series of exactly three duties after each other with the same type (E, L or N) is pre-

ferred. If a series of the same type is present, then the starting times are preferably only

increasing or decreasing (e.g. 5:00 - 5:30 - 6:00 a.m. or 6:00 - 5:30 - 5:00 a.m.).

6. A single day off should be made as long as possible by ending with an early duty and

starting with a late duty. This includes the patterns E - R - L and E - R - N.

7. When changing from a late duty to an early duty, try to place two days off in between

(e.g. L - R - R - E or N - R - R - E).

8. A forward rotating roster is preferred (e.g. E - L - N).

9. Maximum of 5 consecutive days with duties.

10. A single duty is not preferred, which correspond to R - duty - R.

11. Short cyclic rosters are preferred, which means no more than three similar types of duties

after each other.

12. In every row of the roster there should be at least one day off.

7



2.2.3 Duty attributes

Fairness can be measured using duty attributes. Each duty consists of multiple trips, leading to

certain characteristics. Some duties are preferred over others, for example short trips are often

less desirable compared to longer trips, which cover large parts of the Netherlands. Also, the

duty length and the amount of work on double decker trains are seen as duty attributes. In this

thesis, we use the following six duty attributes.

1. Average duty length per day. The length of a duty is calculated as the difference between

start and end time of a duty.

2. Average workload per week. The workload is defined as the sum of all the duty lengths

within the same week.

3. Percentage of type-A work. Crew members prefer work of type-A, which consists for

example of trips on Intercity trains, which only stop at large stations. Therefore, these

trips are often longer than average.

4. Percentage of aggression work. Some trips have a higher chance of passenger aggression.

5. Percentage of work on double decker trains. These trips are undesirable since they require

the crew member to climb up and down the stairs.

6. Repetition Within Duty (RWD) values. These are calculated as the total number of routes

divided by the total number of distinct routes within a duty. Low RWD values are pre-

ferred, since this means more variation for the crew member.

2.2.4 Formal description

Having defined the necessary definitions, it is now time to formalise the Cyclic Crew Rostering

Problem (CCRP). In the CCRP, rosters are created for each crew base, which adhere to the

cycling property. This CCRP is solved for each crew basis separately. Each crew basis contains

multiple roster groups, where the members of each roster group have similar characteristics,

such as full-time or part-time employees.

2.3 Current crew rostering process at NS
In each timetable year, three steps have to be performed for a single crew base. Within a

crew base, all (members of a) roster groups are known in advance. In the first step, the duties
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obtained from the CSP are divided over the roster groups in a fair way. In the second step, the

representative makes the basic roster which has to satisfy the CLA rules. This basic roster or

schedule contains patterns consisting of duties and days off. Since the CSP is solved six times

per year, the basic roster should be flexible enough to incorporate those changes as well. In the

third step, the basic roster is used as a template to assign the actual duties. These three steps

are explained in more detail below.

2.3.1 Assignment of duties to roster group

The basic roster is made at the beginning of a new timetable year and is then used throughout

the year. The rosters are made per crew base (for example Utrecht). The duties obtained from

the crew scheduling phase and the crew members of the given crew base are the inputs for the

creation of a basic roster. The duties are allocated to the roster groups in that crew base. This

should be done such that each group has a similar amount of (un)popular work. The division

of popular work within a group is trivial, since all crew members cycle through the same roster

within their group. These basic rosters are made from scratch manually, even for the largest

crew base in Utrecht (Hartog et al., 2009). The duties are divided by means of an auction,

where every group has a representative. Only in case no feasible roster can be made for a roster

group, the duties may be switched between groups.

2.3.2 Construction of the basic roster

After the allocation, each representative attempts to construct a basic roster for its own group

manually, while striving to satisfy all previously mentioned requirements. These basics sched-

ules define on each day the type of work assigned to a crew member or whether a day off is

scheduled. As illustrated in Section 2.2, this leads to a matrix in which each cell indicates on

which day the crew member performs which duty type. As soon as a feasible roster is found,

the representative is finished. Otherwise, it is still possible to exchange duties between groups.

Afterwards, the basic rosters are not changed on a daily basis. In case a change in the crew

schedule is made, the basic roster should be able to handle these changes. If the CSP cannot be

solved, the roster might be changed on a specific day.

2.3.3 Obtaining the final roster

Since the basic roster remains unchanged throughout the year, whereas the CSP is solved

roughly six times a year, this implies that the rosters have to be updated as well. As input
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for this last phase, NS uses the basic roster from each roster group and a set of (newly) gen-

erated duties. Afterwards, the generated duties are assigned to the available spots in the basic

roster. This currently happens manually, but can of course also be done in a more automatic

process. Hartog et al. (2009) show that NS crew workers actually prefer the rosters generated

by an algorithm over the manually constructed rosters. Furthermore, Breugem (2020) improves

the allocation of duties to crew bases and also analyses the trade-off between fairness and at-

tractiveness of the rosters. In this thesis, the creation of the basic schedules is integrated with

the assignment of the duties to the time slots given by the basic schedule.

2.4 Contribution
Breugem (2020) integrates the first and third step, such that the duties are fairly allocated over

the roster groups, while obtaining satisfactory rosters. This thesis makes the final step for an

integrated crew rostering process. All three steps are combined, such that the creation of the

basic roster happens simultaneously with the assignment of duties to the actual roster. By

performing all steps simultaneously, we prevent that suboptimal decisions are made in each

individual step. Therefore, it is possible to improve the overall solution quality (Xie and Suhl,

2015).
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Chapter 3

Literature review

The literature on personnel rostering problems is quite extensive and these models are applied

to a broad range of industries, including call centers, airlines, health care and public transport.

Careful planning and accounting for preferences of crew members can lead to significant im-

provements in productivity and satisfaction. We refer the interested reader to Ernst et al. (2004)

for a review on commonly used methods and models for a variety of applications. Cheang et al.

(2003) and Burke et al. (2004) present comprehensive literature reviews on nurse rostering,

while Kohl and Karisch (2006) focus on rostering in the airline industry. In public transport the

CCRP is often used, whereas acylic rosters are more common in other industries. The focus of

this literature review is the CCRP. In particular, we show that a sequential approach is still quite

common and we elaborate on how the concepts of attractiveness and fairness are incorporated

into the models.

Since the CCRP is a difficult problem, solving it commonly requires the use of heuristic

approaches. Ernst et al. (1998) consider the rostering of crew members for freight trains in

Australia. In some cases, it is necessary to transport crew members to a different depot outside

of a shift, this is referred to as paxing. The train company has to provide additional road

transport, since the freight trains do not have capacity for passengers. Their model minimises

the operational costs while penalising paxing. Furthermore, they also take into account that

workload is balanced between crew at the same depot and between depots. They solve this

problem using simulated annealing.

Caprara et al. (1997) propose several formulations for crew rostering. They develop both

a multi-commodity network flow model as well as a set partitioning model. In their model,

they only take attractiveness into account. For example, each week can include at most one
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of the following characteristics: two duties with external rest, one long duty or two overnight

duties. Furthermore, after each week there has to be a sufficient rest period. They evaluate their

method on instances from the Italian railways.

In earlier work, the scheduling and rostering process are often solved simultaneously, due to

the smaller scale of the available instances. For example, Ernst et al. (2001) solve the integrated

scheduling and rostering for the Australian railways using both cyclic and acylic rosters. In

general, they minimise the operating costs while penalising unwanted duties, based on the

preferences of the train drivers. For example, it is preferred that all night shifts or all day shifts

are put together. They solve the resulting model by relying on the fact that full enumeration

over all possible duties is possible, due to the sparseness of the rail network in Australia. For

more dense networks (e.g. the Dutch rail network) this approach would not be feasible.

Freling et al. (2004) also solve the integrated scheduling and rostering problem for several

applications, such as the railway and airline industry. The rostering phase is modelled as a

set covering formulation. In their model, they minimise the workload and penalise duties that

have undesired characteristics, such as layovers, sequences of heavy duties and standby duties.

Furthermore, the workload is balanced over all crew members by enforcing a threshold. They

develop a branch-and-price algorithm to solve the resulting model, which worked well on the

instance form the airline industry. As the running time for the railway application was too high,

a heuristic approach was introduced and the decomposed problem was solved sequentially.

It is not uncommon that large instances of the CCRP are solved by splitting the whole pro-

cess in sequential phases. Sodhi and Norris (2004) were one of the first to apply this approach

in practice. They split the rostering problem into two main stages. In the first stage the rest day

pattern is made. Then, in the second stage the duties are assigned to the rosters. The first stage is

further split into several steps, some of which are performed manually, whereas others are dealt

with using solvers or heuristic approaches. Three types of duties are considered: early, late

and night duties. They take attractiveness into account by using a soft constraint that penalises

the use of mixed weeks, i.e. weeks in which there are both early and late duties. Furthermore,

they maximise the number of consecutive days off (excluding weekends) and (regular or long)

weekends. The method is evaluated on instances from London Underground.

Lezaun et al. (2006) split the rostering process into four different parts. First of all, the

reserve days (which are grouped in weeks) are assigned to the drivers. Afterwards, the duty

type (early, late and night duties) patterns are constructed per week. In the third phase, these
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patterns are combined such that they fit in a rotating roster for a group of drivers. Finally, the

reserve weeks from the first phase are combined with the rotating rosters from the previous

step, in order to obtain an assignment in which all drivers have an equal amount of early, late

and night duties and similar amount of weekends off. They applied this model to the metro

network in Bilbao. The obtained rosters were accepted by both the firm’s representatives and

the employees.

Hartog et al. (2009) split the rostering problem into two parts (similar to Sodhi and Norris

(2004)). They first create patterns in which the type of duty (e.g. early, late or night) is de-

termined. In the second phase they assign the actual duties to the feasible places in the roster.

Both models are formulated as an assignment problem, where undesirable duty patterns are pe-

nalised in the objective function. They show that rosters can be obtained much faster using this

process than the manually generated rosters. Furthermore, both the train drivers and conductors

preferred the rosters obtained from the models over the manually generated rosters.

Mesquita et al. (2013) integrate the vehicle and crew scheduling problem with the crew ros-

tering problem, using pre-defined day off patterns. In the objective, they consider operational

costs as well as balancing measures. These measures include the amount of short and long

trips. They solve this using a heuristic, which is based on Benders decomposition. They show

the benefits of this approach using real-world data from bus companies in Portugal.

Nishi et al. (2014) propose a decomposition algorithm for crew rostering, in which their

main objective is to distribute the workload as fairly as possible. The workload is distributed

over the crew members by minimising the maximum average working time. In the master

problem of the decomposition, a set of duties is assigned to a set of rosters. Afterwards, a set

of subproblems is solved, where feasible cyclic sequences are constructed that conform to the

working regulations. The performance of their decomposition approach is shown on instances

from the Japanese railway company.

Recently, it has become common to include more extensive fairness concepts in the CCRP,

which do not solely include the workload distribution. Borndörfer et al. (2015) incorporate

attractiveness by penalising inappropriate sequences of duties in their rostering process. An

example of such a duty sequence is a backward rotation, in which the duty on the next day starts

earlier compared to the current duty. The preferences of employees are also taken into account

using hard constraints. Furthermore, they also spread the unwanted duties (night or weekend

duties) over all employees, to improve fairness. They present both a network flow problem and
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a set partitioning problem. They solve their model using a heuristic approach similar to the

Lin-Kernighan heuristic. Their method is evaluated on both a cyclic crew scheduling problem

and an acyclic toll enforcement problem.

Integrated crew rostering is receiving more attention in the literature. Xie and Suhl (2015)

are one of the first to computationally compare the sequential and integrated approach. They

solve the crew rostering problem for both cyclic and non-cyclic rosters. They propose a multi-

commodity network flow problem, containing three different objectives: operating costs, fair-

ness and preferences of the crew. Fairness is measured by the distribution of workload, number

of days off and unpopular activities. Their proposed integrated approach is compared to a se-

quential approach (based on Sodhi and Norris (2004)). They show on instances from German

bus companies that the integrated approach obtains a better solution quality.

Borndörfer et al. (2017) solve the integrated scheduling and rostering problem for drivers in

public transport using Benders decomposition, where the scheduling and rostering problem are

solved in the master- and subproblem, respectively. In their model, they penalise rosters that are

not preferred by the drivers. For example, isolated duties or a weekend with a single day off are

both penalised. An isolated duty is a duty between two free days. In the rostering phase, they

make use of so-called duty templates, which aggregate similar types of duties based on their key

characteristics. In their approach, they only use the starting time of a duty. However, they also

suggest that other characteristics such as duty type, home depot or duty duration can be used to

group similar duties together. This facilitates a more general aggregation compared to Hartog

et al. (2009), who only use three duty types. This aggregation leads to a reduction in the number

of linking constraints, giving rise to a smaller problem. A weaker linking between the original

duties is expected to reduce the quality of the rosters. However, Borndörfer et al. (2017) show

on real-world data from a public transport company that the use of these duty templates actually

improved the obtained roster at almost no extra cost for the scheduling phase.

The trade-off between fairness and attractiveness is analysed by Breugem (2020). Similarly

to Hartog et al. (2009), duty templates with three possibilities (early, late and night) are used

as input. First of all, he shows using an exact branch-and-price-and-cut approach that fairness

should not be the sole evaluation criteria, since this comes at the cost of attractiveness. Also,

the decrease in attractiveness due to a fixed fairness level is not distributed evenly over all

the roster groups. These conclusions highlight the fact that both measures should be carefully

balanced. Furthermore, a family of formulations for the CCRP are analysed, in order to obtain
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insights into how a strong formulation can be made. These models are evaluated on data from

NS. The rules and regulations that were used in Breugem (2020) are of a similar structure as the

ones discussed in the previous chapter. They include the rest time, rest days, workload and Red

Weekends (corresponding to items 1, 2, 5 and 7 respectively from the CLA). The models are

solved using column generation in a branch-and-price algorithm. The results demonstrate that

choosing a certain formulation heavily influences both the solution quality and running time.

Based on these conclusions and recommendations a suitable model is chosen for this thesis.

This mathematical model is presented in detail in the next chapter.
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Chapter 4

Methodology

In this chapter, we introduce a mathematical model to solve the CCRP. First, the mathematical

notation is explained, which is followed by an introduction of the formulation for the CCRP.

Afterwards, the constraints that have to be implemented are explained in more detail.

4.1 Mathematical model
We use the formulation for the CCRP as proposed by Breugem (2020). The set D denotes the

set of duties and T denotes the set of cells in a roster. The set of roster sequences is denoted

by S. A roster sequence s ∈ S consists of a mapping between cells t ∈ T and duties d ∈ D,

which we denote by (t, d). We divide the problem into a set of clusters K. The constraints

that are implicitly defined in a cluster k ∈ K is denoted by Qk ⊆ Q. This means that all

constraints contained in the set QK = ∪k∈KQk are modelled implicitly using roster sequences.

All other constraints in the setQ\QK still have to be modelled explicitly. Each roster sequence

belongs to a cluster set Sk from cluster k ∈ K. Lastly, Q is a set containing all modelled roster

constraints, where each roster constraint q is modelled using a set of linear constraints p ∈ Pq.

Furthermore, the following parameters are introduced. The parameter hkds shows whether

roster sequence s ∈ Sk contains duty d or not. The parameter cks penalises the use of a roster

sequence s ∈ Sk belonging to cluster k ∈ K. Lastly, fp
td denotes whether a linear constraint

p ∈ Pq is assigned to a combination (t, d) and the threshold value for violating a constraint is

denoted by bp. The violation of the constraint has to belong to the interval δq = [0, uq], using a

penalisation of cq.

Finally, we define the binary decision variable xks when roster sequence s ∈ Sk is assigned

to cluster k ∈ K. The violation is modelled using the variable δq ∈ ∆q, which denotes how
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much the roster constraint q ∈ Q \ QK is violated. The resulting formulation of the CCRP is

shown below.

min
∑
k∈K

∑
s∈Sk

cksx
k
s +

∑
q∈Q\Qk

cqδq (4.1)

s.t.
∑
s∈Sk

xks = 1 ∀k ∈ K (4.2)

∑
k∈K

∑
s∈Sk

hkdsx
k
s = 1 ∀d ∈ D (4.3)

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fp
tdx

k
s ≤ bp + δq ∀q ∈ Q \QK , p ∈ Pq (4.4)

xks ∈ B ∀k ∈ K, s ∈ Sk (4.5)

δq ∈ ∆q ∀q ∈ Q \QK (4.6)

The objective minimises the sum of the roster sequence costs and the penalties associated with

the explicitly modelled roster constraints. Constraints (4.2) and (4.3) model the correct assign-

ment of duties, by ensuring that each cluster is assigned to exactly one roster sequence and

each duty is used exactly once. Constraints (4.4) model the explicit constraints, which can take

the form of soft or hard constraints. Lastly, Constraints (4.5) and (4.6) restrict the decision

variables to their domains.

4.2 Implementation
In this thesis, the clusters in K all contain 7 days, starting on Monday and ending on Sunday,

such that the clusters are non-overlapping. These clusters correspond to the weeks (rows) of

the rosters and are also referred to as roster sequences. This is in line with Breugem (2020),

who shows theoretically how the cluster size impacts the solution method and also demonstrates

using computational results that for instances from NS the formulation based on weekly clusters

outperforms other cluster sizes. Since we are solving an extension of this problem, it is expected

that these weekly clusters also work well for our problem. An example of three possible roster

sequences is visualised in Figure 4.1.

It might happen that the items from the CLA and the roster preferences are too complicated

to be implemented efficiently. In that case, the items are simplified. Below we state for which

items a simplification is needed.
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Figure 4.1: Example of three possible roster sequences, containing duties and rest days.

For item 3 from the CLA, there is the issue that the rule does not work when the period

of 7x24 (or 14x24) starts or ends during a rest day longer than 36 (or 72) hours. A similar

problem arises when looking at the Red Weekends (item 7). If the period starts or ends with a

sufficiently long rest day, then the requirement can be ignored and we assume that this roster

still adheres to the rules laid down by NS.

For item 3 from the CLA we make two additional assumption: we only enforce periods of

7x24 hours and the start of the period is always at midnight. For example, the rule is enforced on

the period of Monday 12:00 a.m. till Sunday 23:59 p.m., but also for the period Tuesday 12:00

a.m. till Monday 23:59 p.m. The first assumption leads to less flexibility, because enforcing

the rule on periods of 14x24 hours becomes redundant. Losing this option might come at the

cost of a reduction in solution quality. The second assumption reduces the complexity of the

problem, since we only have to consider periods starting at a specific hour.

In the CLA, item 6 states that there is a maximum of 36 night duties per 16 weeks. In case a

group has less than 16 rows (employees), we recalculate the maximum number of night duties,

such that we do not violate the CLA in case the group performs the roster for 16 weeks.

Finally, we simplify the implementation of the Red Weekend (item 7 from the CLA) by

assuming that there are no early duties that start before Monday 4:00 a.m. (which is indeed the

case for instances from NS). Using this assumption, we change the definition of a Red Weekend

to a period of at least 60 hours which starts before Friday 4:00 p.m. and ends before Monday

4:00 a.m.
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Chapter 5

Solution approach

The set of possible roster sequences is quite large, which also leads to a large number of binary

decision variables xks . Due to the large number of variables, a column generation approach is

used to solve the previously discussed model. In the column generation approach, we iterate

between the so-called master problem and pricing problem. In the master problem, the linear

programming (LP) relaxation is solved with a subset of the decision variables. In the pricing

problem, we try to find beneficial roster sequences, which are subsequently added to the master

problem. We stop when no more beneficial roster sequences can be found, implying that the

LP relaxation is solved to optimality. This is also referred to as solving the root node. To

improve the computation time of the column generation approach, it is often useful to initialise

the model with a feasible solution.

A graphical illustration of the solution approach is given in Figure 5.1. As mentioned

before, we use the CLA, roster preferences and duty attributes as inputs. Before solving the

root node, we can opt to create a start solution. After having obtained the optimal LP solution,

we have to find a feasible roster. In this thesis, we consider a heuristic approach, where we first

find an integer solution and afterwards improve this integer solution by means of a local search

algorithm. In this chapter, we describe the aforementioned steps in more detail.

5.1 Start solution
The column generation can start with an empty roster, meaning that no duties are assigned. As

a result, the first few iterations generally concentrate on covering the duties. Only after most

duties are covered, the pricing problem will try to improve the LP solution. To reduce the total

computation time we can make use of multiple start solutions, such that the majority of the
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Figure 5.1: Overview of the necessary inputs, outputs and steps taken in the solution method.

duties are already assigned to a specific week. This procedure should be fast and, if possible,

have a good objective value. In this thesis we consider two methods: a Randomised Insertion

Method (RIM) and a Greedy Randomised Adaptive Search Procedure (GRASP).

5.1.1 RIM

In this basic algorithm, we go through all empty cells in the roster one by one and assign the

first available duty. We continue doing this until all duties are covered or if no more duty can

be inserted into the roster. Adding multiple start solutions only makes sense if the algorithm

returns a different start solution every time. For this reason, we implement two randomisation

steps. First of all, the list containing all duties is shuffled. Secondly, the order of going through

the empty places in the roster is randomised.

The RIM is an algorithm that does not take the objective into account. So we expect that

solutions can be quickly obtained, which comes at the costs of the solution quality. Therefore,

we also consider a GRASP, that does take the objective into account.
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5.1.2 GRASP

The GRASP consists of two parts. The first part is a greedy assignment part in which we create

an initial start solution. Afterwards, we try to improve this start solution using a local search

procedure.

In the first part, we first try to assign each available duty to a specific day in a specific week.

This leads to a set of best candidate duties for this day based on the objective value. We keep a

list of candidate duties and from this set we choose one duty at random. We continue this until

no more duties can be assigned in a feasible way. This results in our initial start solution.

In the second part of the GRASP we try to improve the previously obtained solution. We

do this by using a so-called two-opt procedure, also known as a pairwise comparison. We

create a set of all possible swaps between two duties on a similar day but a different week

(e.g. both duties are scheduled on a Monday). First we check if such a swap is allowed and

does not violate any CLA rules. In case the duties can be swapped, we calculate the objective

value. After considering all pairs of duties in the set, we swap the pair that led to the best

improvement in objective value. We continue until a time limit or iteration limit is reached or

if no more improvements can be made.

When performing the above steps multiple times, we obtain several start solutions. All

these start solutions can be added to the master problem.

5.2 Master problem
The master problem is defined using Equations (4.1) - (4.6), where we relax the integrality

Constraints on the xks variables. That is, we replace Constraints (4.5) by xks ≥ 0, for all k ∈

K and s ∈ Sk. The penalties in the objective function, cks and cq are often in the range of 0.001

up to 0.1. Except for the penalty of not scheduling a duty, which is set to 10,000. In this way,

the column generation approach primarily focuses on scheduling all duties.

After each iteration of the master problem, we solve the pricing problem in order to obtain

roster sequences with negative reduced cost (RC). The reduced cost γks of a roster sequence

s ∈ Sk belonging to a cluster k ∈ K is defined as follows. Let µk, φd and θqp correspond to

the dual multipliers of Constraints (4.2), (4.3) and (4.4), respectively. Then the reduced cost γks
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can be calculated as

γks = cks − µk −
∑
d∈D

hkdsφd −
∑

q∈Q\QK

∑
p∈Pq

∑
(t,d)∈s

fp
tdθqp. (5.1)

We stop solving the master problem when the pricing problem has proven that no more se-

quences with negative reduced cost exist, which also implies that we obtained the optimal LP

solution.

5.3 Pricing problem
In the pricing problem we want to find clusters with negative reduced cost as defined in Equa-

tion (5.1), while ensuring that the implicit constraints are satisfied. In this thesis, at most two

negative reduced costs columns per cluster are added after solving each pricing problem. The

pricing problem is modelled for each cluster k ∈ K as a Shortest Path Problem with Resource

Constraints (SPPRC). For each cluster we construct a directed graph, where each node corre-

sponds to a duty. Duties that are connected by an arc can potentially proceed each other in the

same roster sequence.

An example of such as graph is given in Figure 5.2. Starting from the source node s, we

keep adding duties until the sink node t is reached. We define a partial roster sequence as a

roster sequence which did not reach the sink node yet. For example in Figure 5.2 we refer to

[s, 126, 125], or simply [126, 125], as a partial sequence.

Figure 5.2: Example of a directed graph for the pricing problem.

The reduced cost of a roster sequence can be split into two parts. The first part of the cost

comes from the constraints modelled implicitly. It often happens that these implicit costs cannot

be associated with a single arc, but are the result of a specific series of duties. These costs can
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be incorporated using resource constraints. Each roster constraint p is related with a resource

consumption fp
td and a consumption limit bp. Violation of the consumption limit is bounded by

δq ∈ ∆q. The second part corresponds to the dual multipliers of the explicit constraints. These

explicit costs can be allocated to each arc of the directed graph.

The SPPRC is quite common in the literature of vehicle routing, crew scheduling and crew

rostering. The following two types of approaches are often used to solve it to optimality: a

breadth first labelling algorithm using dynamic programming or a depth first algorithm based

on completion bounds (Dumitrescu and Boland, 2003). The breadth first strategy is often pre-

ferred when two labels can easily be compared, such that one of them can be pruned. On the

other hand, the depth first approach is often used to quickly obtain feasible solutions (Lozano

et al., 2016). In this thesis, we select the depth first approach, since there is no clear preference

for which partial sequence will be the best. Depth first approaches to solve the SPPRC have

been successfully applied before, see for example Grötschel et al. (2003) or Breugem (2020).

The pseudocode for a depth first SPPRC is outlined in Algorithm 1. In the initialisation,

the partial sequence is created containing only the source node. Furthermore, the resources are

updated and checked for any violation. The algorithm is depth first because of the recursive

call to the method FINDROSTERSEQUENCE. In each step, it tries to add a duty if the resources

are sufficient. The method either terminates when the sink is reached or if the current sequence

is infeasible. The methods referring to completion bounds are explained in the next sections.

As mentioned before, completion bounds are often used in combination with a depth first

approach. Given a partial sequence, this completion bound shows the maximum reduced cost

that can still be attained from this point. In case the completion bound is worse than the best

reduced cost found until now, it is not fruitful to continue the search using this partial sequence,

which is therefore pruned. In this way, we try to detect early on which partial sequences

are worthwhile to consider. A common way to compute these bounds is using Lagrangian

relaxation (Dumitrescu and Boland, 2003). However, in this thesis the completion bounds

are computed using a set of rules based on domain knowledge. Breugem (2020) successfully

applied this approach when solving the CCRP. Furthermore, we incorporate these bounds in

two different settings: forward and backward completion bounds.
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Algorithm 1 Shortest Path Problem with Resource Constraints

Input: directed graph
Output: optimal path (roster sequence)

1: allSequences← {}
2: lowerboundRC ←∞
3: sequence← sourceNode
4: update resources
5: FINDROSTERSEQUENCE(sequence)

6: procedure FINDROSTERSEQUENCE

7: boundOutput← {}
8: for duty in dutyList do
9: sequence← duty

10: update resources
11: if duty = sinkNode then
12: allSequences← sequence
13: update lowerboundRC
14: boundOutput←BACKWARDCOMPLETIONBOUNDCALCULATE

15: else
16: if INFEASIBLE or FORWARDCOMPLETIONBOUND then
17: boundOutput←BACKWARDCOMPLETIONBOUNDCALCULATE

18: else
19: boundOutput∗ ←FINDROSTERSEQUENCE(sequence)
20: dutyList← BACKWARDCOMPLETIONBOUNDPRUNE(boundOutput∗)
21: end if
22: end if
23: end for
24: end procedure

5.3.1 Forward completion bounds

Forward completion bounds are based on the look-ahead principle. Given a partial sequence,

we want to estimate how much further the reduced cost can decrease. For example, in Figure 5.3

we have a partial sequence A: [126, 125], which ends on Wednesday. Using domain knowledge

we can come up with a number of (best case) scenarios to calculate the lowest possible reduced

cost for this particular partial sequence.

These bounds can be recomputed every time a duty is added to the partial sequence, which

happens on line 16 in Algorithm 1. This bound consists of the current RC, a minimum explicit

cost (based on the dual multipliers) and a minimum implicit cost. This calculation is shown on

line 1 in Algorithm 2. If the lowest possible RC is still higher than the lower bound found until

now, then it is clear that this partial sequence can be safely pruned.
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Figure 5.3: Forward completion bound example. Given the partial sequence A, we can calculate a
lower bound on the remaining reduced cost to the sink.

The domain knowledge to compute these lower bounds can for example be incorporated as

follows. Suppose we have a partial sequence from Monday until Saturday and a duty is sched-

uled on Saturday, then we know that this sequence cannot contain a Red Weekend. Therefore

we can ignore the potential explicit cost of having a Red Weekend. A similar thought process

is possible for all other explicit and implicit costs, leading to a final lower bound for the partial

sequence.

Algorithm 2 Forward completion bounds

Input: sequence
Output: true if sequence should be pruned

1: lowestPossibleRC ← currentRC +minExplicitCost+minImplicitCost
2: if lowestPossibleRC > lowerboundRC then
3: return true
4: end if

In our implementation, both the minimum explicit and implicit cost are are calculated based

on a set of rules. Furthermore, we differentiate between calculating the entire bound in every

step (after adding a single duty) or only calculating the bound once. In case we only calculate

the bound once, we have to compute a bound that holds for any partial sequence, leading to

weaker bounds. So there exists a trade-off between spending more time on calculating a strong

bound for each individual sequence and spending less time for a weaker bound. In order to

quantify this trade-off, we naturally consider the following four forward strategies.

• FS1: Calculate the explicit and implicit cost in every step.

• FS2: Calculate the explicit cost once and calculate the implicit cost in every step.
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• FS3: Calculate the explicit cost in every step and calculate the implicit cost once.

• FS4: Calculate the explicit and implicit cost once.

5.3.2 Backward completion bounds

Backward completion bounds are quite similar to its forward counterpart, except that we now

reverse the thought process. Given that we arrive at the sink with sequence A, we can compute

the exact RC. This information could help us to prune similar sequences that have not reached

the sink yet. This idea is similar to the so-called pulse algorithm proposed by Lozano et al.

(2016), to solve the elementary SPPRC. In their method they either prune on basis of infea-

sibility, bounds or roll-back. The last pruning method decides whether it is still worthwhile

to continue the last choice made (e.g. which subtree to explore). A subtree is defined as all

available duties that can still be added (in a fixed order) to a partial sequence. The difference

with the method proposed in this thesis is that we actually do continue to explore the chosen

subtree, but we use the information found to prune similar subtrees that are still unexplored.

The intuition behind these backward completion bounds is given in Figure 5.4. If we have

already reached the sink using sequence A, then we know what the RC are for the sequence

[126, 125, 44] (and [126, 125, 43]). We also know that partial sequenceB is going to be extended

to the sequence [126, 119, 44] (and [126, 119, 43]). Clearly, the sequences obtained from A are

quite similar to the sequences from B, meaning that their RC costs should not differ too much.

Using this information we can compute what the potential RC of partial sequence B is and

prune B if necessary.

Figure 5.4: Backward completion bound example. Given that we reach the sink from partial sequence
A, we can compute a bound for partial sequence B.
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To be specific, givenRCA, the reduced cost of sequenceA, and the currently lowest reduced

cost RC∗, we first calculate the difference between the two: τ = RCA−RC∗. Here, τ denotes

how much the RC of sequenceA needs to decrease in order to find a sequence corresponding to

the lowest RC. Next, we define IA as the set of sequences that are almost identical to sequence

A. We say that a sequence i ∈ IA if they are exactly the same except for a single duty, however,

this duty must be of the same type (early, late or night) as in sequence A. When considering

all sequences i ∈ IA, we define κ = maxi∈IA{RCA − RCi}. Therefore, κ can be interpreted

as the maximum difference between the reduced cost of sequence A and the reduced cost of

similar sequences. Therefore, we can use the comparison between the values of τ and κ to

prune similar sequences. That is, if τ < κ then we do not prune the sequences i ∈ IA. Note

that τ < κ implies that RC∗ > mini∈IA{RCi}. The calculation is performed whenever a

sequence reached the sink or is pruned, which happens on lines 14 and 17 in Algorithm 1 when

Algorithm 3 is called.

Algorithm 3 Backward completion bounds Calculate

Input: sequence A
Output: true if a sequence similar to A can improve the current lowerboundRC

1: κ← maxi∈IA{RCA −RCi}
2: τ ← RCA −RC∗
3: if τ < κ then
4: return true
5: end if

Note that we do not state that we can prune the sequences, the reason for this is that we

do not actually store all the possible sequences in memory. We can only prune on basis of a

duty. In order to prune a specific duty, we need to have more information. Suppose now that

we have already reached the sink with sequences A1, ..., An, such that the sets of I1, ..., In are

known and their corresponding values for τ1, ..., τn and κ1, ..., κn have been computed as well.

Now, assume we have a partial sequence B. We can find which similarity sets I contain the

sequence B and what the corresponding values of τ and κ are. Thus, if τj > κj for all sets that

satisfyB ∈ Ij , thenRCB > RC∗. This implies that partial sequenceB can never be lower than

the optimal reduced cost found until now. In other words, the partial sequence can be safely

pruned.

The pruning of a partial sequence B happens on line 20 of Algorithm 1. At this point in

the algorithm we have obtained the relevant information on the sequences A1, ..., Am and their
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similarity sets I1, ..., Im. The relevant information can be summarised by the pairs (τj, κj) :

B ∈ Ij, j = 1, ...,m, where m ≤ n. Since we are using a depth first, the pruning only works

locally (e.g. for the subtree starting from partial sequence B), therefore we use m instead of all

n similarity sets. This implies that we do not need to consider the similar sequence Aj , where

j > m, if the dissimilarity happens before the current duty.

Consider again the example in Figure 5.4. For partial sequence B: [126, 119] we do not

need to have information on sequences that differ before the current duty. For example, the

sequence [124, 119, 43] is not relevant for pruning partial sequence B, since the duties 126 and

119 are already fixed. Therefore, we only consider a subset of m sequences, instead of all

similar sequences n. This step is shown in Algorithm 4, where we consider all m sequences

that are similar to the current sequence B. We iterate over all m options, and if for least one

option we might improve the lower bound we stop. If none of the m sequences leads to an

improvement we can safely prune the similar duties.

Algorithm 4 Backward completion bounds Prune

Input: boundOutput obtained from BACKWARDCOMPLETIONBOUNDCALCULATE

Output: remove similar duties from the dutyList

1: for j = 1, ...,m do
2: if boundOutput(j)=true then
3: return
4: end if
5: end for
6: prune all duties similar to current duty

Feasibility condition

Of course, the above procedure only works if the subtree belonging to sequence A is exactly

the same as the subtree of sequence B. If on the contrary, the subtree of B contains sequences

not considered by A, then the results stated above no longer hold. This situation is visualised in

Figure 5.5, where partial sequence A does not always reach the sink, such that we do not have

enough information available to prune partial sequence B.

In our case, we only have to consider items 1 and 2 from the CLA for our implicit feasibility

check. Item 1 can be split into two parts. The first part ensures that the break after each duty

is long enough (12 or 14 hours). For instances from NS this always results in a similar subtree

for A and B (e.g. by changing a duty of a similar type the break is still sufficient). The second
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part states that the minimum rest time after three or more consecutive night duties should be 46

hours. This clearly complicates matters, since the duty that is different between A and B might

be a night duty that may or may not lead to a sufficient break. A similar situation might occur

for item 2, which states what the length of a series of rest days should be. For these infeasible

sequences, we are still interested in computing a lower bound on the RC, such that we might

be able to prune partial sequence B.

Suppose that we have the (feasible) partial sequence A, for which we can compute a lower

bound. Afterwards we add an additional duty leading to partial sequence C. In case C is

infeasible, then the easiest way to obtain a valid lower bound is by reusing the previous lower

bound from A. Graphically it is easy to see that if a valid lower bound was found for A, this

must always be a valid lower bound for C as well (see Figure 5.6).

Figure 5.5: We can only compare partial sequences A and B if their subtrees are similar. In this specific
example we are not allowed to prune sequence B, because duty 44 cannot be scheduled after duty 125.

Figure 5.6: If partial sequence C is infeasible, we can still use the valid lower bound of partial
sequence A, which has been calculated before.
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5.3.3 Pricing Problem Heuristic

The algorithm using backward completion bounds can easily be changed into a heuristic pro-

cedure. Instead of calculating the threshold κ, we set the value ourselves. By choosing a lower

value, more duties are pruned. However, this also means that we can no longer prove that the

root node is solved to optimality.

5.4 Obtaining integer solutions
Solving the column generation as described above only leads to an LP solution of the root

node. In order to obtain an actual roster, it is necessary to convert the LP solution into an

integer solution. There are several methods to perform this conversion. We first consider two

heuristics in which parts of the roster are fixed in an iterative process. In case there are still

duties unassigned, we apply a local search heuristic.

It can happen that the found integer solution has a worse objective value compared to one

of the start solutions. In that case, we use the best start solution instead.

5.4.1 Integer heuristic

The following two heuristics are used to create an integer solution from the LP solution.

• IH1: Fix the column with the largest value, then solve the master problem again and

repeat.

• IH2: Fix the column with the largest value, then solve the master and pricing problems

again until no more columns with reduced cost are found and repeat. This is also known

as dive-and-fix in the literature.

These heuristics can be improved by fixing more than one column if applicable. The number

of columns should not be too small, leading to a large number of iterations. On the other hand,

fixing a large number of columns at the same time might lead to poor integer solutions.

Furthermore, when choosing which column to fix, we might want to prioritise columns with

more duties and sequences containing duties on Friday, Saturday and Sunday. If the heuristic

contains these extra weights we refer to it with a star (e.g. IH2*). We suspect that these weights

makes it easier to find a feasible solution, since scheduling Red Weekends is often a bottleneck.
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5.4.2 Local search

Finally, it might happen that after applying any of the above named strategies not all duties are

covered. In that case, the heuristic is followed up by one of the following local search methods.

• FH1: Assign each duty to the first feasible place in a roster sequence.

• FH2: First apply FH1, then use a destroy and repair procedure.

The first method places the unassigned duty into the roster as fast as possible, without taking

into account the objective value. We prioritise the assignment of duties to weeks that contain

the most days off. This is to prevent an unbalanced roster in which certain weeks are totally

full and other weeks are almost empty.

The first method might not be able to find a solution in which all duties are covered, since

most of the roster is fixed. This problem can be circumvented by the second method, which

uses a destroy method. We first remove a few roster sequences and unassign the corresponding

duties. Afterwards, we repair the solution by applying a dive-and-fix procedure (similar to

IH2). If the number of unassigned duties is less than before, we retain the obtained solution,

otherwise we reverse the changes. We continue this procedure until all duties are covered or a

stopping condition is met.

Note that neither the heuristic nor the additional local search can guarantee a solution in

which all duties are covered.
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Chapter 6

Computational experiments

In this chapter, we decide which strategies and parameters to choose for the solution approach

by means of computational experiments. The order in which each part is discussed follows a

similar structure as the previous chapter (see Figure 5.1). That is, we first determine whether

start solutions should be added to the master problem. Afterwards, we investigate how the pric-

ing problem can be improved. Finally, several heuristics to find integer solutions are compared.

The master problem is solved using the commercial solver CPLEX 12.1. All experiments

are performed using a 1.8 GHz Intel Core i7 processor.

6.1 Description of the instances
In total we consider 12 different instances of train conductors from NS, which are summarised

in Table 6.1. We distinguish between two types of instances: small and large.

In this chapter, we mostly focus on the small instances (1 - 6) when evaluating different

strategies in the solution approach. These instances are suitable, because they are easier to

solve in terms of computation time, since a single roster group is present with at most 12

employees. Furthermore, these instances are representative of the larger ones when looking at

the distribution of the duty types. There are balanced instances (1, 2, 3 and 6) that contain a

similar amount of early and late duties and the other instances (4 and 5) only contain a single

duty type.

The large instances (7 - 12) are more difficult to solve. These instances contain more em-

ployees and sometimes also more roster groups compared to the small instances. After having

fixed the strategies and parameters, most of these instances are used in the upcoming sensitivity

analysis in Chapter 7. The distribution of duty type also differs per instance. Instance 8 contains
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primarily early duties, whereas instance 9 contains mostly late duties. These are likely more

difficult to solve, because there is less flexibility. On the other hand, the backward completion

bounds may be more effective, since more duties can be pruned at the same time. Instances 10

and 11 are more balanced in terms of duty types. The largest instance (12) corresponds to the

crew base in Amersfoort.

Table 6.1: The number of roster groups, employees and duties per instance.

Type ID Groups Employees Duties
Early Late Night Total

Small

1 1 8 17 14 0 31
2 1 12 23 20 2 45
3 1 12 22 23 2 47
4 1 12 0 40 5 45
5 1 12 0 40 4 44
6 1 12 24 17 2 43

Large

7 1 15 55 0 0 55
8 3 39 102 37 4 143
9 3 32 17 94 9 120

10 3 39 77 63 7 147
11 3 32 64 51 4 119
12 7 83 141 154 15 310

6.2 Start solution
As mentioned earlier, we consider two different strategies to obtain a set of start solutions:

the RIM and the GRASP. First, we evaluate each method individually compared to a baseline

without any start solution. Afterwards, we compare which of the two methods is more suitable.

6.2.1 RIM

Table 6.2 shows the results when using the RIM for the small instances. The first row corre-

sponds to the baseline where no start solution is used. The subsequent rows denote the number

of start solutions that are made and all of them are added to the master problem.

The table illustrates that the average computation time and the number of iterations of the

master problem already decrease by a factor of four after adding only 10 start solutions. This

means it is beneficial to include several start solutions when initialising the column generation

approach. Furthermore, the column containing the start solution time shows that obtaining

these start solutions is not difficult, 50 start solutions can be found on average within 2 seconds.

We observe a decrease in computation time when just a few start solutions are added. This
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can also be concluded when looking at Table 9.1 in the Appendix, where the individual com-

putation times are shown. For example, instance 5 takes almost 90 minutes to solve when no

start solution is present, while it only takes around 10 minutes after adding 10 start solutions.

Furthermore, for instance 5 having 10 start solutions is better compared to 20, 30 or 40 start

solutions. Given that a decreasing relation is found between the computation time and the

number of start solutions for most other instances, it is probable that the solver accidentally

found a few good roster sequences for instance 5 when only 10 start solutions were present.

We also see that instance 4 and 5 always have the longest computation time compared to the

other instances. This is as expected, since these two instances only contain late duties.

Table 9.2 in the Appendix reports that the number of iterations of the master problem often

decrease on the individual level when more start solutions are added. Consequently, it can be

concluded that adding more start solutions is beneficial, since it decrease the total computation

time as well as the number of iterations. Accordingly, 50 start solutions is deemed the most

suitable for the RIM.

Table 6.2: Average results over small instances when adding start solutions using the RIM. Root node
time includes time spend on solving the master problem and pricing problem.

Start
solutions

Total
time (s)

Start solution
time (s)

Root node
time (s) Columns

Master
iter.

0 2186.63 - 2186.63 3702.00 161.33
10 388.16 0.35 387.81 924.83 41.50
20 477.75 0.74 477.00 810.67 36.33
30 474.17 1.18 472.98 776.00 34.83
40 472.30 1.66 470.64 693.33 31.17
50 416.36 2.07 414.30 651.17 29.50

6.2.2 GRASP

In the first step of the GRASP, we choose a random duty out of a candidate list containing 5

duties. The second step, in which the best possible swap is determined, is repeated at most 30

times. In general, we observe that less than 30 iterations are needed to find a local optimum.

Similar to the RIM, Table 6.3 shows that also for the GRASP is it beneficial to add start

solutions, as this leads to an overall decrease in the time to solve the root node as well as a

decrease in the number of iterations.

Based on the total computation time, it seems most beneficial to have 20 start solutions. This

is confirmed when examining the individual computation times in Table 9.3 in the Appendix.
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Based on the total computation time, we indeed see that for most instances 10 or 20 start

solutions is the preferred choice.

However, when considering the number of iterations in the root node we find in Table 6.3

that 50 start solutions results in the least amount of master iterations. This can also be seen

on the individual level in Table 9.4 in the Appendix. Most instances use the least amount of

iterations when 40 or 50 start solutions are added.

The reason why the total computation time is increasing, while the number of iterations

is decreasing is explained by Table 6.3. Adding more start solutions actually leads to less

computation time in the root node. However, finding the start solutions itself is quite costly. For

50 start solutions around 30% of the total computation time is spent on finding start solutions.

The best setting for the GRASP seems to be either 20 or 50 start solutions, depending on

the total computation time or number of iterations respectively.

Table 6.3: Average results over small instances when adding start solutions using the GRASP. Root
node time includes time spend on solving the master problem and pricing problem.

Start
solutions

Total
time (s)

Start solution
time (s)

Root node
time (s) Columns

Master
iter.

0 2186.63 - 2186.63 3702.00 161.33
10 316.55 21.70 294.85 657.33 29.67
20 304.29 49.29 255.00 538.83 24.50
30 366.89 83.33 283.56 505.33 22.83
40 385.77 104.76 281.01 453.00 20.67
50 395.08 128.30 266.78 443.33 20.33

6.2.3 Comparison GIM and GRASP

When comparing the total computation time when using the GIM and GRASP we see that the

GRASP often performs better, given the same amount of start solutions. However, when 50

start solutions are used, the difference between the two methods is on average only 20 seconds.

This is because the RIM only needs on average 2 seconds to find all 50 start solutions, whereas

the GRASP requires more than 2 minutes. This difference is then balanced out in the time to

solve the root node.

The GRASP is able to improve the running time of the root node, because the start solutions

found have much better objective values. Table 6.4 shows the average best found start solution

for both the RIM and the GRASP. A large difference in objective values is expected, since the

RIM does not take the objective into account when creating the start solutions.

35



Even though for small instances the time spent on calculating good start solutions outweighs

the costs, we expect for larger instances that performing the GRASP might cost too much time

compared to the reduction in the root node time. That is, the GRASP might not scale well for

instances with multiple roster groups. Furthermore, we see that using a simple RIM we can

already obtain a large decrease in the total computation time. Therefore, we continue using the

RIM with 50 start solutions.

Table 6.4: Comparison of the RIM and GRASP on time spend creating all start solutions and the
objective of the best start solution. Average computation time and best start solution for the small

instances.

Start solutions RIM GRASP
Start solution
time (s)

Best start
solution

Start solution
time (s)

Best start
solution

10 0.35 5022.29 21.70 1687.49
20 0.74 1688.95 49.29 20.74
30 1.18 1688.86 83.33 20.71
40 1.66 1688.84 104.76 20.71
50 2.07 1688.71 128.30 20.71

6.3 Pricing problem
To solve the pricing problem to optimality, we consider both forward and backward completion

bounds. Additionally, we show the performance of the pricing problem heuristic.

6.3.1 Forward completion bounds

Table 6.5 shows the results of the proposed forward strategies compared to a benchmark which

does not make use of any bounds. Note that only the time to solve the root node is reported,

because the start solution strategy is fixed throughout the comparison. The pricing problem

is always solved to optimality, irrespective of the chosen strategy. As a result, the number of

columns and iterations stays the same.

Interestingly, three out of the four strategies perform worse in terms of computation time

compared to the benchmark. These three strategies are actually all able to prune some (partial)

sequences before reaching the sink. Therefore, the number of times the sink is reached is de-

creased. However, calculating these forward completion bounds itself is also time consuming.

In these three cases it seems that in the time it takes to prune a subtree, we could already explore

that subtree instead.
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Only strategy FS2, which calculates the explicit cost once and the implicit cost in every

step, is able to outperform the benchmark. The difference in computation time is more than

150 seconds on average. This means that even though we often calculate the implicit cost, this

does not slow down the pricing problem. Therefore, it is surprising that FS4, which calculates

both the explicit cost and implicit cost once, is performing worse than FS2. We might expect

the average time to solve the root node for FS4 to be similar as well, since even less calculations

are needed. As this is not the case, we expect that the bounds calculated by FS2 are stronger

than the ones obtained by FS4. Having more accurate bounds lead to more pruning or earlier

pruning in the subtree. Therefore, we continue with strategy FS2 to compute the forward

completion bounds

Table 6.5: Comparison of several forward completion bound strategies. Average results on small
instances.

Strategy
Root node
time (s) Columns

Master
iter.

- 414.30 651.17 29.50
FS1 804.32 651.17 29.50
FS2 259.41 651.17 29.50
FS3 525.66 651.17 29.50
FS4 585.16 651.17 29.50

6.3.2 Backward completion bounds

Table 6.6 compares the benchmark containing only forward completion bounds with a strategy

where both forward and backward completion bounds are used. Both options use strategy

FS2 to compute the forward completion bounds. The total computation time to solve the root

node drops by more than 50 seconds on average. Interestingly, the number of columns and

iterations needed decreases slightly when using backward completion bounds. This can be

attributed to the fact that the backward strategy prunes all similar duties that cannot improve

the current lower bound. Therefore, this method might also prune sequences that do have a

negative reduced cost which is higher than the current lower bound. These pruned sequences

are only added in the next iteration, in case they still have a negative reduced cost.

6.3.3 Pricing problem heuristic

The previously discussed backward strategy still solves the pricing problems to optimality and

therefore also solves the LP relaxation to optimality. However, we can also choose a fixed
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Table 6.6: Comparison of a strategy with and without backward completion bounds. Average results
on small instances.

Strategy
Root node
time (s) Columns

Master
iter.

- 259.41 651.17 29.50
Backward 201.84 648.83 29.33

threshold instead of calculating it exactly. This leads to a pricing problem heuristic for which

the results are shown in Table 6.7.

The table shows that for decreasing values of κ, the time to solve the root node decreases

as well, which drops from an average of 93 seconds to an average of 2 seconds. This is as

expected, since a lower κ implies that we are more likely to prune a sequence, such that less

sequences have to be explored. When looking at the relation between κ and the lower bound

or the number of iterations there does not seem to be a clear pattern. This is not unusual, since

the presented results are obtained from a heuristic, so a higher value of κ does not necessarily

imply a better lower bound.

The lowest computation time for solving the root node is achieved when setting κ to its

minimum value of 0, corresponding to an average of 2 seconds. The difference between the

found lower bound and the actual lower bound is 0.09%. This computation time is also much

lower compared to the time from the backward strategy shown in Table 6.6. The backward

strategy takes on average a factor 100 more time, although it does find the optimal solution of

the LP relaxation.

Based on the fact that κ = 0 results in the lowest computation time and the found lower

bound is quite close to the actual lower bound for these instances we continue with κ = 0.
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Table 6.7: Average results over small instances when using parameter κ in the pricing problem
heuristic. For each parameter value the percentage difference between the found lower bound and the

actual lower bound of 20.18 is reported.

κ
Lower
bound* Difference (%)

Root node
time (s) Columns

Master
iter.

0.10 20.18 0.00 92.97 685.67 31.17
0.09 20.18 0.00 93.27 681.67 31.33
0.08 20.18 0.00 96.50 712.33 32.67
0.07 20.19 0.04 74.09 700.00 31.50
0.06 20.18 0.00 72.13 757.17 35.00
0.05 20.18 0.00 62.81 748.17 34.33
0.04 20.18 0.00 47.45 694.67 31.50
0.03 20.18 0.00 39.15 765.17 34.50
0.02 20.18 0.00 29.17 822.33 37.67
0.01 20.18 0.00 22.81 937.67 42.83
0.00 20.20 0.09 2.03 480.67 25.00

∗ The lower bound of the LP solution found using a pricing problem heuristic.

6.4 Obtaining integer solutions
In this section, we introduce several methods to find integer solutions, using as basis the previ-

ously obtained solution of the LP relaxation. When comparing several heuristics to obtain an

integer solution, we always start with the same LP solution. Therefore, the time to solve the

root node is not included in the upcoming comparisons.

6.4.1 Integer heuristic

For both strategy IH1 and IH2, we fix at most 5 roster sequences in each iteration. Addition-

ally, IH2* denotes the strategy where more weights are given to sequences containing a busy

weekend. Table 6.8 shows that IH1 takes on average the least amount of time, while IH2 and

IH2* take around 3 to 4 seconds. Furthermore, the table shows that all three strategies find

the same integer solution for all instances. This is caused by the fact that none of the integer

solutions is able to outperform the best start solution.

Table 6.9 compares the solutions found by the integer heuristic with the best start solution.

For these instances none of the integer heuristics are able to find a roster where all duties are

covered. This can be seen from the objective, which is higher than 10,000 (corresponding to a

penalty of rejecting a duty). The best start solution always finds a roster containing all duties,

except for instance 2.

When comparing the solutions found by the integer heuristics, we see that IH1 performs
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Table 6.8: Average results over small instances using different integer heuristics. The best integer
objective is reported, as well as the number of rejected duties. The final column denotes the percentage

of cases that the integer heuristic found a better integer solution compared to the available start
solutions.

Strategy Objective
Lower
bound Gap (%)

Integer
time (s)

Rejected
duties

Better than
start solution (%)

IH1 1688.71 20.18 7813.08 0.25 0.17 0.00
IH2 1688.71 20.18 7813.08 3.10 0.17 0.00

IH2* 1688.71 20.18 7813.08 4.11 0.17 0.00

worse compared to IH2 and IH2*. This is as expected, since IH2 and IH2* make use of a

dive-and-fix procedure. After having fixed a set of roster sequences, this information is used to

generate new roster sequences that might fit better in the current roster. Even though IH2 and

IH2* have a longer computation time, we continue with these two heuristics since they obtain

a better integer solution. Both methods are extended using a local search in the next section,

afterwards the best performing method is chosen.

Table 6.9: Integer objectives obtained from the integer heuristic compared to the best start solution.

ID Start solution IH1 IH2 IH2*
1 15.38 50015.92 10014.62 10014.87
2 10023.67 90023.92 50023.26 60023.48
3 23.07 130024.63 20022.04 40022.56
4 23.27 110024.03 30022.88 30022.86
5 23.60 60024.01 10022.64 20022.73
6 23.30 120024.87 40022.71 40023.40

Average 1688.71 93356.23 26688.02 33354.98

6.4.2 Local search

Based on the previous results we select the two best performing integer heuristics. Both these

methods can be extended by two different types of local search methods: FH1 and FH2. This

leads us to the following four possibilities which are shown in Table 6.10. The reported integer

times include the time spent on both the integer heuristic and the local search parts. For FH2

we destroy at least 10% of the roster sequences in each iteration and repair this by applying a

dive-and-fix in which a single roster sequence is added each time.

The table shows that without the local search it takes 3 to 4 seconds on average to perform

the integer heuristic. With local search the running time is at most 20 seconds on average. The

strategies using FH1 instead of FH2 have the lowest computation time as expected, since the

destroy and repair method is time consuming. Furthermore, we see that the local search does
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improve the solutions. For all strategies, we see that on average in more than 50% of the time

we outperform the best start solution. This is a substantial improvement with respect to the 0%

we found earlier when no local search is used. Strategy IH2-FH1 finds the lowest objective on

average. This is also the only strategy that finds for all instances a roster in which all duties are

covered. This suggests that IH2-FH2 is the preferred strategy.

Table 6.10: Average results over small instances using different integer heuristics and local searches.
The best integer objective is reported, as well as the number of rejected duties. The final column

denotes the percentage of cases that the integer heuristic found a better integer solution compared to the
available start solutions.

Strategy Objective
Lower
bound Gap (%)

Integer
time (s)

Rejected
duties

Better than
start solution (%)

IH2-FH1 1688.34 20.18 7811.04 3.27 0.17 50,00
IH2-FH2 21.59 20.18 6.86 17.87 0.00 50,00

IH2*-FH1 1688.38 20.18 7811.26 4.36 0.17 50,00
IH2*-FH2 1688.25 20.18 7810.66 13.82 0.17 66,67

Table 6.11, which shows the objective values on an individual level, tells a different story.

Out of the four strategies IH2*-FH attains the lowest objective value on average. This is more

important, since it shows that this method is more adept at transforming rosters that do not

cover all duties into feasible rosters. For example, the method IH2-FH2, which was the best

based on the previous table, still has two instances in which a single duty is not covered and

one instance in which four duties are not covered after applying a local search. However, IH2*-

FH2 only has three instances for which a single duty is not covered. Being able to cover more

duties is more important, when we do not have a start solution in which all duties are covered.

Therefore, strategy IH2*-FH2 is used to find integer solutions in the upcoming sections.

Table 6.11: Integer objectives obtained from the integer heuristic with local search compared to the
best start solution.

ID Start solution IH2-FH1 IH2-FH2 IH2*-FH1 IH2*-FH2
1 15.38 14.71 14.71 14.79 14.79
2 10023.67 10023.07 22.55 10023.27 10023.27
3 23.07 10021.96 40022.83 22.07 22.07
4 23.27 10022.65 10022.53 10022.79 10022.63
5 23.60 10022.64 10022.67 10022.65 10022.55
6 23.30 22.32 22.32 10023.22 22.53

Average 1688.71 6687.89 10021.27 6688.13 5021.31
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6.5 Performance of all instances
In the previous sections, the most suitable parameters and method are fixed based on a set of

small instances. We initialise the column generation approach with 50 start solution obtained

using a RIM. Afterwards, the pricing problem is solved heuristically, while also using forward

and backward completion bounds. Finally, the LP solution is transformed into an integer so-

lution by using a dive-and-fix procedure followed-up with a local search. In this section, the

performance of the other (mostly larger) instances using these preferred settings are shown. The

goal of this section is twofold. Firstly, the most time consuming parts of the solution approach

are highlighted. Secondly, the instances 8 - 11 are used as a benchmark for the upcoming

sensitivity analysis.

Tables 9.5 and 9.6 in the Appendix provide an overview of the performance of the small

instances 1 - 6 based on the preferred settings. In case a roster in which all duties are covered

is found (corresponding to objectives lower than 10,000), the actual gap ranges from 5 up to

9%, this shows that the objective of the integer solution is quite close to the LP solution. The

latter table shows the time spent on all parts of the solution approach. The fastest time to solve

the root node is attained by instances 4 and 5, which were previously the instances with the

longest computation time. This is because instances 4 and 5 only contain late duties and in the

backward completion bounds all similar duty types are pruned. In case the integer heuristic

finds a roster in which all duties are covered, no time is spent on the local search. In case a

local search is necessary, we see that it often accounts for roughly 50% of the total computation

time. It is also interesting to see that almost no time is spent on solving the master problem.

We expect similar results for the larger instances 7 - 12.

Table 6.12 shows that for larger instances the number of columns and iterations of the

master problem increases greatly. Small instances use on average 3,000 columns and are often

solved within 30 iterations, whereas the largest instance needs more than 145,000 columns and

almost 80 iterations. Even though the instance is larger, our solution approach is able to find

feasible rosters for all shown instances. The reported gaps are not that large, ranging from 3 up

to 15%. Note that the actual gaps can be larger, since the lower bound is found using a pricing

problem heuristic.

Additionally, in 4 out of 6 cases the integer heuristic is able to find a better solution relative

to the given start solutions, which is also the case for the smaller instances. Table 6.13 shows
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that in case both the integer heuristic and the start solution find a solution in which all duties are

covered (corresponding to objectives lower than 10,000), the integer heuristic always reports a

lower objective value. This shows that the integer heuristic also works well on larger instances.

Table 6.12: Results obtained using the preferred settings. Lower bound and gap are based on the
pricing problem heuristic. The best found objective and the number of rejected duties is reported. The

last column indicates whether the solution from the integer heuristic is better compared to the start
solution.

ID Objective Lower bound* Gap (%) Columns
Master
iter.

Rejected
duties

Better than
start solution

7 27.80 26.81 3.69 4028 17 0 Yes
8 76.33 68.79 10.97 47125 44 0 No
9 59.68 57.26 4.23 11319 36 0 Yes

10 72.35 68.44 5.72 33032 51 0 Yes
11 64.22 56.23 14.21 22639 42 0 No
12 154.05 146.22 5.35 145251 78 0 Yes

∗ The lower bound of the LP solution found using a pricing problem heuristic.

Table 6.13: Integer objectives obtained from the integer heuristic the preferred settings compared to
the best start solution.

ID Start solution Integer heuristic
7 28.95 27.80
8 76.33 10073.66
9 20064.45 59.68

10 77.45 72.35
11 64.22 10059.40
12 10164.65 154.05

Table 6.14 shows how much time is spent on each part of the solution approach. For larger

instances, the time to create a start solution increases quite fast, even though we merely use a

simple insertion method. For small instances with only one roster group, the start solutions are

generally found within 2 seconds. For the instances with three roster groups, the time to find

all the start solutions increases to 10 seconds on average. However, when considering the large

instance with seven roster groups it almost takes a minute to find all 50 start solutions.

Unsurprisingly, the time to solve the root node, which consists of the master problem and

pricing problem time, is low compared to the total time. The low computation time of the

master problem is due to the formulation of the problem. The computation time of the pricing

problems can be attributed to the pricing heuristic, which prunes similar sequences as early as

possible. For the largest instance this leads to a computation time of roughly 60 seconds to

solve the root node.
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For most methods, a large portion of the time is dedicated to the integer heuristic and the

local search. This makes sense, since finding a solution in which all duties are assigned is not

trivial. The integer heuristic takes a lot of time, as only 5 roster sequences are fixed at the same

time. The local search takes less time than expected. In three cases we are lucky that no local

search was necessary at all. In the other three cases, a roster in which all duties are present was

found after applying the local search for five minutes.

Table 6.14: The total computation time followed by the time spend on the individual parts of the
solution approach when using the preferred settings.

ID
Total
time (s)

Start
time (s)

Master
time (s)

Pricing
time (s)

Integer
time (s)

Local search
time (s)

7 18.42 2.65 0.01 0.60 15.12 -
8 889.14 17.32 0.33 26.80 565.86 278.83
9 170.34 10.99 0.11 24.81 134.38 -

10 467.80 11.02 0.21 48.86 407.53 -
11 387.06 4.44 0.06 10.80 167.83 203.94
12 2917.03 58.47 1.30 61.78 2585.92 209.56
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Chapter 7

Sensitivity analysis

In the previous chapter, the most suitable parameters and methods are derived based on a set of

small instances. Using these preferred settings as a baseline, we now consider how the quality

of the rosters changes when the inputs vary. To be specific, we investigate the implications

of adjusting the CLA regulations or the weights in the roster preferences. These sensitivity

analyses are only performed on the large instances with three roster groups. If the instances are

too small (e.g. consisting of a single roster group), then fairness cannot be assessed properly.

The largest instance (12) is not used due to the long computation time.

7.1 Maximum average workload per week
The average workload per week is incorporated as a duty attribute. Meaning that the workload

within a roster group should be equally spread over the weeks. However, it also means that

between groups the average workload should be similar. The penalty might not always lead to

desirable results, such that the workload is not fairly divided over the groups. Therefore, we

also consider a hard limit on what the maximum average workload can be per roster group. In

the benchmark setting the maximum was 32 hours per week, in this section, we also consider

31 and 30.51 hours as maximum working hours per week.

When looking at Table 7.1, we see that the lower bound does not always increase when

decreasing the maximum hours per week. This can be explained by the fact that the pricing

problem heuristic is not always solved to optimality. Similarly, the integer objective is also in

some cases lower when the maximum average hours per week is more restricted. The instances

with 31 and 30.5 hours do not seem to be more difficult to solve, since the number of columns

1When using 30 hours it is not always possible to find a roster in which all duties are scheduled.
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and iterations for the master problem are quite similar as well. It does not seem to be more

difficult to obtain rosters where all duties are covered using the integer heuristic with local

search, since in 7 out of 8 cases a better solution is found using the integer heuristic. Also, we

do not see that adding the restriction leads to longer computation times than before.

Table 7.1: Results obtained when the maximum average working hours is 32, 31 or 30.5 hours per
week per roster group. Lower bound and gap are based on the pricing problem heuristic. The best

found objective and the number of rejected duties is reported. The last column indicates whether the
solution from the integer heuristic is better compared to the start solution.

ID
Max.
hour Objective

Lower
bound* Gap (%)

Total
time (s)

Master
iter.

Rejected
duties

Better than
start solution

8
32 76.33 68.79 10.96 889.14 44 0 No
31 72.42 68.83 5.22 498.24 37 0 Yes

30.5 76.58 68.85 11.22 544.58 35 0 No

9
32 59.68 57.26 4.23 170.34 36 0 Yes
31 59.47 57.28 3.83 605.69 35 0 Yes

30.5 59.51 57.31 3.83 406.66 47 0 Yes

10
32 72.35 68.44 5.71 467.80 51 0 Yes
31 72.79 68.36 6.47 412.59 47 0 Yes

30.5 71.63 68.41 4.70 811.29 43 0 Yes

11
32 64.22 56.23 14.21 387.06 42 0 No
31 59.04 56.22 5.01 175.29 51 0 Yes

30.5 59.58 56.19 6.03 374.28 42 0 Yes
∗ The lower bound of the LP solution found using a pricing problem heuristic.

Table 7.2 shows for the three considered maxima the average working hours, how the duties

are distributed over the different groups and what the average working hours are per roster

group. Changing the maximum does not lead to a change in the distribution of the duties. In

most cases, the duty to group size ratio takes a value between 3.4 and 3.9 for all roster groups.

However, we do see an effect on the average working hours per week, which is possible since

duties differ in length.

When looking at the difference between the minimum and maximum average working hours

we observe that under 32 hours the difference is around 2.5 up to 5.5 hours. This means that

in the worst case a roster group has to perform 5.5 hours more duties in each week compared

to another roster group. This is not desirable, as this difference accumulates over the span of

several weeks. For example, if a roster group with size 12 works more than 5.5 hours every

week compared to another roster group, this difference accumulates to 66 hours over the whole

cyclic roster.

In case the maximum is set to 31 hours, the difference shrinks between 1.5 and 4.5 hours

46



per week. Finally, considering the case of 30.5 hours, we obtain a difference between 0.5 and

3 hours per week. This is an improvement compared to the benchmark of using 32 hours as

maximum. Therefore, we can conclude that adding the average workload per week as duty

attribute does not lead to a fair roster in general. Instead, a strict upper limit is needed as well

to enforce a fair distribution of the workload.

Table 7.2: Comparison of the number of duties and the average working hours per week per roster
group when the maximum average working hours is adjusted.

ID
Group
size 32 hours 31 hours 30.5 hours

Duties
Working hours
per week Duties

Working hours
per week Duties

Working hours
per week

8
15 59 31.82 56 29.96 55 29.26
12 41 26.31 40 26.39 47 30.48
12 43 28.44 47 30.69 41 27.47

9
8 31 31.64 30 29.85 31 30.04

12 43 27.98 47 30.45 46 30.33
12 46 30.28 43 29.00 43 29.00

10
15 54 29.18 56 29.61 56 29.74
12 46 29.00 47 31.00 45 29.74
12 47 31.66 44 29.12 46 30.21

11
8 27 26.94 31 30.81 29 29.41

12 45 29.29 42 27.25 45 29.55
12 47 31.54 46 30.99 45 29.62

7.2 Length of a single day off
According to the second part of item 2 from the CLA, the length of a rest day is calculated

as 6 hours plus the number of rest days times 24 hours. In this section, we focus on a single

rest day, which should therefore be 30 hours or longer. In practice, the crew prefers to have a

rest day of 34 hours or more. We consider whether it becomes more difficult to obtain a roster

when changing the minimum length of a rest day and how this effects the length of single rest

days. For the length of a day off we consider 30, 32 and 34 hours, where the former one is also

denoted as the benchmark.

Table 7.3 shows that the lower bounds do not necessarily increase when we reserve more

time for a day off. Similar to the previous section, the results are obtained using a pricing

problem heuristic, leading to non-exact lower bounds. Also, when considering the number of

columns or iterations we do not see any changes. Only 1 out of 8 cases did not find a roster

in which all duties are covered. Finally, the number of times that the integer heuristic with
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local search finds a better start solution is quite similar to the benchmark. Also the computation

times are similar.

Table 7.3: Results obtained when the length of a single day off is 30, 32 or 34 hours. Lower bound and
gap are based on the pricing problem heuristic. The best found objective and the number of rejected
duties is reported. The last column indicates whether the solution from the integer heuristic is better

compared to the start solution.

ID Hour Objective
Lower
bound* Gap (%)

Total
time (s)

Master
iter.

Rejected
duties

Better than
start solution

8
30 76.33 68.79 10.96 889.14 44 0 No
32 76.75 68.90 11.41 520.29 39 0 No
34 77.12 68.82 12.07 557.28 44 0 No

9
30 59.68 57.26 4.23 170.34 36 0 Yes
32 59.78 57.28 4.37 165.48 36 0 Yes
34 59.86 57.26 4.54 155.66 32 0 Yes

10
30 72.35 68.44 5.71 467.80 51 0 Yes
32 72.59 68.40 6.13 252.47 35 0 Yes
34 10075.65 68.40 14629.72 755.79 41 1 No

11
30 64.22 56.23 14.21 387.06 42 0 No
32 59.61 56.18 6.10 159.41 33 0 Yes
34 59.12 56.16 5.27 177.89 44 0 Yes

∗ The lower bound of the LP solution found using a pricing problem heuristic.

Table 7.4 reports for each roster group the number of times a single day off occurred and

what the minimum and average values are of their respective length. In some cases we see a

decline in the number of times a single day off occurs (e.g. instance 9 and 11) when the length

increases. This is as expected, since it becomes more difficult to schedule a single day off. For

instance, it costs less time to schedule two consecutive days off instead of having two separate

days off. The former option costs at least 54 hours, while the latter option costs at least 68

hours (if the length of a single day off is at least 34 hours). As a side effect we observe that

some roster groups only have two or more consecutive days off.

The table also shows that the minimum and average length of a single day off increases

when the minimum required length changes. In the benchmark setting we observe quite some

roster groups where a day off is less than 30.5 hours, which are not attractive for the crew

members. When the minimum requirement is set to 32 hours, we only observe two roster

groups where the minimum is lower than the preferred 34 hours. Finally, when considering the

minimum requirement of 34 hours it seems that for most instances it is possible to satisfy the

preferences of the crew. The exception is instance 10, for which no roster was found which

covered all duties (see Table 7.3).
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From the above, we can conclude it is possible to meet the demands from the train crew to a

certain extent. For most instances, finding a roster that covers all duties does not become more

difficult when changing the definition of a single day off. So, it is recommended to increase the

minimum length of a day off at least to 32 hours.

Table 7.4: Comparison of the minimum and average length of a single day off, when the length of a
single day off is adjusted.

ID
Group
size 30 hours 32 hours 34 hours

obs min mean obs min mean obs min mean

8
15 8 30.30 38.27 13 33.05 37.97 10 36.13 41.84
12 8 31.37 38.29 7 37.32 41.10 9 34.20 38.46
12 8 32.12 39.97 8 35.88 40.52 5 38.37 42.85

9
8 6 33.82 41.42 2 44.83 49.38 3 35.85 38.22

12 3 36.50 41.01 0 - - 2 42.92 45.60
12 2 33.98 38.04 4 35.35 41.36 3 35.07 41.98

10
15 6 31.42 46.00 9 32.85 42.36 6 34.15 41.83
12 3 30.20 40.43 5 38.38 46.29 8 36.43 41.66
12 3 43.93 46.08 2 47.28 48.90 7 34.77 38.99

11
8 9 30.20 38.54 0 - - 0 - -

12 6 34.08 37.74 4 42.90 44.47 5 35.50 41.91
12 16 30.02 39.53 4 38.85 46.17 6 36.38 45.16

7.3 Pattern preferences
A roster can often be broken down into a series of recurring patterns. For instance, patterns such

as E - R - L or L - R - R - E are common in most rosters. Crew members at NS often prefer

rosters where the days off are scheduled in an attractive way. Therefore, we only consider three

patterns that include at least one day off: item 6, 7 and 10 from the roster preferences. We

abbreviate these patterns by RP6, RP7 and RP10, respectively. In this section, we investigate

whether we can influence the number of times these patterns occur. The first pattern, RP6,

corresponds the patterns E - R - L and E - R - N. Similarly, the patterns L - R - R - E and N - R

- R - E correspond to RP7. Finally, the pattern R - duty - R belongs to RP10. For each roster

preference, we increase their respective parameter weight by a factor of 10. This leads to the

three options shown in Table 7.5, which are compared with the benchmark (option 0). Only the

absolute value of the parameter is shown in the table. The patterns denoted by RP6 and RP7

are preferred, so the actual parameter is a (negative) reward. The pattern RP10 is not preferred,

so this corresponds to a (positive) penalty.
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Table 7.5: Overview of the relative parameter weights for the occurrence of each pattern.

Specification RP6 RP7 RP10
0 0.1 0.1 0.1
1 1.0 0.1 0.1
2 0.1 1.0 0.1
3 0.1 0.1 1.0

Table 7.6 shows that the lower bound and the objective differ when the relative weights are

changed. This is quite logical, since we changed the parameters in the objective function. The

number of columns and iterations stays roughly similar. Finally, we see that in almost all cases

the integer heuristic is able to outperform the start solution. In the final solutions, no duties are

rejected. Also the computation times are similar.

Table 7.6: Results obtained when using a different parameter specification. Lower bound and gap are
based on the pricing problem heuristic. The best found objective and the number of rejected duties is
reported. The last column indicates whether the solution from the integer heuristic is better compared

to the start solution.

ID Spec. Objective
Lower
bound* Gap (%)

Total
time (s)

Master
iter.

Rejected
duties

Better than
start solution

8
0 76.33 68.79 10.96 889.14 44 0 No
1 170.12 151.60 12.22 450.83 86 0 Yes
2 92.21 86.70 6.35 216.44 49 0 Yes
3 127.82 117.60 8.69 350.00 33 0 Yes

9
0 59.68 57.26 4.23 170.34 36 0 Yes
1 140.09 137.66 1.77 345.66 43 0 Yes
2 81.34 77.86 4.47 118.91 34 0 Yes
3 103.45 99.03 4.46 168.96 42 0 Yes

10
0 72.35 68.44 5.71 467.80 51 0 Yes
1 165.14 147.64 11.86 354.02 65 0 Yes
2 87.08 79.88 9.02 314.22 66 0 Yes
3 142.29 116.13 22.53 566.93 53 0 No

11
0 64.22 56.23 14.21 387.06 42 0 No
1 130.75 121.21 7.87 209.75 61 0 Yes
2 71.83 65.19 10.18 311.89 55 0 Yes
3 102.39 95.81 6.87 184.01 45 0 Yes

∗ The lower bound of the LP solution found using a pricing problem heuristic.

Table 7.7 compares the number of times each pattern occurs with respect to the benchmark

for each roster group for the four specifications (the actual count can be found in Table 9.7 in

the Appendix). Specification 1 clearly leads to more patterns of the type RP6 for all instances.

In most cases, this also leads to a decrease in the number of patterns of type RP7. This is as

expected, since the number of rest days is limited. For some instances, we also observe a slight
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increase in the pattern RP10.

When comparing specification 2 with the benchmark, we observe in some cases an increase

in the number of times RP7 occurs. The increase is lower, even though we also increased the

parameter in the objective by the same factor as in specification 1. This can be explained by

the fact that patterns of type RP7 are longer, so therefore more difficult to schedule as well.

Additionally, two rest days are needed to create a pattern of type RP7, whereas the pattern

RP6 only needs a single rest day. In most cases, the number of times RP6 occurs drops. As

mentioned before, there is a substitution effect between the patterns RP6 and RP7, since the

number of rest days is limited.

In the final specification, we see a large drop in the number of times RP10 occurs. For

example, for instance 8 and 11 the number of times RP10 was present dropped by 12 and 19,

respectively. Only instance 10 sees an increasing number of RP10 patterns, because for this

instance the start solution is used.

Overall, changing the objective function does not lead to large changes in computation

times. Furthermore, the preferences of the crew members can be taken into account by adjusting

the relative weights, which can lead to more attractive rosters. However, for some patterns it is

easier to control the number of times they occur, which depends on the length of the pattern or

on the availability of a certain duty type or rest day.

Table 7.7: Increase or decrease in the number of times a certain pattern occurs compared to the
benchmark, when the relative parameter weights are adjusted.

ID
Group
size 1 2 3

RP6 RP7 RP10 RP6 RP7 RP10 RP6 RP7 RP10

8
15 4 1 -1 0 3 -1 1 3 -3
12 0 0 -6 2 0 -4 0 1 -6
12 -2 -3 0 -4 1 -2 -2 1 -3

9
8 -3 1 2 -3 1 0 -3 0 -1

12 3 0 2 -1 1 3 -1 1 -2
12 3 1 1 1 1 -1 2 0 -1

10
15 2 0 3 -3 2 5 2 0 7
12 5 -1 5 2 -4 5 5 -3 9
12 3 -2 2 -1 2 7 1 0 2

11
8 0 1 -7 -2 0 -5 -2 0 -8

12 4 -2 6 1 -1 -1 -3 -1 -2
12 4 -2 -1 -4 -2 -7 -2 -2 -9
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Chapter 8

Conclusion

In this thesis, we have shown how to model the Cyclic Crew Rostering Problem (CCRP) in

order to obtain attractive rosters for groups of employees. The model is mostly based on the

findings of Breugem (2020), who analysed different formulations of the CCRP. In this formula-

tion we use both hard and soft constraints, in order to model the rules as stated in the collective

labour agreement (CLA) and roster preferences, respectively. Furthermore, we make use of

duty attributes in order to account for fairness between different roster groups. More impor-

tantly, it is shown that basic rosters, which indicate a pattern containing duties and rest days,

are no longer required as input, which was previously the case at NS. This contributes to the

existing trend in the literature to solve the CCRP in a single phase.

We solve the problem using a column generation approach, in which only the root node is

solved. In order to speed up the column generation approach, we propose two ways to create

start solutions. A basic Randomised Insertion Method (RIM) and a more time consuming

Greedy Randomised Adaptive Search Procedure (GRASP). The pricing problem is modelled

as a Shortest Path Problem with Resource Constraints (SPPRC). In order to deal with larger

instances, we propose the use of forward and backward completion bounds, which try to prune

as many sequences as possible. These completion bounds calculate whether a sequence can

still improve on the current shortest path that is found. Furthermore, we also propose a pricing

problem heuristic based on the backward completion bounds. The LP solution found by the

column generation approach has to be transformed into an integer solution, for which several

strategies are proposed.

The proposed solution approach is applied to real-life instances from NS. Due to the large

number of parameters and strategies we first use a set of small instances to fix the best settings.
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We demonstrate that initialising the column generation approach with a set of start solutions

drastically shortens the computation time. Furthermore, we show that the RIM is preferred

over the GRASP, even though the latter provides start solutions with a better objective value.

Furthermore, the results show that the pricing problem is improved when forward and backward

completion bounds are present. We can also opt for a pricing problem heuristic, which leads

to fast computation times, while still providing an LP solution close to optimality. Finally, the

comparison of the integer heuristics favours a dive-and-fix procedure, followed by a randomised

insertion method and a destroy and repair heuristic. The latter two are only applied if not all

duties are covered in the roster by the dive-and-fix procedure.

After fixing all parameters and strategies, a sensitivity analysis is performed. The sensitivity

analysis is only applied on instances that contain three roster groups, in order to also evaluate

fairness between the roster groups. Firstly, we show that it is necessary to include a strict upper

limit when enforcing that the average workload is equally spread over the roster groups. These

rosters can be solved using a similar computation time as before, while also having a similar

objective value. The second analysis shows that increasing the minimum length of a single

day off does not heavily influence the computation time nor the objective value. We show it is

possible that all single days off have a length of at least 32 hours. When increasing this to 34

hours, we are not always able to find a roster that covers all duties. In the final analysis, the

weights given to certain patterns are changed. It is possible to change the distribution of the

number of times each pattern occurs. However, for longer patterns these changes are smaller

compared to the shorter patterns, because longer patterns are more difficult to schedule and

require more of a specific duty type or rest day.

To conclude, this thesis shows that NS no longer requires basic rosters to solve the CCRP.

This means that without manual intervention it is still possible to obtain satisfactory rosters

for their employees. Furthermore, in the sensitivity analysis it is shown that the roster can be

improved in terms of fairness and attractiveness. NS can use these results in upcoming CLA

negotiations.
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Chapter 9

Discussion

In this chapter, we first discuss how the restrictions that are made on the assumptions influence

the model. Afterwards, we show where potential improvements can be made in the solution

approach and recommendations for future research are given.

9.1 Limitations
As mentioned before we simplify item 3 from the CLA, by only using periods of 7x24 hours

(with a break of at least 36 hours) and only considering periods that start at midnight. In case

we would also allow periods of 14x24 hours (with a break of at least 72 hours), we obtain more

freedom when creating rosters. This means it is easier to find a feasible roster. It is difficult

to assess whether the rosters obtained in this way are more attractive as well, since the breaks

might not be divided equally over the weeks.

In this thesis, the Red Weekends (item 7 from the CLA) are implemented using explicit

constraints. A Red Weekend is defined as a free weekend where the last duty ends before

Friday 4:00 p.m. This is possible since we assume that duties on Monday start no earlier than

Monday 4:00 a.m., such that the rest period is always at least 60 hours. This is also a restrictive

assumption, since according to the CLA a weekend of at least 60 hours where the last duty ends

on Saturday 12:00 a.m. also counts as a Red Weekend. The results show that our definition of

a Red Weekend is often the bottleneck in order to create a feasible roster in which all duties

are covered. A potential solution to this problem is to change the definition of a week to a

length of 8 days. For example, a week starts on Monday and also ends on a Monday. In that

case having a Red Weekend is a property belonging to the week. The master problem has to

be slightly adjusted, to force subsequent clusters to have a similar duty or rest day when they
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overlap. This formulation would allows more options for a Red Weekend, such that it is easier

to find a feasible roster. However, as far as we know there are no results on the performance of

overlapping clusters.

9.2 Recommendations
The performance of the backward completion bounds are entangled with the definition of the

duty types. Currently, we solely consider early, late and night duties. This means we can only

ban all early duties, if we are sure that none of them improves the current shortest path. In case

we consider more specific types of duties, each duty type group contains duties that are more

similar to each other. This could lead to tighter bounds, such that we can faster prune a group

of duties. However, when having too many groups we only prune a few duties at the same time.

This might also slow down the entire pricing problem.

For finding an integer solution we make use of a heuristic approach. This can be improved

in several ways. For example, the destroy and repair method in the local search takes a lot of

computation time, yet it is still unable to cover all the duties. The destroy and repair heuristic

might be improved by targeting specific parts of the roster (e.g. a single roster group). Instead

of using an integer heuristic, it is also possible to use a branch-and-price framework. This is

guaranteed to find the optimal integer solution. This can be used for a fairer comparison in the

sensitivity analysis.

Currently, the solution approach is only applied on the crew base in Amersfoort. It is

interesting how the performance changes when larger crew bases, such as the one in Utrecht

are considered. Also, no instances containing train drivers are considered. When creating

rosters for train drivers, we have to consider which line or which train type they are allowed

to operate on. The model presented in this thesis can be extended to incorporate these kind of

restrictions. It is interesting to see how the performance of the solution approach differs when

creating a roster for train conductors or drivers.

At NS, some roster groups have the restriction that they only perform a single duty type (e.g.

early duties). This can also be readily incorporated in the solution approach. It is expected that

adding such a restriction simplifies solving the instances as well.

Furthermore, more duty attributes may be added to increase the fairness between roster

groups. For example, Red Weekends and night duties are not explicitly divided over the differ-

ent roster groups, leading to an unfair distribution.
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Finally, it might be interesting to make the size of the roster groups, which is a now an

input, a decision variable as well. A larger roster group has as a benefit that more variation

is present for the employee. On the other hand, a shorter roster might have a more structured

rhythm in terms of free weekends. This might lead to more attractive rosters.
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Appendix

Table 9.1: Total computation time (in seconds) when adding start solutions using the RIM for small
instances.

ID Start solutions
0 10 20 30 40 50

1 180.53 63.70 53.81 56.61 50.03 47.91
2 1685.74 429.30 366.55 325.81 342.33 247.98
3 1864.26 375.20 326.12 332.22 307.63 277.18
4 3089.51 662.84 518.88 503.40 910.85 1173.94
5 5335.77 673.85 1472.83 1417.71 1106.88 660.60
6 963.98 124.05 128.29 209.26 116.10 90.57

Average 2186.63 388.16 477.75 474.17 472.30 416.36

Table 9.2: Number of master iterations when solving the root node when adding start solutions using
the RIM for small instances.

ID Start solutions
0 10 20 30 40 50

1 109 36 29 28 24 23
2 178 46 40 33 33 32
3 173 47 41 42 38 35
4 172 42 33 32 31 32
5 178 39 36 33 31 27
6 158 39 39 41 30 28

Average 161.33 41.50 36.33 34.83 31.17 29.50

60



Table 9.3: Total computation time (in seconds) when adding start solutions using the GRASP for small
instances.

ID Start solutions
0 10 20 30 40 50

1 180.53 32.63 58.91 61.72 67.66 66.04
2 1685.74 331.20 129.73 136.47 142.65 167.91
3 1864.26 266.27 246.47 272.78 255.11 238.65
4 3089.51 524.13 549.90 550.63 492.02 489.78
5 5335.77 505.28 584.44 856.50 1038.83 1067.34
6 963.98 239.79 256.33 323.22 318.33 340.74

Average 2186.63 316.55 304.29 366.89 385.77 395.08

Table 9.4: Number of master iterations when solving the root node when adding start solutions using
the GRASP for small instances.

ID Start solutions
0 10 20 30 40 50

1 109 22 18 15 12 12
2 178 33 26 23 21 22
3 173 32 27 25 23 22
4 172 33 26 24 24 24
5 178 28 28 24 24 22
6 158 30 22 26 20 20

Average 161.33 29.67 24.50 22.83 20.67 20.33

Table 9.5: Results obtained using the preferred settings. The best found objective and the number of
rejected duties is reported. The last column indicates whether the solution from the integer heuristic is

better compared to the start solution.

ID Objective Lower bound Gap (%) Columns
Master
iter.

Rejected
duties

Better than
start solution

1 14.79 13.97 5.88 734 29 0 Yes
2 10023.27 21.36 46831.62 3978 34 1 Yes
3 22.07 20.97 5.21 2843 25 0 Yes
4 23.27 21.74 7.04 3932 17 0 No
5 23.60 21.82 8.15 3034 22 0 No
6 22.53 21.24 6.05 2060 23 0 Yes

Table 9.6: The total computation time followed by the time spend on the individual parts of the
solution approach when using the preferred settings.

ID
Total
time (s)

Start
time (s)

Master
time (s)

Pricing
time (s)

Integer
time (s)

Local search
time (s)

1 4.51 1.79 0.00 1.68 1.04 -
2 26.07 3.02 0.00 2.94 7.48 12.63
3 10.66 1.30 0.00 2.18 7.17 -
4 35.77 2.37 0.00 0.79 4.39 28.22
5 22.70 2.97 0.00 0.74 1.69 17.30
6 5.88 0.95 0.00 1.93 2.87 -
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Table 9.7: Comparison of the number of times a certain pattern occurs, when the relative parameter
weights are adjusted.

ID
Group
size 0 1 2 3

RP6 RP7 RP10 RP6 RP7 RP10 RP6 RP7 RP10 RP6 RP7 RP10

8
15 3 2 5 7 3 4 3 5 4 4 5 2
12 3 2 7 3 2 1 5 2 3 3 3 1
12 7 3 5 5 0 5 3 4 3 5 4 2

9
8 3 0 1 0 1 3 0 1 1 0 0 0

12 1 0 2 4 0 4 0 1 5 0 1 0
12 0 0 2 3 1 3 1 1 1 2 0 1

10
15 4 1 2 6 1 5 1 3 7 6 1 9
12 1 4 2 6 3 7 3 0 7 6 1 11
12 3 2 2 6 0 4 2 4 9 4 2 4

11
8 4 0 8 4 1 1 2 0 3 2 0 0

12 3 3 4 7 1 10 4 2 3 0 2 2
12 6 3 10 10 1 9 2 1 3 4 1 1
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