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In this thesis, we consider the Cyclic Crew Rostering Problem (CCRP), in which
cyclic rosters for groups of employees are constructed. The quality of these rosters
is evaluated on basis of fairness and attractiveness. A column generation approach
is proposed to solve the resulting model. Suitable columns are found by solving a
Shortest Path Problem with Resource Constraints (SPPRC). In order to speed up
the SPPRC we introduce forward and backward completion bounds, which actively
prune sets of columns. Next, we apply the proposed solution method on real-life
instances from Netherlands Railways. We show that the completion bounds reduce
overall computation time, such that attractive rosters containing up to 300 duties
can be constructed. Furthermore, slightly increasing fairness or attractiveness re-

quirements does not influence the performance of the solution approach.
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Chapter 1

Introduction

The creation of rosters in public transport is a complex decision problem, where the preferences
of the employees are balanced against cost efficiency. This problem is also familiar for Nether-
lands Railways (Nederlandse Spoorwegen in Dutch, abbreviated as NS), which is the major
public transport operator in the Netherlands. More than 1.3 million passengers travel with NS
on a daily basis. To facilitate this, NS employs a workforce of more than 20,000 people to
support and operate their services, including 3,000 train drivers.

In case the services of NS are suspended, for example due to strikes, this has a large societal
impact. These nationwide strikes took place numerous times in the past, until the conflict ended
with the introduction of the Sharing-Sweet-and-Sour rules (Abbink et al., 2005), which state
that (un)popular work is equally distributed over groups of employees. These rules, which
were agreed upon by both NS and the labour unions, are aimed at increasing the quality of
work. NS incorporated these rules in their crew planning process using Operations Research
(OR) techniques. However, these new rules cannot prevent all strikes, see for example the 24
hours strike of 2019, which disrupted the train network in the Netherlands'. Although OR
techniques cannot solve every conflict, they do play an important role in increasing employee
satisfaction, which indirectly influences the probability of having a strike as well.

The rostering of employees is an important part of the crew planning process. In the liter-
ature, the assignment of duties to employees is known as the Crew Rostering Problem (CRP).
Public transport companies, including NS, often consider the Cyclic CRP (CCRP), in which
each crew member performs a different part of the roster in a sequential order. However, some

stages of constructing the rosters are still conducted manually NS. This is a time consuming
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task, not only due to the large amount of crew members and duties, but also because of the
large amount of rules (from the labour unions) and preferences that should be taken into ac-
count. Furthermore, the Sharing-Sweet-and-Sour rules are also incorporated into the rostering
process, by making all rosters equally attractive for all crew members within a crew base. A
first step in making an integrated approach, while simultaneously accounting for the fairness
and attractiveness of the rosters, was made by Breugem (2020). Starting with (manually cre-
ated) roster templates containing duty and rest day patterns, a method that assigns the duties
to the actual rosters is developed. The quality of the rosters is assessed by considering a set of
duty attributes.

The CCRP is often solved sequentially, see for example Sodhi and Norris (2004), Lezaun
et al. (2006) and Hartog et al. (2009). Only recently, there is a trend to integrate all steps in the
crew rostering approach (Xie and Suhl, 2015; Breugem, 2020). The concepts of attractiveness
and fairness of the rosters are well known in the literature. However, Breugem (2020) is the
first to explore the trade-off between the two. This shows that the integrated crew rostering
process, while taking into account attractiveness and fairness, is still considered a non-trivial
problem and solving it requires state-of-the-art OR techniques.

In this thesis, we take the final step to integrate the crew rostering process for a single
crew base at NS. This approach uses only two inputs: the available duties to be covered and
the employees, who are divided over several roster groups. The model is solved in a single
step, such that no manual intervention is required to obtain the crew rosters. The quality of the
obtained rosters are evaluated on similar duty characteristics as in Breugem (2020).

The model is applied on a real-life instance from the NS crew base in Amersfoort. Employ-
ing this solution approach, we show that it is possible to solve the integrated crew rostering
problem in a reasonable amount of time. Furthermore, using a sensitivity analysis we illustrate
how attractiveness and fairness can be increased in the obtained rosters.

The remainder of this thesis is organised as follows. Firstly, Chapter 2 explains the current
crew planning process at NS in more detail. This is followed by Chapter 3, which reviews
the current literature regarding the CCRP. Chapters 4 and 5 introduce the mathematical model
and present the implementation details, respectively. Afterwards, Chapter 6 compares several
strategies to solve the CCRP on instances from NS. After fixing the best performing strategy, a
sensitivity analysis is performed in Chapter 7. Finally, conclusions are drawn and recommen-

dations for future research are given in Chapters 8 and 9.



Chapter 2

Problem description

In this chapter, we provide a short description of NS and the different levels of decision prob-
lems that it faces. Afterwards, we delve into the crew planning process and introduce the
relevant concepts. Next, the properties and constraints regarding the crew roster are intro-
duced. Finally, we give an overview of the current crew rostering process at NS and we put the

contribution of this thesis into perspective.

2.1 Railway planning problems at NS

In railway planning, four phases can be distinguished based on their corresponding time hori-
zon: strategic planning, tactical planning, operational planning and operational control (Ab-
bink, 2014). Strategic planning is used for long term decision making that influence the goals
and objectives over a longer period. Examples include the investment decisions for the location
and size of physical facilities, which are planned years in advance. Tactical planning involves
the efficient allocation of the available resources, where the time span ranges from a few months
up to a year. This typically concerns problems such as the construction of a general timetable
or crew schedule. These generic timetables are then finalised in the operational planning stage,
resulting in day-to-day schedules. Lastly, operational control adjusts the timetables in real-time
to address any unanticipated disturbances.

All these planning phases have different characteristics, such as planning horizon, objective
and level of detail. Therefore, each phase requires its own specialised solution approach. For
example, strategic planning requires accurate forecasts over a long period of time. On the other
hand, tactical and operational planning need to allocate the resources as efficiently as possible.

These problems are often encountered in the OR literature. Lastly, operational control requires



fast decision making in order to decrease delay when a disturbance happens. At NS the situation
is no different and various approaches are used to solve the above mentioned problems, ranging
from mathematical programming techniques to simulation studies. We refer to Huisman et al.
(2005) and Kroon et al. (2009) for a more thorough discussion.

In this thesis, we only consider the tactical planning for the train drivers and conductors,
which are collectively referred to as crew members. The planning of the crew is divided into
two phases: crew scheduling and crew rostering. In the former phase the Crew Scheduling
Problem (CSP) is solved. This involves the construction of duties, which are defined as blocks
of work that can be performed by a crew member. Figure 2.1 gives an example of a duty. Each
duty starts and ends at the same station. Furthermore, each duty should contain a sufficient
meal break time (denoted by the star) and is not allowed to exceed 9.5 hours. The second phase,
which is crew rostering, assigns these duties to the crew. At NS, these duties are constructed in a
centralised process. Afterwards, the duties are allocated to the crew bases, which subsequently

create their own rosters in a decentralised manner.

ZI Ut Rtd Ut yd| Gn ZI
6:00 8:00 10:00 12:00 14:00 16:00

Figure 2.1: Example of a possible duty. For each block the departure and/or arrival station is given.
This duty visits the cities of Zwolle (Z1), Utrecht (Ut), Rotterdam (Rtd) and Groningen (Gn).

In crew scheduling, it is important to create duties that do not violate the collective labour
agreement, while minimising the operational costs. Constraints ensure for example that the
duty length is not violated or that the meal break is sufficiently long. Since the duties are linked
to a certain departure and arrival station, this implies that the duties are linked to a specific
crew base. To improve the overall quality, the Sharing-Sweet-and-Sour rules are incorporated
in the centralised scheduling process (Abbink et al., 2005). These rules divide the popular and
unpopular work over the crew bases as fairly as possible. The scheduling process is solved
using a column generation approach. The crew scheduling problem is solved as a generic
annual plan and changes are only made six times per year. This means that the crew schedules
for a specific day are only adjusted slightly. In this way, the crew members know what is
expected from them months in advance.

Three criteria can be used to evaluate the quality of the end result of the crew planning

phase: efficiency, fairness and attractiveness (Breugem, 2020). Efficiency is defined as the min-
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imum number of employees that is necessary. Fairness is enforced through the Sharing-Sweet-
and-Sour rules, which make sure that the popular and unpopular work are equally distributed
over the crew bases. These first two criteria are mostly relevant for the crew scheduling phase.
However, fairness can also be enforced on a crew base level by ensuring that the work is fairly
divided over the roster groups within a crew base. Finally, attractiveness is based on the final

roster, for example rest times and variation of the roster play an important part here.

2.2 Crew rostering

In crew rostering, the constructed duties have to be combined into sequences, satisfying several
constraints determined by the labour agreement. These constraints relate to the number of
working hours, days off or rest times. Furthermore, NS uses cyclic rosters, meaning that each
week, all employees work on a different roster within a so-called roster group. A possible
cyclic roster is visualised in Figure 2.2. The switching between rosters occurs in a fixed order.
For example, in week 1 the first employee works on row 1 and the second employee works on
row 2. In week 2 the first employee works on roster 2 and the second employee works on row
3. This means that the number of rows in a roster is equal to the number of employees in that
roster group. In this way, all employees from the same group cycle through the roster, such that
at the end of the cycle all employees have performed all duties. This means, that if an employee
completed the roster in week 5, then next week it will continue working on the roster in week 1.
The rows correspond to single working weeks and the columns represent the day of the week.
Each cell can be interpreted as a single working day for an employee. This working day can

have several types: regular duty, day off and the so-called WTV, CO and RES days.

Mon Tue Wed Thu Fri Sat Sun
1 R L L N N R E
2 E R L L E R R
3 E R E E N N N
4 R R E L R R R
5 L E R R L L L

Figure 2.2: Example of a basic schedule for a group with five members.



On a regular duty day there are three types of possible duties: early (E), late (L) or night
(N). The WTV day is technically a day off, except that the crew member can opt to sell this
day off and work instead. A CO day is also a day off, which can be earned by a crew member
in case their working hours on certain time slots (e.g. during the weekend or early/night shifts)
exceed a certain threshold. The CO day becomes a working day in case the crew member does
not work enough hours. Finally, a RES day is defined as a day on which the crew member
should be available, in case the work of a fellow crew member has to be taken over (e.g. due to
illness or holiday).

Furthermore, the rosters have to satisfy an extensive list of rules, based on the collective
labour agreement. Also, the attractiveness of the rosters is taken into account by using roster
preferences obtained from the employees. Lastly, the (un)popular duties are equally spread

over the roster groups by making use of so-called duty attributes.

2.2.1 Collective labour agreement

Below are the most important rules and regulations from the collective labour agreement (CLA)

from NS.

1. The rest time after each duty should be at least 12 hours. After a night duty, which ends
later than 2:00 a.m., the rest time should be at least 14 hours. Minimum rest time after

three or more consecutive night duties is 46 hours.

2. There should be two rest days per week on average. A day off is a period of at least 30
hours. In general, the length of a rest day is 6 hours plus the number of rest days times

24 hours.

3. There should be a rest period of at least 36 hours in each period of 7x24 hours. Or there
should be a rest period of at least 72 hours in each period of 14x24 hours. These rules

are enforced using a rolling horizon for all periods of 7x24 (or 14x24) hours.

4. There is a maximum of 7 days with consecutive duties. WTV and RO do not count as a

duty.
5. The average working time per week is at most 40 hours.

6. There is a maximum of 36 night duties per 16 weeks.



7.

At least once every three weeks there is a so-called Red Weekend. This rest period lasts
at least 60 hours and starts before Saturday at 12:00 a.m. and ends after Monday 4:00

a.m.. This is also implemented using a rolling horizon.

2.2.2 Roster preferences

Rosters that take into account the following properties are often preferred by the crew members.

1.

10.

11.

12.

Train drivers need to drive on each line that they are allowed to drive on. If they do not
use a certain line for a period of time they lose their license to drive there. A similar rule
holds for the type of trains, the train driver has to use certain train types at least once,

otherwise they lose knowledge on how to control that specific train type.

. Make a free weekend as long as possible.

. If possible, WTV-days are spread over different days in the week and are only scheduled

once every two weeks.

. Two or more consecutive days off are preferred.

. A series of exactly three duties after each other with the same type (E, L or N) is pre-

ferred. If a series of the same type is present, then the starting times are preferably only

increasing or decreasing (e.g. 5:00 - 5:30 - 6:00 a.m. or 6:00 - 5:30 - 5:00 a.m.).

. A single day off should be made as long as possible by ending with an early duty and

starting with a late duty. This includes the patterns E-R -L and E-R - N.

. When changing from a late duty to an early duty, try to place two days off in between

(eg.L-R-R-EorN-R-R-E).

. A forward rotating roster is preferred (e.g. E - L - N).

. Maximum of 5 consecutive days with duties.

A single duty is not preferred, which correspond to R - duty - R.

Short cyclic rosters are preferred, which means no more than three similar types of duties

after each other.

In every row of the roster there should be at least one day off.



2.2.3 Duty attributes

Fairness can be measured using duty attributes. Each duty consists of multiple trips, leading to
certain characteristics. Some duties are preferred over others, for example short trips are often
less desirable compared to longer trips, which cover large parts of the Netherlands. Also, the
duty length and the amount of work on double decker trains are seen as duty attributes. In this

thesis, we use the following six duty attributes.

1. Average duty length per day. The length of a duty is calculated as the difference between

start and end time of a duty.

2. Average workload per week. The workload is defined as the sum of all the duty lengths

within the same week.

3. Percentage of type-A work. Crew members prefer work of type-A, which consists for
example of trips on Intercity trains, which only stop at large stations. Therefore, these

trips are often longer than average.
4. Percentage of aggression work. Some trips have a higher chance of passenger aggression.

5. Percentage of work on double decker trains. These trips are undesirable since they require

the crew member to climb up and down the stairs.

6. Repetition Within Duty (RWD) values. These are calculated as the total number of routes
divided by the total number of distinct routes within a duty. Low RWD values are pre-

ferred, since this means more variation for the crew member.

2.2.4 Formal description

Having defined the necessary definitions, it is now time to formalise the Cyclic Crew Rostering
Problem (CCRP). In the CCRP, rosters are created for each crew base, which adhere to the
cycling property. This CCRP is solved for each crew basis separately. Each crew basis contains
multiple roster groups, where the members of each roster group have similar characteristics,

such as full-time or part-time employees.

2.3 Current crew rostering process at NS

In each timetable year, three steps have to be performed for a single crew base. Within a

crew base, all (members of a) roster groups are known in advance. In the first step, the duties
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obtained from the CSP are divided over the roster groups in a fair way. In the second step, the
representative makes the basic roster which has to satisfy the CLA rules. This basic roster or
schedule contains patterns consisting of duties and days off. Since the CSP is solved six times
per year, the basic roster should be flexible enough to incorporate those changes as well. In the
third step, the basic roster is used as a template to assign the actual duties. These three steps

are explained in more detail below.

2.3.1 Assignment of duties to roster group

The basic roster is made at the beginning of a new timetable year and is then used throughout
the year. The rosters are made per crew base (for example Utrecht). The duties obtained from
the crew scheduling phase and the crew members of the given crew base are the inputs for the
creation of a basic roster. The duties are allocated to the roster groups in that crew base. This
should be done such that each group has a similar amount of (un)popular work. The division
of popular work within a group is trivial, since all crew members cycle through the same roster
within their group. These basic rosters are made from scratch manually, even for the largest
crew base in Utrecht (Hartog et al., 2009). The duties are divided by means of an auction,
where every group has a representative. Only in case no feasible roster can be made for a roster

group, the duties may be switched between groups.

2.3.2 Construction of the basic roster

After the allocation, each representative attempts to construct a basic roster for its own group
manually, while striving to satisfy all previously mentioned requirements. These basics sched-
ules define on each day the type of work assigned to a crew member or whether a day off is
scheduled. As illustrated in Section 2.2, this leads to a matrix in which each cell indicates on
which day the crew member performs which duty type. As soon as a feasible roster is found,
the representative is finished. Otherwise, it is still possible to exchange duties between groups.
Afterwards, the basic rosters are not changed on a daily basis. In case a change in the crew
schedule is made, the basic roster should be able to handle these changes. If the CSP cannot be

solved, the roster might be changed on a specific day.

2.3.3 Obtaining the final roster

Since the basic roster remains unchanged throughout the year, whereas the CSP is solved

roughly six times a year, this implies that the rosters have to be updated as well. As input



for this last phase, NS uses the basic roster from each roster group and a set of (newly) gen-
erated duties. Afterwards, the generated duties are assigned to the available spots in the basic
roster. This currently happens manually, but can of course also be done in a more automatic
process. Hartog et al. (2009) show that NS crew workers actually prefer the rosters generated
by an algorithm over the manually constructed rosters. Furthermore, Breugem (2020) improves
the allocation of duties to crew bases and also analyses the trade-off between fairness and at-
tractiveness of the rosters. In this thesis, the creation of the basic schedules is integrated with

the assignment of the duties to the time slots given by the basic schedule.

2.4 Contribution

Breugem (2020) integrates the first and third step, such that the duties are fairly allocated over
the roster groups, while obtaining satisfactory rosters. This thesis makes the final step for an
integrated crew rostering process. All three steps are combined, such that the creation of the
basic roster happens simultaneously with the assignment of duties to the actual roster. By
performing all steps simultaneously, we prevent that suboptimal decisions are made in each
individual step. Therefore, it is possible to improve the overall solution quality (Xie and Suhl,

2015).
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Chapter 3

Literature review

The literature on personnel rostering problems is quite extensive and these models are applied
to a broad range of industries, including call centers, airlines, health care and public transport.
Careful planning and accounting for preferences of crew members can lead to significant im-
provements in productivity and satisfaction. We refer the interested reader to Ernst et al. (2004)
for a review on commonly used methods and models for a variety of applications. Cheang et al.
(2003) and Burke et al. (2004) present comprehensive literature reviews on nurse rostering,
while Kohl and Karisch (2006) focus on rostering in the airline industry. In public transport the
CCREP is often used, whereas acylic rosters are more common in other industries. The focus of
this literature review is the CCRP. In particular, we show that a sequential approach is still quite
common and we elaborate on how the concepts of attractiveness and fairness are incorporated
into the models.

Since the CCRP is a difficult problem, solving it commonly requires the use of heuristic
approaches. Ernst et al. (1998) consider the rostering of crew members for freight trains in
Australia. In some cases, it is necessary to transport crew members to a different depot outside
of a shift, this is referred to as paxing. The train company has to provide additional road
transport, since the freight trains do not have capacity for passengers. Their model minimises
the operational costs while penalising paxing. Furthermore, they also take into account that
workload is balanced between crew at the same depot and between depots. They solve this
problem using simulated annealing.

Caprara et al. (1997) propose several formulations for crew rostering. They develop both
a multi-commodity network flow model as well as a set partitioning model. In their model,

they only take attractiveness into account. For example, each week can include at most one
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of the following characteristics: two duties with external rest, one long duty or two overnight
duties. Furthermore, after each week there has to be a sufficient rest period. They evaluate their
method on instances from the Italian railways.

In earlier work, the scheduling and rostering process are often solved simultaneously, due to
the smaller scale of the available instances. For example, Ernst et al. (2001) solve the integrated
scheduling and rostering for the Australian railways using both cyclic and acylic rosters. In
general, they minimise the operating costs while penalising unwanted duties, based on the
preferences of the train drivers. For example, it is preferred that all night shifts or all day shifts
are put together. They solve the resulting model by relying on the fact that full enumeration
over all possible duties is possible, due to the sparseness of the rail network in Australia. For
more dense networks (e.g. the Dutch rail network) this approach would not be feasible.

Freling et al. (2004) also solve the integrated scheduling and rostering problem for several
applications, such as the railway and airline industry. The rostering phase is modelled as a
set covering formulation. In their model, they minimise the workload and penalise duties that
have undesired characteristics, such as layovers, sequences of heavy duties and standby duties.
Furthermore, the workload is balanced over all crew members by enforcing a threshold. They
develop a branch-and-price algorithm to solve the resulting model, which worked well on the
instance form the airline industry. As the running time for the railway application was too high,
a heuristic approach was introduced and the decomposed problem was solved sequentially.

It is not uncommon that large instances of the CCRP are solved by splitting the whole pro-
cess in sequential phases. Sodhi and Norris (2004) were one of the first to apply this approach
in practice. They split the rostering problem into two main stages. In the first stage the rest day
pattern is made. Then, in the second stage the duties are assigned to the rosters. The first stage is
further split into several steps, some of which are performed manually, whereas others are dealt
with using solvers or heuristic approaches. Three types of duties are considered: early, late
and night duties. They take attractiveness into account by using a soft constraint that penalises
the use of mixed weeks, i.e. weeks in which there are both early and late duties. Furthermore,
they maximise the number of consecutive days off (excluding weekends) and (regular or long)
weekends. The method is evaluated on instances from London Underground.

Lezaun et al. (2006) split the rostering process into four different parts. First of all, the
reserve days (which are grouped in weeks) are assigned to the drivers. Afterwards, the duty

type (early, late and night duties) patterns are constructed per week. In the third phase, these
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patterns are combined such that they fit in a rotating roster for a group of drivers. Finally, the
reserve weeks from the first phase are combined with the rotating rosters from the previous
step, in order to obtain an assignment in which all drivers have an equal amount of early, late
and night duties and similar amount of weekends off. They applied this model to the metro
network in Bilbao. The obtained rosters were accepted by both the firm’s representatives and
the employees.

Hartog et al. (2009) split the rostering problem into two parts (similar to Sodhi and Norris
(2004)). They first create patterns in which the type of duty (e.g. early, late or night) is de-
termined. In the second phase they assign the actual duties to the feasible places in the roster.
Both models are formulated as an assignment problem, where undesirable duty patterns are pe-
nalised in the objective function. They show that rosters can be obtained much faster using this
process than the manually generated rosters. Furthermore, both the train drivers and conductors
preferred the rosters obtained from the models over the manually generated rosters.

Mesquita et al. (2013) integrate the vehicle and crew scheduling problem with the crew ros-
tering problem, using pre-defined day off patterns. In the objective, they consider operational
costs as well as balancing measures. These measures include the amount of short and long
trips. They solve this using a heuristic, which is based on Benders decomposition. They show
the benefits of this approach using real-world data from bus companies in Portugal.

Nishi et al. (2014) propose a decomposition algorithm for crew rostering, in which their
main objective is to distribute the workload as fairly as possible. The workload is distributed
over the crew members by minimising the maximum average working time. In the master
problem of the decomposition, a set of duties is assigned to a set of rosters. Afterwards, a set
of subproblems is solved, where feasible cyclic sequences are constructed that conform to the
working regulations. The performance of their decomposition approach is shown on instances
from the Japanese railway company.

Recently, it has become common to include more extensive fairness concepts in the CCRP,
which do not solely include the workload distribution. Borndorfer et al. (2015) incorporate
attractiveness by penalising inappropriate sequences of duties in their rostering process. An
example of such a duty sequence is a backward rotation, in which the duty on the next day starts
earlier compared to the current duty. The preferences of employees are also taken into account
using hard constraints. Furthermore, they also spread the unwanted duties (night or weekend

duties) over all employees, to improve fairness. They present both a network flow problem and
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a set partitioning problem. They solve their model using a heuristic approach similar to the
Lin-Kernighan heuristic. Their method is evaluated on both a cyclic crew scheduling problem
and an acyclic toll enforcement problem.

Integrated crew rostering is receiving more attention in the literature. Xie and Suhl (2015)
are one of the first to computationally compare the sequential and integrated approach. They
solve the crew rostering problem for both cyclic and non-cyclic rosters. They propose a multi-
commodity network flow problem, containing three different objectives: operating costs, fair-
ness and preferences of the crew. Fairness is measured by the distribution of workload, number
of days off and unpopular activities. Their proposed integrated approach is compared to a se-
quential approach (based on Sodhi and Norris (2004)). They show on instances from German
bus companies that the integrated approach obtains a better solution quality.

Borndorfer et al. (2017) solve the integrated scheduling and rostering problem for drivers in
public transport using Benders decomposition, where the scheduling and rostering problem are
solved in the master- and subproblem, respectively. In their model, they penalise rosters that are
not preferred by the drivers. For example, isolated duties or a weekend with a single day off are
both penalised. An isolated duty is a duty between two free days. In the rostering phase, they
make use of so-called duty templates, which aggregate similar types of duties based on their key
characteristics. In their approach, they only use the starting time of a duty. However, they also
suggest that other characteristics such as duty type, home depot or duty duration can be used to
group similar duties together. This facilitates a more general aggregation compared to Hartog
et al. (2009), who only use three duty types. This aggregation leads to a reduction in the number
of linking constraints, giving rise to a smaller problem. A weaker linking between the original
duties is expected to reduce the quality of the rosters. However, Borndorfer et al. (2017) show
on real-world data from a public transport company that the use of these duty templates actually
improved the obtained roster at almost no extra cost for the scheduling phase.

The trade-off between fairness and attractiveness is analysed by Breugem (2020). Similarly
to Hartog et al. (2009), duty templates with three possibilities (early, late and night) are used
as input. First of all, he shows using an exact branch-and-price-and-cut approach that fairness
should not be the sole evaluation criteria, since this comes at the cost of attractiveness. Also,
the decrease in attractiveness due to a fixed fairness level is not distributed evenly over all
the roster groups. These conclusions highlight the fact that both measures should be carefully

balanced. Furthermore, a family of formulations for the CCRP are analysed, in order to obtain
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insights into how a strong formulation can be made. These models are evaluated on data from
NS. The rules and regulations that were used in Breugem (2020) are of a similar structure as the
ones discussed in the previous chapter. They include the rest time, rest days, workload and Red
Weekends (corresponding to items 1, 2, 5 and 7 respectively from the CLA). The models are
solved using column generation in a branch-and-price algorithm. The results demonstrate that
choosing a certain formulation heavily influences both the solution quality and running time.
Based on these conclusions and recommendations a suitable model is chosen for this thesis.

This mathematical model is presented in detail in the next chapter.
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Chapter 4

Methodology

In this chapter, we introduce a mathematical model to solve the CCRP. First, the mathematical
notation is explained, which is followed by an introduction of the formulation for the CCRP.

Afterwards, the constraints that have to be implemented are explained in more detail.

4.1 Mathematical model

We use the formulation for the CCRP as proposed by Breugem (2020). The set D denotes the
set of duties and 7" denotes the set of cells in a roster. The set of roster sequences is denoted
by S. A roster sequence s € S consists of a mapping between cells ¢ € 1" and duties d € D,
which we denote by (¢,d). We divide the problem into a set of clusters K. The constraints
that are implicitly defined in a cluster £ € K is denoted by (), C (. This means that all
constraints contained in the set Q x = Uy g Q. are modelled implicitly using roster sequences.
All other constraints in the set Q) \ @ still have to be modelled explicitly. Each roster sequence
belongs to a cluster set S, from cluster k£ € K. Lastly, () is a set containing all modelled roster
constraints, where each roster constraint ¢ is modelled using a set of linear constraints p € F,.

Furthermore, the following parameters are introduced. The parameter % shows whether
roster sequence s € S, contains duty d or not. The parameter c¢* penalises the use of a roster
sequence s € Sy belonging to cluster k& € K. Lastly, f, denotes whether a linear constraint
p € P, is assigned to a combination (¢, d) and the threshold value for violating a constraint is
denoted by b,. The violation of the constraint has to belong to the interval §, = [0, u,], using a
penalisation of c,.

Finally, we define the binary decision variable =¥ when roster sequence s € S, is assigned

to cluster £ € K. The violation is modelled using the variable 6, € A,, which denotes how
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much the roster constraint ¢ € @ \ Qx is violated. The resulting formulation of the CCRP is

shown below.

min Z Z crah 4 Z 404 4.1)

keK seSy q€Q\ Qg

sty ab=1 Vi e K 4.2)
SESK
DD hhat=1 vd € D (4.3)
keK seSk
SN k<, +4, Vg € Q\ Qx.,p € P, (4.4)
keK seSy (t,d)es
" e B Vk € K,s € Sy (4.5)
0 €A Vg e Q\ Qk (4.6)

The objective minimises the sum of the roster sequence costs and the penalties associated with
the explicitly modelled roster constraints. Constraints (4.2) and (4.3) model the correct assign-
ment of duties, by ensuring that each cluster is assigned to exactly one roster sequence and
each duty is used exactly once. Constraints (4.4) model the explicit constraints, which can take
the form of soft or hard constraints. Lastly, Constraints (4.5) and (4.6) restrict the decision

variables to their domains.

4.2 Implementation

In this thesis, the clusters in K all contain 7 days, starting on Monday and ending on Sunday,
such that the clusters are non-overlapping. These clusters correspond to the weeks (rows) of
the rosters and are also referred to as roster sequences. This is in line with Breugem (2020),
who shows theoretically how the cluster size impacts the solution method and also demonstrates
using computational results that for instances from NS the formulation based on weekly clusters
outperforms other cluster sizes. Since we are solving an extension of this problem, it is expected
that these weekly clusters also work well for our problem. An example of three possible roster
sequences is visualised in Figure 4.1.

It might happen that the items from the CLA and the roster preferences are too complicated
to be implemented efficiently. In that case, the items are simplified. Below we state for which

items a simplification is needed.
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Mon Tue Wed Thu Fri Sat Sun

S1 R 126 125 54 56 R R
S2 12 R 14 29 R R R
S3 127 128 R R 45 40 41

Figure 4.1: Example of three possible roster sequences, containing duties and rest days.

For item 3 from the CLA, there is the issue that the rule does not work when the period
of 7x24 (or 14x24) starts or ends during a rest day longer than 36 (or 72) hours. A similar
problem arises when looking at the Red Weekends (item 7). If the period starts or ends with a
sufficiently long rest day, then the requirement can be ignored and we assume that this roster
still adheres to the rules laid down by NS.

For item 3 from the CLA we make two additional assumption: we only enforce periods of
7x24 hours and the start of the period is always at midnight. For example, the rule is enforced on
the period of Monday 12:00 a.m. till Sunday 23:59 p.m., but also for the period Tuesday 12:00
a.m. till Monday 23:59 p.m. The first assumption leads to less flexibility, because enforcing
the rule on periods of 14x24 hours becomes redundant. Losing this option might come at the
cost of a reduction in solution quality. The second assumption reduces the complexity of the
problem, since we only have to consider periods starting at a specific hour.

In the CLA, item 6 states that there is a maximum of 36 night duties per 16 weeks. In case a
group has less than 16 rows (employees), we recalculate the maximum number of night duties,
such that we do not violate the CLA in case the group performs the roster for 16 weeks.

Finally, we simplify the implementation of the Red Weekend (item 7 from the CLA) by
assuming that there are no early duties that start before Monday 4:00 a.m. (which is indeed the
case for instances from NS). Using this assumption, we change the definition of a Red Weekend
to a period of at least 60 hours which starts before Friday 4:00 p.m. and ends before Monday
4:00 a.m.
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Chapter 5

Solution approach

The set of possible roster sequences is quite large, which also leads to a large number of binary
decision variables z*. Due to the large number of variables, a column generation approach is
used to solve the previously discussed model. In the column generation approach, we iterate
between the so-called master problem and pricing problem. In the master problem, the linear
programming (LP) relaxation is solved with a subset of the decision variables. In the pricing
problem, we try to find beneficial roster sequences, which are subsequently added to the master
problem. We stop when no more beneficial roster sequences can be found, implying that the
LP relaxation is solved to optimality. This is also referred to as solving the root node. To
improve the computation time of the column generation approach, it is often useful to initialise
the model with a feasible solution.

A graphical illustration of the solution approach is given in Figure 5.1. As mentioned
before, we use the CLA, roster preferences and duty attributes as inputs. Before solving the
root node, we can opt to create a start solution. After having obtained the optimal LP solution,
we have to find a feasible roster. In this thesis, we consider a heuristic approach, where we first
find an integer solution and afterwards improve this integer solution by means of a local search

algorithm. In this chapter, we describe the aforementioned steps in more detail.

5.1 Start solution

The column generation can start with an empty roster, meaning that no duties are assigned. As
a result, the first few iterations generally concentrate on covering the duties. Only after most
duties are covered, the pricing problem will try to improve the LP solution. To reduce the total

computation time we can make use of multiple start solutions, such that the majority of the
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Input
Collective Labour Agreement
Roster preferences
Duties

!

Start solution

!

Master problem — Pricing problem
Solve the Linear Programming Find negative reduced
relaxation —r cost columns

}

Integer heuristic

}

Output
Rosters

Figure 5.1: Overview of the necessary inputs, outputs and steps taken in the solution method.

duties are already assigned to a specific week. This procedure should be fast and, if possible,
have a good objective value. In this thesis we consider two methods: a Randomised Insertion

Method (RIM) and a Greedy Randomised Adaptive Search Procedure (GRASP).

5.1.1 RIM

In this basic algorithm, we go through all empty cells in the roster one by one and assign the
first available duty. We continue doing this until all duties are covered or if no more duty can
be inserted into the roster. Adding multiple start solutions only makes sense if the algorithm
returns a different start solution every time. For this reason, we implement two randomisation
steps. First of all, the list containing all duties is shuffled. Secondly, the order of going through
the empty places in the roster is randomised.

The RIM is an algorithm that does not take the objective into account. So we expect that
solutions can be quickly obtained, which comes at the costs of the solution quality. Therefore,

we also consider a GRASP, that does take the objective into account.
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5.1.2 GRASP

The GRASP consists of two parts. The first part is a greedy assignment part in which we create
an initial start solution. Afterwards, we try to improve this start solution using a local search
procedure.

In the first part, we first try to assign each available duty to a specific day in a specific week.
This leads to a set of best candidate duties for this day based on the objective value. We keep a
list of candidate duties and from this set we choose one duty at random. We continue this until
no more duties can be assigned in a feasible way. This results in our initial start solution.

In the second part of the GRASP we try to improve the previously obtained solution. We
do this by using a so-called two-opt procedure, also known as a pairwise comparison. We
create a set of all possible swaps between two duties on a similar day but a different week
(e.g. both duties are scheduled on a Monday). First we check if such a swap is allowed and
does not violate any CLA rules. In case the duties can be swapped, we calculate the objective
value. After considering all pairs of duties in the set, we swap the pair that led to the best
improvement in objective value. We continue until a time limit or iteration limit is reached or
if no more improvements can be made.

When performing the above steps multiple times, we obtain several start solutions. All

these start solutions can be added to the master problem.

5.2 Master problem

The master problem is defined using Equations (4.1) - (4.6), where we relax the integrality
Constraints on the ¥ variables. That is, we replace Constraints (4.5) by z% > 0, forall k €
K and s € Sy. The penalties in the objective function, ¥ and c, are often in the range of 0.001
up to 0.1. Except for the penalty of not scheduling a duty, which is set to 10,000. In this way,
the column generation approach primarily focuses on scheduling all duties.

After each iteration of the master problem, we solve the pricing problem in order to obtain
roster sequences with negative reduced cost (RC). The reduced cost 7* of a roster sequence
s € S, belonging to a cluster £ € K is defined as follows. Let 1, ¢4 and 6,, correspond to

the dual multipliers of Constraints (4.2), (4.3) and (4.4), respectively. Then the reduced cost ’yf
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can be calculated as

'szclsc_ﬂk_zhssﬁbd_ Z Z Z JidOap- (5.1)

deD ge€Q\Qxk PEPy (t,d)Es

We stop solving the master problem when the pricing problem has proven that no more se-
quences with negative reduced cost exist, which also implies that we obtained the optimal LP

solution.

5.3 Pricing problem

In the pricing problem we want to find clusters with negative reduced cost as defined in Equa-
tion (5.1), while ensuring that the implicit constraints are satisfied. In this thesis, at most two
negative reduced costs columns per cluster are added after solving each pricing problem. The
pricing problem is modelled for each cluster £ € K as a Shortest Path Problem with Resource
Constraints (SPPRC). For each cluster we construct a directed graph, where each node corre-
sponds to a duty. Duties that are connected by an arc can potentially proceed each other in the
same roster sequence.

An example of such as graph is given in Figure 5.2. Starting from the source node s, we
keep adding duties until the sink node ¢ is reached. We define a partial roster sequence as a
roster sequence which did not reach the sink node yet. For example in Figure 5.2 we refer to

[s, 126, 125], or simply [126, 125], as a partial sequence.

Mon Tue Wed Thu Fri Sat Sun

~126 125— 56 ——— 44 \
vl

S
N\
118 119 > 43 iy

+ t

Figure 5.2: Example of a directed graph for the pricing problem.

The reduced cost of a roster sequence can be split into two parts. The first part of the cost
comes from the constraints modelled implicitly. It often happens that these implicit costs cannot

be associated with a single arc, but are the result of a specific series of duties. These costs can
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be incorporated using resource constraints. Each roster constraint p is related with a resource
consumption f/, and a consumption limit b,. Violation of the consumption limit is bounded by
0, € A,. The second part corresponds to the dual multipliers of the explicit constraints. These
explicit costs can be allocated to each arc of the directed graph.

The SPPRC is quite common in the literature of vehicle routing, crew scheduling and crew
rostering. The following two types of approaches are often used to solve it to optimality: a
breadth first labelling algorithm using dynamic programming or a depth first algorithm based
on completion bounds (Dumitrescu and Boland, 2003). The breadth first strategy is often pre-
ferred when two labels can easily be compared, such that one of them can be pruned. On the
other hand, the depth first approach is often used to quickly obtain feasible solutions (Lozano
et al., 2016). In this thesis, we select the depth first approach, since there is no clear preference
for which partial sequence will be the best. Depth first approaches to solve the SPPRC have
been successfully applied before, see for example Grotschel et al. (2003) or Breugem (2020).

The pseudocode for a depth first SPPRC is outlined in Algorithm 1. In the initialisation,
the partial sequence is created containing only the source node. Furthermore, the resources are
updated and checked for any violation. The algorithm is depth first because of the recursive
call to the method FINDROSTERSEQUENCE. In each step, it tries to add a duty if the resources
are sufficient. The method either terminates when the sink is reached or if the current sequence
is infeasible. The methods referring to completion bounds are explained in the next sections.

As mentioned before, completion bounds are often used in combination with a depth first
approach. Given a partial sequence, this completion bound shows the maximum reduced cost
that can still be attained from this point. In case the completion bound is worse than the best
reduced cost found until now, it is not fruitful to continue the search using this partial sequence,
which is therefore pruned. In this way, we try to detect early on which partial sequences
are worthwhile to consider. A common way to compute these bounds is using Lagrangian
relaxation (Dumitrescu and Boland, 2003). However, in this thesis the completion bounds
are computed using a set of rules based on domain knowledge. Breugem (2020) successfully
applied this approach when solving the CCRP. Furthermore, we incorporate these bounds in

two different settings: forward and backward completion bounds.
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Algorithm 1 Shortest Path Problem with Resource Constraints

Input: directed graph
Output: optimal path (roster sequence)

1: allSequences < {}

2. lowerbound RC' < oo

3. sequence <— sourceNode

4: update resources

5: FINDROSTERSEQUENCE(sequence)

6: procedure FINDROSTERSEQUENCE
7: boundOutput < {}

8 for duty in dutyList do

9 sequence <— duty

10: update resources

11: if duty = sinkNode then

12: allSequences < sequence

13: update lowerbound RC

14: boundOutput <~ BACKWARDCOMPLETIONBOUNDCALCULATE

15: else

16: if INFEASIBLE or FORWARDCOMPLETIONBOUND then

17: boundOutput < BACKWARDCOMPLETIONBOUNDCALCULATE
18: else

19: boundQOutput* < FINDROSTERSEQUENCE(sequence)

20: dutyList < BACKWARDCOMPLETIONBOUNDPRUNE(boundQutput*)
21: end if

22: end if

23: end for

24: end procedure

5.3.1 Forward completion bounds

Forward completion bounds are based on the look-ahead principle. Given a partial sequence,
we want to estimate how much further the reduced cost can decrease. For example, in Figure 5.3
we have a partial sequence A: [126, 125], which ends on Wednesday. Using domain knowledge
we can come up with a number of (best case) scenarios to calculate the lowest possible reduced
cost for this particular partial sequence.

These bounds can be recomputed every time a duty is added to the partial sequence, which
happens on line 16 in Algorithm 1. This bound consists of the current RC, a minimum explicit
cost (based on the dual multipliers) and a minimum implicit cost. This calculation is shown on
line 1 in Algorithm 2. If the lowest possible RC is still higher than the lower bound found until

now, then it is clear that this partial sequence can be safely pruned.
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Figure 5.3: Forward completion bound example. Given the partial sequence A, we can calculate a
lower bound on the remaining reduced cost to the sink.

The domain knowledge to compute these lower bounds can for example be incorporated as
follows. Suppose we have a partial sequence from Monday until Saturday and a duty is sched-
uled on Saturday, then we know that this sequence cannot contain a Red Weekend. Therefore
we can ignore the potential explicit cost of having a Red Weekend. A similar thought process
is possible for all other explicit and implicit costs, leading to a final lower bound for the partial

sequence.

Algorithm 2 Forward completion bounds

Input: sequence
Output: true if sequence should be pruned

1: lowest Possible RC' < current RC' + minExplicitCost + minImplicitCost
2: if lowest Possible RC' > lowerbound RC' then

3: return (rue

4: end if

In our implementation, both the minimum explicit and implicit cost are are calculated based
on a set of rules. Furthermore, we differentiate between calculating the entire bound in every
step (after adding a single duty) or only calculating the bound once. In case we only calculate
the bound once, we have to compute a bound that holds for any partial sequence, leading to
weaker bounds. So there exists a trade-off between spending more time on calculating a strong
bound for each individual sequence and spending less time for a weaker bound. In order to

quantify this trade-off, we naturally consider the following four forward strategies.
e FS1: Calculate the explicit and implicit cost in every step.

e FS2: Calculate the explicit cost once and calculate the implicit cost in every step.
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e FS3: Calculate the explicit cost in every step and calculate the implicit cost once.

e FS4: Calculate the explicit and implicit cost once.

5.3.2 Backward completion bounds

Backward completion bounds are quite similar to its forward counterpart, except that we now
reverse the thought process. Given that we arrive at the sink with sequence A, we can compute
the exact RC. This information could help us to prune similar sequences that have not reached
the sink yet. This idea is similar to the so-called pulse algorithm proposed by Lozano et al.
(2016), to solve the elementary SPPRC. In their method they either prune on basis of infea-
sibility, bounds or roll-back. The last pruning method decides whether it is still worthwhile
to continue the last choice made (e.g. which subtree to explore). A subtree is defined as all
available duties that can still be added (in a fixed order) to a partial sequence. The difference
with the method proposed in this thesis is that we actually do continue to explore the chosen
subtree, but we use the information found to prune similar subtrees that are still unexplored.
The intuition behind these backward completion bounds is given in Figure 5.4. If we have
already reached the sink using sequence A, then we know what the RC are for the sequence
[126, 125, 44] (and [126, 125, 43]). We also know that partial sequence B is going to be extended
to the sequence [126, 119, 44] (and [126, 119, 43]). Clearly, the sequences obtained from A are
quite similar to the sequences from 5, meaning that their RC costs should not differ too much.
Using this information we can compute what the potential RC of partial sequence B is and

prune B if necessary.
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Figure 5.4: Backward completion bound example. Given that we reach the sink from partial sequence
A, we can compute a bound for partial sequence B.
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To be specific, given RCy, the reduced cost of sequence A, and the currently lowest reduced
cost RC™, we first calculate the difference between the two: 7 = RC 4y — RC™*. Here, T denotes
how much the RC of sequence A needs to decrease in order to find a sequence corresponding to
the lowest RC. Next, we define /4 as the set of sequences that are almost identical to sequence
A. We say that a sequence i € [, if they are exactly the same except for a single duty, however,
this duty must be of the same type (early, late or night) as in sequence A. When considering
all sequences i € I4, we define Kk = max;e;,{ RC4 — RC;}. Therefore, x can be interpreted
as the maximum difference between the reduced cost of sequence A and the reduced cost of
similar sequences. Therefore, we can use the comparison between the values of 7 and x to
prune similar sequences. That is, if 7 < « then we do not prune the sequences ¢ € 4. Note
that 7 < r implies that RC* > min;e;, {RC;}. The calculation is performed whenever a
sequence reached the sink or is pruned, which happens on lines 14 and 17 in Algorithm 1 when

Algorithm 3 is called.

Algorithm 3 Backward completion bounds Calculate

Input: sequence A
Output: true if a sequence similar to A can improve the current lowerbound RC

K < max;er, { RC4 — RC;}
T+ RCy — RC*
if 7 < x then
return {rue
end if

A A

Note that we do not state that we can prune the sequences, the reason for this is that we
do not actually store all the possible sequences in memory. We can only prune on basis of a
duty. In order to prune a specific duty, we need to have more information. Suppose now that
we have already reached the sink with sequences Ay, ..., A, such that the sets of Iy, ..., [,, are
known and their corresponding values for 7, ..., 7, and k4, ..., k,, have been computed as well.
Now, assume we have a partial sequence B. We can find which similarity sets / contain the
sequence B and what the corresponding values of 7 and « are. Thus, if 7; > ; for all sets that
satisfy B € I;, then RCp > RC™. This implies that partial sequence B can never be lower than
the optimal reduced cost found until now. In other words, the partial sequence can be safely
pruned.

The pruning of a partial sequence B happens on line 20 of Algorithm 1. At this point in

the algorithm we have obtained the relevant information on the sequences A, ..., A,, and their
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similarity sets Iy, ..., I,,,. The relevant information can be summarised by the pairs (7}, ;) :
B e l;,7=1,..,m, where m < n. Since we are using a depth first, the pruning only works
locally (e.g. for the subtree starting from partial sequence ), therefore we use m instead of all
n similarity sets. This implies that we do not need to consider the similar sequence A;, where
j > m, if the dissimilarity happens before the current duty.

Consider again the example in Figure 5.4. For partial sequence B: [126,119] we do not
need to have information on sequences that differ before the current duty. For example, the
sequence [124, 119, 43] is not relevant for pruning partial sequence B, since the duties 126 and
119 are already fixed. Therefore, we only consider a subset of m sequences, instead of all
similar sequences n. This step is shown in Algorithm 4, where we consider all m sequences
that are similar to the current sequence B. We iterate over all m options, and if for least one
option we might improve the lower bound we stop. If none of the m sequences leads to an

improvement we can safely prune the similar duties.

Algorithm 4 Backward completion bounds Prune

Input: boundOutput obtained from BACKWARDCOMPLETIONBOUNDCALCULATE
Output: remove similar duties from the dutyList

1: forj=1,....,mdo
2 if boundOutput(j)=true then
3 return
4 end if
5: end for

6: prune all duties similar to current duty

Feasibility condition

Of course, the above procedure only works if the subtree belonging to sequence A is exactly
the same as the subtree of sequence B. If on the contrary, the subtree of 55 contains sequences
not considered by A, then the results stated above no longer hold. This situation is visualised in
Figure 5.5, where partial sequence A does not always reach the sink, such that we do not have
enough information available to prune partial sequence B.

In our case, we only have to consider items 1 and 2 from the CLA for our implicit feasibility
check. Item 1 can be split into two parts. The first part ensures that the break after each duty
is long enough (12 or 14 hours). For instances from NS this always results in a similar subtree

for A and B (e.g. by changing a duty of a similar type the break is still sufficient). The second
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part states that the minimum rest time after three or more consecutive night duties should be 46
hours. This clearly complicates matters, since the duty that is different between A and B might
be a night duty that may or may not lead to a sufficient break. A similar situation might occur
for item 2, which states what the length of a series of rest days should be. For these infeasible
sequences, we are still interested in computing a lower bound on the RC, such that we might
be able to prune partial sequence B.

Suppose that we have the (feasible) partial sequence A, for which we can compute a lower
bound. Afterwards we add an additional duty leading to partial sequence C. In case C' is
infeasible, then the easiest way to obtain a valid lower bound is by reusing the previous lower
bound from A. Graphically it is easy to see that if a valid lower bound was found for A, this

must always be a valid lower bound for C' as well (see Figure 5.6).
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Figure 5.5: We can only compare partial sequences A and B if their subtrees are similar. In this specific
example we are not allowed to prune sequence B, because duty 44 cannot be scheduled after duty 125.
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Figure 5.6: If partial sequence C is infeasible, we can still use the valid lower bound of partial
sequence A, which has been calculated before.
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5.3.3 Pricing Problem Heuristic

The algorithm using backward completion bounds can easily be changed into a heuristic pro-
cedure. Instead of calculating the threshold «, we set the value ourselves. By choosing a lower
value, more duties are pruned. However, this also means that we can no longer prove that the

root node is solved to optimality.

5.4 Obtaining integer solutions

Solving the column generation as described above only leads to an LP solution of the root
node. In order to obtain an actual roster, it is necessary to convert the LP solution into an
integer solution. There are several methods to perform this conversion. We first consider two
heuristics in which parts of the roster are fixed in an iterative process. In case there are still
duties unassigned, we apply a local search heuristic.

It can happen that the found integer solution has a worse objective value compared to one

of the start solutions. In that case, we use the best start solution instead.

5.4.1 Integer heuristic

The following two heuristics are used to create an integer solution from the LP solution.

e [H1: Fix the column with the largest value, then solve the master problem again and

repeat.

e [H2: Fix the column with the largest value, then solve the master and pricing problems
again until no more columns with reduced cost are found and repeat. This is also known

as dive-and-fix in the literature.

These heuristics can be improved by fixing more than one column if applicable. The number
of columns should not be too small, leading to a large number of iterations. On the other hand,
fixing a large number of columns at the same time might lead to poor integer solutions.
Furthermore, when choosing which column to fix, we might want to prioritise columns with
more duties and sequences containing duties on Friday, Saturday and Sunday. If the heuristic
contains these extra weights we refer to it with a star (e.g. IH2*). We suspect that these weights

makes it easier to find a feasible solution, since scheduling Red Weekends is often a bottleneck.
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5.4.2 Local search

Finally, it might happen that after applying any of the above named strategies not all duties are

covered. In that case, the heuristic is followed up by one of the following local search methods.
e FHI: Assign each duty to the first feasible place in a roster sequence.
e FH2: First apply FH1, then use a destroy and repair procedure.

The first method places the unassigned duty into the roster as fast as possible, without taking
into account the objective value. We prioritise the assignment of duties to weeks that contain
the most days off. This is to prevent an unbalanced roster in which certain weeks are totally
full and other weeks are almost empty.

The first method might not be able to find a solution in which all duties are covered, since
most of the roster is fixed. This problem can be circumvented by the second method, which
uses a destroy method. We first remove a few roster sequences and unassign the corresponding
duties. Afterwards, we repair the solution by applying a dive-and-fix procedure (similar to
IH2). If the number of unassigned duties is less than before, we retain the obtained solution,
otherwise we reverse the changes. We continue this procedure until all duties are covered or a
stopping condition is met.

Note that neither the heuristic nor the additional local search can guarantee a solution in

which all duties are covered.

31



Chapter 6

Computational experiments

In this chapter, we decide which strategies and parameters to choose for the solution approach
by means of computational experiments. The order in which each part is discussed follows a
similar structure as the previous chapter (see Figure 5.1). That is, we first determine whether
start solutions should be added to the master problem. Afterwards, we investigate how the pric-
ing problem can be improved. Finally, several heuristics to find integer solutions are compared.

The master problem is solved using the commercial solver CPLEX 12.1. All experiments

are performed using a 1.8 GHz Intel Core 17 processor.

6.1 Description of the instances

In total we consider 12 different instances of train conductors from NS, which are summarised
in Table 6.1. We distinguish between two types of instances: small and large.

In this chapter, we mostly focus on the small instances (1 - 6) when evaluating different
strategies in the solution approach. These instances are suitable, because they are easier to
solve in terms of computation time, since a single roster group is present with at most 12
employees. Furthermore, these instances are representative of the larger ones when looking at
the distribution of the duty types. There are balanced instances (1, 2, 3 and 6) that contain a
similar amount of early and late duties and the other instances (4 and 5) only contain a single
duty type.

The large instances (7 - 12) are more difficult to solve. These instances contain more em-
ployees and sometimes also more roster groups compared to the small instances. After having
fixed the strategies and parameters, most of these instances are used in the upcoming sensitivity

analysis in Chapter 7. The distribution of duty type also differs per instance. Instance 8 contains
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primarily early duties, whereas instance 9 contains mostly late duties. These are likely more
difficult to solve, because there is less flexibility. On the other hand, the backward completion
bounds may be more effective, since more duties can be pruned at the same time. Instances 10
and 11 are more balanced in terms of duty types. The largest instance (12) corresponds to the

crew base in Amersfoort.

Table 6.1: The number of roster groups, employees and duties per instance.

Type ID Groups Employees Duties
Early Late Night Total
1 1 8 17 14 0 31
2 1 12 23 20 2 45
Small 3 1 12 22 23 2 47
4 1 12 0 40 5 45
5 1 12 0 40 4 44
6 1 12 24 17 2 43
7 1 15 55 0 0 55
8 3 39 102 37 4 143
Large 9 3 32 17 94 9 120
10 3 39 77 63 7 147
11 3 32 64 51 4 119
12 7 83 141 154 15 310

6.2 Start solution

As mentioned earlier, we consider two different strategies to obtain a set of start solutions:
the RIM and the GRASP. First, we evaluate each method individually compared to a baseline

without any start solution. Afterwards, we compare which of the two methods is more suitable.

6.2.1 RIM

Table 6.2 shows the results when using the RIM for the small instances. The first row corre-
sponds to the baseline where no start solution is used. The subsequent rows denote the number
of start solutions that are made and all of them are added to the master problem.

The table illustrates that the average computation time and the number of iterations of the
master problem already decrease by a factor of four after adding only 10 start solutions. This
means it is beneficial to include several start solutions when initialising the column generation
approach. Furthermore, the column containing the start solution time shows that obtaining
these start solutions is not difficult, 50 start solutions can be found on average within 2 seconds.

We observe a decrease in computation time when just a few start solutions are added. This
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can also be concluded when looking at Table 9.1 in the Appendix, where the individual com-
putation times are shown. For example, instance 5 takes almost 90 minutes to solve when no
start solution is present, while it only takes around 10 minutes after adding 10 start solutions.
Furthermore, for instance 5 having 10 start solutions is better compared to 20, 30 or 40 start
solutions. Given that a decreasing relation is found between the computation time and the
number of start solutions for most other instances, it is probable that the solver accidentally
found a few good roster sequences for instance 5 when only 10 start solutions were present.
We also see that instance 4 and 5 always have the longest computation time compared to the
other instances. This is as expected, since these two instances only contain late duties.

Table 9.2 in the Appendix reports that the number of iterations of the master problem often
decrease on the individual level when more start solutions are added. Consequently, it can be
concluded that adding more start solutions is beneficial, since it decrease the total computation
time as well as the number of iterations. Accordingly, 50 start solutions is deemed the most

suitable for the RIM.

Table 6.2: Average results over small instances when adding start solutions using the RIM. Root node
time includes time spend on solving the master problem and pricing problem.

Start Total Start solution Root node Master
. . i . Columns .

solutions time (s) time (s) time (s) iter.

0 2186.63 - 2186.63 3702.00 161.33

10 388.16 0.35 387.81 924.83  41.50

20  477.75 0.74 477.00 810.67 36.33

30 474.17 1.18 472.98 776.00 34.83

40  472.30 1.66 470.64 693.33  31.17

50 416.36 2.07 414.30 651.17 29.50

6.2.2 GRASP

In the first step of the GRASP, we choose a random duty out of a candidate list containing 5
duties. The second step, in which the best possible swap is determined, is repeated at most 30
times. In general, we observe that less than 30 iterations are needed to find a local optimum.
Similar to the RIM, Table 6.3 shows that also for the GRASP is it beneficial to add start
solutions, as this leads to an overall decrease in the time to solve the root node as well as a
decrease in the number of iterations.
Based on the total computation time, it seems most beneficial to have 20 start solutions. This

is confirmed when examining the individual computation times in Table 9.3 in the Appendix.
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Based on the total computation time, we indeed see that for most instances 10 or 20 start
solutions is the preferred choice.

However, when considering the number of iterations in the root node we find in Table 6.3
that 50 start solutions results in the least amount of master iterations. This can also be seen
on the individual level in Table 9.4 in the Appendix. Most instances use the least amount of
iterations when 40 or 50 start solutions are added.

The reason why the total computation time is increasing, while the number of iterations
is decreasing is explained by Table 6.3. Adding more start solutions actually leads to less
computation time in the root node. However, finding the start solutions itself is quite costly. For
50 start solutions around 30% of the total computation time is spent on finding start solutions.

The best setting for the GRASP seems to be either 20 or 50 start solutions, depending on

the total computation time or number of iterations respectively.

Table 6.3: Average results over small instances when adding start solutions using the GRASP. Root
node time includes time spend on solving the master problem and pricing problem.

Start Total Start solution Root node Master
. . i . Columns .

solutions time (s) time (s) time (s) iter.

0 2186.63 - 2186.63 3702.00 161.33

10 316.55 21.70 294.85 657.33  29.67

20  304.29 49.29 255.00 538.83  24.50

30  366.89 83.33 283.56 505.33 22.83

40  385.77 104.76 281.01 453.00 20.67

50 395.08 128.30 266.78 44333  20.33

6.2.3 Comparison GIM and GRASP

When comparing the total computation time when using the GIM and GRASP we see that the
GRASP often performs better, given the same amount of start solutions. However, when 50
start solutions are used, the difference between the two methods is on average only 20 seconds.
This is because the RIM only needs on average 2 seconds to find all 50 start solutions, whereas
the GRASP requires more than 2 minutes. This difference is then balanced out in the time to
solve the root node.

The GRASP is able to improve the running time of the root node, because the start solutions
found have much better objective values. Table 6.4 shows the average best found start solution
for both the RIM and the GRASP. A large difference in objective values is expected, since the

RIM does not take the objective into account when creating the start solutions.
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Even though for small instances the time spent on calculating good start solutions outweighs
the costs, we expect for larger instances that performing the GRASP might cost too much time
compared to the reduction in the root node time. That is, the GRASP might not scale well for
instances with multiple roster groups. Furthermore, we see that using a simple RIM we can
already obtain a large decrease in the total computation time. Therefore, we continue using the

RIM with 50 start solutions.

Table 6.4: Comparison of the RIM and GRASP on time spend creating all start solutions and the
objective of the best start solution. Average computation time and best start solution for the small

instances.
Start solutions RIM GRASP

Start solution Best start Start solution Best start

time (s) solution  time (s) solution
10 0.35 5022.29 21.70  1687.49
20 0.74 1688.95 49.29 20.74
30 1.18 1688.86 83.33 20.71
40 1.66 1688.84 104.76 20.71
50 207 1688.71 128.30 20.71

6.3 Pricing problem

To solve the pricing problem to optimality, we consider both forward and backward completion

bounds. Additionally, we show the performance of the pricing problem heuristic.

6.3.1 Forward completion bounds

Table 6.5 shows the results of the proposed forward strategies compared to a benchmark which
does not make use of any bounds. Note that only the time to solve the root node is reported,
because the start solution strategy is fixed throughout the comparison. The pricing problem
is always solved to optimality, irrespective of the chosen strategy. As a result, the number of
columns and iterations stays the same.

Interestingly, three out of the four strategies perform worse in terms of computation time
compared to the benchmark. These three strategies are actually all able to prune some (partial)
sequences before reaching the sink. Therefore, the number of times the sink is reached is de-
creased. However, calculating these forward completion bounds itself is also time consuming.
In these three cases it seems that in the time it takes to prune a subtree, we could already explore

that subtree instead.
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Only strategy FS2, which calculates the explicit cost once and the implicit cost in every
step, is able to outperform the benchmark. The difference in computation time is more than
150 seconds on average. This means that even though we often calculate the implicit cost, this
does not slow down the pricing problem. Therefore, it is surprising that FS4, which calculates
both the explicit cost and implicit cost once, is performing worse than FS2. We might expect
the average time to solve the root node for FS4 to be similar as well, since even less calculations
are needed. As this is not the case, we expect that the bounds calculated by FS2 are stronger
than the ones obtained by FS4. Having more accurate bounds lead to more pruning or earlier
pruning in the subtree. Therefore, we continue with strategy FS2 to compute the forward

completion bounds

Table 6.5: Comparison of several forward completion bound strategies. Average results on small

instances.
Root node Master
Strategy . Columns .
time (s) iter.

- 414.30 651.17  29.50
FS1 804.32 651.17  29.50
FS2 25941 651.17  29.50
FS3 525.66 651.17  29.50
FS4 585.16 651.17  29.50

6.3.2 Backward completion bounds

Table 6.6 compares the benchmark containing only forward completion bounds with a strategy
where both forward and backward completion bounds are used. Both options use strategy
FS2 to compute the forward completion bounds. The total computation time to solve the root
node drops by more than 50 seconds on average. Interestingly, the number of columns and
iterations needed decreases slightly when using backward completion bounds. This can be
attributed to the fact that the backward strategy prunes all similar duties that cannot improve
the current lower bound. Therefore, this method might also prune sequences that do have a
negative reduced cost which is higher than the current lower bound. These pruned sequences

are only added in the next iteration, in case they still have a negative reduced cost.

6.3.3 Pricing problem heuristic

The previously discussed backward strategy still solves the pricing problems to optimality and

therefore also solves the LP relaxation to optimality. However, we can also choose a fixed
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Table 6.6: Comparison of a strategy with and without backward completion bounds. Average results
on small instances.

Root node Master
Strategy . Columns .
time (s) iter
- 259.41 651.17  29.50

Backward 201.84 648.83  29.33

threshold instead of calculating it exactly. This leads to a pricing problem heuristic for which
the results are shown in Table 6.7.

The table shows that for decreasing values of x, the time to solve the root node decreases
as well, which drops from an average of 93 seconds to an average of 2 seconds. This is as
expected, since a lower x implies that we are more likely to prune a sequence, such that less
sequences have to be explored. When looking at the relation between « and the lower bound
or the number of iterations there does not seem to be a clear pattern. This is not unusual, since
the presented results are obtained from a heuristic, so a higher value of x does not necessarily
imply a better lower bound.

The lowest computation time for solving the root node is achieved when setting « to its
minimum value of 0, corresponding to an average of 2 seconds. The difference between the
found lower bound and the actual lower bound is 0.09%. This computation time is also much
lower compared to the time from the backward strategy shown in Table 6.6. The backward
strategy takes on average a factor 100 more time, although it does find the optimal solution of
the LP relaxation.

Based on the fact that x = 0 results in the lowest computation time and the found lower

bound is quite close to the actual lower bound for these instances we continue with x = 0.
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Table 6.7: Average results over small instances when using parameter « in the pricing problem
heuristic. For each parameter value the percentage difference between the found lower bound and the
actual lower bound of 20.18 is reported.

]l;gzidr* Difference (%) EI?I(: (I; ())de Columns i/ister
0.10 20.18 0.00 92.97 685.67  31.17
0.09 20.18 0.00 93.27 681.67 31.33
0.08 20.18 0.00 96.50 712.33  32.67
0.07 20.19 0.04 74.09 700.00  31.50
0.06 20.18 0.00 72.13 757.17  35.00
0.05 20.18 0.00 62.81 748.17  34.33
0.04 20.18 0.00 47.45 694.67 31.50
0.03 20.18 0.00 39.15 765.17  34.50
0.02 20.18 0.00 29.17 822.33  37.67
0.01 20.18 0.00 22.81 937.67 42.83
0.00 20.20 0.09 2.03 480.67  25.00

+ The lower bound of the LP solution found using a pricing problem heuristic.

6.4 Obtaining integer solutions

In this section, we introduce several methods to find integer solutions, using as basis the previ-
ously obtained solution of the LP relaxation. When comparing several heuristics to obtain an
integer solution, we always start with the same LP solution. Therefore, the time to solve the

root node is not included in the upcoming comparisons.

6.4.1 Integer heuristic

For both strategy IH1 and IH2, we fix at most 5 roster sequences in each iteration. Addition-
ally, IH2* denotes the strategy where more weights are given to sequences containing a busy
weekend. Table 6.8 shows that [H1 takes on average the least amount of time, while TH2 and
[H2* take around 3 to 4 seconds. Furthermore, the table shows that all three strategies find
the same integer solution for all instances. This is caused by the fact that none of the integer
solutions is able to outperform the best start solution.

Table 6.9 compares the solutions found by the integer heuristic with the best start solution.
For these instances none of the integer heuristics are able to find a roster where all duties are
covered. This can be seen from the objective, which is higher than 10,000 (corresponding to a
penalty of rejecting a duty). The best start solution always finds a roster containing all duties,
except for instance 2.

When comparing the solutions found by the integer heuristics, we see that IH1 performs
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Table 6.8: Average results over small instances using different integer heuristics. The best integer
objective is reported, as well as the number of rejected duties. The final column denotes the percentage
of cases that the integer heuristic found a better integer solution compared to the available start

solutions.
o Lower Integer Rejected Better than
Strategy - Objective bound Gap (%) time (s) duties start solution (%)
IH1 1688.71 20.18 7813.08 0.25 0.17 0.00
IH2  1688.71 20.18 7813.08 3.10 0.17 0.00
IH2* 1688.71 20.18 7813.08 4.11 0.17 0.00

worse compared to IH2 and IH2*. This is as expected, since IH2 and IH2* make use of a
dive-and-fix procedure. After having fixed a set of roster sequences, this information is used to
generate new roster sequences that might fit better in the current roster. Even though IH2 and
IH2* have a longer computation time, we continue with these two heuristics since they obtain
a better integer solution. Both methods are extended using a local search in the next section,

afterwards the best performing method is chosen.

Table 6.9: Integer objectives obtained from the integer heuristic compared to the best start solution.

ID Start solution IH1 IH2 IH2*
1 1538 50015.92 10014.62 10014.87
2 10023.67 90023.92 50023.26 60023.48
3 23.07 130024.63 20022.04 40022.56

4 23.27 110024.03 30022.88 30022.86

5

6

23.60 60024.01 10022.64 20022.73
23.30 120024.87 40022.71 40023.40
Average 1688.71  93356.23 26688.02 33354.98

6.4.2 Local search

Based on the previous results we select the two best performing integer heuristics. Both these
methods can be extended by two different types of local search methods: FH1 and FH2. This
leads us to the following four possibilities which are shown in Table 6.10. The reported integer
times include the time spent on both the integer heuristic and the local search parts. For FH2
we destroy at least 10% of the roster sequences in each iteration and repair this by applying a
dive-and-fix in which a single roster sequence is added each time.

The table shows that without the local search it takes 3 to 4 seconds on average to perform
the integer heuristic. With local search the running time is at most 20 seconds on average. The
strategies using FH1 instead of FH2 have the lowest computation time as expected, since the

destroy and repair method is time consuming. Furthermore, we see that the local search does
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improve the solutions. For all strategies, we see that on average in more than 50% of the time
we outperform the best start solution. This is a substantial improvement with respect to the 0%
we found earlier when no local search is used. Strategy IH2-FH1 finds the lowest objective on
average. This is also the only strategy that finds for all instances a roster in which all duties are

covered. This suggests that IH2-FH?2 is the preferred strategy.

Table 6.10: Average results over small instances using different integer heuristics and local searches.
The best integer objective is reported, as well as the number of rejected duties. The final column
denotes the percentage of cases that the integer heuristic found a better integer solution compared to the
available start solutions.

. Lower Integer Rejected Better than
Strategy  Objective bound Gap (%) timeig (s) dugies start solution (%)
IH2-FH1 1688.34 20.18 7811.04 3.27 0.17 50,00
IH2-FH2 21.59 20.18 6.86 17.87 0.00 50,00
IH2*-FH1 1688.38 20.18 7811.26 4.36 0.17 50,00
IH2*-FH2 1688.25 20.18 7810.66 13.82 0.17 66,67

Table 6.11, which shows the objective values on an individual level, tells a different story.
Out of the four strategies IH2*-FH attains the lowest objective value on average. This is more
important, since it shows that this method is more adept at transforming rosters that do not
cover all duties into feasible rosters. For example, the method IH2-FH2, which was the best
based on the previous table, still has two instances in which a single duty is not covered and
one instance in which four duties are not covered after applying a local search. However, [H2*-
FH2 only has three instances for which a single duty is not covered. Being able to cover more
duties is more important, when we do not have a start solution in which all duties are covered.

Therefore, strategy IH2*-FH?2 is used to find integer solutions in the upcoming sections.

Table 6.11: Integer objectives obtained from the integer heuristic with local search compared to the
best start solution.

ID Start solution IH2-FH1 IH2-FH2 IH2*-FH1 IH2*-FH2

1 15.38 14.71 14.71 14.79 14.79
2 10023.67 10023.07 22.55 10023.27  10023.27
3 23.07 10021.96 40022.83 22.07 22.07
4 23.27 10022.65 10022.53 10022.79  10022.63
5 23.60 10022.64 10022.67 10022.65 10022.55
6 23.30 22.32 22.32  10023.22 22.53
Average 1688.71  6687.89 10021.27 6688.13 5021.31
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6.5 Performance of all instances

In the previous sections, the most suitable parameters and method are fixed based on a set of
small instances. We initialise the column generation approach with 50 start solution obtained
using a RIM. Afterwards, the pricing problem is solved heuristically, while also using forward
and backward completion bounds. Finally, the LP solution is transformed into an integer so-
lution by using a dive-and-fix procedure followed-up with a local search. In this section, the
performance of the other (mostly larger) instances using these preferred settings are shown. The
goal of this section is twofold. Firstly, the most time consuming parts of the solution approach
are highlighted. Secondly, the instances 8 - 11 are used as a benchmark for the upcoming
sensitivity analysis.

Tables 9.5 and 9.6 in the Appendix provide an overview of the performance of the small
instances 1 - 6 based on the preferred settings. In case a roster in which all duties are covered
is found (corresponding to objectives lower than 10,000), the actual gap ranges from 5 up to
9%, this shows that the objective of the integer solution is quite close to the LP solution. The
latter table shows the time spent on all parts of the solution approach. The fastest time to solve
the root node is attained by instances 4 and 5, which were previously the instances with the
longest computation time. This is because instances 4 and 5 only contain late duties and in the
backward completion bounds all similar duty types are pruned. In case the integer heuristic
finds a roster in which all duties are covered, no time is spent on the local search. In case a
local search is necessary, we see that it often accounts for roughly 50% of the total computation
time. It is also interesting to see that almost no time is spent on solving the master problem.
We expect similar results for the larger instances 7 - 12.

Table 6.12 shows that for larger instances the number of columns and iterations of the
master problem increases greatly. Small instances use on average 3,000 columns and are often
solved within 30 iterations, whereas the largest instance needs more than 145,000 columns and
almost 80 iterations. Even though the instance is larger, our solution approach is able to find
feasible rosters for all shown instances. The reported gaps are not that large, ranging from 3 up
to 15%. Note that the actual gaps can be larger, since the lower bound is found using a pricing
problem heuristic.

Additionally, in 4 out of 6 cases the integer heuristic is able to find a better solution relative

to the given start solutions, which is also the case for the smaller instances. Table 6.13 shows
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that in case both the integer heuristic and the start solution find a solution in which all duties are
covered (corresponding to objectives lower than 10,000), the integer heuristic always reports a
lower objective value. This shows that the integer heuristic also works well on larger instances.

Table 6.12: Results obtained using the preferred settings. Lower bound and gap are based on the
pricing problem heuristic. The best found objective and the number of rejected duties is reported. The
last column indicates whether the solution from the integer heuristic is better compared to the start
solution.

ID Objective Lower bound* Gap (%) Columns Master - Rejected  Better than

iter. duties start solution

7 27.80 26.81 3.69 4028 17 0 Yes
8 76.33 68.79 10.97 47125 44 0 No
9 59.68 57.26 4.23 11319 36 0 Yes
10 72.35 68.44 5.72 33032 51 0 Yes
11 64.22 56.23 14.21 22639 42 0 No
12 154.05 146.22 5.35 145251 78 0 Yes

+ The lower bound of the LP solution found using a pricing problem heuristic.

Table 6.13: Integer objectives obtained from the integer heuristic the preferred settings compared to
the best start solution.

ID  Start solution Integer heuristic

7 28.95 27.80
8 76.33 10073.66
9 20064.45 59.68
10 77.45 72.35
11 64.22 10059.40
12 10164.65 154.05

Table 6.14 shows how much time is spent on each part of the solution approach. For larger
instances, the time to create a start solution increases quite fast, even though we merely use a
simple insertion method. For small instances with only one roster group, the start solutions are
generally found within 2 seconds. For the instances with three roster groups, the time to find
all the start solutions increases to 10 seconds on average. However, when considering the large
instance with seven roster groups it almost takes a minute to find all 50 start solutions.

Unsurprisingly, the time to solve the root node, which consists of the master problem and
pricing problem time, is low compared to the total time. The low computation time of the
master problem is due to the formulation of the problem. The computation time of the pricing
problems can be attributed to the pricing heuristic, which prunes similar sequences as early as
possible. For the largest instance this leads to a computation time of roughly 60 seconds to

solve the root node.
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For most methods, a large portion of the time is dedicated to the integer heuristic and the
local search. This makes sense, since finding a solution in which all duties are assigned is not
trivial. The integer heuristic takes a lot of time, as only 5 roster sequences are fixed at the same
time. The local search takes less time than expected. In three cases we are lucky that no local
search was necessary at all. In the other three cases, a roster in which all duties are present was

found after applying the local search for five minutes.

Table 6.14: The total computation time followed by the time spend on the individual parts of the
solution approach when using the preferred settings.

Total Start Master Pricing Integer Local search
time (s) time (s) time (s) time (s) time (s) time (s)
7 18.42 2.65 0.01 0.60 15.12 -
8 889.14 17.32 0.33 26.80 565.86 278.83
9 170.34 10.99 0.11 24.81 13438 -
10 467.80 11.02 0.21 48.86  407.53 -
11 387.06 4.44 0.06 10.80  167.83 203.94
12 2917.03 58.47 1.30 61.78 2585.92 209.56

ID
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Chapter 7
Sensitivity analysis

In the previous chapter, the most suitable parameters and methods are derived based on a set of
small instances. Using these preferred settings as a baseline, we now consider how the quality
of the rosters changes when the inputs vary. To be specific, we investigate the implications
of adjusting the CLA regulations or the weights in the roster preferences. These sensitivity
analyses are only performed on the large instances with three roster groups. If the instances are
too small (e.g. consisting of a single roster group), then fairness cannot be assessed properly.

The largest instance (12) is not used due to the long computation time.

7.1 Maximum average workload per week

The average workload per week is incorporated as a duty attribute. Meaning that the workload
within a roster group should be equally spread over the weeks. However, it also means that
between groups the average workload should be similar. The penalty might not always lead to
desirable results, such that the workload is not fairly divided over the groups. Therefore, we
also consider a hard limit on what the maximum average workload can be per roster group. In
the benchmark setting the maximum was 32 hours per week, in this section, we also consider
31 and 30.5' hours as maximum working hours per week.

When looking at Table 7.1, we see that the lower bound does not always increase when
decreasing the maximum hours per week. This can be explained by the fact that the pricing
problem heuristic is not always solved to optimality. Similarly, the integer objective is also in
some cases lower when the maximum average hours per week is more restricted. The instances

with 31 and 30.5 hours do not seem to be more difficult to solve, since the number of columns

"When using 30 hours it is not always possible to find a roster in which all duties are scheduled.
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and iterations for the master problem are quite similar as well. It does not seem to be more
difficult to obtain rosters where all duties are covered using the integer heuristic with local
search, since in 7 out of 8 cases a better solution is found using the integer heuristic. Also, we

do not see that adding the restriction leads to longer computation times than before.

Table 7.1: Results obtained when the maximum average working hours is 32, 31 or 30.5 hours per
week per roster group. Lower bound and gap are based on the pricing problem heuristic. The best
found objective and the number of rejected duties is reported. The last column indicates whether the
solution from the integer heuristic is better compared to the start solution.

Max. . Lower Total Master Rejected Better than
ID hour Objective bound* Gap (%) time (s) iter. du'gies start solution
32 76.33 68.79 10.96 889.14 44 0 No
8 31 72.42 68.83 5.22 498.24 37 0 Yes
30.5 76.58 68.85 11.22 544.58 35 0 No
32 59.68 57.26 423 170.34 36 0 Yes
9 31 59.47 57.28 3.83 605.69 35 0 Yes
30.5 59.51 57.31 3.83 406.66 47 0 Yes
32 72.35 68.44 5.71 467.80 51 0 Yes
10 31 72.79 68.36 6.47 412.59 47 0 Yes
30.5 71.63 68.41 4.70 811.29 43 0 Yes
32 64.22 56.23 14.21 387.06 42 0 No
11 31 59.04 56.22 5.01 175.29 51 0 Yes
30.5 59.58 56.19 6.03 374.28 42 0 Yes

+ The lower bound of the LP solution found using a pricing problem heuristic.

Table 7.2 shows for the three considered maxima the average working hours, how the duties
are distributed over the different groups and what the average working hours are per roster
group. Changing the maximum does not lead to a change in the distribution of the duties. In
most cases, the duty to group size ratio takes a value between 3.4 and 3.9 for all roster groups.
However, we do see an effect on the average working hours per week, which is possible since
duties differ in length.

When looking at the difference between the minimum and maximum average working hours
we observe that under 32 hours the difference is around 2.5 up to 5.5 hours. This means that
in the worst case a roster group has to perform 5.5 hours more duties in each week compared
to another roster group. This is not desirable, as this difference accumulates over the span of
several weeks. For example, if a roster group with size 12 works more than 5.5 hours every
week compared to another roster group, this difference accumulates to 66 hours over the whole
cyclic roster.

In case the maximum is set to 31 hours, the difference shrinks between 1.5 and 4.5 hours
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per week. Finally, considering the case of 30.5 hours, we obtain a difference between 0.5 and
3 hours per week. This is an improvement compared to the benchmark of using 32 hours as
maximum. Therefore, we can conclude that adding the average workload per week as duty
attribute does not lead to a fair roster in general. Instead, a strict upper limit is needed as well
to enforce a fair distribution of the workload.

Table 7.2: Comparison of the number of duties and the average working hours per week per roster
group when the maximum average working hours is adjusted.

Qroup 32 hours 31 hours 30.5 hours
size
Duties Working hours Duties Working hours Duties Working hours
per week per week per week

15 59 31.82 56 29.96 55 29.26
8 12 41 26.31 40 26.39 47 30.48
12 43 28.44 47 30.69 41 27.47
8 31 31.64 30 29.85 31 30.04
9 12 43 27.98 47 30.45 46 30.33
12 46 30.28 43 29.00 43 29.00
15 54 29.18 56 29.61 56 29.74
10 12 46 29.00 47 31.00 45 29.74
12 47 31.66 44 29.12 46 30.21
8 27 26.94 31 30.81 29 29.41
11 12 45 29.29 42 27.25 45 29.55
12 47 31.54 46 30.99 45 29.62

7.2 Length of a single day off

According to the second part of item 2 from the CLA, the length of a rest day is calculated
as 6 hours plus the number of rest days times 24 hours. In this section, we focus on a single
rest day, which should therefore be 30 hours or longer. In practice, the crew prefers to have a
rest day of 34 hours or more. We consider whether it becomes more difficult to obtain a roster
when changing the minimum length of a rest day and how this effects the length of single rest
days. For the length of a day off we consider 30, 32 and 34 hours, where the former one is also
denoted as the benchmark.

Table 7.3 shows that the lower bounds do not necessarily increase when we reserve more
time for a day off. Similar to the previous section, the results are obtained using a pricing
problem heuristic, leading to non-exact lower bounds. Also, when considering the number of
columns or iterations we do not see any changes. Only 1 out of 8 cases did not find a roster

in which all duties are covered. Finally, the number of times that the integer heuristic with
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local search finds a better start solution is quite similar to the benchmark. Also the computation

times are similar.

Table 7.3: Results obtained when the length of a single day off is 30, 32 or 34 hours. Lower bound and
gap are based on the pricing problem heuristic. The best found objective and the number of rejected
duties is reported. The last column indicates whether the solution from the integer heuristic is better

compared to the start solution.

. Lower Total Master Rejected Better than

ID Hour  Objective bound* Gap (%) time (s) iter. duties start solution
30 76.33 68.79 1096  889.14 44 0 No

8 32 76.75 68.90 11.41 520.29 39 0 No
34 77.12  68.82 12.07  557.28 44 0 No

30 59.68 57.26 4.23 170.34 36 0 Yes

9 32 59.78 57.28 4.37 165.48 36 0 Yes
34 59.86  57.26 4.54 155.66 32 0 Yes

30 72.35 68.44 5.71 467.80 51 0 Yes

10 32 72.59 68.40 6.13  252.47 35 0 Yes
34 10075.65 68.40 14629.72  755.79 41 1 No

30 64.22  56.23 14.21 387.06 42 0 No

11 32 59.61 56.18 6.10 159.41 33 0 Yes
34 59.12  56.16 5.27 177.89 44 0 Yes

+ The lower bound of the LP solution found using a pricing problem heuristic.

Table 7.4 reports for each roster group the number of times a single day off occurred and
what the minimum and average values are of their respective length. In some cases we see a
decline in the number of times a single day off occurs (e.g. instance 9 and 11) when the length
increases. This is as expected, since it becomes more difficult to schedule a single day off. For
instance, it costs less time to schedule two consecutive days off instead of having two separate
days off. The former option costs at least 54 hours, while the latter option costs at least 68
hours (if the length of a single day off is at least 34 hours). As a side effect we observe that
some roster groups only have two or more consecutive days off.

The table also shows that the minimum and average length of a single day off increases
when the minimum required length changes. In the benchmark setting we observe quite some
roster groups where a day off is less than 30.5 hours, which are not attractive for the crew
members. When the minimum requirement is set to 32 hours, we only observe two roster
groups where the minimum is lower than the preferred 34 hours. Finally, when considering the
minimum requirement of 34 hours it seems that for most instances it is possible to satisfy the
preferences of the crew. The exception is instance 10, for which no roster was found which

covered all duties (see Table 7.3).
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From the above, we can conclude it is possible to meet the demands from the train crew to a
certain extent. For most instances, finding a roster that covers all duties does not become more
difficult when changing the definition of a single day off. So, it is recommended to increase the

minimum length of a day off at least to 32 hours.

Table 7.4: Comparison of the minimum and average length of a single day off, when the length of a
single day off is adjusted.

ID Group 30 hours 32 hours 34 hours
size

obs min mean obs min mean obs min mean
15 8 3030 3827 13 33.05 3797 10 36.13 41.84
8 12 8 31.37 38.29 7 3732 41.10 9 3420 38.46
12 8 32.12 3997 8 35.88 40.52 5 38.37 42.85
8 6 33.82 4142 2 44.83 49.38 3 3585 3822
9 12 3 3650 41.01 0 - - 2 4292 45.60
12 2 3398 38.04 4 3535 41.36 3 3507 4198
15 6 3142 46.00 9 3285 42.36 6 34.15 41.83
10 12 3 3020 4043 5 38.38 46.29 8 3643 41.66
12 3 4393 46.08 2 47.28 48.90 7 34777 38.99
8 9 30.20 38.54 0 - - 0 - -
11 12 6 34.08 37.74 4 4290 4447 5 3550 4191
12 16 30.02 39.53 4 38.85 46.17 6 36.38 45.16

7.3 Pattern preferences

A roster can often be broken down into a series of recurring patterns. For instance, patterns such
asE-R-LorL-R-R-E are common in most rosters. Crew members at NS often prefer
rosters where the days off are scheduled in an attractive way. Therefore, we only consider three
patterns that include at least one day off: item 6, 7 and 10 from the roster preferences. We
abbreviate these patterns by RP6, RP7 and RP10, respectively. In this section, we investigate
whether we can influence the number of times these patterns occur. The first pattern, RP6,
corresponds the patterns E - R - L and E - R - N. Similarly, the patterns L - R-R - Eand N - R
- R - E correspond to RP7. Finally, the pattern R - duty - R belongs to RP10. For each roster
preference, we increase their respective parameter weight by a factor of 10. This leads to the
three options shown in Table 7.5, which are compared with the benchmark (option 0). Only the
absolute value of the parameter is shown in the table. The patterns denoted by RP6 and RP7
are preferred, so the actual parameter is a (negative) reward. The pattern RP10 is not preferred,

so this corresponds to a (positive) penalty.
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Table 7.5: Overview of the relative parameter weights for the occurrence of each pattern.

Specification RP6 RP7 RPI10
0 0.1 0.1 0.1
1 1.0 0.1 0.1
2 01 1.0 0.1
3 01 0.1 1.0

Table 7.6 shows that the lower bound and the objective differ when the relative weights are

changed. This is quite logical, since we changed the parameters in the objective function. The

number of columns and iterations stays roughly similar. Finally, we see that in almost all cases

the integer heuristic is able to outperform the start solution. In the final solutions, no duties are

rejected. Also the computation times are similar.

Table 7.6: Results obtained when using a different parameter specification. Lower bound and gap are
based on the pricing problem heuristic. The best found objective and the number of rejected duties is
reported. The last column indicates whether the solution from the integer heuristic is better compared
to the start solution.

o Lower Total Master Rejected Better than

ID Spec.  Objective bound* Gap (%) time (s) iter. duties start solution
0 7633  68.79 10.96 889.14 44 0 No

8 1 170.12  151.60 12.22 450.83 86 0 Yes
2 92.21 86.70 6.35 216.44 49 0 Yes

3 127.82  117.60 8.69 350.00 33 0 Yes

0 59.68  57.26 4.23 170.34 36 0 Yes

9 1 140.09 137.66 1.77 345.66 43 0 Yes
2 81.34  77.86 4.47 118.91 34 0 Yes

3 103.45  99.03 4.46 168.96 42 0 Yes

0 7235  68.44 5.71 467.80 51 0 Yes

10 1 165.14 147.64 11.86 354.02 65 0 Yes
2 87.08  79.88 9.02 314.22 66 0 Yes

3 142.29 116.13 22.53 566.93 53 0 No

0 64.22  56.23 14.21 387.06 42 0 No

11 1 130.75 121.21 7.87 209.75 61 0 Yes
2 71.83  65.19 10.18 311.89 55 0 Yes

3 102.39  95.81 6.87 184.01 45 0 Yes

+ The lower bound of the LP solution found using a pricing problem heuristic.

Table 7.7 compares the number of times each pattern occurs with respect to the benchmark

for each roster group for the four specifications (the actual count can be found in Table 9.7 in

the Appendix). Specification 1 clearly leads to more patterns of the type RP6 for all instances.

In most cases, this also leads to a decrease in the number of patterns of type RP7. This is as

expected, since the number of rest days is limited. For some instances, we also observe a slight
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increase in the pattern RP10.

When comparing specification 2 with the benchmark, we observe in some cases an increase
in the number of times RP7 occurs. The increase is lower, even though we also increased the
parameter in the objective by the same factor as in specification 1. This can be explained by
the fact that patterns of type RP7 are longer, so therefore more difficult to schedule as well.
Additionally, two rest days are needed to create a pattern of type RP7, whereas the pattern
RP6 only needs a single rest day. In most cases, the number of times RP6 occurs drops. As
mentioned before, there is a substitution effect between the patterns RP6 and RP7, since the
number of rest days is limited.

In the final specification, we see a large drop in the number of times RP10 occurs. For
example, for instance 8 and 11 the number of times RP10 was present dropped by 12 and 19,
respectively. Only instance 10 sees an increasing number of RP10 patterns, because for this
instance the start solution is used.

Overall, changing the objective function does not lead to large changes in computation
times. Furthermore, the preferences of the crew members can be taken into account by adjusting
the relative weights, which can lead to more attractive rosters. However, for some patterns it is
easier to control the number of times they occur, which depends on the length of the pattern or

on the availability of a certain duty type or rest day.

Table 7.7: Increase or decrease in the number of times a certain pattern occurs compared to the
benchmark, when the relative parameter weights are adjusted.

Group 1 2 3
S17¢€

RP6 RP7 RPI0 RP6 RP7 RPI0 RP6 RP7 RPIO
5 4 1 1 0 3 1 1 3 3
8 2 0 0 6 2 0 4 0 1 -6
2 2 3 o 4 1 2 2 1 3
8§ 3 1 2 3 1 0 3 0 -1
9 2 3 0 I 11 =2
12 3 1 1 1 a1 2 0 -
5 2 0 3 3 2 2 0 7
10 12 5 - 5 2 4 5 5 3 9
2 3 2 2 a1 2 7 1 0 2
§ o 1 7 =2 0 5 =2 0 =8
11 2 4 2 6 1 -1 1 3 1 2
2 4 2 1 4 2 7 2 2 9
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Chapter 8

Conclusion

In this thesis, we have shown how to model the Cyclic Crew Rostering Problem (CCRP) in
order to obtain attractive rosters for groups of employees. The model is mostly based on the
findings of Breugem (2020), who analysed different formulations of the CCRP. In this formula-
tion we use both hard and soft constraints, in order to model the rules as stated in the collective
labour agreement (CLA) and roster preferences, respectively. Furthermore, we make use of
duty attributes in order to account for fairness between different roster groups. More impor-
tantly, it is shown that basic rosters, which indicate a pattern containing duties and rest days,
are no longer required as input, which was previously the case at NS. This contributes to the
existing trend in the literature to solve the CCRP in a single phase.

We solve the problem using a column generation approach, in which only the root node is
solved. In order to speed up the column generation approach, we propose two ways to create
start solutions. A basic Randomised Insertion Method (RIM) and a more time consuming
Greedy Randomised Adaptive Search Procedure (GRASP). The pricing problem is modelled
as a Shortest Path Problem with Resource Constraints (SPPRC). In order to deal with larger
instances, we propose the use of forward and backward completion bounds, which try to prune
as many sequences as possible. These completion bounds calculate whether a sequence can
still improve on the current shortest path that is found. Furthermore, we also propose a pricing
problem heuristic based on the backward completion bounds. The LP solution found by the
column generation approach has to be transformed into an integer solution, for which several
strategies are proposed.

The proposed solution approach is applied to real-life instances from NS. Due to the large

number of parameters and strategies we first use a set of small instances to fix the best settings.
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We demonstrate that initialising the column generation approach with a set of start solutions
drastically shortens the computation time. Furthermore, we show that the RIM is preferred
over the GRASP, even though the latter provides start solutions with a better objective value.
Furthermore, the results show that the pricing problem is improved when forward and backward
completion bounds are present. We can also opt for a pricing problem heuristic, which leads
to fast computation times, while still providing an LP solution close to optimality. Finally, the
comparison of the integer heuristics favours a dive-and-fix procedure, followed by a randomised
insertion method and a destroy and repair heuristic. The latter two are only applied if not all
duties are covered in the roster by the dive-and-fix procedure.

After fixing all parameters and strategies, a sensitivity analysis is performed. The sensitivity
analysis is only applied on instances that contain three roster groups, in order to also evaluate
fairness between the roster groups. Firstly, we show that it is necessary to include a strict upper
limit when enforcing that the average workload is equally spread over the roster groups. These
rosters can be solved using a similar computation time as before, while also having a similar
objective value. The second analysis shows that increasing the minimum length of a single
day off does not heavily influence the computation time nor the objective value. We show it is
possible that all single days off have a length of at least 32 hours. When increasing this to 34
hours, we are not always able to find a roster that covers all duties. In the final analysis, the
weights given to certain patterns are changed. It is possible to change the distribution of the
number of times each pattern occurs. However, for longer patterns these changes are smaller
compared to the shorter patterns, because longer patterns are more difficult to schedule and
require more of a specific duty type or rest day.

To conclude, this thesis shows that NS no longer requires basic rosters to solve the CCRP.
This means that without manual intervention it is still possible to obtain satisfactory rosters
for their employees. Furthermore, in the sensitivity analysis it is shown that the roster can be
improved in terms of fairness and attractiveness. NS can use these results in upcoming CLA

negotiations.
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Chapter 9

Discussion

In this chapter, we first discuss how the restrictions that are made on the assumptions influence
the model. Afterwards, we show where potential improvements can be made in the solution

approach and recommendations for future research are given.

9.1 Limitations

As mentioned before we simplify item 3 from the CLA, by only using periods of 7x24 hours
(with a break of at least 36 hours) and only considering periods that start at midnight. In case
we would also allow periods of 14x24 hours (with a break of at least 72 hours), we obtain more
freedom when creating rosters. This means it is easier to find a feasible roster. It is difficult
to assess whether the rosters obtained in this way are more attractive as well, since the breaks
might not be divided equally over the weeks.

In this thesis, the Red Weekends (item 7 from the CLA) are implemented using explicit
constraints. A Red Weekend is defined as a free weekend where the last duty ends before
Friday 4:00 p.m. This is possible since we assume that duties on Monday start no earlier than
Monday 4:00 a.m., such that the rest period is always at least 60 hours. This is also a restrictive
assumption, since according to the CLA a weekend of at least 60 hours where the last duty ends
on Saturday 12:00 a.m. also counts as a Red Weekend. The results show that our definition of
a Red Weekend is often the bottleneck in order to create a feasible roster in which all duties
are covered. A potential solution to this problem is to change the definition of a week to a
length of 8 days. For example, a week starts on Monday and also ends on a Monday. In that
case having a Red Weekend is a property belonging to the week. The master problem has to

be slightly adjusted, to force subsequent clusters to have a similar duty or rest day when they
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overlap. This formulation would allows more options for a Red Weekend, such that it is easier
to find a feasible roster. However, as far as we know there are no results on the performance of

overlapping clusters.

9.2 Recommendations

The performance of the backward completion bounds are entangled with the definition of the
duty types. Currently, we solely consider early, late and night duties. This means we can only
ban all early duties, if we are sure that none of them improves the current shortest path. In case
we consider more specific types of duties, each duty type group contains duties that are more
similar to each other. This could lead to tighter bounds, such that we can faster prune a group
of duties. However, when having too many groups we only prune a few duties at the same time.
This might also slow down the entire pricing problem.

For finding an integer solution we make use of a heuristic approach. This can be improved
in several ways. For example, the destroy and repair method in the local search takes a lot of
computation time, yet it is still unable to cover all the duties. The destroy and repair heuristic
might be improved by targeting specific parts of the roster (e.g. a single roster group). Instead
of using an integer heuristic, it is also possible to use a branch-and-price framework. This is
guaranteed to find the optimal integer solution. This can be used for a fairer comparison in the
sensitivity analysis.

Currently, the solution approach is only applied on the crew base in Amersfoort. It is
interesting how the performance changes when larger crew bases, such as the one in Utrecht
are considered. Also, no instances containing train drivers are considered. When creating
rosters for train drivers, we have to consider which line or which train type they are allowed
to operate on. The model presented in this thesis can be extended to incorporate these kind of
restrictions. It is interesting to see how the performance of the solution approach differs when
creating a roster for train conductors or drivers.

At NS, some roster groups have the restriction that they only perform a single duty type (e.g.
early duties). This can also be readily incorporated in the solution approach. It is expected that
adding such a restriction simplifies solving the instances as well.

Furthermore, more duty attributes may be added to increase the fairness between roster
groups. For example, Red Weekends and night duties are not explicitly divided over the differ-

ent roster groups, leading to an unfair distribution.
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Finally, it might be interesting to make the size of the roster groups, which is a now an
input, a decision variable as well. A larger roster group has as a benefit that more variation
is present for the employee. On the other hand, a shorter roster might have a more structured

rhythm in terms of free weekends. This might lead to more attractive rosters.
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Appendix

Table 9.1: Total computation time (in seconds) when adding start solutions using the RIM for small
instances.

ID Start solutions
0 10 20 30 40 50
1 180.53 63.70 53.81 56.61 50.03 47.91
2 168574 42930 366.55 325.81 342.33 24798
3 1864.26 37520 326.12 33222 307.63 277.18
4 3089.51 662.84 518.88 50340 910.85 1173.94
5
6

5335.77 673.85 1472.83 1417.71 1106.88  660.60
963.98 124.05 12829 209.26 116.10 90.57
Average 2186.63 388.16 477.75 474.17 47230 416.36

Table 9.2: Number of master iterations when solving the root node when adding start solutions using
the RIM for small instances.

ID Start solutions

0 10 20 30 40 50
109 36 29 28 24 23
178 46 40 33 33 32
173 47 41 42 38 35
172 42 33 32 31 32
178 39 36 33 31 27
158 39 39 41 30 28
Average 161.33 41.50 36.33 34.83 31.17 29.50

(@) NNV NSRSV (O R
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Table 9.3: Total computation time (in seconds) when adding start solutions using the GRASP for small
instances.

ID Start solutions
0 10 20 30 40 50
1 180.53 32.63 5891 61.72 67.66 66.04
2 1685.74 331.20 129.73 136.47 14265 167091
3 1864.26 26627 246.47 27278 255.11  238.65
4 3089.51 524.13 54990 550.63 492.02 489.78
5
6

5335.77 505.28 584.44 856.50 1038.83 1067.34
963.98 239.79 256.33 32322 318.33 340.74
Average 2186.63 316.55 304.29 366.89  385.77 395.08

Table 9.4: Number of master iterations when solving the root node when adding start solutions using
the GRASP for small instances.

ID Start solutions

0 10 20 30 40 50
109 22 18 15 12 12
178 33 26 23 21 22
173 32 27 25 23 22
172 33 26 24 24 24
178 28 28 24 24 22
158 30 22 26 20 20
Average 161.33 29.67 24.50 22.83 20.67 20.33

AN W=

Table 9.5: Results obtained using the preferred settings. The best found objective and the number of
rejected duties is reported. The last column indicates whether the solution from the integer heuristic is
better compared to the start solution.

ID Objective Lower bound Gap (%) Columns Master  Rejected  Better than

iter. duties start solution
1 14.79 13.97 5.88 734 29 0 Yes
2 10023.27 21.36 46831.62 3978 34 1 Yes
3 22.07 20.97 5.21 2843 25 0 Yes
4 23.27 21.74 7.04 3932 17 0 No
5 23.60 21.82 8.15 3034 22 0 No
6 22.53 21.24 6.05 2060 23 0 Yes

Table 9.6: The total computation time followed by the time spend on the individual parts of the
solution approach when using the preferred settings.

Total Start Master Pricing Integer Local search

D time (s) time (s) time (s) time (s) time (s) time (S)

1 4.51 1.79 0.00 1.68 1.04 -
2 26.07 3.02 0.00 2.94 7.48 12.63
3 10.66 1.30 0.00 2.18 7.17 -
4 35.77 2.37 0.00 0.79 4.39 28.22
5 22.70 297 0.00 0.74 1.69 17.30
6 5.88 0.95 0.00 1.93 2.87 -
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Table 9.7: Comparison of the number of times a certain pattern occurs, when the relative parameter
weights are adjusted.

Group

ID .
size

0 1 2 3

RP6 RP7 RPIO RP6 RP7 RPIO RP6 RP7 RPIO RP6 RP7 RPIO
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