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Abstract
The vehicle routing problem represents one of the most well-known combinatorial NP-hard

problems in the field of integer programming. Contrary to its deterministic counterpart, the
vehicle routing problem under demand uncertainty allows for uncertain customer demands.
In this paper, we address the uncertainty of demand by proposing a column generation
heuristic based on robust optimization and stochastic programming. These two approaches
model the uncertain parameter of an optimization problem as random variables, and their
task is to find the cheapest set of routes which remains feasible in all or most of the demand
scenarios. In our suggested branch-and-price method, a naive labelling is adopted with the
aim of obtaining close-to-optimal solutions in a reasonable amount of time. The models are
tested on three sets of standard literature benchmark instances and compared in terms of
additional routing cost and unsatisfied demand. Computational studies demonstrate that
the proposed heuristic is able to quickly generate high-quality solutions. Furthermore, a
sensitivity analysis provides useful insights concerning the impact of the probability of route
failure and the size of the uncertainty support on transportation costs.
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1 Introduction

Vehicle routing problems have applications in many various domains, particularly in the
logistics and freight transportation sectors. They concern the distribution of goods and
services between production facilities and end customers, such as courier and food delivery,
waste collection, ride service hailing and maintenance engineers.

In deterministic environments, it is assumed that the customer demand is fixed and known
in advance. However, in many practical contexts, customer demand is not completely known
at the time of determining optimal vehicle routes, and it is only revealed upon the arrival of
a vehicle to a customer. As a consequence, in this study we assume that customer demand
is subject to uncertainty, that is, we consider a set of possible demand scenarios.

In addition to customers demand, other features of the VRP can be subject to uncertainty.
For example, Bent and Van Hentenryck (2004), Hvattum, Lokketangen, and Laporte (2006)
and Smith et al. (2010) investigate dynamic problems where the presence of customers is
subject to uncertainty. Similarly, Lee, Lee and Park (2012) and Adulyasak and Jaillet (2016)
assume uncertain travel times.

The vehicle routing problem is a well known NP-complete problem and even solving the
deterministic version to optimality with a standard MIP solver becomes increasingly time
consuming as the number of customers grows. Therefore, the aim of this study is to develop
performing algorithms that find optimal or sub-optimal solutions for the VRP with demand
uncertainty in a reasonable amount of time.

Specifically, we are going to model the uncertainty of the customer demand by means of
robust optimization and stochastic programming, which represent two of the most well-known
approaches to deal with uncertainty. Furthermore, solutions are going to be constructed
through column generation heuristics, where routes are generated based on the definition of
feasible routes corresponding to the two approaches.

Finally, we compare the robust solution against the stochastic solution on families of
small and medium-sized instances. The comparison investigates how robust and stochastic
solutions are able to ensure us against unsatisfied demand at the expense of facing additional
costs compared to deterministic optimal routes. The results suggest that robust solutions
provide no unmet demand, even though they result in elevated routing costs. On the other
hand, stochastic solutions represent a good balance in terms of trade off between the two
performance measures.

The remainder of the paper is organized as follows. Section 2 defines the VRP and
introduces some notation. Section 3 discusses previous studies concerning ways to deal

with demand uncertainty and various solution procedure approaches. In Section 4, our



proposed column generation heuristic is explained, and feasibility conditions associated with
both robust and stochastic routes are outlined. Section 5 presents measures used for the
comparison of the two methods and a description of the data sets. Section 6 is devoted to
computational analyses, where the efficiency, the solution quality and the solution sensitivity
with respect to changes in the size of the uncertainty set and variation of route reliability

level are assessed. We provide some concluding remarks in Section 7.

2 Problem Description

The Vehicle Routing Problem is a combinatorial optimization and integer programming prob-
lem whose task is to find the optimal set of routes for a fleet of vehicles traversing in order
to service a given set of customers.

A VRP is modeled on a weighted, complete graph G = (V U {0}, E), where V is a set of
customers, 0 represents a depot, and every edge e € E in the graph has a cost ¢.. The VRP
has been deeply investigated and many extensions have been proposed in the literature (Toth
and Vigo, 2014). One of the most well-known extensions is the so called capacitated VRP,
where the vehicles operating from a central depot have a limited capacity (). Furthermore,
only k vehicles are available for servicing the customers. Based on the problem details, it
is possible to model the load of the vehicle to be either increasing or decreasing along the
route. They correspond to picking up and delivering goods to the customers and this can be
done by alternatively thinking of the load as the empty space in the vehicle.

A route is a cycle in G, starting and ending at the central depot, visiting every customer
at most once and such that the total demand of the customers on the cycle does not exceed
the vehicle capacity. The cost of a route equals the sum of the cost of the arcs traversed in
the cycle. Figure 1 below shows the solution to a hypothetical VRP instance.

As mentioned earlier, the assumption regarding deterministic demand is now relaxed.
That is, we allow customer demand to vary within a certain interval of values. The precise
amplitude of deviations will be specified later in the paper. This means that, if we want to
anticipate the adverse behaviour of nature, which by default adds complexities to the real
world, we need to find a set of routes which remains feasible in all or most of the cases.

Specifically, a route is considered to be robust feasible if assuming the highest possible
demand for each customers does not cause a violation of the capacity constraint. On the
other hand, a route is stochastic feasible if the probability that the total load fits the vehicle
capacity is above a specified threshold.

The aim of the VRP under demand uncertainty is indeed to find the cheapest set of

routes in terms of routing costs, such that operating vehicles will not have to modify their



Figure 1: VRP solution

original trip in case of demand load excess. That is, by guaranteeing really high probabilities

of success, we will not face any additional routing and back ordering costs.

3 Literature Review

Vehicle routing problems under uncertainty have received much less attention in the litera-
ture, compared to the deterministic variants, which have been deeply investigated.

There are several different VRP formulations and according to Ordonez et al. (2007), each
of them leads to a different behavior in the observed runtimes of a fixed Integer Program
(IP) solver. In particular, the authors verified that solving the so called Miller—Tucker—Zemlin
(MTZ) formulation was more efficient than other arc-based formulations considered in their
study.

Since the interest is in incorporating uncertainty in demand, the nature of the formula-
tion with respect to the uncertain parameters becomes an important criterion in identifying a
suitable formulation for robust optimization frameworks. Firstly, it is commonly known that
inequality constraints involving uncertain parameters are preferred to equality constraints.
Therefore, in the context of robust optimization, Sungur et al. (2008) show that the MTZ



formulation is particularly suited for specific uncertainty sets, as the uncertain demand ap-
pears only on one inequality constraint. That is the case for uncertainty sets constructed as
linear combination of scenario vectors with weights belonging to the following three types
of bounded set: namely convex hull, box and ellipsoidal. Sungur et al. (2008) derive the
robust counterpart RVRP for the capacitated VRP and they show that for these three sets
the resulting RVRP problem is an instance of the CVRP. However, these types of uncertainty
set result to be overly conservative. Furthermore, a CVRP becomes harder for more capacity
constrained problems and robust RVRPs are usually more capacity constrained than the cor-
responding deterministic problem. Therefore, solving RVRPs is likely to be more challenging
than obtaining solutions for the deterministic versions.

According to Pecin et al. (2017), the best performing exact algorithms for the capacitated
vehicle routing problem are based on the combination of column and cut generation. In
their work they propose a new branch-cut-and-price (BCP) algorithm which incorporates
and combines for the first time several elements found in previous works. For instance,
they make use of route enumeration, strong branching and limited memory subset row cuts.
Furthermore, the columns in the BCP are associated with ng-routes instead of elementary
routes. In an ng-route, multiple visits to a certain customer ¢ are allowed, given that at least
one node j such that i ¢ NG(j) is reached between those successive visits. Here NG(}j)
denote a closest neighborhood of node j. That is, let k£ indicate the size of the neighborhood,
NG(j) represents the k nearest customers to node j. Pecin et al. (2017) were able to solve to
optimality instances with up to 199 customers and they could obtain solution for some larger
instances with up to 360 customers, which have only been considered before by heuristic
methods.

Feillet et al. (2004) propose an exact solution procedure for the Elementary Shortest
Path Problem with Resource Constraints (ESPPRC). The authors extend the classical label
algorithm, originally developed for the nonelementary path version of this problem, by in-
troducing the concept of unreachable nodes within the label structure. Every partial path is
associated with a label indicating the resource consumption. The goal is to eliminate labels
by means of dominance rules that incorporate the set of unreachable nodes when labels are
compared.

In the context of stochastic programming, Noorizadegan and Chen (2018) propose a
flexible branch-and-price method based on column generation. The authors formulate two
variants of the capacitated VRP with Stochastic Demand (CVRPSD): a chance-constrained
CVRPSD and a distributionally robust chance-constrained CVRPSD, in which probabilistic
capacity constraints and distributionally robust probabilistic capacity constraints, respec-

tively, are imposed in order to control the probability of route failure. Noorizadegan and



Chen (2018) also conducted a simulation experiment to assess the solution quality and their
results suggest that the chance-constrained CVRPSD outperforms the distributionally ro-
bust chance-constrained CVRPSD in terms of expected routing cost. This is because the
distributionally robust chance-constrained CVRPSD requires less demand information and,
in order to be robust feasible with respect to a family of distributions, rather than a single
distribution, it inevitably results in being overly conservative and risk averse. Therefore,
even though the distributionally robust chance-constrained CVRPSD results in extremely
low failure costs, due to the high reliability, its total expected cost is greater than the cost
of the chance-constrained CVRPSD.

4 Methodology

Since we are dealing with customers’ demand under uncertainty, it is reasonable to address
one of the most significant variants of the VRP, the Capacitated Vehicle Routing Problem
(CVRP), in which the vehicle capacity is limited. In this study, we investigate two different
approaches which incorporate the uncertain parameter: stochastic programming and robust
optimization.

Stochastic programming models the uncertain parameters of an optimization problem as
random variables with known probability distributions. To this extent, we study chance-
constrained problems, where the decision maker selects here-and-now vehicle routes that
satisfy customer demand with a pre-specified probability.

Similar to stochastic programming, robust optimization models the uncertain parameters
of an optimization model as random variables. However, in this case the distribution of the
random variable is not required, since the aim is to determine a minimum cost delivery plan
that remains feasible for all anticipated demand realizations.

Our proposed heuristics are based on column generation, hence the idea is to model the
problem using a set partitioning formulation and solve it with a branch-and-price method.
We define Rpo (resp. Rgp) as the set of all robust (resp. stochastic) feasible routes. For every
route r € Rro(Rsp), define a binary parameter a;. that equals 1 if customer i € V' \ {0} is
visited in route r, and 0 otherwise. Furthermore, define ¢, as the cost of route r and introduce
a binary decision variable z, that equals 1 if route r is selected and 0 otherwise. Let k denote
the number of available vehicles. The restricted master problem is initialized with a small
subset of feasible routes R, C Rro (Rgp C Rgp). For instance, the restricted master
problem of the stochastic model can be formulated as the LP-relaxation of the following Set
Partitioning Problem (SPP):



(SPP) min ZreR’SP Cr2r (1)
s.t. ZreR’SP Qirzy = 1 Vi e V\ {0} (2)
Ser, o <k ®)
2, €B Vr € Ryp (4)

Subsequently, the pricing problem aims at finding new feasible routes that improve the
current solution. Therefore, the LP-relaxation of the SPP is solved, given the huge amount
of columns, and routes are iteratively generated and added to the master problem. However,
it is important to note that there are some differences in the definition of feasible routes
between deterministic, robust and stochastic models. Hence, the construction of new routes
in the pricing problem differs among the models and in general it holds that Rro C Rsp C R,
where R denotes the set of deterministic feasible routes.

When the column generation algorithm terminates, the obtained LP solution represents
a lower bound for the optimal objective value. Hence, optimizing over all generated columns
through an Integer Programming (IP) problem allows us to obtain an upper bound and
an integer solution. Figure 2 below shows an outline of our proposed column-generation

heuristics.
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Figure 2: Column Generation Heuristics
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4.1 Robust Optimization

It is assumed that only the support U of the demands is known, and no information about
the probability distribution is available. Therefore, it is fundamental to define reasonable
uncertainty sets having specific shapes, such that determining whether a route satisfies the
capacity requirement for every ¢ € U can be easily checked.

First of all, the uncertainty support U should be a nonempty and closed polyhedron.
Additionally, U cannot be chosen to be very large, because the robust CVRP may become
too risk averse or even infeasible. Gounaris et al. (2013) show that the robust CVRP can be
reduced to the deterministic CVRP if some conditions are satisfied. For instance, this is the
case if the support of the customer demands is rectangular. In order to avoid scenarios where
all customer demands attain their worst-case realizations simultaneously, which inevitably
results in too conservative solutions, we focus our attention on nonrectangular supports.

We consider one of the two broad classes of demand supports U proposed by Gounaris et

al. (2013), namely budget supports. These supports are partitioned budget polytopes.

4.1.1 Budget Uncertainty Set

We are going to consider budget uncertainty sets of the form

U:{qERﬁ:qE[g,@],zéﬁﬁblforl:1,2,..,L} (5)
ieB,

These types of sets constitute the intersection of the n-dimensional hyperrectangle [g, ],
with L budget constraints associated with subsets of customers B; C V.

Therefore, a route r € Rro composed by a set of customers S is feasible if the following

three conditions are satisfied:

e (a) the route starts and ends at the depot,
e (b) each node (customer) is visited at most once,

e (c) the maximum of )., ¢ over U is at most ().

Condition (a) and (b) can be satisfied within the route construction procedure. On the
other hand, condition (c), the load capacity constraint will be checked every time a path is
extended to ensure feasibility.

Gounaris et al. (2013) prove that if the partitions of customers are disjoint, then it is pos-
sible to efficiently evaluate the corresponding robust rounded capacity inequality constraints.
In other words, given a route composed by a set of customers ., the maximum of ), _ g; over

U, which determines whether the route is feasible or not, can be computed in time O(]S]).



It is assumed that the sets {B;}L | in (5) are disjoint, that is, B; N By = @ for | # I'.
Then for any customer subset S C V, the maximum of ), ¢; over U from (5) is calculated

by

>_g;+ ) min {bl—Zin > (cii—gi)} (6)

i€s =1 i€B;  ieSNB;

The above formula allows us to compute the maximum of ). _o ¢ quite efficiently for
disjoint budget uncertainty sets. Nevertheless, it is possible to further speed up the cal-
culation in case the maximization problem requires to be repeatedly solved for similar sets
of customers. That is, given a set of customers Si, if customers set Sy is obtained from
S1 by adding or removing a customer, then the maximum of ), ¢ ¢; can be derived from
the maximum of }, ¢ ¢; in constant time O(1). Since feasible routes are going to be con-
structed iteratively building upon partial solutions via dynamic programming, we will be able
to quickly generate multiple robust feasible routes. The procedure is as follows. For a given
customer set S, z = maxgey Y ;. ¢; stores the maximum cumulative customer demands over
S. Furthermore, associated with each budget [ € L, we have a variable p; = ;. gp (7 — gi)
which computes the sum of differences between upper and lower demand bounds of those
customers in S that belong to the budget B;. Finally the variable 7 = ). ¢ q, calculates the
sum of lower bounds of all customers in S. The initialization S = @ corresponds to the case
(z,p,m) = 0. Then, if a customer ¢ ¢ S belonging to budget [ € L needs to be added to S,

the values 7, p; and z are updated as follows:
o IOV L 7.‘.old +gz’
o PV P+ (T~ ),
e oW . pnew + Zlel min {bl — ZieBl giv p?ew}'

By doing that, for every route composed by a subset of customers S, the maximum of

ZiES q; over U is the value of z.

4.2 Stochastic Programming

In order to compare the solution quality and solving time of the two approaches, we are
going to model the chance-constrained problem in a similar way. We will use the same set
partitioning formulation as in the robust case and solve it with a column generation heuristic.

There is only one significant difference regarding the generation of feasible routes com-
pared to the robust model. That is, a route does not need to satisfy the capacity requirement

for all demand realizations, but the probability of a failure should be below a fixed threshold.
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By ’failure’, we refer to the case where the total realized demand of the customers in a route
exceeds the vehicle capacity Q.
Therefore, a route r € Rgp is feasible if it satisfies conditions (a), (b) and (d), which is

stated below:

e (d) the total realized demand from all customers visited in the route is within the

vehicle capacity with probability (1 — €).

4.2.1 Probabilistic capacity constraints

In line with Noorizadegan and Chen (2018), in order to control the probability of route failure

we impose probabilistic capacity constraints as follows .

P[Zq,s@]zl—e (7)

€S
Here, S denotes the set of customers visited on the route. From a computational point of
view, the Normal distribution is particularly effective and easily tractable, and that is why we
are going to make use of it. Although Poisson distribution and scenario-based distributions
might result to be more realistic, they are computationally more expensive. If we assume that
the demands follow independent normal distributions: ¢; ~ N(ju;, 0?), then the probabilistic

constraint of (7) is in the form of:

Zies<%’ — [4;) < Q- Zies i
V ZieS of vV Zies o7

Let ®() denote the Cumulative Distribution Function (CDF) of the Standard Normal
Distribution and ®~!() its inverse. This condition implies that if % < &1 —e),

2
ies 9;

then the route visiting the set of customers S is not feasible, otherwise the feasibility condition

Plz=

>1—c¢ (8)

is satisfied, which means that the vehicle load fits capacity with probability at least (1 — ¢€).

4.3 Column Generation Heuristic

4.3.1 Master Problem

As previously mentioned the algorithm consists in solving a set partitioning formulation
through column generation. Following the notation introduced at the beginning of Section
4, consider the robust optimization approach. Let ¢, denote the total distance traveled in

route 7. The restricted master problem can be formulated as follows:

11



(RMP) min ZTGR%O Cr2y 9)

s.t. ZreR’RO a2y =1 Vi e V\ {0} (10)
DreRy, r <k (11)
2, >0 Vr € Ry (12)

The objective function (9) minimizes the total routing cost. Constraints (10) make
sure that each customer is visited exactly once and restriction (11) limits the number of
routes/available vehicles. Finally, constraints (12) guarantee that the LP-relaxation is solved,
since the aim is to solve the problem by column generation.

Note that the robust model is the most conservative and risk-averse. Therefore, if an
instance is robust feasible, then it is certain to be also stochastic and deterministic feasible.
On the contrary, if an instance turns out to be infeasible in the robust approach, the con-
straint limiting the number of available vehicles (11) is relaxed, in order to obtain a solution
eventually. In addition, this relaxation is also applied to the deterministic and stochastic
scenarios to make the comparison between the models unbiased for that given instance. In
our experiment, a given instance is classified as infeasible if either a solution to the IP could
not be found or the total running time of the algorithm exceeds one hour. In the results
section, instances marked with an * represent the fact that the constraint concerning the

number of available vehicles (11) is relaxed.

4.3.2 Pricing Problem

The pricing problem, whose goal is to generate sets of routes that are demand feasible,
amounts to solving minimum cost “robust” constrained shortest path problems (Pessoa et al.
2018). Denote by « and f3; the dual variable of the set partitioning formulation corresponding
to constraints (11) and (10), respectively. We propose a labeling algorithm based on dynamic
programming in order to solve this shortest path problem with respect to the arc reduced
costs, where the reduced cost of an arc a = (i, ) € A is defined as follows.
o —(+0;)/2 ifi=0
Ca=19Co— (Bi+5;)/2 ifi,jeV\{0}
ca— (Bit+a)/2 ifj=0
Note that a route is feasible if it satisfies conditions (a), (b) and (c) in the robust model
and conditions (a), (b) and (d) in the stochastic one.
In the proposed algorithm, a set of labels are defined for each node. Furthermore, some
conditions and dominance rules are used in order to manage only useful labels. Let L(i) =
{L1(7), La(7), ..} be the set of labels at node i. Each label L;(7) is associated with a path

to node ¢ and consists of three components: L;(i) = (i), d,(7), p;(7)), containing the total

12



reduced cost (i) of the path, the total demand load d,(i) of the path and the sequence of
nodes p,(i) of the path. It is important to mention that the definition of demand load d,(i)
differs between robust and stochastic settings. The exact distinction will be formalized later
in the paper.

Let W indicate the list of all labels in | ;. L(i) arranged in lexicographic ascending order,
depending on the three label components. The labelling algorithm starts from the central
depot 0 and extends the path to its neighborhood N(0). We then add the extended path
to customer ¢ to the label set of node i (L(7)) and set W if certain conditions are satisfied.
More precisely, given two labels at node i L;(i) and Lo(7), we say that L;() is dominated by
Ly(i) if &3(i) < €1(4), do(i) < dy(i) and po(i) € pi(i). This means that any feasible extension

of the dominated label is also a feasible extension of the dominant label.

Unreachable Nodes

Feillet et al. (2004) propose an alternative definition of label and dominance rules. That
is, in the dynamic programming algorithm each label L,(i) associated with a path to node
¢ is characterized by the three components described in the previous paragraph and an
additional fourth component (i), the set of unreachable nodes. Let us define the meaning
of unreachable node. For each path L,(i) from the origin node to a node i, a node k is said
to be unreachable if it is included in L:(7) (k € p(i)) or if extending the path L.(7) to node k
results in a violation of the capacity constraint, meaning the current capacity load prevents
the path from reaching node k. When a path is extended, visitation resources corresponding
to customers who cannot be visited anymore are consumed. That occurs either due to
resource constraints or because they have already been visited. Therefore, every time a new
label is created we need to assess feasibility of every outgoing arc from the last considered
node.

According to Feillet et al. (2004), this algorithmic modification is computationally at-
tractive because the dominance relation becomes sharper. More precisely, given two labels at
node i L;(i) and Lo(i), we say that L (i) is dominated by Lo (i) if &»(i) < &1(i), da(i) < dy ()
and wus (i) C uq (7).

Naive Labelling

Section 6.1.1 compares the solution quality and computational time between the domi-
nance rules proposed by Feillet et al.(2004) and a naive labelling, where only the reduced cost
of the path ¢ (7) is considered in the dominance relations, along with the demand load, and no
information concerning the actual structure of the route is evaluated. In other words, given
two labels at node i Ly (i) and Lo(i), we say that Li(i) is dominated by Lo(7) if ¢o(i) < ¢(1)
and dy(i) < d(4).

13



Because our proposed methods will implement this new dominance relation, it might
occur that a current dominated partial path would result in a non-dominated route in later
stages, since visited nodes are not considered. Because of that, our algorithms might not
find a global optimum, hence the name heuristic. A general form of the proposed algorithm

is outlined in Algorithm 1 below.

Algorithm 1 Labelling algorithm for the pricing problem
W« {}

Ll(O) - {(07070)}
insert L (0) into W

while W # {} do
' « the first label in W

remove I from W

i < node associated with label I’

for all j € N(i) do

if extended label I' to node j holds feasibility conditions then
reducedCost < ¢y (i) + ¢

demandLoad <— updated demand load

path < py(i) U{j}

create new label L,(j)=(reducedCost, demandLoad, path)
if new label is not dominated then

if any Li(j) € L(j) is dominated then
| remove the dominated labels

end

[+ proper index for the new label for node j
insert Li(j) into W and sort W

insert Li(j) into L(j)

end

end

end

end

As previously mentioned, the demand load d, (i) associated with a path L,(i) in the robust
approach is expressed differently from the stochastic case. That is, in the former approach
d;(i) is just a value which is calculated using expression (6) and represents the highest possible
demand load. In this case, it can be argued that dominated paths are more likely to lead

to either an infeasible path or paths with positive reduced cost. Therefore, even though the

14



naive dominance relations might look too simple, they provide efficient solutions in reasonable
amounts of time, as deterministic results suggest in Section 6.1.1.

On the other hand, in the chance-constraint approach there are two parameters to be
considered: the mean p and standard deviation o. Hence, given two labels at node i L;(7)
and Ly(7), we say that L;(4) is dominated by Ly(7) in the stochastic approach if é5(i) < ¢(4),
db(i) < d'!(i) and dg(i) < d?(i). Here, d*(i) and d?(i) for r = 1,2 are computed in this way:
di(i) =" jepn(iy My and do(i) =" iepei) 7. This follows from the fact that given two random
variables X ~ N(pg,02) and Y ~ N(p,,07), it is clear that if p, > p, and o7 > o7, then
PIX > Q] > PlY > Q] for all @ > 0. Therefore, by taking into account also the reduced
cost, extending a path associated with random variable X cannot lead to a better route than

Y if ¢, > ¢,, because X is more likely to lead to an infeasible path in later stages.

4.3.3 Integer Heuristic

In both column generation procedures, the LP relaxation of the master problem is solved.
When no more columns with negative reduced cost can be found the algorithm terminates
and a lower bound LB is obtained. However, the interest lies in obtaining integer solutions.
Therefore, the restricted IP is solved by optimizing over the generated columns using a set

covering formulation. In other words, constraints (10) are replaced by the following:

> apz >1Vie V\{0} (13)

reR
The reason behind that is the fact that the set partitioning formulation might not be able
to generate feasible solutions, since it assigns each customer to exactly one route. Hence,
the procedure is to firstly allow multiple visits to the same customers. Then, once a feasible
solution is obtained, if there are customers who belong to multiple routes, they consequently
get eliminated from those routes for which the removal of the customer yields the highest

cost reduction. A general form of the proposed method is outlined in Algorithm 2 below.

15



Algorithm 2 Integer Heuristic - Step 2
Result: Given a set of routes R obtained through IP and the set of customers V', remove

customers who are visited more than once by minimizing total routing cost

for all customer c € V do
D, < Set of routes visiting customer ¢
while |D.| > 1 do
Delete ¢ from the routes of D, which yield the highest cost reduction
Update R
end

end

return R , Updated set of routes

This approach gives an upper bound UB on the optimal objective value. Therefore, an
ex post optimality gap % can be derived, which calculates the difference between the
integer solution (UB) and the LP value (LB) in percentage.

As explained in Section 4.3.1, it might occur that a solution to the IP (UB) can not be
found, due to the size of the uncertainty set. If that is the case, we relax the constraint
regarding the number of free vehicles (11) in the master problem of the column generation

procedure. In a similar way, the relaxation is consequently applied to the IP.

5 Experimental analysis

5.1 Performance measures

In this section, in line with Sungur et al. (2008), we present performance measures to compare
robust, stochastic and deterministic solutions.

The first performance measure, the ratio s, quantifies the relative additional cost of the
LP robust and stochastic solutions with respect to the cost of the LP deterministic solution.
It is given by kK, = (2, — z4)/24 and ks = (25 — 24)/24, Where z; is the optimal LP value
of the deterministic CVRP, z, is the optimal LP value of the stochastic approach and z,
is the optimal LP value of the robust approach (with worst-case demand). By making use
of the lower bounds LBs, this ratio highlights the additional cost that would be incurred
by implementing the robust or stochastic model to protect against the demand uncertainty,
instead of the deterministic approach.

The second performance measure considers the effect of the solutions on the demand
since it is subject to uncertainty. The ratio 0 quantifies the relative unsatisfied demand that

deterministic and stochastic solutions may cause when faced with their worst-case demand.
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It is given by 0 = (ya/ > @) and s = (75/ D ey @), where the numerator v, is the
maximum amount of lost demand that can take place if deterministic routes are implemented
and v, is the maximum unsatisfied demand that can occur if obtained stochastic solutions
are used. The denominators are the total demand of the deterministic case. To obtain vy
and v,, we fix the routing variables to the deterministic and stochastic optimal solutions
respectively, and maximize the unmet demand by varying the demand outcome within the
demand uncertainty set. That is, using the obtained routes corresponding to the integer
solution (UB), we maximize the demand load of each route using expression (6). Then, if
the resulting robust demand load exceeds the vehicle capacity, we store the quantities in
excess and repeat the calculations for all routes.

Note that the extra cost is computed using the LP values (LBs), whereas the amount of
unsatisfied demand is calculated from the upper bounds (U Bs) or IP solutions. By definition,
the robust approach gives solutions with zero unmet demand that might have a higher routing
cost compared to sub-optimal deterministic and stochastic solutions. On the other hand,
these latter solutions may in turn lead to scenarios with unmet demand. Therefore, these
two measures, unmet demand and extra routing cost, represent the trade-offs that routing
solutions must balance in a CVRP with demand uncertainty.

Lastly, for every instance we will also store the computational time for both the LP and
IP values, the total number of generated columns and the number of iterations performed by
the three different approaches. By ’iterations’, we refer to the number of times the pricing

problem manages to find routes with negative reduced cost.

5.2 Dataset

We will test our methods on 71 benchmark instances, originated from standard CVRP bench-
mark problems introduced in Gounaris et al. (2016). More in detail, 27, 23 and 21 instances
of class A (random instances), class B (clustered instances) and class P (modified instances
from the literature) have been gathered from Augerat et al. (1995). They correspond to small
and medium-sized instances which range from 16 to 80 customers and with up to 15 vehicles.
For the majority of the instances the optimal solution corresponding to the deterministic
case is also provided.

With respect to the demand values, in the chance constraint approach, the nominal values
q° specified in the benchmark instances represent the mean p of the Normal distribution, while

2

the variance o is calculated as « - u.

Regarding the budget uncertainty sets, the n-dimensional hyperrectangle [q, g is defined

by [(1—a)¢’, (1+)q’]. Furthermore, the decomposition of customers into L disjoint subsets

depends on the geographic quadrants defined by the customer coordinates. However, the
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uncertainty sets’ structure is such that the customer demands deviate by at most « - 100%
from their nominal values ¢° and the cumulative demand of each subset does not exceed its
nominal value by more than - 100%. That is, we are going to use the following budget

uncertainty set:

U= {q el1—a)g®, (1+a)q"]: ) (i —q)) <BY [(1+a)g) —qf) for 1 =1,2, L}

i€B, i€B,

Finally, due to the large number of parameters to be specified by the modeler, a sensitivity
analysis will be performed on some of them. More precisely, we are going to investigate how
changes in o and [ affect the robust solution using the following uncertainty levels a =
(0.05,0.1) and 5 = (0.5,1). Moreover, in the stochastic scenario, the effects of variation of
the chance-constrained probability failure threshold e will be studied adopting three different
levels of failure probability: € = (0.1,0.05,0.01).

6 Results

In this section we report the results of our proposed methods, analysing the obtained solutions
in terms of efficiency and solution quality. First, regarding the deterministic model, the
dominance rules introduced by Feillet et al. (2004) are tested against our naive relations.
Furthermore, we compare our sub-optimal solutions with known global optima. After that,
the comparison between the robust and stochastic model is investigated. Finally, the results
of the sensitivity analysis are reported, along with the computational times.

All experiments are run on a laptop with a 2.0 GHz Intel Core i3 Processor and 4 GB
RAM.

6.1 Deterministic Instances
6.1.1 Labelling methods

In this section, the performance of the dominance rules introduced by Feillet et al. (2004) is
evaluated. Therefore, the original label structures are tested against this new definition of
dominance rules on a set of modified instances assuming fixed customers demand, or in other
words in the deterministic case. Table 1 below compares the solution of the deterministic
model in terms of objective value and computational time. Here, LB represents the LP value

obtained through column generation, while UB is the IP value. Furthermore, the number
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of generated columns and the number of iterations performed by the column generation

algorithm are reported.

Table 1: Effects of using unreachable nodes within the route construction

Deterministic Without unreachable nodes
Instance LB UB #columns #iter Time (s)
test15-2%* 635.1  660.92 160 23 1.5
test15-5 587.05 629.05 117 17 0.93
test20-6 938.42 938.42 236 31 2.35
test20-6* 938.42 938.42 183 23 1.69
test20-8 778.95 820.29 132 20 1.69
test20-8%* 778.95 820.45 132 21 1.53
P-n16-k8* 442.42 45194 59 11 0.58
Instance With unreachable nodes
test15-2%* 635.1  660.92 790 13 29.69
test15-5 587.05 626.31 337 11 4.31
test20-6 938.42 938.42 1158 22 97.74
test20-6* 938.42 938.42 1041 17 83.27
test20-8 778.95 820.29 479 12 7.27
test20-8%* 778.95 820.45 459 12 6.31
P-n16-k8* 442.42 45194 82 11 0.68

First of all, it can be checked that using unreachable nodes does not provide significant
improvements in terms of objective function. In fact, the lower and upper bounds obtained
with these two approaches are identical in all cases except for the test15-5 instance. Here,
although the LB values are the same, the upper bound (UB) computed with unreachable
nodes leads to a decrease of 0.4 %, from 629.05 to 626.31.

On the other hand, the time required to solve the instances increases drastically when
we take into account unreachable nodes. This can be seen by looking at the last column
of Table 1. This is explained by the fact that when unreachable nodes are incorporated
within the label structure, the dominance relations become more strict and the number of
non-dominated paths remains excessively high. It can be indeed observed that even though
the pricing problem is solved fewer times, the amount of generated routes is much higher
compared to the case without unreachable nodes.

When a new label associated with a given node k is created, we need to assess the
feasibility of an extension through every outgoing arc from k. Hence, the time complexity
depends both on the number of nodes and the number of resources. However, it is also
strongly related to the tightness of resource constraints. In our case, although there is
exactly one resource, the vehicle capacity constraint, it is not tight enough as capacity only

plays a role when a route has visited many customers and the load is almost full.
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Therefore, the use of unreachable nodes would be more reasonable in the context of highly
constrained problems, such as the Vehicle Routing Problem with Time Windows (VRPTW).
In addition, since assessing feasibility in the robust and stochastic models requires more
calculations than the deterministic scenario, we expect to incur even longer solving times if

we decide to consider unreachable nodes in the two models incorporating uncertainty.

6.1.2 Best solutions found

In this section, the solution quality of our proposed branch-and-price method is evaluated by
comparing the obtained integer problem value (IP) with the best known deterministic solution
on the three sets of instances A, B and P. Table 2 below provides the comparison regarding
the set of instances A, while Table 20 and Table 31 in Appendix B.D and P.D refer to set B
and P. Here, 2* is the best known solution to the deterministic problem and in line with the
previous section, LB and UB are the lower and upper bounds found, respectively. Lastly,
Gap* represents the deviation from the optimal solution (Gap* = UB’Z*) and the column

2%

Time shows the total computational time in seconds.

Overall, it is clear that our proposed method performs considerably well in terms of
solution quality, as the average optimality gaps corresponding to set A, B and P are 2%, 4%
and 2%, respectively. For what concerns set A in particular, the solution never deviates by
more than 6% from the global optimum.

Nevertheless, it is important to mention that the global optima are obtained including all
restrictions, while instances marked with * are characterized by the relaxation of constraints
(11), that is, there is no limit on the number of available vehicles. Therefore, the comparison
is not completely fair. In fact, in Table 20 and Table 31 there are three instances with
negative optimality gaps, two in set B and one in set P. In other words, the obtained solution
corresponds to lower transportation cost, compared to the best solution found. However,
because relaxing constraint (11) allows for more routes and since a higher number of routes
generally results in longer distances, we can conclude that the comparison is quite unbiased.
It can be checked indeed that only 3 out of 55 relaxed instances report negative gaps, among
the three sets of instances.

Furthermore, it can be argued that our column generation heuristic generates sub-optimal
solutions rather quickly, since small and even medium-sized instances are solved in reasonable
amounts of time. In more detail, we can see from Table 2 that only 2 out of 27 instances
were solved in over ten minutes and that more than 75% of the instances could be solved
within 3 minutes. Additionally, the set of clustered instances B seems to be the hardest in
terms of computational tractability. In fact, the average solving time (374 s) is considerably

greater than those associated with sets of instances A and P, 181 and 238, respectively.
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Table 2: Set A - Comparison with best known deterministic solution

Instance z* LB UB Gap* Time (s)
A-n32-k5 784  760.14 816.25 4% 17.31
A-n33-k5 661 656.33 663.35 0% 12.22
A-n33-k6 742 72831  744.45 0% 10.21
A-n34-k5* 778  742.72  790.78 2% 13.92
A-n36-k5* 799  776.94 826.54 3% 34.59
A-n37-k5 669  660.17  672.5 1% 26.44
A-n37-k6* 949 93043  1003.28 6% 17.9
A-n38-k5* 730 706.27 746.12 2% 22.7
A-n39-k5* 822 803.77 833.14 1% 42.18
A-n39-k6 831 805.75 835.56 1% 33.89
A-n44-k6* 937 930.24 938.18 0% 34.71
A-n45-k6* 944  929.18 978.53 4% 42.79
A-n45-k7 1146 1115.71 1170.13 2% 59.93
A-nd6-k7 914 904.64 91895 1% 56.43
A-n48-k7* 1073 1050.48 1121.13 4% 112.48
A-nb53-k7* 1010 999.73  1069.88 6% 135.82
A-nb4-k7* 1167 1147.31 1196.33 3% 178.53
A-n55-k9* 1073 1059.03 1076.04 0% 54.89
A-n60-k9* 1354 1330.67 1384.56 2% 213.15
A-n61-k9* 1034 1014.61 1059.89 3% 111.7
A-n62-k8* 1288 1260.78 1331.04 3% 672.65
A-n63-k9* 1616 1592.68 1656.6 3% 287.09
A-n63-k10* 1314 1288.16 13286 1% 162.41
A-n64-k9* 1401 1376.86 1417.67 1% 436.59
A-n65-k9* 1174 1158.69 1193.44 2% 142.88
A-n69-k9* 1159 1132.35 1172.46 1% 229.73
A-n80-k10* 1763 1732.01 1802.02 2% 1724.82
avg. 2% 181.04

6.2 Robust vs Stochastic approach

In this section the sub-optimal robust and stochastic solutions are compared against each
other using the performance measures introduced in Section 5.1. That is, additional routing
costs are evaluated in terms of their deviation from obtained deterministic solutions. Fur-
thermore, the proportion of unsatisfied demand that optimal stochastic and deterministic
routes may face in the worst-case scenario is computed as fraction of the total customers

demand. The ex-post optimality gaps and the computational times are also discussed.

21



6.2.1 Ex-post optimality gaps

In this section we analyse the ex-post optimality gaps, which measure the deviation of the
integer solution (UB) from the LP value (LB). Note that while the lower bound is obtained
through a set partitioning formulation (SPP), the first step of the integer heuristic consists
in solving a set covering formulation (SCP). Then, the second and last step of the integer
heuristic is performed in order to remove customers who are visited multiple times. However,
this final step is executed really rarely, because the routes found with the SCP already visit
each customer exactly once in almost every instances. Table 3 below illustrates the average
ex-post optimality gap of the column generation heuristic over the three sets of instances for

the two cases of the uncertainty support.

Table 3: Average ex-port optimality gap (%) in the robust and stochastic models for the 3 sets of
instances for the values of o and 3

Gap (%) | a=0.1 =05 a=0.05 =05

Instance | Robust Stochastic Robust Stochastic

Set e=0.1 €=0.05 e=0.01 e=0.1 €=005 e=0.01
A 5.63 4.27 4.16 4.06 5.69 4.01 4.50 4.02

B 10.76 10.77 12.76 12.28 11.46 11.15 10.81 11.83

P 4.27 3.68 4.03 3.90 4.24 4.09 4.07 4.33

First of all, it can be checked that there is no significant difference between stochastic and
robust models gaps. Additionally, the size of the uncertainty set does not play a role either.

Overall, we can see that our heuristics provide sufficient integer solutions. In other words,
the actual obtained routes are slightly more costly than those corresponding to the LP values.
The deviations sporadically exceed the order of 10%. In particular, the set of clustered
instances B results to have the largest ex-post optimality gaps fluctuating around the level
of 11%, which is more than twice the ones associated with sets A and P. Moreover, the gaps
do not depend on the amount of transportation cost. In fact, it can be observed from Table
12 to Table 19 (in Appendix A.R and A.S) regarding set A and from Table 23 to Table
30 (in Appendix B.R and B.S) for set B, that the obtained upper bounds all range between
the values of 1000 and 1200. As will be discussed later in Section 6.2.4, the time required
to solve the IP for set of instances B also turns out to be remarkably higher compared to
the other two sets. Therefore, we can conclude that clustered instances are definitely more

problematic to deal with than random generated instances, for example.
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6.2.2 Performance measures comparison

Table 4 below reports the performances of the deterministic, stochastic and robust models
in the base case (o« = 0.1 and 5 = 0.5) for the set of instances A.

Table 4: Set A - Performance measures comparison for the case « = 0.1 and 8 = 0.5

Deterministic Stochastic Robust
e=0.1 e =0.05 e=0.01

Instance Od O K O K O K Ky
A-n32-k5 5.24% 2.43% 2.32% 1.02% 4.96% 0.29% 5.74% 5.93%
A-n33-k5 5.00% L.77% 1.13% 0.76% 2.13% 0.00% 4.29% 4.51%
A-n33-k6 3.32% 2.51% 4.43% 099% 5.77% 0.18% 6.56% 9.68%
A-n34-k5*  5.32% 0.98% 1.84% 0.50% 2.80% 0.26% 3.48% 4.63%
A-n36-k5*  3.71% 1.66% 1.84% 0.77% 4.15% 0.00% 5.36% 6.06%
A-n37-k5 4.67% 2.21% 0.89% 0.00% 2.62% 0.29% 3.96% 4.75%
A-n37-k6*  3.74% 1.21% 2.57% 0.82% 3.83% 0.44% 4.42% 7.47%
A-n38-k5*  4.16% 1.41% 1.53% 0.25% 2.54% 0.25% 3.30% 5.26%
A-n39-k5*  2.16% 2.16% 1.95% 0.00% 3.61% 0.00% 5.64% 6.37%
A-n39-k6 1.50% 1.52% 2.11% 0.95% 3.84% 0.02% 4.75% 5.37%
A-n44-k6*  5.30% 1.37% 1.69% 1.02% 2.72% 0.42% 4.73% 5.44%
A-n45-k6*  4.52% 2.09% 2.65% 0.59% 3.65% 0.22% 4.08% 5.24%
A-n45-k7 4.00% 3.31% 1.73% 1.40% 3.60% 0.41% 6.34% 11.81%
A-n46-k7 6.29% 2.06% 2.98% 0.20% 3.77% 0.22% 4.87™% 7.09%
A-n48-k7*  6.10% 2.60% 2.61% 2.06% 3.92% 0.42% 6.24% 7.8T%
A-n53-k7*  5.05% 2.36% 2.38% 1.55% 3.78% 0.36% 5.33% 6.87%
A-nb4-k7*  3.51% 2.55% 3.24% 1.20% 5.17% 0.19% 6.75% 7.91%
A-nb5-k9*  5.98% 2.43% 2.22% 0.98% 3.74% 0.44% 4.35% 6.31%
A-n60-k9*  5.91% 217% 2.17% 1.11% 3.94% 0.17% 5.49% 8.10%
A-n61-k9*  5.55% 3.06% 2.82% 1.01% 4.23% 0.17% 5.29% 7.25%
A-n62-k8*  4.42% 2.92% 2.78% 1.09% 4.89% 0.00% 6.28% 7.70%
A-n63-k9*  5.64% 3.34% 3.711% 1.31% 5.10% 0.27% 6.92% 8.67%
A-n63-k10*  4.56% 2.08% 2.72% 1.35% 4.48% 0.27% 6.06% 7.99%
A-n64-k9*  5.13% 2.52% 3.18% 0.68% 4.46% 0.42% 6.48% 7.83%
A-n65-k9*  6.36% 1.04% 4.23% 0.80% 5.43% 0.29% 7.16% 8.48%
A-n69-k9*  5.94% 1.63% 3.07% 0.69% 3.71% 0.28% 5.33% 6.61%
A-n80-k10*  6.03% 227% 2.88% 1.23% 4.20% 0.27% 5.95% 7.75%
avg. 4.78% 2.14% 2.51% 0.90% 3.96% 0.24% 5.38% 7.00%
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As previously mentioned, ¢ represents the amount of unsatisfied demand as a fraction of
the total demand, while x shows the additional cost relative to the deterministic case.

For what concerns the stochastic model, three different levels of failure probability are
used: € = (0.1,0.05,0.01). For example, ¢ = 0.05 represents the fact that routes are con-
structed such that the total realized demand of the customers visited in the route is within
the vehicle capacity with probability at least 95%. Therefore, lower values of € correspond
to higher degrees of robustness.

In order to easily visualize the trade-off between the two competing performance measures
Figure 3 depicts a scatter plot of the values reported in Table 4, where each point represents
an instance of set A. The x and y-axis indicate the hypothetical unmet demand and the extra

cost, respectively.
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Figure 3: Set A - Performance measures comparison for the case a = 0.1 and 8 = 0.5

Firstly, it is evident that there is no extra cost associated with the deterministic model,
since this measure is calculated in relation to sub-optimal deterministic routes. In fact,
the dots representing deterministic solutions in Figure 3 all lie on the x-axis. However,
these solutions face the highest rates of unmet demand as they do not take into account the
uncertainty of demand. Specifically, the average lost demand (~ 5%) is more than twice the
lost demand that is obtained in the stochastic model with ¢ = 0.1, that is, by ensuring at
least 90% probability of completing the route without lost demand. In practical contexts, this

is a quite unseemly situation, as these frequent route failures are likely to cause additional
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routing and/or back ordering costs. For instance, the drivers will have to return to the depot
before continuing their trip or a different vehicle will have to extend his former route to visit
the customer. Therefore, even though the deterministic approach might look cheap, it is
plausible to conclude that the actual total cost will be reasonably higher.

On the contrary, robust solutions behave in the opposite way. Because the robust model
generates solutions assuming complete adversity by its nature, these latter routes will never
run the risk of lost demand as all possible scenarios are considered. Nevertheless, the ”price of
robustness” (Bertsimas and Sim, 2004) has to be paid. That is, robust optimal solutions are
the most costly ones in terms of distance travelled. This can be seen by looking at Figure
3 and at the last column of Table 4. In particular, by selecting these routes, 7% more
expensive over deterministic ones, the drivers will always meet the demand of each customer
visited on their route. In other words, it is guaranteed that there will not be any additional
costs nor unsatisfied demand.

Lastly, stochastic solutions, based on the failure probability threshold €, represents a sort
of transit from deterministic routes to robust routes. In fact, as € decreases, the chance-
constrained solution becomes more and more risk-averse. That is, while the percentage of

unsatisfied demand decreases, the routing cost rises.
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Figure 4: Set B - Performance measures comparison for the case o = 0.1 and 5 = 0.5

Intermediate values of € such as 5% seem to provide the most balanced and efficient

solution. First of all, because extremely high values of ¢ and robust solutions themselves
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yield too conservative solutions which protect from unlikely scenarios too. On the other
hand, higher values of ¢ and deterministic routes, as previously discussed, may have quite
noticeable effects on the total cost.

For example, regarding the set of instances A, it can be checked from Table 4 that using
the stochastic model with € set to 5% provides a set of routes which is only 4% more expensive
than deterministic ones and with less than 1% of lost demand.

Figure 4 above and Figure 5 below report the performances of the deterministic,
stochastic and robust models in the base case (« = 0.1 and § = 0.5) for the sets of in-

stances B and P, respectively.
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Figure 5: Set P - Performance measures comparison for the case a = 0.1 and 8 = 0.5

It is clear that while the set of instances B behaves in the same way as set of instances A,
set P offers slightly more sparse solutions. This follows from the fact that only 21 instances
belong to set P and some of them are characterized by a low number of routes. Therefore,
it can be verified by looking at Tables 32 and 33 in Appendix P.RvS that deterministic,
stochastic and robust solutions do not differ at all from each other in some of these instances.

The tables and figures concerning the performance measures comparison for the case
a = 0.05 and S = 0.5 are shown in the Appendix. Specifically, Table 11 and Figure 8 in
Appendix A.RvS regard set A, Table 22 and Figure 10 in Appendix B.RvS concern set B,
finally Table 33 and Figure 12 in Appendix P.RvS represent set P.

Note that the stochastic and robust models are related by the parameter o, which defines

26



both the n-dimensional hyperrectangle [(1 — «)¢’, (1 + «)¢’] and the variance of the Normal

2 = a - ¢°. Nevertheless, for the smaller size of the uncertainty support, the

distribution o
stochastic solutions seem to become more prudent and consequently expensive, as Figure
6 below depicts for set of instances A. For example, the stochastic routes obtained with
e = 0.01 not only result in no unmet demand, but imply even greater routing costs than

robust routes.
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Figure 6: Set A - Performance measures comparison for the case « = 0.05 and § = 0.5

6.2.3 Sensitivity Analysis

The feasibility of the uncertainty set is investigated by performing a sensitivity analysis on
the two parameters that define the support, namely o and S. The following uncertainty
levels a = (0.05,0.1) and 8 = (0.5,1) have been used in this study. Note that the case a =0
is equivalent to the deterministic scenario, independently of the value of 5. Moreover, the
case 3 = 1 corresponds to the rectangular support [(1 — )¢, (1 + a)q°].

Table 5 below shows the proportion of robust feasible instances for the values of o and
[ associated with the three sets of instances A, B and P. That is, the fraction of instances
which could be solved without relaxing the constraint on the number of vehicles, within one
hour of computational time.

It is clear that as the values of o and 3 increase, the fraction of feasible instances decreases.
For example, the deterministic case o = 0 corresponds to a degree of feasibility of 100%.

Furthermore, rectangular and non-rectangular supports yield different levels of feasibility. In
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Table 5: Impact of a and 5 on the proportion of feasible instances of set A (left panel), set B
(central panel) and set P (right panel)

a\Bf05 1 a\Bf105 1 a\p 05 1
005 |[48% 48 % 005 |[61% 61% 005 [43% 33 %
01 [26% 11% 01 [30% 22% 01 |10% 5%

particular, the impact of S becomes more significant for higher values of «.

Table 6 illustrates the results of the sensitivity analysis associated with instance B-n31-
k5, whose robust model remains feasible in all cases considered. The integer robust objective
values are reported on the left panel. Additionally, the increase in terms of routing cost

relative to the deterministic scenario is depicted on the right panel of Table 6.

Table 6: Integer robust solutions (left panel) and increase in the transportation cost (right panel)
relative to the deterministic case (o = 0) for instance B-n31-k5

a\B]05 1 a\B |05 1

0 680.24 680.24 0 0.00 % 0.00 %
0.05 | 684.74 693.15 0.05 [0.66% 1.89%
0.1 |704.1 71443 0.1 |[351% 5.03%

It can be observed that robust solutions are slightly more expensive compared to their
deterministic counterparts. In particular, the upper bounds obtained through IP, along with
the lower bounds, provides solutions with monotonically increasing values as the size of the

uncertainty set grows.

6.2.4 Computational Times

In this section the total running times of our proposed heuristics are investigated. Table
7 and Table 8 below report the average solving time of the column generation procedure
in seconds over the three sets of instances. The time required to obtain the lower bound
is depicted in Table 7, whereas Table 8 shows the computation time associated with the
IP heuristic, hence to obtain the upper bound. As mentioned earlier, two size levels of the
uncertainty set are considered in the comparison of the total computational time between

robust and stochastic models.
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Table 7: Average running time (s) to get LBs in the robust and stochastic models for the 3 sets
of instances for the values of a and

Time (s) | a=0.1 =05 a=005 =05

Instance | Robust Stochastic Robust Stochastic

Set e=0.1 €=0.05 e=0.01 e=0.1 €=005 e=0.01
A 355.23 186.94  173.37 160.94 324.52 202.56  221.27 170.57
B 462.78  389.03 349.80  315.41 637.30 418.49  404.28  579.68
P 396.92  331.41 384.84  392.15 | 477.89 373.84 40243  457.62

First, it can be seen that robust models require longer computation times than stochastic
approaches, particularly for the set of instances A and B.

Secondly, we can conclude that the tightness of the constraints of the problem is not
always directly proportional to the computation time. In fact, we can see that as e decreases,
that is, as the problem becomes more constrained, the running time of the stochastic model
tend to decrease in some cases.

This can also be observed in the behaviour of the robust model associated with the two
levels of uncertainty supports. More specifically, the computations performed with the largest
uncertainty sets (& = 0.1 and 8 = 0.5) need less time compared to the smaller support for
set B and P. However, this can be partially explained by the fact that bigger uncertainty sets
provide lower levels of feasibility and therefore a relaxation of constraint (11), which means
that as the uncertainty set grows, fewer instances will incorporate the restriction.

Overall, it can be argued that there is a trade-off which needs to be balanced in our
heuristics. In other words, if the problem is not constrained enough, then the algorithm
generates an excessive number of routes. On the other hand, for highly constrained problems,

it might take a lot of time to find feasible and consequently acceptable routes.

Table 8: Average running time (s) to get UBs in the robust and stochastic models for the 3 sets
of instances for the values of o and [

Time (s) | a=0.1 =05 a=005 =05

Instance | Robust Stochastic Robust Stochastic

Set e=01 €=0.05 e€=0.01 e=01 €=0.05 e€=0.01
A 4.17 3.49 11.38 4.56 9.17 5.21 27.61 7.21

B 14.29 11.78 16.07 26.65 13.73 26.49 18.62 12.17

P 1.89 1.22 3.25 3.57 3.73 2.11 2.44 4.91

For what concerns the integer heuristics, we observe the lowest computation times in the
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stochastic model corresponding to € = 0.1 in most of the cases. Then, the running time tends
to increase for higher levels of robustness, that is, as € decreases.

Contrary to Table 7, Table 8 proves that obtaining an upper bound in the robust
approach does not require significantly higher amounts of time compared to the stochastic
ones.

In addition, in line with the computational results of the deterministic scenario described
in Section 6.1.2, our results suggest that the set of clustered instances B involves considerably
longer running times than sets A and P. This can be explained by the massive number of
routes created through the column generation process as illustrated in Tables 23 to 30 in
Appendix B.R and B.S.

7 Conclusion

Previous researches model the vehicle routing problem assuming fixed customer demand.
In this paper we propose a column generation heuristic for the capacitated vehicle routing
problem under demand uncertainty. In particular, a robust model is developed, where it
is assumed that customers require the highest possible amount of goods. Moreover, the
solutions of the robust approach are compared to a stochastic model, where the probability
of successfully completing a route should be above a certain threshold. The comparison has
been conducted by means of two performance measures, namely extra cost and unsatisfied
demand. We assume customer demand to follow independent normal distributions in the
stochastic model. On the other hand, in line with Gounaris et al. (2013) we consider
uncertainty sets of the form of partitioned budget polytopes, where disjoint subsets are
created based on the geographic quadrants.

Route feasibility of both approaches can be checked quite efficiently. Furthermore, we
were able to further speed up the calculations with the help of naive dominance rules used in
the pricing problem of the branch-and-price method. In fact, excluding the actual structure
of the paths in the dynamic labelling algorithm can significantly decrease the running time of
our algorithm, as deterministic results show. However, the solutions obtained are generally
sub-optimal and not globally minimum.

Our heuristics are applied to three sets of small and medium-sized instances originating
from standard CVRP benchmark problems. They designate random, clustered and modified
instances from the literature (Augerat et al. 1995) with up to 80 customers and 15 vehicles.

The numerical results showed the effectiveness of our methods in terms of solution quality
and computational time for what concerns the deterministic scenario. Additionally, the naive

dominance relations have been tested against an alternative to the standard rules proposed
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by Feillet at al. (2004), where the concept of unreachable nodes is introduced. The efficiency
of naive labelling is confirmed on a small subset of modified instances.

Regarding the uncertainty models, while the robust approach turned out to be the most
conservative, the stochastic model offers more balanced, moderate and quick solutions. Ro-
bust solutions are indeed fairly expensive in terms of routing cost, even though they guarantee
no unmet demand. On the contrary, stochastic solutions are somewhat halfway between de-
terministic and robust solutions. That is, as we increase the required success probability, the
generated routes becomes more and more costly. Nevertheless, the amount of lost demand
gradually decreases, in an opposite way. Depending on the specifics of the problem, more
weight should be given to either additional cost or unmet demand. Therefore, stochastic so-
lutions allow to adjust the trade-off of these two competing performance measures, whereas
robust routes might seem too extreme.

Finally, a sensitivity analysis is performed on the parameters that define the uncertainty
support in order to evaluate the increase in transportation cost and to assess the feasibility
corresponding to the robust model. The computational time of the two approaches is also
analyzed.

Future work might explore alternative uncertainty sets, such as more generic classes of
polyhedra or without the requirement of disjoint budget subsets. For these new types of
support it will be an interesting question how to develop efficient robust feasibility verification
procedures and effective dominance relations in the route construction.

Our heuristics assume independent normal distributions. Therefore, in the context of
stochastic programming, a challenging line of research could be to investigate correlated
and/or conditional random demand distributions. For example, discrete random variables
and scenario based distributions can represent practical settings in a more realistic way.
Nevertheless, it is fundamental to adapt the dominance rules to these new distributions with

the aim of obtaining optimal solutions.
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8 Appendix

The Appendix is organized as follows. There are 3 sections: A, B and P, which contain results
corresponding to the sets of instances A, B and P. Each of these 3 sections has 4 subsections:
D, RvS, R and S. They contain tables and figures associated with the deterministic (D), robust
(R) and stochastic (S) models. Furthermore, subsections RvS offer comparisons between
robust and stochastic models in terms of the performance measures. Empty cells mean
that the given value could not be obtained, either due to infeasibility or because of missing
data. For example, if only a lower bound can be found for a given instance, the performance
measure corresponding to the unmet demand 0 cannot be calculated, as it relies on the upper
bound.
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81 A

8.1.1 D

Table 9: Set A - Comparison with best known deterministic solution

Instance z* LB UB Gap™* Time (s)
A-n32-k5 784  760.14 816.25 4% 17.31
A-n33-kb 661 656.33 663.35 0% 12.22
A-n33-k6 742 72831  744.45 0% 10.21
A-n34-k5* 778 74272 790.78 2% 13.92
A-n36-k5* 799  776.94 826.54 3% 34.59
A-n37-kb 669  660.17  672.5 1% 26.44
A-n37-k6* 949 93043  1003.28 6% 17.9
A-n38-k5* 730 706.27 746.12 2% 22.7
A-n39-k5* 822 803.77 833.14 1% 42.18
A-n39-k6 831 805.75 835.56 1% 33.89
A-n44-k6* 937 930.24 938.18 0% 34.71
A-n45-k6* 944  929.18 97853 4% 42.79
A-n45-k7 1146 1115.71 1170.13 2% 59.93
A-n46-k7 914 904.64 91895 1% 56.43
A-n48-k7* 1073 1050.48 1121.13 4% 112.48
A-n53-k7* 1010 999.73  1069.88 6% 135.82
A-nb4-k7* 1167 1147.31 1196.33 3% 178.53
A-n55-k9* 1073  1059.03 1076.04 0% 54.89
A-n60-k9* 1354 1330.67 1384.56 2% 213.15
A-n61-k9* 1034 1014.61 1059.89 3% 111.7
A-n62-k8* 1288 1260.78 1331.04 3% 672.65
A-n63-k9* 1616 1592.68 1656.6 3% 287.09
A-n63-k10* 1314 1288.16 13286 1% 162.41
A-n64-k9* 1401 1376.86 1417.67 1% 436.59
A-n65-k9* 1174 1158.69 1193.44 2% 142.88
A-n69-k9* 1159 1132.35 117246 1% 229.73
A-n80-k10* 1763 1732.01 1802.02 2% 1724.82
avg. 2% 181.04
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8.1.2 RvS

Table 10: Set A - Performance measures comparison for the case a = 0.1 and 8 = 0.5

Deterministic Stochastic Robust
e=0.1 e =0.05 e =0.01

Instance 0d O K O K O K Ky
A-n32-k5 5.24% 2.43% 2.32% 1.02% 4.96% 0.29% 5.74% 5.93%
A-n33-kb 5.00% 1.77% 1.13% 0.76% 2.13% 0.00% 4.29% 4.51%
A-n33-k6 3.32% 2.51% 4.43% 0.99% 5.77% 0.18% 6.56% 9.68%
A-n34-k5*  5.32% 0.98% 1.84% 0.50% 2.80% 0.26% 3.48% 4.63%
A-n36-k5*  3.71% 1.65% 1.84% 0.77% 4.15% 0.00% 5.36% 6.06%
A-n37-k5 4.67% 2.21% 0.89% 0.00% 2.62% 0.29% 3.96% 4.75%
A-n37-k6*  3.74% 1.21% 2.57% 0.82% 3.83% 0.44% 4.42% 7.47%
A-n38-k5*  4.16% 1.41% 1.53% 0.25% 2.54% 0.25% 3.30% 5.26%
A-n39-k5*  2.16% 2.16% 1.95% 0.00% 3.61% 0.00% 5.64% 6.37%
A-n39-k6 1.50% 1.52% 2.11% 0.95% 3.84% 0.02% 4.755% 5.37%
A-n44-k6*  5.30% 1.37% 1.69% 1.02% 2.72% 0.42% 4.73% 5.44%
A-n45-k6*  4.52% 2.09% 2.65% 0.59% 3.65% 0.22% 4.08% 5.24%
A-n45-k7 4.00% 3.31% 1.73% 1.40% 3.60% 0.41% 6.34% 11.81%
A-n46-k7 6.29% 2.06% 2.98% 0.20% 3.77% 0.22% 4.8™% 7.09%
A-n48-k7*  6.10% 2.60% 2.61% 2.06% 3.92% 0.42% 6.24% 7.87%
A-n53-k7*  5.05% 2.36% 2.38% 1.55% 3.78% 0.36% 5.33% 6.87%
A-nb4-k7*  3.51% 2.55% 3.24% 1.20% 5.17% 0.19% 6.75% 7.91%
A-n55-k9*  5.98% 2.43% 2.22% 0.98% 3.74% 0.44% 4.35% 6.31%
A-n60-k9*  5.91% 217% 2.17% 1.11% 3.94% 0.17% 5.49% 8.10%
A-n61-k9*  5.55% 3.06% 2.82% 1.01% 4.23% 0.17% 5.29% 7.25%
A-n62-k8*  4.42% 2.92% 2.78% 1.09% 4.89% 0.00% 6.28% 7.70%
A-n63-k9*  5.64% 3.34% 3.711% 1.31% 5.10% 0.27% 6.92% 8.67%
A-n63-k10*  4.56% 2.08% 2.72% 1.35% 4.48% 0.27% 6.06% 7.99%
A-n64-k9*  5.13% 2.52% 3.18% 0.68% 4.46% 0.42% 6.48% 7.83%
A-n65-k9*  6.36% 1.04% 4.23% 0.80% 5.43% 0.29% 7.16% 8.48%
A-n69-k9*  5.94% 1.63% 3.07% 0.69% 3.71% 0.28% 5.33% 6.61%
A-n80-k10* 6.03% 2.27% 2.88% 1.23% 4.20% 0.27% 5.95% 7.75%
avg. 4.78% 2.14% 2.51% 0.90% 3.96% 0.24% 5.38% 7.00%
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Table 11: Set A - Performance measures comparison for the case a = 0.05 and § = 0.5

Deterministic Stochastic Robust
e=0.1 e =0.05 e =0.01

Instance 04 O K O K O K Ky

A-n32-k5 1.89% 0.62% 2.02% 0.18% 2.16% 0.00% 4.96% 4.11%
A-n33-k5 1.72% 0.00% 0.66% 0.00% 1.13% 0.00% 2.08% 1.38%
A-n33-k6 0.96% 0.68% 1.94% 0.15% 4.43% 0.00% 5.77% 4.79%
A-n34-k5 2.06% 0.40% 2.01% 2.43% 4.44% 4.47%
A-n36-k5 0.90% 0.29% 1.35% 0.18% 1.74% 0.00% 3.94% 2.71%
A-n37-k5 0.91% 0.39% 0.88% 0.20% 0.91% 0.00% 2.94% 2.35%
A-n37-k6*  1.16% 0.32% 2.06% 0.00% 2.57% 0.00% 3.83% 2.64%
A-n38-k5*  2.08% 0.00% 1.44% 0.00% 1.57% 0.00% 2.54% 1.5™%
A-n39-k5*  0.39% 0.61% 1.44% 0.17% 1.93% 0.00% 3.62% 2.87%
A-n39-k6 0.15% 0.15% 1.81% 0.15% 2.11% 0.00% 3.80% 2.47%
A-n44-k6*  2.08% 0.61% 091% 0.00% 1.67% 0.00% 2.72% 1.84%
A-n45-k6*  1.64% 0.13% 2.10% 027% 2.85% 0.00% 3.54% 2.96%
A-n45-k7 1.75% 0.54% 1.44% 0.38% 1.73% 0.00% 3.60% 2.65%
A-n46-k7 2.79% 0.88% 2.27% 0.00% 2.98% 0.00% 3.77% 3.59%
A-n48-k7 1.73% 0.00% 2.18% 0.00% 2.62% 0.00% 3.95% 3.41%
A-nb3-k7*  1.47% 0.68% 1.02% 0.24% 2.14% 0.00% 3.75% 2.89%
A-nb54-k7*  1.61% 0.24% 2.76% 0.12% 3.28% 0.00% 5.12% 3.77%
A-n55-k9 1.54% 0.41% 1.95% 0.38% 2.24% 3.41%
A-n60-k9 2.26% 0.77% 1.42% 0.29% 2.25% 2.80%
A-n61-k9*  2.11% 0.09% 2.22% 0.09% 2.83% 0.00% 4.25% 2.91%
A-n62-k8 1.41% 0.47% 2.02% 0.33% 2.63% 4.05%
A-n63-k9*  1.54% 0.82% 2.60% 0.09% 3.711% 0.00% 5.12% 4.23%
A-n63-k10*  1.42% 0.77% 1.86% 0.09% 2.71% 0.00% 4.28% 3.22%
A-n64-k9*  1.71% 0.31% 1.82% 0.19% 3.14% 0.00% 4.54% 3.60%
A-n65-k9*  1.77% 0.82% 2.14% 0.00% 4.34% 0.00% 5.53% 4.62%
A-n69-k9*  2.09% 0.31% 2.05% 0.10% 3.06% 0.00% 3.72% 3.45%
A-n80-k10*  2.38% 0.76% 2.30% 0.17% 2.88% 0.00% 4.20% 3.58%
avg. 1.61% 0.45% 1.80% 0.14% 2.52% 0.00% 4.00% 3.20%
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8.1.3 R

Table 12: Set A - Robust solutions for the case o« = 0.1 and 8 = 0.5

Robust
Time (s)

Instance LB Ky UB #columns #iter I[P Total
A-n32-k5 805.19  5.93%  849.02 1196 61 0.35 21.6
A-n33-k5 685.93 4.51% 686.86 1218 71 0.2 67.33
A-n33-k6 798.84  9.68%  814.21 1332 94 0.15  262.64
A-n34-k5*  777.08 4.63%  824.59 1044 71 045 204
A-n36-k5*  824.05 6.06%  901.67 1294 68 0.7 49.48
A-n37-k5 691.56  4.75%  724.92 2015 73 0.61  85.82
A-n37-k6*  999.93 7.47%  1033.63 879 56 0.38  28.94
A-n38-k5* 74344 5.26%  791.66 1163 61 0.59  25.79
A-n39-k5*  854.94 6.37%  870.01 1397 64 0.17  57.82
A-n39-k6 849.04 5.37% 111547 1960 84 2.82 153.88
A-n44-k6*  980.81 5.44%  1028.88 1324 72 0.83  58.21
A-nd5-k6*  977.87  5.24%  1014.49 1467 85 0.31  55.01
A-n45-k7 1247.51 11.81% 1279.74 2181 158 51.17 2847.22
A-n46-k7 968.81  7.09%  1077.12 2386 95 2.25  136.63
A-n48-k7*  1133.18 7.87%  1198.86 1634 85 0.84 108.44
A-nH3-k7*  1068.45 6.87%  1131.66 2206 104 3.6 156.65
A-nb4-k7*  1238.09 7.91% 12425 2151 117 0.2 267.33
A-nb5-k9*  1125.87 6.31%  1158.28 1644 83 0.53 116.32
A-n60-k9*  1438.45 8.10%  1547.54 2903 110 7.67  287.21
A-n61-k9*  1088.12 7.25%  1150.51 1925 101 2.66 213.8
A-n62-k8*  1357.88 7.70%  1421.34 3667 163 4.7 802.97
A-n63-k9*  1730.73 8.67%  1861.26 2696 127 16.09 430.39
A-n63-k10* 1391.14 7.99%  1430.56 2261 98 1.72 234.98
A-n64-k9*  1484.63 7.83%  1564.37 2929 138 6.09 4424
A-n65-k9*  1256.97 8.48%  1295.57 2202 109 1.49  202.13
A-n69-k9* 120721 6.61%  1250.36 2962 122 1.87  393.81
A-n80-k10* 1866.24 7.75%  1930.99 4903 200 4.19  2199.01
avg. 1096.00 7.00%  1155.41 2035 99 4.17  360.23
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Table 13: Set A - Robust solutions for the case a = 0.05 and 8 = 0.5

Robust
Time (s)

Instance LB Ky UB #columns #iter 1P Total
A-n32-k5 791.39  4.11% 869.77 1176 59 1.11  33.84
A-n33-k5 665.36  1.38% 684.86 1160 63 0.29 24.29
A-n33-k6 763.22  4.79% T767.51 990 53 0.16  30.9
A-n34-kb 77591 4.47% 850.05 1261 57 0.21  71.96
A-n36-k5 797.96  2.71% 853.53 1683 80 0.65  61.98
A-n37-k5 675.7 2.35% 712.17 1556 63 0.42  44.42
A-n37-k6*  954.95 2.64% 992.86 932 58 0.17  29.65
A-n38-k5* 71735 1.57% 756.29 1277 89 0.29 34.86
A-n39-k5*  826.85  2.87% 844.27 1451 70 0.12  63.81
A-n39-k6 825.63  2.47% 859.08 1652 75 0.43  64.37
A-n44-k6*  947.32  1.84% 956.25 1639 98 0.15  76.69
A-n45-k6*  956.69 2.96% 999.33 1517 99 0.58  65.56
A-n45-k7 1145.27 2.65% 1169.73 1840 86 0.39 113.14
A-n46-k7 937.14  3.59% 980.02 2109 87 0.95 80.52
A-n48-k7 1086.29 3.41% 1115.92 2069 106 1.64 151.73
A-n53-k7*  1028.65 2.89% 1081.02 2476 108 1.76  194.35
A-nb4-k7*  1190.62 3.77% 1220.98 2454 107 0.89  267.23
A-n55-k9 1095.12 3.41% 1186.17 2559 106 2.69  296.39
A-n60-k9 1367.89 2.80% 1620.42 3493 125 79.45 651.2
A-n61-k9*  1044.17 291% 1093.16 2360 112 1.53  216.32
A-n62-k8 1311.88 4.05% 1581.24 5337 169 42.98 1600.25
A-n63-k9*  1659.99 4.23% 1712 2873 110 1.02  449.57
A-n63-k10* 1329.62 3.22% 1354.38 2280 109 0.6 254.92
A-n64-k9*  1426.49 3.60% 1481.95 3101 139 5.49  600.81
A-n65-k9*  1212.22 4.62% 1285.01 2552 110 6.75  270.36
A-n69-k9*  1171.39 3.45% 1254.5 3208 139 11.44 427.01
A-n80-k10* 1794 3.58% 1907.47 5319 216 85.54 2855.87
avg. 1055.52 3.20% 1118.14 2234 100 9.17  334.51
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Table 14: Set A - Stochastic solutions for the case @« = 0.1 and 5 = 0.5 and ¢ = 0.1

Stochastic with e = 0.1

Time (s)
Instance LB Ks UB s #columns #iter P Total
A-n32-k5 77778 2.32% 853.37  2.43% 1408 70 0.49 19.42
A-n33-k5 663.73  1.13% 680.26 1.77% 1014 58 0.18 13.67
A-n33-k6 760.59  4.43% 801.73  2.51% 906 47 0.31 15.64
A-n34-k5*  756.36  1.84% 818.48 0.98% 1108 75 0.57  16.77
A-n36-k5*  791.27 1.84% 829.88 1.65% 1306 7 0.32 37.03
A-n37-k5 666.06 0.89% 687.63 2.21% 1838 93 0.7 35.02
A-n37-k6*  954.38  2.57% 998.95 1.21% 967 57 0.24 17.54
A-n38-k5*  717.08 1.53% 753.19 1.41% 1234 83 0.27  19.57
A-n39-k5*  819.43  1.95% 838.61 2.16% 1589 80 0.25 48.8
A-n39-k6 822.79  2.11% 859.94  1.52% 1758 79 0.52  46.16
A-n44-k6*  945.96  1.69% 956.25 1.37% 1434 81 0.17  37.67
A-n45-k6*  953.83  2.65% 973.49 2.09% 1445 78 0.34  30.89
A-n45-k7 1135.04 1.73% 1170.33 3.31% 2037 99 0.64 66.7
A-n46-k7 931.63  2.98% 990.58 2.06% 2052 93 2.35  62.38
A-n48-k7*  1077.85 2.61% 1116.79 2.60% 2092 102 0.59  89.77
A-nb3-k7*  1023.52 2.38% 1061.78 2.36% 2749 118 1.7 153.48
A-nb4-k7*  1184.5  3.24% 1195.99 2.55% 2416 103 0.44  166.89
A-nb5-k9*  1082.57 2.22% 1119.06 2.43% 1736 102 0.89 67.8
A-n60-k9*  1359.61 2.17% 1401.98 2.17% 3297 135 1.53  248.79
A-n61-k9*  1043.26 2.82% 1084 3.06% 2129 108 1.6 131.47
A-n62-k8*  1295.88 2.78% 1368.72 2.92% 3556 146 3.93  526.35
A-n63-k9*  1651.82 3.71% 1739.11 3.34% 3182 141 12.51 325.54
A-n63-k10* 1323.24 2.72% 1351.43 2.08% 2229 105 1.16  163.21
A-n64-k9*  1420.67 3.18% 1465.46 2.52% 3407 132 1.98  436.71
A-n65-k9*  1207.69 4.23% 1278.21 1.04% 2549 107 8.41  164.01
A-n69-k9*  1167.07 3.07% 1237.49 1.63% 3396 129 5.06 312.34
A-n80-k10* 1781.87 2.88% 1878.14 2.27% 5571 234 47.09 1901.68
avg. 1048.72 2.51% 1092.99 2.14% 2163 101 3.49  190.94
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Table 15: Set A - Stochastic solutions for the case @ = 0.1 and 5 = 0.5 and € = 0.05

Stochastic with € = 0.05

Time (s)
Instance LB Ks UB s #columns #iter 1P Total
A-n32-k5 797.85  4.96% 798.86 1.02% 1134 54 0.17 15.86
A-n33-k5 670.34  2.13% 682.33 0.76% 1094 63 0.22 16.36
A-n33-k6 770.36  5.77% 775.33  0.99% 1166 54 0.2 23.09
A-n34-k5*  763.49 2.80% 823.99 0.50% 898 73 0.35 13.67
A-n36-k5*  809.18  4.15% 900.59  0.77% 1361 68 1.42 31.77
A-n37-k5 677.46  2.62% 716.65 0.00% 1576 75 0.51 28.49
A-n37-k6*  966.08 3.83% 996.32 0.82% 1002 61 0.12 16.3
A-n38-kb* 72424  2.54% 765.26  0.25% 1228 80 0.17 18.43
A-n39-k5*  832.82  3.61% 846.54 0.00% 1553 78 0.17 43.28
A-n39-k6 836.69  3.84% 84292 0.95% 1825 79 0.25 52.77
A-n44-k6*  955.5 2.72% 966.23  1.02% 1455 92 0.17 37.96
A-n45-k6*  963.08  3.65% 1016.79 0.59% 1306 76 0.38 27.23
A-n45-k7 1155.82 3.60% 1190.4 1.40% 2186 90 1.51 93.86
A-n46-k7 938.77  3.77% 985.2 0.20% 2303 106 1.16 72.15
A-n48-k7*  1091.7 3.92% 1114.76 2.06% 1663 96 0.24 75.99
A-n53-k7*  1037.56 3.78% 1100.35 1.55% 3037 119 1.81 170.42
A-nb54-k7*  1206.59 5.17% 1228.45 1.20% 2471 106 0.85 169.52
A-n55-k9*  1098.59 3.74% 1119.4  0.98% 1739 92 0.42 63.77
A-n60-k9*  1383.15 3.94% 1448.64 1.11% 2890 126 9.78 216.7
A-n61-k9*  1057.57 4.23% 1107.45 1.01% 2245 104 1.98 132.72
A-n62-k8* 132249 4.89% 1413.12 1.09% 3555 147 11.46  500.35
A-n63-k9*  1673.96 5.10% 1741.3 1.31% 2807 156 9.47 291.92
A-n63-k10* 1345.91 4.48% 1372.31 1.35% 2375 117 1.04 167.18
A-n64-k9*  1438.29 4.46% 1531.7 0.68% 3170 150 65.79  465.2
A-n65-k9*  1221.64 5.43% 1288.76 0.80% 2410 103 2.23 142.97
A-n69-k9*  1174.31 3.71% 1255.5  0.69% 3356 130 10.87  388.86
A-n80-k10* 1804.77 4.20% 1910.97 1.23% 5353 220 184.54 1728.14
avg. 1063.64 3.97% 1108.89 0.90% 2117 101 11.38  185.37

42



Table 16: Set A - Stochastic solutions for the case @ = 0.1 and § = 0.5 and € = 0.01
Stochastic with € = 0.01
Time (s)

Instance LB Ks UB s #columns #iter P Total
A-n32-k5 803.75  5.74% 803.75  0.29% 1193 67 0.14  14.78
A-n33-k5 684.47  4.29% 690.93  0.00% 1153 o8 0.22 2593
A-n33-k6 776.08  6.56% 785.79  0.18% 1177 65 0.17  49.26
A-n34-k5*  768.56  3.48% 816.16 0.26% 970 70 0.21  12.75
A-n36-kb*  818.6 5.36% 895.68  0.00% 1331 71 0.68  29.33
A-n37-k5 686.34  3.96% 719.17  0.29% 1490 69 0.45  27.68
A-n37-k6*  971.6 4.42% 997.72  0.44% 997 66 0.14  18.07
A-n38-k5*  729.55  3.30% 764.25 0.256% 1137 79 0.18 15.84
A-n39-k5*  849.11  5.64% 873.38 0.00% 1314 70 0.4 39.91
A-n39-k6 843.99  4.75% 852.99  0.02% 1659 79 0.34 68.74
A-n44-k6*  974.23  4.73% 1005.36 0.42% 1314 79 0.39 32.24
A-n45-k6*  967.12  4.08% 991.14  0.22% 1501 86 0.23  30.89
A-n45-k7 1186.43 6.34% 1214.59 0.41% 2154 96 1.6 225.38
A-n46-k7 948.7 4.87% 981.21  0.22% 2161 121 2.14  89.05
A-n48-k7*  1116.08 6.24% 1144.48 0.42% 1792 82 0.36  71.63
A-n53-k7* 1053 5.33% 1147.94 0.36% 2583 106 1.11  142.15
A-nb4-k7*  1224.71 6.75% 1250.24 0.19% 2642 109 0.99 194.22
A-nb5-k9*  1105.07 4.35% 1121.96 0.44% 1743 94 0.23  58.07
A-n60-k9*  1403.67 5.49% 1503.26 0.17% 2729 110 2.39  163.08
A-n61-k9*  1068.24 5.29% 1116.01 0.17% 2211 106 1.7 132.09
A-n62-k8*  1340.02 6.28% 1409.32 0.00% 3528 155 11.67 499.22
A-n63-k9*  1702.82 6.92% 1836.52 0.27% 2622 123 60.73 292.03
A-n63-k10* 1366.26 6.06% 1410.46 0.27% 2231 102 1.64 151.11
A-n64-k9*  1466.02 6.48% 1530.54 0.42% 3298 146 2.08  386.06
A-n65-k9*  1241.68 7.16% 1325.53 0.29% 2337 109 14.16 144.81
A-n69-k9*  1192.7  5.33% 1250.45 0.28% 3247 127 3.59  280.99
A-n80-k10* 1835.06 5.95% 1931.93 0.27% 4925 196 15.1  1285.16
avg. 1078.66 5.38% 1124.84 0.24% 2053 98 4.56  165.94
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Table 17: Set A - Stochastic solutions for the case &« = 0.05 and 8 = 0.5 and ¢ = 0.1
Stochastic with € = 0.1
Time (s)

Instance LB Ks UB s #columns #iter P Total
A-n32-k5 775.48  2.02% 840.9 0.62% 1161 61 0.54 19.93
A-n33-k5 660.65 0.66% 685.7 0.00% 967 95 0.22 15.24
A-n33-k6 74241 1.94% 749.99  0.68% 893 49 0.14 13.1
A-n34-k5 765.19  2.01% 791.07 0.40% 1347 71 0.27  36.62
A-n36-k5 788.69  1.35% 814.65 0.29% 1500 73 0.4 50.27
A-n37-k5 665.95 0.88% 681.44 0.39% 1707 87 0.34  40.65
A-n37-k6*  949.63  2.06% 1000.93 0.32% 938 54 0.46  20.52
A-n38-k5*  716.47  1.44% 756.29  0.00% 1257 79 0.29 2543
A-n39-k5*  815.33  1.44% 840.26 0.61% 1513 7 0.43  58.93
A-n39-k6 820.33  1.81% 835.28 0.15% 1821 73 0.55  50.78
A-n44-k6*  938.66 0.91% 941.61 0.61% 1644 94 0.28  50.7
A-n45-k6*  948.66  2.10% 981.84 0.13% 1554 80 0.39  39.27
A-n45-k7 1131.77 1.44% 1158.14 0.54% 1992 90 0.38 71.93
A-n46-k7 925.22  2.27% 949.34  0.88% 2206 94 0.79  69.85
A-n48-k7 1073.27 2.18% 1116.29 0.00% 2132 106 1.01  112.25
A-n53-k7*  1009.9 1.02% 1043.23 0.68% 2972 133 1.45  156.75
A-nb4-k7*  1178.95 2.76% 1205.68 0.24% 2314 100 0.79  143.97
A-n55-k9 1079.47 1.95% 1265.08 0.41% 2669 111 54.55 192.58
A-n60-k9 1349.65 1.42% 1362.19 0.77% 3461 131 1.01  322.04
A-n61-k9*  1037.12 2.22% 1080.4  0.09% 2144 103 1.23  107.57
A-n62-k8 1286.81 2.02% 1352.25 0.47% 5235 201 16.62 963.81
A-n63-k9*  1634.05 2.60% 1676.74 0.82% 2738 132 1.11 287.73
A-n63-k10* 1312.08 1.86% 1334.54 0.77% 2462 103 0.4 185.35
A-n64-k9*  1401.93 1.82% 1500.67 0.31% 3312 138 15.26  409.04
A-n65-k9*  1183.43 2.14% 1236.83 0.82% 2743 127 2.06  180.72
A-n69-k9*  1155.61 2.05% 1201.5 0.31% 3403 130 2.17  287.12
A-n80-k10* 1771.81 2.30% 1851.54 0.76% 4907 209 376 1718.99
avg. 1041.43 1.80% 1083.50 0.45% 2259 102 5.21  208.56
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Table 18: Set A - Stochastic solutions for the case & = 0.05 and 5 = 0.5 and € = 0.05

Stochastic with € = 0.05

Time (s)
Instance LB Ks UB s #columns #iter P Total
A-n32-k5 776.58 2.16% 831.64 0.18% 1393 71 0.56 23.85
A-n33-k5 663.73  1.13% 687.72  0.00% 1059 56 0.33 15.36
A-n33-k6 760.58  4.43% 801.73  0.15% 905 47 0.32 16.51
A-n34-k5 768.34  2.43% 1405 68
A-n36-k5 791.69 1.74% 827.6 0.18% 1525 84 0.53 56.17
A-n37-k5 666.15 0.91% 687.63 0.20% 1788 91 0.36 42.65
A-n37-k6*  954.38  2.57% 998.95 0.00% 969 57 0.3 23.84
A-n38-kb* 71735 1.57% 753.19  0.00% 1361 88 0.17 24.24
A-n39-k5*  819.32  1.93% 838.61 0.17% 1626 86 0.28 62.51
A-n39-k6 822.79  2.11% 859.94 0.15% 1766 80 0.55 56.55
A-n44-k6*  945.76  1.67% 956.25  0.00% 1498 95 0.38 48.78
A-n45-k6*  955.67  2.85% 985.9 0.27% 1408 84 0.42 37.23
A-n45-k7 1135.04 1.73% 1161.3 0.38% 2137 100 0.64 76.5
A-n46-k7 931.63  2.98% 984.62 0.00% 2085 90 1.97 66.06
A-n48-k7 1077.85 2.62% 1126.16 0.00% 2539 102 0.73 150.11
A-nH3-k7*  1021.17 2.14% 1066.16 0.24% 2658 116 1.27 127.94
A-nb4-k7*  1184.96 3.28% 1195.99 0.12% 2296 100 0.47 145.61
A-n55-k9 1082.6  2.24% 111859 0.38% 2706 121 4.35 167.78
A-n60-k9 1360.69 2.25% 1482.26 0.29% 4076 141 357.15 879.84
A-n61-k9*  1043.35 2.83% 1077 0.09% 2133 108 0.73 107.43
A-n62-k8 1294.53 2.63% 1473.5  0.33% 5218 198 283.65 1355.5
A-n63-k9*  1651.84 3.71% 1727.11 0.09% 2904 126 3.67 274.85
A-n63-k10* 1323.11 2.71% 1348.98 0.09% 2319 120 1.29 157.88
A-n64-k9*  1420.04 3.14% 1467.88 0.19% 3310 149 1.88 421.62
A-n65-k9*  1208.98 4.34% 1265.04 0.00% 2747 118 1.9 144.6
A-n69-k9* 1167 3.06% 1225.24 0.10% 3256 129 2.12 255.63
A-n80-k10* 1781.88 2.88% 1884.07 0.17% 5373 210 51.87 1742
avg. 1049.15 2.52% 1108.96 0.14% 2313 105 27.61  249.27
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Table 19: Set A - Stochastic solutions for the case @ = 0.05 and § = 0.5 and € = 0.01

Stochastic with € = 0.01

Time (s)
Instance LB Ks UB s #columns #iter P Total
A-n32-k5 797.84  4.96% 798.85 0.00% 1139 55 0.17  18.99
A-n33-k5 670.01  2.08% 681.22 0.00% 1104 62 0.26  17.88
A-n33-k6 770.36  5.77% 77532  0.00% 1169 54 0.22 27.62
A-n34-k5 783.43  4.44% 1402 74
A-n36-k5 808.8 3.94% 916.53  0.00% 1682 7 2.29  68.73
A-n37-k5 679.58  2.94% 699.93 0.00% 1583 72 0.39 37.88
A-n37-k6*  966.08 3.83% 996.32 0.00% 1010 61 0.13 18.85
A-n38-kb*  724.24  2.54% 765.26  0.00% 1235 80 0.31 23.33
A-n39-k5*  832.84  3.62% 844.7 0.00% 1553 81 0.62 51.13
A-n39-k6 836.37  3.80% 842.92 0.00% 1667 76 0.36 61.34
A-n44-k6*  955.5 2.72% 966.23  0.00% 1455 91 0.2 43.8
A-n45-k6*  962.03  3.54% 1016.76 0.00% 1341 79 0.75  33.16
A-n45-k7 1155.82  3.60% 1198.03 0.00% 2155 89 0.6 91.06
A-n46-k7 938.77  3.77% 982.8 0.00% 2418 118 1.91  81.47
A-n48-k7 1091.78 3.95% 1114.76 0.00% 2495 123 0.49 151.57
A-nb3-k7*  1037.23 3.75% 1097.97 0.00% 2855 112 1.75  135.47
A-nb4-k7*  1206.04 5.12% 1228.45 0.00% 2492 113 0.63  150.02
A-n55-k9
A-n60-k9
A-n61-k9*  1057.76 4.25% 1116.76 0.00% 2189 103 2.11  105.73
A-n62-k8
A-n63-k9*  1674.22 5.12% 1741.3  0.00% 2780 142 6.37  288.76
A-n63-k10* 1343.24 4.28% 1370.78 0.00% 2228 101 0.93 122.33
A-n64-k9*  1439.43 4.54% 1548.41 0.00% 3005 141 31.67 362.5
A-n65-k9*  1222.73 5.53% 1287.38 0.00% 2277 105 1.63  115.15
A-n69-k9*  1174.52 3.72% 1259.27 0.00% 3253 133 12.49 324.66
A-n80-k10* 1804.79 4.20% 1912.49 0.00% 5036 206 99.51 1775.73
avg. 1038.89 4.00% 1094.02 0.00% 2063 98 7.21  178.57
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8.2 B

8.2.1 D

Table 20: Set B - Comparison with best known deterministic solution

Instance z* LB UB Gap™* Time (s)
B-n31-kb 672 619.27 680.24 1% 50.54
B-n34-kb* 788  749.14 79485 1% 59.28
B-n35-k5 955 829.78  986.09 3% 98.42
B-n38-k6 805  719.5 841.95 5% 54.51
B-n39-kb 549  523.26  569.64 4% 130.38
B-n41-k6* 829  801.3 851.65 3% 63.67
B-n43-k6 742 71211 769.47 4% 119.21
B-n44-k7* 909 867.52 981.53 8% 99.55
B-n45-kb* 751  692.18 77494 3% 92.53
B-n45-k6* 678 658.25 733.83 8% 74.01
B-n50-k7 741 670.62 764.15 3% 174.61
B-n50-k8* 1312 1259.07 1337.32 2% 315.74
B-n51-k7* 1032 956.9 1021.26 -1%  173.61
B-n52-k7 747 682.44  831.9 11%  472.79
B-n56-k7* 707 639.01 72411 2% 388.73
B-n57-k7* 1153 1097.07 1143.32 -1%  1035.6
B-n57-k9* 1598 1507.96 1664.52 4% 532.72
B-n63-k10* 1496 1451.75 1585.37 6% 027.21
B-n64-k9* 861 815.38 954.94 11%  300.01
B-n66-k9* 1316 1259.39 1378.45 5% 958.01
B-n67-k10* 1032 993.98  1098.54 6% 434.29
B-n68-k9* 1272 1194.69 1333.57 5% 1059.12
B-n78-k10* 1221 1169.71 1324.67 8% 1378.31
avg. 4% 373.6
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8.2.2 RvS

Table 21: Set B - Performance measures comparison for the case « = 0.1 and g = 0.5
Deterministic Stochastic Robust
e=0.1 e =0.05 e =0.01

Instance 0d O K O K O K Ky

B-n31-k5 3.28% 2.21% 2.58% 1.19% 4.80% 0.02% 6.63% 7.52%
B-n34-k5 5.20% 2.07% 2.50% 1.01% 3.48% 0.31% 6.05% 7.07%
B-n35-k5 5.80% 0.00% 4.19% 0.00% 6.33% 0.00% 8.05% 9.66%
B-n38-k6 4.20% 1.37% 3.14% 0.47% 4.27% 0.00% 5.66% 7.66%
B-n39-k5 2.22% 2.32% 1.8™% 0.69% 3.52% 0.27% 5.00% 6.13%
B-n41-k6*  4.40% 1.29% 2.73% 0.21% 4.18% 0.21% 5.56% 6.75%
B-n43-k6 3.44% 1.94% 2.40% 0.00% 4.34% 0.27% 6.12% 7.34%
B-n44-k7 6.26% 3.85% 3.23% 0.89% 4.60% 0.19% 6.711% 8.39%
B-n45-k5*  2.50% 1.72% 3.26% 0.00% 3.57% 0.02% 4.03% 4.35%
B-n45-k6*  2.84% 1.74% 1.96% 1.35% 3.02% 0.00% 6.27% 6.26%
B-n50-k7 2.42% 1L.17% 2.17% 0.38% 3.55% 0.00% 4.82% 5.86%
B-n50-k8& 6.52% 3.36% 3.07% 1.58% 4.89% 0.53% 6.70% 7.91%
B-n51-k7*  4.42% 1.67% 4.24% 0.710% 5.06% 0.00% 6.38% 9.06%
B-nb2-k7 2.48% 1.30% 2.86% 0.76% 4.30% 0.00% 5.49% 6.11%
B-n56-k7 8.31% 2.74% 2.50% 1.14% 3.99% 0.19% 5.34% 7.21%
B-nb7-k7*  4.78% 1.77% 3.46% 1.48% 4.70% 0.20% 7.05% 8.49%
B-n57-k9 4.87% 2.28% 2.86% 1.35% 4.73% 0.32% 7.39% 8.98%
B-n63-k10  3.29% 2.59% 4.00% 1.51% 5.54% 0.15% 7.39% 9.77%
B-n64-k9*  3.94% 1.42% 2.66% 0.27% 4.20% 0.15% 5.56% 7.36%
B-n66-k9*  3.15% 3.27% 297% 0.95% 4.83% 0.45% 6.41% 8.71%
B-n67-k10  4.22% 1.38% 3.66% 1.40% 4.88% 0.26% 7.05% 8.00%
B-n68-k9*  6.26% 1.88% 3.89% 0.53% 5.45% 0.31% 7.37% 9.52%
B-n78-k10* 4.56% 2.23% 2.72% 0.75% 4.45% 0.00% 6.21% 8.01%
avg. 4.32% 1.98% 3.00% 0.81% 4.46% 0.17% 6.23% 7.66%
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Table 22: Set B - Performance measures comparison for the case « = 0.05 and § = 0.5

Deterministic Stochastic Robust
e=0.1 e =0.05 e =0.01

Instance 04 O K O K O K Ky

B-n31-k5 0.96% 0.19% 1.81% 0.00% 2.58% 0.00% 4.84% 3.06%
B-n34-k5 0.78% 0.18% 2.07% 0.00% 2.50% 0.00% 3.55% 3.09%
B-n35-k5 1.88% 0.42% 2.92% 0.00% 4.16% 0.00% 6.33% 5.05%
B-n38-k6 0.88% 0.16% 2.38% 0.00% 3.35% 0.00% 4.24% 3.32%
B-n39-k5 0.00% 0.42% 1.59% 0.00% 2.21% 0.00% 3.54% 2.27%
B-n41-k6*  1.46% 0.08% 2.51% 0.14% 2.73% 0.00% 4.18% 3.15%
B-n43-k6 1.11% 0.36% 1.94% 0.60% 2.40% 0.00% 4.34% 3.32%
B-n44-k7 1.85% 0.70% 2.37% 0.37% 3.23% 0.00% 4.65% 4.07%
B-n45-k5*  1.18% 0.00% 3.06% 0.00% 2.64% 0.00% 3.57% 2.78%
B-n45-k6*  0.84% 0.48% 1.60% 0.14% 1.98% 0.00% 3.04% 2.34%
B-n50-k7 0.82% 0.13% 1.67% 0.00% 2.23% 0.00% 3.48% 2.55%
B-n50-k8& 2.37% 0.86% 2.26% 0.22% 3.04% 0.00% 4.81% 3.55%
B-n51-k7*  1.73% 0.54% 3.19% 0.23% 4.24% 0.00% 5.09% 4.76%
B-nb2-k7 1.15% 0.44% 2.18% 0.13% 2.79% 0.00% 4.22% 3.40%
B-n56-k7 3.04% 0.00% 1.97% 0.00% 2.85% 0.00% 3.95% 3.33%
B-n57-k7*  1.79% 0.65% 2.38% 0.23% 3.46% 0.00% 4.71% 3.31%
B-n57-k9 1.65% 0.46% 2.44% 0.20% 3.02% 0.00% 4.66% 4.01%
B-n63-k10  2.37% 0.37% 2.32% 0.26% 3.98% 0.00% 5.54% 4.67%
B-n64-k9*  0.99% 0.00% 2.17% 0.09% 2.65% 0.00% 4.22% 3.20%
B-n66-k9*  1.04% 0.77% 2.24% 0.19% 2.98% 0.00% 4.75% 3.70%
B-n67-k10  1.63% 0.29% 1.53% 0.09% 3.66% 0.00% 4.87% 2.70%
B-n68-k9*  1.87% 0.19% 2.71% 0.19% 3.92% 0.00% 5.44% 4.28%
B-n78-k10* 1.66% 0.17% 2.04% 0.09% 2.73% 0.00% 4.44% 3.39%
avg. 1.44% 0.34% 2.23% 0.14% 3.01% 0.00% 4.45% 3.45%
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8.2.3 R

Table 23: Set B - Robust solutions for the case @« = 0.1 and = 0.5

Robust
Time (s)

Instance LB Koy UB #columns #iter IP Total
B-n31-k5 665.81  7.52% 704.1 895 65 0.29 41.6
B-n34-k5*  802.14 7.07% 904.28 1601 88 6.26 92.86
B-n35-k5 909.9 9.66% 1036.83 1507 67 0.5 177.9
B-n38-k6 774.6 7.66% 872.38 1587 67 0.81 89.22
B-n39-k5 555.35  6.13% 618.33 2358 93 0.73 360.54
B-n41-k6*  855.42  6.75% 920.82 1038 65 0.59 67.46
B-n43-k6 764.39  7.34% 83249 2032 90 2.68 189.97
B-n44-k7*  940.27 8.39% 1068.96 1651 82 3.53 97.42
B-n45-k5*  722.26  4.35% 772.03 2505 132 0.22 141.75
B-n45-k6*  699.44  6.26% 757.91 1420 80 0.74 87.95
B-n50-k7 709.92  5.86% 806.99 3366 129 4.35 522.95
B-n50-k8*  1358.62 7.91% 1405.25 2506 119 7.64 303.95
B-n51-k7*  1043.64 9.06% 1186.26 1735 84 0.9 139.85
B-n52-k7 724.14  6.11% 828.36 3640 156 5.17 824.42
B-n56-k7*  685.06 7.21% 792.05 2214 117 2.3 605.58
B-n57-k7*  1190.21 8.49% 1400.26 3040 138 20.41  1026.55
B-n57-k9*  1643.33 8.98% 1787.52 2038 120 98.13  674.99
B-n63-k10* 1593.65 9.77% 1734 2351 118 29.99  600.14
B-n64-k9*  875.4 7.36% 965.23 2717 132 1.22 455.18
B-n66-k9*  1369.12 8.71% 1468.85 3025 135 17.14  1111.48
B-n67-k10* 1073.47 8.00% 1181.15 2771 120 18.62  510.48
B-n68-k9*  1308.37 9.52% 1500.71 3317 134 103.29 1382.82
B-n78-k10* 1263.35 8.01% 1354.95 3898 151 3.24 1483.84
avg. 979.47  7.66% 1082.59 2313 108 14.29  477.77
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Table 24: Set B - Robust solutions for the case @ = 0.05 and g8 = 0.5

Robust
Time (s)

Instance LB Ky UB #columns #iter IP Total
B-n31-k5 638.24 3.06% 684.74 1164 88 0.88 86.03
B-n34-k5 77231 3.09% 797.3 2349 81 0.3 294.31
B-n35-k5 871.72  5.05% 1036.7 1397 63 0.48 100.13
B-n38-k6 743.36  3.32% 867.51 1495 68 0.45 93.38
B-n39-k5 535.13  2.27% 605.64 2261 87 0.69 221.66
B-n41-k6*  826.53  3.15% 859.87 1063 64 0.31 75.15
B-n43-k6 735.73  3.32% 790.11 2017 86 1.84 177.63
B-n44-k7 902.83  4.07% 1052.29 2132 94 3.46 170.24
B-n45-k5*  711.41  2.78% 773.14 1908 88 0.25 105.36
B-n45-k6*  673.66  2.34% 744.58 1577 88 1.48 102.89
B-n50-k7 687.72  2.55% 781.45 3378 122 0.88 370.19
B-n50-k8 1303.74 3.55% 1357.35 2783 121 3.61 479.19
B-n51-k7*  1002.43 4.76% 1168.09 2016 123 5.84 230.16
B-nb2-k7 705.62  3.40% 834.34 3043 150 4.12 697.81
B-n56-k7 660.27  3.33% 824.17 4084 138 11.12  1015.3
B-n57-k7*  1133.38 3.31% 1263.03 3668 143 24.84  1241.07
B-n57-k9 1568.47 4.01% 1673.28 2969 125 3.01 613.99
B-n63-k10  1519.54 4.67% 1623.11 3264 138 1.91 1146.39
B-n64-k9*  841.47  3.20% 954.96 2899 133 3.19 557.46
B-n66-k9*  1306.03 3.70% 1368.3 2960 137 1.72 1512.15
B-n67-k10  1020.81 2.70% 1137.05 4262 176 119.56 1322.3
B-n68-k9*  1245.84 4.28% 1419.45 3453 151 92.83  1969.03
B-n78-k10* 1209.38 3.39% 1345.66 4786 168 33.09  2398.14
avg. 939.8 3.45% 1041.83 2649 114 13.73  651.30
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8.2.4 S

Table 25: Set B - Stochastic solutions for the case o = 0.1 and § = 0.5 and ¢ = 0.1

Stochastic with e = 0.1

Time (s)

Instance LB K UB O #columns #iter 1P Total
B-n31-k5 635.26  2.58% 689.86 2.21% 1216 79 0.84 55.73
B-n34-k6*  767.88  2.50% 808.09 2.07% 1705 94 0.5 66.94
B-n35-kb 864.58  4.19% 1022.32 0.00% 1296 60 0.4 68.57
B-n38-k6 742.12  3.14% 840.05 1.37% 1507 69 0.87 69.31
B-n39-k5 533.02  1.87% 565.98 2.32% 2079 82 0.35 144.8
B-n41-k6*  823.15 2.73% 863.92 1.29% 1020 61 0.35 56.07
B-n43-k6 729.21  2.40% 773.25 1.94% 2170 91 0.76 140.69
B-n44-k7*  895.56  3.23% 1007.57 3.85% 1615 89 0.47 87.19
B-n45-k6*  714.73  3.26% 793.24 1.72% 2103 80 0.36 91.14
B-n45-k6*  671.15  1.96% 738.12 1.74% 1628 86 1.16 73.88
B-n50-k7 685.15  2.17% 782.55 1.17% 3385 125 1.04 245.59
B-n50-k8*  1297.7  3.07% 1353.35 3.36% 2077 104 1.57 228.62
B-n51-k7*  997.46  4.24% 1088.76 1.67% 2242 147 1.41 179.41
B-n52-k7 701.99 2.86% 819.63 1.30% 3283 134 7.35 486.23
B-n56-k7* 655 2.50% T73.74  2.74% 2815 114 2.48 542.14
B-n57-k7*  1135.01 3.46% 1229.09 1.77% 3828 148 6.45 817.76
B-n57-k9*  1551.09 2.86% 1670.37 2.28% 2855 129 9.71 459.6
B-n63-k10* 1509.75 4.00% 1600.61 2.59% 2548 117 1.25 451.81
B-n64-k9*  837.05 2.66% 956.82 1.42% 2981 151 5.48 357.91
B-n66-k9*  1296.76 2.97% 1366.82 3.27% 3080 154 8.83 1287.8
B-n67-k10* 1030.35 3.66% 1272.39 1.38% 3063 131 5.26 541.7
B-n68-k9*  1241.13 3.89% 139544 1.88% 3940 154 45.41  1180.92
B-n78-k10* 1201.54 2.72% 1340.53 2.23% 4724 191 168.65 1589.82
avg. 935.51  3.00% 1032.72 1.98% 2485 113 11.78  401.03
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Table 26: Set B - Stochastic solutions for the case a = 0.1 and S = 0.5 and € = 0.05

Stochastic with € = 0.05

Time (s)
Instance LB Ks UB s #columns #iter 1P Total
B-n31-k5 648.99 4.80% 703.86 1.19% 995 74 0.99 48.91
B-n34-k6*  775.22  3.48% 890.84 1.01% 1556 89 6.79 67.11
B-n35-k5 882.31  6.33% 1040.92 0.00% 1520 67 1.24 93.3
B-n38-k6 750.23  4.27% 882.84 0.47% 1619 72 1.51 55.9
B-n39-k5 541.7 3.52% 731.58  0.69% 2145 81 2.52 161.66
B-n41-k6*  834.8 4.18% 933.58  0.21% 1072 61 1.51 61.82
B-n43-k6 742.98  4.34% 785.13  0.00% 2144 82 1.86 131.89
B-n44-k7*  907.43  4.60% 1057.42 0.89% 1775 91 7.34 93.22
B-n45-k6*  716.86  3.57% 776.84 0.00% 2151 105 0.53 95.09
B-n45-k6*  678.16  3.02% 742.79 1.35% 1814 96 1.08 76.32
B-n50-k7 694.4 3.55% 782.66  0.38% 3549 119 3.37 274.02
B-n50-k8*  1320.63 4.89% 1357.04 1.58% 2506 120 1.73 258.93
B-n51-k7*  1005.29 5.06% 1193.47 0.70% 1952 102 5.96 120.71
B-n52-k7 711.8 4.30% 836.74 0.76% 3393 162 4.59 545.83
B-n56-k7*  664.49  3.99% 784.09 1.14% 2774 100 2.68 420.41
B-n57-k7* 11486  4.70% 1287.19 1.48% 3659 154  45.36  1040.64
B-n57-k9*  1579.29 4.73% 1678.36 1.35% 2537 117 3.38 367.45
B-n63-k10* 1532.13 5.54% 1676.05 1.51% 2317 122 16.86 435
B-n64-k9*  849.64  4.20% 92847 0.27% 2824 123 1.49 273.61
B-n66-k9*  1320.24 4.83% 1374.93 0.95% 3119 146 1.65 941.86
B-n67-k10* 1042.52 4.88% 1151 1.40% 2684 125 30.56  367.29
B-n68-k9*  1259.78 5.45% 1441.18 0.53% 3757 132 120.36  1069.5
B-n78-k10* 1221.78 4.45% 1366.22 0.75% 4762 174 106.57 1436.04
avg. 949.10  4.46% 1061.01 0.81% 2462 109 16.07  366.80
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Table 27: Set B - Stochastic solutions for the case a = 0.1 and 8 = 0.5 and € = 0.01

Stochastic with € = 0.01

Time (s)
Instance LB Ks UB s #columns #iter 1P Total
B-n31-k5 660.3 6.63% 697.22 0.02% 1066 69 0.68 36.03
B-n34-k6*  794.43  6.05% 884.86 0.31% 2070 105 13.99  89.82
B-n35-k5 896.61  8.05% 1035.27 0.00% 1505 58 0.5 95
B-n38-k6 760.19  5.66% 895.82  0.00% 1599 73 1.95 53.8
B-n39-k5 549.41  5.00% 615.73  0.27% 2315 84 0.42 143.57
B-n41-k6*  845.83  5.56% 926.68 0.21% 955 63 0.59 47.61
B-n43-k6 755.71  6.12% 839.7 0.27% 2042 81 1.48 131.85
B-n44-k7*  925.76  6.71% 1064.41 0.19% 1698 85 2.5 80.24
B-n45-k6*  720.09  4.03% 789.72  0.02% 2437 109 0.31 103.89
B-n45-k6*  699.49 6.27% 739.75  0.00% 1671 75 1.2 o
B-n50-k7 702.93  4.82% 803.24 0.00% 3492 127 3.13 270.52
B-n50-k8*  1343.37 6.70% 1373.58 0.53% 2289 104 241 217.78
B-n51-k7*  1017.92 6.38% 1180.63 0.00% 1849 108 1.12 108.9
B-n52-k7 719.88  5.49% 939.23  0.00% 3440 153 85.09  668.53
B-n56-k7*  673.11  5.34% 771.06 0.19% 2638 112 0.76 450.08
B-n57-k7*  1174.38 7.05% 1391.16 0.20% 3023 123 62.89  730.02
B-n57-k9*  1619.44 7.39% 1685.2  0.32% 2346 118 1.83 343.8
B-n63-k10* 1559.04 7.39% 1740.16 0.15% 2499 122 113.23 481.01
B-n64-k9*  860.71  5.56% 972.88  0.15% 2918 122 2.04 266.44
B-n66-k9*  1340.16 6.41% 1468.42 0.45% 3265 164 114.14  985.77
B-n67-k10* 1064.04 7.05% 1177.14 0.26% 2942 121 25.15  360.02
B-n68-k9*  1282.72 7.37% 1471.28 0.31% 3564 135 161.35 1063.86
B-n78-k10* 1242.31 6.21% 1360.51 0.00% 4172 160 16.17  1069.27
avg. 965.56  6.23% 1079.29 0.17% 2426 107 26.65  342.41
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Table 28: Set B - Stochastic solutions for the case o = 0.05 and 8 = 0.5 and ¢ = 0.1

Stochastic with e = 0.1

Time (s)

Instance LB Ks UB s #columns #iter 1P Total
B-n31-k5 630.49 1.81% 681.44 0.19% 1249 76 0.77 57.49
B-n34-k5 764.64  2.07% 812.37 0.18% 2191 84 0.6 107.95
B-n35-k5 854 2.92% 1031.29 0.42% 1367 65 0.64 81.26
B-n38-k6 736.66  2.38% 850.66 0.16% 1495 70 1.28 71.59
B-n39-k5 531.6 1.59% 604.57  0.42% 2160 82 2.08 178.52
B-n41-k6*  821.38  2.51% 866.87 0.08% 989 51 0.32 65.61
B-n43-k6 72591  1.94% 771.2 0.36% 2318 99 0.87 175.63
B-n44-k7 888.1 2.37% 1004.21 0.70% 2430 97 247 157.3
B-n45-k5*  713.38  3.06% 779.19  0.00% 2305 83 0.44 100.38
B-n45-k6*  668.8 1.60% 739 0.48% 1644 74 1.38 68.74
B-n50-k7 681.8 1.67% 805.31  0.13% 3322 114 3.54 253.17
B-n50-k8 1287.5  2.26% 1339.92 0.86% 2822 121 2.67 318.29
B-n51-k7* 9874 3.19% 1078.45 0.54% 2165 124 0.79 159.57
B-n52-k7 697.29  2.18% 826.71  0.44% 3053 126 16.17  490.05
B-n56-k7 651.59  1.97% 771.78  0.00% 3682 117 3.19 602.05
B-n57-k7*  1123.17 2.38% 1150.07 0.65% 3382 158 0.93 1111.06
B-n57-k9 1544.68 2.44% 1672.23 0.46% 3049 134 27.76  521.12
B-n63-k10  1485.41 2.32% 1619.67 0.37% 3482 142 7.11 705.88
B-n64-k9*  833.09 2.17% 962.02 0.00% 3079 127 5.28 358.19
B-n66-k9*  1287.66 2.24% 1381.83 0.77% 3060 141 9.06 967.41
B-n67-k10  1009.21 1.53% 1120.48 0.29% 4448 163 58.06  711.76
B-n68-k9*  1227.09 2.71% 1400.68 0.19% 3919 145 168.33  1207.02
B-n78-k10* 1193.62 2.04% 1332.18 0.17% 4729 178 295.55 1776.22
avg. 928.02  2.23% 1026.18 0.34% 2710 112 26.49  445.49
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Table 29: Set B - Stochastic solutions for the case o = 0.05 and 8 = 0.5 and € = 0.05

Stochastic with € = 0.05

Time (s)

Instance LB Ks UB s #columns #iter P Total
B-n31-k5 635.26  2.58% 689.86 0.00% 1215 78 0.86 62
B-n34-k5 767.85  2.50% 802.58  0.00% 2350 84 1.71 192.3
B-n35-k5 864.34  4.16% 1022.52 0.00% 1178 53 0.68 71.71
B-n38-k6 743.61  3.35% 875.14 0.00% 1521 67 1.35 78.95
B-n39-k5 534.83  2.21% 596.42  0.00% 2056 80 0.66 165.33
B-n41-k6*  823.15 2.73% 867.46 0.14% 1003 60 0.56 68.26
B-n43-k6 729.21  2.40% 778.59  0.60% 2189 90 0.84 168.34
B-n44-k7 895.56  3.23% 993.75  0.37% 2249 108 2.14 145.12
B-n45-k6*  710.43  2.64% 782.2 0.00% 2215 91 0.91 116.19
B-n45-k6*  671.28  1.98% 740.56  0.14% 1518 76 0.96 68.93
B-n50-k7 685.57  2.23% 770.21  0.00% 3056 117 0.7 231.76
B-n50-k8 1297.35 3.04% 1349.97 0.22% 2973 125 1.59 340.9
B-n51-k7* 99748  4.24% 1075.37 0.23% 2091 119 0.53 143.36
B-n52-k7 701.5 2.79% 814.89 0.13% 3154 149 4.98 499.83
B-n56-k7 657.25 2.85% 779.42 0.00% 3745 123 2.28 643.75
B-n57-k7*  1135.04 3.46% 1229.25 0.23% 3849 143 0.9 821.15
B-n57-k9 1553.46 3.02% 1671.89 0.20% 3609 145 7.38 564.53
B-n63-k10  1509.54 3.98% 1664.58 0.26% 3741 139 73.16  847.69
B-n64-k9*  836.95 2.65% 956.62 0.09% 2919 125 6.24 343.98
B-n66-k9*  1296.92 2.98% 1367.83 0.19% 3102 148 4.07 906.75
B-n67-k10  1030.34 3.66% 1177.59 0.09% 4062 145 108.42 702.69
B-n68-k9*  1241.51 3.92% 1417.87 0.19% 3747 141 168.92 1179.2
B-n78-k10* 1201.63 2.73% 1334.39 0.09% 4645 186 38.45  1372.8
avg. 935.65 3.01% 1033.00 0.14% 2704 113 18.62  423.28
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Table 30: Set B - Stochastic solutions for the case a = 0.05 and 8 = 0.5 and € = 0.01

Stochastic with € = 0.01

Time (s)
Instance LB Ks UB s #columns #iter P Total
B-n31-k5 649.26  4.84% 703.86 0.00% 974 71 0.84 49.14
B-n34-k5 775.76  3.55% 812.81 0.00% 2520 100 1.12  3403.3
B-n35-k5 882.31  6.33% 1040.92 0.00% 1521 67 1.28  109.34
B-n38-k6 749.99  4.24% 882.42 0.00% 1676 85 1.6 78.5
B-n39-k5 541.76  3.54% 565.44  0.00% 2298 86 0.48 188.8
B-n41-k6*  834.8 4.18% 862.64 0.00% 1093 66 0.23 72.52
B-n43-k6 742.98  4.34% 813.69 0.00% 2139 83 1.95 155.38
B-n44-k7 907.88  4.65% 1073.85 0.00% 2207 95 3.22  169.78
B-n45-k6*  716.86  3.57% 776.84 0.00% 2149 105 0.65  98.31
B-n45-k6*  678.25  3.04% 740.38  0.00% 1555 81 0.78  74.23
B-n50-k7 693.97  3.48% 790.12 0.00% 3314 116 3.63  260.03
B-n50-k8 1319.6  4.81% 1344.59 0.00% 3101 132 3.77  491.07
B-n51-k7*  1005.65 5.09% 1186.45 0.00% 2114 121 4.74  152.04
B-n52-k7 711.21  4.22% 837.21  0.00% 3745 173 6.09  620.01
B-n56-k7 664.22  3.95% 821.33 0.00% 3845 120 6.47  668.86
B-n57-k7*  1148.77 4.71% 1252.84 0.00% 3672 159 17.54 915.73
B-n57-k9 1578.26 4.66% 1671.91 0.00% 3540 147 4.13  527.61
B-n63-k10  1532.11 5.54% 1851.94 0.00% 3579 146 51.4  1004.92
B-n64-k9*  849.82  4.22% 959.78  0.00% 2736 129 2.66 282.1
B-n66-k9*  1319.17 4.75% 1418.45 0.00% 2934 148 22.07 938.81
B-n67-k10  1042.37 4.87% 1207.82 0.00% 4648 159 70.2  964.68
B-n68-k9*  1259.69 5.44% 1414.78 0.00% 3682 147 34.59 1084.53
B-n78-k10* 1221.69 4.44% 1350.82 0.00% 4618 163 40.58 1321.95
avg. 948.97  4.45% 1060.04 0.00% 2768 117 12.17  592.68
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8.3.1 D

Table 31: Set P - Comparison with best known deterministic solution

Instance z*¥ LB UB Gap* Time (s)
P-n16-k8* 450 442.42 451.94 0% 0.58
P-n19-k2* 212 205.89 212.65 0% 4.76
P-n20-k2* 216 213.26 220.03 2% 5.26
P-n21-k2 211 212.71 212.71 1% 7.09
P-n22-k2* 216 217.35 2242 4% 8.07
P-n23-k8* 529 523.54 536.34 1% 1.67
P-n40-k5* 458 452 461.72 1% 37.64
P-n45-k5* 510 503.99 539.51 6% 67.7
P-n50-k7* 554 547.01 571.91 3% 53.32
P-n50-k8* 631 61541 639.65 1% 30.8
P-n50-k10* 696 689.74 704.45 1% 13.81
P-n51-k10* 741 735.81 75892 2% 19.12
P-n55-k7* 568 554.66 584.03 3% 111.64
P-n55-k8 567.61 596.11 128.14
P-n55-k10* 694 678.8 700.69 1% 29.98
P-n55-k15% 989 938.24 947.73 -4%  8.15
P-n60-k10* 744 738.82 759.16 2% 46.47
P-n60-k15* 968 962.33 987.01 2% 15.63
P-n65-k10* 792 785.43 831.88 5% 103.12
P-n70-k10* 827 814.53 853.46 3% 197.44
P-n76-k5* 627 622.31 671.25 % 4105.07
ave. 2%  237.88
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Table 32: Set P - Performance measures comparison for the case o = 0.1 and 5 = 0.5

Deterministic Stochastic Robust
e=0.1 e =0.05 e =10.01

Instance 0d O K O K O K Ky
P-n16-k8*  1.95% 0.00% 5.14% 0.00% 5.14% 5.98%
P-n19-k2*  4.32% 0.00% 0.20% 0.00% 0.20% 0.00% 0.20%  0.00%
P-n20-k2*  5.03% 0.00% 1.24% 0.00% 1.26% 0.00% 1.84% 1.93%
P-n21-k2 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.88%  0.00%
P-n22-k2*  2.08% 0.80% 1.38% 0.80% 1.57% 0.11% 1.86% 1.86%
P-n23-k8*  6.04% 0.89% 7.73% 0.00% 10.22% 0.00% 14.32% 10.22%
P-n40-k5*  2.03% 0.70% 1.35% 0.70% 1.91% 1.10% 2.17%  3.72%
P-n45-k5*  5.54% 0.83% 1.11% 0.10% 1.39% 0.10% 2.16%  3.19%
P-n50-k7*  2.94% 3.71% 1.61% 1.56% 2.69%  1.15% 3.58%  4.77%
P-n50-k8*  4.33% 2.72% 2.56% 1.02% 2.95% 0.67% 4.02%  5.24%
P-n50-k10* 5.87% 1.89% 2.15% 0.50% 3.17%  0.02% 4.78%  5.47%
P-n51-k10* 4.80% 1.29% 2.94% 1.18% 3.25%  0.04% 5.08%  5.19%
P-n55-k7*  3.25% 1.26% 1.49% 1.52% 1.67% 1.56% 2.33%  4.19%
P-n55-k8 2.86% 2.39% 2.13% 1.77% 2.3™% 1.13% 3.17%  4.96%
P-n55-k10*  5.39% 0.99% 2.53% 0.31% 3.11% 0.52% 3.92% 6.03%
P-n55-k15*  6.24% 0.76% 5.67% 0.36% 6.06% 0.15% 7.89%  8.72%
P-n60-k10* 5.06% 1.78% 1.92% 1.52% 2.49%  0.85% 3.95%  5.22%
P-n60-k15* 5.75% 1.57% 3.24% 1.16% 4.69%  0.05% 7.26% 8.27T%
P-n65-k10* 4.31% 1.44% 1.63% 1.16% 1.95% 1.09% 3.02%  5.26%
P-n70-k10* 4.35% 2.711% 2.00% 1.85% 2.58%  0.51% 3.98%  5.56%
P-n76-k5*  1.94% 2.82% 042% 1.85% 0.68% 1.21% 1.02%  2.54%
avg. 4.01% 1.36% 2.30% 0.83% 2.82% 0.51% 3.8™%  4.68%
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Figure 11: Set P - Performance measures comparison for the case o = 0.1 and 8 = 0.5
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Figure 12: Set P - Performance measures comparison for the case o = 0.05 and 5 = 0.5
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Table 33: Set P - Performance measures comparison for the case a = 0.05 and § = 0.5

Deterministic Stochastic Robust
e=0.1 e =0.05 e =0.01

Instance 04 O K O K O K Ky

P-n16-k8 1.28% 0.00% 4.57% 0.00% 5.14% 0.00% 5.14% 6.23%
P-n19-k2*  0.88% 0.00% 0.00% 0.00% 0.20% 0.00% 0.20%  0.00%
P-n20-k2*  1.57% 0.00% 1.51% 0.00% 1.27% 0.00% 1.26% 1.57%
P-n21-k2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
P-n22-k2*  0.33% 0.00% 0.90% 0.00% 1.44% 0.00% 1.34% 1.3™%
P-n23-k8*  2.86% 7.33% 0.00% 7.73% 0.00% 10.22% 7.33%
P-n40-k5 0.52% 0.00% 1.28% 0.00% 1.34% 0.00% 1.90% 1.73%
P-n45-k5 2.55% 0.72% 0.08% 1.04% 1.39%  1.52%
P-n50-k7 0.97% 0.13% 1.25% 0.36% 1.63% 0.02% 2.72%  3.07%
P-n50-k8*  1.57% 0.38% 2.33% 0.38% 2.33% 0.00% 2.95%  2.95%
P-n50-k10* 2.05% 0.17% 1.64% 017% 2.15% 0.00% 3.17% 2.72%
P-n51-k10* 1.55% 0.11% 1.75% 0.00% 2.94% 0.00% 3.25%  2.94%
P-n55-k7 1.75% 0.02% 043% 0.73% 0.83% 0.10% 1.65% 2.11%
P-n55-k8 0.51% 0.53% 1.44% 027% 1.76% 0.00% 2.38%  2.64%
P-n55-k10  1.59% 0.20% 2.25% 0.20% 2.25% 0.00% 3.11% 3.11%
P-n55-k15*  2.08% 0.10% 3.40% 0.00% 5.67% 0.00% 6.06% 5.67%
P-n60-k10* 0.89% 0.54% 1.58% 0.54% 1.58% 0.00% 2.49% 2.31%
P-n60-k15  1.77% 0.75% 2.78% 0.00% 6.07% 6.07%
P-n65-k10*  0.98% 0.00% 1.16% 0.02% 1.64% 0.02% 1.94% 2.30%
P-n70-k10* 1.61% 0.18% 1.90% 0.18% 2.00% 0.10% 2.58%  3.21%
P-n76-k5*  0.54% 0.54% 0.26% 0.54% 0.41% 0.44% 0.69% 1.13%
avg. 1.33% 0.19% 1.83% 0.17% 2.35% 0.04% 2.72% 2.85%
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8.3.3 R

Table 34: Set P - Robust solutions for the case o = 0.1 and 8 = 0.5

Robust
Time (s)

Instance LB Koy UB #columns #iter IP Total
P-n16-k8*  468.87 5.98%  477.73 72 13 0.02 0.85
P-n19-k2*  205.89  0.00%  220.64 547 32 0.19 8.47
P-n20-k2*  217.38 1.93% 239.53 741 49 0.37 8.89
P-n21-k2 212.71  0.00% 212.71 1179 78 0.1 1843.01
P-n22-k2*  221.39 1.86%  249.72 829 51 0.18 10.95
P-n23-k8*  577.03  10.22% 593.29 146 17 0.35 1.96
P-n40-k5*  468.83  3.72%  502.81 1850 79 0.51 53.5
P-n45-k5*  520.09 3.19%  538.84 2985 101 2.82 129.75
P-n50-k7*  573.08 4.77%  605.43 2287 82 0.38 63.28
P-n50-k8*  647.66 5.24%  662.77 1166 63 0.78 40.63
P-n50-k10* 727.44 547%  737.72 808 50 0.41 31.18
P-n51-k10* 774 5.19%  787.06 1068 70 0.29 36.58
P-n55-k7*  577.89  4.19%  610.38 2852 96 5.91 148.21
P-n55-k8 595.75  4.96%  612.3 2253 82 2.04 166
P-n55-k10* 719.71  6.03%  738.64 1851 7 6.29 50.12
P-n55-k15* 1020.01 8.72%  1048.19 516 46 0.18 12.21
P-n60-k10* 777.37 5.22%  799.62 1460 83 1.08 95.57
P-n60-k15* 1041.88 8.27%  1057.16 1497 108 3.24 22.14
P-n65-k10* 826.77 5.26%  875.15 2069 107 2.53 160.82
P-n70-k10* 859.85 5.56%  890.32 2289 109 2.91 274.69
P-n76-k5*  638.11 2.54% 672.74 7195 237 9.17 5218.43
avg. 603.41  4.68%  625.37 1698 78 1.89 398.92
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Table 35: Set P - Robust solutions for the case o = 0.05 and 8 = 0.5

Robust
Time (s)

Instance LB Ky UB #columns #iter 1P Total
P-n16-k8 470 6.23% 470 74 14 0.02  0.67
P-n19-k2*  205.89  0.00% 220.64 556 34 0.19 7.37
P-n20-k2*  216.6 1.57% 239.35 743 48 0.37 875
P-n21-k2 212.71  0.00% 212.71 1184 7 0.1 86.19
P-n22-k2*  220.33  1.37% 238.47 829 53 0.18  9.85
P-n23-k8*  561.89 7.33% 567.84 144 18 0.35 1.82
P-n40-k5 459.87  1.73% 470.6 1848 80 0.51  81.05
P-n45-k5 511.67 1.52% 533.33 2993 98 2.82  442.45
P-n50-k7 563.83  3.07% 568.11 2293 85 0.38  162.82
P-n50-k8*  633.55  2.95% 653.78 1166 64 0.78  55.12
P-n50-k10* 708.53  2.72% 730.63 806 53 0.41  30.88
P-n51-k10* 757.43 2.94% 766.07 1068 68 0.29 37.61
P-n55-k7 566.68  2.11% 592.97 2855 97 591  279.33
P-n55-k8 582.59  2.64% 621.26 2271 82 2.04 168.81
P-n55-k10  699.92  3.11% 794.22 1851 7 6.29 115
P-n55-k15* 991.47  5.67% 1005.32 524 48 0.18 17.61
P-n60-k10* 755.88  2.31% 774.49 1460 85 1.08 112.01
P-n60-k15  1020.73 6.07% 1083.7 1502 109 3.24  192.73
P-n65-k10* 803.5 2.30% 824.67 2079 109 2.53  206.99
P-n70-k10* 840.64 3.21% 880.67 2285 109 2.91  340.41
P-n76-k5*  629.34 1.13% 661.13 8180 248 4776 7762.39
avg. 591.10  2.85% 614.76 1748 79 3.73  481.89
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Table 36: Set P - Stochastic solutions for the case = 0.1 and 8 = 0.5 and ¢ = 0.1

Stochastic with e = 0.1

Time (s)
Instance LB Ks UB s #columns #iter 1P Total
P-n16-k8*  465.16 5.14% 477.73  0.00% 53 12 0.03 0.7
P-n19-k2*  206.3 0.20% 220.64 0.00% 589 45 0.28 6.68
P-n20-k2*  215.91 1.24% 233.75 0.00% 685 55 0.38 8.78
P-n21-k2 212.71 0.00% 212.71  0.00% 1239 89 0.18 27.64
P-n22-k2*  220.36 1.38% 238.67 0.80% 687 41 0.15 7.58
P-n23-k&8*  564.02 7.73% 568.57  0.89% 149 20 0.17 1.66
P-n40-k5*  458.1  1.35% 464.5 0.70% 1399 69 0.17 55.85
P-n45-k5*  509.57 1.11% 536.03 0.83% 2071 86 1.07 114.87
P-n50-k7*  555.82 1.61% 563.94 3.71% 1591 81 0.23 59.23
P-n50-k8*  631.19 2.56% 651.61 2.72% 1144 68 0.35 30.45
P-n50-k10* 704.6  2.15% 728.42 1.89% 838 61 0.39 17.28
P-n51-k10* 757.43 2.94% 766.07 1.29% 1112 72 0.38 21.87
P-n55-k7*  562.92 1.49% 584.47 1.26% 2139 91 1.03  150.26
P-n55-k8 579.71 2.13% 616.92  2.39% 2294 86 2.95 148.01
P-n55-k10* 695.95 2.53% 722.89 0.99% 1271 72 1.12  34.47
P-n55-k15% 99147 5.67% 1005.32 0.76% 512 45 0.4  9.26
P-n60-k10* 752.99 1.92% 786.45 1.78% 1549 86 2.2 55.66
P-n60-k15* 993.47 3.24% 1010.23 1.57% 805 69 0.32 12.51
P-n65-k10* 798.22 1.63% 832.29 1.44% 1927 96 243 109.8
P-n70-k10* 830.83 2.00% 860.33 2.71% 2249 103 2.44 22517
P-n76-k5*  624.95 0.42% 655.5 2.82% 7859 241 8.96 5903.84
avg. 587.22 2.30% 606.53  1.36% 1532 76 1.22  333.41
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Table 37: Set P - Stochastic solutions for the case a = 0.1 and 8 = 0.5 and ¢ = 0.05

Stochastic with e = 0.05

Time (s)
Instance LB K UB s #columns #iter 1P Total
P-n16-k8*  465.16  5.14% 47773  0.00% 53 12 0.07  1.03
P-n19-k2*  206.3 0.20%  220.64 0.00% 529 41 0.09 9.17
P-n20-k2* 21594 1.26%  239.53  0.00% 605 45 0.2 7.07
P-n21-k2 212.71  0.00% 212.71  0.00% 1279 76 0.17  38.19
P-n22-k2*  220.77 1.57% 23847 0.80% 775 48 0.15  8.05
P-n23-k8*  577.03  10.22% 593.29  0.00% 140 22 0.21 1.55
P-n40-k5*  460.65 1.91%  464.5 0.70% 1675 87 0.16  53.62
P-n45-k5* 51098 1.39%  535.34  0.10% 1870 78 0.92 106.35
P-n50-k7*  561.74 2.69%  568.11 1.56% 1553 72 0.25  537.7
P-n50-k8*  633.55  2.95%  664.55 1.02% 1111 60 1.02  30.28
P-n50-k10* 711.6 3.17%  729.47  0.50% 850 60 0.4 15.84
P-n51-k10* 759.7 3.25% 77223  1.18% 1110 71 0.36  23.42
P-n55-k7*  563.94 1.67% 591 1.52% 2189 89 2.04  150.67
P-n55-k8 581.07  2.37™%  622.09 1.77% 2441 99 11.6  136.24
P-n55-k10* 699.92 3.11% 731.27 0.31% 1224 73 1.49  35.53
P-n55-k15* 995.11  6.06%  1009.76 0.36% 523 47 0.32 847
P-n60-k10* 757.19  2.49% 77522 1.52% 1465 84 0.9 46.84
P-n60-k15* 1007.43 4.69%  1037.29 1.16% 792 64 0.69 125
P-n65-k10* 800.75  1.95%  834.42 1.16% 2098 108 2.58  112.55
P-n70-k10* 835.55  2.58%  865.33  1.85% 2319 104 1.69  203.91
P-n76-k6*  626.56  0.68%  667.24 1.85% 7875 222 43.02 6626.72
avg. 590.65 2.82% 611.91 0.83% 1546 74 3.25  388.84
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Table 38: Set P - Stochastic solutions for the case « = 0.1 and 8 = 0.5 and € = 0.01
Stochastic with € = 0.01
Time (s)

Instance LB K UB s #columns #iter 1P Total
P-n16-k8*
P-n19-k2*  206.3 0.20%  220.64 0.00% 525 42 0.13  6.67
P-n20-k2*  217.19  1.84% 239.53  0.00% 650 44 0.62 7.76
P-n21-k2 214.79  0.88%  214.79  0.00% 1439 91 0.23  399.43
P-n22-k2*  221.4 1.86%  240.83 0.11% 864 64 0.19 10.3
P-n23-k8* 59852  14.32% 605.24 0.00% 136 19 0.17 1.24
P-n40-k5*  461.83  2.17%  465.7 1.10% 1443 76 0.15  50.3
P-n45-k5*  514.87  2.16%  535.34  0.10% 1787 84 0.84 117.56
P-n50-k7*  566.62 3.58%  569.14 1.15% 1568 78 0.22  52.78
P-n50-k8*  640.15  4.02%  653.05  0.67% 1027 61 0.2 25.93
P-n50-k10* 722.68 4.78%  732.98 0.02% 839 57 0.26 14.3
P-n51-k10* 773.16 5.08%  795.31  0.04% 1031 62 0.48 19.82
P-n55-k7*  567.6 2.33%  601.1 1.56% 2032 87 2.27  125.69
P-n55-k8 585.59  3.17%  612.67 1.13% 2330 92 1.31  151.58
P-n55-k10* 70544 3.92%  746.56  0.52% 1130 66 1.01  28.47
P-n55-k15* 1012.23 7.89%  1031.22 0.15% 522 47 0.59 7.25
P-n60-k10* 767.99 3.95% 807.96 0.85% 1378 74 4.48  46.73
P-n60-k15* 1032.22 7.26%  1047.97 0.05% 725 59 0.39 1242
P-n65-k10* 809.13  3.02%  827.87  1.09% 2169 131 0.77 90.84
P-n70-k10* 846.91 3.98% 894.67 0.51% 2235 112 13.44 182.49
P-n76-k5*  628.64 1.02%  669.18 1.21% 8235 274 43.62 6571.4
avg. 604.66  3.87%  625.59 0.51% 1603 81 3.57  396.15
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Table 39: Set P - Stochastic solutions for the case & = 0.05 and 8 = 0.5 and € = 0.1

Stochastic with e = 0.1

Time (s)
Instance LB K UB s #columns #iter 1P Total
P-n16-k8 462.66 4.57% 477.73  0.00% 57 10 0.09 1.05
P-n19-k2*  205.89 0.00% 220.64 0.00% 508 34 0.23  6.95
P-n20-k2*  216.49 1.51% 239.53 0.00% 613 45 021 8.6
P-n21-k2 212.71 0.00% 212.71 0.00% 1146 87 0.14  17.47
P-n22-k2*  219.3  0.90% 238.47 0.00% 800 49 0.14  8.67
P-n23-k8*  561.89 7.33% 568.21 0.00% 147 22 0.15 1.61
P-n40-k5 457.82 1.28% 465.18  0.00% 1977 81 0.38 73.93
P-n45-k5 507.61 0.72% 2980 92
P-nb0-k7 553.84 1.25% 565.6 0.13% 2472 88 0.83 113.08
P-n50-k8*  629.75 2.33% 655.71  0.38% 1151 64 0.89 31.07
P-n50-k10* 701.05 1.64% 727.37 0.17% 852 59 093 17.15
P-n51-k10* 748.69 1.75% 764.26 0.11% 1210 74 0.44  26.01
P-nb5-k7 557.32  0.43% 596.51  0.02% 3072 96 5.83  292.94
P-n55-k8 575.79 1.44% 605.1 0.53% 2287 90 2.27  166.96
P-n55-k10  694.07 2.25% 721.69  0.20% 1805 79 2.06 57.23
P-n55-k15* 970.12 3.40% 991.48 0.10% 598 58 0.39 7.95
P-n60-k10* 750.47 1.58% 756.36  0.54% 1574 84 0.28  62.96
P-n60-k15  989.1  2.78% 1056.07 0.75% 1490 87 9.07 61.66
P-n65-k10* 794.54 1.16% 824.23  0.00% 1897 87 1.14 135.88
P-n70-k10* 830.04 1.90% 852.17 0.18% 2424 107 1.38  211.87
P-n76-k5*  623.94 0.26% 654.23  0.54% 8352 255 15.36  6233.8
avg. 583.96 1.83% 609.66 0.19% 1782 78 2.11  376.84
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Table 40: Set P - Stochastic solutions for the case a = 0.05 and 8 = 0.5 and € = 0.05

Stochastic with € = 0.05

Time (s)
Instance LB K UB s #columns #iter 1P Total
P-n16-k8 465.16  5.14% 477.73  0.00% 53 12 0.04 0.94
P-n19-k2*  206.3 0.20% 220.64 0.00% 558 43 0.31 8.56
P-n20-k2* 21597 1.27% 239.4 0.00% 631 42 0.15 6.86
P-n21-k2 212.71  0.00% 212.71  0.00% 1100 67 0.16  22.59
P-n22-k2*  220.47 1.44% 238.47 0.00% 731 42 0.16  7.55
P-n23-k8*  564.02 7.73% 568.57  0.00% 149 20 0.17 1.61
P-n40-k5 458.1 1.34% 465.18  0.00% 1928 7 0.4 70.51
P-n45-k5 509.26  1.04% 565.84  0.08% 2910 98 3.62  224.16
P-n50-k7 555.9 1.63% 564.43  0.36% 2270 79 0.48  104.88
P-n50-k8*  629.75  2.33% 655.71  0.38% 1151 64 0.89 33.19
P-n50-k10* 704.6 2.15% 728.42 0.17% 838 61 0.33 16.78
P-n51-k10* 75743  2.94% 765 0.00% 1129 76 0.26 24.5
P-n55-k7 559.54  0.83% 584.71  0.73% 3087 111 2.38  308.09
P-n55-k8 577.58  1.76% 600 0.27% 2546 100 1.36  156.57
P-n55-k10  694.07  2.25% 721.69  0.20% 1805 79 2.07  56.5
P-n55-k15* 991.47  5.67% 1005.32 0.00% 518 45 042 7.62
P-n60-k10* 750.47 1.58% 756.36  0.54% 1574 84 0.27  61.99
P-n60-k15  1020.73 6.07% 1076 0.00% 1608 111 1.8 119.62
P-n65-k10* 798.3 1.64% 831.62  0.02% 1946 92 2.18 132.81
P-n70-k10* 830.83  2.00% 852.17 0.18% 2352 105 1.55  243.79
P-n76-k5*  624.88  0.41% 665.51  0.54% 8091 274 32.26  6904.94
avg. 587.98  2.35% 609.31 0.17% 1761 80 2.44  405.43
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Table 41: Set P - Stochastic solutions for the case @ = 0.05 and § = 0.5 and € = 0.01

Stochastic with € = 0.01

Time (s)
Instance LB Ks UB s #columns #iter 1P Total
P-n16-k8 465.16 5.14%  477.73  0.00% 53 12 0.08 0.85
P-n19-k2*  206.3 0.20%  220.64 0.00% 531 41 0.26  7.48
P-n20-k2* 21594 1.26%  238.83 0.00% 629 42 0.18 7.6
P-n21-k2 212.71 0.00% 212.71  0.00% 1192 72 0.19 38.12
P-n22-k2*  220.27 1.34% 238.67 0.00% 783 54 0.13 8.55
P-n23-k8*  577.03 10.22% 593.29  0.00% 140 22 0.17  1.37
P-n40-k5 460.65 1.90%  473.44  0.00% 2151 86 0.65 82.36
P-n45-k5 511.03 1.39% 2884
P-n50-k7 561.89 2.72%  572.71  0.02% 2307 83 0.53 111.31
P-n50-k8*  633.55 2.95%  661.4 0.00% 1106 62 1.54  30.2
P-n50-k10* 711.58 3.17%  729.47 0.00% 852 59 0.38 16.5
P-n51-k10* 759.7  3.25%  767.09  0.00% 1138 79 0.25  26.26
P-n55-k7 564.12 1.65%  589.86  0.10% 2873 100 1.79  205.14
P-n55-k8 581.11 2.38%  620.66  0.00% 2421 95 1.69  122.72
P-n55-k10  699.92 3.11% 75841  0.00% 2039 87 24.24 115.3
P-n55-k15* 995.11 6.06%  1009.76 0.00% 521 47 0.28 8.32
P-n60-k10* 757.18 2.49%  782.4 0.00% 1465 84 1.3 56.99
P-n60-k15
P-n65-k10* 800.69 1.94%  820.18 0.02% 2013 99 0.72 125.74
P-n70-k10* 835.55 2.58%  860.98 0.10% 2379 106 1.08  236.1
P-n76-k5*  626.59 0.69%  677.96 0.44% 8181 224 57.83 T7588.87
avg. 569.80 2.72%  595.06  0.04% 1783 7 491  462.62
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