ERASMUS UNIVERSITY ROTTERDAM
ERASMUS SCHOOL OF ECONOMICS

Integrated Vehicle and Crew Rescheduling -

Disruption management of the RET tram network

Master of Science (MSc) Econometrics and Management Science
Master Thesis

Operations Research and Quantitative Logistics

NAME: Lisanne van Huizen

STUDENT NUMBER: 427878

SUPERVISOR EUR: SUPERVISORS RET:
Dennis Huisman Cees Boogaard
Judith Mulder
SECOND ASSESSOR EUR:
Twan Dollevoet

August 6, 2020

The content of this thesis is the sole responsibility of the author and does not reflect the view of the
supervisor, second assessor, Erasmus School of Economics or Erasmus University.

Abstract

In this thesis, we focus on the disruption management of the RET (Rotterdamse Elektrische Tram) tram
network. On a daily basis, disruptions occur which affect the original timetable such that vehicles are not
able to continue their route without delay, or even cancellations of parts of their route. As the vehicles are
operated by different drivers during the day, such delays or cancellations may propagate towards vehicles
and drivers not even affected by the disruption. In the existing literature, this problem is also known as
the vehicle and crew rescheduling problem, including delay possibilities (VCRSP).

The goal of this thesis is to find a solution approach to solve the VCRSP in a very short amount
of time, such that it can support the traffic controllers of the RET by forming recovery duties for the
drivers and recovery routes for the vehicles, which can be used to cover for the disruption. In most
literature, the problem is solved sequentially by first establishing a solution for the vehicle rescheduling
problem, and then using this solution as fixed timetable to then solve the crew rescheduling problem.
This is also done by different groups of students of the Erasmus University, for this particular problem.
Therefore, the main goal of this thesis is to find an integrated solution approach which solves the VCRSP.

To quickly solve the integrated VCRSP, we propose a column generation approach for which the
columns correspond to feasible recovery routes and duties for the vehicles and drivers, respectively. These
routes and duties are generated by solving a (recourse constrained) shortest path problem in combination
with a labeling procedure. Also, to improve the computation time, we suggest making a selection of
vehicles and drivers for which changes in the original duty are allowed. This is done by introducing a
neighbourhood or by setting an end time of the recovery period. Furthermore, we propose a pre-solving
method for faster convergence to a feasible solution, such that the total computation time of the solution
method will reduce. Finally, a strategy is used to reduce the number of times the integer master problem
is solved, which will also improve the computation time. The latter is based on the gap between the
objective value of the linear restricted master problem and the overall lower bound of the problem.

We test our solution method by disrupting an original timetable provided by the RET of a normal
week day, on two locations in the network: 1) an isolated line (and without interlining) and 2) a location
where multiple lines cross (and with crew interlining).

The results indicate that the introduction of the neighbourhood and the recovery period both lead
to huge reductions in the size of the instances, which consequently improves the computation time of
the solution method. The reduction is more noticeable for instance 1, as less vehicles and drivers are
affected by the disruption for this instance compared to instance 2. Furthermore, with the use of the
pre-solving method, and all other methods to reduce the total computation time, optimal solutions can
be found within seconds for small instances like instance 1, and feasible solutions can be obtained for
larger instances like instance 2, within the maximum computation time of 20 minutes. However, if the
instance is much larger than instance 2, a feasible solution may not be obtained. Therefore, for further
research, we recommend to improve the solution method to its full potential.

In conclusion, improvement can still be made in (the computation time of) the solution method by
exploring the recommendations. However, despite the limitations, the solution method can be used to
solve small disruptions, and it is able to support the traffic controllers of the RET for large disruptions,
affecting many vehicles and drivers.

Contents

1 Introduction|

|2 Problem Description|

2.2 Disruption Management|
[2.2.1 Vehicle Rescheduling]
[2.2.2 Crew Rescheduling|

2.3 Problem Statement|

|13 Disruption Management: Literature Review|
[3.1 Vehicle Rescheduling|
3.2 Crew Rescheduling|
13.3 Integrated Methodologies & Solution Approaches|
3.4 Summary used Literaturel

I Mail al Probl F ation
4.1 Creating the Networkl
41.1 Task Listl

5.4 Pricing Problem|

5.6 Improving Computation Time|.
[5.6.1 Pre-solving method|.
[5.6.2 Neighbourhood ot Vehicles & Drivers| . . .
[>.6.3 Recovery period|
[>.6.4 Solving the IRMP|
[>.6.5 Stopping Criteria)

|6 Data Description|
6.1 Original Timetable]
6.3 Penalty Cost|
6.4 Test Instances: Disruptions ot Original Timetable|

10
10
11
11

12
13
13
14
14

16
16
16
17
18
21
21

25
26
27
27
28
30
31
32
32
33
34
34

7 Algorithm Settings & Tuning]

[7.1.1 Neighbourhood of Vehicles & Drivers|

[7.1.2 Recovery Period|,
[7.2 Acceleration of Computation Time|
7.3 Final Settings & Recommendations|

B Results|

[8.2 Sensitivity Analysis|.o
[8.2.1 Penalty Cost|
[8.2.2 Disruption|. L

G FADI fions

|[List of Symbols|

40
40
41
43
45
48

49
49
51
o1
95

58
o8
99

60

62

63

66

67

Chapter 1

Introduction

RET (Rotterdamse Elektrische Tram) is a public transport company that seeks perfectly or-
ganized and conducted public transport with the highest quality for the passengers. Public
transportation of RET is carried out by tram, bus, metro and ferry in and around the city of
Rotterdam, located in the Netherlands. In this thesis, the focus lies on the operation of the RET
tram network. RET is responsible for satisfying passengers demand while operational cost is
minimized. In order to maintain this for the tram network, vehicles and crew members operate
according to a daily timetable in which is specified which and when trips need to be performed.
In a perfect situation, every vehicle and crew member shows up at their stops on time. Unfortu-
nately, on the day of operation, disruptions can take place which result in delays or cancellations
of trips. The goal of this thesis is to quickly adjust the timetable by rescheduling the vehicles
and drivers of the current day, to account for these disruptions, such that delays, cancellations
and deviation from the original timetable is minimized.

Disruptions can have many causes such as open bridges, accidents and rail blockage. If a
disruption occurs, the traffic control is responsible for rescheduling the vehicles and crew mem-
bers such that all trams can continue their routes with a driver and changes to the timetable
are limited. Some tram vehicles may be unable to continue their planned route and a detour
or trip cancellation is needed. Furthermore, the crew duties should still satisfy the labour rules
such as the maximum consecutive driving time and minimum number of required breaks during
a long duty. At the moment, the adjustments made are based on the experience and creativity
of the traffic controller as there is no tool to support them in determining which adjustments to
make. However, even small disruptions might affect many vehicle and crew duties, because many
duties pass by the same locations and disrupted duties propagate their disruption through the
consecutive duties. As a result, a small disruption in the morning might still have a disruptive
effect in the timetable in the afternoon.

To overcome this problem, a decision support tool is desired to support the traffic controllers.
The tool must be able to quickly adjust the disrupted timetable into a feasible timetable, satis-
fying the vehicle and labour rules. This problem is referred to as the combined, or integrated,
vehicle and crew rescheduling problem (VCRSP). However, because of the complexity of the
problem and the necessity to find a feasible solution in a short amount of time, the problem
is usually split into two separate problems: the vehicle rescheduling problem (VRSP) and the
crew rescheduling problem (CRSP). Sequentially solving the two separate problems instead of
the integrated problem reduces the dependency between the two problems, as the solution to one
of the problems is assumed to be fixed while solving the other. This means that it is more likely
to find a better solution if we use the integrated method instead of the two separate methods.
However, in case of disruptions, a quick (feasible) solution is preferred over an optimal solution
due to the time trade-off in finding an optimal solution. In other words, an integrated method
may need a longer time to find even a feasible solution, while the two separate methods may find
solutions of lower quality, but in very short time.

Because prior work of students of the Erasmus University has already led to some promising
solution methodologies for the individual vehicle rescheduling and the individual crew reschedul-
ing problem, in this thesis we will focus on finding a good integrated solution methodology. The
trade-off, in solution quality and computation time, between the sequential and the integrated
solution method can then be compared such that, eventually, the RET may decide which of the
two methods can be used in practice.

To solve the integrated vehicle and crew rescheduling problem with delay possibilities, we use
a column generation approach in which the columns correspond to recovery routes and duties.
This is also done by, among others, van Dockum| (2018]), van Meer et al. (2019) and Potthoft
et al.[(2010) for the crew rescheduling problem. We extend their work by including the methods
proposed by [van Lieshout et al.| (2018) for the vehicle rescheduling problem with delay possibili-
ties. The recovery routes and duties are found by solving a (resource constrained) shortest path
problem in combination with a labeling procedure. It turned out that the computation time was
still too long and therefore, we also propose to use a neighbourhood of vehicles and drivers and
a recovery period in which tasks are allowed to be changed. Furthermore, for faster convergence
to a feasible solution, we implement a pre-solving method and only solve the integer restricted
master problem (IRMP) during certain moments in the solution process, instead of every time a
better overall lower bound is found. To compute the overall lower bound of the problem, we use
the research performed by Huisman et al.| (2005).

We test our solution method by disrupting an original timetable provided by the RET of a
normal week day, on two locations in the network: 1) an isolated line (and without interlining)
and 2) a location where multiple lines cross (and with crew interlining). We choose these in-
stances such that we are able to compare the performance of the solution method for disruptions
taking place on different locations.

The results show that huge improvements can be made in the reduction of the size of the
instance by introducing a neighbourhood and a recovery period. This consequently leads to a
huge improvement in the computation time. The reduction is more noticeable for small instances.
For larger disruptions, all other methods to reduce the computation time are needed to find a
feasible solution within a short amount of time, but for very large instances, this may even not
be achievable within the maximum set computation time. Furthermore, the results show that
changing the penalty cost can change the computation time of the solution method as well as the
outcome of the solution method. We do not make any recommendations for which penalty cost
to use, as we believe that this should be further discussed with the traffic controllers of the RET,
based on their preferences for different recovery timetables. However, despite the limitations (of
the computation time of) the solution method, we believe that the solution method can be used
to solve small disruptions, and it is able to support the traffic controllers of the RET for large
disruptions, affecting many vehicles and drivers.

The remainder of this thesis is organized as follows. In Chapter[2] we provide more insight into
the problem by discussing the RET tram network, and the planning process currently applied.
Moreover, we describe disruption management and formally state the problem for this thesis.
Thereafter, in Chapter [3] we continue by providing an extensive literature review on disruption
management. In Chapter[d] we propose a mathematical formulation of the integrated vehicle and
crew rescheduling problem for which we discuss the solution method in Chapter[5] The data used
to test our solution method is presented in Chapter [f] We also introduce our test instances in
this chapter. In Chapter[7] we tune the algorithm for faster computation time while maintaining
a feasible solution. The results using the final algorithm settings are presented in Chapter [§
In this chapter, we also perform a sensitivity analysis. Furthermore, we discuss the limitations
and the practical use of our solution method in Chapter [J] and make some recommendations for
further research in Chapter Finally, in Chapter we state our concluding remarks.

Chapter 2

Problem Description

In this chapter, we provide more information about the problem of this thesis. In short, the
problem is to quickly find a feasible and cheap recovery timetable after a disruption has occurred

in the RET tram network. The recovery timetable is feasible if it adheres all vehicle and
rules, and it is cheap if deviation from the original timetable is minimized.

labour

To fully understand the problem, we first provide more insight in the RET tram network,
the current planning process and used terminology in Section [2.I] Thereafter in Section [2:2]
we explain disruption management and the associated difficulties within this process. In this
section we also focus on the underlying problems of disruption management, namely the vehicle
rescheduling problem and the crew rescheduling problem. Finally, we continue in Section

with explicitly stating the goal of this thesis.

2.1 The RET Tram Network

The RET tram network is spread through the city Rotterdam, located in the Netherlands, and
its surroundings. A map of this tram network can be found in Figure 2] The trams operate at
most 11 lines on a day. Note that the map only shows the 9 main lines, as the other lines are
only used for specific events or time periods. Table states the start and end location for each
of the tram lines, as well as the total number of vehicles that operate that line. Also, for each
line the vehicle frequency and the time frequency are stated for both during off-peak hours (if
the line is used during off-peak hours) and during rush hours. For our research, tram line 12 is

not considered as this line is only used if an event takes place at De Kuip.

Holy BoeierHarreweg Tram regio Rotterdam G/ FaMelanchthonweg Telderswag Schiebroek
124] E) Woudhoek - 25)

Bachplein (H Franciscus Gasthuis

Hof van Spaland Spangen [[E}
Prinses Beatrixlaan SPaciastrasy ?

g

$ & 3

& ‘b«’ & &
& & o o

&I Schinwog doorn-

@ otgf _ Kempensingel ']

‘F
& 3
& 20 f.vb; o s
e

S station Nieuwland I — Walenburgerweg s w0 [} Molenlaan
= o 2
Plersenstraat PC n:m: s Rnél;‘rriam Schiekade 4 ‘w“ i .ﬁ’“é’ £ , Lar
Parkweg (&)= Marconiplein_ | s i I .
Benthuizerstraat

R
\qu‘o‘“‘}w J’&“ Ilweamhah o« %gw

N T . v i 7
S oo wod oo & & el .‘I -
S F L surg.v, Meldoon
o P Yt @
A J

Peppelweg

ikslaan

YN Y -
Rl (1)
S S ") e e
b@“@g\ﬂ:'o @ \,oq II Zellmakersstr. be“ g aimalenba @) Erasmus Universiteit
e Van Duylstraat B“Q‘ e Lijnbaan [Woudestein
& Detfshaven & \\t‘@ & o andrates Burgemeester Oud|aon {3 Qude Plantage
i o o @ (-
—————
) Spanjaardstraat Museumpark Lage Filterweg
Trein Metro Bus PiR_Ziekenhuis D
tertein gy oy et o Nesserdijk
d
I Charlois - Keizerswaard & o o“ﬂ& & J FZ)ED pe Esch
P & o . N
{1 Marcaniplein - Moleniaan F oo 6 ke Westerstraat "'"“’"““““" S O
B Willemsplein - Woudestein LR kade Vuurplaat o 'é.,ﬂ:\.o & 8¢ & Beverwaard
I Spangen - Kleiweg Charlois A willemsplein i o | S & -
X Limbricht
Rotterdam Gentraai - Aac g
- A . ‘ < hoek =
Lombardijen & & “,, & & F N e o i: Randweg(Z) & Pt
Woudhoek - De Esch .v‘g* -ﬁ <& & N &‘h ‘f & é,@’ & o Bree o @‘ ¥ s Beverwaardse.
é £ e
2 Marconiplein - Beverwaard f @ o R I \‘° S) plein_ o8 5 "
ED Holy - De Esch e\ c;rmsgawndewo—————o- — - Lombardijen(a)
F) Schiobroek - Carnisselande | @ H)Lombertiien

Figure 2.1: Abstract map of the RET tram network

As Table shows, tram lines 2, 4, 7, 8, 23, 24 and 25 are operated both during off-peak
hours and rush hours, with time frequencies ranging from every 7 to 20 minutes. Tram line 20
is only operated during rush hours on weekdays with a time frequency of every 6 minutes. Tram
line 21 is operated every 20 minutes until 20:00 on weekdays and tram line 124 is only operated
by 2 trams from 8:30 until 9:00 on weekdays for students of Erasmus University. There is no
clear relation between the number of vehicles operating a line per day and the vehicle frequency.
However, there is a correlation between the number of vehicles used per line per day and whether
or not these vehicles also operate other lines during the same day. So, for example, vehicles op-
erating tram line 2 only operate on this specific line while vehicles operating tram line 23 also
operate tram line 20, and vice versa. Because vehicles can operate different lines during the day,
a delay on one line can also cause a delay on another line. Moreover, as drivers also operate
multiple vehicles of different lines during the day, the disruption can cause problems for vehicles
and drivers not even passing the disruption.

At the end of each day, each vehicle returns to its corresponding depot. The RET has
two depots where the vehicles are stationed during the night named Remise Beverwaard and
Remise Kralingen. At Remise Beverwaard, planned maintenance on the vehicles is performed
and thus sometimes vehicles normally stationed at Remise Kralingen should go there for repairs.
Therefore, it is important that each vehicle returns to its planned end depot for that day.

Table 2.1: Tram lines of the RET during a normal weekday

Tram Line Start Location End Location Vehicles Vehicle Frequency Time Frequency
(total per day) (total per hour) (every ... min.)
2 Keizerwaard Charlois 7 3-6 10 - 20
4 Molenlaan Marconiplein 9 3-6 10 - 20
7 Woudestein Willemsplein 8 3-6 10 - 20
8 Kleiweg Spangen 11 3-6 10 - 20
20 Lombardijen Centraal Station 18 9 6
21 de Esch Woudhoek 19 4 15
23 Beverwaard Marconiplein 28 4-85 7-15
24 de Esch Holy 19 4-4 15-15
25 Carnisselande Schiebroek 16 4-8 7-15
124 Centraal Station de Esch 2 11
12* Centraal Station - Stadion Feyenoord - P+R Beverwaard*

This table states information about the 11 tram lines of the RET while operating on a normal day. For each line,
the start and end location of the line, the total number of vehicles that operate that line, the vehicle frequency
and the time frequency for both during off-peak hours (if the line is used) and during rush hours is stated.

* Tram line 12 is only used if an event takes place at De Kuip.

Currently, most of the planning process is done with the powerful modular solution tool
HASTUS. Other used tools in the planning process are RIDS and Perdis. The planning process,
shown as a flowchart in Figure [2.2] consist of six stages.

New assignment
from metropoolregio
Rotterdam Den
Haag (MRDH)

I

Route Network Vehicle Crew Scheduling Crow Restorin
Planning |4 Scheduling | < - duties - e
. . . - roster -
- trips - - blocks - - pieces of work -

(Normally)
28 days before operation

Disruption
Management

day of operation

Reassigning
- timetable -

Figure 2.2: Stages of planning process

The six stages are sequentially executed in the following order: route network planning, ve-
hicle scheduling, crew scheduling, crew rostering, (crew or/and vehicle) reassigning and finally,
disruption management. It is possible to adapt previous stages manually during the process, if
this leads to improvements (e.g. lower operational cost) later on.

The process starts in the first stage by planning the route network after a new assignment
has been given to the RET by metropoolregio Rotterdam Den Haag (MRDH). In this stage the
tram lines are set up such that total operational cost is minimized while passengers demand is
satisfied as well as the restriction on the number of available vehicles. Besides the set-up of the
tram lines, also the frequency at which they should operate is determined. This results in many
different ¢rips, which are defined by a line number, a start and end location, a start and end time
and its corresponding stops with departure times. The start time at each stop, which need to
be visited during these trips, is presented by a trip point. Note that a trip is thus a collection of
trip points, which can be split into smaller pieces.

In the second stage, vehicle blocks are made by merging trips from the first stage, and then
assigning those vehicle blocks to vehicles using deadhead trips from and to either one of the two
depots. By forming the vehicle blocks, some extra time between two trips is added according to
the task the vehicle must perform. Such a task may be that the vehicle must turn around or
that the vehicle must make an empty reallocation trip to the start location of another trip. It
may also be that the vehicle just has to wait a couple of minutes before it is allowed to perform
the next trip. An example of such a vehicle block is shown in Figure As there are 9 lines
during weekdays operating between 3 to even 9 times per hour, many vehicle blocks are formed
which all have to be assigned to a vehicle. Note that, at this point, the vehicles blocks are not
assigned to a specific vehicle, as it may be that a vehicle is out of service at the day of operation.

start of day end of day

O From or to depot M Trip [Idle or reallocation
Figure 2.3: Example vehicle block

In the third stage of the planning process, the crew scheduling takes place. In this stage, crew
duties are made based on the vehicle blocks from the previous stage. This is done by splitting
the vehicle blocks into work pieces and merging them into feasible crew duties. If a duty has
ended or a change of crew member occurs, we say that the crew member currently assigned to
the vehicle is relieved. The work pieces specify the part between two reliefs of a crew member.
The crew duties must (mutually) cover all vehicle blocks and satisfy all labour rules while again
the total operational cost is minimized. The following labour rules must be considered:
lb

1. A minimum number of breaks (b), with a minimal duration (I, ;,), in each duty with a

duration of at least (h:gfﬁ) hours.
2. The working time between 2 breaks (or the start or the end of a duty/break) may not

exceed (h%9F) hours.

3. The maximum duty length (in hours), including break time, may not exceed (h%ﬁ%) hours.

Besides these labour rules, recovery duties must also start and end at the same locations as
the planned duties (which may require a reallocation trip at the beginning or end of the duty).
This is convenient for the crew member as he/she probably parks his/her car at this location.
Reliefs can only take place at some specific locations, which are the two depots, Rotterdam
Centraal Station, Qostplein, Wilhelminaplein, P+R Beverwaard and all end locations of the 11
lines (for reference, see Figure . Also breaks may only take place at those locations except
for at the depots.

Up to recent years, one duty could only consist of work pieces of one line at the time. How-
ever, RET found that combining work pieces of different lines for one duty had great advantages
and thus crew interlining was introduced. The advantages of crew interlining are that crew mem-
bers could be scheduled more efficiently which results in less unnecessary break time (waiting
until next piece of work can be done). Unfortunately, by introducing crew interlining, disruption
management becomes more complicated because (a) disruption(s) on a single line or for one crew
member can propagate to other lines and duties of other crew members. In the remainder of this
thesis, we refer to crew interlining simply by interlining.

Besides interlining, the RET also uses split duties. A split duty is formed by combining two
short duties. Because the time between the two duties is far more than the required meal break
time, this time is not seen as meal break time and thus not part of the duty (and duty length).
Therefore, the labour rules still hold as the split duty can be seen as two separate duties. Note
however that crew members often not prefer to have a split duty, because for them it still feels
as a very long working day. Therefore, the RET prefers a normal duty over a split duty and tries
to minimize the number of split duties for the drivers.

In the fourth stage, crew members are assigned to the crew duties, which is called crew
rostering. At the RET, a roster is not made for each crew member separately, but a cycling
roster is introduced. This means that for a certain number of weeks a roster, satisfying the
labour rules, is made and all crew members get assigned to different weeks at which his/her
roster begins. So, for example, crew member A starts at the first week in the roster with working
3 days in a row after which he/she has 2 days off, then has yet another working day and he/she
ends his/her week with another day off. Crew member B starts at the same time but has to start
at week two of the roster. According to the roster, she/he has to work two days, is thereafter one
day off, then has to work another 2 days and finishes with two days off. During the next week,
crew member A begins at week two of the roster, which has been done by crew member B the
previous week and crew member B starts at the third week of the roster. This way of rostering
turns out to be very convenient as crew members know there working days far in advance.

At some days, a crew member is scheduled as stand by, this means that in case another crew
member calls in sick, she/he can be used to cover his/her duty. In this stage of the planning
process, the labour rules state the minimum required rest time between duties and split duties,
and how often and for how long a free period must occur in the roster for a crew member. After a
feasible and cost-minimizing roster has been made, every crew member gets assigned to a specific
week at which his/her roster starts, and this information is given to all crew members.

The stages discussed so far are performed a few weeks ahead, while the next stage lasts until
the day of operation. In this stage, the reassigning of vehicles, duties and crew members takes
place. It may for example be that crew members are sick, or they want some days (or weeks)
off. It can also happen that some vehicles are out of operation for a longer time or that parts
of tram tracks are under maintenance. In all cases, the roster must be adjusted to account for
these events. At the RET this is mostly done manually.

Finally, we arrive at the last stage of the planning process, which is the main topic of this
research. This stage is called disruption management. Up to this point, at the start of the day of
operation, a feasible cost-efficient roster for the day has been made, all vehicles are assigned to
blocks of trips, all pieces of work now form duties and all duties are assigned to crew members.
We refer to this one-day roster as the timetable of that day. Unfortunately, on most days it will
however turn out this timetable cannot be executed as originally planned due to disruptions. To
account for this, the traffic controllers of the RET manually try to adjust the original timetable
to a recovery timetable once a disruption occurs. As our thesis focuses on improving this stage
of the planning process, we explain this stage in further detail in the next section.

2.2 Disruption Management

In this section we discuss disruption management. By a disruption we mean an event (or series
of events) that makes the current planning infeasible. In the tram network, those events can
have multiple causes, such as open bridges, accidents and rail blockages. If a disruption occurs,
the planning must be adjusted such that vehicles can continue their routes with a driver while
changes to the timetable are minimized.

By making the recovery timetable feasible, some trips or trip points may get delayed, detours
are needed for the vehicles and in some cases trips, or parts thereof, must even be cancelled. In
all those cases, inconveniences arise for the crew members, as breaks may need to be rescheduled
and/or they may need to work overtime, and for the passengers, as they may experience delay.
It is therefore important that penalties for those actions ensure that the recovery timetable has
minimal changes with respect to the original timetable while the crew duties should still sat-
isfy the labour rules. Unfortunately, even small disruptions might affect many vehicle and crew
duties, because many duties pass by the same locations and disrupted duties propagate their
disruption through the following duties.

Because disruption management is complex, it is most often considered as two separate
problems which are sequentially solved. We refer to these two separate problems as the vehicle
rescheduling problem (VRSP) and the crew rescheduling problem (CRSP). In the next two
subsections, the individual problems will be separately described. Note that combined, this
problem is called the vehicle and crew rescheduling problem (VCRSP). In this thesis, we focus
on quickly solving the VCRSP.

2.2.1 Vehicle Rescheduling

The VRSP is extensively researched during the past decades, and within most literature, the
objective is to minimize the total operating and delay cost of the network once a disruption
occurs. For our research this means that the recovery timetable must have minimal deviations
compared to the original timetable. Besides the definitions given in the previous section, we
introduce some new definitions and notation, based on |Li et al.| (2007b), to describe the VRSP.

We refer to a disrupted trip by a cut trip. The point in the cut trip where the disruptions
occurs is referred to as the breakdown point. Furthermore, we refer to the trip operated by a
vehicle during a disruption as the current trip of the vehicle. This trip can be an in-service trip,
which is a trip with (possibly) passengers in the vehicle, or a deadhead trip, which means that
no passengers are allowed in the vehicle. Lastly, we say that trip ¢ is compatible with trip j if
the start time of trip j is later than the end time of trip ¢ plus the travel time from ¢ to j.

The problem can be defined as follows. Given the timetable of trips for vehicles (with their
corresponding start and ending times and locations), the travel time between locations, the list
of relief locations and the occurring disruption (specified by start time, duration and affected
locations or track segments), quickly find a feasible minimal-deviating recovery timetable such
that each vehicle operates a feasible sequence of trips. In order to do so, trips may be delayed
or cancelled. Furthermore, the following vehicle regulations must be satisfied:

1. Vehicles must start and end at their planned location.

2. Vehicles may arrive at the depot at most 0, .. minutes later than planned.

3. Minimum times for detours, turn-arounds and possible other vehicle related tasks need to
be considered.

4. Vehicles cannot pass each other at stops or between every pair of stops. So, for two vehicles
A and B with arrivals A, and B, and departures Ay and By must hold A, < B, = Ay <

Bg. This must also hold for vehicles sharing a track between two stops.

10

5. Vehicles cannot drive over blocked track segments.

6. Vehicles can only use the track segments given in the data set (if not blocked) or the
detours.

7. There are no additional vehicles available.

8. Reliefs (changing driver or the start/end of the route of the vehicle) can only take place at
the relief locations.

2.2.2 Crew Rescheduling

For CRSP, crew members are assigned to recovery duties. These recovery duties must be as close
as possible to the original duties and the following crew regulations must be satisfied:

1. Adjusted crew duties can at most be o minutes longer than planned and cannot start
earlier than planned.

2. Break and duty rules need to be satisfied (same as rules 1 and 2 for crew scheduling stage).

Adjusted crew duties must start at the same location as planned.

4. Adjusted crew duties may end at a different location as planned, however in this case a
travel piece has to be included, for a duration of T}.que minutes, at the end of the duty
such that the duty still ends at the planned end location. The duty including this travel
piece cannot be more than o2 minutes longer than planned.

5. There are no additional crew members available.

6. Reliefs (changing vehicle, or having a break, or the start/end of the duty) can only take
place at the relief locations.

w

2.3 Problem Statement

The goal of this thesis is to improve the disruption management stage of the RET tram network.
At RET, the traffic controllers are responsible for adjusting the vehicle blocks and crew duties in
such a way that all trams can continue their routes with a driver and changes to the timetable
are limited. The adjustments made are based on the experience and creativity of the traffic
controller as there is no tool to support them in determining which adjustments to make. As
has become clear from the previous sections, this is very complex and therefore there is enough
reason to improve on this stage of the planning process.

In order to so, a decision support tool must be developed to support the traffic controllers.
This tool should have a user interface which asks the traffic controller if a disruption occurs,
and if this is the case, when, where and for how long the disruption will occur. Besides the user
interface, the decision support tool must of course be able to come up with a recovery timetable.
The requirements for this are that the recovery timetable should be obtained within reasonable
time and with minimal deviation from the original timetable. Also, the recovery timetable must
implement the vehicle and crew regulations which especially hold for the disruption management
stage, as stated in the previous section. Thus, the main goal of the thesis is to find a solution
approach to quickly solve the integrated vehicle and crew rescheduling problem (VCRSP).

A good quality solution within reasonable time means that if a disruption only lasts for 20
minutes, the new recovery timetable should be obtained within this time window. If a disruption
lasts longer, it is still required that a new recovery timetable is found within at most 20 minutes,
because otherwise, disrupted trams (and crew members) may not be able to continue their routes
and get stuck on track segments. This is not only inconvenient for the vehicles and the crew
members, but especially for the passengers using the tram. Note that besides quickly finding a
solution, the recovery timetable must have minimal changes compared to the original timetable
because all adjustments have to be reported to the crew members. The more changes the longer
it takes to implement the new timetable as more crew members must be told about their new
duties.

11

Chapter 3

Disruption Management: Literature
Review

In the past decades, the research and the applications in the area of disruption management has
increased as transportation problems are becoming more integrated and thereby complex. Dis-
ruption management is needed in a wide range of logistic processes such as public transport (with
airplanes, trains, metros, trams, taxi’s or buses), but also within inventory control, production
management, machine scheduling etc. A framework, models and applications of disruption man-
agement are provided by Yu and Qi (2004). The objective of most of these models is to quickly
recover to the original planned schedule, such that operations can run smoothly thereafter. As
the focus of our thesis lies on public transportation, we only discuss the literature of disruption
management conducted on this area. Within this area, disruption management is also referred
to as the vehicle and/or crew rescheduling problem.

Compared to other forms of transportation, such as airplanes and trains, not much research
has been conducted on disruption management of tram networks. However, many methodologies
and solution approaches, especially those for train, metro and bus networks, can still be used
for tram networks by making some modifications. For example, Kiefer et al. (2016)) state that
their proposed mixed integer linear programming model can be used for an arbitrary number of
transport modes such as subway, tram and bus. Worth mentioning is however that they omit the
crew rescheduling from their method, and from the results it is not clear how fast the solutions
are or can be obtained. Because the network of airplanes differs much from the network of trams
(much longer travel time between stops, less possibility to reallocate a driver, no blocked track
segments etc.), the disruption management strategy developed for airlines can most often not
simply be adapted to be used for trams, in contrast to those developed for trains and busses. An
overview of models and solution approaches for disruption management of the train network is
given by (Cacchiani et al| (2014) and of the tram network by |Liickerath et al.| (2013)).

Because many research in the area of disruption management of transportation modes only
focuses on one aspect of the vehicle and crew rescheduling problem, we discuss the research
conducted on the vehicle rescheduling problem (VRSP) in Section [3.1]and the research conducted
on the crew rescheduling problem (CRSP) in Section [3.2] Thereafter, we discuss the research
conducted on the integrated solution approaches for the vehicle and crew rescheduling problem
(VCRSP) in Section Finally, in Section we provide a summary of the literature used in
our thesis.

12

3.1 Vehicle Rescheduling

In the area of disruption management of transportation modes, the VRSP is the most researched
aspect. The VRSP is closely related to the dynamic vehicle scheduling problem (see [Huisman
et al.| (2004)). Most solution approaches for the latter start with an initial feasible solution,
which is thereafter improved until a certain stopping criterion is met and can therefore also be
used for solving the VRSP. The most often used stopping criteria are a limitation on the solving
time or on the number of iterations of the solution approach, and a relaxation on the optimality
gap of the solution approach (e.g. stop if optimality gap is less than % instead of 0%).

An advantage of the dynamic solution approach is that most often, the computation time
is not too long, which is also required for the solution approach of the VRSP. In the literature,
various extension of the VRSP are considered: with or without the possibility to retime (delay)
the vehicles, the possibility to cancel trips, the use of stochastic travel times, the inclusion of
uncertainty about the disruption length, et cetera. Besides that, also different objectives for the
problem exist, such as maximizing the customer service by highly penalizing every minute of
delay, maximizing other service measures (e.g. vehicle frequency at stops), or minimizing the
cancellation of trips. In other papers, the objective is to stick to the original planning as much
as possible, such that each task that is not performed by the planned vehicle but another one,
is heavily penalized. Fortunately, the majority of the solution approaches for those different
objectives can be adjusted or extended to account for the problem that needs to be solved.

Most experiments to test the solution approaches of the VRSP are performed for the train
network, as for example done by Meng and Zhou| (2014). They develop an innovative integer pro-
gramming model for the problem, by introducing network flow variables and solving the model
using a procedure based on Lagrangian relaxation. Unfortunately, obtaining the results for larger
instances does require a lot of time. They suggest incorporating parallel computing techniques
into the proposed solution algorithms to speed up the solution process. The advantages of this
are shown by Bettinelli et al. (2017), who are able to obtain excellent quality solutions within
2 seconds of computation time with their proposed solution approach. Furthermore, [David and
Krész (2017) propose two mathematical models and a recursive and a local search algorithm to
solve the VRSP. The results for bus instances are, besides using the algorithms, also obtained
exactly such that the solution quality of the algorithms can be evaluated. They found that the
algorithm was able to find good quality solutions while having a low running time. Also |Li
et al.| (2007a), Li et al.| (2007b) and |Li et al.| (2009) propose different solution methods, such as
a Lagrangian heuristic, to solve the problem. The benefit of their methods is that they can be
used for all transportation modes.

Finally, van Lieshout et al. (2018) discuss the vehicle rescheduling problem with retiming.
Retiming means that the departure of the vehicle may be delayed, which leads to more scheduling
flexibility. They suggest to expand the network by adding copies of trips, each with different
starting times, presenting the delay possibilities. The results, obtained within 3 minutes by
using Lagrangian relaxation and an iterative neighborhood exploration heuristic, show that the
number of cancelled trips can be reduced significantly if delays are allowed.

3.2 Crew Rescheduling

The other aspect of disruption management is the CRSP. Not much research has been conducted
solely on the CRSP as most disruptions also cause infeasibility within the vehicle schedule, which
leads to an integrated or sequential vehicle and crew rescheduling problem. For the CRSP, it
is assumed that the vehicle schedule is feasible, and that only the crew duties have to change.
Among others, |Potthoff et al.| (2010), Potthofl (2010) and |Veelenturf et al. (2012]) propose different
models and solution methods for this problem. All their research has been conducted for the
train network but can be reformulated or remodeled to account for the tram network.

13

Potthoft et al. (2010|) present an algorithm based on column generation techniques combined
with Lagrangian heuristics. They start with a core problem of tractable size, but when tasks
remain uncovered, a neighborhood exploration is performed to improve the solution. Good
quality results can be obtained by the algorithm within minutes for real-life instances. [Potthotf
(2010) provides extensive research on the CRSP. The contribution of his thesis is twofold, he first
extends the CRSP with the possibility of retiming. Furthermore, he also considers the uncertainty
of the duration of a disruption in the disrupted situation. Mathematical formulations are given
for both versions of the CRSP, as well as solution approaches to solve the problem. [Veelenturt
et al.[(2012) also allow for retiming and they use the same solution approach as Potthoff] (2010).

3.3 Integrated Methodologies & Solution Approaches

The VCRSP is very closely related to the integrated and dynamic vehicle and crew scheduling
problem. For the latter, [Huisman| (2004)) shows that integrated approaches can lead to significant
improvements over sequential approaches. In our research, we intend to prove the same within
the framework of disruption management, which is disregarded by most researchers. Namely, up
to this point, most research has been conducted solely on the VRSP and/or the CRSP instead
of the integrated VCRSP, especially for tram networks. Fortunately, in the last years, research
in this area has increased.

David and Balogh! (2016) propose an algorithmic framework for the bus network, that guides
the solution process regardless of the used method. This framework is very useful, also for other
transportation modes, and can easily be implemented. The algorithmic framework is tested using
recursive and local search heuristic methods provided by David and Krész| (2014)). The results
show short running times for both heuristics. Also Walker et al.| (2005) are able to find good
(even optimal) solutions within a short amount of time for their proposed methods. They provide
a mathematical formulation and solve the problem using branch and bound with column and
constraint generation. The average time to solve instances consisting of 36 trains and 564 work
pieces is 50 seconds, which suggest that their method could be used in practice. More recently,
Malucelli and Tresoldi| (2019) conducted a case study for delay and disruption management in
local public transportation via real-time vehicle and crew rescheduling. They propose a simula-
tion based optimization system which incorporates retiming and vehicle and driver rescheduling.

In most literature, the VCRSP is formulated as an extended version of the set partitioning
problem. The major issue with solving the integrated VCRSP is the increase in the solution
time compared to solving only the VRSP or the CRSP. This is because more possibilities exist
for creating alternative vehicle routes and crew duties, especially if we also include retiming.
Therefore, the computation time of solving the VCRSP will be much higher than the computation
time of solution methods for solving the VRSP and the CRSP. |[Elhallaoui et al. (2008) propose
bi-dynamic constraint aggregation and subproblem reduction to deal with this problem. The
main idea of their method is to cluster tasks from which one expects that they are performed by
the same vehicle and driver, such that the number of variables and constraints decrease. During
the solution method, one may split these clusters into smaller clusters if this leads or could lead
to a better solution.

3.4 Summary used Literature

In this section we discuss the literature used for developing our mathematical formulation and so-
lution approach. Inspiration is taken from all papers discussed in the previous sections, however,
we mostly rely on the formulation given by van Lieshout et al.| (2018) for the vehicle rescheduling
problem with retiming.

14

This model is extended using previous research conducted by Timo van Dockum, another
student of the Erasmus University, who focused on the crew rescheduling problem. His research,
which can be found in van Dockum| (2018]), is very important for our research, as his methods
are also developed especially for the RET. Besides his research, also 5 groups of students of the
Erasmus University have proposed mathematical formulations and solution approaches for the
RET disruption management problem. Most of them however did not focus on an integrated
approach (vehicle and crew rescheduling) but a sequential approach. Nonetheless, our solution
method has been inspired by theirs. The formulations, solution methods and results of the 5
groups can be found in Abouelrous et al. (2019), Kunst et al. (2019), |Blokland et al.| (2019),
van de Pol et al.[(2019)) and [van Meer et al. (2019), however, the most usable paper among these
is that of van Meer et al.| (2019).

For our research, we intend to extend the proposed mathematical formulation given by |van
Lieshout et al.| (2018) to also include crew members. To solve this extended problem, we can use
an exact approach, however due to the complexity, this will probably not provide a solution within
a short amount of time. Therefore, as also done by [van Dockum| (2018)) and van Meer et al.|(2019)),
we could use column generation to solve the problem. During the solution approach, it may be
convenient to use the research conducted by [Elhallaoui et al. (2008). By this we mean that,
initially, we do not allow all possibilities (e.g. not all possible retiming options or detours) such
that solutions can be found faster than is the case if all possibilities are initially included. Once
tasks remain uncovered for a certain number of iterations, we may include new possibilities. Also,
other smart ways of decreasing the initial possibilities exist, such as an iterative neighborhood
search heuristic which only allows tasks to be delayed if they remain uncovered for a certain
number of iterations, or if tasks are in the neighborhood of such cancelled tasks. Moreover, we
could also exclude vehicles and drivers for which we do not expect any changes compared to their
original route or duty.

15

Chapter 4

Mathematical Problem Formulation

In this chapter, we provide a mathematical formulation of the integrated vehicle and crew
rescheduling problem. First, in Section we describe how we create the network used for
the mathematical formulation. We explain how a task list is generated and how the vehicle net-
work and the driver network is constructed. Moreover, we explain how to incorporate retiming
of tasks into the formulation. Lastly, in Section we provide the mathematical formulation
for the VCRSP.

4.1 Creating the Network

Once a disruption has occurred, the original timetable becomes infeasible. Some tasks may need
to be cancelled or delayed, and in some cases, a detour for the vehicle is needed. In this section,
we first describe how we generate a new list of tasks consisting of trips or sets of trip points, which
need to be rescheduled due to the disruption. Thereafter, we describe the underlying vehicle and
driver networks. These networks specify which vehicles and drivers are able to execute tasks
from the new list (and in which order), while taking into account the (labour) rules specified in
Chapter [2| Finally, we explain how to incorporate delay possibilities into the resulting network.

4.1.1 Task List

As explained earlier, we distinguish between trips with and without passengers by in-service trips
and deadhead trips, respectively. These trips consists of multiple trip points, which specify the
departure time and location of each stop. A driver starts a trip at a relief location, performs the
sequence of corresponding trip points and ends again at another relief location. During the trip,
the driver may also pass other relief locations and locations at which the vehicle can take a detour.

In case a disruption occurs, some of the trips may not be feasible anymore. We refer to these
trips as cut trips. More precise, a trip is a cut trip if the disruption occurs at one or more of
the track segments during the time the vehicle and driver need to use these segments. In order
to reschedule the trips, it is necessary to split the cut trips into feasible subtrips, such that a
recovery route for the vehicle and a recovery duty for the driver can be established. We split the
cut trips by relief locations and by locations at which a detour can be taken. All other trips are
also split by relief locations, but only by detour locations if these provide new connections within
the networks. The latter means that, for example, if the cut trips are split by detour locations
A, B and C, we only split the other trips by detour locations which can be taken to locations A,
B and C or from locations A, B and C.

If the cut trip is a deadhead trip, a detour can be taken such that the driver and vehicle still
arrive on time at the first location of the next trip, or at another stop of the cut trip. If a detour
can be taken, but the driver and the vehicle do not arrive on time at the location, the remaining
part of the cut trip must be assigned to another driver and vehicle, or the trip must be delayed.

16

In extreme cases, a trip must be cancelled. Cancelled (parts of) deadhead trips do not matter as
much as those of in-service trips because the former does not affect the passengers. Therefore,
no penalties are incurred for such a cancellation.

If a disruption occurs at one (or multiple) track(s) of an in-service trip, we have to consider
the passengers currently present in the vehicle. Again, it may be possible to take a detour such
that trip points, which are not executed because of the detour, are cancelled. In this case, pas-
sengers waiting at the stops of the cancelled trip points are not served anymore. This is very
inconvenient for the passengers, because due to this, some of them may not be able to reach
their end destination. Another possibility is to wait until the disruption is over, which may lead
to delay for the remaining part of the trip or a reassignment of the remaining trip to another
driver and vehicle.

Important to note is that only the in-service (sub)trips need to be executed, while deadhead
(sub)trips and detours are optional. Therefore, the penalties for delays and cancellations are
only taken into account for the in-service (sub)trips. We denote all the trips in the recovery
period (so the (sub)trips and all other sorts of trips) by ¢ € N with N = {1,2,...,n}. From this
point forward, we refer to this set as the task list. Each task in the task list is defined by a start
and end time, start and end location, original vehicle and driver, line number, whether or not
the task is an in-service trip, and set of trip points corresponding to the task. Note that the task
list can contain all tasks until the end of the day such that more flexibility exists in creating the
recovery timetable. However, if the computation time is too long because too many tasks are
included, one may decide to only include tasks which start up to h hours after the disruption
has ended such that after that time, the original timetable has to be followed.

4.1.2 Vehicle Network

In this section, we explain how the vehicle network is created. We present the set of vehicles by
V ={1,...,v}, with v the number of available vehicles. For each vehicle, we define a start node
specifying the time at which the vehicle becomes available, and its corresponding location. We let
sV present the start node of vehicle v € V, and we let SV = U,y s¥. Furthermore, we define an
end node for each vehicle, specifying the latest allowed arrival time at the planned end location
in the original timetable of the vehicle, and the corresponding end location. As stated in Chapter
the latest allowed arrival time is o) minutes later than the planned arrival time of the vehi-

max
cle at its end location. We let t¥ present the end node of vehicle v € V, and we let TV = U,ey tV.

The set of arcs can be obtained by connecting the start and end nodes to the nodes given in
the task list NV as follows:

1. For each s* € SV, draw an arc from s’ to i € N if the start node of vehicle v € V is
compatible with task 3.

2. For each i € N, draw an arc from i to j € N if task i is compatible with task j.

3. For each i € N, draw an arc from i to t¥ € TV if task i is compatible with the end node of
vehicle v € V.

4. For each vehicle v € V', connect its start node s¥ with its end node ¢°.

Node i is said to be compatible with node j if the start time of node j (st;) is later than the
end time of node ¢ (et;) plus the travel time from node ¢ to node j (t¢;;), such that holds that

st; = et; +tt;; + Slij. (4.1)

In this formula, sl;; denotes the slack time between node 7 and j. If the slack time is negative, the
two nodes are not compatible. If the slack time is positive, we have to make sure that sl;; < w;"**,
with w/*** the maximum allowed waiting time at node ¢. If holds that lfmn < sl < w™**, and
node i is a relief location, it is possible to schedule a break for the crew member at node 1.

17

The maximum allowed waiting time at node 7 is determined based on the location of node i
and the time until the next vehicle arrives at node 7. If it is possible to use a side track at the
location, such that other vehicles can pass by, without delay, no maximum allowed waiting time
has to be taken into account. However, it may be convenient to still choose a w™4X such that
w® < wMAX for all i € N, to ensure that vehicles and drivers do not remain idle for a long
period and the vehicle network remains small.

We represent the set of arcs over which the vehicles can travel by
A ={(,7) : i compatible with j, i€ SY UN, je NUT"}.

The vehicle network without retiming is given by G = (V, A), where V = SV UNUTV. Now
that vehicle network is created, we can find all feasible paths within the network for each vehicle,

corresponding to feasible recovery routes for that vehicle. We present the set of recovery routes
for vehicle v € V by R".

4.1.3 Driver Network

The network for the drivers can be created in a similar way as done for the vehicles. We denote
the drivers by set D = {1,...,d} with d the number of available drivers. In a similar manner as
done for the vehicles, we denote s? as the start node of driver d € D, and the set of all driver
start nodes by SP = Ugep s?. Besides a start time and location, we also add the number of
hours the driver has worked and the number of breaks the driver has had up to the start time of
the start node, to the information of the start node. Furthermore, we denote by t? the end node
of driver d € D. Again, the latest allowed arrival time at this node is o2, minutes later than

the planned arrival time of the driver at its end location. We let TP = Ugep t% denote the set
of all driver end nodes.

If one decides to use a recovery period of h hours after the disruption in which the reassign-
ment of tasks may take place, and after which the original timetable should be executed again,
it is necessary to keep track of more information about the duty after the end node of the driver
at the end of the recovery period. Namely, the labour rules hold for the entire duty and not only
for the recovery period. Therefore, we need to know the driving time, duty length and number
of breaks after the recovery period for the specific driver. Then, by creating the network, and
thus the recovery duties, we need to take this information into account in the same manner as
we do this for the start node of the driver. Note that in this case, the end node may not be the
end location of the duty and thus no overtime is allowed for the driver at the end node in such case.

Besides drivers with a normal duty, we also have drivers with a split duty. We let D®* C D
denote the set of drivers with a split duty, who are still performing their first part of the split
duty (the drivers with a split duty performing the second part of their duty are considered as
drivers without a split duty). For those drivers in D*, the same regulations apply as for the
drivers with a normal duty. This means that we do allow overtime of o2, minutes for the first
piece of the duty of a driver with a split duty. The reason for this is that it may happen that the
driver just cannot arrive at the end location of the first piece of its split duty on time, because of
the disruption. However, by allowing for overtime after the first piece, the driver may not have
sufficient rest time between the two pieces of the duty, which may result in a violation of the

labour rules.

In order to account for this, we create a rest node for every driver with a split duty, denoted
by 7¢ for d € D*. This node presents the end location and latest arrival time at the end location
corresponding to the first part of the split duty of driver d € D?. Even though it is allowed to
have overtime at node ¢ and node t¢, the combined overtime may still not exceed the maximum

allowed overtime (o, minutes).

18

We denote the set of all rest nodes by R. Note that if we set a recovery period in which
we may change the original timetable (and thereafter the original timetable must be executed),
instead of allowing changes in the timetable until the end of the day, most of the rest nodes turn
into start or end nodes. If this is the case, we consider the duty of the driver as a normal duty,
and not as a split duty.

Given the list of tasks N and the start and end nodes of the drivers, we can for each driver
obtain a set of feasible recovery duties. In order to do so, a network has to be created for each
driver separately, in which feasible paths over the arcs correspond to feasible duties. This can
be obtained by checking whether or not performing a task, after performing the tasks done so
far, does 1) not result in violation of the maximum consecutive working time and 2) not result
in violation of the minimum number of required breaks.

For each driver d € D \ D?, the following arcs are included:

1. An arc from s to i € N if the start node of driver d is compatible with task i, driver d is
currently not operating a vehicle, and performing task 7 does not result in a violation of
the labour rules.

2. An arc from s to s¥ € SV if driver d is able to operate vehicle v € V.

3. An arc from ¢ € N to j € N if task ¢ is compatible with task j, and performing task j
after task ¢ does not result in a violation of the labour rules. If the end location of task ¢
is a possible detour location and not a relief location, the driver is not allowed to change
vehicle nor to have a break.

4. An arc from i € N to t% if the end node of driver d is compatible with task 1.

An arc from tV to t?, if driver d is able to drive vehicle v to its end location.

6. An arc from s? to 2.

o

@—w_ ®

Figure 4.1: Network for single driver (without a split duty)

Figure 4.2: Network for single driver (without a split duty, incl. vehicle pick up/delivery)

Figures [I.1) and [£.2] show two examples of created networks, based on above rules, for a single
driver without a split duty. Note that it is not necessarily the case that both a start and a end
node of a vehicle is included in the network. This is because a driver may have a break at the
beginning of the recovery period, or because the driver finishes his/her duty before the end of
the recovery period, while the vehicle does not end at this location.

19

For drivers d € D?, the following arcs are included:

1. An arc from s to i € N if the start node of driver d is compatible with task i, driver d is
currently not operating a vehicle, the end time of task 7 is not later than the latest arrival
time at node r? € R, and performing task i does not result in a violation of the labour
rules.

2. An arc from s? to sV € SV if driver d currently operating vehicle v € V.

3. An arc from r? to i € N if the rest node of driver d is compatible with task ¢, and performing
task 7 does not result in a violation of the labour rules.

4. An arc from 7 € N to j € N if task ¢ is compatible with task j, tasks ¢ and j both end
before r? or start after 7%, and performing task j after task ¢ does not result in a violation
of the labour rules. If the end location of task 4 is a possible detour location and not a
relief location, the driver is not allowed to change vehicle nor to have a break.

5. An arc from ¥ to t¢ and/or r?, if driver d is able to drive vehicle v to its end location.

6. An arc from i € N to r¢ or to t? if the rest node or the end node of driver d is compatible
with task 4.

7. An arc from s’ to r® and from r? to t¢.

e N
o © 8

Figure 4.3: Network for single driver (with a split duty)

Figure [£.3] shows an example of a created network, based on the above rules, for a single
driver with a split duty. Note that it may be the case that also start and end nodes of vehicles
are included in this network, as also shown in Figure [£.2] As can be seen by the structure of the
network, a split duty can easily be seen as two separate duties, with the rest node functioning
as either a start or an end node.

Finally, for each driver we remove all nodes that cannot be reached, such that only feasible
paths, from s% (to r¢) to t%, remain in the network. For example, tasks 2 and 4 will be removed
from the list of reachable tasks for the driver of the network shown in Figure [£.3] Note that also
in this case two nodes, 7 and j, are said to be compatible if the start time of node j is later than
the end time of node i plus the travel time from node ¢ to node j. For the travel time from a
rest node 7¢ to other nodes, we include a minimum required rest time such that labour rules are
not violated. We present the set of arcs over which driver d € D can travel by

A% = {(4,4) : i compatible with j, i € sSUSY UNUTY, je SYUNUTY Ut}

The driver network, for driver d € D, without retiming is given by G? = (V9 A9), where
Vi =3stuSY UNUTY Utd Now that a driver network is established for each driver, we can
find all feasible paths within the network, which corresponds to feasible recovery duties. We
represent the set of recovery duties for driver d € D by R

It should be noted that it may not be possible to find a recovery network for each vehicle and
driver, affected by the disruption. For example, if a driver is scheduled to have a break shortly
after 12:00 due to reaching its maximum driving time, and a disruption of 30 minutes occurs at
11:50 which affects this driver, the driver almost immediately violates its maximum driving time,
even if a break can be scheduled later. In practice, this situation could also occur and there is
no other way than to violate this labour rule. Therefore, in our solution approach, the labour
rule of maximum driving time does not apply for those drivers for which this situation holds.

20

4.1.4 Introducing Retiming

Up to this point, tasks are performed on time or cancelled. Here we explain how to incorporate
retiming into our model. For this, we heavily rely on the notation, description and formulation
given by [van Lieshout et al.| (2018). Note that we only allow for full minutes of delay (1 minute,
2 minutes, etc.), because the original timetable is given in minutes as well.

To expand all networks to include retiming possibilities, we first introduce a set W containing
all nodes in the network. This list of nodes is then sorted on starting time such that the first
node in W has the earliest starting time and the last node in W the latest starting time. By
constructing the list W in this manner, each node only has to be considered once. For each node
1€ W, we let ¢/ denote the maximum allowed delay for this node.

We start the process by considering the first node in W, let this node be node k. For this
node, we consider all other nodes in W which are compatible with node k, but only if we intro-
duce a delay of 1 < ¢ < ¢;** minutes, and we store these nodes in a list W*. Note that if node
k is compatible with node i € W without a delay, this node is already added to the network, so
we can skip this possibility. If node & is compatible with node ¢ € W*, with a delay of ¢ minutes,
we add a copy of node k to the network and denote it by nZ. If this node (delay possibility)
has already been added to the network, we do not add it again, such that each delay possibility
is only added once. If all nodes in W* are considered, we remove node k from the list W, and
add the delayed nodes to the list W. We also empty list W*. Finally, W is resorted and we
restart the process again by consider the first node in W. The process ends if there are no nodes
left in W. As stated in [van Lieshout et al| (2018), by introducing delay opportunities in this
manner, the network is only expanded if it leads to new possibilities such that the network does

not become too large to solve.

We let the vehicle network with delay possibilities be denoted by G, = (Ve, Ac), and all
tasks (delayed and not) by the set N.. All recovery routes for vehicle v are still denoted by RY.
Note that we may remove task nodes (from set Vo) which can only be done by a vehicle or
only be done by a driver, as for each task both a vehicle and (at least) one driver are required
to perform the task. Furthermore, we let N.(k) be the set of delayed and not delayed nodes
corresponding to task k& € N. The set of delay arcs associated with task k € IV is defined by
Ac(k) = {(i,7)|i € Ne(k) and (i,j) € Ac}. The driver network, for driver d € D, with retiming
is given by G¢ = (V4 A9), where V¢ = s?U SV U N, UT" Ut?. Now that a driver network is
established for each driver, we can find all feasible paths within the network, which corresponds
to feasible recovery duties. We present the set of recovery duties for driver d € D still by R%.

4.2 Mathematical Formulation

In this section, we provide the mathematical formulation of the integrated vehicle and crew
rescheduling problem with retiming. We use the information given in the previous sections, and
as stated earlier, we heavily rely on the formulations given by van Lieshout et al. (2018), van
Dockum| (2018) and [van Meer et al.| (2019).

In order to formulate the VCRSP, we define the following sets:

e N set of all tasks consisting of cut trips, and all other, not affected, trips, both splitted by
relief locations and locations at which detour can be taken,

e N, set of all tasks including delay possibilities,
Nc(k) set of all delay copies of task k € N,

A, set of all arcs over which vehicles and/or drivers can operate,

Ac(k) set of all delay arcs associated with task k € N,

21

D set of all drivers,

e R% set of all recovery duties of driver d € D.

V' set of all vehicles,

e RY set of all recovery routes of vehicle v € V.

Furthermore, we define the following parameters:
e For all tasks ¢ € N, we let
- Qi €N, number of scheduled stops at which the vehicle must stop in task q.

e For all recovery duties § € R¢ of driver d € D, we let

d 1, if task i € N, is included in recovery duty 6 € R¢,
T G5 = .
0, otherwise.
d 1, if task ¢ € N is included in recovery duty 6 € R¢,
— b5 = .
0, otherwise.

e For all recovery routes § € RY of vehicle v € V', we let

" 1, if task i € IV, is included in recovery route 6 € RY,
g 0, otherwise.
b — 1, if task ¢ € N is included in recovery route § € RY,
0 0, otherwise.

We define the following variables:

e For all tasks ¢ € N, we let

1, if task ¢ is cancelled,
— = .
0, otherwise.
e For all drivers d € D, we let
i 1, if recovery duty 6 € R is chosen as recovery duty for driver d,
o 0, otherwise.
D 1, if for driver d no recovery duty can be found,
— b —
d 0, otherwise.

e For all vehicles v € V', we let

v 1, if recovery route 6 € R is chosen as recovery route for vehicle v,
_ o=
19 .
0, otherwise.
v 1, if for vehicle v no recovery route can be found,
— eV =
v 0, otherwise.

22

To take into account passengers, vehicles and crew members, we use task, vehicle and crew
penalties by creating the recovery timetable such that changes to the original timetable are
minimized. In case no feasible route or duty can be found for a vehicle or driver respectively, we
set the penalty cost to a large integer M. The task cancellation penalty is p' for each missed
scheduled stop within the task (but only if the task is an in-service trip). A penalty of p™ is
incurred for every minute delayed for each scheduled stop. Furthermore, a vehicle penalty of
p% is thus incurred for every new piece of work compared to the original route of the vehicle.
The crew penalties are pI?V for every new piece of work compared to the original duty and p®
for every minute of overtime compared to the original planned duty end time. We let fgl be the
penalty cost of recovery duty § for driver d. That is,

1 = plwd + p©of, V6 e R, Vd e D, (4.2)

with wg the number of new pieces of work compared to the original duty and og the number of
minutes of overtime compared to the original planned end time of the duty. We let gj be the
penalty cost of recovery route ¢ for vehicle v, which can be computed in a similar way as done
for the recovery duties of the drivers (but without overtime), by

g2 = plywd +thot§day, V6 e RY, Vv eV, (4.3)
with w§ the number of new tasks compared to the original route of the vehicle and totgelay the

total delay in minutes over all tasks in the recovery route, compared to the original planned
starting times of the tasks.

Note that the task delay penalty of p™ per minute is taken into account on the arcs of the
vehicles. Note also that, because we know the original timetable, we can include the penalty
costs on the arcs of the duty graph/route graph for each driver/vehicle as well. Namely, if an
arc from 7 to j is taken, a penalty is incurred if task j was not part of the original duty/route,
and 0 otherwise. To account for the overtime, we assign to each arc connected to the end node
of driver d a penalty of p© times the number of minutes of overtime. To account for delay, we
assign to each arc connected to a task with delay, a penalty of p™ times the number of min-
utes delay. If a feasible path from the start node to the end node of the driver/vehicle is found,
we can compute the total cost of the recovery duty/route by adding all penalty costs over the arcs.

The mathematical formulation of the VCRSP including retiming is given by:

min. ZpleZkJr Z(Me}f + Z gsr5) + Z(Mec]zj + Z f$vd) (4.4)

keEN veV SERY deD JERL
subject to
DD bpsai a1 Vk e N (4.5)
veV deERY

IDI(1—2) =Y > blsys >0 Yk e N (4.6)

deD §eR4
DO akyi—> 0) aas >0 Vie N, (4.7)

deD seR4 veV §eRY
IDIY D akhay = Y abyd >0 Vi e N, (4.8)

vEV ERY deD §eRd
1=) aap >0 Vi e N, (4.9)

veEV JERY

23

Y aptey =1 Vo eV (4.10)

dERY

dyitel =1 Vde D (4.11)

JeRY
2z, €B Vke N (4.12)
eV eB YoeV (4.13)
z3 €B Vo eRY, YwveV (4.14)
el eB Yde D (4.15)
yi e B Vs € RY, Vde D (4.16)

The objective function minimizes the total deviation from the original timetable by mini-
mizing the penalty cost of missing one stop, plus the penalty cost for the recovery route (including
penalties for delay) of all vehicles and plus the penalty cost for the recovery duties of all drivers.
The latter is based on the penalty costs for every new piece of work compared to the original
duty and for every minute of overtime compared to the original planned duty end time.

Constraints (4.5) make sure that each (delayed) task is either cancelled or executed by a ve-
hicle. Note that multiple vehicles may perform the same task, as the delayed versions of this task
are scheduled on different moments in time. Constraints ensure that if a task is cancelled,
no drivers can be assigned to the task.

Constraints make sure that each (delayed) task is executed by more drivers than ve-
hicles. Note that this constraint is necessary as the two previous constraints do not take into
account different delay possibilities of tasks. For example, by only using the previous two con-
straints, it could happen that a driver is assigned to task k with 2 minutes delay, while the
vehicle which should be operated by the driver is assigned to task k without any delay. This is
not allowed as the driver and the vehicle both must be assigned to the same task with the same
amount of delay. The same holds for constraints , which ensure that if a (delayed) task is
not executed by a vehicle, it can also not be executed by a driver. Constraints make sure
that each (delayed) task is executed by at most one vehicle. This is necessary as vehicles cannot
be operating the same track at the same time.

Furthermore, constraints (4.10) and (4.11]) make sure that each driver and each vehicle have
exactly one recovery route or duty, if a feasible route or duty can be found. Lastly, the restrictions

on the variables are given by constraints (4.12]) - (4.16)).

24

Chapter 5

Solution Approach

In this chapter we discuss the solution approach of creating a recovery timetable based on a given
disruption in the original timetable. The goal is to find an optimal solution (recovery timetable)
with the least number of cancelled or delayed trips, while at the same time, the deviation from
the original timetable must also be minimized. However, due to the complexity of the problem,
it is not realistic to achieve an optimal recovery timetable (in reasonable time). The complexity
of the problem is due to the fact that very many recovery duties and routes can be found for
both drivers and vehicles. As we also include delay possibilities into the task list, the number of
possible routes and duties increases even more. Creating all feasible routes and duties, and then
solving the problem to optimality, will take too much time. Therefore, we propose an alternative
approach to solve the vehicle and crew rescheduling problem with retiming.

In the next section, we provide an outline of our solution approach. Thereafter, we explain
each step of the solution approach in detail in the Sections up to 5.5} Finally, in Section
we discuss different methods to improve the computation time of the solution method.

Initialization Initialization:
UB 00 1. Generate task list
LB RS 2. Obtain vehicle and
r 0 driver networks

<1 1y

(Solve IRMP (UB) Jo—

!

Solve the LRMP
Obtain duals
r=r+1

!

Generate new

routes and duties

!

Compute overall
lower bound (LB)

!

Finished: Take best

found solution as new |<+——

No

Any routes or
duties with

Yes

recovery timetable negative cost?

Figure 5.1: Flowchart of the solution process

25

5.1 Outline

In most literature, the VCRSP is solved sequentially by first establishing a solution (timetable)
for the vehicle rescheduling problem and thereafter solving the crew rescheduling problem using
the fixed timetable obtained from the first step. This has as disadvantage that the solution from
the vehicle rescheduling problem, may be infeasible for the crew rescheduling problem, or that
better solutions may exist. To overcome this disadvantage, we propose an integrated solution
approach to solve the VCRSP. Note that previous research conducted by students from the Eras-
mus University (see papers van Dockum| (2018)), |Abouelrous et al| (2019), Kunst et al.| (2019),
Blokland et al. (2019), [van de Pol et al| (2019) and van Meer et al. (2019)) already propose
(different) sequential approaches. By combining methods from their research, the integrated
approach can easily be developed. The flowchart shown in Figure [5.1| presents the process of our
integrated solution method to solve the VCRSP. In this section, we only discuss each step briefly
while in the following sections each step will be discussed in more detail.

We start the solution method by initializing the process. In the initialization step, the task
list is generated, delayed tasks and possible detours are introduced and also the vehicle networks
and driver networks are set up based on the task list for each of the vehicles and drivers. Fur-
thermore, we also initialize the parameters needed for the solution approach.

After initializing the process, we solve the integer restricted master problem (IRMP) of the
VCRSP. This provides us with a new upper bound for the overall problem. If the upper bound is
better than the upper bound found so far, we update the best found upper bound to this upper
bound. The formulation of the restricted master problem (RMP) will be discussed in Section
Once we solve the RMP, not all feasible recovery routes and recovery duties are included for
each of the vehicles and drivers, as generating all these feasible recovery routes and duties will
take too much time. This is also the reason why this version of the VCRSP is called ‘restricted’:
not all the possibilities are added. Note that generating all feasible recovery routes and duties
is not done in the initialization step, but only recovery networks are created from which these
recovery routes and duties can be obtained. Therefore, we can only solve a restricted version of
the VCRSP and not the complete version.

In addition of solving the IRMP, we solve the linear restricted master problem (LRMP).
The solution of the LRMP can be interpreted as follows. For those tasks (partly) cancelled or
delayed in the optimal solution of the RMP, we can find a better solution by adding new re-
covery routes or duties for those vehicles and drivers having these tasks in their recovery network.

After solving the LRMP, we check if we are able to create new recovery routes and duties by
solving the pricing problem. By solving the pricing problem, we try to find new recovery routes
for the vehicles and recovery duties for the drivers, covering tasks that were (partly) cancelled or
delayed in the solution obtained from solving the IRMP. In other words, we try to find recovery
routes and duties with negative reduced cost. The process of solving the pricing problem will be
further explained in Section

The next step of the solution method is to compute the overall lower bound of the problem.
This is done by combining the solution found for the LRMP and the solution found for the
pricing problem. How we compute the overall lower bound will be discussed in Section [5.9]

If any new recovery routes or recovery duties are found by solving the pricing problem, we
add them to the current set of recovery routes and duties if they are not already present in the
RMP, and we move on to the next step in the solution process by again solving the IRMP. If
there are no new recovery routes or recovery duties with negative reduced cost, we have finished
the solution process and we take the best found solution as new recovery timetable.

26

5.2 Initialization

Before we are able to start the solution process, we first have to set up the task list, as explained
in Section based on the given disruption in the current timetable. After creating the task
list, we determine the start and end locations of the vehicles and drivers for the recovery period.
The recovery period is defined from the start of the disruption up to a certain moment after the
disruption. The latter can be until the end of the day, however in Section [5.6.3] we will also
discuss other methods to set the end time of the recovery period.

Besides the start and end nodes, we also determine the original route and duty of each vehicle
and driver by assigning each task in the task list to its original vehicle and driver. Thereafter,
we add detour possibilities, and also delay possibilities by applying the algorithm explained in
Section such that only delay possibilities of tasks are added to the task list if these delay
possibilities create new connections within the networks of vehicles and/or drivers. This is be-
cause, it is unnecessary to add a delay possibility of a task if this task is connected to the same
tasks as the task without delay possibility. In this manner, we only expand the network if this
may lead to better solutions for the VCRSP.

Now that all tasks, possible delays and detours are known, we set up the networks for each
vehicle and for each driver, such that each task in the network of a vehicle or a driver can be
reached by the vehicle or the driver (meaning that a path from the source to this task to the
sink exists). Note that we may remove delay tasks which can not be performed by any vehicle
or driver because each task needs to be assigned to at least one vehicle and one driver before it
can be executed.

5.3 Restricted Master Problem

In the best scenario, we could solve the VCRSP as formulated by equations - to
optimality by first generating all feasible recovery routes and duties. Unfortunately, the number
of feasible routes and duties within the recovery period is extremely large. FEven if it is possible
to generate all possibilities, it will still not be possible to obtain an optimal solution from these
possibilities in reasonable time. Among others, van Meer et al.| (2019) and [van Dockum| (2018)
propose column generation to overcome this problem. The idea of column generation is to solve
a restricted version of the VCRSP, in which only a subset of all possible recovery routes and
duties are added. Let K” C RY and K% C R? denote all routes and duties available at the time
we need to compute either the integer version or the linear relaxation version of the restricted
master problem. The integer restricted master problem (IRMP) is formulated by

min. 0 pla+ 3 (el + 3 giod)+ S (Mel + Y fiuf) (51)

keN veV SeKv deD SeKd
subject to
D bisai =1 Vke N (5.2)
veV e KV
IDI(L—2) = > > bsud >0 Vke N (5.3)
deD feKd
Z Z adyd — Z Z ajsxry >0 Vi € N (5.4)
deD seKd veV €KV
IDI> Y agsay =Y > adyg =0 Vi e N, (5.5)
veV de KV deD jcKd
1= > ajay >0 Vi e N, (5.6)
veV €KV

27

S atel =1 Yo eV (5.7)

SEKY

d ydtel=1 vd e D (5.8)

JeKd
2z €B Vk e N (5.9)
eV eB YoeV (5.10)
x5 €B Vo e K, YveV (5.11)
el eB Yd e D (5.12)
yi e B Vs € K¢, Vd € D. (5.13)

The linear restricted master problem (LRMP) is formulated by the same objective function and

constraints ([5.2)) - (5.8]), and adds the constraints

2 >0 VEk € N, (5.14)
eV >0 Yo eV, (5.15)
x3 >0 Vo e KY, Yo eV, (5.16)
e? >0 vd € D, (5.17)
yg >0 v € K%, vd € D. (5.18)

We let the objective value obtained from solving the LRMP be denoted by LBrrap. A first
feasible solution for the LRMP would be that all tasks are left unassigned. Finding good recovery
routes and duties, using the dual values obtained from solving the LRMP to optimality, is called
the pricing problem.

5.4 Pricing Problem

The pricing problem is used to find new recovery routes for vehicles and recovery duties for
drivers. For this, we need the dual values obtained from solving the LRMP to optimality using
the current sets of duties and routes. We let the dual variables be Ak, for all k£ € N, ¢y, for all
k € N, p;, for all i € N, ~;, for all © € N, and «y, for all ¢ € N, for each of the constraints
, , , and , respectively. Furthermore, we let 7% for all v € V and #¢ for
all d € D be the dual variables for constraints (5.7) and , respectively. Using these dual
variables, we can compute the reduced cost of a recovery route § € R for vehicle v € V by

9= Mbis+ Y pals — DI viak +) agals — 7, (5.19)

keN 1€Ne 1€ N, 1€ N,

and the reduced cost of a recovery duty § € R? for driver d € D can be computed by

F+ 7 onbls — Y pags + Y viafy — . (5.20)

keN €N, 1€ N,

The pricing problem then corresponds to finding recovery routes and recovery duties for each
vehicle and driver, with (the most) negative reduced cost. Note that for each vehicle and each
driver, the pricing problem can be solved independently from the other vehicles and drivers. By
putting the penalty cost and the dual values on the arcs, the pricing problems can be solved by
solving a shortest path problem from the source of the vehicle/driver to their sink.

The most used algorithm to solve the shortest path problem in a weighted graph is Dijkstra’s
algorithm. The algorithm finds the shortest path between all nodes in the network. Thus in our
case, we would use this algorithm to find the shortest path between the start and end node of
the vehicle/driver.

28

In order to find this path, each node in the network of the vehicle/driver is visited. For the
vehicles, the path always corresponds to a feasible route as no restrictions are given. However, for
the drivers, not all paths from the start node to any other node in the network, will correspond
to a feasible duty. This is due to the labour rules specified in Section [2.2.2]

To overcome this problem, |Potthoff et al. (2010) and jvan Dockum| (2018]) propose using a
resource constrained shortest path problem. The resource constrained shortest path problem
basically extends Dijkstra’s algorithm by not only considering the costs on the arcs, but also the
resources consumed on that arc. The resources corresponding to an arc from task ¢ to task j,
are whether or not a break can be taken if these tasks are executed directly after each other, the
driving time between these tasks and the duty length between these tasks. Note that the driving
time and the duty length are equal if no break is possible between these two tasks. Also note
that the driving time and the duty length include the duration of task j. Using this algorithm,
we find the shortest feasible path(s) between the start node (s) and end node (¢) of a driver. To
be able to fully account for all labour rules, we let the start node contain information about the
number of breaks before the start node of the driver, the duty length and the driving time. In
a similar way, we let the end node contain information about the number of breaks, duty length
and driving time after the end node of the driver.

Solving the Pricing Problem

In the existing literature, different rules exist for adding new routes and duties to the RMP
after solving the pricing problem. One may add all routes and duties with negative reduced
cost found by solving the (resource constrained) shortest path problem. However, we could also
only add the routes and duties with the most negative reduced cost. Finding all paths with
negative reduced cost in each iteration will take too much time. However, adding only the route
or duty with the most negative reduced cost will most definitely result in an increase of the total
computation time of the solution process. This is because a slightly lower reduced cost route or
duty may turn out to be the route or duty with the most negative reduced cost in (one of) the
next iterations. To overcome this issue, Potthoff et al. (2010) and van Dockum| (2018) propose
using a labeling procedure in combination with the (resource constrained) shortest path problem.

The labeling procedure extends the (resource constrained) shortest path problem by not only
considering the driving time, number of breaks and duty length on the arcs, but also the reduced
cost. At each node i (except for the sink of the vehicle), we check for all paths leading to node
1 which of these paths dominates the other paths. For example, let p; and po be two paths
leading to node ¢, with reduced cost r1 and ry respectively. If it holds that r1 < ry, then path
p1 dominates po, and we will no longer consider path ps as possible path for reaching node i,
as it is better to follow path p;. As we visit each node in topological order, the last node to be
considered will be the sink node of the vehicle or driver.

For the sink node of the vehicle, we do not perform any dominance checks on the paths leading
to the sink node, such that we back-trace the paths with negative reduced cost at the sink node,
which together form the set of all found recovery paths during this particular iteration of the
solution process. For the driver we do perform a dominance check at the sink node, because
otherwise too many recovery duties are added in each iteration. This is because there are far
more possibilities to form new recovery duties than recovery routes. Also, because only the routes
of the vehicles take into account the delay penalty, many duties of the drivers, which do differ
from driving time, still have the same cost (and reduced cost) as the same tasks are performed
but not the same delayed versions of the tasks. The latter does also apply for each node 7 in the
network of the drivers, and not only for the sink nodes of the drivers. To take this into account,
we further extend the labeling procedure by considering the driving time and the number of
breaks up to node i for the drivers, besides the reduced cost.

29

It thus may be the case for the drivers, that the path with the lowest reduced cost up to task
i is not necessarily better than another path with higher (or the same) reduced cost but with
more breaks, or with the same or more breaks and a higher total driving time. At node ¢ we are
not sure if continuing with the dominated path up to node i still leads to the lowest reduced cost
over all possible paths. Namely, all paths leading to node ¢ could have negative reduced cost if
they reach the sink node such that all of them are promising. By using the labeling procedure
discussed so far, we would only consider the path with the most negative reduced cost up to
node i. However, continuing this particular path to the sink node may not be possible as it may
turn out that before reaching node i a break was necessary to make the path from the source of
the driver, to the sink of the driver, feasible. This would imply that it may be the case that we
do not find the recovery duty with the lowest reduced cost, because we did not further pursue
other possibilities.

Another possibility we would like to pursue is a path leading to node ¢ with the same or more
breaks, but a higher driving time than another path leading to node i. Namely, the number of
breaks of a path could be the same for path p; and ps, and p; has slightly lower reduced cost, but
if po does visit more stops, we still want to pursue this possibility. Namely, if the paths have the
same breaks but differ from driving time, this would mean that the driver is unnecessary idle.
To make sure that we always find the best recovery duty for each driver, we use the following
dominance rule once we solve the pricing problem for the drivers: Path p1 dominates path po if
path p1 has lower reduced cost and path py does not have more breaks than path p1 and path ps
does not have less breaks than path p1 while the total driving time of po is higher than the total
driving time of p1.

5.5 Overall Lower Bound

In our solution method, not all feasible routes and duties are known once we solve the IRMP and
the LRMP. Because of this, we are not able to use the objective value of the LRMP (LBrryp)
as overall lower bound for the problem. It is possible that better routes and duties may be
found in the next iterations of the solution method, which results in a lower objective value than
currently found for the LRMP. This thus implies that the objective value obtained from solving
the LRMP is only a lower bound to the IRMP of the current iteration. Fortunately, [Huisman
et al.| (2005)) propose a method to deal with this issue. We use their ideas in our solution method
to compute an overall lower bound for the problem.

The reason for using an overall lower bound is because of the necessity to obtain a recovery
timetable in a short amount of time. If we are able to compare the upper bound with an overall
lower bound, we may terminate the solution method if the difference is small (e.g. less than
1%). The LRMP would provide an overall lower bound if all routes and duties are known and
included in the sets RY and R?, respectively. Let KV € R? and K¢ C R? denote all routes and
duties available at the time we need to compute a lower bound for the overall problem. Assume
for now that all routes and duties with negative reduced cost are known. If we denote the set of
routes with negative reduced costs in R" \ K" by RV, it holds that,

min {0, min {g§ — > Nibjs + > piajs — D] > viafs+ > aialy —7°}}
dERY keN iEN. iEN. iEN.

is the maximum improvement for vehicle v achievable in the next iteration of the solution method,
and if we denote the set of duties with negative reduced cost in R?\ K¢ by R?, it holds that,

min {07?5%% {fgl + Z qbz'bi;l(s - Z uiaﬁ; + Z %’agld - Wd}}

keN i€ Ne i€N,

is the maximum improvement for driver d achievable in the next iteration of the solution method.

30

The above two problems are thus basically to find for each vehicle and driver the recovery
route or duty with the most negative reduced cost, over all routes and duties not yet added to
the master problem. Note that finding the route or duty with the most negative reduced cost,
over all routes and duties not yet included in the master problem, is exactly the same as solving
the pricing problems. If we add the expected improvement on the objective value which still can
be made by adding more routes or duties in next iterations, to the lower bound of the current
iteration, we can obtain an overall lower bound to the problem. If the expected improvement is
greater than or equal to zero, no more routes or duties can be found in next iterations for this
particular vehicle or driver, which improve the overall objective value. The overall lower bound
(LB) of the problem can thus be computed by

LB = LBLRMp—i—Z min{O,;]zelg}J {gg—z Aibis+ Z wiajs—|D| Z Vitss+ Z aiaflg—ﬂv}}

= kEN i€N, i€N, i€N,
: o fped d d d d
+ Z min {0, min {f5 + Z Pibls — Z Hilis + Z viags — 7} }
deD SER kEN ieN, ieN.

Note that this means that: LB < LBrryp < UB.

5.6 Improving Computation Time

Up to this point, we have discussed the solution method for obtaining a recovery timetable based
on the disruption of the original timetable. For the vehicle and crew rescheduling problem, it
is not only important to obtain a feasible recovery timetable, but also to obtain a feasible re-
covery timetable in a very short amount of time. This is necessary due to the fact that the
changes made in the recovery timetable have to be known to the drivers before they are able to
adapt their duties. Because the solution method discussed so far may not be able to find solu-
tions very quickly, we propose different methods to improve the computation time in this section.

In the initialization of our solution process, no recovery routes or duties are added for the
vehicles and the drivers, but only networks from which these routes and duties can be obtained.
Therefore, it can take a very long time before even a feasible solution is found, in which each
driver has a recovery duty and each vehicle a recovery route. To improve the computation time,
we propose a pre-solving method. After the pre-solving method, we continue with the solution
process as has been discussed in the previous sections.

Another way to improve the computation time, is to make smart use of the fact that the
recovery timetable may also not deviate too much from the original timetable. This can be done
by excluding those parts of the original timetable for which no changes are needed or expected
to be needed. Note that this means that we may not find the optimal recovery timetable for all
kinds of disruptions, as not all possibilities are included. We can exclude parts of the original
timetable by, for example, introducing a neighbourhood of vehicles and drivers. A neighbourhood
of vehicles and drivers only contains those vehicles and drivers for which we expect that changes
in their route or duty must be made in order to obtain a feasible recovery timetable. If we expect
no changes, we can exclude them from the list of vehicles and drivers for which changes in the
original timetable are allowed. Another possibility to reduce the computation time is to choose
recovery period such that the size of the instance is reduced. A recovery period is defined such
that only within this period, changes to the original timetable are allowed.

The computation time can also be reduced by only solving the IRMP at certain moments
during the solution process, instead of solving it at the start of every iteration. Solving the IRMP
does require a lot of time, while a better solution will not be found in each iteration. Finally, the
most commonly used way to reduce computation time is to set some stopping criteria. In the
remainder of this section we discuss the implementation of each of these possibilities to improve
the computation time of the solution method.

31

5.6.1 Pre-solving method

After initializing the solution process with the task list, delay and detour possibilities, and the
recovery networks, we would like to start at the first iteration of our solution approach and
continue until no further improvements can be found. If no recovery duties or routes are added
before starting the solution process, no tasks can be executed. Because this means that each task
is cancelled, all tasks will get a very high dual value (which means that it is highly recommended
to let any of the drivers of vehicles perform this task). High dual values result in longer compu-
tation times of the pricing problems, as more promising recovery duties and routes can be found
(in the first iterations, almost every feasible path from source to sink is considered promising).
It may be the case that not all these duties and routes are added, due to the labeling procedure,
however, most connections in the network are still explored, which takes a lot of time. In the
pre-solving method, we try to overcome this by a greedy approach for solving the pricing problem.

Before the start of the pre-solving method, we check for each vehicle and driver whether
its/their original route or duty is still feasible. If this is the case, we add the original route or
duty as possible recovery route or duty. Note that this does not mean that for all those drivers
and vehicles, their original duty or route can be executed. For example, let drivers A and B both
be assigned to vehicle 1, in that order, and consider the following situation.

If a disruption occurs such that driver A is delayed with vehicle 1, the recovery network of
driver A and vehicle 1 will not contain all their original tasks (here, we do not mean delayed
versions of the original tasks), as these can no longer be executed. However, for driver B, all
original tasks will still be present in the recovery network, whilst vehicle 1 may not be able to
arrive on time at the relief location where the change of driver takes place. This thus means
that for driver A and vehicle 1, we do not add their original duty and route. However, for driver
B, the original duty is still added. The reason that we do add the original duty of driver B is
because we are not fully able to check for each vehicle and driver if such a situation as in the
example will occur, as multiple drivers may be assigned to a single vehicle.

After initializing the pre-solving method, we basically execute our solution approach but
with one important difference. Namely, we only solve the pricing problem for those drivers and
vehicles for which no recovery duty or route has been selected as recovery duty or route, after
solving the IRMP. This is done until the overall lower bound for this approach exceeds 0, because
then we are interested in better results, or if the IRMP can find a feasible recovery duty or route
for every driver and vehicle. If one of these stop criteria is met, we continue with the solution
approach as has been explained in the previous sections. The benefit of the pre-solving method is
thus faster convergence to a feasible solution, which leads to a reduction of the total computation
time of the solution method.

5.6.2 Neighbourhood of Vehicles & Drivers

Another way to reduce the computation time is to exclude drivers and vehicles for which defi-
nitely no changes are needed in their duties or routes. To make sure that we only include the
vehicles and drivers for which we expect that it is necessary to make a recovery route/duty, we
apply the following algorithm to form a neighbourhood of vehicles and drivers.

Let @ be the set of vehicles passing the disruption in the original timetable during the
recovery period. For those vehicles, we search for all drivers who operate these vehicle during
the recovery period. Let all those drivers be included in the set P. We then perform the following
steps repeatedly until no more vehicles can be added to the set () and no more drivers can be
added to the set P. First, we add all vehicles operated by drivers from set P to the set (). Then,
we add all drivers who operate vehicles from the set () to the set P. If new vehicles or new
drivers are added to either one of the sets, we go back to the first step.

32

Note that we may loose optimality by creating a neighbourhood of vehicles and drivers.
However, creating a neighbourhood has a large positive effect on the computation time. Also
note that, if we introduce a neighbourhood in combination with a recovery period, only drivers
and vehicles are added to the neighbourhood which are active during the recovery period. Thus,
vehicles and drivers either starting their route or duty after the end of the recovery period,
or ending their route or duty before the start of the recovery period, are not added to the
neighbourhood.

5.6.3 Recovery period

To even further reduce the computation time, we also propose to use a recovery period. Intro-
ducing a recovery period reduces the size of the task list (and thus also the number of delay
possibilities and possible detours) such that less potential recovery timetables can be created.
Another benefit is that we hopefully exclude drivers and vehicles for which no changes in their
duties or routes are needed, because they start after the disruption can been solved.

A recovery period is defined as a period in which each task of the task list is allowed to be
assigned to another vehicle or driver than it was originally assigned to. The recovery period
must be at least as large as the duration of the disruption, however, in almost all cases that the
disruption affects the timetable, more time is needed. There is thus a trade-off between choosing
a large recovery period with (most likely) better solutions against a high computation time, or
a small recovery period, risking infeasibility for one of more vehicles and drivers but with a low
computation time. The goal is to find a recovery period somewhere in between.

We decided to test different approaches for choosing a (fixed) window as recovery period. Our
final choice will be based on the results of experimenting with the different approaches on some
test cases. This will be discussed later in Chapter [7] The different approaches are as follows:

1. A fixed window (F') as recovery period, starting after the disruption.
2. A window dependent on the disruption.
3. A combination of approach 1 and 2.

Note that outside of the recovery period the penalty cost is thus equal to 0. However, even
if we find the optimal solution within the recovery period, it may still not be the overall optimal
solution. This is because, excluding parts of the problem reduces the number of possibilities
for forming new recovery routes and duties within the recovery period. Thus, we may loose
optimality by introducing a recovery period.

In our first approach, we choose a fixed window after the disruption as recovery period. For
the remainder of this thesis, the fixed part of the recovery period will be denoted by F' given in
minutes. A fixed window will probably work well for small disruptions, because if we choose the
window large enough, there should always be enough time to reschedule the vehicles and drivers
such that a feasible recovery timetable can be obtained. However, choosing the window large
enough is difficult as the impact of the disruption on the original timetable is hard to predict
beforehand. Therefore, the recovery period of our second approach, depends on the disruption.

For this, we checked the idle time in the original route of each vehicle which is affected by
the disruption. After each original trip, there may be some time left for a vehicle before it needs
to start another trip. If not enough idle time is present on the route of the vehicle, the recovery
period must be extended until enough idle time is present for each vehicle to cover the disruption,
as otherwise, the vehicle is not able to reach its destination in time. We thus need to search for
the first start time of a trip at which the disruption has no longer an affect. After checking this
for each vehicle, we take the maximum start time as end time of the recovery period.

33

We expect that this method works well for most disruptions, however it may still be the case
that the recovery period is too short. Namely, it can be that even though all vehicles are able to
reach their destination, some drivers may not be able to reach their destinations due to the fact
that drivers need to take breaks and they are restricted by the labour rules. Therefore, our final
method is to combine the previous two approaches. For this, we first apply the second method
to find the latest starting time of a task which is used as end time of the recovery period, and
then, we add a fixed period such that always enough time is given to create a feasible recovery
timetable in which all drivers and vehicles have a recovery duty or route, respectively.

5.6.4 Solving the IRMP

During each iteration of the solution method, most time is spend on solving the IRMP. However,
not in each iteration, a better solution is found for the IRMP. Therefore, we may reduce the
number of times we solve the IRMP during the solution process.

To reduce the number of times the IRMP is solved, we only solve the IRMP if a better overall
lower bound is found. We choose this criteria because for large instances, the duration of an
iteration does take more time than for a smaller instance, such that a criteria like solve the IRMP
every s seconds, does sometimes result in still solving the IRMP every iteration, especially for
large instances. Also, for small instances, it may take far more time than needed before the
solution is found, because we have to wait s seconds each time after we solve the IRMP, before
we are again allowed to solve the IRMP. Furthermore, a criteria like solve the IRMP every n it-
erations neither result in a faster computation time for all instances, because for small instances,
we would like to choose n small (because more improvement is made in each iteration leading to
a possibly better solution to the IRMP), while for large instances, we would like to choose n large.

As initial strategy we therefore solve the IRMP each time a better overall lower bound is
found during the solution process, because this works for both small and large instances. In
Chapter [7} we will however also propose another strategy in solving the IRMP during the solu-
tion process, which is based on some of the other results obtained in that chapter.

Note that we always solve the IRMP in the first iteration of the solution process, as an upper
bound still needs to be determined at this point. Also note that we always solve the IRMP before
terminating the solution process. In this manner, we always find the best solution of the current
routes and duties included in the IRMP.

5.6.5 Stopping Criteria

Finally, the most commonly used way to reduce the computation time is to implement some
stopping criteria. In our case, we stop the solution process if the overall lower bound is equal
to the upper bound, which means that an optimal solution is found. If it takes too much time
to find the optimal solution or to prove that the optimal solution is the optimal solution (it
may happen that the solution method has a hard time to improve the overall lower bound) we
terminate the solution process after x minutes, with

x = max{20, duration of disruption (in minutes)}.

Such that a solution is always obtained within the duration of the disruption, and within 20 min-
utes. Unfortunately, it may happen that even after x minutes, a feasible solution is not found.
In that case, we can choose to continue the solution process until the first feasible solution is
obtained, or we can manually stop the solution process and obtain the best solution found so
far. Besides the time limitation, we propose another stopping criteria based on the gap between
the overall lower bound and the value obtained by solving the LRMP in Chapter [7}

34

Chapter 6

Data Description

In this chapter, we discuss the data used to test our solution method. We first provide more
insight in the original timetable. Thereafter, we provide the parameter values and the penalty
cost used for obtaining the results of the different test cases. Finally in the last section, we
describe the different test instances (disruptions in the original timetable) which will be used to
test our solution approach.

6.1 Original Timetable

The solution method is tested using an original timetable provided by the RET of a normal week
day. In this original timetable, 112 vehicles operate during the day performing a total of 1,834
trips consisting of a total of 47,862 trip points. Furthermore, 203 drivers have a duty during this
day, of which 17 have a split duty. The original duties of the drivers consist of a total of 662
work pieces. Each driver operates at least 1 different vehicle during his/her duty and at most 5
different vehicles. On average, each driver operates 2.88 different vehicles. For each vehicle, at
least 1 different driver is scheduled to operate the vehicle during the day, and at most 11 different
drivers. On average, for each vehicle 5.21 different drivers are scheduled to operate the vehicle,
during the day. Furthermore, each driver operates a vehicle for at least 21 consecutive minutes
and at most 306 consecutive minutes.

During the day, the number of vehicles actively operating trips differs, as during rush hours,
more vehicles need to be used because the lines operate with a higher frequency. As a result,
the number of active drivers also differs during the day. This results in less breaks during the
rush hours and also more starts and finishes of duties during off-rush hours. Figures and
show the number of active vehicles and drivers during the day, as well as the number of drivers
on breaks and the total number of drivers present at each moment of the day.

As can be seen from the figures, around 4:30 the first vehicles and drivers start operating and
around 2:00 the next day, all vehicles are back at the depot and all drivers have finished their
duty. Most breaks are taken around 12:00, and at each moment in time, the number of active
drivers is at least equal to the number of active vehicles.

Once a disruption occurs, we expect that it would have a larger impact on the planned breaks
of the drivers, if the disruption takes place around 12:00. This means that it is likely that drivers,
affected by the disruption, may need to skip their break and have it at another moment and/or
place. However, as can be seen from the figures, around 20:00, also a large percentage of the
number of present drivers take a break (at some point this is even around 20.0% of the present
drivers). As also many drivers end their duty around this time (this can be seen from the number
of active vehicles during this time), we expect that a disruption between 19:00 and 20:00 would
also have a larger impact on the planned breaks of the drivers as well as the possible overtime
needed for the drivers to return to their end location.

35

120 140

100 120

100
B0

BO
60

60
a0

40
‘.h 20
= e——

0:00 4:00 B:00 12:00 16:00 20:00 0:00 4:00

20

Totdl —To02 — ToM4 T007 0:00 2:00 8:00 12:00 16:00 20:00 0:00 200

——T008 —T020/T023/T124 T021/T024 —T025 . . .
——Present Drivers Drivers on Break Busy Drivers

Figure 6.1: Active vehicles Figure 6.2: Drivers

If more vehicles are active, we expect more changes to the original routes of the vehicles in
the recovery timetable. Figure also shows the number of active vehicles on each (group of)
lines during the day. Some lines are grouped because the same vehicle operates on both lines
in the original timetable. This would for example mean that it is likely that a disruption on
line T020 also affects vehicles operating lines T023 and T124, as these lines are grouped. As
more vehicles operate on these lines, and on lines T021 and T024, we expect that disruptions
occurring on these lines have a larger impact on the original timetable and thus requires more
changes. For line T002 we expect less needed changes if a disruption occurs as during the day
the least number of vehicles need to operate simultaneously on this line.

Note furthermore, as can be seen from Table[6.I] that all lines have some overlapping tracks
with other lines. A track is defined as the rail segment between two stops. This again indicates
that a disruption occurring on for example line T0O08 could also impact all other lines except for
line T002, and the more overlapping tracks a line has with other lines, the more likely it becomes
that more changes are needed to the routes of the vehicles using the tracks, to overcome the
disruption. Note again that for line T002 not much correlation exist with the other lines, as line
TO002 only shares 11 tracks with line T020 and no tracks at all with other lines.

Table 6.1: Overlapping track segments

Line Number of overlapping tracks with line ...
T002 TO004 TO007 TO008 T020 T023 T124 TO021 T024 T025

T002 39 - - - 11 - - - - -
T004 - 60 1 10 - - - - - 2
T007 - 1 46 10 - - - - - 3
T008 - 10 10 66 6 7 2 4 4 6
T020 11 - - 6 38 14 3) 5 17
T023 - - - 7 14 72 3 22 22 12
T124 - - - 2 3 3 15 15 15 2
T021 - - - 4 5 22 15 80 75 4
T024 - - - 4 5 22 15 75 88 4
T025 - 2 3 6 17 12 2 4 4 64

This table states for each line, the number of overlapping tracks with each of the other
lines. A track is defined as the rail segment between two stops.

36

Up to this point, we described the expectations of the impact of a disruption at different
moments in time on the number of vehicles and the planned breaks of drivers, and the propaga-
tion of disruptions of one line to other lines. However, recently the RET also introduced crew
interlining, which caused a new relationship between the vehicles, drivers and the lines.

Before interlining was introduced, each driver operated on a single line during the day, while
now, drivers may operate on different lines during the day. Interlining has as advantage that the
breaks could be scheduled more efficiently, and the idle time of the vehicles and drivers could be
reduced. However, this advantage becomes a disadvantage when a disruption occurs. Namely,
the probability that a disruption on a line also propagates to other lines increases. This is be-
cause there is less room for rescheduling as not many drivers are having a break, while they do
not necessarily need a break (in other words, the slack time within their duty has decreased).

Table shows for each line, if any drivers of this line also operates on one of the other lines.
As can be seen, drivers who operate on one of the lines T002 or T025 do not operate on any
other lines than this line during their duty. Therefore, we expect that disruptions occurring on
these lines do not necessarily propagate towards other lines, as a results of interlining. However,
for the other lines, there is much interlining during the day. This indicates that disruptions
occurring on one of the lines in one of the clusters ({T004, T007, T008, T021, T024} and {T020,
T023, T124}) may also propagate towards the other lines in the cluster.

Table 6.2: Crew interlining

Line Drivers also operating line ...

T002 T004 TO007 TO008 T020 T023 T124 TO021 T024 T025
T002 Yes - - - - - - - - -
T004 - Yes Yes Yes - - - Yes Yes -
T007 - Yes Yes Yes - - - Yes Yes -
T008 - Yes Yes Yes - - - Yes Yes -
T020 - - - - Yes Yes Yes - - -
T023 - - - - Yes Yes - - - -
T124 - - - - Yes - Yes - - -
T021 - Yes Yes Yes - - - Yes Yes -
T024 - Yes Yes Yes - - - Yes Yes -
T025 - - - - - - - - - Yes

This table states for each line, if drivers operating this line also operate any of the other
lines, during his/her duty.

The main purpose of stating above expectations is to better understand why a disruption
(at the same time and with the same duration) could have a very different impact on the size
of the instance and the outcome, if the location of the disruption differs. The same holds for
disruptions taking place at the same location and for the same duration, while they do not occur
at the same time. By discussing the results of the test cases, we will see if our expectations meet
with reality.

6.2 Parameters: Labour Rules & Vehicle Rules

In the original timetable, we assume that each driver has a duty which adheres the labour rules.
If it turns out that this is not the case, it may also not be possible to find a feasible recovery
timetable if a disruption occurs. This should be kept in mind if we interpret the results. Note
furthermore that this also holds for the vehicles, for which we assume that their original route
adheres the vehicles rules.

37

To initialize the parameters for the labour rules and vehicle rules for our research, we have
used the following values, which are summarized in Table

The duty of a driver requires a minimum of 2 (by,;,) breaks, with a minimal duration of 15
minutes ({2,), if the duty is at least 6 hours (hf;ffg) The working time between 2 breaks (or

the start or the end of a duty and a break) may not exceed 4 hours and 15 minutes (h2%7F).

Furthermore, the maximum allowed overtime for each

driver at the end of his/her duty is set to 60 minutes Labour Rules
(o). The travel time for a driver between any two re- b 5
lief locations is set to 45 minutes (Tjrquer). To make sure b 15
that the network of each driver remains small, and the min Ht
. duty
driver remains active during its duty, we set the maxi- P, 6 hours
mum allowed waiting time at all stops equal to 60 minutes hwork 4 hours and 15 min.
MAX
(w). ob . 60 min.
wMAX 60 min.

For the vehicles rules, we use the following parameter
values. We set the maximum idle time at stops which
are not at relief locations, equal to 15 minutes (w%"afc), for Vehicle Rules
stops at relief locations we set the maximum idle time to w15 min.*
60 minutes (w™4X). Furthermore, each vehicle may return sz AX 60 min
up to 60 minutes (0),,,) later to the depot than originally v '
planned. Omaz

* Not at relief locations.

Tiraver 45 min.

60 min.

Finally, note that we do not set any maximum allowed
delay at each stop (¢/"**). This is because if we set a maxi-

mum of for example 10 minutes, while the disruption lasts 20 minutes, we may not even be able
to find a feasible recovery timetable. Also, we only create delay possibilities if they make new
connections within the network, so this keeps the number of delay possibilities already small

while maintaining a feasible recovery timetable.

Table 6.3: Parameter values

6.3 Penalty Cost

For the recovery timetable, we want the solution to contain as few as possible cancelled tasks,
while at the same time the recovery duties and the recovery routes should not deviate too much
from the original timetable. To be able to achieve this, we have set the penalty cost as follows.

We set the penalty for not having any route or duty (M) equal to 107. This penalty should
be set very high, as the recovery timetable is not feasible if we do not find a recovery route or
duty for each vehicle and driver. We let the penalty cost for cancelling a stop (p1) be equal to
1000 per stop. The delay penalty is determined based on the penalty cost for cancelling a stop.
Namely, we set the delay penalty (p*) to 50 per stop per minute, such that an indifference exist
between cancelling a stop or delaying a stop with 20 minutes. Note that this does not mean
that delays of more than 20 minutes are never chosen in a recovery timetable. This is because
a delay can be high for the first task of a recovery route or duty, but lower (until reaching no
delay) towards the end of the recovery route or duty. Therefore, it can still be better to start with
(for example) a delay of 30 minutes, instead of cancelling large parts of the original route or duty.

The penalty for every new visited stop compared to the original route of the vehicle (p%) is

set to 100 per stop. Furthermore, the penalty for every new visited stop compared to the original
duty of the driver (ph,) is set to 200 per stop and the overtime penalty (p®) to 10 per minute.

38

6.4 Test Instances: Disruptions of Original Timetable

To test our solution method, we disrupt the current timetable at two different points in the
network. We choose to disrupt the timetable for instance 1) between Maashaven and Brielselaan
and for instance 2) between Leuvehaven and Wilhelminaplein. For both instances, we let the
disruption takes places in both directions between the locations. The first instance is chosen
because between these locations, only line 2 operates and no interlining occurs with other lines.
Also, this line shares the least number of tracks with other lines. The second instance is chosen
because this is one of the more difficult kinds of daily disruptions the RET currently needs to
solve. Also, multiple lines visit the disruption location and interlining occurs on these lines.

Besides the different locations, we can also choose to disrupt the timetable at different mo-
ments in time. The instance size will change if the duration of the disruption differs, or the time
at which the disruption occurs differs. The latter is because, as explained earlier, the number
of vehicles and drivers operating during the day differs at each moment of the day. We test the
influence of these two factors on the quality of the solution provided by the solution approach and
the computation time in Section[8.2.2] For all other sections, the instances can be summarized by:

11D20: Disruption of 20 minutes at 12:00 between Maashaven and Brielselaan
o Isolated line (T002) with no interlining.
12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

e Technical problems at the Erasmus Bridge resulting in a blockage of the bridge. The dis-
ruption directly affects line T020, T023 and T025, as these lines pass the disruption. Also,
interlining occurs on lines T020 and T023.

In the remainder of this thesis, we refer to one of the above disruptions by ‘IzDy’, where z
presents the instance number and y presents the duration of the disruption.

39

Chapter 7

Algorithm Settings & Tuning

In this chapter, we perform some experiments with the different methods to reduce the compu-
tation time of the solution method. The different methods result in different ways in a reduction
of the computation time, either indirectly (by reducing the size of the instance) or directly (by
introduction the pre-solving method, or by decreasing the number of times the IRMP is solved
during the solution process). For each of these methods, the impact on the computation time
will be shown for the test instances 11D20 and 12D20 in Sections and Finally, in Section
we summarize our final algorithm settings and provide some recommendations for further
research. To test our solution approach, we implemented the solution method in Java. Fur-
thermore, we made use of CPLEX Version 12.8 to solve the integer restricted master problem
(IRMP) and the linear restricted master problem (LRMP).

7.1 Instance Size

The computation time indirectly decreases if we reduce the size of the instance. This can be
done by the introduction of a neighbourhood or by the introduction of a recovery period. We
show the impact of the introduction of a neighbourhood on the size of the instance in this sec-
tion. Furthermore, we also discuss the impact on the size of the instance by experimenting with
different variations for determining the end time of the recovery period.

Note that we may loose optimality or feasibility by the introduction of a neighbourhood or
a recovery period. This is because less vehicles and drivers means less rescheduling possibilities.
Loss of optimality is not necessarily an issue if this saves a lot of computation time without a
large difference in the solution quality. However, infeasibility does cause problems if the solution
needs to be used as recovery timetable. Both loss of optimality and loss of feasibility should be
kept in mind by the introduction of the methods. We distinguish between two sorts of infeasi-
bilities. Namely, the infeasibility of an instance and the infeasibility of a solution.

The infeasibility of an instance means that not a single path from source to sink can be
found for at least one driver or one vehicle. This results in an empty recovery network. In the
initialization step of the solution process, we guarantee feasibility of the instance, if no recovery
period is used. However, if a recovery period is used, it may be that this sort of infeasibility occurs
because either a vehicle or a driver is not able to reach its sink node. In that case, we should
extend the recovery period. The other sort of infeasibility is the infeasibility of the solution. If
this occurs, all vehicles and drivers do have a recovery network, and paths from source to sink for
all drivers and vehicles can be found, but there is no combination of recovery routes and duties
which forms a feasible timetable. A feasible timetable is created if each driver has a recovery
duty and each vehicle a recovery route. Infeasibility can occur because the recovery duties must
also satisfy the labour rules. Another cause of infeasibility is the fact that even though a path
from source to sink for a vehicle could exist, this path may not be executable as this combination
of tasks cannot be done by any (combination) of the drivers.

40

7.1.1 Neighbourhood of Vehicles & Drivers

Our first method to reduce the computation time is to introduce a neighbourhood of vehicles
and drivers. The benefit of this method is that we decrease the size of the instance such that less
possibilities need to be considered which results in a lower computation time. To decrease the
size of the instance, we exclude vehicles and drivers for which we do not expect that any changes
to the original route are necessary, because they do not pass the disruption location and are not
related to any of the vehicles or drivers that do pass the disruption location. If less vehicles and
drivers are included in the problem, the number of tasks included in the task list decrease, which
result in less delay possibilities, possible detours and connections between tasks in the recovery
networks.

[}

The impact of the introduction of a neighbourhood of vehicles and drivers on the size of the
instance is shown in Table[7.1]for instances I1D20 and 12D20. Note that at this point, no recovery
period is used, such that the instances include all tasks from the start time of the disruption, up
to the end of the day. Table presents, for each instance, with and without a neighbourhood,
the total number of stops (#5) that must be visited in the recovery period, the total number of
delayed stops (#S7) that are created as delay possibilities, the total number of possible created
detours (#0), the total number of drivers (#D) included in the instance and total number of
vehicles (#V) included in the instance. Note that we do not mention the size of the task list
(N), nor the size of the delay task list (N, \ N), because each of these tasks includes a different
number of stops that must be visited if this task is executed. As the penalty cost depends on
the total number of stops included in each task, mentioning the total number of stops included
in all tasks of the (delay) task list provides more inside in the size of the instance.

Table 7.1: Impact introduction of neighbourhood

11D20 12D20
#S #SD HO H#D HV #S #S8P #O H#D H#HV
Without Neighbourhood 28,947 118 70 194 101 28,947 1,079 997 194 101
With Neighbourhood 2,174 118 70 15 7 6,288 855 279 48 24

Reduction (%) -92.5 0.0 0.0 -923 -93.1 -78.3 -25.0 -72.0 -75.3 -76.2

This table shows the impact on the size of the instance by introducing a neighbourhood of vehicles and
drivers, for instances 11D20 and 12D20.

The results show that without using a neighbourhood, both instances contain the same num-
ber of stops that must be visited, and the same number of drivers and vehicles who/which operate
between 12:00 and the end of the day, which is as expected. The total number of delay possi-
bilities and possible detours increase if more lines cross the disruption location (12D20). This
is also as expected because if more lines cross the disruption, more vehicles are affected by the
disruption.

The results further show that for both instances, huge reductions (92.5% and 78.3%) in the
total number of stops that must be visited (#S5) are made by the introduction of a neighbourhood.
Note that the reduction in the number of drivers and vehicles included in the instance, is reduced
by around the same percentage. This is because both a vehicle and a driver are needed for a single
task, so by excluding vehicles and drivers, we should expect the same decrease in percentage in
the number of tasks (and thus stops that need to be visited). The reduction is larger for 11D20
because far less vehicles and drivers are affected by the disruption occurring on an isolated line
instead of at a location where vehicles operate multiple lines, and also drivers interline between
different vehicles of different lines. Furthermore, the number of delay possibilities remains the
same compared to without the neighbourhood, while a reduction of 25.0% occurs for 12D20.

11D20: Disruption of 20 minutes at 12:00 between Maashaven and Brielselaan
12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

41

The number of possible detours does also not change for instance 11D20 if we introduce a
neighbourhood, while the reduction is 72.0% for instance 12D20. The reason for no improvement
in the reduction of the delay and detour possibilities is that for [1D20, the disruption occurs on
an isolated line. Therefore, without the introduction of a neighbourhood, all delay possibilities
are created from tasks of this line, and possible detours are also created from tasks of this line
to other tasks of this particular line, as only these connections form new possibilities. Note
that therefore, loss of optimality by creating a neighbourhood will not occur for instance 11D20.
However, there is a chance that loss of optimality for instance 12D20 does occur. Unfortunately,
we cannot determine if this is true based on the information provided so far. For this, we need
to compare the solutions of solving the instances with and without a neighbourhood.

Table states the upper bound (U B), the best found overall lower bound (LB), the time
at which a first feasible solution is found (7}), the time at which the best solution is found (7*)
and the total computation time (7}4), all in seconds, for both instances, with and without the
introduction of a neighbourhood.

Table 7.2: Results introduction of neighbourhood

11D20 12D20
UB LB T T* Tiot UB LB T T* Tiot
Neighbourhood (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)
Without 2.968-10° —3.148- 107 - - >1,200 2.968-10° —3.739-10% - - >1,200
With 45,730 18,764 59 142 >1,200 625,551,400 —592, 832 - 603 >1,200

This table states the results obtained after 20 minutes of solving the instances I11D20 and I2D20 with and without a neigh-
bourhood.

Without the introduction of a neighbourhood, the results show that for both instances, not
even a single driver or vehicle could be assigned a recovery route or duty during the 20 minutes
of computation time. This can be seen from the fact that both upper bound values are the
same. Note that the best lower bound found after 20 minutes is lower for instance 12D20 than
for 11D20, which is as expected because the instance is larger such that less improvement can be
made within the same time.

By the introduction of a neighbourhood, the computation time decreases significantly, be-
cause a feasible solution can be obtained within 59 seconds for instance 11D20, compared to not at
all in case no neighbourhood is used. For instance I12D20, at least some drivers and vehicles have
been given a recovery duty or route. However, even with the introduction of a neighbourhood, a
feasible solution cannot be found within 20 minutes. For instance 11D20, the best found solution
differs with 59.0% from the best found lower bound. Note however that the first feasible solution
and the best found solution for the upper bound for this instance are obtained early in the so-
lution process, while thereafter, no improvement is made until the solution process is terminated.

Finally note that, with the introduction of a neighbourhood, infeasibility of the instance does
not occur for these instances, as each driver and each vehicle in the instance has a recovery
network for which holds that a path from source to sink exist. We cannot prove infeasibility
of the solution (for 12D20) or the loss of optimality, as no solution can be found without the
use of the neighbourhood, and with the use of a neighbourhood, a feasible solution could still
not be obtained for instance 12D20. However, because for our thesis, a solution has to be found
in a very short amount of time, we still decided to use a neighbourhood regardless the chance
on loss of optimality. In the remainder of this thesis, all results are obtained with the use of a
neighbourhood of vehicles and drivers. |

I11D20: Disruption of 20 minutes at 12:00 between Maashaven and Brielselaan
12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

42

7.1.2 Recovery Period

The second approach to reduce the computation time is by introducing a recovery period. By
introducing a recovery period, we set an end time for the window in which tasks of the task list
are allowed to be delayed, cancelled or assigned to other vehicles and drivers. This leads to less
nodes in the networks of the drivers and vehicles, such that the pricing problem can be solved
faster as less nodes, and connections between nodes, need to be considered. Also, the number
of drivers and vehicles included in the problem usually reduce if an end time is set, as some of
them may start their duty/route after the end of the recovery period.

To understand the impact of introducing a recovery period, we test different approaches (M1,
M2 and M3) with different values for the fixed part of the recovery period (F' in minutes). M1
corresponds to the approach in which only a fixed window (after the disruption) is used as re-
covery period. M2 corresponds to the approach in which a the recovery period is dependent on
the disruption. The combination of the two approaches is denoted by M3.

For M1, we let the fixed part of the recovery period F', be equal to 60, 120 and 180 minutes.
The values of F' are based on the minimum break time for drivers, the maximum overtime for
drivers and the default travel time between relief locations. For example, we make sure that for
M1 the fixed part of the recovery period is at least equal to the maximum allowed overtime for
a driver. However, sometimes this may not even be enough, as breaks need to take place due
to the restriction on the maximum driving time of the drivers and the fact that drivers need to
end at their originally planned end location in time. The latter may result in drivers needing to
travel from relief location to relief location, which requires time. Therefore, we have also set F’
equal to larger values (120 and 180 minutes) to account for these events.

For M3, we let I’ be equal to 30, 60 and 90. These values of F' are also based on the minimum
break time for drivers and the default travel time between relief locations. However, the values
do not have to be as high as those for M1, because the recovery period already includes enough
time for the vehicles to arrive in time at their end locations. Therefore, we have set the values of
F such that for the first case (30 minutes) extra time is given to account for at least two extra
breaks for each driver, during the recovery period. For the second (60 minutes) extra time is
given to account for at least two extra breaks for each driver, or for at least one break and one
travel piece for each driver. For the third case (90 minutes), enough extra time is given for at
least two extra breaks and a travel piece, or two travel pieces, needed for a driver.

Table [7.3| presents for each of these variations the end time of the disruption window (W),
and all other information about the instance (similar as for the introduction of the neighbour-
hood), for both instances. Note that we only mention the end time of the recovery period (or
disruption window), because the start time of the recovery period is equal to the start time of
the disruption (for both instances 12:00).

For all methods, each instance contains less visited stops than compared to not using a
recovery period (for reference, see results in Table [7.1). For method M1, also the number of
vehicles and/or drivers included in the instance has reduced. This does however not hold for
all variations of the methods M2 and M3, for both instances. The reason for this is that the
end time of the recovery period, is later than the start times of the duties of the drivers and
routes of the vehicles included in the neighbourhood, for those instances. This indicates that
using a recovery period is useful for reducing the tasks, (and sometimes also the detour and delay
possibilities) but not necessarily for reducing the number of vehicles and drivers included in the
instance. |

11D20: Disruption of 20 minutes at 12:00 between Maashaven and Brielselaan
12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

43

Table 7.3: Impact introduction of recovery period

11D20 12D20

We #S #S7 #0O #D #V We #S #S7 #0O #D #V
M1F60 13:20 195 T 4T 7) 13:20 561 131 160 21 16
M1F120 14:20 326 93 56 8 5 14:20 1,118 423 235 29 20
M1F180 15:20 569 98 70 10 6 15:20 1,862 536 251 33 22
M2F0 14:52 493 98 70 9 6 18:51 4,289 855 276 48 24
M3F30 15:22 586 98 70 10 6 19:21 4,565 855 277 48 24
M3F60 15:52 679 98 70 11 6 19:51 4,715 855 277 48 24
M3F90 16:22 789 98 70 12 6 20:21 4,853 855 277 48 24

This table shows the impact on the size of the instance by introducing a recovery period, for
instances 11D20 and 12D20 (with use of neighbourhood).

As holds for the introduction of the neighbourhood, we may loose optimality or infeasibility
of the solution, or even worse, infeasibility of the instance. Recall that infeasibility of the solution
means that each driver and vehicle has a recovery network, and recovery duties and routes can
be obtained, but a feasible combination of these duties and routes cannot be found. Infeasibility
of the instance means that one (or more) driver(s) and/or one (or more) vehicle(s) do not even
have a recovery network, such that no path from source to sink can be found.

Table [7.4] states results obtained after 20 minutes of solving the instances 11D20 and 12D20
with a neighbourhood and different methods to determine the end time of the recovery period.
For instance 11D20, the same solution was found for each method, all within 23 seconds of total
computation time. This indicates that using a neighbourhood in combination with a recovery
period works well for solving disruptions on isolated lines. Infeasibility of the instance occurred
for instance 12D20 using method M1 with F' = 60 and F' = 120 minutes. This is not a surprise,
as it is very unlikely that, after a disruption of 20 minutes, the original timetable can again be
executed after only such short amount of time, especially if disruptions also affect drivers and
vehicles not even passing the disruption. Note that the loss of feasibility is also expected if we
take a look at the end time of the recovery window for method M2, for these instances. Namely,
if the end time of the recovery period much earlier than the end time of the estimated earliest
time for which all vehicles are able to reach their destination (the end time used in method M2),
it may be that a vehicle passing the disruption is not able to reach its destination in time. |

Table 7.4: Results introduction of recovery period

11D20 12D20
UB LB T T* Tiot UB LB T T* Tiot

(sec.) (sec.) (sec.) (sec.) (sec.) (sec.)
M1F60 26,950 26,950 0 0 1 b'e X X b'e X
M1F120 26,950 26,950 1 2 4 X X X X X
M1F180 26,950 26,950 3 6 18 324,250 324,250 26 52 214
M2F0 26,950 26,950 3 3 14 275,570 101,473 1,124 1,198 >1,200
M3F30 26,950 26,950 2 3 15 71,219,590 -847,003 - 1,200 >1,200
M3F60 26,950 26,950 2 5 23 272,660 241,181 404 1,035 >1,200
M3F90 26,950 26,950 3 6 23 563,943,455 -909,853 - 448 >1,200

This table states the results obtained after 20 minutes of solving the instances 11D20 and 12D20 with a
neighbourhood and different methods to determine the end time of the recovery period.

Loss of optimality occurred for 12D20 using method M1 with F = 180 minutes, as (for
example) the best found solution for M2 has a lower objective value than was found as optimal
value when using method M1 with F' = 180 minutes. This may again be due to the fact that the
end time of the recovery period for this method (15:20), does not come close to the estimated
end time needed for the recovery period (18:51).

11D20: Disruption of 20 minutes at 12:00 between Maashaven and Brielselaan
12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

44

For M2 and M3 with F' = 60, feasible solutions could be found, however this was not possible
for M3 with F' = 30 and M3 with F' = 90. Because M2 includes less or as much possibilities as
M3 with F' = 30, we do not believe that infeasibility occurs for this method, but rather that too
much time is spend on finding even a feasible solution. This can also be seen from the first time
a feasible solution is found for M2, which is close to the end of the recovery period.

The reason that M3 with F' = 60 finds a feasible solution within less time is probably due
to the fact that more cancellations can take place if more recovery time is given, such that more
feasible solutions exist if there are more of these possibilities. This suggest that providing more
recovery time results in a reduction of the computation time because a feasible solution can more
easily be found. However, this is not always true, as can be seen from the results of method M3
with F' = 90 for instance 12D20. Namely, if too much recovery time is given, the purpose of the
recovery period is no longer feasible, as not even for most drivers and vehicles a feasible recovery
duty or route can be found, which was already the case if we did not use any recovery period.

In conclusion, introducing a recovery period reduces the total computation time. Because
the computation time reduces, more improvement can be made within the same set time limit
of 20 minutes. This leads to obtaining optimal solutions for small instances and (almost always)
feasible solutions for larger instances, while without a recovery period, this could not be done.
For instance 11D20, the results show that introducing a fixed recovery period (M1) could work if
we choose the window large enough, however it can be hard to predict how much time is needed.
The latter is shown by the results for 12D20, as for M1 with F' = {60,120} minutes a feasible
solution could not be found and optimality was lost for M1 with F = 180 minutes. Therefore,
M1 should not be used as method to determine the end time of the recovery period, as this is not
guaranteed to work for all sorts of disruptions. For the M2, M3 with F = 30 minutes and M3
with F' = 60 minutes, no final conclusion can yet be made. This is because for instance 11D20,
the solution method could quickly solve the instance to optimality. However, for instance 12D20,
we did not find any optimal solution, such that we could not compare the impact of setting a
larger or shorter recovery period, on the quality of the solution. Therefore, in the next section,
we still analyze both instances for M2, M3 with F' = 30 minutes and M3 with F' = 60 minutes.
Note that we do not further analyze M3 with F' = 90 minutes, because almost no improvement of
using this method was found compared to not using a recovery period at all for instance 12D20.

7.2 Acceleration of Computation Time

In Chapter |5, we propose to use a pre-solving method to obtain faster convergence to a feasible
solution. Consequently, this leads to a reduction of the total computation time of the solution
method. In this section, we test the use of the pre-solving method on instances 12D20, as for
I1D20, optimal solutions can already be found within a short amount of time. Besides the use
of the pre-solving method to reduce the total computation time, we also try to reduce the com-
putation time by using another strategy in the number of times the IRMP is solved during the
solution process. Furthermore, we propose an extra stop criterion for early termination of the
solution method while maintaining a good quality solution. Note that all results presented in
this section are obtained with the use of a neighbourhood of vehicles and drivers.

For practical usage, it would be beneficial to at least obtain a feasible solution within a short
amount of time. If a feasible solution is known, the optimal recovery timetable will not differ
for most drivers and vehicles included in the instances. Unfortunately, even with the use of
a neighbourhood and recovery period, finding a feasible solution can still take a lot of time for
larger instances such as 12D20. By using the pre-solving method, we hope that a feasible solution
can be found sooner. |

11D20: Disruption of 20 minutes at 12:00 between Maashaven and Brielselaan
12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

45

Table[7.5]shows for instance 12D20, and methods M2, M3F30 and M3F60, the results obtained
by the solution method with the use of the pre-solving method (and neighbourhood). The time
until a feasible solution is found has decreased for all methods, however, the total computation
time still exceeds 20 minutes. Besides the fact that feasible solution can now be obtained for all
three methods within a short amount of time, we also obtain closer to optimal solutions than
compared to the outcomes without the use of the pre-solving method. Namely, for all methods,
the upper bound and best found lower bound do not differ much (at most 12% for M3F30).

Table 7.5: Results introduction of pre-solving method (12D20)

UB LB T i Tiot
(sec.) (sec.) (sec.)
M2F0 272,970 249,394 529 1,173 >1,200

M3F30 272,660 240,178 608 951 >1,200
M3F60 272,170 241,306 245 1,200 >1,200

This table states the results obtained after 20 minutes of solving
instance 12D20 with a neighbourhood and a pre-solving method,
for 3 methods to determine the end time of the recovery period.

The reduction of the computation time by the implementation of the pre-solving method
is mostly caused by solving the pricing problem for less drivers and vehicles during the first
iterations. This is because we exclude those drivers and vehicles for which already a recovery
route or duty could be found in the IRMP. The other factor reducing the computation time is
that after the pre-solving method, the overall lower bound is higher at the start of the solution
process, than is the case if no pre-solving method is used. Note that we solve the IRMP every
time a new best lower bound is found. Therefore, the IRMP is initially solved less often if the
pre-solving method is used, however, if a feasible solution is found, many small improvements of
the overall lower bound occur, after a while. Consequently, the IRMP is solved much more often
during the solution process itself, if the pre-solving method is used, because more improvement
can be found within the same time in the lower bound. Because the latter does not necessarily
mean that also an improvement in the upper bound can be made in the next iteration, we could
save time in the solution process by solving the IRMP even less often. To test this, we run the
same methods again using the pre-solving method, but now we only solve the IRMP during the
pre-solving method, if the best found lower bound during the solution process exceeds 0 for the
first time, and at the end of the solution method if no recovery routes or duties can be found with
negative reduced cost or the time limit of 20 minutes is reached. Table states the results.

Table 7.6: Results reducing number of times solving IRMP (12D20)

UB LB Ty T* Tiot UB;
(sec.) (sec.) (sec.)
M2F0 272,170 263,093 105 1,200 >1,200 295,950
M3F30 272,170 258,312 131 1200 =1,2200 273,315
M3F60 272,170 251,911 215 1,200 =>1,200 276,460

This table states the results obtained after 20 minutes of solving instance 12D20
with a new strategy to reduce the number of times the IRMP is solved.

The results show that by using this strategy, we can obtain feasible solutions within 4 minutes
for all methods. A first feasible solution is found much faster if we solve the IRMP less often,
because the overall lower bound exceeds 0 much earlier in the solution process. Also, the first
found feasible solution (U B;) does not differ much from the best found solution for each method
(at most 8% for method M2F0). This indicates that even for difficult disruptions, affecting 48
drivers and 24 vehicles within a recovery period of 7.5 hours, the solution method could be used
to reschedule vehicles and drivers by using the best found solution within the maximum set
computation time. ||

12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

46

Note furthermore that also the difference between the upper bound and the best found lower
bound (now at most 7% for method M3F60) for each method has reduced compared to solving the
IRMP much more often during the solution process. However, we could still not prove optimality
for any of the methods. The latter is probably due to the commonly known problem of column
generation, which is the tailing-off effect. The tailing-off effect means that towards the end of the
solution process (if no time limit is used), it takes very many iterations to close the gap between
LB and LByryp, while an optimal solution for the integer master problem can already be found.

If the tailing-off effect occurs, we could manually terminate the solution process and take
the best found solution as recovery timetable. To see how much the results would differ if we
terminated the process earlier, we again run instance 12D20, but now terminate the solution
process after 5, 10 and 15 minutes. The results are presented by Table [7.7 Because we only
solve the IRMP if we terminate the solution process after the set time limit, we cannot stop the
solution method if the gap between the upper bound and the overall lower bound is less than a
certain percentage. Therefore, we also report the best found value of the LMRP at the end of
the solution process. If we compare the difference between the best found over all lower bound
(at the end of the solution process) and the best obtained objective value for the LRMP, we may
find a percentage after which we expect no further improvements in the upper bound. Note that
this is because of the following relationship between the objective values: LB < LBrryp < UB.

Table 7.7: Results early termination of solution process (12D20)

 (min.) UB LBrrup LB UBFE.100% LBpME—LE . 100%

5 274,120 271,670 206,763 24.57 23.89

N 10 272,170 272,170 251,494 7.60 7.60

15 272,170 272,170 259,323 4.72 4.72

20 272,170 271,170 263,093 3.33 2.98
777777777 5 273,070 273,070 192,268 2959 2050

viopzo 10 273,070 270,633 232,993 14.68 13.91

15 272,660 270,115 252,402 7.43 6.56

20 272,170 269,915 258,312 5.09 4.30
777777777 5 273,070 272,070 143459 4746 4727

visreo 10 272,660 270,640 223,675 17.97 17.35

15 272,170 269,915 246,960 9.26 8.50

20 272,170 269,735 251,911 7.44 6.61

This table states the results obtained after z minutes of solving instance 12D20 with a new strategy to reduce
the number of times the IRMP is solved.

The results for which the upper bound is equal to the best known upper bound for the
instance is coloured in green. Note that for all methods (expect for M2F30 for which the results
are coloured in orange), this solution is found if the gap between the LRMP value and the
overall lower bound is less than 10.00%. For M2F30, the upper bound does not differ much (only
7.43%) from the best found lower bound if we terminate the solution process after 15 minutes.
In fact, the outcome (272,660) only differs 0.18% compared to the best found upper bound for
the instance (272,170). Furthermore, note that for each method, the difference between the best
found lower bound after 20 minutes (results in bold), and the upper bound found after 5 minutes
(results in italics), is at most 7.75% for M3F60. This suggests that an extra stop criterion could
be used for early termination of the solution process, because good quality feasible solutions can
already be obtained within 5 minutes. As the optimality gap between the upper bound and the
overall lower bound (% -100%) can only be determined after termination of the solution
process, we base the new stop criterion on the gap between the LRMP value and the overall
lower bound (% -100%). First, however, we take a closer look at the differences in
outcome for the different methods to determine the end time of the recovery period.

12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

47

Notice that the upper bound solutions provided for M3F60 are not better than those obtained
for M2 (all best found upper bounds are equal to 272,170). Also, the highest overall lower bound
for M3F60 (in italics) only differs with 7.44% from the best found upper bound for all methods.
We therefore suspect that no better solutions can be found by using M3F60 instead of M2, while
solutions can be obtained much faster by using M2. This suggest that the estimated end time
computed by M2 as end time for the recovery period, can be used as final method to solve the
disruptions.

Note that if it turns out that, for other disruptions than tested in this thesis, not enough
recovery time is given, the recovery period can always be extended accordingly. Because our final
choice is to use method M2 to determine the end time of the recovery period, we base our new
stop criterion on the results for this method. The extra stop criterion for the solution method
is: Stop the solution process if the difference between the solution value obtained from solving
the LRMP and the overall lower bound is less than 10.0%, and the computation time exceeds 5
minutes. Up to 5 minutes, we are willing to wait for possible better solutions.

7.3 Final Settings & Recommendations

In the previous sections we showed that the introduction of a neighbourhood of vehicles and
drivers and of a recovery period reduces the size of the instance which result in a significant
improvement in the computation time. The improvement is mostly noticeable for a disruption
occurring on an isolated line. Furthermore, we also showed that the pre-solving method can
reduce the time until a feasible solution is found as well as the use of a different strategy in the
number of times the IRMP is solved during the solution process.

For the remainder of this thesis, we therefore use a neighbourhood and a pre-solving method
to obtain the results. Also, we use M2 to determine the end time of the recovery period, as this
method showed no loss of optimality nor feasibility for both instances. Finally, as been concluded
in the previous section, we only solve the IRMP at the start of the solution process, if the overall
lower bound exceeds 0 for the first time in the solution process, during the pre-solving method
or if one of the following stop criteria is met:

e No recovery routes or duties with negative reduced cost can be found.

e The total computation time exceeds the maximum time limit, which is the minimum of

the duration of the disruption and 20 minutes.

e The difference between the solution value obtained from solving the LRMP and the overall

lower bound is less than 10.0%, and the computation time exceeds 5 minutes.

Note that much more improvement can still be made in the solution method, but optimizing the
solution method to its full potential is outside the scope of this thesis. For further research, we
however recommend to explore one or more of the possible improvements stated in Chapter
(see also Chapter 3| for an extensive literature review).

48

Chapter 8

Results

In this chapter, we discuss the final results of our solution approach to solve the disruptions of
the test cases. For this, we use the final parameter settings as stated in the previous chapter,
and the penalty cost and the parameter values for the labour rules and vehicle rules as stated
in Chapter [} This chapter is organized as follows. In Section [8.] we discuss the final results
obtained for instances I11D20 and 12D20. We focus on the solution process itself, as well as the
outcome of the solution. Furthermore, in Section we perform some sensitivity analysis on
the penalty cost. Also, we test our solution approach for the sensitivity of changing the start
time of the disruption and the duration of the disruption.

8.1 Final Results

In this section, we discuss the results obtained for instances 11D20 and 12D20. The solution pro-
cess starts with the initialization phase after a disruption occurs in the original timetable. For
instance 11D20, the initialization phase takes 0.5 seconds and for instance 12D20, the task list,
delay possibilities, possible detours and recovery networks are set-up within 2.5 seconds. After
the initialization phase, the process begins with the pre-solving method, which lasts 2.9 seconds
for instance I1D20 and 19.6 seconds for instance 12D20. Thereafter, the solution method contin-
ues until one of the stop criteria is met. For instance I11D20, 10.8 seconds after the pre-solving
method, no new recovery routes and duties with negative reduced cost could be found and the
solution process terminated. For instance I12D20, the solution process terminated 8 minutes and
7.2 seconds after the pre-solving method, because at time, the gap between the best found overall
lower bound and the solution value of the LRMP became less than 10.0%.

Figures and show for instances 11D20 and 12D20 respectively, the solution value of
the LRMP, the best found overall lower bound and the lower bound of each iteration, against
the computation time. In total, the solution process for I11D20 consisted of 163 iterations (of
which 19 were performed in the pre-solving method) and the solution process for I1D20 consisted
of 213 iterations (of which 13 were performed in the pre-solving method). In the last iteration,
1,471 recovery duties and 729 recovery routes were included in the master problem for instance
11D20. For instance 12D20, this were 14,429 recovery duties and 4,297 recovery routes.

The figures show that towards the end of the solution process, the tailing-off effect occurs
for this instance 11D20 and not for I12D20, as we terminated 12D20 the moment that the gap
between the best found overall lower bound and the solution value of the LRMP became less than
10.0%. We did not terminate instance I1D20 earlier, while the solution was probably already
found after 6 seconds. This is because we are willing to wait up to 5 minutes to be sure that no
better solution can be found. |

11D20: Disruption of 20 minutes at 12:00 between Maashaven and Brielselaan
12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

49

Solution Value
Solution Value

-

in

:

=]

2

]

Computation Time (sec.) Computation Time (sec.)

(a) I1D20 (b) 12D20

Figure 8.1: Solution process

Up to this point, we focused on the computation time of the solution method rather than the
outcome in terms of cancelled stops, delayed stops, and the deviation from the original timetable.
For instance 11D20 and 12D20, the outcome of the solution is presented by some statistics in
Table Note that the outcome of the solution approach is a recovery timetable, for which it
is hard to present the difference with respect to the original timetable in full extend, if multiple
drivers have a recovery duty and multiple vehicles have a recovery route (as is the case for 12D20).
Therefore, we only discuss the most important statistics of the recovery timetable.

Table 8.1: Statistics of obtained recovery timetable for 11D20 and 12D20

Cancelled Delayed Delay/ Recovery Recovery Overtime
Stops Stops Delayed Stop Duty Route Driver
@ o))* (min.)) *) (B)* () (min./driver)
11D20 12 243 36 7.30 8 1 11.11 3 66.67 0 0
12D20 36 0.83 582 13.57 7 8 16.67 17 70.83 8 43

This table states some statistics of the recovery timetable obtained by the solution approach, for instances 11D20 and 12D20.
* The percentage is taken from the total number of stops, drivers and vehicles of the instance (see Table for M2).

The results show that more rescheduling is needed for 12D20 compared to for I1D20, as more
stops need to be cancelled or delayed, which results in more recovery duties and recovery routes.
Note that more vehicles need a recovery route than drivers need a recovery duty. This seems
strange, as drivers are needed to drive the vehicles, such that changes in the route of the vehicle
should also change the duty of the driver. However, recall that the delay penalty is not taken
into account for the drivers, which means that if they execute only delayed tasks of their original
duty, it is not considered a recovery duty, as the penalty cost for the duty equals 0. So only
if the driver performs tasks originally performed by another driver, or if the driver has to work
overtime, the duty is considered a recovery duty.

The latter also explains the low percentage of drivers who need a recovery duty in the neigh-
bourhood. The percentage is much higher for the vehicles, indicating that we formed a strong
neighbourhood. However, less than 20% of the drivers need a recovery duty, for both instances,
which suggest that we could exclude more drivers from the neighbourhood. If we however add
those duties for which the penalty cost is 0 and some tasks of the duty are delayed, to the recovery
duty already needed for instance I11D20, we get that a total of 4 recovery duties is needed, which
brings the percentage to 44.44% of the drivers. This indicates that more drivers were needed
to form the recovery timetable than initially thought. If we would like to shrink the neighbour-
hood, we should introduce different start times and end times for drivers and vehicles, such that
drivers and vehicles performing (for example) only some tasks at the end of the neighbourhood
are already excluded as their original duty and route will most likely not change. |

11D20: Disruption of 20 minutes at 12:00 between Maashaven and Brielselaan
12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

50

Note furthermore that the delay per delayed stop is higher for instance 11D20, which could
be explained by the fact that the disruption for this instance occurred on a line which is executed
on a lower frequency compared to for the lines on which the disruption occurs in instance 12D20.
Therefore, less vehicles and drivers are able to cover for cancellations or delays for instance 11D20,
which result in a higher average delay and a higher percentage of cancelled tasks. All conclusions
about the outcome should however be interpreted with care because the instances differ in size
and many factors could influence the solution outcome. As been discussed, these are factors such
as the amount in which interlining occurs within the instance and the number of drivers which
have a break or end their duty within the recovery period.

Finally, the results show that only for instance 12D20 drivers need to work overtime. The
average overtime per driver with overtime is even 43 minutes. By inspecting the instance, we
saw that this is the case because multiple drivers suffer from the disruption right before they end
their duty, while this is only the case for a single driver in instance 11D20. For instance 11D20, a
detour is taken such that the driver is still arriving on time at its destination and no overtime is
needed. Another possibility for this driver (and corresponding vehicle) was to delay its original
tasks, which would lead to some overtime for the driver. In the next section, we perform some
sensitivity analysis to see if this solution (or other solutions) may be preferred if other values for
the penalty cost are used.

8.2 Sensitivity Analysis

In this section, we test the sensitivity of the outcome of our solution approach if we change
the penalty cost, the objective function, the duration of the disruption or the start time of the
disruption. Note that we do not test the robustness of the outcome by changing any of the
parameters, because most labour rules and vehicle rules cannot be changed. Therefore, changing
the parameter values from the initial values is not interesting for our research.

8.2.1 Penalty Cost

The sensitivity on the outcome of our solution approach can be tested in two ways for the penalty
cost. Namely, we can change the current penalty cost to different values to test if other recov-
ery timetables are preferred as a consequence of the change. Besides that, we could also make
changes in the objective function.

Changing the current penalty cost

In our solution method, we use penalties to make sure that changes to the original timetable
are minimized such that it causes the least amount of inconveniences for the drivers and the
passengers. By setting the penalty cost, we however made the assumption that this leads to
the best recovery timetable, while it could be that changing the penalty cost leads to better
solutions from a drivers and passengers perspective. For example, using the penalty cost as done
so far, 12 stops are cancelled for instance 11D20, while we already saw that it is possible to form
a recovery timetable without the cancellation of any stops. For our research, we do not make
any recommendations about which values for the penalty cost should be used, as we believe that
this should be further investigated based on preferences of the traffic controllers of the RET.
For now, the purpose is to show that different solutions exist by changing the penalty cost and
solving the instances 11D20 and I2D20 for these different values. By obtaining the results, we
made only a single change in the penalty cost at the time, such that the other penalty costs are
set (back) to their initial values, for each run. The results are presented by Figures
and BH |

11D20: Disruption of 20 minutes at 12:00 between Maashaven and Brielselaan
12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

o1

o
=]

@
&

&

.
5

&

2
=]

=

.HJHIHHHHHJHHH

50 500 1000 1500 2000 0 200 300 400
Delay Penalty Cancellation Penalty Overtime Penalty Not Original Task of Viehicle Penalty = Not Original Task of Driver Penalty

m# Cancelled Stops m# Delayed Stops

(a) 11D20

800
700
600
500
400
300
200
100
0

50 500 1000 1500 2000 o 50 100 150 200 0 100 200 300 400

Delay Penalty Cancellation Penalty Overtime Penalty Mot Original Task of Vehicle Penalty Not Original Task of Driver Penalty

W # Cancelled Stops W # Delayed Stops

(b) 12D20

Figure 8.2: Number of cancelled & delayed stops

For the delay penalty (p™), which is initially set to 50 per stop per minute, we change the
value to 10, 25, 75 and 100 per stop per minute. The cancellation penalty (p'), which is initially
1000 per stop, is changed to 50, 500, 1500 and 2000 per stop. For the overtime penalty (po)
(initially 10 per minute) we change the value to 0 per minute and 40 per minute. The penalty
given per stop in a task not included in the original route of the vehicle (p%), or not included in
the original duty of a driver (p{?v), which are initially set to 100 and 200 per stop, are changed
to 0, 50, 150 and 200 per stop, and 0, 100, 300 and 400 per stop, respectively.

The figures show that for a higher delay penalty, the recovery timetable contains less delayed
stops, more cancelled stops, and more recovery routes and duties. Despite that more drivers
need a recovery duty, the number of drivers which have to work overtime decrease if the delay
penalty is higher. This is probably due to the fact that drivers (and vehicles) take detours to
skip delay tasks. By skipping parts of the original route of the vehicle, the vehicle (and thus
also the driver) is more likely to arrive on time at its destination, which consequently results in
less overtime. Note furthermore that for instance 12D20 not only the number of delayed stops
decreases if the delay penalty is higher, but also the average delay per stop, while this increases
for I11D20. Both differences are however very small, and a real cause for these opposite results
cannot be found. [

11D20: Disruption of 20 minutes at 12:00 between Maashaven and Brielselaan
12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

92

25
2

1I5 A
1

10 25 50 75 100 50 500 1000 1500 2000 0 10 40 0 50 100 150 200 0 100 200 300 400

Delay Penalty Cancellation Penalty Overtime Penalty Not Original Task of Vehicle Penalty Not Original Task of Driver Penalty
=1t Drivers with Recovery Duty —e— 1 Vehicles with Recovery Route # Drivers with Overtime
(a) 11D20

-

zé \/
p(\f N

10 25 50 75 100 50 500 1000 1500 2000 0 10 40 0 50 100 150 200 0 100 200 300 400

Delay Penalty Cancellation Penalty Overtime Penalty | Not Original Task of Vehicle Penalty | Mot Original Task of Driver Penalty
—e—1t Drivers with Recovery Duty ——{t Vehicles with Recovery Route # Drivers with Overtime

Figure 8.3: Number of recovery routes & duties

Changing the penalty for the cancellation of stops results for both instances in the most
differences in the outcome of the recovery timetable, compared to the runs for which one of the
other penalty cost is changed. As expected, the lower the penalty for the cancellation of a stop,
the higher the number of cancellations. We also see that the opposite occurs for the number of
delayed stops, which is expected as the disruption can either be solved by canceling or delaying
a part of the original route of the vehicle. Note that the number of recovery duties increase
if the cancellation penalty is lower, which is again due to the fact that a recovery duty is not
considered a recovery duty if the driver has to visit the same stops as originally planned even
if parts of the duty are delayed, but it is considered a recovery duty if a detour must be taken,
overtime is needed or the driver does not perform the same tasks as originally planned.

Changing the other penalty costs does not result in different outcomes for instance 11D20.
For instance 12D20, only small (or also no) differences occur for the number of cancelled stops,
the number of delayed stops and the average delay per delayed stop. The outcome does differ
much for instance 12D20 in terms of the number of drivers with a recovery duty (incl. overtime)
and vehicles with a recovery route. Most of these results are completely in accordance with our
expectations: the higher the penalty for a certain change from the original timetable, the less
occurrence of this sort of change in the recovery timetable, and vise versa. |

I11D20: Disruption of 20 minutes at 12:00 between Maashaven and Brielselaan
12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

93

ES

S

-

a ‘
10 25 50 75 100 50 w | o 50 0 100 200 300 400

500 1000 1500 2000 0 10 100 150 200

Delay Penalty Cancellation Penalty Overtime Penalty Not Original Task of Vehicle Penalty Not Original Task of Driver Penalty

m Delay/Delayed Stop (min.) m Overtime/Driver with Overtime (min.)

(a) 11D20

45

10 25 50 75 100 50 40 o 50 150 200 o 100 200 300 400

500 1000 1500 2000 o 10 100

s
=

=]

]

2
=]

=]

Delay Penalty Cancellation Penalty Overtime Penalty Not Original Task of Vehicle Penalty Not Original Task of Driver Penalty

® Delay/Delayed Stop (min.) B Overtime/Driver with Overtime (min.)

(b) 12D20

Figure 8.4: Average delay & average overtime (min.)

. 1000 _
o o
g 18 E
9 g g0 O
£ £
E o 70 &
c c
=] =]
S 12 600 S
= E
> =1
w0 s0 3
g 8 400 E
o o
g ¢ 300 a
o ja]
8 . 200
3 2 w 3
c c
= =
w1 0 0 v
£ =

10 25 50 75 100 50 500 1000 1500 2000 O 10 a0 o 50 100 150 200 o 100 200 300 400

Delay Penalty Cancellation Penalty Overtime Penalty | Not Original Task of Vehicle Not Original Task of Driver
Penalty Penalty

B Instance [2D20 =M=Instance 11D20
Figure 8.5: Computation time (sec.)

Besides changes in the outcome of the solution, we also noticed differences in the computation
time of the solution approach. The most significant change occurred by changing the cancellation
penalty to 50. Only for this change in penalty cost, the computation time for instance 11D20
is less than 5 minutes, which means that the solution method ended because no more recovery
duties or routes could be found with negative reduced cost. Furthermore, another significant
improvement in the computation time occurred if the penalty given per stop in a task not
included in the original route of the vehicle was set to a higher value. |

11D20: Disruption of 20 minutes at 12:00 between Maashaven and Brielselaan
12D20: Disruption of 20 minutes at 12:00 between Leuvehaven and Wilhelminaplein

54

Changing the objective function

Besides changing the penalty cost, we could also change the objective function. Because
many changes are possible, and some of them require a lot of changes to implementation of
the solution approach, we only discuss some of the promising changes to the objective function
without showing any experiments with these ideas.

In our solution approach, the penalty for canceling a task and delaying a task, are multiplied
by the number of stops that need to be visited if the task is executed. However, a task with less
stops may be evenly important for obtaining a(n) (optimal) solution, as a task with many stops.
Therefore, it is interesting to see if changing this in the objective function results in improve-
ments of the solution. Another possibility is to introduce a penalty which takes into account the
number of consecutive times a certain line does not visit a stop in the recovery timetable, due to
cancellations of tasks. This would make it less likely that passengers at a certain stop, have to
wait a very long time before the first vehicle visits this stop after a disruption. Yet another pos-
sibility is to penalize the event that a driver has to operate a vehicle other than originally planned.

Furthermore, the delay penalty is only taken into account on the arcs in the network of the
vehicles. This is because multiple drivers may execute a single task, such that the delay penalty
would be accounted for twice (or more) if we take the delay penalty into account on the arcs
of the drivers. Note however that during the pricing problem for the drivers, each (delayed)
task is considered the same as its (delayed) copies. This means that the version of the same
task with less delay is not more promising than the one with more delay. Therefore, if not both
options are explored, it takes a longer time before the right tasks are executed by the driver.
Also, even though we may penalize a delay twice (or more) if multiple drivers execute the same
task, this does not necessarily mean that this could lead to less interesting solutions. Namely,
if multiple drivers execute the same (delayed) task, another task originally performed by one of
these drivers may no longer be executed, because in the original timetable not a single task is
assigned to multiple drivers.

Finally, it may be interesting to occasionally allow for violation of the labour rules. During
our solution approach, we ignore the maximum driving time regulation if a driver is no longer able
to adhere this rule. We could however also penalize every minute that the driver does exceed his
maximum driving time, such that the violation is minimized. Also, for larger disruptions it may
be necessary to allow violation of the break rules, or the restriction on the maximum overtime.
In these cases we also would like to minimize the violation. Note that violating the labour rules
is not recommended, however if one minute extra overtime could lead to a much better recovery
timetables, it may be worthwhile to further analyze this possibility.

8.2.2 Disruption

In this section, we discuss the final two factors influencing the quality of the solution approach,
besides the factors discussed in the previous sections and the location of the disruption. The
final two factors are the duration of the disruption and the time at which the disruption occurs.
The latter is because the number of vehicles and drivers operating during the day differs. We
discuss the impact on the size of the instance, the outcome and the computation time of the
solution method, by disrupting the timetable at the same locations as done so far, however, we
change the start times and the durations of the disruptions. Note that we already discussed
the influence of the location of the disruption on the solution method, as up to this point, we
compared instance 11D20 with instance 12D20, for which hold that the location differs. From
this, we concluded that the more isolated the location and the less interlining occurs on lines
passing the location, the faster the solution approach, and the better the final outcome (if the
solution process is not terminated before the maximum allowed computation time).

95

The following extra instances are created to test the solution method:

I1: Disruption between Maashaven and Brielselaan
e I1.1: Start of disruption at 12:00 (already used before as 11(D20)).
e [1.2: Start of disruption at 8:00.
e [1.3: Start of disruption at 19:00.
I12: Disruption between Leuvehaven and Wilhelminaplein
e [2.1: Start of disruption at 12:00 (already used before 12(D20)).
e [2.2: Start of disruption at 8:00.
e [2.3: Start of disruption at 19:00.

Table shows for each instance, the duration of the disruption (Dur) in minutes, the
recovery window of the disruption, the number of stops that must be visited (#S5), the number
of delay possibilities (#S”) and the possible detours (#0), the number of drivers (#D) and
the number of vehicles (#V) included in the instance. As can be seen, the recovery window
extends quickly if the duration of the disruption increases. Also, if the disruption takes place
in the morning, the recovery window is on average larger than for the other start times. This
again suggest that setting different end times and start times for drivers in the neighbourhood
should be considered in further research. Moreover, in practice, we do not prefer to obtain a
recovery timetable for a disruption of 30 minutes in the morning, in which after 16:00 (maybe even
sooner) still changes in the recovery duties and routes are needed, if not absolutely necessary.
This supports the recommendation. The instance sizes further show a huge increase in the
number of delay possibilities and the possible detours if the duration of the disruption increases.
Also, we see that the longer the duration of the disruption, the more drivers and vehicles are
included in the instance.

Table 8.2: Introduction extra instances: instance size

Dur (min.) Window #S #SD #HO #D #V

10 12:00 - 13:32 83 5 5 3 2

I1.1 20 12:00 - 14:52 493 98 70 9 6
30 12:00 - 16:46 863 268 141 12 6

10 08:00 - 10:00 281 32 36 6 5

1.2 20 08:00 - 11:00 525 165 111 8 6
30 08:00 - 12:10 877 332 196 10 7

10 19:00 - 22:05 296 12 11 4 3

1.3 20 19:00 - 23:33 462 9 26 4 3
30 19:00 - 01:01 601 182 31 4 3

10 12:00 - 15:44 1,802 281 70 32 18

12.1 20 12:00 - 18:51 4,289 855 276 48 24
30 12:00 - 21:50 5619 1,841 466 52 26

10 08:00 - 12:12 2,326 425 316 30 22

12.2 20 08:00 - 14:44 4,340 1,131 689 43 27
30 08:00 - 17:59 7,255 2,380 1266 63 33

10 19:00 - 22:56 1,083 161 32 15 13

12.3 20 19:00 - 00:36 1,581 346 72 15 13
30 19:00 - 01:27 2,078 670 191 17 15

This table shows the size of the instances created to test the influence of
the start time and the duration of the disruption on the solution method.

The results obtained by the solution method, using the final parameter settings as stated in
the previous chapter, and the penalty cost and the parameter values for the labour rules and
vehicle rules as stated in Chapter [6] are presented in Table The results show that if the
disruption lasts 20 minutes, more stops are executed later than originally planned, than would
be the case if the disruption only lasts for 10 minutes. If the duration of the disruption equals
30 minutes, the number of delayed stops decreases for most instances compared to the solution
for the instances for which the disruption lasts 20 minutes.

o6

We suspect that this is the case because of the frequency of the lines. For example, if a line
operates with a frequency of 10 minutes, a task with a delay of 30 minutes will not be chosen
if not absolutely necessary, as there are better options to choose from (such as, for example,
the next task starting on that location with a delay of 20 minutes, or the task thereafter with
a delay 10 minutes). The reason for less delayed stops if the duration increases can also be
that the penalty cost are set such that a delay of more than 20 minutes is penalized heavier
than the cancellation of that task. Furthermore, the results show that for disruptions with a
longer duration, more vehicles need a recovery route, while this is not necessarily the case for the
drivers. We do unfortunately notice that even if the disruption is only 10 minutes longer, the
number of recovery duties needed to overcome the disruption changes for (almost) every instance.
This indicates that if the solution method is used in practice, fairly accurate estimations for
the duration of the disruption must be made to make sure that the recovery timetable can be
executed. Note that overestimation of the duration is not recommended, as this leads to more
cancelled stops.

Table 8.3: Results extra instances

Dur | Cancelled Delayed Delay/ Recovery Recovery Duty Recovery Overtime/ Computation
Stops Stops Delayed Stop Duty with Overtime Route Driver Time
min) [(& (inin.) @ @ @) Gun) (sec.)
10 0 5 7 0 0 1 0 0
I1.1 20 12 36 8 1 0 3 0 14
30 24 121 9 4 1 5 15 250
10 0 17 3 0 0 2 0 1
11.2 20 27 59 3 2 0 4 0 85
30 70 38 5 4 0 5 0 743
10 0 12 2 0 0 1 0 0
11.3 20 12 30 9 1 0 2 0 2
30 64 21 10 3 0 3 0 6
10 3 215 4 2 1 6 57 13
12.1 20 36 582 7 8 8 17 43 507
30 306 377 8 14 3 19 21 903
10 3 344 4 2 1 10 4 130
12.2 20 192 493 7 8 2 15 8 906
30 X X X X X X X 1,200
10 0 107 5 3 3 6 6 1
12.3 20 0 298 9 3 3 9 16 14
30 175 130 10 12 4 12 20 23

This table shows the results for each instance with a different start time or duration for the disruption.

The results further show that the impact of a disruption on the original timetable is not as
large in the evening as would be in the morning. This is mostly because less drivers and vehicles
are still active in the evening, but also because less breaks take place such that it is possible
to fully delay the original route of the vehicle (and thus the duties of the driver). Notice that
this does result in more overtime for the drivers at the end of the day (if the disruption occurs
between Leuvenhaven and Wilhelminaplein). Lastly, note that for 12.3 with a duration of 30
minutes, many stops are cancelled at the end of the day. At this moment, we do not apply
any policy for cancelling trips which take place at the end of the day. It could be that, for
example, the last two trips are never allowed to be cancelled, or that within the last hour at
least two trips need to be performed of each line. This should be kept in mind for further research.

Finally, notice that if the size of the instance increases, the solution method does have a
much harder time in finding feasible, and optimal, solutions. In case of 12.2 with a duration of 30
minutes, we could not find any feasible solution within 20 minutes. This while for all variations
of instance 1, a (close to) optimal solution could be found within 20 minutes, and for most of
these variations even within a couple of seconds. This suggest that improvement must be made
in either the computation time of the solution method, or in reducing the size of the instance or
the number of connections within the networks of the vehicles and drivers.

o7

Chapter 9

Discussion

The goal of this thesis is to find a solution approach that quickly solves the integrated vehicle
and crew rescheduling problem with delay possibilities, such that it could support the traffic
controllers of the RET by solving real life disruptions in the tram network. In the previous
chapters, we explained our solution approach and we discussed the results. The results indicated
that the solution method works, especially for small disruptions. However, the solution method
also has some limitations. We will state the limitations of the solution method in Section .1l
In Section [9.2] we discuss if and how the proposed solution method could be used in practice.

9.1 Limitations

The results presented in the previous chapters show that relatively small disruptions can be
solved to optimality within reasonable time. Unfortunately, it is hard to predict if a disruption
is small, because the impact on the original timetable differs if the location of the disruption,
the duration of the disruption or the start time or the disruption is different. Therefore, a limi-
tation of our solution approach is that we are unable to predict the time needed for the solution
approach to at least obtain a feasible solution, and preferably an optimal solution. Especially
for large disruptions, a feasible solution may not even be found within 20 minutes.

Another limitation of the solution approach is the fact that we cannot guarantee optimal-
ity for the overall problem, because we need to exclude drivers and vehicles such that at least
a feasible solution can be obtained in reasonable time (introduction of a neighbourhood). By
introducing a recovery period, the solution approach can also not guarantee feasibility if the
recovery period is chosen too short. Note that loss of optimality is not an issue if it saves a lot
of computation time while maintaining a good quality solution, as we are mostly interested in
a good feasible solution. Also, if loss of feasibility occurs, the lower bound of the solution will
quickly increase (and may even exceed the high penalty set for not having a recovery route or
duty in the recovery timetable). If this is noticed early in the solution process, it is recommended
to terminate the solution process and extend the recovery period.

Furthermore, the solution approach is also limited by the used penalty costs and the pa-
rameter values. The limitation of the penalty costs is that we may not have chosen the correct
values to fully capture our preference of the recovery timetable. Many (almost similar) solu-
tions exist, such that the solution process may have a hard time to find the optimal solution.
Changing the penalty cost (or objective function) could improve the computation time, such
that feasible solutions can be obtained earlier in the solution process, and optimal solutions may
even be found within the maximum computation time. Another limitation is created by some of
the parameter values, or more specifically, the strictness in satisfying the rules related to these
parameter values. For example, a solution with one minute more overtime than the maximum
allowed overtime will not be considered, while this may prevent cancellation of multiple trips.

o8

Moreover, at this moment, we also do not apply any rules related to the number of trips that
are allowed to be cancelled within a certain time frame. It may be that the recovery timetable
obtained from our solution approach, cancels all trips at the end of the day. This will not be
done in practice due to passengers waiting at these stops, which need to be able to continue their
journey. A similar argument holds for consecutive trips on a single line during the day.

Finally, the greatest limitation of our solution approach is the computation time (for larger
instances). However, as stated in Section optimizing the solution method for the fastest
computation time for all sorts of disruptions is outside the scope of this thesis.

9.2 Practical Use of Solution Method

The purpose of our solution method is that it should support the traffic controllers of the RET
by providing a recovery timetable which reschedules the drivers and vehicles, to account for the
occurred disruption. At this moment, the traffic controllers of the RET do not make use of any
optimization tool at all to solve the disruptions. This can lead to violation of the labour rules, as
well as canceling or delaying trips while this may be unnecessary. Also, many vehicle and drivers
could be affected by a disruption as many duties pass by the same locations and disrupted duties
may propagate through the consecutive duties, because of crew interlining. This makes solving a
large disruption almost impossible for the traffic controllers of the RET, such that a disruption
in the morning might still have a disruptive effect in the afternoon.

We believe that the implementation of our solution method in a decision support tool could
definitely be used to solve small disruptions, and to even obtain optimal solutions for these
disruptions. For larger disruptions, we believe that even though optimal solutions may not be
obtained, feasible solutions are already close to optimal solutions such that the traffic controllers
could adjust the obtained recovery timetable based on their own knowledge if necessary. Fur-
thermore, even if a feasible solution is not obtained, it could be that this is only for some of the
drivers, such that the traffic controllers could still manually reschedule those drivers for which the
solution approach could not find any recovery duty. Note that this can also be done (some time)
after the initialization phase for relatively smaller disruptions, as we exclude drivers and vehicles
for which no changes in the routes or duties are allowed, by the introduction of a neighbourhood
or a recovery period.

99

Chapter 10

Recommendations for
Further Research

In the previous section we stated some limitations of our solution method. Therefore, in this
section, we make some suggestions for further research to improve the solution method.

Note that the greatest limitation of our solution approach is the computation time (especially
for large disruptions). In recent years, many research has been done to improve computation time
of column generation. For example, Huisman et al.| (2005) propose to use column generation in
combination with Lagrange relaxation and a sub-gradient optimization to overcome the tailing-
off effect. Another way to reduce the computation time is to implement dynamic constraint
and /or variable aggregation as proposed by [Elhallaoui et al.| (2008)). Using such an implementa-
tion means that the task list, delay possibilities and detour possibilities are first merged to larger
tasks (if possible), after the initialization phase. The tasks are merged if we expect that the
same driver and vehicle are still performing this task in the optimal recovery timetable. If a task
is cancelled, only then the task is split (and also other tasks in the neighbourhood of this task)
into smaller pieces or allowed to be delayed (depending on the implementation of the method).
Towards the end of the process, more and more possibilities are added until all possibilities can
be chosen as part of a recovery duty or route, such that optimality is guaranteed. Another
implementation could be to ignore all (or a part of) the constraints from the master problem,
and slowly obeying more and more constraints towards the end of the solution process until all
constraints are satisfied. This makes solving the master problem easy during the beginning of
the solution process, which saves a lot of computation time.

Note that besides improving the solution approach for faster convergence, it may also be
interesting to further improve the initialization phase. By analyzing the network structure of
the drivers and vehicles we may exclude connections which are not promising at all. If less con-
nections between tasks need to be considered, it could lead to less possibilities for new recovery
routes and duties, which consequently results in a reduction of the computation time of the
pricing problem. Also, at this moment we set the same end time and start time for each vehicle
and driver (if they start before and end after the recovery period), while it may be convenient
to set different end times (and/or start times) for each driver and vehicle based on its relation
towards the disruption, such that the instance possibly includes less drivers and vehicles and
thus less tasks. For example, a driver starting almost at the end of the recovery period will most
likely not change its duty. In this case, it is better to exclude this driver from the neighbourhood.

Besides these recommendations, we also recommend to explore the possibility of using a se-
quential approach for larger instances. This is already done by [van Meer et al.| (2019), for the
same data as used in our thesis, and they obtained good results (larger disruptions can be solved
within 20 minutes). The main issue with a sequential approach is the fact that the solution ob-
tained for the vehicle rescheduling problem may not be feasible for the crew rescheduling problem.

60

Therefore, we suggest to make it possible that the solution obtained for the vehicle rescheduling
problem can still be changed after solving the crew rescheduling problem. If no better solutions
can be found, and the computation time has not exceeded the maximum computation time, we
could still use our solution method to possibly obtain even a better solution, or to prove that
the found solution is the optimal solution.

The other recommendations are mainly focused on the practical use of the solution method.
Namely, at this point, the recovery timetable is only allowed to deviate from the original timetable
from the moment the disruption occurs. It may however be interesting to see if better solutions
can be obtained if the recovery timetable is allowed to deviate earlier than the disruption has
occurred. So, for example, it may be that a traffic controller suspects at 11:00 a disruption at
12:00 for 20 minutes, because of some inside information about an event taking place during
that time at that location. Instead of changing the recovery routes and duties of the vehicles
and drivers at the moment the disruption occurs, less cancellations (and delays) are probably
necessary if we are allowed to make changes earlier.

Also, the solution method does not consider the time needed to come up with the recovery
timetable. This means that if a disruption occurs at 12:00, the recovery timetable may change
a duty or route such that at 12:01 already deviation is needed from the original timetable. If
the total computation time exceeds for example 10 minutes, the traffic controllers of the RET
are not able to notify the driver of the change in time such that the driver may be at a to-
tally different location at 12:10 than was expected. Consequently, the recovery timetable cannot
be used as drivers and vehicles are not at the specified start locations, as used in the solution
method, anymore. For further research, we recommend to include (an estimation of) the com-
putation time needed to solve the disruption, such that within this period, drivers and vehicles
are not allowed to perform tasks from other drivers or vehicles. Another possibility is to make
use of online data, which is updated throughout the solution process. Besides, we could also
very quickly construct a solution for the first £ minutes after the disruption such that thereafter,
we have more time to solve the disruption from this moment up to the end of the recovery period.

Lastly, the solution method also showed some limitations by changing the penalty cost,
parameter values and the start time and duration of the disruption. In our research, we only
presented this for some changes, which showed that different solutions for the same instance
can be obtained, and that the computation time of the solution method is highly dependent
on changes of one of the factors (some more than others). Therefore, we recommend to make
a simulation tool to test the robustness on the data, which may be used to select a specific
solution approach for every possible disruption. We also recommend to ask advice about the
preferences for different recovery timetables from the traffic controllers of the RET, to obtain
the best recovery timetable from all feasible recovery timetables.

61

Chapter 11

Concluding Remarks

The goal of this thesis is to develop a decision support system to support the traffic controllers
at the RET. The tool must be able to reschedule vehicles and crew members the moment that a
disruption occurs in the original planned timetable, in a very short amount of time. As previous
research already focused on sequential approaches to solve the vehicle and crew rescheduling
problem, this thesis focuses on the development of an integrated approach. Since many duties
consist of trips that need to be performed on different vehicles (and multiple lines), a disruption
occurring on a single line affecting a single vehicle/driver can propagate to consecutive duties,
and vehicles and lines not even passing the disruption.

To solve the integrated vehicle and crew rescheduling problem with retiming, we used a col-
umn generation approach in which the columns correspond to recovery routes and duties. These
columns are found by solving a (resource constrained) shortest path problem in combination with
a labeling procedure. It turned out that the computation time was still too long and therefore,
we also proposed to use a neighbourhood of vehicles and drivers and a recovery period in which
tasks are allowed to be changed. Furthermore, for faster convergence to a feasible solution, we
implement a pre-solving method and to only solve the IRMP during certain moments in the
solution process, instead of every time a better overall lower bound is found.

The results showed that huge improvements were made in the reduction of the instance size
by introducing a neighbourhood of vehicles and drivers for which changes in the original route
and duty are allowed. This consequently led to a huge improvement in the computation time.
Furthermore, this was also the case for the introduction of a recovery period. The reduction
was more noticeable for small instances, for which less vehicles and drivers are affected by the
disruption. For larger disruptions (disruptions for which more vehicles and drivers are affected,
and crew interlining occurs in the duties of the drivers), the solution method had a hard time
in even finding feasible solutions. Fortunately, the pre-solving method, solving the IRMP only
a couple of times during the solution method, and an extra stop criteria based on the gap be-
tween the objective value of the LRMP and the overall lower bound of the instance, reduced the
computation time for larger disruptions such that at least a feasible solution can be obtained (if
the disruption is not still too large).

Using the final parameter settings, we saw that small disruptions can be solved to optimality
within a very short amount of time, and for most larger instances, also feasible solutions can
quickly be obtained. The results showed that changing the penalty cost can change the com-
putation time of the solution method as well as the outcome of the solution method. We did
not make any recommendations for which penalty cost to use, as we believe that this should be
further discussed with the traffic controllers of the RET, based on their preferences for different
timetables. Note that we also encountered different computation times and outcomes by making
changes in the duration of the disruption and the start time of the disruption.

62

This brings us by the limitations of the solution method. Namely, for practical use, accu-
rate estimations for the duration of the disruption and the start time of the disruption must
be made in order to find the best possible recovery timetable. Overestimation of the duration
may for example lead to cancellation or delaying some stops, while this is not necessary. Also,
the fact that changing the penalty cost leads to different outcomes indicates that preferences for
the different recovery timetables should be further analyzed, as we may not have captured all
preferences at this point. Moreover, another limitation of our solution method is that we are not
able to guarantee optimality of the overall problem, as we make use of a neighbourhood and a
recovery period. The latter may even lead to infeasibility of the created instance, however this
can easily be solved by extending the recovery period. The greatest limitation of our solution
method is the computation time for larger instances, as for some, not even feasible solutions can
be obtained within the maximum computation time of 20 minutes, while for small instances,
optimal results can be obtained within a few seconds. We do however see much more potential
for the solution method if other (extra) methods to reduce the computation time are used.

In conclusion, improvement can still be made in (mostly the computation time of) the solu-
tion method by exploring the recommendations. However, despite the limitations, the solution
method can be used to solve small disruptions, and it is able to support the traffic controllers of
the RET for large disruptions, affecting many vehicles and drivers.

63

Bibliography

Abouelrous, A., de Pater, 1., Vrakidis, P., and van den Puttelaar, R. (2019). A multi-depot vehicle
and crew rescheduling approach for dynamic disruption management in a tram network.

Bettinelli, A., Santini, A., and Vigo, D. (2017). A real-time conflict solution algorithm for the
train rescheduling problem. Transportation Research Part B: Methodological, 106:237-265.

Blokland, R., Salem, R., Stuyling de Lange, V., and Verstraete, M. (2019). Real-time vehicle
rescheduling for a disrupted tram network.

Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., and Wagenaar, J.
(2014). An overview of recovery models and algorithms for real-time railway rescheduling.
Transportation Research Part B: Methodological, 63:15-37.

David, B. and Balogh, J. (2016). An algorithmic framework for real-time rescheduling in public
bus transportation. matcos, 29:7.

David, B. and Krész, M. (2014). A model and fast heuristics for the multiple depot bus
rescheduling problem. In 10th international conference on the practice and theory of auto-
mated timetabling (PATAT), pages 128-141. sn.

David, B. and Krész, M. (2017). The dynamic vehicle rescheduling problem. Central European
Journal of Operations Research, 25(4):809-830.

Elhallaoui, I., Desaulniers, G., Metrane, A., and Soumis, F. (2008). Bi-dynamic constraint
aggregation and subproblem reduction. Computers & Operations Research, 35(5):1713-1724.

Huisman, D. (2004). Integrated and dynamic vehicle and crew scheduling. Number 325.

Huisman, D., Freling, R., and Wagelmans, A. P. (2004). A robust solution approach to the
dynamic vehicle scheduling problem. Transportation Science, 38(4):447-458.

Huisman, D., Jans, R., Peeters, M., and Wagelmans, A. P. (2005). Combining column generation
and lagrangian relaxation. pages 247-270.

Kiefer, A., Kritzinger, S., and Doerner, K. F. (2016). Disruption management for the viennese
public transport provider. Public Transport, 8(2):161-183.

Kunst, N., Meijer, B., Smidt, K., and Witsen, O. (2019). Two-phase approach for disruption
management in the ret tram network.

Li, J.-Q., Borenstein, D., and Mirchandani, P. B. (2007a). A decision support system for the
single-depot vehicle rescheduling problem. Computers & Operations Research, 34(4):1008—
1032.

Li, J.-Q., Mirchandani, P. B., and Borenstein, D. (2007b). The vehicle rescheduling problem:
Model and algorithms. Networks: An International Journal, 50(3):211-229.

64

Li, J.-Q., Mirchandani, P. B., and Borenstein, D. (2009). A lagrangian heuristic for the real-time
vehicle rescheduling problem. Transportation Research Part E: Logistics and Transportation
Review, 45(3):419-433.

Liickerath, D., Ullrich, O., and Speckenmeyer, E. (2013). Applicability of rescheduling strategies
in tram networks. Proceedings of ASIM Workshop STS/GMMS 2013.

Malucelli, F. and Tresoldi, E. (2019). Delay and disruption management in local public trans-
portation via real-time vehicle and crew re-scheduling: a case study. Public Transport, 11(1):1—
25.

Meng, L. and Zhou, X. (2014). Simultaneous train rerouting and rescheduling on an n-track
network: A model reformulation with network-based cumulative flow variables. Transportation
Research Part B: Methodological, 67:208-234.

Potthoff, D. (2010). Railway crew rescheduling: Novel approaches and extensions. Number
EPS-2010-210-LIS.

Potthoff, D., Huisman, D., and Desaulniers, G. (2010). Column generation with dynamic duty
selection for railway crew rescheduling. Transportation Science, 44(4):493-505.

van de Pol, B., Mariman, Y., Rutgers, N., and Ettema, M. (2019). Vehicle and crew rescheduling
in case of disruptions in a tram network.

van Dockum, T. (2018). Crew rescheduling in the tram network of rotterdam.

van Lieshout, R., Mulder, J., and Huisman, D. (2018). The vehicle rescheduling problem with
retiming. Computers € Operations Research, 96:131-140.

van Meer, F., van Paassen, M., Chinnasamy, S., and Stoop, T. (2019). A new approach to
disruption management at ret.

Veelenturf, L. P., Potthoff, D., Huisman, D., and Kroon, L. G. (2012). Railway crew rescheduling
with retiming. Transportation research part C: emerging technologies, 20(1):95-110.

Walker, C. G., Snowdon, J. N., and Ryan, D. M. (2005). Simultaneous disruption recovery of a
train timetable and crew roster in real time. Computers & Operations Research, 32(8):2077—
2094.

Yu, G. and Qi, X. (2004). Disruption management: framework, models and applications. World
Scientific.

65

List of Abbreviations

RET Rotterdamse Elektrische Tram

MRDH Metropoolregio Rotterdam Den Haag

VRSP Vehicle Rescheduling Problem

CRSP Crew Rescheduling Problem

VCRSP (Combined or Integrated) Vehicle and Crew Rescheduling Problem (with Retiming)
RMP Restricted Master Problem

IRMP Integer Restricted Master Problem

LRMP Linear Restricted Master Problem

66

List of Symbols

Labour rules for the crew members:

bmin minimum number of breaks

°. minimum duration of a break

h%ﬁ? minimum duration of a duty which must include the minimum number of breaks
hork maximum allowed working time (consecutive driving time) between two breaks
h%ﬁ% maximum allowed duty length including break time

oP ~ maximum time a driver is allowed to work overtime

Tiraver default travel time between two relief locations for a driver

Vehicle rules:

\%4

Omaa:

total minutes a vehicle is allowed to arrive at the depot later than originally planned

Vehicle and Driver Network:

N

v
SV = Upey s?
TV = Upey t°
st;

€ti

SP = Ugep ¢
TP = Udeb td

DS

R = UdeD T‘d
G4 = (v, 4d)
Rd

set of all tasks consisting of (cut)trips, splitted by relief locations and loca-
tions at which detour can be taken
set of all vehicles

set of all source nodes sV of vehicles v € V

set of all sink nodes t¥ of vehicles v € V

start time of node i

end time of node ¢

travel time from node i to node j

slack time between node ¢ and j

maximum allowed waiting time at node ¢
maximum allowed waiting time at all locations

the vehicle network without retiming, where ¥V = Y UNUTV and A repre-
sents the set of all arcs over which the vehicles can travel
set of all vehicle routes of vehicle v € V

set of all drivers

set of all source nodes s¢ of drivers d € D
set of all sink nodes t¢ of drivers d € D
set of all drivers with a split duty

set of all rest nodes 7% of drivers d € D*

the network of driver d € D without retiming, where V¢ = s?USYUNUTY Ut¢
and A? represents the set of all arcs over which driver d can travel
set of all recovery duties of driver d € D

67

Introducing retiming:

q;"" maximum allowed delay for node %
Ne set of all tasks including delay possibilities
Nc(k) set of all (delay) tasks of task k € N

G.= V., A.) vehicle network with delay possibilities, where V., = S¥ U N, UT"V and A
represents the set of all arcs over which the vehicles can travel

G? = (VI A%) the network of driver d € D with delay possibilities, where V¢ = s¢ U SV U
N, UTV Ut? and A? represents the set of all arcs over which driver d can
travel

Mathematical formulation of the VCRSP

We define the following sets:

N set of all tasks consisting of (cut)trips, splitted by relief locations and locations at
which detour can be taken
Ne set of all tasks including delay possibilities

Nc(k) set of all delay copies of task k € N
Ae set of all arcs over which vehicles and/or drivers can operate

Ac(k) set of all delay arcs associated with task k € N

D set of all drivers

R4 set of all driver duties of driver d € D

\%4 set of all vehicles

RY set of all recovery routes of vehicle v € V

We define the following parameters:

@Q; € N number of scheduled stops at which the vehicle must stop for task ¢ € N

a% €B indicator if task i € N, is included in recovery duty ¢ € R¢ of driver d € D
bgl(; €B indicator if task i € N is included in recovery duty § € R? of driver d € D
ajs € B indicator if task i € N, is included in recovery route € R" of vehicle v € V

vs € B indicator if task ¢« € N is included in recovery route ¢ € R" of vehicle v € V'

We define the following variables:

zi € B indicator if task ¢ € N is cancelled

yg € B indicator if recovery duty 6 € R? is chosen as recovery duty for driver d € D
edD € B indicator if for driver d € D no recovery duty can be found

z3 € B indicator if recovery route 6 € RY is chosen as recovery route for vehicle v € V

el € B indicator if for vehicle v € V no recovery route can be found

68

We define the following penalties:

M penalty given to a vehicle or driver if the vehicle or driver does not have any recovery
route or duty in the recovery timetable

p' task cancellation penalty for each missed scheduled stop

penalty for every minute delay for each stop
p% penalty for every new visited stop compared to the original route, for a vehicle
pg/ penalty for every new visited stop compared to the original duty, for a driver

p® penalty for every minute of overtime compared to the original planned end time of the
duty of a driver
fg total penalty cost of recovery duty 9, for driver d

g5 total penalty cost of recovery route 4§, for vehicle v

Restricted Master Problem:

In case of (I)RMP: All sets, parameters, variables and penalties used to formulate VCRSP
In case of LRMP: (I)RMP but with relaxation of the variables

K" set of recovery routes of vehicle v € V included in the master problem

K4 set, of recovery duties of driver d € D included in the master problem

LBrryp objective value obtained from solving the LRMP

Pricing Problem:

Ar the dual variable for task k € IV, of the constraints ([5.2))
¢r the dual variable for task k € IV, of the constraints ([5.3))
1; the dual variable for task ¢ € N, of the constraints ([5.4))
~; the dual variable for task i € N,, of the constraints
«; the dual variable for task ¢ € N,, of the constraints
m¥ the dual variable for vehicle v € V| of the constraints ([5.7))
7% the dual variable for driver d € D, of the constraints

Overall Lower Bound:

K" set, of recovery routes of vehicle v € V included in the master problem
K4 set of recovery duties of driver d € D included in the master problem
RY set of recovery routes of vehicle v € V not included in the master problem, with

negative reduced cost

R? set of recovery duties of driver d € D not included in the master problem, with
negative reduced cost

LBrryp objective value obtained from solving the LRMP

LB overall lower bound of the VCRSP or the (I)RMP

Improving Computation Time:

F fixed part of the recovery period

x maximum computation time of the solution method (in minutes)

69

	Introduction
	Problem Description
	The RET Tram Network
	Disruption Management
	Vehicle Rescheduling
	Crew Rescheduling

	Problem Statement

	Disruption Management: Literature Review
	Vehicle Rescheduling
	Crew Rescheduling
	Integrated Methodologies & Solution Approaches
	Summary used Literature

	Mathematical Problem Formulation
	Creating the Network
	Task List
	Vehicle Network
	Driver Network
	Introducing Retiming

	Mathematical Formulation

	Solution Approach
	Outline
	Initialization
	Restricted Master Problem
	Pricing Problem
	Overall Lower Bound
	Improving Computation Time
	Pre-solving method
	Neighbourhood of Vehicles & Drivers
	Recovery period
	Solving the IRMP
	Stopping Criteria

	Data Description
	Original Timetable
	Parameters: Labour Rules & Vehicle Rules
	Penalty Cost
	Test Instances: Disruptions of Original Timetable

	Algorithm Settings & Tuning
	Instance Size
	Neighbourhood of Vehicles & Drivers
	Recovery Period

	Acceleration of Computation Time
	Final Settings & Recommendations

	Results
	Final Results
	Sensitivity Analysis
	Penalty Cost
	Disruption

	Discussion
	Limitations
	Practical Use of Solution Method

	Recommendations for Further Research
	Concluding Remarks
	Bibliography
	List of Abbreviations
	List of Symbols

