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Abstract

In this paper we investigate the relation between network metrics and team performance. We also

investigate whether network metrics have predictive power for predicting the number of goals scored

and match outcome. Several regression and classification methods are implemented excluding and

including the network metrics as predictor variables. These include the Random Forest, Extreme

Gradient Boosting, Support Vector Machine (SVM) and Lasso Regression. We use the largest open

collection football dataset provided by Wyscout in combination with collected features. Matches

from the Premier League 2017-18 season are analysed. Network metrics appear to be related to

team performance. Teams with a better performance have in general greater values for the clustering

coefficient, largest eigenvalue, algebraic connectivity, position of x, mean degree, average change in x

and closeness score, and smaller values for the average shortest path. Incorporating network metrics

does not improve predictive performance much. For the prediction of the number of goals scored the

Random Forest provides the best results, with a Mean Absolute Error of 0.887 and 0.882 excluding

and including network metrics, respectively. The SVM has the best predictive performance for the

match outcome with an accuracy of 0.567 and 0.578 excluding and including the network metrics.

It still seems challenging to predict football match outcomes. We believe that network analysis can

be useful to gain insights in more complex team behaviour and interactions. The knowledge on the

relation between network metrics and team performance allows football professionals to adapt their

team tactics for optimizing performance.

Keywords: football, passing networks, network metrics, team performance, Premier League, foot-

ball match prediction, machine learning, random forest, support vector machine (SVM), gradient

boosting.
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1 Introduction

Football is considered the most popular sport in the world. Over 250 million people regularly play

football world-wide, 43% of the population consider themselves football fans and football has the

largest television viewership (Nielsen Sports, 2018). Over the past years football analytics also gained

more popularity. Advancements in big data and technology, such as automated sensing software, en-

abled high-fidelity data streams to be extracted for a match (Pappalardo et al., 2019b). The wealth

of football data is enormous and offers many possibilities for analysis.

Football is a team sport with a highly variable and unpredictable nature. The performance of Leices-

ter City in the Premier League 2015-16 season strongly emphasises this. After being promoted to the

Premier League in 2014-15 and finishing 14th, Leicester City beat all odds and became the winner

of the 2015-16 season. Football analytics is considered a complex task; global behaviour depends on

dynamics of the interactions between two competing teams, constantly influencing each other (Cintia

et al., 2015). Also, football is a low scoring sport (Duch et al., 2010). One of the teams can be

significantly better, but the match can still end up in a draw. Performing football analysis can give

insight in the team performance and their interactions. Recently, professional firms started to per-

form football analysis (Cintia et al., 2015). Important use cases include the construction of betting

odds and the identification of talented young players by football scouts.

Despite the growing popularity of football analytics and the wealth of football data, the use of

advanced performance metrics was still limited. Analysis was mostly restricted to simple metrics,

including ball possession, pass accuracy and the number of shots on goal. More recently, network sci-

ence is used in sports (Buldu et al., 2019). Network science is the study of connections or relationships

between elements of phenomena, such biological and social phenomena (Watts, 2004). The connec-

tions between the elements can be represented as networks. Network science allows for studying more

complex team interactions and behaviour in football. Using network science, passing networks for

football matches can be created (Duch et al., 2010). Here, nodes represent the players of a team

and edges the number of passes between the players. Network analysis enables among others the

identification of key players, study of interactions between players and investigation of more complex

network behaviour of a team (Rein and Memmert, 2016). Also, research showed that metrics coming

from network science can be related to team performance (Pena and Touchette, 2012);(Clemente

et al., 2015b);(Buldu et al., 2019).

In this paper we use network analysis to study the behaviour of football teams. The main goal is to

investigate whether network metrics are related to the performance of teams. Passing networks are

created for all matches in the Premier League 2017-18 season. Network metrics on player prominence,

interconnectivity and spatial properties of the teams are studied. The analysis includes comparing

network metrics according to match outcome, studying correlations between network metrics and

goal statistics and identifying teams with similar network behaviour. Besides exploratory analysis,

we also investigate whether network metrics have predictive power for match outcome. To do this,

we implement several regression and classification models for the prediction of both the number of

goals scored per team and match outcome.

Compared to previous research on using network metrics for football analysis and on the predic-

tion of football match outcomes, this paper contributes to this field of research for the following
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reasons: i). it considers a large amount of network metrics; ii). it uses the largest open collection

football dataset with an enormous amount of features; iii). it is the first to exploit the use of network

metrics as predictor variables; and iv). it compares a wide range of regression and classification

models for the prediction of football match outcomes.

This research is organized as follows. In Section 2 we give an overview of the existing literature on

network analysis and predictive models in football. Section 3 consists of the data description, includ-

ing overviews of the extracted features that will be used as predictors. In Section 4, the exploratory

analysis including the comparison of network metrics and correlation analysis is described. Section

5 provides an overview of the implemented regression and classification methods for the predictive

analysis. Section 6 and 7 present the results and discussion for the exploratory analysis. Section 8

and 9 present the results for the implemented predictive models and discusses their performances.

We finish with limitations of this research in Section 10 and a conclusion in Section 11.

2 Literature

In this section we describe literature on network analysis used in football, with the focus on network

metrics. After this, we provide an overview of literature that focused on the modelling of the number

of goals scored and match outcome.

2.1 Network analysis

Sports analytics has been popular for a long time, but the application of network science to sports,

and specifically to football, has only been widely studied since the previous decade (Buldu et al.,

2019). First approaches focused on simple football statistics, such as pass accuracy and ball posses-

sion. These approaches are unable to capture individual performance, more complex dynamics and

processes underlying team tactical behavior (Rein and Memmert, 2016). Using network science, the

organization of a team can be considered as the result of the interaction between the players, creating

passing networks (Buldú et al., 2018). With the network metrics derived from the passing networks,

more complex team behaviour can be studied.

The first attempt to perform network analysis for football matches is performed by Gould and Gatrell

(1979). For the FA Cup final between Liverpool and Manchester United in 1977, passing networks

were created. Only in 2010, Duch et al. (2010) again considered passing networks. They introduced

the flow centrality metric for the quantification of individual players. This metric allows for assess-

ing the individual contribution of a player to team performance, which is considered challenging in

football analytics. Gama et al. (2014) further explored passing networks, for identifying key players

in attack phases and establishing preferential linkages between players.

Different types of network metrics were introduced and studied by researchers. Clemente et al.

(2015a) proposed a set of network metrics for the studying of team properties and cooperation dur-

ing attack phases. For five Portuguese League matches, the network density, network heterogeneity

and network centralisation were analysed for identifying the strength and type of interactions be-

tween players. One finding is that the metrics were higher for the second half, showing decreased

participation of the players. Cintia et al. (2015) developed the H indicator, a metric based on a set

of pass-based performance metrics. They found that the H indicator has a strong correlation with
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the success of a team. Gonçalves et al. (2017) explored the relation between passing networks and

the match outcome in youth elite association football in Portugal. They studied the closeness and

betweenness centrality and showed that a lower passing dependency for a player (low betweenness

score) and high intra-team well-connected passing relations (high closeness score) may optimize team

performance. Aquino et al. (2019) examined among others the clustering coefficient, eigenvector cen-

trality, closeness centrality and betweenness centrality. The metrics were compared for different match

outcomes and playing formations using data of the FIFA 2018 World Cup. For match outcome, only

the clustering coefficient seemed to have an effect: winning teams have in general larger clustering

coefficients. Other papers investigating network metrics include the in-degree and out-degree for find-

ing prominent tactical positions (Mendes et al., 2015); the network density, total links and clustering

coefficient for comparing teams that performed better in the FIFA World Cup 2014 (Clemente et al.,

2015b); the clustering coefficient, network centroid, shortest path, algebraic connectivity and eigen-

vector centrality to extract the unique style of F.C. Barcelona coached by Guardiola in the 2009-10

season (Buldu et al., 2019).

Although some papers relate network properties to match outcome, statistical modelling in this field

is still rare. Wang et al. (2015) used a Bayesian latent model approach for automatically detecting

tactical patterns of football teams. McHale and Relton (2018) implemented a generalised additive

mixed model (GAMM) with covariates including position, distance and angle, to estimate the prob-

ability of a pass being successful. They combine this approach with the use of network centrality

metrics to identify key players for the Premier League 2012-13 season. Buldú et al. (2018) provide a

review on literature about passing networks and its challenges, including the dynamics, interaction

between teams and time. For instance, to address the time challenge, some papers have investigated

constructing passing networks with a sliding window instead of averaged over a match (Cotta et al.,

2013);(Buldu et al., 2019). There appear to be many opportunities to extend current research and

explore new methods, especially in combining modelling with the use of network metrics.

2.2 Modelling football match outcome

There are two distinct streams in the field of modelling football match outcomes: goal-based and

result-based models. The first approach is focused on modelling the number of goals scored by both

teams. The second approach models the probabilities of a win, draw or loss for the home team.

2.2.1 Statistical models

The first models developed for the prediction of the number of goals were statistical models. In

particular, the number of goals was assumed to follow the Poisson distribution. The simplest case

considers independence between the number of goals scored by competing teams. With this approach,

the number of goals for the teams are based on two (conditionally) independent pairwise Poisson dis-

tributions. Early works using independent Poisson distributions include the work of Lee (1997) and

Dyte and Clarke (2000). Lee (1997) expressed the mean as a linear combination of parameters for the

home-team advantage, attack and defense strength. Dyte and Clarke (2000) modelled the number of

goals conditional on the FIFA rating of each team and the match venue.

Although existence of correlation between the goals scored by competing teams had been proven,

it was mostly ignored because of computational complexity. First approaches considering the depen-

dence were proposed by Maher (1982), who implemented the bivariate Poisson distribution. This
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distribution accounts for (positive) dependencies between the number of goals scored by both teams.

For further information on the bivariate Poisson distribution, we refer to the paper of Karlis and

Ntzoufras (2003). Dixon and Coles (1997) extended the independent Poisson model of Maher (1982)

by allowing among other things dynamic attack and defense parameters. They showed that two in-

dependent Poisson distributions do not correctly model the number of goals scored by both teams for

all outcomes and include a correction parameter that adjusts the probabilities for interdependence.

Rue and Salvesen (2000) incorporated the methods of Dixon and Coles (1997) and used a Bayesian

framework to model the time-varying parameters. Groll et al. (2018a) provided evidence that instead

of a bivariate Poisson distribution, two independent Poisson distributions can be used, if the two

Poisson parameters contain enough informative covariates and thus already capture the correlation.

In the early 2000s, discrete choice models were developed to predict match outcome directly. Goddard

(2005) compared the predictive performance of the goal-based and result-based approaches. Bivari-

ate Poisson and ordered probit regressions were used for the modelling. The differences in predictive

performance were relatively small, however, a hybrid method that combines a result-based dependent

variable with goal-based team performance covariates provided the best results. Tsokos et al. (2019)

used a Bradley-Terry model to predict match outcome. They considered various features, including

days since previous match, points per match, and team rankings.

2.2.2 Machine learning models

In the beginning research focused mostly on the Poisson regression for the number of goals scored.

More recently, machine learning approaches were investigated for both the prediction of football

match outcomes and the number of goals. Schauberger and Groll (2018) implemented random forests

and compared their predictive performance to more conventional regression methods. Using the data

of the FIFA World Cup between 2002 and 2014, they modelled the number of goals and the match

outcome, as well as a combination of both. For the match outcome, they also considered a variant of

the random forest that takes into account the order of the outcomes. Covariates on economic factors

of the country, team structure and home advantage were included. The random forests outperformed

the conventional regression methods for the number of goals and ordinal match outcomes, and are

close to or outperforming the predictions of bookmakers. Within the random forest methods, the

forests that directly model the number of goals slightly outperformed those for the match outcomes.

Groll et al. (2018a) further investigated the random forests on the same dataset. The methods are

compared to ranking methods. In the end, including team ability parameters from the ranking meth-

ods as additional parameters to the random forests resulted in the best predictive performance.

Baboota and Kaur (2019) introduced another machine learning method for the prediction of football

match results: gradient boosting trees. They compared this method to a Naive Bayes model, Sup-

port Vector Machine and random forest for the prediction of the match outcome. Features included

covariates on the home and away form, and home and away streaks. The random forest and gradient

boosting performed well, but were unable to outperform the bookmaker’s predictions. Goller et al.

(2018) focused on predicting the probabilities for the match outcome of the games of the German

Football Bundesliga. They implemented a random forest that deals with the order of the match

outcomes. A wide range of features is extracted from various data sources, including the market val-

ues, height and age of players, travel time, capacity of stadiums and information regarding European

competitions.
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The use of machine learning methods for the prediction of football match outcomes and the number

of goals is still rare. Machine learning methods have just recently been implemented for this purpose.

Also, the papers are quite limited in terms of features and datasets used for the modelling of match

outcome and number of goals. There still seem to be many possibilities for exploring and extending

machine learning methods and feature extraction.

3 Data

This section provides a detailed description on the data used for this research. First, we provide

information about the available Wyscout datasets and collected data. After that, we present the

extracted features from the data, separated in dependent variables and predictor variables. Tables

with the different types of predictor variables are provided.

3.1 Wyscout dataset

The data used for this research is the largest open collection of football-logs ever released. A thor-

ough data description is provided by Pappalardo et al. (2019b). The data has been collected and

provided by Wyscout, an Italian football analysis company. Wyscout helps professionals to make

data-driven decisions by providing tools for scouting, match and performance analysis. Clients of

Wyscout include major football federations, scouting agencies and over 800 international clubs.

The data contains all spatio-temporal events occured during the matches from seven well-known

football competitions. These competitions include five 2017-18 national football competitions in

Europe: the Spanish first division (La Liga), Italian first division (Serie A), English first division

(Premier League), German first division (Bundesliga) and French first division (Ligue 1). The other

two competitions are the European Championship of 2016 and the World Cup of 2018, which are com-

petitions between national teams. The number of matches, teams, players and events per competition

are given in Table 1.

Table 1: Overview of the competitions and their number of matches, teams, players and events.

Competition # Matches # Teams # Players # Events

England 380 20 603 643,150

France 380 20 629 632,807

Germany 306 18 537 519,407

Italy 380 20 686 647,372

Spain 380 20 619 628,659

World Cup 64 32 736 101,759

European Championship 51 24 552 78,140

The data consists of seven datasets: competitions, matches, teams, players, events, coaches and

referees. Each dataset is provided in Javascript Object Notation (JSON) format. The event dataset

contains the most relevant information for this research. This data has been collected by video

analysts using software that performs tagging (Pappalardo et al., 2019b). The tagging of a match

consists of three main steps: 1) setting formations, 2) event tagging, and 3) quality control, which
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consists of an automatic check by an algorithm and a manual check by quality supervisors. The

software in step 2 tags specific events in a match, and additional attributes to the event, such as the

players performing the event, the exact location of the start and end of the event and tags about the

accuracy of the event. As an example, we show a random observation of the event dataset below:

id eventId subeventId tags playerId teamId matchId matchPeriod positions eventSec eventName subeventName

88178677 8 81 1801 83574 11944 1694390 1H
(13,31)

(6,45)
37.14254 Pass Hand pass

There are 10 types of events: duel, foul, free kick, goalkeeper leaving line, interruption, offside, others

on the ball, pass, save attempt and shot. Table 2 gives insight on the proportions of the events,

expressed in percentages of the total. The available subtypes and common tags per event are shown

in Appendix A.

Table 2: Events distribution (% of the total) per competition.

Competition Duel Foul
Free

Kick

Goalkeeper

leaving line
Interruption Offside

Others

on the ball
Pass

Save

attempt
Shot

England 27.47 1.27 5.66 0.20 4.28 0.24 7.94 51.10 0.52 1.31

France 27.08 1.61 6.15 0.19 4.40 0.24 8.03 50.44 0.54 1.32

Germany 27.76 1.67 5.98 0.18 4.18 0.23 7.79 50.34 0.54 1.33

Italy 25.92 1.54 5.87 0.17 4.17 0.25 8.06 52.11 0.55 1.36

Spain 27.37 1.74 6.06 0.20 4.14 0.30 7.69 50.70 0.54 1.27

World Cup 25.48 1.74 5.86 0.21 0 0.17 9.12 55.38 0.55 1.39

European

Championship
27.00 1.70 6.20 0.22 0 0.24 6.55 55.92 0.63 1.53

From Table 2 we can see that the most frequently occurring event is a pass (over 50%), followed by

a duel and others on the ball. The goalkeeper leaving line and an offside are in general the least

occurring events.

The other datasets include information on the exact location of the competitions, matches, out-

comes of the matches, substitutes, referees of the match and detailed information on the players, such

as height, weight and age. An overview of the fields in the datasets is given in Appendix B. For a

more detailed description of the datasets and their specific fields, we refer to the paper of Pappalardo

et al. (2019b) and the Wyscout documentation at https://apidocs.wyscout.com/.

3.2 Collected data

Besides the information available in the Wyscout datasets, we collect other data that is relevant for

this research. We are specifically considering factors that could influence team performance.

• FIFA Rating and Wage of the players. These covariates are present in the FIFA 18 Complete

Player Dataset on kaggle.com, an online platform for machine learning and data science. The

data has been crawled from the website sofifa.com. The rating of the players is created by

EA Sports, the video game developer of the FIFA Football video games. The rating is based

on a combination of international recognition and six scores for key statistics: pace, shooting,

passing, dribbling, defending, and physical. Wage is expressed in euros per week. We believe
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that both the FIFA rating and the wage of the players in a team provide an indication of the

strength and past performance of a team.

• PlayeRank. In addition to the overall FIFA rating, that is based on the half year before the

start of the season, we add scores of the players during matches of the 2017-18 season. The

PlayeRank score is a score between 0 and 1, with 0 indicating a terrible and 1 a very good

performance (Pappalardo et al., 2019a). This score was created by the authors to create a

widely accepted football performance metric for all its facets. With this score we are able to

consider a more recent evaluation of the performance compared to the FIFA Rating and possibly

identify temporary periods of performance.

• European match. Besides the national competitions of each country, some teams can also

participate in European championships. The European championships considered here include

the Champions League and Europa League. Teams qualify based on their ranking in the national

competition and previous performance in the European championships. In general, the top one

to four teams of a country can qualify. The Europa League is a ranking below the Champions

League (UEFA, 2020). The matches of these championships take place during the regular

national competitions. Thus, participating in these championships could affect the schedule

and performance of the teams. We consider whether a team plays an European match in the

week before or after the match. Schedules are taken from worldfootball.net

• Ranking. The ranking of a team is an indication of past performance and team strength.

This dataset includes the ranking, points, and goal difference of the teams per matchweek. The

information is taken from the official Premier League website premierleague.com.

• Stadium capacity. Data regarding the capacity of the stadiums is gathered from worldfootbal.

net. Stadium capacity can have an impact on the atmosphere during a match. A greater amount

of visitors may increase the home advantage. Also, teams with a larger stadium capacity will

in general have more revenues and thus resources. By accounting for the ranking of teams,

the stadium capacity allows for a ‘big team’ effect (Goddard, 2005). The big team will have

a higher chance of winning, either because of the amount of visitors or because of the bigger

amount of resources.

• Distance stadiums. As mentioned in the paper of Goddard (2005), geographic distance has

a significant influence on match outcome. A small geographic distance could result in a greater

competition between the teams because of a local derby, while a larger geographic distance can

cause a home advantage due to travel difficulties and fatigue for players and supporters of the

away team. Distances between the stadiums are calculated using the Google Maps API. This

is available in the R package gmapsdistance (Melo et al., 2017). For the calculation of the

distance, we consider transportation by car on a weekend day without any traffic.

3.3 Data selection and extraction

From the seven available competitions in the Wyscout dataset, we only select the competition of

England: the Premier League season of 2017-18. This competition is considered the best league in

the world in terms of popularity (highest television viewership) and competitive nature (many good

teams instead of a few dominating teams). We believe that a similar approach for the modelling of

match outcomes could be followed for the other competitions. The Premier League data has a total

of 380 matches and 643,150 events.
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Data features are extracted after combining the datasets shown in Appendix B. This is done by

joining the datasets on the different IDs using SQL based commands. The collected datasets de-

scribed in Section 3.2 also need to be joined. The dataset including the FIFA rating and wage

requires the matching of the names of the players. When the names of the players are registered

differently in the datasets, the matching cannot be done directly. To solve this we apply approximate

string matching using Levenshtein distance (Levenshtein, 1966). The PlayeRanks data can be joined

directly since it includes the match IDs. For the European match, ranking, stadium capacity and

stadium distance datasets we join the datasets by manually adding the match, team, and stadium IDs.

The datasets provided by Wyscout and the collected data hardly contain any missing values. The

final data created by joining the datasets has a total of 0.14% missing values, made up of 3.68%

missing values for score attack and 4.74% missing values for the score defense from the PlayeRank

dataset. Since the number of NA values is small, we replace these values using a simple median

imputation.

3.4 Dependent variables

As described in Section 2.2, there are two different approaches for the modelling of football match

outcomes: the modelling of the number of goals and the modelling of the match outcomes. We

consider both approaches for the prediction of football match outcomes. In the following part, we

briefly describe both dependent variables.

3.4.1 Goals

The modelling of the number of goals can be addressed as regression predictive modelling. Each

match then corresponds to two different observations, one for each team. Figure 1 shows a barplot

with the frequency of the number of goals scored by the home and away team. The number of goals

is between zero and seven. In general the home team appears to score more goals. The home team

has a higher frequency for two or more goals compared to the away team. The away team most

frequently does not score any goals. There seems to be a home team advantage.

Figure 1: Frequency of number of goals scored by the home and away team.
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3.4.2 Match outcome

For the second approach, the match outcome is used as dependent variable. There are three possible

match outcomes: a win, loss, or draw for the home team. Since we consider the home team’s

perspective, each match corresponds to one observation. Table 3 shows the frequency of the match

outcomes. There again seems to be a home team advantage.

Table 3: Match outcome distribution from the home team’s perspective.

Win Draw Loss

164 96 100

3.5 Predictor variables

Different features are extracted from the combined datasets. These features are based on previous

literature, common sense about effects on football performance and the investigation of the predictive

power of network metrics. The tables in this section provide an overview of all extracted features

categorized into different types. Besides the values of the extracted features, we also include the

differences for all numeric variables between the competing teams as predictor variables, following

the approach of (Groll et al., 2018b). The difference is taken from the perspective of the team under

consideration for the prediction of the number of goals. For the prediction of match outcomes, the

difference is taken from the home team’s perspective. By doing this, we consider dynamics between

the teams. For example, the variable for the difference in number of passes between the competing

teams, assuming all other variables stay constant, describes the effect of a change in the number of

passes of the opponent.

Table 4 includes the match-specific, team-specific, schedule-specific and location-specific features.

The match-specific features contain a dummy for the home team to capture the home team advantage

and a categorical variable for the referee. The team-specific features are only based on information

about players that play during the match. Teams that are newly promoted are in general weaker than

the other teams. Also, average wage and value of the players are measures for the team’s strength.

Day of the week and dummies for the teams playing in the European competition are included in

the schedule-specific features. Playing in the European competition can affect the team’s fatigue and

mood. The location-specific features account for the fact that a large stadium capacity affects the

atmosphere and that a large distance can cause travel difficulties.
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Table 4: The short name, description and unit for the match-, team-, schedule- and location-specific

features. Numerical features are displayed with their mean and standard deviation (SD), dummy

features with their mean and categorical features with their median.

Short name Description Unit
Mean (SD)

or Median

Match-specific features

1 Home
1 if the team is playing at home,

0 otherwise
dummy 0.5

2 Referee Referee responsible for the match categorical M. Atkinson

Team-specific features

3 Team The team playing categorical -

4 Team opponent The opponent of the team categorical -

5 Coach The coach of the team categorical E. Howe & S. Dyche

6 Promoted
1 if the team was promoted to the league

this season, 0 otherwise
dummy 0.15

7 Value
The average FIFA value of the players

of the team playing in the match
numerical 77.51 (3.27)

8 Wage
The average wage of the players of the team

playing in the match
numerical 78.70 (37.19)

9 Weight
The average weight of the players of the team

playing in the match
numerical 77.27 (2.00)

10 Age
The average age of the players of the team

playing in the match
numerical 27.23 (1.00)

11 Weight
The average weight of the players of the team

playing in the match
numerical 182.78 (1.92)

12 Percentage left
Percentage of the players of the team playing

in the match that are left-footed
numerical 0.25 (0.09)

13 Percentage native
Percentage of the players of the team playing

in the match that are English
numerical 0.25 (0.13)

Schedule-specific features

14 European match
1 if the team played an European match

in the 7 days before the match
dummy 0.09

15 European match competition
1 if the opponent team played an European

match in the 7 days before the match
dummy 0.09

16 Weekday Day of the week categorical Saturday

Location-specific features

17 Stadium capacity Capacity of the stadium the match is played in numerical 40487.75 (19870.79)

18 Distance stadiums
The distance between the stadiums of the team

and the opponent team in kilometers
numerical 245.36 (138.50)

Table 5 contains features based on the previous three matches of a team and the rank of the team.

Since the information from the match features is not known before the start of a match, these features

are averaged over previous matches. By doing this, the features can be used in predictive analysis.

This includes features on the attacking ability and defensive ability. Rank-specific features include

the rank, points and goal difference of the team for the current matchweek.
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Table 5: The short name, unit, mean and standard deviation (SD) of the features based on the

previous matches and the rank-specific features.

Short name Unit Mean (SD)

Previous match features

1 Passes numerical 423.44 (123.43)

2 Consecutive passes numerical 271.07 (110.49)

3 Corners numerical 5.16 (1.83)

4 Fouls numerical 10.74 (2.16)

5 Shots numerical 11.13 (3.62)

6 Yellow cards numerical 1.58 (0.74)

7 Red cards numerical 0.03 (0.10)

8 Score overall numerical 0.01 (0.01)

9 Score attack numerical 0.01 (0.01)

10 Score midfield numerical 0.00 (0.01)

11 Score defense numerical 0.01 (0.00)

12 Possesion numerical 0.50 (0.06)

13 Freekicks numerical 48.07 (4.81)

14 Offsides numerical 2.06 (1.08)

15 Shots on goal numerical 12.72 (2.45)

16 Save attempts numerical 4.41 (1.68)

17 Saves numerical 3.06 (1.32)

Rank-specific features

18 Rank numerical 10.50 (5.77)

19 Points numerical 26.58 (18.10)

21 Goal difference numerical 0.00 (18.94)

Finally, the network metrics displayed in Table 6 are features derived from the passing network. These

metrics give insight in the interactions of a team and the team behaviour. We want to investigate

whether these features have any predictive power for the modelling of the match outcome. Those

metrics are also averaged over the past three matches, since they are not known before the start of

a match. We again emphasise that for all numeric variables, both the value itself and the difference

between the values of the competing teams are included as predictor variables.

After extracting all features, the final dataset contains 760 observations for the modelling of the

number of goals scored by both teams and 380 observations for the modelling of match outcome.

We will compare predictive models for the full set of predictor variables and excluding the network

metrics. The number of predictors for these models are 73 and 119, respectively.
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Table 6: The short name, unit, mean and standard deviation (SD) of the network features based on

previous matches.

Short name Unit Mean (SD)

Network features

1 Clustering coefficient numerical 3.42 (1.58)

2
Clustering coefficient

local
numerical 0.30 (0.03)

3
Clustering coefficient

global
numerical 0.83 (0.05)

4 Largest eigenvalue numerical 29.02 (12.42)

5 Algebraic connectivity numerical 6.74 (3.27)

6 Max eigencentrality numerical 0.47 (0.03)

7 Sd eigencentrality numerical 0.12 (0.01)

8 Mean eigencentrality numerical 0.28 (0.01)

9 Closeness numerical 0.18 (0.04)

10 Betweenness numerical 8.34 (0.69)

11 Average shortest path numerical 0.48 (0.16)

12 Position x numerical 28.55 (4.34)

13 Position y numerical 29.76 (4.02)

14 Dispersion numerical 29.84 (0.87)

15 Dispersion position x numerical 27.18 (1.08)

16 Average change in x numerical 0.97 (0.51)

17 Average change in y numerical 0.19 (0.43)

18 Closeness binary numerical 0.08 (0.01)

19 Betweenness binary numerical 3.19 (0.86)

20
Average shortest path

binary
numerical 1.32 (0.09)

21 Mean degree numerical 6.88 (0.77)

22 Sd degree numerical 1.67 (0.21)

23 Max degree numerical 9.16 (0.63)

4 Exploratory analysis

In this section we describe the exploratory analysis for investigating the relation between network

metrics and team performance. We define the adjacency matrix, provide an overview of the studied

network metrics, give information on the significance testing for comparisons between the network

metrics and explain the correlation and cluster analysis.

4.1 Adjacency matrix

A passing network consists of nodes and edges, where nodes represent the players of the team and

edges are weighted according to the number of passes occurring between the players. In this research,

we only include successful passes for the weighted edges. A pass is considered successful when the

end position of the pass of the sender is the same as the begin position of the event of the receiver

following the pass. Unsuccessful passes are not included because we can not determine the intended

receiver of the pass.

We study directed passing networks. Directed networks provide more information than undirected

networks. They distinguish between performed and received passes by taking into acount the direc-
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tion of a pass. The adjacency matrix is used to mathematically describe the passing networks. The

adjacency matrix has size n × n, where n refers to the number of players participating in a match.

In this research we only consider sizes of 11 for easy comparison between networks. If a player is

substituted, the new player takes over the node of the substituted player. The directed adjacency

matrix is defined as follows:

Aij =

number of successful passes from player i to player j, for i 6= j

0, for i=j.
(1)

The adjacency matrix can be used to gain insight in the interactions and performance of a team.

A passing network is made per match for each team. Thus, the network metrics under analysis

are based on one match. We write a function in R for the creation of the adjacency matrix that

has adjustable properties. It requires as input the match data, team, time period (first half, second

half, whole match), a boolean for a directed passing network and a boolean for a weighted passing

network. We also create visualizations of the passing network on a pitch, where the nodes and edges

can be sized according to different network metrics.

4.2 Network metrics

Properties of the passing networks are studied using several network metrics. These metrics allow for

analysing and quantifying the behaviour of football teams. In the end, we aim to find the relation

between the network metrics and team performance. The network metrics can be divided into i).

player prominence metrics; ii). interconnectivity metrics; and iii). spatial properties of the passing

network.

4.2.1 Player prominence

To find the importance of players in the passing network, we study the out-degree and three different

centrality scores for the players. The out-degree represents the total successful passed performed

during the match per player. We include the mean, standard deviation and maximum value of

the out-degree. The studied centrality scores are the eigenvector centrality, closeness centrality and

betweenness centrality. The eigenvector centrality corresponds to the first eigenvector of the adjacency

matrix. It is a measure of node importance; it takes into account the number of connections of a

node and how well-connected the connections are. In our analysis, we include the mean, standard

deviation and maximum of the eigenvector centrality scores. The closeness centrality considers how

close a node is to other nodes in the passing network. It is the inverse sum of all distances to other

nodes. Thus, for node v it is defined as

1∑
i d(v, i)

for i 6= v, (2)

where d(v, i) is the length of the shortest path from node i and node v. The betweenness centrality

measures how well a node connects other players. It considers the number of shortest paths going

through a node. The betweenness centrality for node v is defined as∑
i 6=j 6=v

givj
gij

for i 6= j 6= v, (3)

where gij is the total number of shortest paths from node i to node j and givj the number of those

paths that pass through node v. Nodes with a high betweenness centrality score are important, since
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they connect other players through their shortest path (e.g. a player that connects the defense with

the midfield) (Aquino et al., 2019). For the closeness and betweenness centrality, we only include the

mean value over the players. We consider both the weighted and unweighted (binary) scores. For the

unweighted scores, the distance of an edge is equal to one. For the weighted scores the distance is

defined as the inverse of the number of passes, following the approach of Buldu et al. (2019). Thus,

players that often pass to each other will have a shorter distance.

4.2.2 Interconnectivity

The interconnectivity metrics include the clustering coefficients, largest eigenvalue, algebraic connec-

tivity and average shortest path. The clustering coefficient captures the degree to which players in

a network tend to cluster together when passing the ball (Pena and Touchette, 2012). It reflects the

local robustness of the network; when a player cannot access another player because of an opponent,

there might be another player in the triangle for reaching the player. We consider the weighted,

global and local clustering coefficient. The weighted clustering coefficient for node v proposed by

Buldu et al. (2019) is defined as ∑
j,k AvjAjkAvk∑
j,k AvjAvk

, (4)

with Avj the number of passes from player v to player j. The global clustering coefficient is the

ratio of closed triplets (contains three edges) and all triplets (contains two or three edges). The local

clustering coefficient of a node is the ratio of the number of edges between the neighbours of the node

and the maximum possible number of edges between the neighbours of the node. The global and local

clustering coefficient do not take into account the weights of the edges. The clustering coefficients

are averaged over the players.

The largest eigenvalue refers to the largest eigenvalue λ1 of the adjacency matrix. It is an indi-

cation of network strength, since it increases with the number of connections between the nodes.

Networks with a higher number of passes, or networks where the well-connected players are con-

nected between them, will have a higher λ1 (Buldu et al., 2019). In order to investigate the existence

of independent groups in the passing networks, we study the algebraic connectivity. It is the second

smallest eigenvalue of the Laplacian matrix, which is defined as D−A, where D is the diagonal matrix

of node degrees and A the adjacency matrix. The lower the algebraic connectivity, the clearer the

existence of independent groups. Thus, a high algebraic connectivity implies a more interconnected

team. Lastly, the average shortest path is an indication of how well-connected the players are. The

shortest paths are calculated between all the nodes of the passing networks using Dijkstra’s algorithm

(Dijkstra et al., 1959). We consider both the weighted and unweighted (binary) passing networks.

Again, the distances are defined as the inverse of the number of passes for the weighted passing

networks.

4.2.3 Spatial properties

Finally, we also consider spatial properties of the passing networks. The dataset contains the (x,y)

position for each event. The x coordinate indicates the nearness (in percentage) to the opponent’s goal,

while the y coordinate indicates the nearness (in percentage) to the right side of the field (Pappalardo

et al., 2019b). As spatial properties we include the network centroid, dispersion around the centroid,

average change in x and average change in y. The network centroid is the average (x,y) position of the

passing network. This is an indication of the performance of teams during the match, since teams that
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are playing closer to their opponent’s goal generally participate in more attacking phases during the

match. The dispersion describes how spread around the network centroid the players pass. It shows

how dense the playing area is of a team. Also, greater dispersion might indicate less involvement of

all players in a team. The average change in x and y refers to the average (percentage) change in

x and y coordinate for successful passes in the passing network. We are interested in whether these

spatial properties are related to the performance of teams.

4.3 Significance testing

Comparisons between the various network metrics are made using statistical analysis. The compar-

ison is performed according to teams and match outcome (win, draw, loss) in three different ways:

comparing the means of the teams, comparing the means of the match outcomes, and comparing the

win and loss means per team. With this comparison we want to examine whether network metrics

are related to performance. To test for statistically significant differences between the means of the

network metrics, several tests are used. The null hypothesis of these tests is that the means of the

groups are the same, the alternative hypothesis is that at least one of the means is different.

First, the metrics are analysed for normality using the Shapiro-Wilk test (Shapiro and Wilk, 1965).

After this, Levene’s test is used for homogeneity of variance across groups (Levene, 1961). For metrics

that have a normal distribution according to the Shapiro-Wilk test and equal variances according to

Levene’s test, the one-way ANOVA test is used (Howell, 2009). In the case of normality but not

equal variances, the approximate method of Welch is used (Welch, 1947). The Kruskall-Wallis test is

used as alternative to the one-way ANOVA test for metrics that do not have a normal distribution.

(Kruskal and Wallis, 1952). This is a non-parametric test, which means that it does not assume

anything about the underlying distribution. Thus, equal variances across the groups are not relevant

in this case.

4.4 Correlation analysis

To assess dependence between network metrics and goal statistics, a correlation analysis is performed.

For this analysis we consider the Pearson’s correlations. Correlation coefficients are calculated for the

number of goals, the number of conceded goals and the goal difference. Those can be associated to at-

tack ability, defense ability and overall strength, respectively. Confidence intervals for the correlation

coefficients are calculated using Fisher’s z transformation (Fisher, 1915). With this transformation,

the sampling distribution becomes normally distributed and 95% confidence intervals can be calcu-

lated. The strength of the correlation coefficients is interpreted according to Evans’ classification

(Evans, 1996): very weak (≤ 0.20); weak (between 0.20 and 0.40); moderate (between 0.40 and 0.60);

strong (between 0.60 and 0.80); very strong (between 0.80 and 1).

4.5 Cluster analysis

Cluster analysis is performed to find groups of teams that behave similarly in terms of network

metrics. We investigate whether these clusters are related to performance (the final ranking) of the

teams. Clustering is the grouping of observations such that observations in the cluster are considered

more similar compared to observations in other clusters. K-means clustering is the most popular

method for clustering. Here, the observations are partitioned in k clusters and assigned to the closest

cluster centroid. For further details on the k-means clustering algorithm, we refer to Lloyd (1982).
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We use the means of all network metrics per match as data for the clustering. To determine the

optimal size k, a plot with the total within-cluster sum of squares (WSS) for different values of k

is created. The elbow approach is used to determine the optimal size for k. Here, when the elbow

(bend) in the plot is chosen as optimal k, the WSS does not decrease much when adding another

cluster. Teams are given the cluster to which most observations (matches) are assigned.

5 Predictive analysis

In this section we describe the predictive analysis for investigating the predictive power of the network

metrics. An overview is given of the baseline methods, implemented regression and classification

models, feature selection and model evaluation.

5.1 Overview implemented models

We consider two approaches for the predictive analysis: modelling the number of goals (goal-based)

and modelling the football match outcomes (result-based). For the first approach, we want to predict

the number of goals scored by both teams. Since the dependent variable is continuous, this is

regression predictive modeling. The latter approach predicts whether a match results in a win,

draw or loss for the home team. This is classification predictive modeling. We investigate whether

the network metrics have any predictive power. For this purpose, predictive models with and without

inclusion of the network metrics as predictor variables are compared. We implement several machine

learning models, in particular linear regression and tree-based models. The predictive performance of

the models is compared to various baseline methods. The implemented goal-based models are: linear

regression, Poisson regression, Lasso and Ridge regression, Multivariate Adaptive Regression Spline,

random forest and gradient boosting models. The implemented result-based models are the naive

Bayes classifier, multinomial logistic regression, Support Vector Machine, random forest and gradient

boosting models. The details of the models are explained below.

5.2 Baseline methods

5.2.1 Goal-based

For the goal-based models, we consider two baseline methods. The first method randomly samples

the number of goals for both teams using the proportions of the number of goals from the training

set. The second baseline method takes the average goals scored by the team in the previous three

matches. The second baseline method is more advanced and expected to have better performance.

5.2.2 Result-based

For the modelling of match outcome, we consider three different baseline methods:

1. Randomly sampling a win, draw or loss based on the proportions in the training set.

2. The team with the highest rank in the matchweek wins, if the teams have an equal rank then

the outcome is set to a draw. This is the most advanced baseline method.

3. The most frequent match outcome out of the previous three matches is selected for the home

team. If the outcomes have the same frequency, then the outcome is set to a win for the home

team.
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5.3 Goal-based models

5.3.1 Linear regression

The linear regression is the most basic and commonly used regression model. It aims to find a linear

relationship between a dependent variable and predictor variables. The general specification for a

linear regression is given by

yi = xiβ + εi, (5)

where yi refers to the dependent variable, xi the vector of predictor variables, β the parameter vector

and εi the error term. Here, the dependent variable is the number of goals scored by one team. The

model is fitted using the least squares method, which minimizes the residual sum of squares (RSS):

RSS =

N∑
i=1

(yi − xiβ)2 =

N∑
i=1

(yi − ŷi)2. (6)

Since we are not sure about the importance of all the predictor variables, variable selection is also

performed. Variable selection eliminates irrelevant variables, hereby improving model interpretation,

reducing model complexity and possibly decreasing the prediction error (Hastie et al., 2005). We

perform two approaches: forward and backwards variable selection. During forward selection, the

variable that improves the model fit the most is sequentially added. Backwards variable selection

starts with all variables and then sequentially removes the variable that least improves the model fit.

The best model is chosen based on the maximum value of the adjusted R2.

5.3.2 Lasso and Ridge regression

Since the linear regression can have high variance, we also consider regularization methods. Two

mainly used regularization methods are the Ridge regression (Hoerl and Kennard, 1970) and the

Lasso regression (Tibshirani, 1996). The methods add a penalty to the error function which introduces

some bias, but reduces variance. This prevents the model from overfitting and can improve predictive

performance. Coefficients are shrunk to zero by minimizing a penalized residual sum of squares. In

the case of Ridge regression, this penalized RSS is equal to

RSS + λ

p∑
j=1

β2
j , (7)

and for Lasso regression it is

RSS + λ

p∑
j=1

|βj |. (8)

Here, p is the number of parameters in the model and λ is the tuning parameter which controls the

strength of the penalty. Regularization is especially useful when the number of parameters is large

or when there is multicollinearity. Lasso regression also enables us to perform variable selection,

since coefficients can become exactly zero. To find the optimal value for λ, we perform five-fold

cross-validation with a sequence of 100 λ values ranging between λ = 10−3, ..., 105. The λ with the

smallest cross-validation error is selected for the model. We fit the model using the glmnet package

in R (Friedman et al., 2010).

5.3.3 Poisson regression

The Poisson regression is most widely used in literature for the modelling of the number of goals. A

Poisson regression is a Generalized Linear Model used for count data. It assumes that the dependent
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variable follows the Poisson distribution and models the logarithm of the expected value as a linear

combination of the predictor variables. Thus,

log(E(yi|xi)) = xiβ. (9)

The number of goals is non-negative and discrete, and can be therefore be considered as count data.

The Poisson regression assumes equal mean and variance of the dependent variable. When the

variance is larger than the mean, also called over-dispersion, the quasi-Poisson model can be used.

Here, the variance is modelled as the mean multiplied by a dispersion parameter. For further details

and estimating methods regarding the Poisson and quasi-Poisson regression model, we refer to the

work of Ver Hoef and Boveng (2007).

5.3.4 Multivariate Adaptive Regression Spline (MARS)

A more flexible, non-parametric regression technique popular for modelling high-dimensional data

is MARS (Friedman et al., 1991). Advantages of MARS over the previously described regression

models are that MARS automatically performs variable selection, finds knots and detects non-linear

relationships and interactions between variables. The model has the form

f̂(x) =

M∑
m=1

amBm(x). (10)

It is a weighted sum of basis functions Bm(x). The basis function can be a hinge function or a

product of two or more hinge functions. A hinge function is defined as (x− c)+ or (c− x)+, with

(x− c)+ =

x− c, x > c,

0, otherwise,
and (c− x)+ =

c− x, if x < c,

0, otherwise.
(11)

The model is build using the forward and backward stepwise procedure. The forward procedure

sequentially adds pairs of basis functions, searching over all possible combinations. In the backward

stepwise procedure, basis functions that contribute the least to the fit of the model are eliminated.

For further details on MARS, we refer to the work of Friedman et al. (1991). We fit the MARS model

using the earth package in R (Milborrow, 2019). A grid search is performed over two parameters:

the degree of interactions (degree) and the number of retained terms (nprune). The parameter grid

is defined in Table 7. Five-fold cross-validation is performed to find the best parameters.

Table 7: Parameter grid for MARS.

Parameter Values

Degree 1, 2, 3

Nprune 2, 4, ..., 100

5.4 Result-based models

5.4.1 Naive Bayes Classifier

The first implemented result-based model is the naive Bayes classifier. We use this model since it

is simple, fast and can perform well on complex data. The naive Bayes classifier is a classification

algorithm based on Bayes’ theorem. This theorem describes the posterior probability of an event

20



using prior knowledge. Using Bayes’ theorem, the probability of a class Ck given the feature vector

X can be described as

P (Ck|X) =
P (X|Ck)P (Ck)

P (X)
. (12)

The method is called naive because all features are assumed to be independent. Also, the Gaussian

distribution is assumed for a feature vector x given the class Ck. That is,

P (X = x|Ck) =
1√

2πσ2
k

e
− (x−µk)2

2σ2
k . (13)

Here, µk and σ2
k refer to the mean and variance of the values of X for class Ck. Due to the simpli-

fications of the naive Bayes classifier, we do expect the other classification methods to have better

performance.

5.4.2 Multinomial logistic regression

We also implement the multinomial logistic regression. Similar to the linear regression model, the

multinomial logistic regression is easy to implement, does not require parameter tuning and gives

interpretable results. Multinomial logistic regression is a classification method that extends the

logistic regression to multiclass outcomes. If we assume that there are J discrete outcomes, then these

outcomes follow the multivariate Bernoulli distribution, with P (yi = j) = πij and
∑J
j=1 πij = 1. Since

the probabilities are bounded between 0 and 1, and the probabilities have to sum to 1, the logistic

function is chosen for modelling πij .

P (yi = j|xi;β1, ...βl))) =
exp(xiβj)∑J
l=1 exp(xiβJ))

, for l = 1, ..., J. (14)

Here, xi is the vector of predictor variables and βj the parameter vector for outcome j. For parameter

identification, we impose outcome J as the base category and set βJ to zero. Now the model assumes

that the log-odds are a linear combination of the predictor variables. The log-odds ratio for outcome

j versus outcome J is defined as

`j|J =
πij
πiJ

= xiβj . (15)

The parameters are estimated using Maximum Likelihood Estimation.

5.4.3 Support Vector Machine

The next model we implement popular for solving classification tasks is the Support Vector Machine

(SVM). SVMs are known for being extremely effective when dealing with high-dimensional feature

spaces (Baboota and Kaur, 2019). They find the separating margin hyperplane that gives maximal

and equal distance to all the outcome classes (Boser et al., 1992). Observations close to the optimal

separating hyperplane are called support vectors; others are considered irrelevant for finding the

optimal separation. The objective function of the SVM consists of a part that maximizes the margin

and a part that minimizes the classification error. Let the binary variable yi ∈ {−1, 1} and the

training data xi = (x
(1)
i , . . . , x

(n)
i ) ∈ Rn, then the primal optimization problem is given by

Min
w,b,ξ

1

2
wᵀw + C

N∑
i=1

ξi

subject to yi(w
ᵀφ(xi) + b) ≥ 1− ξ, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N.

(16)
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Here, w represents the weight vector, ξ the slack variable to allow misclassifications and b the bias.

The first part of the minimization function maximizes the margin, where the margin width between

both hyperplanes is equal to = 2
||w||2 . The second part minimizes the sum of the distances for all

misclassifications. C represents the cost parameter that determines the trade-off between margin

width and classification error. φ(·) is a non-linear function, related to the kernel trick. When the

data is not linearly separable, the kernel transforms the data into a higher-dimensional space so that

linear separation is possible. The kernel is equal to K(xi, xj) = φ(xi)
ᵀφ(xj). The kernels that are

most commonly used are the linear kernel (xᵀi xj), polynomial of degree d kernel (γxᵀi xj + r)d, sig-

moid kernel (tanh{γxᵀi xj + r}) and radial basis function (RBF) kernel (exp{−γ||xi − xj ||2}). The

primal optimization problem is converted into a dual problem that can easily be solved by applying

Lagrangian multipliers. The SVM can only deal with binary classification. To allow for multi-class

classification, the one-against-one technique is used. In the one-against-one technique k(k−1)
2 binary

classifiers are constructed, where k is the number of outcome classes (Karatzoglou et al., 2006). Here,

each pair of outcome classes is trained against each other. The final class is then chosen based on a

voting scheme, where the most frequently predicted class is selected as final class. For further details

on the optimization of the SVM and the use of kernels, we refer to Vapnik (2013).

We implement the different kernels and perform a grid search to find the optimal parameters us-

ing five-fold cross-validation. The main parameters that require tuning are the cost parameter C

and the γ parameter. A higher C will result in less classification errors, but comes with the risk of

overfitting. The γ parameter determines how widespread the influence is of observations. If γ is large,

more observations will be used for determining the optimal separating hyperplane. The grid search

evaluates the following values for the two parameters: C = 2−5, 2−3, ..., 215 and γ = 2−15, 2−14, ..., 25.

For the polynomial kernel we also consider values of 0, 1, ..., 6 for the degree parameter. We use

the e1071 package in R to model the SVM (Meyer et al., 2019). Attractive features of the SVM

include the use of kernels for non-linear separation, the absence of local minima solutions and good

prediction accuracy.

5.5 Goal-based and result-based models

5.5.1 Random forest

The first method implemented for both regression and classification predictive modelling is the random

forest. It is a tree-based machine learning method developed by Breiman (2001). The random forest

is an ensemble method that combines predictions of multiple decision trees into a single prediction.

Decision trees are popular algorithms in machine learning. They are easy to use and interpret, but

they are prone to overfitting and unstable due to high variance. Random forests are able to overcome

these problems. In a random forest, predictions from multiple de-correlated decision trees are averaged

(Hastie et al., 2005). To reduce variance, the trees are taught on bootstrap samples and aggregated

(bagging). Bootstrapping is randomly sampling from the data with replacement. Bootstrap samples

are considered to be independent and representative for the true underlying distribution. The results

of the trees build on bootstrap samples are then aggregated. By combining these trees, the variance is

reduced and the weak learners are turned into a strong learner. The variance of this bagged estimator

is equal to

ρσ2 +
1− ρ
B

σ2, (17)
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where ρ is the pairwise correlation and B the number of trees. Thus, variance can further be reduced

by reducing the pairwise correlation ρ. Therefore, another source of randomness is introduced by

splitting on a random subset of features. For each split in the trees, m of the p input variables are

chosen at random as candidates for splitting. For regression, m = p/3 and for classification m =
√
p

is recommended (Breiman, 2001). The random forest algorithm can be summarized as follows:

1. Create B subsamples by sampling with replacement from the data.

2. For each subsample, create a decision tree to obtain an ensemble of B decision trees. Before

each split in the decision tree, m input variables are randomly chosen as candidates for splitting.

3. Obtain the final prediction by taking the average prediction of the B trees (regression) or by

taking the majority vote (classification).

Random forests are known to have good predictions on complex data, high speed and limited sensi-

bility with respect to the choice of parameters. Model interpretability is more difficult compared to

decision trees, however, the importance of variables can be examined by looking at the mean decrease

in impurity measures such as the Gini index.

A randomized grid search is performed to find the optimal model. Contrary to a regular grid search,

where every parameter combination is tried, a randomized grid search tries randomly selects param-

eter combinations. This decreases computation time, which enables it to search a larger parameter

space (Bergstra and Bengio, 2012). We use the ranger package in R for implementing the random

forest (Wright and Ziegler, 2015). The following parameter grid with five-fold cross-validation and

100 iterations is used:

Table 8: Parameter grid for random forest.

Parameter Values

Estimators 100, 150, 200, ..., 500

Max depth 5, 10, 15, ..., 100, None

Min samples split 2, 5, 10, 15, 100

Max features p/3,
√
p, log2(p)

Min samples leaf 1, 2, 5, 10

Bootstrap True, False

The number of estimators refers to the number of trees in the forest. With a large number of trees,

the forest can capture more information. However, a large number of trees can make the training

time for the random forest very long. The maximum depth represents how deep each tree can get.

The deeper the tree, the more information the tree can capture. The minimum samples split is the

minimum samples required for a split at a decision node; the minimum samples leaf is the minimum

number of samples required to be at an end node; the maximum features represents the number of

randomly chosen features m to split on for each tree.

5.5.2 Gradient boosting

The final implemented model for both regression and classification is gradient boosting trees. Com-

pared to the random forest, which performs bagging, gradient boosting is more focused on reducing

bias than variance. Boosting is an ensemble algorithm developed by Freund and Schapire (1997).
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It iteratively converts a set of weak learners into a strong learner by reweighting the weak learners

based on the accuracy. A weak learner has an error rate that is slightly better than random guess-

ing (Hastie et al., 2005). The most popular boosting algorithm is the AdaBoost.M1 algorithm for

classification from Freund and Schapire (1997). This algorithm sequentially applies weak learners to

modified versions of the data, where more weight is given to observations that are difficult to classify.

The final prediction for a multiclass classification is

ĝM (x) = argmax
y∈Y

M∑
m=1

αm1(gm(x) = y), (18)

where αm is the weight from weak classifier gm(x), based on the error of the classifier, and M the

number of weak classifiers. Better learners are exponentially given more weight. For further details

on the Adaboost algorithm we refer to Freund and Schapire (1997). As shown by Breiman (1999)

and Friedman et al. (2000), the algorithm is similar to a forward stagewise additive model with

exponential loss function

L(y, f(x)) = exp(−yf(x)). (19)

Gradient boosting was proposed by Friedman (2001) and is focused on the idea of boosting as opti-

mizing a loss function using a gradient descent procedure. The AdaBoost algorithm is a special case

of gradient boosting that uses the exponential loss function. Gradient boosting is more flexible since

the user can define the loss function. However, a problem with ensembles of trees, like the random

forest and gradient boosting trees, is that training the trees can take long for large, high-dimensional

datasets.

Chen and Guestrin (2016) propose a scalable machine learning system for tree boosting: Extreme

Gradient Boosting (XGB). Over the past years this has been the winning algorithm in many machine

learning challenges. The main difference between gradient boosting and XGB is that it has a regu-

larized model formalization to control overfitting, which penalizes more complex models. XGB also

uses some algorithmic optimizations and implementations that improve execution speed and model

performance. These include automatic sparse data optimization, parallel and distributed computa-

tion and an effective cache-aware block structure for out-of-core tree learning.

In this research we implement two different boosting algorithms: Gradient Boosting Trees (sklearn.ensemble

module from Python’s scikit-learn package) and XGB Regressor (XGBoost package from Python).

We perform a randomized search with five-fold cross-validation and 100 iterations on the following

grid for Gradient Boosting Trees:

Table 9: Parameter grid for Gradient Boosting Trees.

Parameter Values

Estimators 100, 150, 200, ..., 500

Max depth 3, 5, 7, 15, 25, 30, 50

Min samples split 2, 5, 10

Max features auto, sqrt, log2

Min samples leaf 1, 2, 4
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For XGB we use the following grid:

Table 10: Parameter grid for XGB.

Parameter Values

Estimators 100, 150, 200, ..., 500

Max depth 3, 5, 7, 15, 25, 30, 50

Min samples split 2, 5, 10

Min samples leaf 1, 2, 4

λ 0.01, 0.015, 0.025, 0.05, 0.075, 0.1, 1

α 0, 0.1, 0.5, 1

Min child weight 0.001, 0.01, 1, 3, 5, 7

Colsample by tree 0.6, 0.7, 0.8, 0.9, 1

Subsample 0.6, 0.7, 0.8, 0.9, 1

The α and λ parameters control the L1 and L2 regularization term on the weights (Chen and Guestrin,

2016). These regularization parameters can help reduce model complexity and increase performance.

The minimum child weight corresponds to minimum number of instances needed to be in each node.

The colsample by tree is the same as the max features used in the random forest and gradient boosting

trees. It is the fraction of variables to be randomly sampled for each tree. Subsample is the fraction

of randomly sampled instances used to build each tree.

5.6 Feature selection and multicollinearity threshold

Feature selection can improve model interpretability, increase predictive performance and reduce

model complexity. We include the option of using no feature selection, using lasso regression as

feature selection or using the correlation method as feature selection. With no feature selection, we

include all variables for prediction. Lasso regression, as described in Section 5.3.2, performs feature

selection by shrinking coefficients to zero. The correlation method excludes features that have a

correlation of lower than 0.1 with the dependent variable.

We also include the option to use a multicollinearity threshold. Multicollinearity is the phenomenon

of a predictor variable being highly correlated to one or more other predictor variables, resulting in a

relatively large standard error (Allen, 1997). Incorporating highly correlated variables in a regression

model thus leads to unstable regression coefficients and undermining of the statistical significance of

the predictor variables. As a solution to multicollinearity, we include the option of removing highly

correlated variables. If the correlation between two numeric predictor variables is larger than 0.75,

one of the predictor variables is arbitrarily removed from the data.

5.7 Model evaluation

To evaluate the models, the data is split into a train set (75%) and a test set (25%). Since many

predictor variables are based on averages over the past three matches, those predictor variables will

be less well-defined for the first three matchweeks. To deal with this problem, we consider the first

two matchweeks as a warm-up period and remove them from the training data. The data consists of

380 matches over 38 matchweeks. For the goal-based models, each match results in two observations,

while for the result-based models we have one observation per match. Table 11 provides an overview

of the warm-up, train and test set for both modelling approaches.
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Table 11: Overview of the matchweeks and number of observations for the warm-up, train and test

set.

Goal-based model Result-based model

Warm up: matchweeks 1-2 1-2

Warm-up: number of observations 40 20

Train set: matchweeks 3-29 3-29

Train set: number of observations 540 270

Test set: matchweeks 30-38 30-38

Test set: number of observations 180 90

For parameter tuning of the models, cross-validation is used over the train set. Cross-validation splits

the data into K folds, where the model is trained on K − 1 folds and predictions are made for the

remaining fold k. This process is repeated for k = 1, ...,K and the test error is averaged. Cross-

validation prevents the model from overfitting. The parameters that minimize the cross-validation

error are selected for the model. The performances of the different models over the test set will be

compared using either regression or classification evaluation metrics.

5.7.1 Regression evaluation metrics

For evaluating the predictive performance of the goal-based models, we use the Mean Squared Error

(MSE) and Mean Absolute Error (MAE). The MSE takes the square of the error and is calculated

by

MSE =
1

N

N∑
i=1

(yi − ŷi)2. (20)

Thus, larger errors have a relatively larger effect on the score, making it sensitive to outliers. A metric

that is less sensitive to outliers is the MAE. It is given by

MAE =
1

N

N∑
i=1

|yi − ŷi|. (21)

All observations have equal weight in the MAE. The MAE has a more intuitive interpretation com-

pared to the MSE.

5.7.2 Classification evaluation metrics

For the result-based models, we consider other evaluation metrics, including the accuracy, precision,

recall and F1 score. For the precision, recall and F1 score we consider both the weighted score for all

match outcomes and the weighted score only considering wins and losses. To clarify the definitions

of these evaluation metrics, we use the confusion matrix for match outcomes.

Table 12: Confusion matrix for the match outcome.

Predicted Class

True Class Win Draw Loss

Win n11 n12 n13

Draw n21 n22 n23

Loss n31 n32 n33
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The accuracy is then defined as
n11 + n22 + n33

n11 + n12 + n13 + n21 + n22 + n23 + n31 + n32 + n33
.

Precision and recall are calculated per class. As example, we illustrate the precision and recall for

win outcomes. Precision is then defined as
n11

n11 + n21 + n31

and recall is defined as n11
n11 + n12 + n13

.

The precision is focused on how precise your predictions for a class are, while recall looks from the

perspective of the actual class outcome. For example, if we do not often predict a win compared to

the actual number of wins, but all predicted wins are actual wins, the precision is high and the recall

low. The F1 score finds a balance between precision and recall. It is defined as

F1 =
2× precision× recall

precision + recall

for each class. Combining the metrics for the classes is done by weighting the scores based on the

proportions of the classes.

6 Results Exploratory Analysis

6.1 Adjacency matrix

The adjacency matrix is calculated for all matches and teams in the dataset. As an example, we

provide the adjacency matrices of the passing networks for a match between Manchester City (ended

first place) and Brighton & Hove Albion (ended 15th place) on May 9, 2018. The final score of this

match was 3 - 1. For Manchester City and Brighton & Hove Albion, the adjacency matrices are given

in Table 13 and 14, respectively.

Table 13: Adjacency matrix for the passing network of Manchester City during the match Manchester

City - Brighton & Hove Albion.

To/of Players

Players Bravo Laporte Kompany Touré Danilo Zinchenko Sané Gündoğan de Jesus
Bernardo

Silva
Fernandinho Passes performed

Bravo - 0 3 0 0 2 0 1 0 0 1 7

Laporte 3 - 16 10 2 13 3 11 0 1 12 71

Kompany 5 11 - 18 14 19 0 13 5 7 7 99

Touré 0 10 19 - 6 21 8 6 7 6 8 91

Danilo 0 9 15 2 - 4 3 6 0 7 5 51

Zinchenko 1 13 19 17 4 - 9 7 4 0 8 82

Sané 0 1 0 6 1 8 - 9 4 0 6 35

Gündoğan 0 9 15 12 6 13 3 - 0 1 10 69

de Jesus 0 0 4 6 2 1 2 5 - 2 4 26

Bernardo Silva 0 1 3 7 12 1 2 3 0 - 7 36

Fernandinho 1 8 7 9 6 12 7 12 3 7 - 72

Passes received 10 62 101 87 53 94 37 73 23 31 68

Total interactions 17 133 200 178 104 176 72 142 49 67 140 1278

The total number of interactions of Manchester City is quite high (1278 interactions). Also, the

amount of passes received and performed differs largely per player. Kompany has the largest amount

of interactions (200), with 101 passes received and 99 passes performed. Kompany and Zinchenko

are the players with the most interactions, with 19 passes played to Zinchenko and 19 passes received

from Zinchenko. The goalkeeper, Bravo, has the lowest amount of interactions.
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Table 14: Adjacency matrix for the passing network of Brighton & Hove Albion during the match

Manchester City - Brighton & Hove Albion.

To/of Players

Players Pröpper Stephens Saltor Knockaert Duffy Groß Izquierdo Dunk Ryan Ulloa Bong Passes performed

Pröpper - 3 1 1 0 3 0 1 0 1 1 11

Stephens 2 - 3 2 4 3 0 2 3 1 5 25

Saltor 4 1 - 9 4 5 0 3 3 1 0 30

Knockaert 3 6 8 - 1 5 0 0 0 0 0 23

Duffy 1 2 3 1 - 2 0 3 3 1 1 17

Groß 1 5 9 2 2 - 0 0 0 4 0 23

Izquierdo 1 1 0 1 0 0 - 0 0 0 2 5

Dunk 0 3 2 1 2 2 1 - 0 0 2 13

Ryan 1 1 1 0 0 0 0 0 - 0 0 3

Ulloa 1 4 1 1 0 3 1 2 0 - 1 14

Bong 0 1 0 1 0 0 3 2 0 2 - 9

Passes received 14 27 28 19 13 23 5 13 9 10 12

Total interactions 25 52 58 42 30 46 10 26 12 24 21 346

Brighton & Hove Albion only has a total of 346 successful interactions. The player with the most

interactions is Saltor with 58 passes received and performed. The amount of interactions is much

lower compared to Manchester City, indicating that the number of interactions might be related to

performance of the teams. Also, a few players barely perform any successful passes. Izquierdo, the

left winger, has the least successful interactions for Brighton & Hove Albion during this match.

6.2 Visualization passing networks

Passing networks are visualized using R. We again analyse the match between Manchester City and

Brighton & Hove Albion. Figure 2 and 3 present the undirected passing networks of the total match

for Manchester City and Brighton & Hove Albion. The position of the nodes is the average position

of a player for a successful pass. The nodes are sized according to node out-degree, described in

Section 4.2.1. Edge size is based on the number of successful passes between two players. Both are

rescaled to improve readability. Here, the minimum number of passes for an edge to be created is set

to three.

Figure 2: Undirected passing network for Manchester City during the match Manchester City -

Brighton & Hove Albion.
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Figure 3: Undirected passing network for Brighton & Hove Albion during the match Manchester City

- Brighton & Hove Albion.

These visualizations again show that the players of Manchester City are better connected compared

to Brighton & Hove Albion. Also, the average position of the players of Manchester City is mostly

on the half of the opponent and the playing area is more dense, while Brighton & Hove Albion’s

average position is closer to their own goal and their average position is more spread around. We

also considered directed passing networks. The directed passing networks of both teams are shown in

Figure 4. The direction of a pass is indicated by an arrow. These figures also show that the players of

Manchester City have more interactions between them. Visualizations of the undirected and directed

passing networks by half for this specific match are given in Appendix C.

(a) Manchester City. (b) Brighton & Hove Albion.

Figure 4: Directed passing networks for both teams during the Manchester City - Brighton & Hove

Albion match.
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6.3 Comparison network metrics

Statistical tests are performed for comparing the network metrics according to match outcome, team,

and win or loss per team. Table 15 presents the means (SD) of the network metrics for a win, draw and

loss, the statistical test performed and the corresponding p-value. The eigencentrality metrics, the

betweenness score and the average change in x are not statistically different for the match outcomes.

For the other network metrics, at least one of the means is different. Among others, the clustering

coefficient, largest eigenvalue, algebraic connectivity and position of x are higher for winning teams

compared to losing teams. These values are 4.11 versus 2.94 for clustering coefficient, 34.57 versus

25.31 for largest eigenvalue, 8.04 versus 5.94 for algebraic connectivity and 30.47 versus 27.15 for

position of x. Also, winning teams have a smaller average shortest path (0.42 versus 0.51) and a

larger mean degree (7.12 versus 6.75). For draws, the mean values are mostly closer to the mean loss

values. The average change in y is largest for draw outcomes.

Table 15: Mean (SD) values, p-value and corresponding statistical test for the comparison of the

network metrics according to a win, draw and loss match outcome.

Network features Win Draw Loss p-value test Difference

Number of matches 281 198 281

Clustering coefficient 4.11 (2.39) 3.09 (1.56) 2.94 (1.47) <0.001 Kruskall-Wallis Yes

Clustering coefficient

local
0.29 (0.04) 0.31 (0.05) 0.31 (0.04) <0.001 Kruskall-Wallis Yes

Clustering coefficient

global
0.84 (0.08) 0.82 (0.07) 0.83 (0.07) <0.001 Kruskall-Wallis Yes

Largest eigenvalue 34.57 (18.15) 26.43 (12.06) 25.31 (11.42) <0.001 Kruskall-Wallis Yes

Algebraic connectivity 8.04 (4.68) 6.15 (3.59) 5.94 (3.25) <0.001 Kruskall-Wallis Yes

Max eigencentrality 0.47 (0.04) 0.47 (0.04) 0.46 (0.05) 0.560 Kruskall-Wallis No

Sd eigencentrality 0.12 (0.02) 0.12 (0.02) 0.12 (0.02) 0.219
One-way analysis

of means
No

Mean eigencentrality 0.28 (0.01) 0.28 (0.01) 0.28 (0.02) 0.505 Kruskall-Wallis No

Closeness 0.20 (0.06) 0.17 (0.05) 0.17 (0.04) <0.001 Kruskall-Wallis Yes

Betweenness 8.37 (1.19) 8.43 (1.13) 8.23 (1.09) 0.124 Kruskall-Wallis No

Average shortest path 0.42 (0.20) 0.50 (0.22) 0.51 (0.20) <0.001 Kruskall-Wallis Yes

Position x 30.47 (6.05) 27.99 (5.07) 27.15 (4.96) <0.001
Approximate

method of Welch
Yes

Position y 31.15 (5.56) 28.82 (4.63) 29.12 (4.68) <0.001
Approximate

method of Welch
Yes

Dispersion 29.84 (1.35) 30.04 (1.31) 29.73 (1.36) 0.043 Kruskall-Wallis Yes

Dispersion position x 27.27 (1.60) 27.59 (1.76) 26.84 (1.84) <0.001 Kruskall-Wallis Yes

Average change x 0.99 (0.67) 1.00 (0.77) 0.94 (0.70) 0.516
One-way analysis

of means
No

Average change y 0.18 (0.68) 0.30 (0.72) 0.11 (0.75) 0.023
One-way analysis

of means
Yes

Closeness binary 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) <0.001 Kruskall-Wallis Yes

Betweenness binary 2.91 (1.14) 3.36 (1.10) 3.33 (1.09) <0.001 Kruskall-Wallis Yes

Average shortest path binary 1.29 (0.12) 1.34 (0.11) 1.33 (0.11) <0.001 Kruskall-Wallis Yes

Mean degree 7.12 (1.06) 6.73 (0.92) 6.75 (0.94) <0.001 Kruskall-Wallis Yes

Sd degree 1.62 (0.34) 1.70 (0.31) 1.69 (0.32) 0.018
One-way analysis

of means
Yes

Max degree 9.28 (0.88) 9.11 (0.87) 9.10 (0.90) 0.007 Kruskall-Wallis Yes
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The network metrics per team are given in Appendix D. All network metrics are statistically different

based on a 5% significance level. The means and standard deviation differ largely per team. For

easier comparison we also provide boxplots of the network metrics, ordered by final ranking of the

teams. Appendix E presents the final ranking of the teams and Appendix F shows the boxplots. The

teams with a better final ranking have in general a higher clustering coefficient, lower local clustering

coefficient, higher global clustering coefficient, higher largest eigenvalue, higher algebraic connectivity,

higher closeness score, lower average shortest path, higher x and y position, higher average change in

x and a higher mean degree compared to lower ranked teams. The eigencentrality metrics, dispersion,

average change in y and maximum and standard deviation for degree appear to be more similar for

the teams.

Appendix G contains the season plots for the network metrics of teams that ended high in final

ranking (Manchester City, Manchester United), middle (Newcastle United) and low (Stoke City,

West Bromwhich Albion). For all matches in the season, the mean values are plotted per team.

These plots show that Manchester City, followed by Manchester United, mostly has the highest val-

ues for the clustering coefficient, largest eigenvalue, algebraic connectivity, closeness, position of x and

mean degree, and the lowest for average shortest path. Newcastle United seems closer to the lowest

performing teams in terms of metrics, Stoke City and West Bromwich Albion. Finally, Appendix H

shows the network metrics according to win and loss per team. Most network metrics do not differ

for a win or loss. West Bromwich Albion, that finished last in the season, differs mostly in network

metrics for a win and a loss.

6.4 Correlation analysis

Figure 5 represents the correlations between the individual network metrics and the number of goals,

number of conceded goals and goal difference. Those can be associated to attack ability, defense

ability and overall strength, respectively. The clustering coefficient, largest eigenvalue, algebraic

connectivity, closeness and position of x have the largest positive (negative) correlation for number of

goals and goal difference (goals conceded). The average shortest path has a large negative correlation

with the number of goals and goal difference. For the other networks metrics, there seems to be a

very weak relationship or no relationship at all.

(a) Correlation clustering coeffi-

cient.

(b) Correlation local clustering

coefficient.

(c) Correlation global clustering

coefficient.

(d) Correlation largest eigen-

value.

(e) Correlation algebraic connec-

tivity.

(f) Correlation maximum eigen-

centrality.
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(g) Correlation standard devia-

tion eigencentrality.

(h) Correlation mean eigencen-

trality. (i) Correlation closeness.

(j) Correlation betweenness.

(k) Correlation average shortest

path. (l) Correlation position x.

(m) Correlation position y. (n) Correlation dispersion. (o) Correlation dispersion x.

(p) Correlation average change

in x.

(q) Correlation average change in

y.

(r) Correlation closeness (bi-

nary).

(s) Correlation betweenness (bi-

nary).

(t) Correlation average shortest

path (binary). (u) Correlation mean degree.
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(v) Correlation standard deviation degree. (w) Correlation maximum degree.

Figure 5: Correlation coefficients (95% confidence intervals) between the number of conceded goals,

the number of scored goals and the goal difference, and the individual network metrics.

6.5 Cluster analysis

The elbow plot showed that the optimal number of clusters is four. The assigned cluster, cluster

probability and final ranking for the Premier League teams are reported in Table 16. Table 17 shows

the mean values for the network metrics per cluster. Previous analyses showed that among others

the clustering coefficient, largest eigenvalue, algebraic connectivity, closeness, average shortest path,

position of x and mean degree mostly differ per team and/or are related to goal statistics. The first

cluster mostly contains matches of Manchester City, the winner of the season. The above mentioned

metrics are relatively higher for this cluster, with an exception for the average shortest path that is

relatively lower. The second cluster contains mostly matches from the teams with a final ranking

between two and seven. In general, the metrics that are high (low) for the first cluster are also high

(low) for the second cluster. The third cluster has the lowest mean values for the network metrics.

This cluster contains mostly matches for the lowest ranked teams, with approximately 63% of the

matches of Stoke City and 68% of the matches of West Bromwich Albion assigned to it. The mean

networks metrics for the fourth cluster are roughly in between the mean values for the second and

the third cluster.

Table 16: Assigned cluster, cluster probability and final ranking for the teams in the Premier League

2017-18 season.

Team Name Cluster
Cluster

probability

Final

ranking

1625 Manchester City 1 60.526 1

1609 Arsenal 2 47.368 6

1610 Chelsea 2 55.263 5

1611 Manchester United 2 47.368 2

1624 Tottenham Hotspur 2 52.632 3

1612 Liverpool 2 47.368 4

1646 Burnley 3 55.263 7

1639 Stoke City 3 63.158 19

1633 West Ham United 3 47.368 13

1613 Newcastle United 3 60.526 10

1627 West Bromwich Albion 3 68.421 20

1631 Leicester City 4 55.263 9

1651 Brighton & Hove Albion 4 68.421 15

1628 Crystal Palace 4 50.000 11

1673 Huddersfield Town 4 47.368 16

1623 Everton 4 55.263 8

10531 Swansea City 4 63.158 18

1619 Southampton 4 47.368 17

1644 Watford 4 60.526 14

1659 AFC Bournemouth 4 55.263 12
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Table 17: Mean values for the network metrics per cluster.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Clustering coefficient 8.092 5.005 1.635 3.097

Clustering coefficient local 0.272 0.281 0.332 0.298

Clustering coefficient global 0.914 0.883 0.767 0.839

Largest eigenvalue 64.610 42.113 14.804 26.661

Algebraic connectivity 13.742 9.615 3.793 6.320

Max eigencentrality 0.467 0.470 0.470 0.462

Sd eigencentrality 0.135 0.128 0.118 0.121

Mean eigencentrality 0.272 0.275 0.279 0.277

Closeness 0.290 0.231 0.128 0.177

Betweenness 8.487 8.449 8.293 8.282

Average shortest path 0.212 0.296 0.715 0.434

Position x 39.323 33.362 22.860 28.597

Position y 37.190 34.304 24.398 30.307

Dispersion 29.539 30.240 29.174 30.236

Dispersion position x 27.211 27.669 26.642 27.388

Average change in x 1.618 1.349 0.571 0.976

Average change in y 0.246 0.152 0.134 0.227

Closeness binary 0.086 0.083 0.071 0.078

Betweenness binary 1.754 2.298 4.303 3.025

Average shortest path

binary
1.175 1.230 1.434 1.303

Mean degree 8.246 7.716 5.853 7.002

Sd degree 1.555 1.670 1.660 1.695

Max degree 9.885 9.725 8.420 9.330

The clustering results are visualized in Figure 6. Principal components analysis (PCA) is performed

for plotting the observations according to the first two principal components that explain the majority

of variance. Cluster 3 and 4 have the most overlapping attributes.

Figure 6: Visualization of the k-means clusters using PCA.
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7 Discussion Exploratory Analysis

The adjacency matrix can be useful for identifying key players and pairs of players with a high amount

of interactions. Coaches and trainers can gain insight in the performance of players and quantify their

contribution to the team. Also, analysing the adjacency matrix over time allows for assessing progress

of players and the variability of relations between players. Especially the visualizations of the passing

network may provide useful insights. Besides the number of successful passes, the visualization dis-

plays the average x and y position of the players. These positions indicate how dense the playing area

is and can also be related to performance of the team. In our example we clearly see that Manchester

City, the winner of the match, plays closer to the goal of Brighton & Hove Albion. The visualization

allows for easier interpretation of the different interactions in a passing network and easier comparison

between multiple passing networks (first half versus second half, over time, between teams).

Comparing the network metrics according to match outcome, team, and win or loss per team, we

found clear differences. Greater values for the clustering coefficient, largest eigenvalue, algebraic con-

nectivity, position of x and mean degree were observed for winning teams compared to losing teams.

Also, the average shortest path for winning teams is smaller than for losing teams. The boxplots

with the network metrics per team ordered by final ranking are in line with these findings. Teams

with a higher final ranking have in general a higher clustering coefficient, higher largest eigenvalue,

higher algebraic connectivity, higher closeness, lower average shortest path, higher position of x and

y, higher average change in x and higher mean degree compared to lower ranked teams. The high

clustering coefficient and largest eigenvalue imply a robust and strong network, where well-connected

players are connected between them. The other network metrics imply that winning teams play closer

to the opponent’s goal and have a more interconnected team where the nodes are closer together.

Furthermore, correlation analysis showed that the clustering coefficient, largest eigenvalue, algebraic

connectivity, closeness and position of x are weakly positive related to the number of goals and goal

difference, and that there is a weak negative relation with the number of conceded goals. This sug-

gests that stronger teams with better attack and defense abilities have in general larger values for the

above mentioned metrics.

We also found that some network metrics are less related to the performance of a team. The eigen-

centrality, betweenness and the average change in x do not differ per match outcome. Correlation

analysis also showed no dependence between goal statistics and the eigencentrality, betweenness, dis-

persion, and average change in x and y. Finally, cluster analysis revealed four distinct groups of

observations based on the network metrics. They are again related to the final ranking, and thus

performance of the team. The matches of Manchester City are mostly assigned to one cluster, with

the best values for the previously mentioned network metrics. This implies that Manchester City has

a unique playing style which is clearly related to their good performance.
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8 Results Predictive Analysis

In this section we present the results for the goal-based and result-based models. We provide the

performance metrics for the models and show variable importance plots for the random forest models.

8.1 Goal-based models

Regression models are implemented for the prediction of the number of goals scored per team. The

models under consideration are linear regression (LR), linear regression with forward variable selection

(LR forward), linear regression with backward variable selection (LR backward), Poisson regression,

quasi-Poisson regression, Lasso regression, Ridge regression, MARS, random forest (RF), gradient

boosting trees (GB) and extreme gradient boosting (XGB). The models are run for the three feature

selection methods (no feature selection, Lasso regression, the correlation method) with and without

the multicollinearity threshold, resulting in 66 different model combinations. We also include the two

baseline methods, described in Section 5.2. Models are built on both the set of predictor variables

excluding and including the network metrics. The MAE and MSE are reported in Table 18 for the

models excluding the network metrics as predictor variables. For each model, we only report the best

feature selection and multicollinearity combination, ordered by MAE.

Table 18: The lowest Mean Absolute Error (MAE) and Mean Squared Error (MSE) per model.

Method Feature selection
Multicollinearity

threshold
MAE MSE

RF None False 0.887 1.296

GB Lasso False 0.889 1.297

MARS None False 0.898 1.4

XGB None True 0.913 1.388

Lasso regression Lasso True 0.922 1.362

Ridge regression Lasso True 0.941 1.393

LR Lasso False 0.963 1.476

Baseline 2 - - 1.037 1.727

LR backward Lasso True 1.099 2.004

LR forward Lasso False 1.102 1.979

Poisson regression Lasso False 1.265 2.664

quasi-Poisson regression Lasso False 1.265 2.664

Baseline 1 - - 1.367 3.478

The model with the lowest MAE and MSE is the random forest, with a MAE of 0.887 and MSE of

1.296. The random forest has an almost similar performance to the gradient boosting trees, with a

MAE of 0.889 and MSE of 1.297. The RF, GB, XGB, Lasso regression, MARS, Ridge regression and

LR all outperform the baseline methods. Their predictive performance appears to be quite similar.

The first baseline method is the worst performing method, with a MAE of 1.367 and MSE of 3.478.

Baseline 2 is performing slightly better, which is as we expected since it uses past team information.

Table 19 presents the MAE and the MSE for the models including the network metrics as pre-

dictor variables. The best model is again the random forest, with a MAE of 0.882 and MSE of 1.269.

Similar as previously, the RF, GB, XGB, Lasso regression, MARS and Ridge regression have a better

predictive performance than the baseline methods. Comparing the predictive performance of the
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models with and without the network metrics, we find that the results are quite similar. The random

forest including the network metrics has a MAE that is 0.005 smaller and a MSE that is 0.027 smaller

than the random forest excluding the network metrics. For the other models including the network

metrics, the MAE and MSE are also lower, but the differences are very small.

Table 19: The lowest Mean Absolute Error (MAE) and Mean Squared Error (MSE) per model.

Network metrics are included as predictor variables.

Method Feature selection
Multicollinearity

threshold
MAE MSE

RF Correlation False 0.882 1.269

GB Lasso True 0.883 1.286

XGB None True 0.893 1.297

Lasso regression None False 0.889 1.272

MARS None False 0.898 1.4

Ridge regression Lasso True 0.912 1.338

Baseline 2 - - 1.037 1.727

LR forward Lasso False 1.109 1.981

LR backward Lasso True 1.15 2.143

LR Correlation True 1.16 1.93

quasi-Poisson regression Lasso True 1.27 2.653

Poisson regression Lasso False 1.27 2.655

Baseline 1 - - 1.35 3.206

Figure 7 shows the variable importance of the 25 most important predictors for the random forest

model excluding network metrics.

Figure 7: Variable importance plot for the Random Forest model excluding network metrics.
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The wage and value difference between the competing teams are the most important variables for the

prediction of the number of goals scored. The average passes and consecutive passes over the past

three matches are also considered important. For the random forest including network metrics, the

25 most important variables are shown in Figure 8. Besides the wage and value differences, there are

many network metrics present in the most important variables. The algebraic connectivity over the

past three matches is most important. Other network metrics include the closeness scores, the binary

average shortest path and the clustering coefficient.

Figure 8: Variable importance plot for the Random Forest model including network metrics.

8.2 Result-based models

For the modelling of match outcome, different classification models were implemented. The predictive

performance of the methods on the set of predictor variables excluding and including the network

metrics are given in Table 20 and Table 21, respectively. The tables are ordered by accuracy and

weighted F1. For the classification models excluding the network metrics as predictor variables, the

best performing models in terms of accuracy are the SVM with a sigmoid and linear kernel. Their

accuracy is equal to 0.567 with a 95% confidence interval between 0.458 and 0.671. The Naive Bayes

model has the highest weighted F1 score. When only considering win and loss outcomes, the SVM

with a sigmoid kernel has the highest F1 score. The F1 scores for the win and loss are in general

higher than the weighted F1 score that also takes into account draws. All implemented models, except

the XGB and Multinomial model, outperform the baseline methods. However, when considering the

confidence intervals for the classification methods, most overlap. The second baseline method has a

quite good performance, which was as expected. The baseline method does not predict any draws,

but when only considering wins and losses it has a weighted F1 of 0.601. The third baseline method

has the worst predictive performance.

38



Table 20: Predictive performance metrics for the best feature selection and multicollinearity thresh-

old combination per model, excluding network metrics. Performance metrics include the accuracy,

weighted F1, weighted precision and weighted recall.

Method Feature selection
Multicollinearity

threshold
Accuracy CI lower CI upper

Weighted

F1

Weighted

precision

Weighted

recall

Win loss

F1

Win loss

precision

Win loss

recall

SVM linear None False 0.567 0.458 0.671 0.542 0.566 0.567 0.623 0.624 0.671

SVM sigmoid None False 0.567 0.458 0.671 0.507 0.55 0.567 0.627 0.612 0.714

Naive Bayes Correlation False 0.544 0.436 0.65 0.559 0.592 0.544 0.616 0.675 0.571

GB None False 0.544 0.436 0.65 0.538 0.615 0.544 0.593 0.702 0.586

RF Correlation False 0.544 0.436 0.65 0.531 0.542 0.533 0.559 0.602 0.614

SVM radial None True 0.544 0.436 0.65 NA NA 0.544 0.596 0.598 0.7

SVM polynomial None True 0.533 0.425 0.639 0.452 0.607 0.533 0.555 0.637 0.671

Baseline 2 - - 0.533 0.425 0.639 NA NA 0.533 0.601 0.536 0.686

Baseline 1 - - 0.511 0.404 0.618 0.512 0.517 0.511 0.536 0.547 0.529

XGB Lasso True 0.511 0.404 0.618 0.5 0.501 0.511 0.568 0.565 0.586

Multinomial Lasso True 0.511 0.404 0.618 0.497 0.512 0.511 0.557 0.563 0.586

Baseline 3 - - 0.367 0.268 0.475 0.377 0.396 0.367 0.413 0.448 0.386

Figure 9 shows the confusion matrices for the models with the highest accuracy: the SVM with a

linear kernel and the SVM with a sigmoid kernel. The SVM linear predicts more draws compared to

the SVM sigmoid, while the SVM sigmoid predicts more wins. The confusion matrices for the other

models can be found in Appendix I.

Predicted Class

True Class Win Draw Loss

Win 32 3 4

Draw 14 4 2

Loss 12 4 15

(a) SVM linear.

Predicted Class

True Class Win Draw Loss

Win 35 0 4

Draw 17 1 2

Loss 14 2 15

(b) SVM sigmoid.

Figure 9: Confusion matrices for the two best performing models in terms of accuracy: SVM linear

sigmoid and SVM sigmoid.

Table 21 shows the results for the classification models including the network metrics. From this

table we can see that the SVM sigmoid has the highest accuracy; the random forest has the highest

weighted F1. However, we again see that the 95% confidence intervals for the accuracy also overlap.

When only considering win and loss outcomes, the SVM sigmoid has the highest weighted F1. The

second baseline method outperforms many of the implemented models. Figure 10 shows the confidence

matrices for the SVM sigmoid and random forest. The SVM sigmoid does not predict any draws, but

correctly predicts more wins and losses.
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Table 21: Predictive performance metrics for the best feature selection and multicollinearity threshold

combination per model. Network metrics are included as predictor variables. Performance metrics

include the accuracy, weighted F1, weighted precision and weighted recall.

Method Feature selection
Multicollinearity

threshold
Accuracy CI lower CI upper

Weighted

F1

Weighted

precision

Weighted

recall

Win loss

F1

Win loss

precision

Win loss

recall

SVM sigmoid Lasso True 0.578 0.469 0.681 NA NA 0.578 0.649 0.584 0.743

RF Correlation False 0.544 0.436 0.650 0.532 0.555 0.544 0.594 0.618 0.614

GB None True 0.533 0.425 0.639 0.522 0.558 0.533 0.569 0.612 0.586

SVM radial None True 0.533 0.425 0.639 NA NA 0.533 0.584 0.566 0.686

Baseline 2 - - 0.533 0.425 0.639 NA NA 0.533 0.601 0.536 0.686

Naive Bayes None True 0.511 0.403 0.618 0.51 0.509 0.511 0.582 0.579 0.586

Multinomial Lasso True 0.489 0.382 0.597 0.476 0.481 0.489 0.563 0.561 0.586

XGB Lasso True 0.5 0.393 0.607 0.493 0.504 0.5 0.55 0.566 0.557

SVM linear Lasso False 0.5 0.393 0.607 0.467 0.472 0.5 0.562 0.55 0.614

SVM polynomial Lasso False 0.5 0.393 0.607 NA 0.489 0.5 0.548 0.629 0.643

Baseline 1 - - 0.433 0.329 0.542 0.433 0.434 0.433 0.502 0.507 0.5

Baseline 3 - - 0.367 0.268 0.475 0.377 0.396 0.367 0.413 0.448 0.386

Predicted Class

True Class Win Draw Loss

Win 32 0 7

Draw 15 0 5

Loss 11 0 20

(a) SVM sigmoid.

Predicted Class

True Class Win Draw Loss

Win 30 6 3

Draw 11 6 3

Loss 12 6 13

(b) Random Forest.

Figure 10: Confusion matrices for the two best performing models in terms of accuracy: SVM sigmoid

and Random Forest.

The 25 most important variables for the random forest model excluding network metrics are shown in

Figure 11. The wage difference between the competing teams is the most important variable, followed

by the difference in average number of shots, overall score and number of passes over the past three

matches.

Figure 11: Variable importance plot for the Random Forest model excluding network metrics.
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For the random forest model including network metrics, the 25 most important variables are shown

in Figure 12. The difference in wage between the competing teams is again the most important

variable, followed by the difference in average overall score, number of shots and possession over the

past three matches and the difference in value between the teams. The 25 most important variables do

include some network metrics, however, their variable importance is as not as high as the previously

mentioned variables.

Figure 12: Variable importance plot for the Random Forest model including network metrics.

9 Discussion Predictive Analysis

For the prediction of the number of goals scored per team, several regression models were imple-

mented. Performance was compared between the models including and excluding the network metrics

as predictor variables. Overall, the random forest has the best predictive performance. On average,

the random forest has predictions that are approximately 0.15 closer to the actual number of goals

compared to the best baseline method. For both the models with and without the network metrics,

the random forest, gradient boosting, extreme gradient boosting, Lasso regression, MARS and Ridge

regression all outperform the two baseline methods. Differences are however very small. The models

do have better performance than the linear and Poisson regression models. This could be caused by

the fact that tree-based models can better capture non-linear relationships and feature interactions.

Also, it seems that the Lasso and Ridge regression and MARS can better deal with the non-linear

relationships, feature interactions and noisy features that might be present in the data. The Poisson

distribution does not seem to fit the number of scored goals well.

Incorporating the network metrics as predictor variables does not improve predictive performance

much for the goal-based models. The MAE is 0.005 smaller for the random forest with the network

metrics. Even though the performance is slightly better, the difference seems negligible. Model com-

plexity increases when incorporating additional variables, which can possibly lead to overfitting, an
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increase in computational speed and noise when the variables are irrelevant. Therefore, we believe

that not incorporating the network metrics as predictor variables warrants the quality of the regres-

sion models.

For the prediction of the match outcome, we also compared classification methods excluding and

including the network metrics as predictor variables. Without network metrics, the SVM with a lin-

ear kernel has the best predictive performance for all match outcomes, while the SVM with a sigmoid

kernel has the best performance when only considering win and loss outcomes. The performance

metrics for wins and losses are higher compared to the metrics also considering draws. This suggests

that the models have more difficulty with the prediction of draws. Incorporating the network metrics

as predictor variables does not improve predictive performance much. The accuracy of the SVM

with a sigmoid kernel is 0.011 higher, but the weighted F1 score is lower when incorporating network

metrics. The win loss F1 score is in fact 0.026 higher when incorporating the network metrics. This

suggests that the models including network metrics might be better at predicting win and loss out-

comes but worse at predicting draws. Most implemented classification models have higher predictive

performance metrics than the baseline methods, but the 95% confidence intervals for the accuracy

mostly overlap. Also, the second baseline method already has quite good predictive performance.

Overall, it seems challenging to predict match outcome and incorporating network metrics does not

boost predictive performance. The simple Naive Bayes model already provides relatively good results.

The random forest models for both regression and classification allow for measuring variable im-

portance. For the goal-based models, the difference in the wage and values of the players between the

competing teams are considered very important. These variables might provide a good indication of

the strength of a team. When incorporating network metrics, the algebraic connectivity is the most

important variable. Thus, the existence of independent groups in the team is considered important.

The closeness scores also seem important for the prediction of the number of goals; the average close-

ness, binary closeness and difference in closeness between the competing teams are included in the

top most important variables. Even though incorporating the network metrics does not improve the

predictive performance much for the goal-based models, many network metrics are included in the

25 most important variables. Contrary to the goal-based models, the most important variables of

the random forest for the prediction of match outcome do not contain many network metrics. Again

the difference in wage between the competing teams is most important. Perhaps for the prediction

of number of goals scored the network metrics have more predictive power than for the prediction of

match outcome.
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10 Limitations

There are a several limitations in this study that could be addressed in future research. First of all,

we only analyse matches from the 2017-18 season of the Premier League. It would be interesting to

expand the dataset to include more seasons of the Premier League, competitions of other countries,

or competitions between national teams such as the World Cup. Perhaps more variation in number

of goals scored or match outcome could be captured by using more data, improving model results.

Second, we believe that there could be some adjustments made to the adjacency matrix. We do not

consider the difficulty of a pass. It can occur that a team makes less passes, but that these passes are

more difficult regarding for example the number of opponents nearby and distance. Considering pass

difficulty when creating the adjacency matrix can provide a more realistic view of the performance

of individual players and teams. Also, players are replaced by their substitutes to keep the passing

network size constant. This makes it harder to actually study the behaviour of a player that does

not play the full match. Here, the adjacency matrix could be weighted by dividing by the minutes

played per player so that the edges represent the number of passes per minute.

We also see some possibilities for further research regarding the predictive analysis. There could

be experimented with the number of matches that features are averaged over. Features not known

before the beginning of a match, including the network metrics and previous match features, are av-

eraged over the past three matches. It could also be useful to be able to make predictions for matches

further into the future. In this research we only consider predictions for matches that will take place

the same week. Also, some papers in the literature consider the ordinal aspect of the match outcome.

For match outcomes, a win is better than a draw and a draw is better than a loss. These models

might outperform the currently used classification models. An interesting model to implement would

be the ordinal forest (Hornung, 2019). Lastly, we suggest exploring betting strategies and calculating

betting returns for the different prediction methods. This enables quantifying the actual improve-

ments of prediction models over betting odds. Also, including betting odds as predictor variables

might improve predictive performance.

Topics that have not been thoroughly addressed in the field of network science for football anal-

ysis include dynamics of the passing networks and the interactions between teams. Buldú et al.

(2018) give an extensive review of the challenges of using network science for football analysis. In

our research, the passing networks are averaged over the whole match. Considering the dynamics of

the passing networks, for example by using a sliding window, has not much been investigated. This

allows for analysing the evolution of the network metrics and performance of a team over a match. We

also do not consider interactions between the two competing teams. It would be very interesting to

construct two interacting passing networks. This results in multilayer networks, where the intra-layer

links would be composed of the passes only within each team, while the inter-layer links would be

based on ball recovery/losses (Buldú et al., 2018). This allows for studying the adaptability of the

teams to its opponent, which is not possible when studying the passing networks separately.
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11 Conclusion

In this research we have performed network analysis to study the behaviour of football teams. The

main goal was to investigate the relation between network metrics and team performance. We also

investigated whether network metrics have predictive power for the prediction of number of goals

and match outcome. The largest open collection football dataset provided by Wyscout was used in

combination with collected features. Matches from the Premier League 2017-18 season were analysed,

which includes 380 matches for 20 teams.

First, we compared network metrics according to match outcome and team. We found that winning

teams have greater values for the clustering coefficient, largest eigenvalue, algebraic connectivity, po-

sition of x and mean degree, and a smaller value for the average shortest path. Also, teams with a

higher final ranking have a larger closeness score and average change in x. Most of these metrics are

positively related to the number of goals and goal difference, and negatively related to the number of

conceded goals. Cluster analysis revealed four distinct groups of observations based on the network

data. Especially Manchester City appears to have a unique playing style that is related to their good

performance. Overall, teams seem to have different behaviour that can be characterized by network

metrics and most of these network metrics are clearly related to team performance.

To investigate the predictive power of the network metrics, we implemented several regression (goal-

based) and classification (result-based) models for the prediction of the number of goals and match

outcome. The random forest provides the best predictive performance for the prediction of the num-

ber of goals scored with a MAE of 0.887 excluding network metrics and 0.882 including network

metrics. For the prediction of the match outcome, the SVM provides the best performance with

an accuracy of 0.567 and 0.578 excluding and including the network metrics, respectively. For both

modelling approaches, incorporating the network metrics as predictor variables does not improve

predictive performance much. Even though some network metrics are considered important by the

random forest, we believe that the network metrics do not have enough predictive power to be in-

cluded as predictor variables. Also, the implemented models outperform the baseline methods, but

the differences are very small. It still seems like a challenging task to predict outcomes in soccer.

Overall, we believe that using network analysis to study the behaviour of football teams can be

very useful. It allows for identifying key players, quantifying the contribution of players to the team

and assessing the variability of interactions between players. Also, with the knowledge of the relation

between the network metrics and performance, football professionals can adapt their team tactics to

optimize performance. For future research on this topic, we suggest expanding the dataset to more

seasons or other competitions, experimenting with dynamics and interactions between competing

teams in passing networks and further exploring the modelling of football match outcomes by con-

sidering the ordinal aspect of the data, including betting odds and making predictions for matches

further into the future.

44



References

Michael Patrick Allen. The problem of multicollinearity. Understanding regression analysis, pages

176–180, 1997.
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herme C Gonçalves, Bruno Melli-Neto, João Victor S Ferrari, Luiz H Palucci Vieira, Enrico F

Puggina, and Christopher Carling. Comparisons of ball possession, match running performance,

player prominence and team network properties according to match outcome and playing forma-

tion during the 2018 fifa world cup. International Journal of Performance Analysis in Sport, 19

(6):1026–1037, 2019.

Rahul Baboota and Harleen Kaur. Predictive analysis and modelling football results using machine

learning approach for english premier league. International Journal of Forecasting, 35(2):741–755,

2019.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of

Machine Learning Research, 13(Feb):281–305, 2012.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for optimal

margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory,

pages 144–152, 1992.

Leo Breiman. Prediction games and arcing algorithms. Neural computation, 11(7):1493–1517, 1999.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Javier M Buldú, Javier Busquets, Johann H Mart́ınez, José L Herrera-Diestra, Ignacio Echegoyen,

Javier Galeano, and Jordi Luque. Using network science to analyse football passing networks:

Dynamics, space, time, and the multilayer nature of the game. Frontiers in psychology, 9:1900,

2018.

Javier M Buldu, J Busquets, Ignacio Echegoyen, et al. Defining a historic football team: Using

network science to analyze guardiola’s fc barcelona. Scientific reports, 9(1):1–14, 2019.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the

22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794.

ACM, 2016.

Paolo Cintia, Fosca Giannotti, Luca Pappalardo, Dino Pedreschi, and Marco Malvaldi. The harsh rule

of the goals: Data-driven performance indicators for football teams. In 2015 IEEE International

Conference on Data Science and Advanced Analytics (DSAA), pages 1–10. IEEE, 2015.

Filipe Manuel Clemente, Micael Santos Couceiro, Fernando Manuel Lourenço Martins, and Rui Sousa

Mendes. Using network metrics in soccer: a macro-analysis. Journal of human kinetics, 45(1):123–

134, 2015a.

Filipe Manuel Clemente, Fernando Manuel Lourenço Martins, Dimitris Kalamaras, P Del Wong, and

Rui Sousa Mendes. General network analysis of national soccer teams in fifa world cup 2014.

International Journal of Performance Analysis in Sport, 15(1):80–96, 2015b.

45



Carlos Cotta, Antonio M Mora, Juan Julián Merelo, and Cecilia Merelo-Molina. A network analysis

of the 2010 fifa world cup champion team play. Journal of Systems Science and Complexity, 26(1):

21–42, 2013.

Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Numerische mathematik,

1(1):269–271, 1959.

Mark J Dixon and Stuart G Coles. Modelling association football scores and inefficiencies in the

football betting market. Journal of the Royal Statistical Society: Series C (Applied Statistics), 46

(2):265–280, 1997.
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Whitaker, and Franz Király. Modeling outcomes of soccer matches. Machine Learning, 108(1):

77–95, 2019.

UEFA. uefa.com, 2020. Accessed: 13-05-2020.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

Jay M Ver Hoef and Peter L Boveng. Quasi-poisson vs. negative binomial regression: how should we

model overdispersed count data? Ecology, 88(11):2766–2772, 2007.

Qing Wang, Hengshu Zhu, Wei Hu, Zhiyong Shen, and Yuan Yao. Discerning tactical patterns

for professional soccer teams: an enhanced topic model with applications. In Proceedings of the

21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

2197–2206, 2015.

Duncan J Watts. The “new” science of networks. Annu. Rev. Sociol., 30:243–270, 2004.

48

https://nielsensports.com/wp-content/uploads/2014/12/Nielsen_World-Football-2018-6.11.18.pdf
https://nielsensports.com/wp-content/uploads/2014/12/Nielsen_World-Football-2018-6.11.18.pdf
uefa.com


Bernard L Welch. The generalization ofstudent’s’ problem when several different population variances

are involved. Biometrika, 34(1/2):28–35, 1947.

Marvin N Wright and Andreas Ziegler. ranger: A fast implementation of random forests for high

dimensional data in c++ and r. arXiv preprint arXiv:1508.04409, 2015.

49



Appendices

A Event types in the Wyscout dataset

Table 22: Event types with their subevents and most common tags.

Event Subevent Tags

Pass
Simple pass, high pass, head pass,

smart pass, launch, cross, hand pass

Accurate, not accurate, interception,

assist, right foot, left foot, blocked

key pass, own goal

Foul

Foul, hand foul, late card foul,

out of game foul, protest, stimulation,

time lost foul, violent foul

No card, yellow, red, second yellow

Shot Shot
Goal, accurate, not accurate, block,

opportunity, assist

Duel

Air duel, ground attacking duel,

ground defending duel,

ground loose ball duel

Accurate, not accurate, lost, won,

sliding tackle

Free kick

Corner, free kick, free kick cross,

free kick shot, goal kick, penalty,

throw in

Accurate, not accurate, high,

opportunity, assist, goal

Offside Offside

Save attempt Save attempt, reflexes
Accurate, not accurate, goal,

counter attack

Others on the ball Acceleration, Clearance, Touch
Accurate, not accurate, interception,

counter attack

Goalkeeper

leaving line

Accurate, not accurate, opportunity,

right foot, left foot

Interruption Ball out of field, whistle

50



B Available Wyscout datasets

Event
matchId

eventId

subeventId

tags

positions

teamId

matchPeriod

eventSec

eventName

subeventName

playerId

Matches
matchId

status

roundId

gameweek

competitionId

date

winner

venue

label

referees

duration

side

Competition
name

competitionId

format

area

type

Coaches
name

birthDate

birthArea

passportArea

coachId

Referees
name

birthDate

birthArea

passportArea

Players
playerId

birthDate

birthArea

passportArea

name

currentTeamId height

role

currentTeamId

foot

currentNationalTeamId

weightTeam
name

city

area

type

teamId

refereeId

coachId

score

teamId
formation (bench, line-up, 
substitutions)

Figure 13: An overview of the available Wyscout datasets.
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C Visualization passing network

(a) First half. (b) Second half.

Figure 14: Undirected passing network for the first and second half of Manchester City during the

Manchester City - Brighton & Hove Albion match.

(a) First half. (b) Second half.

Figure 15: Undirected passing network for the first and second half of Brighton & Hove Albion during

the Manchester City - Brighton & Hove Albion match.
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(a) First half. (b) Second half.

Figure 16: Directed passing network for the first and second half of Manchester City during the match

Manchester City - Brighton & Hove Albion.

(a) First half. (b) Second half.

Figure 17: Directed passing network for the first and second half of Brighton & Hove Albion during

the match Manchester City - Brighton & Hove Albion.
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E Final ranking

Table 24: Final ranking Premier League 2017-2018 season.

Team Id Name Rank

1625 Manchester City 1

1611 Manchester United 2

1624 Tottenham Hotspur 3

1612 Liverpool 4

1610 Chelsea 5

1609 Arsenal 6

1646 Burnley 7

1623 Everton 8

1631 Leicester City 9

1613 Newcastle United 10

1628 Crystal Palace 11

1659 AFC Bournemouth 12

1633 West Ham United 13

1644 Watford 14

1651 Brighton & Hove Albion 15

1673 Huddersfield Town 16

1619 Southampton 17

10531 Swansea City 18

1639 Stoke City 19

1627 West Bromwich Albion 20
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F Boxplots

(a) Boxplot clustering coefficient. (b) Boxplot local clustering coefficient.

(c) Boxplot global clustering coefficient. (d) Boxplot largest eigenvalue.

(e) Boxplot algebraic connectivity. (f) Boxplot maximum eigencentrality.

(g) Boxplot standard deviation eigencentrality. (h) Boxplot mean eigencentrality.
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(i) Boxplot closeness. (j) Boxplot betweenness.

(k) Boxplot average shortest path. (l) Boxplot position x.

(m) Boxplot position y. (n) Boxplot dispersion.

(o) Boxplot dispersion position x. (p) Boxplot average change in x.
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(a) Boxplot average change in y. (b) Boxplot closeness (binary).

(c) Boxplot betweenness (binary). (d) Boxplot average shortest path binary.

(e) Boxplot mean degree. (f) Boxplot standard deviation degree.

(g) Boxplot maximum degree.

Figure 19: Boxplot for the network metrics per match grouped by team (rank). The rank is given in

Appendix B.

59



G Season plots

(a) Clustering coefficient. (b) Largest eigenvalue

(c) Algebraic connectivity (d) Closeness.

(e) Betweenness. (f) Average shortest path.

(g) Position x. (h) Mean degree

Figure 20: Mean plots for several network metrics throughout the season. Values are reported for

Manchester City, Manchester United, Newcastle United, Stoke City and West Bromwhich Albion, who

ended 1st, 2nd, 10th, 19th and 20th in the season, respectively.
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I Confusion matrices for match outcome prediction.

I.1 Without network metrics

Predicted Class

True Class Win Draw Loss

Win 21 13 5

Draw 4 9 7

Loss 4 8 19

(a) Naive Bayes.

Predicted Class

True Class Win Draw Loss

Win 36 0 3

Draw 18 0 2

Loss 18 0 13

(b) SVM radial.

Predicted Class

True Class Win Draw Loss

Win 30 11 10

Draw 8 8 10

Loss 1 1 11

(c) GB.

Predicted Class

True Class Win Draw Loss

Win 30 5 4

Draw 10 6 4

Loss 11 7 13

(d) Random Forest.

Predicted Class

True Class Win Draw Loss

Win 38 0 1

Draw 18 1 1

Loss 21 1 9

(e) SVM polynomial.

Predicted Class

True Class Win Draw Loss

Win 28 7 4

Draw 8 5 7

Loss 12 6 13

(f) XGB.

Predicted Class

True Class Win Draw Loss

Win 28 6 5

Draw 12 5 3

Loss 14 4 13

(g) Multinomial.

Predicted Class

True Class Win Draw Loss

Win 22 10 7

Draw 7 9 4

Loss 13 9 15

(h) Baseline 1.

Predicted Class

True Class Win Draw Loss

Win 17 9 13

Draw 6 6 8

Loss 8 13 10

(i) Baseline 3.

Predicted Class

True Class Win Draw Loss

Win 26 0 13

Draw 11 0 9

Loss 9 0 22

(j) Baseline 2.

Figure 21: Confusion matrices for the implemented classification models excluding network metrics.
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I.2 With network metrics

Predicted Class

True Class Win Draw Loss

Win 35 0 4

Draw 17 0 3

Loss 18 0 13

(a) SVM radial.

Predicted Class

True Class Win Draw Loss

Win 29 6 4

Draw 12 7 1

Loss 13 6 12

(b) GB.

Predicted Class

True Class Win Draw Loss

Win 23 9 8

Draw 7 5 5

Loss 8 5 18

(c) Naive Bayes.

Predicted Class

True Class Win Draw Loss

Win 24 5 10

Draw 10 6 4

Loss 11 5 15

(d) Multinomial.

Predicted Class

True Class Win Draw Loss

Win 30 3 6

Draw 15 2 3

Loss 13 5 13

(e) SVM linear.

Predicted Class

True Class Win Draw Loss

Win 27 7 5

Draw 10 6 4

Loss 11 8 12

(f) XGB.

Predicted Class

True Class Win Draw Loss

Win 35 2 2

Draw 20 0 0

Loss 20 1 10

(g) SVM polynomial.

Predicted Class

True Class Win Draw Loss

Win 24 7 8

Draw 8 4 8

Loss 9 11 11

(h) Baseline 1.

Predicted Class

True Class Win Draw Loss

Win 17 9 13

Draw 6 6 8

Loss 8 13 10

(i) Baseline 3.

Predicted Class

True Class Win Draw Loss

Win 26 0 13

Draw 11 0 9

Loss 9 0 22

(j) Baseline 2.

Figure 22: Confusion matrices for the implemented classification models including network metrics.
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