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Abstract

Increased parcel volumes, increased service demands and low profit margins call for a sustainable cost
efficient parcel delivery network. Retailers serving as parcel pick-up points that offer parcel consolida-
tion respond to this call because they increase customer service and reduce delivery costs. However,
these retailers can only be maintained or acquired into the parcel delivery network whenever the effort
of parcel consolidation is small. Therefore, it is important that parcel pick-up points are not flooded
with parcels for which there is no consolidation capacity available. This research investigates how much
capacity is required at a retailer to satisfy customer demand in a cost efficient way. We focus on the
parcel delivery network of PostNL which is the largest Dutch parcel delivery company. A modification
to the Capacitated Facility Location Problem (CFLP) model is used to model the parcel delivery network
and its requirements. The combination of features that we include in our model is novel. Furthermore,
we introduce several methods to decompose the parcel delivery network into multiple smaller net-
works without loss of optimality to simplify and accelerate the solution process of the initial problem.
Subsequently, we use a Branch and Bound (B&B) algorithm and a Tabu Search (TS) heuristic to solve
the decomposed problems individually. The B&B algorithm is custom made and exploits some of the
problem features that enable it to find exact solutions in reasonable time for almost all subproblems.
The TS heuristic is capable of finding the optimal solution in 98.6 % of the subproblems. Moreover, we
show that the combination of our mathematical model and solution technique is superior to PostNL’s
model in terms of: the probability to have sufficient capacity at parcel pick-up points, the parcel pick-
up point costs, the number of additional parcel pick-up points and the required additional capacity at
parcel pick-up points.
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1
Introduction

E-commerce is a rapid growing market that leads to an ever increasing volume of parcels send around
the world. This, combined with demand for fast, flexible and cheap delivery, puts stress on the current
parcel delivery network. Integrating parcel pick up points, where customers pick up and deliver their
parcels, into the network is one of the measures to enable a future-ready parcel delivery network.
Using retail locations offers multiple advantages. First, an increasing number of customers demand
that their parcels can be delivered not only at their homes, but at an easily accessible place. Thereby,
parcel pick up points offer added flexibility and service. Furthermore, parcel pick up points consolidate
parcels of failed home deliveries that are a major contributor to the high last-mile costs. Therefore, it is
of paramount importance to integrate these parcel pick up points in the future parcel delivery network.

Because the profit margins of parcel delivery are small, it is important that these parcel pick up
points should only be opened at strategic locations. Moreover, these parcel pick up points should not
be flooded with parcels. Therefore, when determining the locations of these parcel pick up points the
capacity should be sufficient to satisfy customers with an increasing uncertain demand for a long period
of time.

In the Netherlands this development is no different [1]. PostNL is the largest parcel delivery com-
pany in the Netherlands that delivers over 800.000 parcels every day. Currently, PostNL uses existing
retailers as parcel pick up points. Traditionally, these retailers allocate some space and time to handle
parcels. However, some of these retailers do not have sufficient capacity to satisfy the current demand.
Therefore, PostNL seeks to integrate new retailers into their current parcel delivery network to enable
competitive parcel delivery for the coming years. The aim is to establish a parcel delivery network
that is sustainable for the upcoming 5 years. A sustainable network does not only guarantee sufficient
capacity at retailers, it further ensures that all households can reach such a location easily.

To determine the network structure, we use a Capacitated Facility Location Problem (CFLP) formula-
tion where we recognise two different streams. One customer stream, where customers act according
to their preference. And one PostNL stream, that can be regulated with certain restrictions. We make
assumptions based on historical data and expert knowledge to forecast customer preference. Further-
more, we do not assume that future customer demand is known precisely. Therefore, we use normal
distributions to model the customer demand within both streams. For each location in the Netherlands
we determine whether a new retailer should be acquired and what the required size and associated
costs would be.

Throughout this report we use the terms opening and closing a retailer to describe the process of
acquiring a retailer as a parcel pick up point or ending the agreement between PostNL and the retailer
respectively.

The CFLP is a complex problem in itself and for the Netherlands there are many potential retail
locations and even more demand locations, which means many variables. Therefore, an off the shelf
exact algorithm is infeasible because it takes too much time. Therefore, we develop methods to
decompose our problem, without loss of optimality, into multiple subproblems. Moreover, we develop
both a custom exact algorithm and a heuristic. The custom exact algorithm is a modification to the
well-known Branch and Bound (B&B) algorithm. Where we introduce methods to decompose our
problem into manageable sizes without excluding the optimal solution. The heuristic that we apply
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2 1. Introduction

is a Tabu Search (TS) heuristic where the discrete variables related to opening or closing a retailer
are determined heuristically before assigning the demand locations to these opened retailers. From
each obtained solution, we explore the neighbourhood for improving solutions, while putting previous
solutions on the Tabu list to avoid getting stuck in local minima.

This research is novel because, to our best knowledge, there has not been any other research that
uses a CFLP that incorporates all features that we include. Furthermore, our problem size is within
the highest tier of CFLP sizes. Additionally, we show that exact solutions can be found in reasonable
time by exploiting the problem structure. Furthermore, we show that TS is applicable with some
modifications and is able to find the optimal solution frequently. By comparing the suggested open
capacity of our newly developed model with PostNL’s current model we found that our new model
opens far fewer locations of more realistic sizes. Moreover, we find that using a probability distribution
to model customer demand is superior compared to a fixed margin in terms of costs and the probability
that the open capacity is sufficient to satisfy customer demand.

We present a model that ensures that each customer has access to an open retailer. Furthermore,
the probability that each retailer has sufficient capacity to satisfy customer demand is bounded from
below. Additionally, we incorporate closest assignment and fixed assignment constraints to model
customer demand.

Subsequently, we introduce techniques that can be used to decompose the parcel delivery network
of PostNL into multiple smaller components without loss of optimality. This is a powerful tool that
enables solution methods to operate much quicker. For our benchmark problem we are able to reduce
a problem of 6216 binary variables to a problem of 5454 binary variables. Moreover, these are divided
over 1307 subproblems of which 264 are non-trivial.

Next, we present two solution methods. The custom B&B algorithm is most interesting since it is
able to find optimal solutions for the parcel delivery network of PostNL within reasonable time. The
working principle is a repeated problem decomposition with a sophisticated lowerbound to enable
pruning of the branches. However, the B&B algorithm gives guarantees on the solution quality it is
computationally wise far slower compared to our TS heuristic that is able to find the optimal solution
for 98.6% of the subproblems.

From an academic perspective we present methods that can be used to decompose a parcel delivery
network and we develop an exact solution method for a large scale problem. From PostNL’s perspective
we upgrade their current decision support model in several ways. We provide: more local advice on
where to open a new location, more detailed advice on the size of the new location, we consider
customer preference in our model, we introduce the option to close a facility and we generate awareness
for considering stochasticity into all of PostNL’s algorithms.

1.1. PostNL’s current algorithm
In this section we explain the goal and working principles of PostNL’s current algorithm that is used to
determine the required additional retailers and retail capacity.

The goal of PostNL’s algorithm is to identify bottlenecks in the retail network and to identify which
capacity deficits can be accounted for by traditional retailers (current and acquirable). These two goals
are separated on a local and a nationwide level. However, the effects on the current network as a
result of opening a new location are out of scope.

Locally, PostNL’s algorithm uses the current network to determine which customers account for
which capacity deficit at a retailer. For those retailers where the capacity deficit is larger than some
threshold, the algorithm suggests to open a new retailer within each customer area. A requirement is
that the customer area’s fraction of total demand to the retailer with the capacity deficit is larger than
a threshold fraction. Consequently, whenever 𝑥 customers have their demand satisfied by retailer 𝐴,
that has a capacity deficit larger than the threshold, then the algorithm suggests that in all 𝑥 customer
areas a new retailer should open. Whenever there is a capacity deficit at a retailer that does not meet
the threshold, the algorithm suggests to consider allocating more space at the retailer or redistributing
some of its volume whenever possible.

Nationwide, PostNL’s algorithm identifies bottlenecks in the network. All retailers where the used
capacity exceeds 90%, 110% and 150% of the total capacity are flagged red, purple and black respec-
tively. This is then presented to management who use this information (blackbox) to come up with a
budget for additional retailers.
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Information on potential new retailers is not actively used to make decisions but these potential
locations are shown to retail managers who can use this to quickly find acquirable retailers.

Both locally and nationwide, PostNL’s current algorithm relies heavily on expert judgement for de-
cision making and only cautiously makes suggestions. These suggestions are primarily supported by
visualizations within a dashboard. However, to translate the suggestions in combination with the visu-
alizations to actions, human experts are required.

1.2. Report structure
The structure of this report is as follows. First, we give a detailed problem description in Chapter 2.
Next, we review some previous work on location problems and position our problem within it in Chapter
3. We follow in Chapter 4 with an overview of the data that we use and the assumptions that we make.
In Chapter 5 we describe how we can decompose our problem and introduce an exact method and a
heuristic to solve the decomposed problems. Later, in Chapter 6, we evaluate the performance of our
decomposition method and our solution techniques. Finally, in Chapter 7 we draw conclusions from the
results and give a short summary of the major results. Additionally, we indicate some future research
directions.





2
Problem description

In this chapter we translate the objective and the requirements on the parcel delivery network of PostNL
into a mathematical model. The question that we try to answer with our model is to identify where
PostNL should open new retailers of what capacity to enable parcel consolidation for the upcoming five
years in the Netherlands in a cost effective way.

Retailers can be opened at discrete locations 𝑗 ∈ 𝑀. Whether a retailer at a given location is open,
is signified by 𝑧𝑗 ∈ 𝔹 with 𝑗 ∈ 𝑀. The parcel volume demand of Dutch citizens can be aggregated at
different levels of detail. We use the term customer to specify an area 𝑖 ∈ 𝑁 that is associated with
the sum of demand of its residents.

We recognise two different types of residents in a customer area. The residents in 𝑖 ∈ 𝑁 that prefer
the closest location 𝑗 ∈ 𝑀 and the residents in 𝑖 ∈ 𝑁 that prefer a specific location 𝑗 ∈ 𝑀. We assume
that their preference remains the same whenever new retailers are opened. This means that the first
group of residents selects a new retailer whenever it is closer than their current closest retailer. The
residents that prefer a specific location are indifferent with regards to openings of new retailers. For
the first group of residents we use the variables:

𝑥𝑖𝑗 =
{

1, If location 𝑗 is the closest open location for customer 𝑖
0, Otherwise

∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑀 (2.1)

𝛽𝑖𝑗 ∈ ℝ indicates the fraction of residents in 𝑖 ∈ 𝑁 that visit retailer 𝑗 ∈ 𝑀 where 𝑗 is not the closest
open retailer. Therefore, we can define the fraction of residents in location 𝑖 that select the closest
retailer as:

1 − ∑
𝑗∈𝑀

𝛽𝑖𝑗 = 𝛾𝑖 (2.2)

Such that:

∑
𝑗∈𝑀

𝛽𝑖𝑗 + 𝛾𝑖 ∑
𝑗∈𝑀

𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝑁 (2.3)

All customer demand should be satisfied by open retailers. However, there are restrictions on the
maximum distance, 𝐷𝑖, between customer 𝑖 ∈ 𝑁 and retailer 𝑗 ∈ 𝑀. Therefore, 𝑥𝑖𝑗 = 0 if 𝑑𝑖𝑗 > 𝐷𝑖
where 𝑑𝑖𝑗 signifies the distance between location 𝑖 and 𝑗.

The demand volume, 𝑢𝑖, of customer 𝑖 ∈ 𝑁 is forecasted. The forecast for 𝑢𝑖 is normally distributed
with 𝒩 (𝜇𝑖, 𝜎2

𝑖 ). This means that demand for different customers is independent. PostNL wants to
guarantee, with 𝛼% certainty, that the capacity at each individual retailer is sufficient to satisfy their
customer demand.

PostNL wishes to minimize costs. Annually, current and new retailers cost 𝑓 𝑐
𝑗 and 𝑓 𝑛

𝑗 irrespective
of their capacity. Because of opening costs, 𝑓 𝑛

𝑗 > 𝑓 𝑐
𝑗 . Furthermore, to model acquisition efforts, we

introduce an area dependent capacity penalty. The penalty decreases as the number of potential stores
in area 𝑗 ∈ 𝑀 that may be acquired as retailers increases. Function 𝑔𝑗(⋅) translates the fixed opening
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6 2. Problem description

costs and the capacity penalty into a single cost for additional capacity. Travelling costs are negligible
with respect to these costs and can therefore be ignored.

The problem that we face shows close resemblance to the single-source, ordered capacitated facility
location problem with stochastic demands. Where single-source signifies that each customer should be
assigned to one and only one retailer. Ordered means that there is a distinct order in which customers
select facilities, signifying customer preference. Capacitated means that the capacity of each facility is
limited. Finally, stochastic demands is used to describe that demands are uncertain, but are assumed
to be drawn from a known probability distribution.

Mathematical model 𝑃 (Formulation 2.4-2.11) translates the objective and the requirements on the
parcel delivery network to mathematical formulas. Equation 2.4 minimizes the cost of the required
capacity 𝑐𝑗 at location 𝑗 ∈ 𝑀. Constraints 2.5 specify that all customer demand from residents with
closest assignment preferences is satisfied by a retailer within the maximum distance limit represented
by connectivity matrix 𝑎𝑖𝑗 . Constraints 2.6 specify that the capacity of a retailer should, with 𝛼%
certainty, be greater than or equal to the sum of its customer demand. Constraints 2.7 couple the
variables 𝑐𝑗 to the variables 𝑧𝑗 . 𝐻 is a large number which is minimally as large as the maximum
required capacity at retailer 𝑗. Constraints 2.8 describe the order of assignment where each customer
is assigned to the closest open retailer.1 Whenever a retailer 𝑗 is open (𝑧𝑗 = 1) and there is no retailer
𝑎 closer to customer 𝑖 than retailer 𝑗 (∑𝑎∶𝑑𝑖𝑎<𝑑𝑖𝑗

𝑧𝑎 = 0). Then, customer 𝑖 should be assigned to retailer
𝑗 (𝑥𝑖𝑗 = 1). Finally, Constraints 2.9-2.11 provide the domains of the decision variables.

P: min ∑
𝑗∈𝑀

𝑔𝑗(𝑐𝑗) (2.4)

Subject to ∑
𝑗∈𝑀

𝑎𝑖𝑗𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝑁 (2.5)

ℙ( ∑
𝑖∈𝑁

𝑢𝑖(𝛽𝑖𝑗 + 𝛾𝑖𝑥𝑖𝑗) ≤ 𝑐𝑗) ≥ 𝛼𝑗 ∀𝑗 ∈ 𝑀 (2.6)

𝑐𝑗 ≤ 𝐻𝑧𝑗 ∀𝑗 ∈ 𝑀 (2.7)

𝑥𝑖𝑗 + ∑
𝑎∶𝑑𝑖𝑎<𝑑𝑖𝑗

𝑧𝑎 ≥ 𝑧𝑗 ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑀 (2.8)

𝑐𝑗 ≥ 0 ∀𝑗 ∈ 𝑀 (2.9)

𝑧𝑗 ∈ {0, 1} ∀𝑗 ∈ 𝑀 (2.10)

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑀 (2.11)

(2.12)

The function 𝑔𝑗(𝑐𝑗) is represented by

𝑔1
𝑗 (𝑐𝑗) =𝑓 𝑐

𝑗

𝑠𝑗

∑
𝑙=1

𝟙𝑐𝑗>∑𝑙
𝑘=1 𝑐(𝑘)

𝑗
(2.13)

𝑔2
𝑗 (𝑐𝑗) =𝑓 𝑛

𝑗 +
𝑓𝑗

𝑛𝑗 + 1𝑐2
𝑗 (2.14)

𝑔𝑗(𝑐𝑗) =𝑔1
𝑗 (𝑐𝑗) + 𝑔2

𝑗 (max(𝑐𝑗 −
𝑠𝑗

∑
𝑘=1

𝑐(𝑘)
𝑗 , 0)) (2.15)

where 𝑠𝑗 is the number of already opened retailers at location 𝑗, 𝑐(𝑘)
𝑗 is the capacity of the 𝑘𝑡ℎ largest

retailer and 𝑛𝑗 is the number of potential retailers at location 𝑗. 𝑓 𝑐
𝑗 , 𝑓 𝑛

𝑗 and 𝑓𝑗 are costs associated
with opening a retailer at location 𝑗. Equation 2.15 may seem difficult, but it is just a staircase function
followed by a quadratic increasing cost of which the slope depends on the number of potential locations.
1This is not the tightest formulation, but it is explanatory. For the tightest formulation see [2].
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See Figure 2.1 for an example. A quadratic increase is selected because it is preferred to have multiple
small capacity deficits compared to a few major deficits.

Figure 2.1: The cost function 𝑔𝑗 (𝑐𝑗 ).

Because of Constraints 2.6 classical linear programming techniques do not apply. However, since 𝑢𝑖
is normally distributed with 𝒩 (𝜇𝑖, 𝜎2

𝑖 ), we can reformulate our Constraints 2.6 as Second Order Conic
Programming (SOCP) constraints. This means that Constraints 2.6 are interchanged with Constraints
2.16. Basically, this means that a new random variable for the accumulated demand at retailer 𝑗 ∈ 𝑀
is constructed as the sum of the individual demands. Since the individual demands are normally
distributed this is straightforward.

∑
𝑖∈𝑁

𝜇𝑢𝑖(𝛽𝑖𝑗 + 𝛾𝑖𝑥𝑖𝑗) + 𝑞𝛼𝑗 ‖𝚺1/2
𝐮 (𝜷𝐣 + 𝛾𝑖xj)‖2 ≤ 𝑐𝑗 ∀𝑗 ∈ 𝑀 (2.16)

In Constraints 2.16 𝜷𝐣 and xj represent a column of all 𝛽𝑖𝑗 and 𝑥𝑖𝑗 variables respectively for 𝑖 ∈ 𝑁.
𝚺𝐮 is the covariance matrix of the stochastic demands u. Finally, 𝑞𝛼𝑗 is the 𝑞 centile of the standard
normal distribution. Basically, we constructed a combined distribution of demand and specify that with
𝛼% certainty this should be below the maximum capacity of a facility.





3
Literature review

In this chapter we present the current state-of-the-art knowledge with regards to our problem. Sub-
sequently, we position our work within it.

Three different problem families can be recognised in the field of location problems that are often
applied to optimize parcel delivery. These are: The Hub Location Problem, Multi Depot Location Vehicle
Routing Problem and the Facility Location Problem. The Hub Location Problem considers multiple stages
of consolidation to exploit economies of scale. First, parcels are consolidated in small depots, these
are then transported to a hub that consolidates parcels from multiple depots. Within the first hub
parcels are sorted before being transported to another hub. Subsequently, the parcels are sorted and
delivered to smaller depots before reaching a customer [3–6]. The transport in between hubs is often
discounted to express the economies of scale [3, 6]. The Multi Depot Vehicle Routing Problem focuses
on determining the locations of multiple depots, assigning customers to these depots and finding routes
to visit these customers. The objective is to minimize the costs associated with opening a depot and
travel cost to visit customers within a route starting and ending at a given depot [5, 7]. Finally, Facility
Location Problems focus on determining the locations of facilities and to assign customers to a particular
facility. The objective is to minimize the cost of opening a facility and the travel cost between customer
and facility [8–10]. Contrary to the Multi Depot Location Vehicle Routing Problem, the travel costs
in Facility Location Problems are solely based on the distance between the customer and its assigned
facility irrespective of the tour to visit multiple customers consecutively. Figure 3.1 schematically shows
these three problems.

(a) An illustration of the Hub Loca-
tion Problem [11].

(b) An illustration of the Multi De-
pot Location Vehicle Routing Prob-
lem [12].

(c) An illustration of the Facility Lo-
cation Problem [13].

Figure 3.1: Different location problems in the parcel distribution industry.

This report focuses on the Facility Location Problem family. Of the three discussed problems it
has the least interaction between different customers. However, because of the size of the problem it
might still be a challenging problem. In [14] it is shown that the Facility Location Problem is NP-hard.
Within the family of Facility Location Problems we can distinguish between the Uncapacitated Facility
Location Problem (UFLP) and the Capacitated Facility Location Problem (CFLP). The difference is that
in the former facilities are assumed to have infinite capacity whereas in the latter facilities have a finite
capacity [8].

9
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The UFLP is applied to the parcel industry by [15] to determine the location of unmanned parcel
lockers. An implicit result of the UFLP is that customers always select the closest facility. In [16, 17] the
parcel locker selection is enforced with random utility theory. More specifically, a (threshold) multinomial
logit model is used [18]. Problem instances up to 400 nodes could still be solved exactly with the aid
of valid inequalities. Contrary to this research, lockers are assumed to have infinite capacity. Which
eliminates the requirement for demand data. Therefore, we shift our focus to CFLPs.

CFLP is a well-studied combinatorial problem with a vast amount of literature. As for almost all
combinatorial problems, exact solutions are preferable since they provide optimal results. However, for
larger problems, exact solutions become inaccessible due to excessive computational effort. Therefore,
for larger problems we only have access to satisfactory solutions determined by (meta-)heuristics.
Besides the classical CFLP, some research is devoted to special cases with added restrictions.

Exact approaches to solve the CFLP mostly rely on B&B. Alternative formulations [19], dominance
rules [20, 21], valid inequalities [22, 23] and bounding procedures [20, 21] are used to increase the
problem sizes for which B&B remains a valid option.

However, the majority of the work on Facility Location Problems apply Lagrangian relaxations [24].
This may be because [25] shows that this approach is dominant for large instances with respect to
other relaxations. Lagrangian relaxations can either be used as a subroutine of B&B to obtain lower
bounds [26–30]. Or in combination with heuristics to obtain satisfactory results for large problems
[31–40]. Lagrangian relaxation can either be applied to the capacity constraint to obtain an UFLP [37].
Or to the demand satisfaction constraints to obtain multiple knapsack problems [26–36, 38–40]. Both
the UFLP and the knapsack problem are much easier to solve compared to the CFLP. Generally, the
problems where the demand satisfaction constraints are relaxed are larger. A subroutine of Lagrangian
relaxation is the updating procedure of the duals. This can either be the general subgradient optimisa-
tion [3, 27–32, 34, 35, 38–40], the volume algorithm [33, 41] or the r-algorithm [36, 42]. Additionally,
in [28] an improved version of the subgradient optimisation method is introduced. By applying the vol-
ume algorithm and a random algorithm [33] is able to solve CFLPs with a problem size of 1000x1000
in an hour with gaps <1%. The random algorithm LP-relaxes the binary variables and the fractional
result is used as a chance to determine if a facility should be open. Subsequently, a transportation
problem is solved to determine the assignment of customers.

[43, 44] lay the foundations for heuristics applicable to the CFLP that do not involve Lagrangian
relaxation. They propose a local search heuristic that consists of two phases: the ADD phase where
facilities are opened one-by-one based on the greatest cost-reduction. Followed by a DROP and SHIFT
phase where facilities are closed or moved to another location based on the greatest cost-reduction.
In [44, 45] the reverse approach is considered where initially all facilities are open and the facility that
maximally reduces the total cost is closed.

In [37] the local search techniques of [44] are complemented with a Lagrangian relaxation to solve
the CFLP by repetitively solving the UFLP. The UFLP is solved with the dual ascend and dual adjustment
procedure described in [46].

In [47] different metaheuristic solutions to various location problems are compared with each other.
It concludes that Tabu Search (TS) dominates Genetic Algorithm (GA)s, Particle Swarm Optimization
(PSO) and Scatter Search for UFLPs, CFLPs and HLPs up to 2500 demand nodes. This is concluded
based on a comparison of benchmark problems introduced in [48]. TS algorithms applied to larger in-
stances often use a random initial solution [47, 49–51]. Otherwise, an initial greedy solution is applied
[10, 52–54]. Furthermore, the neighbourhood structure is often a 1-interchange or 2-swap neighbour-
hood [10, 47, 49–54]. 1-interchange stands for opening or closing a facility that was closed or open
respectively. Whereas 2-swap signifies that one open facility is moved elsewhere [47]. Furthermore,
different memory structures can be used to either intensify [10, 51, 54] or diversify [10, 51, 52, 54]
the solution. Similar conclusions are drawn by [55] who implemented TS, Simulated Annealing (SA)
and a GA for CFLPs up to 250 customers and 100 facilities. They show that TS is superior to SA and
GA when comparing computation time required to obtain a given solution quality.

The classical Facility Location Problem can be extended in many different ways. The first applicable
extension is the closest assignment constraint. For UFLP, this constraint is naturally satisfied since
shorter distances reduce costs and each facility can be assigned to an infinite number of customers.
However, for the CFLP the closest assignment constraint should be enforced. In [56] different closest
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assignment constraints are theoretically compared with each other. It is concluded that the closest as-
signment constraint proposed in [2] is the tightest formulation. Furthermore, the proposed formulation
handles ties and does not require a fixed number of facilities.

Whenever single-source constraints are introduced a customer should be assigned to a single fa-
cility [9, 32, 39, 40, 57–59]. Therefore, the number of binary variables increases substantially. The
generalized assignment problem that becomes a subproblem of the CFLP is by itself an NP-hard prob-
lem [54, 60]. This makes single-source CFLP an NP-hard problem even when only feasible solutions
are required [54]. To solve the single-source CFLP different techniques are applied such as Variable
Neighbourhood Search (VNS) [9, 54, 61], Langrangian heuristics [32], GA [40, 57] and scatter search
[62, 63]. Firstly, Variable Neighbourhood Search (VNS) is a meta heuristic that is only applied to
single-source CFLPs [9, 54, 61] and not to ordinary CFLPs. This lead to the development of new neigh-
bourhoods to assign customers to facilities. Basic neighbourhoods are moving a customer to another
facility and swapping two customers [9, 54, 61]. However, also larger neighbourhoods are developed
to allow for more diversification [9, 54]. Secondly, [32] applies a basic Lagrangian relaxation pro-
ceeded by a Multiple Ant Colony System to solve the single-source CFLP. The Lagrangian relaxation
determines which facilities should be open and the Multiple Ant Colony System is used to determine
which customers should be assigned to them. Afterwards, basic local search techniques are used to
further improve the solutions. Thirdly, different GAs are applied to single-source CFLPs by [40, 57].
The gene representation that is used is such that each customer indicates by which facility it is served.
This automatically creates a set of open facilities [40, 57]. Finally, ordinary GAs can be extended to
obtain a scatter search, that can also be used to solve a single-source CFLP [47, 62, 63]. Compared to
GA, Scatter Search is a more directed solution combination method [47, 62, 63]. It maintains a smaller
reference set (population) but invests more time in local improvement and recombination. Sometimes
the local search process involves a TS [62].

Other extensions to the classical CFLP are multi-plant, multi-commodity and multi-period (dynamic)
additions. Multi-plant means that multiple facilities can be opened in the same location [35, 36, 64].
Multi-commodity means that there are multiple commodities [34]. Finally, multi-period means that the
problem considers multiple periods [29, 38]. All of these extensions do not significantly change the
problem structure or applicable solution methods. Multi-plant options are simply modeled by duplicating
a location numerous times [35, 36] or by replacing the variables with a continuous decision on capacity
[64]. Multiple commodities are introduced by duplicating the original assignment variables and related
constraints [34]. Lastly, multiple periods are incorporated by duplicating every variable for each period
[29, 38]. After these modifications ordinary solution methods to classical CFLPs can be used.

When it comes to uncertain demand, either stochastic programming or robust optimization is used.
The former assumes that the distribution of the uncertain parameter is known a priori. Whereas the
latter assumes that we only know the set to which our observations belong. Within stochastic pro-
gramming, the focus is often to ensure that constraints hold with a certain probability and to optimize
an expected value. Contrary to robust optimization, that is more focused on worst case performance
[65–67]. The uncertainty set can be arbitrary shaped but often either discrete scenarios are consid-
ered [30, 58, 61, 68] or the box uncertainty set [66], or the budgeted uncertainty set [69], or the
ellipsoidal uncertainty set [30, 39, 57, 66], or Poisson demand [39, 40, 53], or fuzzy random demand
[64]. [66] concludes that the box uncertainty set is often too conservative with respect to the ellip-
soidal uncertainty set. However, problems with ellipsoidal uncertainty become non-linear and require
conic programming [66, 67]. Problems with box uncertainty and Poisson distributed demand can be
converted to a deterministic problem without increasing the problem size [39, 40, 66, 69]. Examples of
stochastic programming applied to CFLP can be found in [30, 64, 70], robust optimization can be found
in [39, 40, 57, 66, 68, 69]. In [58, 61, 65] a hybrid between the two called p-robust optimization is
used. P-robust optimization means that whenever optimization is applied to a given number of scenar-
ios, the overall final solution should not be worse than p% of the solution considering a single scenario.
This is because in stochastic programming the expectation is considered which could mean that some
very favourable scenarios compensate for some unfavourable ones. Whereas in robust optimization
one protects itself to these unfavourable scenarios but this might be too conservative. Additionally,
optimization under uncertainty is sometimes integrated in a dynamic environment [58, 61, 64, 69, 70].
In a dynamic environment, decisions regarding facility openings are made with uncertainty. After-
wards, the uncertainty is removed and customers are assigned to these facilities (recourse decisions).
Similarly to deterministic versions, exact approaches as described in [30, 58, 66, 68–70] only work for
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small problems. Therefore, similar heuristics are introduced to cope with larger problems. Lagrangian
heuristics [39, 40], GAs [40, 57], TS [53], VNS [61] and PSO [64].

Besides the Facility Location Problem, our problem also shows similarities with the Set Covering
Problem (SCP). The SCP states that a complete set (sometimes called rows) should be covered with
a number of subsets (sometimes called columns). Each subset is associated with a cost and the sum
of subset costs should be minimized. Relating to our problem the set that should be covered are all
customers and the subsets are represented by the retailers. However, in our case the costs of a subset
cannot be calculated for each subset individually. Similar to the Facility Location Problem, we recognise
different solution approaches to the classical NP-hard SCP [71, 72]. Exact approaches by means of a
B&B scheme can be found in [73, 74]. Furthermore, Lagrangian relaxations are applied in [73, 75, 76].
Finally, heuristics are also available. The heuristics can be divided into population based heuristics
[77–84] and local search heuristics [75, 76, 85–87].

Almost all B&B exact methods use the LP-relaxation as a lowerbound during the branching process.
This is because stronger lower bounds are hard to obtain [72, 74]. Other lower bounds can be obtained
with Lagrangian relaxation and subgradient optimization [74]

Common to many local search heuristics is that subsets are selected based on a score relative to
the subset cost and the number of rows covered [72, 85–87]. [88] shows that the basic greedy score
defined as the subset costs divided by number of rows covered gives the best results. Furthermore,
heuristics often apply methods to discard redundant columns [72, 78, 82, 85–87].

There are many variants of population based heuristics. Classical GA are applied by [79–81]. We
recognise two gene representations for the SCP. Either the binary version where each subset is repre-
sented by its binary variable [79, 80] or the row version where each row indicates a column by which
it is covered [81]. The advantage of the latter is that it always produces feasible solutions. However,
the binary representation is superior in terms of optimization speed even when incorporating a method
to make solutions feasible [79]. Other population heuristics mainly use the binary representation but
apply different methods for combining and diversifying the solution. With regards to population based
heuristics we conclude based on the work of [78, 89] that binary black hole optimization is superior
to cuckoo search, bee colony optimization, firefly optimization and electromagnetism like algorithms.
Binary black hole optimization is very similar to PSO [90]. Furthermore, [82] shows that a jumping
PSO is superior to the ACO algorithm of [83], randomized local search of [87] and the indirect GA of
[84].

3.1. Synthesis
Based on the encountered problems in literature we can classify our problem as a: single-source,
ordered, discrete soft capacitated Facility Location Problem with uncertainty.

Discrete, Single source CFLPs were earlier described in [9, 32, 39, 40, 57–59]. None of these
did simultaneously incorporate multi-plant options as was done in [35, 36, 64]. CFLPs with uncertain
demand are frequently investigated such as in [30, 39, 40, 57, 61, 64–66, 68–70]. Of these papers,
the ellipsoidal uncertainty set, similar to our stochastic constraint, is used by [30, 39, 57, 66]. However,
only [57] discusses discrete single-source constraints with ellipsoidal uncertain demand simultaneously.
Soft capacity restrictions can be found in [91, 92] which specifies that capacity restrictions are placed in
the objective function. The ordered constraints, as in the context of this report, have not been earlier
described to our knowledge. Furthermore, we did not find any papers that considered multiple streams
of demand with different behaviour. Whereas this has many real-life applications not necessarily limited
to the parcel delivery industry. Therefore, this research aims to close this gap. On top of that, all CFLP
studies that we found focus on greenfield studies. Whereas in reality often there is already a network
in place that should be revised. However, current models could be generalized easily, none of them
specifically mentions how.

Similar as in [19, 20, 20, 21, 21–23, 73, 74] we rely on B&B to find exact solutions. However,
because of the problem size and complexity we are forced to customize the algorithm. Therefore, we
look into valid inequalities and alternative bounding procedures just as in [20–23].

With regards to heuristics, TS is extensively applied in location problems because of its effectiveness
[47, 55]. Within TS we apply a greedy initial solution [10, 52–54] with a 1-interchange neighbourhood
[10, 47, 49–54]. Finally, we only use basic memory structures [10, 51, 54] that prove to be capable of
sufficient intensification and diversification to obtain satisfactory results.
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Data

In this chapter we elaborate on the data and the scope of the project. Furthermore, we fit our project
into the framework of PostNL. Finally, we elaborate and justify some of the assumptions that we make.

4.1. Parcel flow
PostNL delivers over 800.000 parcels a day. All of these parcels visit minimally one sorting center and
maximally one retailer. Within this project we focus on the parcels that visit a retailer. In Figure 4.1 we
show the parcel flow that interferes with the capacity at a retailer. A filled arrow indicates that the flow
is in scope of the project. A green flow signifies that customers control the flow, whereas blue flows
are flows that PostNL regulates.

Figure 4.1: A schematic overview of the parcel flows that interfere with a retailer. Green flows indicate that the customer
influences the flow, blue flows indicate that PostNL controls the flow, dashed arrows indicate the return stream of parcels that
is out of scope of this report. [93]

In Figure 4.1, 8 flows can be distinguished. These flows signify the following:

1. Failed home deliveries

2. Signed parcels from Asia.

3. Customer indicated to deliver the parcel at a retailer

4. Pick-up of parcels within two weeks.

5. Incoming parcel flow.

6. Return flow to the sorting center.

7. Home deliveries

8. Customer rerouted the parcel to a retailer.

13
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Figure 4.1 shows that this project focuses on the flow of parcels from a sorting center to the
customer that pass a retailer. This flow of parcels is completely separated from the parcel flow from
customer to sorting center. Furthermore, all outgoing flows from a retailer are assumed to remain
proportional to the incoming flows.

4.2. Level of detail
In the Netherlands a unique address can by specified by a postal code, of 4 digits and 2 letters, and a
house number. Where each extra character adds an extra level of detail. 𝑃 𝐶4 is a set of areas defined
by the first four characters of a postal code, 𝑃 𝐶5 uses the first 5 characters and 𝑃 𝐶6 uses the entire
postal code. Historically, a 𝑃 𝐶5 area corresponded with the coverage of one mailman. However, newly
built neighbourhoods no longer adhere to this rule. Since all data available at PostNL is aggregated by
postal codes we restrict ourselves to these different levels of detail as well.

In Table 4.1 the cardinality of each of the different aggregation levels is shown for The Netherlands
and its capital Amsterdam. PostNL already has a (simple) tool to recommend locations for new retailers
that considers the entire country on 𝑃 𝐶4 level. This tool is very much appreciated. However, for some
areas, such as Amsterdam, 𝑃 𝐶4 is too crude and PostNL would like to investigate more local effects.
Therefore, an optimization on 𝑃 𝐶5 level is preferred.

For some regions a solution on 𝑃 𝐶5 level does not offer much benefits. Therefore, to avoid making
the problem unnecessarily large, we condsider a hybrid version where some regions are included at
𝑃 𝐶4 level and others at 𝑃 𝐶5. 𝑃 𝐶6 or household level is not preferred since their cardinality is too
large for current available methods to solve in reasonable time and the extra benefit compared to 𝑃 𝐶5
level is expected to be small. Furthermore, these small areas are very susceptible to local changes
which renders forecasts inaccurate.

We decided that 𝑃 𝐶4 areas with an area bigger than 𝑋 and the number of inhabitants greater than
𝑌 are split up into 𝑃 𝐶5 locations. The area restriction is there because we assume that people in large
𝑃 𝐶4 locations do not have the same preferences based on their exact location. We add the number of
inhabitants restriction to prevent that rural areas are divided.

Region or City |𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠| |𝑃 𝐶6| |𝑃 𝐶5| |𝑃 𝐶4|
The Netherlands 8,630,593 455,140 33,210 4049
Amsterdam 442,748 16,711 1018 74

Table 4.1: Overview of the sizes of different detail levels in the Netherlands [93].

4.3. Parcel streams
PostNL recognizes two streams of parcels. A customer stream, where the customer is free to choose
a retailer and a PostNL stream where PostNL selects a retailer for the customer. In Figure 4.2 these
different parcel streams are indicated along with the assumed delivery location.

PostNL has the policy that parcels within the PostNL stream are delivered to the closest retailer with
respect to the address of the recipient.

The customer stream of parcels is difficult to forecast since all customers have preferences that are
unknown to PostNL. Therefore, we can only try to predict their behaviour based on experience. We
assumed that there are two groups of people, those people who prefer a retailer close to their home.
These could be people who have spare time during office hours, people who do not own a car, etc. And
people who favor a specific location. These specific locations could be railway stations, office buildings,
gas stations etc. Most likely these people work during office hours and are not frequently at home. We
assume that over time and irrespective of opening a new facility, the balance between these groups
remains constant. Furthermore, we assume that the group of people who favors a specific location
continues to visit their preferred location with equal proportions. However, the volume of their demand
can change over time.

The service policy for the PostNL stream and the assumed customer preferences have as a result
that a new retailer at location 𝑗 only attracts a fraction of demand of customer 𝑖 if it is the closest
retailer to customer 𝑖. Because only then, it attracts both the customers who favor a close retailer
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and the PostNL stream. Furthermore, another implication is that a retailer that is currently a preferred
location, is not allowed to close.

To exclude the situation that every currently open location is a preferred location we introduce a
threshold. Only those locations where the demand of customers who favor a preferred location exceeds
a certain fraction of the total demand at that location are considered preferred locations. Whenever, the
fraction does not meet the threshold, all customers who have that location as their preferred location
are modelled as customers who favor a close location. This assumption might be invalid for a small
amount of customers, but we do not want that small groups of customers with uncommon preferences
have a large impact on the new network.

Figure 4.2: The different parcel streams and their delivery locations that are in scope of this project.

4.4. Distance and locations
We use euclidean distance as a distance measure. Because we mainly use distances to determine
the closest location we assume that those are unaffected by the our distance measure. Furthermore,
euclidean distance is easier to determine compared to a distance by road. To determine the location
of an area, we use the center of addresses within an area.

4.5. Connectivity
As a service, PostNL desires to guarantee that all inhabitants in the Netherlands have access to retailer
within close proximity of their home. However, close is a very relative word even for a country as
small as the Netherlands. People living within the city have a different perception of close compared
to people living in more remote areas. Therefore, we decided that everyone should have access to a
retailer no further away than 𝑝% compared to the distance to the current closest retailer 𝐷̄𝑖. On top
of that, this maximum is bounded on the interval [𝑎, 𝑏]. Mathematically, this is expressed as Equation
4.1. With the aid of 𝐷𝑖 we can construct the connectivity matrix a.

𝐷𝑖 = min (𝑏,max (𝑎, 𝑝𝐷̄𝑖)) (4.1)

4.6. Potential facility locations
Potential facility locations are identified with a database of stores called Locatus. The number of Locatus
locations determines the capacity penalty used in Equation 2.15.

4.7. Forecasts
PostNL forecasts the demand volume of the customer and the PostNL parcel stream with an Ordinary
Least Squares (OLS) model. Each month the forecast is updated based on the newly acquired data.
Because the forecast model is not 100% accurate we also consider the uncertainty. Unfortunately,
because of some updates to the forecast model and the corona crisis only quarter 2019Q4 is available
to evaluate the forecast error. A visualization of the forecast error is shown in Figure 4.3. We assume
that the error is normally distributed.
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Figure 4.3: The prediction error in 2019Q4 for the two parcel streams.



5
Methodology

In this chapter we present our methods to solve the problem that is described in Chapter 2. First, we
introduce methods to decompose the general problem into multiple smaller problems. Afterwards, we
introduce a B&B algorithm and a TS heuristic to solve the decomposed problems.

5.1. Problem decomposition
Before starting the optimization procedure we investigate whether we can reduce the number of po-
tential connections within the connectivity matrix. In Section 4.5 we indicated which customers are
connected to which retailers. However, because of the problem structure we can reduce the number
of potential retailers for each customer.

5.1.1. Reduce based on retailers that are always open
First, we can reduce the number of connections using the retailers that are always open. Some retailers
are always open because they are either a preferred location for certain customers or they are the sole
retailer that can satisfy the demand of some customers. All retailers further than the closest always
open retailer for a specific customer will never satisfy the demand of that customer. Therefore, these
connections can be removed. This process is illustrated in Figure 5.1.

(a) Initial situation (b) New situation

Figure 5.1: The process of reducing the connectivity based on retailers that are always open. Always open retailers
are indicated by filled squares, potentially open retailers are indicated by open squares, customers by circles and
the maximum distance by the dashed black circle. Retailers with a cross will never satisfy demand of the blue
customer.

5.1.2. Reduce based on superset of another customer
Moreover, the number of connections can be further reduced based on the following rule. If a customer
is potentially served by a superset of the potential retailers of another customer (the subset), then
all retailers further than the furthest retailer of this subset will never satisfy demand of the original
customer. This is because one of the potential retailers will for sure be open to satisfy the demand of
the other customer. This reduction process is illustrated in Figure 5.2.

17
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(a) Initial situation (b) New situation

Figure 5.2: The process of reducing the connectivity based on subsets. Potentially open retailers are indicated by
open squares, customers by circles and the maximum distance by the dashed black circles. Since the potential
retailers of the green customer are a subset of those of the blue customer, all potential retailers of the blue
customers further than the furthest in subset can be removed. Retailers with a cross will never satisfy demand of
the blue customer.

5.1.3. Notation
Before we continue, we first introduce several new sets for ease of notation. Starting with 𝑀𝑜 and 𝑀𝑐

to identify the sets of open and closed retailers.
Next, set 𝑀𝑖 defines the set of retailers that have a potential connection to customer 𝑖 ∈ 𝑁.
Additionally, we introduce the set 𝑀𝑛

𝑖 to describe the neighbouring retailers of retailer 𝑖 ∈ 𝑀. Two
retailers are considered neighbours of each other whenever they can potentially satisfy the demand of
at least one mutual customer.

Besides subsets of retailers, we also formulate customer subsets. First of all, 𝑁𝑑 is the set of
customers that do not have access to a retailer from the set 𝑀𝑜. Mathematically this is expressed as:

𝑁𝑑 = {𝑖 | 𝑖 ∈ 𝑁 ∧ 𝑀𝑖 ∩ 𝑀𝑜 = ∅}
Additionally, we introduce three sets of customers of increasing size to define which customers visit

a retailer under certain conditions.

𝑁−
𝑗 The set of customers for whom retailer 𝑗 is the absolute closest retailer.

𝑁𝑗 The set of customers that visit retailer 𝑗.
𝑁+

𝑗 The maximum sized set of customers that retailer 𝑗 can satisfy.

Naturally, it follows that:
𝑁−

𝑗 ⊆ 𝑁𝑗 ⊆ 𝑁+
𝑗 ∀𝑗 ∈ 𝑀

Furthermore, we define the function 𝐺𝑗(𝑁𝑗) to express the costs at retailer 𝑗 given that it is visited

by the set of customers 𝑁𝑗 . Basically, 𝐺𝑗(𝑁𝑗) = 𝑔 (∑𝑖∈𝑁𝑗
𝜇𝑢𝑖(𝛽𝑖𝑗 + 𝛾𝑖) + 𝑞𝛼𝑗 ‖𝚺1/2

𝐮 (𝜷𝐣 + 𝛾𝑖)‖2) or in words,
the costs associated to the total demand of all customers that visit retailer 𝑗 equal 𝐺𝑗(𝑁𝑗). Since 𝑔𝑗(𝑐𝑗)
is a monotonically increasing function, so is 𝐺𝑗(𝑁𝑗). Therefore, 𝐺(𝑆) ≤ 𝐺(𝑇 ) given that 𝑆 ⊆ 𝑇 . With
the newly introduced sets and function, we express the minimum costs at retailer 𝑗 ∈ 𝑀 as 𝐺𝑗(𝑁−

𝑗 )
and the maximum costs at retailer 𝑗 ∈ 𝑀 as 𝐺𝑗(𝑁+

𝑗 ).
In all following proofs we will use a ̂ to express a given set in the optimal solution and a neutral

letter for the current solution.

5.1.4. Close retailers by cost reduction
In this section we indicate how we identify retailers that are closed in an optimal solution. To determine
which retailers are closed in an optimal solution we use the retailers that are always open to claim that
there is another assignment of customers to these always open retailers that is feasible and cheaper.
This is somewhat similar to the omega-reduction described in [20, 21].

To identify which retailers are closed in an optimal solution we first construct the directed graph
𝐺(𝑀, 𝐸) that indicates which closed retailers can reduce the costs at which open retailers. We put all
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retailers on the nodes and an arc from node 𝑖 to node 𝑗 indicates that retailer 𝑖 could potentially reduce
the costs at retailer 𝑗. A requirement is that retailer 𝑖 ∈ 𝑀𝑐 and 𝑗 ∈ 𝑀𝑛

𝑖 . Meaning that retailer 𝑖 is
closed and that retailer 𝑖 and 𝑗 have at least one mutual potential customer.

For each single node 𝑖 ∈ 𝑀 we create a subgraph 𝐺𝑖(𝑀, 𝐸). Subgraph 𝐺𝑖(𝑀, 𝐸) consists of all nodes
and arcs from the initial graph 𝐺(𝑀, 𝐸) that can be reached from node 𝑖. We put all open retailers
within 𝐺𝑖(𝑀, 𝐸) in the set 𝑀𝑜

𝑖 and all closed retailers within 𝐺𝑖(𝑀, 𝐸) in the set 𝑀𝑐
𝑖 . Therefore, 𝑀𝑜

𝑖 only
contains retailers that could possibly reduce their costs whenever retailer 𝑖 opens. Figure 5.3 shows
an example of the directed graph 𝐺(𝑀, 𝐸) and its subgraph 𝐺𝐴(𝑀, 𝐸). By definition 𝑀𝑜

𝐴 = {𝑋, 𝑌 , 𝑍}
and 𝑀𝑐

𝐴 = {𝐴, 𝐵, 𝐶, 𝐷}.

Figure 5.3: Directed graph 𝐺(𝑀, 𝐸) with retailers on the nodes and an arc from node 𝑖 to node 𝑗 indicates that retailer 𝑖 could
potentially reduce costs at retailer 𝑗. A requirement is that retailer 𝑖 is closed and that retailers 𝑖 and 𝑗 potentially share a
customer. Filled squares indicate always open retailers and open squares indicate currently closed retailers.

Next, we define a few more expressions. First, 𝐶𝑜 are all combinations of open retailers in 𝑀𝑜
𝑖 . We

express a unique combination in 𝐶𝑜 with 𝑐𝑜. Second, 𝐶𝑐(𝑐𝑜) are all combinations of closed retailers
in 𝑀𝑐

𝑖 such that the set 𝐶𝑐(𝑐𝑜) at least contains those closed retailers from 𝑀𝑐
𝑖 such that each open

retailer in 𝑐𝑜 is directly connected to one retailer in 𝐶𝑐(𝑐𝑜). Additionally, 𝐶𝑐(𝑐𝑜) contains the retailers
on the path from and including retailer 𝑖 to these direct neighbours of 𝑐𝑜. Consequently, for each
combination 𝑐𝑜 there are possibly multiple combinations 𝐶𝑐(𝑐𝑜) since the direct neighbours of 𝑐𝑜 can
vary and there are multiple paths from 𝑖 to these direct neighbours. We need to include the paths
because only whenever the retailers on these paths are opened the costs at the open retailers 𝑐𝑜

possibly reduce because of opening retailer 𝑖. In other words, 𝐶𝑜 contains combinations of retailers in
𝑀𝑜

𝑖 that can possibly reduce their cost. To possibly reduce the cost at a unique combination 𝑐𝑜 ∈ 𝐶𝑜

there are multiple options of additional retailers that can be opened. All valid options that require that
retailer 𝑖 is open are the combinations in the set 𝐶𝑐(𝑐𝑜). In our example (see Figure 5.3), if 𝑐𝑜 = {𝑋, 𝑍}
then 𝐶𝑐(𝑐𝑜) = {{𝐴, 𝐵}, {𝐴, 𝐷}, {𝐴, 𝐵, 𝐷}, {𝐴, 𝐶, 𝐷}, {𝐴, 𝐵, 𝐶}, {𝐴, 𝐵, 𝐶, 𝐷}}.

With the new expressions we are ready to use Theorem 1 to determine which retailers are closed
in an optimal solution.

Theorem 1 In an optimal solution retailer 𝐴 is closed if 𝑁𝑑 ∩ {𝑁+
𝑗 | 𝑗 ∈ 𝑀𝑐

𝐴} = ∅ and

min
𝑐𝑐∈𝐶𝑐 (𝑐𝑜) ( ∑

𝑗∈𝑐𝑐
𝐺𝑗(𝑁−

𝑗 )) + ∑
𝑖∈𝑐𝑜

𝐺𝑖(𝑁−
𝑖 ) > ∑

𝑖∈𝑐𝑜
𝐺𝑖(𝑁+

𝑖 ) ∀𝑐𝑜 ∈ 𝐶𝑜

Where the first condition indicates that there are no disconnected customers that could potentially
be satisfied by a retailer from the set 𝑀𝑐

𝐴 and the second condition indicates that there is a cheaper
alternative set of retailers without retailer 𝐴. We proof Theorem 1 as follows: in an optimal solution
where retailers in a set 𝑐𝑐 ∈ 𝐶𝑐(𝑐𝑜) and retailers in the corresponding set 𝑐𝑜 are concurrently open we
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can express the total costs as:

∑
𝑗∈𝑐𝑐

𝐺𝑗(𝑁𝑗) + ∑
𝑗∈𝑐𝑜

𝐺𝑗(𝑁𝑗) + ∑
𝑗∈𝑀𝑜⧵(𝑐𝑐∪𝑐𝑜)

𝐺𝑗(𝑁𝑗)

Since 𝑁−
𝑖 ⊆ 𝑁𝑖 ∀𝑖 ∈ 𝑀 and because 𝐺𝑗(⋅) is a monotonically increasing function it follows that

∑
𝑗∈𝑐𝑐

𝐺𝑗(𝑁𝑗) + ∑
𝑗∈𝑐𝑜

𝐺𝑗(𝑁𝑗) + ∑
𝑗∈𝑀𝑜⧵(𝑐𝑐∪𝑐𝑜)

𝐺𝑗(𝑁𝑗) ≥ ∑
𝑗∈𝑐𝑐

𝐺𝑗(𝑁−
𝑗 ) + ∑

𝑗∈𝑐𝑜
𝐺𝑗(𝑁−

𝑗 ) + ∑
𝑗∈𝑀𝑜⧵(𝑐𝑐∪𝑐𝑜)

𝐺𝑗(𝑁𝑗)

By definition of a minimum the following inequality holds

∑
𝑗∈𝑐𝑐

𝐺𝑗(𝑁−
𝑗 )+ ∑

𝑗∈𝑐𝑜
𝐺𝑗(𝑁−

𝑗 )+ ∑
𝑗∈𝑀𝑜⧵(𝑐𝑐∪𝑐𝑜)

𝐺𝑗(𝑁𝑗) ≥ min
𝑐𝑐∈𝐶𝑐 (𝑐𝑜) ( ∑

𝑗∈𝑐𝑐
𝐺𝑗(𝑁−

𝑗 ))+ ∑
𝑗∈𝑐𝑜

𝐺𝑗(𝑁−
𝑗 )+ ∑

𝑗∈𝑀𝑜⧵(𝑐𝑐∪𝑐𝑜)
𝐺𝑗(𝑁𝑗)

Furthermore, because of the condition that

min
𝑐𝑐∈𝐶𝑐 (𝑐𝑜) ( ∑

𝑗∈𝑐𝑐
𝐺𝑗(𝑁−

𝑗 )) + ∑
𝑗∈𝑐𝑜

𝐺𝑗(𝑁−
𝑗 ) > ∑

𝑖∈𝑐𝑜
𝐺𝑖(𝑁+

𝑖 ) ∀𝑐𝑜 ∈ 𝐶𝑜

we show that:

min
𝑐𝑐∈𝐶𝑐 (𝑐𝑜) ( ∑

𝑗∈𝑐𝑐
𝐺𝑗(𝑁−

𝑗 )) + ∑
𝑗∈𝑐𝑜

𝐺𝑗(𝑁−
𝑗 ) + ∑

𝑗∈𝑀𝑜⧵(𝑐𝑐∪𝑐𝑜)
𝐺𝑗(𝑁𝑗) > ∑

𝑖∈𝑐𝑜
𝐺𝑖(𝑁+

𝑖 ) + ∑
𝑗∈𝑀𝑜⧵(𝑐𝑐∪𝑐𝑜)

𝐺𝑗(𝑁𝑗)

Because the condition concerns the minimum of 𝑐𝑐 ∈ 𝐶𝑐(𝑐𝑜) the condition holds for all 𝑐𝑐 ∈ 𝐶𝑐(𝑐𝑜).
Therefore, there is no combination of retailers 𝑐𝑐 ∈ 𝐶𝑐(𝑐𝑜) that possibly reduce the costs at retailers
𝑐𝑜. Furthermore, because of the condition that 𝑁𝑑 ∩ {𝑁+

𝑗 | 𝑗 ∈ 𝑀𝑐
𝐴} = ∅ an alternative solution where

retailers 𝑖 ∈ 𝑀𝑜
𝐴 are open is a feasible solution for the subgraph 𝐺𝐴(𝑀, 𝐸).

Since all of the above holds for all sets 𝑐𝑜 ∈ 𝐶𝑜 and 𝑐𝑐 ∈ 𝐶𝑐(𝑐𝑜). Where each set 𝑐𝑐 ∈ 𝐶𝑐(𝑐𝑜) contains
retailer 𝐴 we conclude that retailer 𝐴 can never reduce the costs at any retailer from the set 𝑀𝑜

𝐴. On
top of that, since 𝑀𝑜

𝐴 are the only retailers where retailer 𝐴 could potentially reduce the costs. Retailer
𝐴 can never reduce the costs at any retailer. Therefore, retailer 𝐴 is closed in the optimal solution.
This concludes our proof of Theorem 1 □.

Verifying Theorem 1
Using Theorem 1 is difficult since the number of combinations |𝐶𝑜| and |𝐶𝑐(𝑐𝑜)| can become huge.
Therefore, to reduce the number of combinations, we limit ourselves to those directed graphs 𝐺𝑖(𝑀, 𝐸)
where if node 𝑖 is removed each remaining component 𝐺′

𝑖 (𝑀, 𝐸) maximally contains one open retailer
that is not a direct neighbour of node 𝑖 in the graph 𝐺𝑖(𝑀, 𝐸). Each component 𝐺′

𝑖 (𝑀, 𝐸) can be
considered individually since there are no paths between the different components.

The number of combinations reduces because if the inequality of Theorem 1 holds for the union of
direct neighbours, it holds for all subsets of direct neighbours since

∑
𝑖∈𝑆

(𝐺𝑖(𝑁+
𝑖 ) − 𝐺𝑖(𝑁−

𝑖 )) < ∑
𝑖∈𝑇

(𝐺𝑖(𝑁+
𝑖 ) − 𝐺𝑖(𝑁−

𝑖 ))

whenever 𝑆 ⊂ 𝑇 . Furthermore, min𝑐𝑐∈𝐶𝑐 (𝑐𝑜) ( ∑𝑗∈𝑐𝑐 𝐺𝑗(𝑁−
𝑗 )) = 𝐺𝑖(𝑁−

𝑖 ) since {𝑖} is the smallest set of
retailers that neighbours all direct neighbours of retailer 𝑖. Therefore, we need one combination from
𝐶𝑜 and one from 𝐶𝑐(𝑐𝑜) for the direct open neighbours of retailer 𝑖.

Additionally, whenever there is one additional open retailer in 𝐺′
𝑖 (𝑀, 𝐸) that is not a direct neighbour

of retailer 𝑖 there is one additional combination in 𝐶𝑜 for component 𝐺′
𝑖 (𝑀, 𝐸). However, finding the

minimum min𝑐𝑐∈𝐶𝑐 (𝑐𝑜) ( ∑𝑗∈𝑐𝑐 𝐺𝑗(𝑁−
𝑗 )) remains easy. To find this minimum, we first include node 𝑖 in

component 𝐺′
𝑖 (𝑀, 𝐸). Furthermore, we put 𝐺𝑗(𝑁−

𝑗 ) on the outgoing edges of a node 𝑗 ∈ 𝑀 in the

directed subgraph 𝐺′
𝑖 (𝑀, 𝐸). Now, min𝑐𝑐∈𝐶𝑐 (𝑐𝑜) ( ∑𝑗∈𝑐𝑐 𝐺𝑗(𝑁−

𝑗 )) equals the shortest path from retailer
𝑖 to the additional open retailer that is not a direct neighbour of 𝑖. The shortest path problem can be



5.1. Problem decomposition 21

solved quickly (𝑂(𝐸 + 𝑀𝑙𝑜𝑔𝑀) [94]) with Dijkstra’s Algorithm [95]. Whenever the shortest path length
is longer than ∑𝑖∈𝑐𝑜 (𝐺𝑖(𝑁+

𝑖 ) − 𝐺𝑖(𝑁−
𝑖 )) for each component 𝐺′

𝑖 (𝑀, 𝐸) the condition

min
𝑐𝑐∈𝐶𝑐 (𝑐𝑜) ( ∑

𝑗∈𝑐𝑐
𝐺𝑗(𝑁−

𝑗 )) + ∑
𝑖∈𝑐𝑜

𝐺𝑖(𝑁−
𝑖 ) > ∑

𝑖∈𝑐𝑜
𝐺𝑖(𝑁+

𝑖 ) ∀𝑐𝑜 ∈ 𝐶𝑜

is satisfied for the general graph 𝐺𝑖(𝑀, 𝐸) as well. Therefore, in a directed graph 𝐺𝑖(𝑀, 𝐸) where there
are no retailers that can satisfy the demand of any customers from 𝑁𝑑 and where each component
𝐺′

𝑖 (𝑀, 𝐸) contains maximally one open retailer that is not a direct neighbour of 𝑖. We can quickly eval-
uate Theorem 1 since maximally 1 + |𝐺′

𝑖 (𝑀, 𝐸)| combinations should be checked. Where each check
is executed in polynomial time.

(a) Subgraph 𝐺𝐴(𝑀, 𝐸) (b) Components 𝐺′
𝐴(𝑀, 𝐸) (c) Shortest path problem

Figure 5.4: An example of a subgraph 𝐺𝐴(𝑀, 𝐸) for which we can quickly evaluate Theorem 1. Filled squares
indicate open retailers, open squares indicate retailers with an unknown status. Dotted lines indicate the different
components 𝐺′

𝐴(𝑀, 𝐸).

Figure 5.4a shows a new example subgraph 𝐺𝐴(𝑀, 𝐸). Figure 5.4b shows the different components
𝐺′

𝐴(𝑀, 𝐸). Because each component 𝐺′
𝐴(𝑀, 𝐸) contains maximally one open retailer that is not a

direct neighbour of 𝐴 we can quickly evaluate Theorem 1 for subgraph 𝐺𝐴(𝑀, 𝐸). Based on what we
previously indicated the combinations 𝑐𝑜 ∈ 𝐶𝑜 that we evaluate are: {𝑊 , 𝑍}, {𝑊 , 𝑍, 𝑋}, {𝑊 , 𝑍, 𝑌 }.
The respective combinations 𝑐𝑐 ∈ 𝐶𝑐(𝑐𝑜) that we should evaluate are {𝐴}, the shortest path from 𝐴 to
𝑋 and the shortest path from 𝐴 to 𝑌 . In Figure 5.4c we show the graph and edge costs that we use
to find the shortest path from 𝐴 to 𝑋.

5.1.5. Decompose problems
The above described processes are repeated until the connectivity matrix cannot be further reduced.
The network associated with the resulting connectivity matrix can be decomposed into multiple sub-
networks. Each subnetwork contains a combination of retailers and customers that solely interact with
each other and not with retailers or customers of another subnetwork. Therefore, the decomposition
can be performed without loss of optimality. A visualization of a decomposed network can be seen in
Figure 5.5.

Figure 5.5: A decomposed network. Blue circles signify customers whereas squares signify retailers. Filled square indicate
retailers that are always open whereas open squares indicate retailers that can be either open or closed.
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Problem decomposition is effective for the PostNL case. We are able to close 762 retailers. Fur-
thermore, we decompose our initial problem into 1307 subproblems of which 264 contain at least one
retailer with an unfixed opening status. These 264 subproblems consider on average 20.7 retailers
with an unfixed opening status. The degree of effectiveness is determined by the connectivity of the
general problem.

5.2. Branch and Bound
For the PostNL case the above described reductions are sufficient to enable the usage of an exact
method. We use Branch and Bound (B&B) with custom lower and upper bounds and a custom branching
procedure. This is because our problem has a non-linear objective function and non-linear constraints.
Furthermore, linear programming relaxations are inefficient because some of the constraints strongly
rely on the integer structure. With a custom B&B procedure we can overcome these issues. In the
following sections we discuss all facets of the B&B algorithm.

5.2.1. Solution representation
Each node in the branching tree is represented by a binary vector that encodes the locations with an
open retailer. This automatically fixes the customer assignment to these open retailers based on the
closest assignment constraints and the customer preference. Additionally, each solution is characterized
by a lower and upper bound on the costs.

5.2.2. Root node
At the root node we solely fix the status of the retailers that are always open. From the root node
onward, the number of opened retailers at each layer of the branching tree increases.

5.2.3. Upper bound
During calculation of the upper bound customers are assigned to the open retailers based on the closest
assignment constraints. Therefore, the upper bound solution is a feasible assignment of customers
to open retailers. For some problems there is already a feasible assignment at the root node. For
others, more retailers should become fixed to obtain a feasible solution. Whenever there is no feasible
assignment for all customers to any of the open retailers, we set the upper bound equal to positive
infinity. Otherwise, the costs associated with the assignment of customers to the open retailers is used
as an upper bound. For each problem it is guaranteed that there is a feasible solution. Mathematically
the upper bound is expressed as:

𝑈𝐵 =
{

∑𝑗∈𝑀𝑜 𝐺𝑗(𝑁𝑗)) if 𝑁𝑑 = ∅
∞, otherwise

(5.1)

5.2.4. Lower bound
During the infeasible- and the feasible- phase we use different lower bounds. This is because the lower
bound during the feasible phase is tighter compared to the lower bound during the infeasible phase.

Infeasible phase
During the infeasible phase the lower bound can be determined with a lower bound on the cost of the
currently open retailers plus a lower bound on the additional cost for connecting each disconnected
customer to a retailer.

We define the set 𝐿 as the set that contains the smallest disjoint subsets of all retailers 𝑀𝑖 ∀𝑖 ∈ 𝑁𝑑

such that each set 𝑀𝑖 ∀𝑖 ∈ 𝑁𝑑 is a subset of a single element of 𝐿. Therefore, 𝐿 can be expressed
as:

𝐿 = {(𝑀𝑖 ∪ 𝑀𝑗 | 𝑀𝑖 ∩ 𝑀𝑗 ≠ ∅, ∀𝑗 ∈ 𝑁𝑑) ∀𝑖 ∈ 𝑁𝑑}

Each element in the set 𝐿 is expressed as ℒ . With an example we clarify set 𝐿. Suppose there
are three customers 𝑎, 𝑏 and 𝑐 that currently do not have access to an open retailer. Therefore,
𝑁𝑑 = {𝑎, 𝑏, 𝑐}. Furthermore, each of these customers have some potential retailers. Suppose these are
𝑀𝑎, 𝑀𝑏, 𝑀𝑐 = {𝐴, 𝐵}, {𝐵, 𝐷}, {𝐶, 𝐸} respectively. Then 𝐿 can be expressed as 𝐿 = {{𝐴, 𝐵, 𝐷}, {𝐶, 𝐸}}.
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Finally, we use 𝑀̂𝑜 and 𝑁̂𝑖 ∀𝑖 ∈ 𝑀̂𝑜 to express the set of open retailers and the sets of customers
that visit these open retailers in the optimal solution given that 𝑀𝑜 ⊆ 𝑀̂𝑜.

Now, we apply Theorem 2 to express a lower bound on the costs during the infeasible phase given
the set of open retailers 𝑀𝑜 as:

𝐿𝐵 = ∑
𝑖∈𝑀𝑜

𝐺𝑖(𝑁−
𝑖 ) + ∑

ℒ∈𝐿
min
𝑙∈ℒ

(𝐺𝑙(𝑁−
𝑙 )) (5.2)

Theorem 2 ∑𝑖∈𝑀𝑜 𝐺𝑖(𝑁−
𝑖 ) + ∑ℒ∈𝐿 min𝑙∈ℒ (𝐺𝑙(𝑁−

𝑙 )) is a lower bound on problem 𝑃 (Equations 2.4-
2.11) given that 𝑧𝑗 = 1 ∀𝑗 ∈ 𝑀𝑜.

We proof Theorem 2 based on the following arguments. First, since ∀𝑖 ∈ 𝑀 it holds that 𝑁−
𝑖 ⊆ 𝑁̂𝑖

and because 𝐺𝑖(⋅) is a monotonically increasing function it follows that 𝐺𝑖(𝑁−
𝑖 ) ≤ 𝐺𝑖(𝑁̂𝑖) ∀𝑖 ∈ 𝑀.

Consequently, because 𝑀𝑜 ⊆ 𝑀 it follows that

∑
𝑖∈𝑀𝑜

𝐺𝑖(𝑁−
𝑖 ) ≤ ∑

𝑖∈𝑀𝑜
𝐺𝑖(𝑁̂𝑖)

In other words, a lower bound on the costs at the already open retailers is expressed as the minimal
cost at the already open retailers.

Moreover, 𝑁𝑑 ≠ ∅ because we are in the infeasible phase. Consequently, because of the condition
𝑧𝑗 = 1 ∀𝑗 ∈ 𝑀𝑜 it follows that 𝑀𝑜 ⊂ 𝑀̂𝑜. Because, each customer in the set 𝑁𝑑 should be connected
to a retailer from its respective set 𝑀𝑖 and because ∃! (ℒ ∈ 𝐿) ⊇ 𝑀𝑖 ∀𝑖 ∈ 𝑁𝑑 it holds that

(𝑀̂𝑜 ⧵ 𝑀𝑜) ∩ ℒ ≠ ∅ ∀ℒ ∈ 𝐿

In other words, since there exists one and only one set ℒ ∈ 𝐿 that is a superset of 𝑀𝑖 ∀𝑖 ∈ 𝑁𝑑 we
know that at least one retailer from each set ℒ ∈ 𝐿 should be open with respect to the current set 𝑀𝑜

in the optimal solution 𝑀̂𝑜. Therefore, if we select the cheapest retailer in each set ℒ ∈ 𝐿 and use its
minimal cost it follows that:

∑
ℒ∈𝐿

min
𝑙∈ℒ

(𝐺𝑙(𝑁−
𝑙 )) ≤ ∑

𝑖∈𝑀̂𝑜⧵𝑀𝑜
𝐺𝑖(𝑁̂𝑖)

Consequently, the costs at both the currently open retailers (𝑀𝑜) and the required additional retailers
(𝑀̂𝑜 ⧵ 𝑀𝑜) are lower than or equal to the costs in the optimal solution. This concludes our proof
because:

∑
𝑖∈𝑀𝑜

𝐺𝑖(𝑁−
𝑖 ) + ∑

ℒ∈𝐿
min
𝑙∈ℒ

(𝐺𝑙(𝑁−
𝑙 )) ≤ ∑

𝑖∈𝑀̂𝑜
𝐺𝑖(𝑁̂𝑖)

□

Feasible phase
The lower bound that is used during the infeasible phase is a lower bound for feasible solutions as
well. However, since 𝑁𝑑 = ∅ it loses some of its effectiveness. Therefore, we develop a tighter bound
that is used during the feasible phase. The idea behind this lower bound is that the costs at the open
retailers, 𝑀𝑜, cannot be lower than 𝐺𝑖(𝑁−

𝑖 ) ∀𝑖 ∈ 𝑀𝑜. However, to reduce the costs at a retailer from
𝐺𝑖(𝑁𝑖) to 𝐺𝑖(𝑁−

𝑖 ) additional retailers should be opened which incurs additional costs as well. For this
lower bound we assume that all retailers 𝑗 ∈ 𝑀𝑐 ∩ 𝑀𝑛

𝑖 can reduce the costs at retailer 𝑖 from 𝐺𝑖(𝑁𝑖)
to 𝐺𝑖(𝑁−

𝑖 ) at the costs 𝐺𝑗(𝑁−
𝑗 ). Therefore, we express the lower bound given the current set 𝑀𝑜 with

problem 𝐿𝐵:
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𝐿𝐵: min 𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈𝑀𝑜

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈𝑀𝑐
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 (5.3)

Subject to ∑
𝑖∈𝐶𝑗

𝑠𝑖𝑗 ≤ |𝐶𝑗|𝑧𝑗 ∀𝑗 ∈ 𝑀𝑐 (5.4)

∑
𝑗∈𝑀𝑐

𝑠𝑖𝑗 ≤ 1 ∀𝑖 ∈ 𝑀𝑜 (5.5)

∑
𝑗∈𝑀𝑐

𝑧𝑗 ≤ 𝑛𝑜𝑝𝑒𝑛 (5.6)

𝑠𝑖𝑗 = 0 ∀𝑗 ∈ 𝑀𝑐 , ∀𝑖 ∉ 𝐶𝑗 (5.7)

0 ≤ 𝑠𝑖𝑗 ≤ 1 ∀𝑗 ∈ 𝑀𝑐 , ∀𝑖 ∈ 𝑀𝑜 (5.8)

𝑧𝑗 ∈ {0, 1} ∀𝑗 ∈ 𝑀𝑐 (5.9)

The problem has two decision variables:

𝑧𝑗 =
{

1, If a retailer at location 𝑗 is opened
0, Otherwise

∀𝑗 ∈ 𝑀𝑐 (5.10)

𝑠𝑖𝑗 =
{

1, Retailer 𝑖 can reduce its costs
0, Otherwise

∀𝑗 ∈ 𝑀𝑐 , ∀𝑖 ∈ 𝑀𝑜 (5.11)

Objective function 5.3 minimizes the cost, given 𝑀𝑜, by maximizing the cost reduction at retailers
𝑖 ∈ 𝑀𝑜 and minimizing the additional cost of opening new retailers 𝑗 ∈ 𝑀𝑐. The cost reduction and
additional costs of a retailer are determined in an optimistic way.

Constraints 5.4 ensure that opening retailer 𝑗 can only reduce the costs at retailers, 𝑖 ∈ 𝐶𝑗 , with
whom retailer 𝑗 shares at least one potential customer. Therefore, 𝐶𝑗 = {𝑖 | 𝑖 ∈ 𝑀𝑜 ∩ 𝑀𝑛

𝑗 }. Constraints
5.5 ensure that each retailer 𝑖 ∈ 𝑀𝑜 can only reduce its costs from 𝐺𝑖(𝑁𝑖) to 𝐺𝑖(𝑁−

𝑖 ) once.
The maximum number of retailers that can be opened, 𝑛𝑜𝑝𝑒𝑛, is determined with Equation 5.12. 𝑈𝐵

is the best known upper bound, 𝐺𝑖∈𝑀𝑐 (𝑁−
𝑖∈𝑀𝑐 )(𝑘) is the 𝑘𝑡ℎ minimal cost of all retailers 𝑖 ∈ 𝑀𝑐 and

∑𝑖∈𝑀𝑜 𝐺𝑖(𝑁−
𝑖 ) signifies the minimal costs at all currently open retailers. Therefore, 𝑛𝑜𝑝𝑒𝑛 is the maximal

number of additional retailers that can be opened before the minimal costs at the open retailers plus
the minimal additional costs exceed the global upper bound.

𝑛𝑜𝑝𝑒𝑛 = max
𝑛 (𝑛 ∶

𝑈𝐵 − ∑𝑖∈𝑀𝑜 𝐺𝑖(𝑁−
𝑖 )

∑𝑛
𝑘=1 𝐺𝑖∈𝑀𝑐 (𝑁−

𝑖∈𝑀𝑐 )(𝑘) ≥ 1) (5.12)

Therefore, Constraint 5.6 limits the number of retailers that can be opened.
Constraints 5.7 force that retailer 𝑖 ∈ 𝑀𝑜 cannot reduce its costs by an opening of retailer 𝑗 ∈ 𝑀𝑐

whenever they do not have any mutual potential customers. Finally, Constraints 5.8 and 5.9 specify
the domains of 𝑧𝑗 and 𝑠𝑖𝑗 .

Because of Theorem 3 we can use 𝐿𝐵 as a lower bound on the optimal solution given that 𝑀𝑜 ⊆ 𝑀̂𝑜.

Theorem 3 𝑈𝐵 − ∑𝑗∈𝑀𝑐 , 𝑖∈𝑀𝑜 (𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑𝑗∈𝑀𝑐 𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 is a lower bound on problem 𝑃
(Formulation 2.4-2.11) given that 𝑧𝑗 = 1 ∀𝑗 ∈ 𝑀𝑜 and Constraints 5.4- 5.9 are satisfied.

We proof Theorem 3 based on the following arguments. We rewrite the objective function as

min ∑
𝑖∈𝑀𝑜

𝐺𝑖(𝑁𝑖)(1 − ∑
𝑗∈𝑀𝑐

𝑠𝑖𝑗) + ∑
𝑖∈𝑀𝑜

𝐺𝑖(𝑁−
𝑖 ) ∑

𝑗∈𝑀𝑐
𝑠𝑖𝑗 + ∑

𝑗∈𝑀𝑐
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗

This way of writing better illustrates that if ∑𝑗∈𝑀𝑐 𝑠𝑖𝑗 = 0 the costs 𝐺𝑖(𝑁𝑖) are incurred for retailer
𝑖 ∈ 𝑀𝑜 just as it is used in the upper bound. However, if ∑𝑗∈𝑀𝑐 𝑠𝑖𝑗 = 1 the costs at retailer 𝑖 ∈ 𝑀𝑜
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reduce to 𝐺𝑖(𝑁−
𝑖 ). Because of constraints 5.4, 5.8 and 5.9, ∑𝑗∈𝑀𝑐 𝑠𝑖𝑗 = 1 can only be true if 𝑧𝑗 = 1.

Because 𝑁−
𝑖 ⊆ 𝑁𝑖 and because 𝐺𝑖(⋅) is a monotonically increasing function it holds that ∑𝑖∈𝑀𝑜 𝐺𝑖(𝑁̂𝑖) ≥

∑𝑖∈𝑀𝑜 𝐺𝑖(𝑁−
𝑖 ).

Therefore,

∑
𝑗∈𝑀𝑐 , 𝑖∈𝑀𝑜

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁̂𝑖))𝑠𝑖𝑗 ≤ ∑
𝑗∈𝑀𝑐 , 𝑖∈𝑀𝑜

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗

This means that the cost reduction at the already open retailers is smaller within the optimal solution
compared to the lower bound solution. Moreover, by definition of an optimal solution and because of
the condition that 𝑀𝑜 ⊆ 𝑀̂𝑜 and the previous statements it follows that

∑
𝑖∈𝑀𝑜

𝐺𝑖(𝑁𝑖) ≥ ∑
𝑖∈𝑀̂𝑜

𝐺𝑖(𝑁̂𝑖) ≥ ∑
𝑖∈𝑀𝑜

𝐺𝑖(𝑁̂𝑖) ≥ ∑
𝑖∈𝑀𝑜

𝐺𝑖(𝑁−
𝑖 )

Therefore,

max
𝑛 (𝑛 |

𝑈𝐵 − ∑𝑖∈𝑀𝑜 𝐺𝑖(𝑁−
𝑖 )

∑𝑛
𝑘=1 𝐺𝑖∈𝑀𝑐 (𝑁−

𝑖∈𝑀𝑐 )(𝑘) ≥ 1) ≥ max
𝑛 (𝑛 |

𝑈𝐵 − ∑𝑖∈𝑀̂𝑜 𝐺𝑖(𝑁̂𝑖)
∑𝑛

𝑘=1 𝐺𝑖∈𝑀𝑐 (𝑁−
𝑖∈𝑀𝑐 )(𝑘) ≥ 1)

Consequently, 𝑛𝑜𝑝𝑒𝑛 ≥ ̂𝑛𝑜𝑝𝑒𝑛 = |𝑀̂𝑜 ⧵ 𝑀𝑜|. So, within problem 𝐿𝐵 we allow for more additional retailers
compared to the true number of additional retailers between the current and the optimal solution.
Additionally, within problem 𝐿𝐵 we use assumption 1.

Assumption 1
𝑑𝑘𝑗 < 𝑑𝑘𝑖 ∀𝑖 ∈ 𝑀𝑜, ∀𝑗 ∈ 𝑀𝑐 ∩ 𝑀𝑛

𝑖 , ∀𝑘 ∈ 𝑁𝑖 ⧵ 𝑁−
𝑖

Assumption 1 invalidly assumes that each retailer from the set 𝑀𝑐 ∩ 𝑀𝑛
𝑖 is closer to all customers from

the set 𝑁𝑖 ⧵ 𝑁−
𝑖 for all retailers 𝑖 ∈ 𝑀𝑜. Therefore, only a single retailer from the set 𝑀𝑐 ∩ 𝑀𝑛

𝑖 is
required to reduce the costs at retailer 𝑖 from 𝐺𝑖(𝑁𝑖) to 𝐺𝑖(𝑁−

𝑖 ). Since assumption 1 is invalid for the
general case the number of additional retailers required to reduce the costs from 𝐺𝑖(𝑁𝑖) to 𝐺𝑖(𝑁̂𝑖) for
any retailer is larger than or equal to the number of additional retailers required to reduce the costs
from 𝐺𝑖(𝑁𝑖) to 𝐺𝑖(𝑁−

𝑖 ) under the assumptions of problem 𝐿𝐵. On top of that, problem 𝐿𝐵 allows for
more additional retailers because 𝑛𝑜𝑝𝑒𝑛 ≥ ̂𝑛𝑜𝑝𝑒𝑛.

Moreover, since 𝐺𝑗(𝑁−
𝑗 ) ≤ 𝐺𝑗(𝑁̂𝑗) ∀𝑗 ∈ 𝑀𝑐 the costs for each additional retailer within problem

𝐿𝐵 is lower than or equal to the true costs of each additional retailer.
Therefore, the additional costs for a cost reduction from 𝐺𝑖(𝑁𝑖) to 𝐺𝑖(𝑁−

𝑖 ) within problem 𝐿𝐵 for
all retailers 𝑖 ∈ 𝑀𝑜 are assumed smaller than or equal to the actual required additional costs in the
optimal solution.

This concludes the proof since the cost reduction is assumed larger and the additional costs for cost
reduction are assumed smaller within problem 𝐿𝐵 compared to the optimal solution. Therefore,

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈𝑀𝑜

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈𝑀𝑐
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 ≤ ∑
𝑖∈𝑀̂𝑜

𝐺𝑖(𝑁̂𝑖)

□

Solving problem 𝐿𝐵
Problem 𝐿𝐵 is a new difficult combinatorial problem. However, we can simplify problem 𝐿𝐵 with
polynomial time preprocessing techniques that reduce the problem size. The preproccessing techniques
apply Theorems 4-8. For the PostNL case these Theorems significantly reduce the problem size.
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First of all, we use Theorem 4 to determine which open retailers to include, reducing the cardinality
of 𝑀𝑜.

Theorem 4 ∑𝑗∈𝑀𝑐 𝑠𝐴𝑗 = 0 if 𝐺𝐴(𝑁𝐴) = 𝐺𝐴(𝑁−
𝐴 )

Theorem 4 states that retailers where the current costs are equal to the minimal cost do not require
a cost reduction. A proof of Theorem 4 is as follows. Suppose we have an optimal solution where
∑𝑗∈𝑀𝑐 𝑠𝐴𝑗 = 1 and 𝐺𝐴(𝑁𝐴) = 𝐺𝐴(𝑁−

𝐴 ). Because of Constraints 5.4, one retailer from the set 𝑀𝑐 ∩ 𝑀𝑛
𝐴

should be open. Suppose this is retailer 𝐵. Consequently, 𝑧𝐵 = 1. Therefore, we can express the
objective value as:

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐴)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵𝐵)
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 − (𝐺𝐴(𝑁𝐴) − 𝐺𝐴(𝑁−
𝐴 )) + 𝐺𝐵(𝑁−

𝐵 )

Because of the condition that 𝐺𝐴(𝑁𝐴) = 𝐺𝐴(𝑁−
𝐴 ), the above is equal to:

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐴)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵𝐵)
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 + 𝐺𝐵(𝑁−
𝐵 )

In an alternative solution where, ∑𝑗∈𝑀𝑐 𝑠𝐴𝑗 = 0 we do not require that any retailer from the set 𝑀𝑛
𝐴

should be open. Therefore, 𝑧𝐵 = 0 or 𝑧𝐵 = 1 are both feasible. Therefore, the objective value is equal
to

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐴)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵𝐵)
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 + 𝐺𝐵(𝑁−
𝐵 )𝑧𝐵

Since 𝑧𝐵 lies within the domain {0, 1} it follows that:

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐴)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵𝐵)
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 + 𝐺𝐵(𝑁−
𝐵 )𝑧𝐵 ≤

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐴)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵𝐵)
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 + 𝐺𝐵(𝑁−
𝐵 )

This shows that there is a feasible alternative solution with a lower objective value than or equal
objective value to the optimal objective value whenever ∑𝑗∈𝑀𝑐 𝑠𝐴𝑗 = 1. Therefore, an optimal solu-
tion exists with ∑𝑗∈𝑀𝑐 𝑠𝐴𝑗 = 0, given that 𝐺𝐴(𝑁𝐴) = 𝐺𝐴(𝑁−

𝐴 ). This concludes our proof of Theorem 4□.

Secondly, we use Theorem 5 to determine which closed retailers we include.

Theorem 5 𝑧𝐴 = 0 if 𝐺𝐴(𝑁−
𝐴 ) > 𝐺𝐵(𝑁−

𝐵 ) and 𝐶𝐴 ⊆ 𝐶𝐵

Closed retailer 𝐴 is not part of the optimal solution if the minimum cost of retailer 𝐴 is larger than
the minimum cost of retailer 𝐵 and retailer 𝐴 permits a cost reduction at a subset of the open retailers
where retailer 𝐵 permits a cost reduction.

To proof Theorem 5 we suppose to have an optimal solution where 𝑧𝐴 = 1, this permits that we
obtain a cost reduction for at least all retailers in 𝐶𝐴. Therefore, the objective value can be expressed
as:

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐴)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵𝐴)
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 − ∑
𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 )) + 𝐺𝐴(𝑁−

𝐴 )

An alternative solution where 𝑧𝐴 = 0 and 𝑧𝐵 = 1 permits that we obtain a cost reduction for at least
all retailers in 𝐶𝐵. Moreover because 𝐶𝐵 ⊇ 𝐶𝐴 the same solution also permits for a cost reduction at
all retailers in 𝐶𝐴. Therefore, the objective value of an alternative solution with 𝑧𝐴 = 0 and 𝑧𝐵 = 1 can
be expressed as:

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐵)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵{𝐴,𝐵})
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 − ∑
𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 )) + 𝐺𝐵(𝑁−

𝐵 )
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Whenever 𝑧𝐴 = 1 is feasible, 𝑧𝐴 = 0 and 𝑧𝐵 = 1 is feasible as well. Furthermore, because of the
condition 𝐺𝐴(𝑁−

𝐴 ) > 𝐺𝐵(𝑁−
𝐵 ) it holds that

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐴)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵𝐴)
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 − ∑
𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 )) + 𝐺𝐴(𝑁−

𝐴 ) >

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐵)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵{𝐴,𝐵})
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 − ∑
𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 )) + 𝐺𝐵(𝑁−

𝐵 )

Therefore, we show that there is a feasible solution with 𝑧𝐴 = 0 for which the objective value is
strictly lower than the optimal objective value given that 𝑧𝐴 = 1. Therefore, a solution with 𝑧𝐴 = 1,
given that 𝐺𝐴(𝑁−

𝐴 ) > 𝐺𝐵(𝑁−
𝐵 ) and 𝐶𝐴 ⊆ 𝐶𝐵, cannot be optimal. This concludes our proof □.

An extension of Theorem 5 is Theorem 6.

Theorem 6 𝑧𝐴 + 𝑧𝐵 ≤ 1 if 𝐶𝐴 = 𝐶𝐵

If two closed retailers permit for a cost reduction at the same set of open retailers maximally one
of the closed retailers is part of the optimal solution.

Suppose we have an optimal solution where 𝑧𝐴 = 1 and 𝑧𝐵 = 1, this permits that we obtain a cost
reduction for at least all retailers in 𝐶𝐴 ∪ 𝐶𝐵. Because of the condition 𝐶𝐴 = 𝐶𝐵, 𝐶𝐴 ∪ 𝐶𝐵 = 𝐶𝐴 = 𝐶𝐵.
Therefore, the objective function is expressed as:

𝑈𝐵− ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐴)

(𝐺𝑖(𝑁𝑖)−𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗+ ∑

𝑗∈(𝑀𝑐⧵{𝐴,𝐵})
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗− ∑
𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖)−𝐺𝑖(𝑁−
𝑖 ))+𝐺𝐴(𝑁−

𝐴 )+𝐺𝐵(𝑁−
𝐵 )

However, in an alternative solution where 𝑧𝐴+𝑧𝐵 = 1 together with the condition 𝐶𝐴 = 𝐶𝐵 and Theorem
5 the objective value can be expressed as:

𝑈𝐵− ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐴)

(𝐺𝑖(𝑁𝑖)−𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗+ ∑

𝑗∈(𝑀𝑐⧵{𝐴,𝐵})
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗− ∑
𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖)−𝐺𝑖(𝑁−
𝑖 ))+min(𝐺𝐴(𝑁−

𝐴 ), 𝐺𝐵(𝑁−
𝐵 ))

Because a solution with 𝑧𝐴 = 1 and 𝑧𝐵 = 1 is feasible, so is a solution with 𝑧𝐴 + 𝑧𝐵 = 1. Furthermore,
since

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐴)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵{𝐴,𝐵})
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 − ∑
𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))+

min(𝐺𝐴(𝑁−
𝐴 ), 𝐺𝐵(𝑁−

𝐵 )) <
𝑈𝐵 − ∑

𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐴)
(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−

𝑖 ))𝑠𝑖𝑗 + ∑
𝑗∈(𝑀𝑐⧵{𝐴,𝐵})

𝐺𝑗(𝑁−
𝑗 )𝑧𝑗 − ∑

𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))+

𝐺𝐴(𝑁−
𝐴 ) + 𝐺𝐵(𝑁−

𝐵 )

We show that there is a feasible alternative solution with a strictly lower objective value than the ob-
jective value obtained whenever 𝑧𝐴 = 𝑧𝐵 = 1. Therefore, a solution with 𝑧𝐴 = 𝑧𝐵 = 1, given that
𝐶𝐴 = 𝐶𝐵, cannot be optimal. This concludes our proof □.

Further simplifications can be obtained with Theorem 7 to reduce the number of included closed
retailers:

Theorem 7 𝑧𝐴 = 0 if 𝐺𝐴(𝑁−
𝐴 ) − ∑𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 )) ≥ 0

If the minimum costs of a closed retailer are larger than or equal to the maximal cost reduction that it
could produce, then that retailer is not part of the optimal solution.

Suppose we have an optimal solution with 𝑧𝐴 = 1. This allows that all 𝑠𝑖𝐴 = 1 ∀𝑖 ∈ 𝐶𝐴. Therefore,
the objective function can be written as:

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐴)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵𝐴)
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 + 𝐺𝐴(𝑁−
𝐴 ) − ∑

𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))
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In an alternative feasible solution where 𝑧𝐴 = 0 and 𝑠𝑖𝑗 = 0 ∀𝑖 ∈ 𝐶𝐴, ∀𝑗 ∈ 𝑀𝑐, the objective function
can be expressed as:

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐴)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵𝐴)
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗

Since 𝐺𝐴(𝑁−
𝐴 ) − ∑𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 )) ≥ 0 it is obvious that:

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐴)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵𝐴)
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗 + 𝐺𝐴(𝑁−
𝐴 ) − ∑

𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 )) ≥

𝑈𝐵 − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐴)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + ∑

𝑗∈(𝑀𝑐⧵𝐴)
𝐺𝑗(𝑁−

𝑗 )𝑧𝑗

This means that there is an alternative feasible solution where the objective value with 𝑧𝐴 = 0 is smaller
than or equal to the optimal objective value given that 𝑧𝐴 = 1. Therefore, a solution with 𝑧𝐴 = 1 cannot
be optimal if 𝐺𝐴(𝑁−

𝐴 ) − ∑𝑖∈𝐶𝐴
(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−

𝑖 )) ≥ 0. □

Finally, we use Theorem 8 to determine which retailers are open in an optimal solution. First, we
introduce the set 𝑀𝑠 = {𝑖|∃!𝐶𝑗 ⊇ 𝑖 ∀𝑖, 𝑗} to define the retailers that can only reduce their cost by an
opening of a single retailer. Second, we introduce 𝑘𝑗 as the shorthand notation for the ranked position
of maximal improvement of the upper bound that retailer 𝑗 ∈ 𝑀𝑐 could account for. The maximal
improvement of the upper bound that retailer 𝑗 could account for is equal to 𝐺𝑗(𝑁−

𝑗 ) − ∑𝑖∈𝐶𝑗
(𝐺𝑖(𝑁𝑖) −

𝐺𝑖(𝑁−
𝑖 )). So the retailer 𝑗 that accounts for the largest improvement has 𝑘𝑗 = 1.

Theorem 8 𝑧𝐴 = 1 if 𝐶𝐴 ⊆ 𝑀𝑠 and 𝑘𝐴 ≤ 𝑛𝑜𝑝𝑒𝑛

Retailer 𝐴 is open if it only permits for a cost reduction at open retailers that cannot reduce their
costs otherwise and the improvement of the upper bound that retailer 𝐴 accounts for is within the top
𝑛𝑜𝑝𝑒𝑛.

To proof Theorem 8 we suppose to have an optimal solution where 𝑧𝐴 = 0 but 𝐶𝐴 ⊆ 𝑀𝑠 and
𝑘𝐴 ≤ 𝑛𝑜𝑝𝑒𝑛. Furthermore, to avoid a trivial solution suppose that |𝑀𝑐| > 𝑛𝑜𝑝𝑒𝑛. We introduce the set
𝑀𝑜

𝐿𝐵 that contains all retailers in problem 𝐿𝐵 where 𝑧𝑗 = 1 ∀𝑗 ∈ 𝑀𝑐. Obviously, 𝐴 ∉ 𝑀𝑜
𝐿𝐵. However,

suppose that 𝑧𝐵 = 1. Consequently, retailer 𝐵 ∈ 𝑀𝑜
𝐿𝐵. Therefore, the objective value of the optimal

solution with 𝑧𝐴 = 0 and 𝑧𝐵 = 1 can be expressed as:

𝑈𝐵 + ∑
𝑗∈𝑀𝑜

𝐿𝐵⧵𝐵
𝐺𝑗(𝑁−

𝑗 ) − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐵)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + 𝐺𝐵(𝑁−

𝐵 ) − ∑
𝑖∈𝐶𝐵

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))

Because of the condition that 𝑘𝐴 ≤ 𝑛𝑜𝑝𝑒𝑛 there is at least one retailer 𝑗 ∈ 𝑀𝑜
𝐿𝐵 where 𝑘𝑗 > 𝑛𝑜𝑝𝑒𝑛 ≥ 𝑘𝐴.

Suppose this is retailer 𝐵 ∈ 𝑀𝑜
𝐿𝐵. Therefore, it holds that:

𝐺𝐵(𝑁−
𝐵 ) − ∑

𝑖∈𝐶𝐵

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 )) > 𝐺𝐴(𝑁−

𝐴 ) − ∑
𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))

Suppose that in an alternative feasible solution we open retailer 𝐴 and close retailer 𝐵, 𝑧𝐴 = 1 and
𝑧𝐵 = 0. Because of the condition that 𝐶𝐴 ⊆ 𝑀𝑠 all 𝑠𝑖𝐴 = 1 ∀𝑖 ∈ 𝐶𝐴. Therefore, the objective value of
the alternative feasible solution can be expressed as:

𝑈𝐵 + ∑
𝑗∈𝑀𝑜

𝐿𝐵⧵𝐵
𝐺𝑗(𝑁−

𝑗 ) − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐵)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + 𝐺𝐴(𝑁−

𝐴 ) − ∑
𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))

Based on the previous inequality it follows that:

𝑈𝐵 + ∑
𝑗∈𝑀𝑜

𝐿𝐵⧵𝐵
𝐺𝑗(𝑁−

𝑗 ) − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐵)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + 𝐺𝐵(𝑁−

𝐵 ) − ∑
𝑖∈𝐶𝐵

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 )) >

𝑈𝐵 + ∑
𝑗∈𝑀𝑜

𝐿𝐵⧵𝐵
𝐺𝑗(𝑁−

𝑗 ) − ∑
𝑗∈𝑀𝑐 , 𝑖∈(𝑀𝑜⧵𝐶𝐵)

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))𝑠𝑖𝑗 + 𝐺𝐴(𝑁−

𝐴 ) − ∑
𝑖∈𝐶𝐴

(𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ))



5.2. Branch and Bound 29

Therefore, we show that there is a feasible solution where 𝑧𝐴 = 1 with a strictly lower objective value
than a supposed optimal solution where 𝑧𝐴 = 0. Therefore, a solution with 𝑧𝐴 = 0 cannot be optimal
if 𝐶𝐴 ⊆ 𝑀𝑠 and 𝑘𝐴 ≤ 𝑛𝑜𝑝𝑒𝑛. This concludes our proof of Theorem 8 □.

Theorems 5-8 reduce the cardinality of the set 𝑀𝑐 within problem 𝐿𝐵. Furthermore, the cardinality
of the set 𝑀𝑜 may be reduced as well with Theorem 4 and because we can remove retailer 𝑖 ∈ 𝑀𝑜

from problem 𝐿𝐵 if ∄𝐶𝑗 ⊇ 𝑖 ∀𝑗. Or in words, if there is no closed retailer in problem 𝐿𝐵 that allows
for a cost reduction at retailer 𝑖 ∈ 𝑀𝑜.

The effectiveness of applying the introduced Theorems 4-8 ranges from no effect to a reduction
of problem 𝐿𝐵 to a polynomial time problem. In Tables 5.2a and 5.2b we show problem instances
where 𝑀𝑜 = {𝑋, 𝑌 , 𝑍} and 𝑀𝑐 = {𝐴, 𝐵, 𝐶}. A 1 indicates that there is a mutual customer between
two retailers. Furthermore, we show the potential cost reduction and minimal cost of open and closed
retailers respectively. Finally, 𝑛𝑜𝑝𝑒𝑛 = 2 in both problem instances. In Table 5.2a we show an example
of a problem instance where no reduction is available. Whereas the problem instance in Table 5.2b
can be solved in polynomial time by applying Theorems 5 and 8.

X Y Z 𝐺𝑗(𝑁−
𝑗 )

A 1 1 0 1
B 0 1 1 2
C 1 0 1 3

𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ) 1 2 3 𝑛𝑜𝑝𝑒𝑛 = 2

(a) A problem instance where no reduction is available

X Y Z 𝐺𝑗(𝑁−
𝑗 )

A 1 1 0 1
B 0 1 0 2
C 0 0 1 2

𝐺𝑖(𝑁𝑖) − 𝐺𝑖(𝑁−
𝑖 ) 1 2 3 𝑛𝑜𝑝𝑒𝑛 = 2

(b) A problem instance that can be solved in polynomial time

Table 5.1: Problem instances where 𝑀𝑜 = {𝑋, 𝑌 , 𝑍} and 𝑀𝑐 = {𝐴, 𝐵, 𝐶}. A 1 indicates that there is a mutual customer between
two retailers. Furthermore, we show the potential cost reduction and minimal cost of open and closed retailers respectively.
Finally, 𝑛𝑜𝑝𝑒𝑛 = 2 in both problem instances.

If Theorems 4-8 are applied in the order of introduction the computational effort is generally the
smallest. Furthermore, Theorem 8 should always be applied last for maximum effectiveness.

With Theorems 4-8 we can generally reduce the number of variables in problem 𝐿𝐵 significantly for
the PostNL case. Approximately 55% of the problems 𝐿𝐵 can be solved in polynomial time by applying
Theorems 4-8. For the remaining 45% the problem size significantly reduces.

Additionally, to accelerate the solution process of problem 𝐿𝐵, each B&B tree stores the solution to
problem 𝐿𝐵 at the root node. Parts of this solution can be used by other nodes as an initial solution
for problem 𝐿𝐵 to reduce the computational effort.

5.2.5. Branching rule
As a branching rule we remove one retailer from the set 𝑀𝑐 by either opening it or closing it definitively.
With a definitive closing of a retailer we aim to decompose our general problem into multiple smaller
problems.

To identify which retailers should be closed definitively to decompose the general problem into
multiple smaller problems we first construct a network 𝐺(𝑀, 𝐴). Each node in the network represents
a retailer. Two retailers 𝑖, 𝑗 ∀𝑖, 𝑗 ∈ 𝑀 are connected with an undirected arc if 𝑗 ∈ 𝑀𝑛

𝑖 . The goal is
to find the minimal set of retailers in the set 𝑀𝑐 ⊆ 𝑀 such that the network 𝐺(𝑀, 𝐴) disconnects.
We focus on the minimal set of retailers because this requires minimal fixing effort. Because we
are uninterested in retailers from the set 𝑀𝑜 we remove them from the network 𝐺(𝑀, 𝐴) to create
the equivalent network 𝐺′(𝑀𝑐 , 𝐴). An undirected arc is drawn between retailers 𝑖, 𝑗 ∀𝑖, 𝑗 ∈ 𝑀𝑐 if
𝑗 ∈ 𝑀𝑛

𝑖 ∨ (𝑘 ∈ 𝑀𝑛
𝑖 ∧ 𝑘 ∈ 𝑀𝑛

𝑗 𝑘 ∈ 𝑀𝑜). Or in words, whenever two retailers are neighbours of each
other (they share a potential customer) or both retailers are neighbours of the same open retailer we
draw an arc between them. Furthermore, to keep the decomposition effective, we remove all retailers
from 𝐺′(𝑀𝑐 , 𝐴) with only a single outgoing and incoming arc. Repeating this procedure removes tails
from the network. We exclude tails because it is unlikely that separating a tail significantly reduces the
number of solutions.
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We solve multiple max-flow problems to identify the minimal sized set of nodes, called the cutset,
to remove from the network in order to disconnect the network. We use Algorithm 11 from [96, 97]
to determine which max-flow problems to solve. Each max-flow problem itself is solved by Edmonds
and Karp’s algorithm [98]. The orders of these two algorithms are respectively 𝑂(𝑀 − 𝛿 + 1 + 𝛿(𝛿−1)

2 )
and 𝑂(𝑀𝐸2) where 𝛿 is the minimal degree of all nodes in the network [96–99]. We select Edmonds
and Karp’s algorithm because it is intuitive and easy to implement.

Upon identifying the cutset, we are able to branch from our node in the B&B tree. First, we
construct one branch for each retailer in the cutset where we open each retailer from the cutset
individually. Additionally we create one branch where we close the retailers from the cutset definitively.
By definition this creates at least two subproblems. We call this branch a fork because it roots two new
trees from our initial tree. An additional restriction is that each new branch should be unique otherwise
it can be skipped. A new tree is unique whenever any of the sets 𝑀, 𝑀𝑜 or 𝑁 is unique. Finally, we
only create opening branches for retailers from the set 𝑀𝑏, where 𝑀𝑏 is the set of retailers that upon
opening will not cause the minimal costs to exceed the global upper bound.

𝑀𝑏 = {𝑖|𝑖 ∈ 𝑀𝑐 ∧ ∑
𝑗∈𝑀𝑜

𝐺𝑗(𝑁−
𝑗 ) + 𝐺𝑖(𝑁−

𝑖 ) ≤ 𝑈𝐵}

On top of that, since all retailers 𝑀̄𝑏 = {𝑖|𝑖 ∈ 𝑀𝑐 ∧ ∑𝑗∈𝑀𝑜 𝐺𝑗(𝑁−
𝑗 ) + 𝐺𝑖(𝑁−

𝑖 ) > 𝑈𝐵} never open,
we can remove them. As more retailers are removed, 𝐺𝑗(𝑁−

𝑗 ) ∀𝑗 ∈ 𝑀 increases. Therefore, we
repeatedly remove all retailers from the set 𝑀̄𝑏 until 𝑀̄𝑏 = ∅.

We clarify our branching rule with an example. Suppose that the network in Figure 5.6a is 𝐺(𝑀, 𝐴).
Then by removal of the retailers 𝑀𝑜 we obtain the network 𝐺′(𝑀𝑐 , 𝐴) as shown in Figure 5.6b. Subse-
quently, removing tails from the network results in the network shown in Figure 5.6c. Now we identify
{𝐴, 𝐵} as the cutset that disconnects the network as shown in Figure 5.6d. After we include the nodes
that we previously removed to find the cutset we obtain the disconnected networks shown in Figure
5.6e. In Figure 5.6f we show the branching tree. The initial network is shown in blue on top of the tree.
Opening both retailers 𝐴 and 𝐵 individually leads to the left two branches. These are also colored blue
as they consider the same network as the source node. Furthermore, the two remaining subnetworks
after removal are shown in red and green as they signify new trees.

(a) The original network 𝐺(𝑀, 𝐴) (b) Removal of retailers 𝑀𝑜 (c) Removal of tails

(d) A disconnected network (e) Original network after removal (f) The branching tree

Figure 5.6: Finding a cutset to branch a source node. Filled squares represent open retailers and open squares
represent retailers with an undefined opening status.

Each time a retailer is opened, the number of connections in the connectivity matrix reduces based
on the rules defined in Section 5.1. Therefore, sometimes the cutset could also have size zero. Naturally,
this will only root the new trees and will not fix any retailers open during a new branching routine. To
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save some time we only apply the reduction rules of Sections 5.1.1 and 5.1.2. Finally, in case the
network 𝐺′(𝑀𝑐 , 𝐴) consists of a single tail (this is unlikely for the PostNL case). We do not root any
new trees but instead define the cutset as 𝑀𝑐. Therefore, all retailers in 𝑀𝑏 ⊆ 𝑀𝑐 are opened
individually.

5.2.6. Node selection
To select the branching node we apply a best first search strategy since this quickly increases the lowest
lower bound. This leads to quicker pruning by bound of other branches. In case of a tie, the lowest
upper bound is used as well.

Since one problem can be composed of multiple subproblems, node selection is a tedious process.
We explain this process with a fictitious branching tree in Figure 5.7. Underneath each node there are
either other nodes (circles) or ’forks’ (triangles). Forks indicate that the problem is an addition of its
subproblems. The subproblems are the newly rooted trees described in the previous section.

To select a node, we first consider the main tree that is composed of all blue elements. Nodes that
are dashed outlined cannot be branched any further and are therefore not considered. From all blue
elements we select the best one. Whenever this is an ordinary node, the branching rules described
in Section 5.2.5 can be applied directly. Whenever the best element is a fork, we need to determine
which of its subproblems is most likely to decrease the incumbent solution. This likeliness for a single
subproblem is defined as the difference between the lower and upper bound of the subproblem. Once
we turned either left or right, the same process repeats itself until we arrive at a single node.

Figure 5.7: A fictitious branching tree. Similar colors indicate that the elements treat the same problem. Circles are nodes
whereas triangles are an addition of two nodes. Dashed outlined nodes cannot be branched anymore because all branches are
already created.

5.2.7. Pruning
One of the key concepts why ordinary B&B is effective for general problems is ”pruning” certain branches
prematurely [100]. Within our custom tailored B&B algorithm we apply two pruning strategies.

First, we prune by infeasibility. Whenever a newly rooted tree contains disconnected customers but
no potential retailers to connect these customers, the tree is infeasible. Mathematically, a problem is
feasible whenever 𝑀 𝑖 ∩ 𝑀 ≠ ∅ ∀𝑖 ∈ 𝑁. Whenever a tree is infeasible, the fork from which it rooted
is infeasible as well. Therefore, we can prune the fork.

Second, we prune by bound. A branch can be pruned by bound whenever the lower bound is greater
than or equal to its tree’s upper bound. For ordinary nodes the lower bound can be determined as
described in Section 5.2.4. The lower bound of a fork is the sum of the lower bounds of its underlying
trees. The lower bound of a tree is equal to the lowest lower bound among all of its active elements.
Similarly, the upper bound of a node can be obtained with Equation 5.1. The upper bound of a fork
is the sum of the upper bounds of its underlying trees. The upper bound of a tree is equal to the
lowest upper bound among all elements that were ever active. Because of the relationship between
nodes, forks and trees, each time a new node is constructed we work our way upwards to update the
lower and upper bounds of the parent elements until we either reach the original tree or one ancestor
element does not update.

5.2.8. Initial solution
To speed up the branching process we supply an initial solution. However, because of the way that
our branching trees grow an initial solution is not as powerful as it is in a classical B&B algorithm.
Contrary to classical B&B, our B&B algorithm is solely able to fix variables 𝑧𝑗 ∀𝑗 ∈ 𝑀 from 0 to 1 and
not the other way around. Consequently, at the root node we started with 𝑧𝑗 = 1 for as few retailers
as possible to include all possible solutions. Therefore, an initial solution where additional retailers
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are open cannot be used as a starting point for the B&B algorithm without excluding some solutions.
However, we can use the objective value of the initial solution as an upper bound to enable quicker
pruning of certain branches. Furthermore, having a lower upper bound increases the lower bound as
well. This is because 𝑛𝑜𝑝𝑒𝑛 in Equation 5.12 decreases whenever 𝑈𝐵 − ∑𝑖∈𝑀𝑜 𝐺𝑖(𝑁−

𝑖 ) decreases, where
𝑀𝑜 is unaffected by the initial solution. Therefore, the effect of the initial solution is twofold: lower
upper bounds and higher lower bounds. Both effects lead to quicker pruning by bound. However, the
effect of an initial solution within our B&B algorithm for our case study is marginal as most time is
invested in verifying that the incumbent solution is optimal. Therefore, we do not want to invest a big
computational effort into constructing an initial solution. Therefore, we decided to use the objective
value of the first feasible solution at every newly rooted tree.

Constructing the initial feasible solution
We use the current network of PostNL as an initial starting solution. However, we discovered that some
customers do not have access to a retailer. Meaning that 𝑁𝑑 ≠ ∅. Therefore, we choose to open the
retailer from the set 𝑀𝑐 that connects most disconnected customers. This process is repeated until all
disconnected customers are connected. The selection process is visualized in Figure 5.8.

Figure 5.8: We satisfy the distance requirement for the most customers (blue circles) simultaneously by opening one closed
retailer (orange square). In this example this means opening the upper right retailer.

5.3. Tabu Search
Because problem P (formulation 2.4-2.11) is NP-hard [14, 54] and the number of locations |𝑁| and
|𝑀| is very large, the B&B algorithm is relatively slow. Furthermore, approximation algorithms such as
the one defined in [101] cannot be applied because we do not have a Poisson distributed demand and
customer allocation follows strict rules. Therefore, next to the exact solution we develop a heuristic
solution. We apply TS because of the superiority over other heuristics for similar large-scale problems
[47, 55]. Extensively applied Lagrangian heuristics are not selected since these methods are not as
flexible as TS when it comes to slightly changing problem formulations. Furthermore, [102] indicates
that Lagrangian heuristics are inferior to TS when capacity and single source constraints are included.
The TS heuristic is used to find candidate solutions for the binary decision variables z. Once z is known,
the customers can be assigned to the open retailers easily.

5.3.1. Initial solution
We use the same initial solution for the TS heuristic as we used for the B&B algorithm (see Section
5.2.8). Contrary to the B&B algorithm the TS heuristic is able to build new solutions from the initial
solution.

5.3.2. Local search
We improve the obtained feasible initial solution with basic local search techniques. Local search
executes moves within a neighbourhood. Moves are executed based on a first improvement strategy.
Each neighbourhood is explored in a randomized order. First improvement is used because it is assumed
that different areas do not interfere with each other. Therefore, evaluation time can be reduced by first
improvement.

The first neighbourhood is the DROP neighbourhood. DROP means that an open retailer is closed.
Only retailers that solely satisfy demand of customers that are assigned based on closest assignment
constraints are eligible to be closed. The DROP neighbourhood is an 𝑂(𝑁) size neighbourhood that
can be searched as follows: First, identify the customers that are served by the to be closed retailer.
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Next, determine which retailer these customers will select after closing. For each of these new retailers
update the required capacity and the costs. Finally, compare the additional costs associated with the
rerouted customers and the costs of the closed retailer. This means that the evaluation of the DROP
neighbourhood is 𝑂(𝑁2𝑀).

The second neighbourhood is the ADD neighbourhood. ADD means that a closed retailer is opened.
All closed retailers are eligible to be opened. Therefore, similarly as the DROP neighbourhood the ADD
neighbourhood is of size 𝑂(𝑁) but the evaluation of the neighbourhood is 𝑂(𝑁2𝑀). However, for the
network of PostNL searching the ADD neighbourhood takes longer than the DROP neighbourhood since
a cost effective network contains more closed than open retailers. The ADD neighbourhood can be
searched similar to the DROP neighbourhood. First, identify the customers that would be attracted
upon opening. For each of these customers subtract their demand from their current retailer and add
it to the opened retailer. For all retailers where the demand changed, update the required capacity and
the costs. Finally, compare the cost savings by rerouting customers with the opening costs of the new
retailer.

Each iteration of local search starts with a search in the DROP neighbourhood followed by a search
in the ADD neighbourhood if there is no improvement in the DROP neighbourhood. This is because the
DROP neighbourhood is generally smaller than the ADD neighbourhood for the PostNL case. Therefore,
computationally cheap improvements are discovered quickly.

5.3.3. Tabu tenure
To escape local minima we allow for worsening moves during the local search as well. To prevent that
the algorithm starts to cycle we make use of a Tabu List. Status reversals of retailers involved in a move
during the local search are placed on the Tabu List. This means that moves in the DROP or the ADD
neighbourhood add one item to the Tabu List. The number of iterations, 𝑡(𝜏), that a status reversal
remains Tabu is a function of the change in objective value 𝜏 that is obtained by changing the status
of a retailer. Function 𝑡(𝜏) is a monotonically decreasing function. We use a sigmoid function (Equation
5.13, Figure 5.9) to achieve this behaviour. Parameters 𝜙 and 𝜔 are used as scale and shift parameters
respectively.

𝑡(𝜏) = 𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑎𝑥
1 + 𝑒−𝜙(𝜏+𝜔) (5.13)

Figure 5.9: A sigmoid function where 𝑇𝑚𝑖𝑛 = 3, 𝑇𝑚𝑎𝑥 = 10, 𝜙 = 1/2 and 𝜔 = 5

Aspiration criteria
Aspiration criteria are used to overrule the Tabu List. We use the most basic aspiration criterion that
says that whenever a Tabu move results in a better objective value compared to the incumbent objective
value it is always executed. Thereby we give permission to overrule the Tabu List.

5.3.4. Termination criteria
As a termination criterion we use a maximum number of iterations without any improvement in the
objective function.
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5.4. Integration of the branch and bound algorithm with first
descend

Preliminary results show that the TS heuristic is very competitive with the B&B algorithm for the PostNL
case because it almost always finds the optimal solution far earlier than the B&B algorithm. However,
there are no guarantees on the solution quality. Nevertheless, we want to exploit this observation
to accelerate the B&B algorithm. Furthermore, we find that for the PostNL case only a few additional
locations have to be opened. To make use of these observations in the B&B algorithm we use a different
initial solution and additional branching rules.

The updated initial solution is the result of updating the conventional initial solution (Section 5.2.8)
with the local search procedure without Tabu Tenure of Section 5.3.2. Without Tabu Tenure, the local
search is equivalent to a first descent search.

To enable usage in the B&B algorithm we label each retailer that is open in the minimal situation
as ’fixed’, 𝑀𝑓 , and all open retailers as ’open’, 𝑀𝑜. The set 𝑀𝑜 is determined with the updated initial
solution. Obviously, 𝑀𝑓 ⊆ 𝑀𝑜. We replace our conventional expression of the lower bound 𝐿𝐵 with a
function 𝐿𝐵(⋅) where the dot represents a set of retailers. Therefore, we can now calculate two lower
bounds: 𝐿𝐵(𝑀𝑓 ) and 𝐿𝐵(𝑀𝑜). The sole difference is the retailers that we consider open. Therefore,
𝐿𝐵(𝑀𝑓 ) ≤ 𝐿𝐵(𝑀𝑜) ≤ 𝑈𝐵 for all nodes. 𝐿𝐵(𝑀𝑓 ) is the lower bound that is used to prune branches
whenever possible and can thus be used at all places where we used 𝐿𝐵 before. Therefore, we can
prune a branch whenever 𝐿𝐵(𝑀𝑓 ) ≥ 𝑈𝐵. 𝐿𝐵(𝑀𝑜) is solely used later to exclude a specific branching
technique.

Selecting a branching node remains the same within our new B&B algorithm where we now use
𝐿𝐵(𝑀𝑓 ) instead of 𝐿𝐵.

After selecting a branch node, we determine which branching rule we use. Whenever 𝑀𝑜 = 𝑀𝑓

we apply our ordinary branching rule introduced in Section 5.2.5. Otherwise, we use a different branch
rule that we call ’close and fix’. First, we create branches where we definitively close one retailer from
the set 𝑀𝑜 ⧵ 𝑀𝑓 . Second, if 𝐿𝐵(𝑀𝑜) < 𝑈𝐵, we create a branch where we fix all retailers in 𝑀𝑜 such
that 𝑀𝑜 = 𝑀𝑓 . Figure 5.10 shows an example of a branching tree without pruning where we solely
apply ’close and fix’, while supposing that 𝐿𝐵(𝑀𝑜) < 𝑈𝐵, to a toy example.

Figure 5.10: An example with 4 retailers for the close and fix branching rule. Red letters represent the set 𝑀𝑓 , green and red
letters represent the set 𝑀𝑜. Closing a retailer removes one retailer from the set 𝑀𝑜 ⧵ 𝑀𝑓 . Fixing retailers open results in
𝑀𝑜 = 𝑀𝑓 .

What we achieve with this updated initial solution and additional branching rule is that we realise
quicker that a specific retailer in the set 𝑀𝑜 ⧵ 𝑀𝑓 is crucial in the optimal solution and without it
we cannot find any other solutions where 𝐿𝐵(𝑀𝑓 ) < 𝑈𝐵. For completeness, we also consider the
possibility that 𝑀𝑜 ⊂ 𝑀̂𝑜. However, this branch is not pruned quicker compared to the original situation.

The initial solution is used at every newly rooted tree. Therefore, each tree benefits from the
improved initial solution which increases the overall speed. Because preliminary experiments show
that the integration of B&B with first descend is superior to the original B&B algorithm in terms of
computational time, we discard the original B&B algorithm and continue with the B&B with first descend
algorithm. The B&B with first descend algorithm is the algorithm that we refer to when speaking of
the B&B algorithm. Furthermore, we also tried to include the whole TS heuristic as an initial solution.
However, this does not accelerate the computations. Therefore, we discard this option.
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Experiments

In this Chapter we introduce the experiments that we use to evaluate the quality of the model in com-
bination with the solution techniques. We first introduce the benchmark problems and performance
indicators that we use for evaluation. Afterwards, we evaluate the effectiveness of the problem de-
composition techniques described in Section 5.1. Thereafter, we evaluate the efficiency of Theorems
3-8 to reduce the problem size of problem 𝐿𝐵 (Formulation 5.3 - 5.9). Subsequently, we perform
several different experiments. First, to compare the B&B solution with the TS solution. Afterwards, we
compare the solutions obtained with current model of PostNL with the newly obtained solutions. Later,
we specifically investigate the added value of the chance constraint compared to PostNL’s assumption.
Subsequently, we evaluate the sensitivity to division between PC4 and PC5 areas. Additionally, we
investigate the sensitivity to the cost parameters. Moreover, we investigate the intended effect of the
quadratic capacity penalty. Finally, we perform one final analysis where we apply our model and so-
lution technique not only to the benchmark problem but to the complete PostNL network for multiple
periods. All results are obtained with a machine with 8 GB RAM and an Intel i7-7700HQ 2.8 GHz CPU.
We use Python 3.7 as our programming language. Furthermore, we only use open source packages.

6.1. Benchmark problems and performance indicators
In this section we introduce the benchmark problems and performance indicators.

6.1.1. Benchmark problem
We choose to use the nationwide problem as our benchmark problem because it is difficult to identify
a subset of the Netherlands that reflects the Netherlands as a whole within this problem context. As a
reference time period we use June 2020. This is because this is the first month for which all required
data is available at PostNL. Within our benchmark problem we choose to optimize for 2022Q4. Because
this is a time period with large customer demand volumes that can be predicted with sufficient accuracy.
Large demand volumes are desired as we expect that different methods become better distinguishable.

6.1.2. Performance indicators
As performance indicators we use the objective value, the number of open retailers, the size of the new
retailers and the computational time. PostNL would like to open as few retailers as possible since each
opening results in additional costs and effort. Additionally, we use statistics on the size of the open
retailers to compare different methods. This is because it is hard for PostNL to acquire retailers of very
small or very large volumes. Lastly, shorter computational times are desired but not very important
to PostNL as long as the algorithm can finish overnight. However, from an academic perspective it is
relevant to see differences in computation time since it tells something about the scale ability and the
complexity of the problem.

35
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6.2. Problem decomposition results for the PostNL case
To evaluate the effectiveness of the problem decomposition techniques introduced in Section 2. We
evaluate how many clusters can be created for the benchmark problem, how many retailers can be
closed because of Theorem 1 and how many clusters are trivial. The benchmark problem started with
6216 retailers that could possibly open, with Theorem 1 this is reduced to 5454 retailers. Furthermore,
problem decomposition created 1307 clusters of which 264 are non-trivial. A trivial cluster is a cluster
where the status of all retailers is either fixed open or fixed closed. Consequently, a non-trivial cluster
is a cluster that contains retailers that could potentially open. In Table 6.1 we show statistics on the
number of retailers within a non-trivial cluster that could potentially open.

Metric

mean 20.7
std 43.1
min 1
25% quantile 3
median 14.5
75% quantile 22
max 621

Table 6.1: Statistics on the number of retailers within a non-trivial cluster that could potentially open.

Besides the PostNL case data we generate 50 additional random datasets. Where we draw random
values from a kernel density estimate distribution for each input data column individually. This results
in 5992 (26) retailers of which we can close 206 (13) retailers because of Theorem 1. The general
problem can be decomposed into 558 (11) subproblems of which 142 (2) are non-trivial. The size of
each non-trivial cluster is 23 (0.6) retailers. All values are averages with their standard error in between
brackets. The PostNL data and the random data show different results because the random data is no
longer logical. Barriers such as rivers and roads are ignored. Furthermore, high demand areas do not
correspond to large current capacities.

6.3. Efficiency of Theorems 3-8 for the PostNL case
In Section 5.2.4 we introduced the NP-hard problem 𝐿𝐵 (Formulation 5.3-5.9). Moreover, we intro-
duced Theorems 3-8 to reduce the number of variables in problem 𝐿𝐵. In Table 6.2 we show the
effectiveness of these theorems. We sample 5% of the problems 𝐿𝐵 for a subset of clusters for which
we determine how many variables are removed. Each column in Table 5.2.4 should be read individually.

# initial
variables

# variabls after
Theorems 3-8

# removed
variables

Relative problem
reduction

mean 115 5 110 0.95
std 146 8 141 0.09
min 2 0 2 0.50
25% 24 0 22 0.93
50% 60 0 56 1.00
75% 156 8 149 1.00
max 1095 70 1075 1.00

Table 6.2: Statistics on the efficiency of Theorems 3-8 to reduce the size of problem 𝐿𝐵 (Formulation 5.3-5.9). Each column
should be read individually.

Theorems 3-8 are very efficient for the PostNL case since 55% of the problems 𝐿𝐵 within the PostNL
case are solved to optimality in polynomial time by the pre-processing techniques. The other problem
instances that cannot be solved in polynomial time significantly reduce in size as well.
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6.4. Comparison Tabu Search and Branch and Bound
We compare the TS heuristic and the B&B algorithm based on the average optimality gap and the re-
quired computational time. Furthermore, we indicate the number of subproblems where the optimality
gap is zero.

For the B&B algorithm we set a time limit of 3600 seconds. Therefore, not all subproblems are
solved to optimality. In Table 6.3 we show the results obtained with the B&B algorithm and th TS
heuristic regarding the optimality gap and the computational time for all subproblemns and for the
non-trivial subproblems specifically.

All problems Non-trivial problems

Branch and Bound Tabu Search Branch and Bound Tabu Search

# clusters 1307 1307 264 264
# solved to opt 1302 1289 259 246
objective 9412 9443 5619 5650
opt. gap 4.58% 4.89% 7.67% 8.18%
comp. time [s] 30266 557 30213 542

Table 6.3: Comparison of the B&B exact method with the TS heuristic. For the overall problem and the non-trivial problems
specifically.

In Figure 6.1a we show the effect of the problem size on the optimality gap for the B&B algorithm
and the TS heuristic. This shows that clusters larger than 100 retailers are difficult to solve to optimality
with the B&B algorithm. Furthermore, there are a few smaller clusters for which the TS heuristic is
unable to find the optimal solution.

The results on computational time per subproblem are shown in Figure 6.1b. It can be seen that
the TS heuristic scales almost linearly with problem size. Whereas this relation is weaker for the B&B
algorithm. This is because also the number of connections and the cost information determine the
computational time.

(a) The problem size vs optimality gap (b) The problem size vs computational time

Figure 6.1: Results on the problem size versus the optimality gap and the computational time for the B&B algorithm
and the TS heuristic. The B&B algorithm is applied with a time limit of 3600 seconds.

Table 6.4 shows the number of open retailers and the required additional capacity at the open
retailers for the B&B algorithm and the TS heuristic. Furthermore, Table 6.4 shows the number of
currently open retailers that can be closed.
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B&B TS

count 655 659
mean 0.92 0.91
std 0.88 0.87
min 0.00 0.00
25% 0.30 0.30
50% 0.67 0.67
75% 1.23 1.24
max 5.90 5.90
close 688 693

Table 6.4: A table and its boxplot with statistics on the required extra capacity at retailers given that the required extra capacity
is larger than 0. Furthermore, the number of open retailers and the number of retailers that can be closed is indicated.

6.5. Comparison of PostNL’s algorithm with the newly developed
algorithms

Comparing PostNL’s algorithm with the newly developed algorithms is more difficult compared to com-
paring the TS heuristic with the B&B algorithm. This is because PostNL’s algorithm does not perform
an optimization at all nor does it satisfy all constraints from the business. Furthermore, the underlying
assumptions on customer preference are different. Therefore, this comparison is primarily used to
show the added value of the new model with respect to the current model.

It is expected that PostNL’s algorithm suggests to open much more smaller sized retailers compared
to the models introduced within this report. Because PostNL’s algorithm runs within a cloud environment
with more computational power compared to the machine that is used for the other experiments, we
cannot make a fair comparison on computational time. Additionally, we are currently unable to tell how
much time of the PostNL’s experts is saved by the new solution.

Table 6.5 shows the required additional capacity at the open retailers according to the B&B algo-
rithm, the TS heuristic and PostNL’s algorithm. For B&B and TS algorithms these results are different
from the results in Table 6.4 because we aggregated the results to 𝑃 𝐶4 areas since this corresponds
to PostNL’s algorithm. Furthermore, Table 6.5 shows how many of the currently open retailers can be
closed. As expected, the number of retailers that should be opened is far larger when applying PostNL’s
algorithm. Moreover, the size of each new retailer is much smaller. On top of that, the new models
also found many retailers that could be closed.

B&B TS PostNL

count 629 632 787
mean 0.95 0.95 0.38
std 0.92 0.92 0.44
min 0.00 0.00 0.00
25% 0.31 0.31 0.05
50% 0.69 0.69 0.23
75% 1.28 1.28 0.57
max 5.90 5.90 3.18
close 688 693 0

Table 6.5: A table and its boxplot with statistics on the required extra capacity at retailers given that the required extra capacity
is larger than 0. Furthermore, the number of open retailers and the number of retailers that can be closed is indicated.
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Because the TS heuristic and the B&B algorithm provide almost equal results and because the TS
heuristic is much faster, the remainder of our experiments is performed with the TS heuristic. We
expect that the conclusions that we draw based on these experiments hold for the B&B algorithm as
well.

6.6. Added value of stochastic constraint
This experiment focuses purely on the added value of the stochastic constraint. We obtain results with
our TS heuristic twice. Once where 𝛼𝑗 = 0.95 ∀𝑗 ∈ 𝑀 and once where 𝛼𝑗 = 0.5 ∀𝑗 ∈ 𝑀. Whenever
𝛼𝑗 = 0.5 ∀𝑗 ∈ 𝑀, 𝑞𝛼𝑗 = 0 we purely rely on the expected customer demand and ignore the uncertainty.
With 𝛼𝑗 = 0.95 and 𝛼𝑗 = 0.5 ∀𝑗 ∈ 𝑀 we generate two different solutions for the required capacity c1

𝑗
and c2

𝑗 respectively for all retailers 𝑗 ∈ 𝑀. Additionally, we determine a third solution c2′
𝑗 = 1 1

9c
2
𝑗 for

the capacity at each retailer 𝑗 ∈ 𝑀. To obtain solution c2′
𝑗 we assume that the aggregated demand at

a retailer is equal to 90 % of the required capacity. This adds some robustness. Summarizing, there
are three solutions for the required capacities at retailers 𝑗 ∈ 𝑀. These are c1

𝑗 , c
2
𝑗 and c2′

𝑗 . We refer
to these solutions with Solution 1, Solution 2 and Solution 2’ respectively. For each of these solutions
we calculate the probability that the capacity is sufficient to satisfy customer demand.

Solution 1 Solution 2 Solution 2’

count 2332 2332 2332
mean 0.95 0.50 0.89
std 0.00 0.00 0.12
min 0.95 0.50 0.50
25% 0.95 0.50 0.81
50% 0.95 0.50 0.95
75% 0.95 0.50 1.00
max 0.95 0.50 1.00
obj 9443 8222 9699

Table 6.6: Statistics on the probability that customer demand can be satisfied by the opened retailers and the associated objective
value. The solutions respectively represent 𝛼𝑗 = 0.95, 𝛼𝑗 = 0.5 and a fixed margin of 11 1

9 % with respect to the 𝛼𝑗 = 0.5 solution.
𝛼𝑗 is a parameter used in Constraints 2.6.

In Table 6.6 we show statistics on the probability that a retailer has sufficient capacity to satisfy
their customer’s demand and the objective value for Solutions 1, 2 and 2’. Confirming with Constraints
2.6, the probability that customer demand can be satisfied by the retailer is 0.95 and 0.5 for Solutions
1 and 2 respectively. Logically, the objective value of Solution 2 is lower than the objective of Solutions
1 and 2’. However, the probability that customer demand cannot be satisfied is much lower as well.
Therefore, it is more interesting to compare Solution 1 with Solution 2’. It can be seen that Solution 2’
is more expensive in terms of objective value and is less likely to satisfy customer demand. Therefore,
we conclude that Solution 1 is superior to Solution 2’.
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6.7. Aggregation of customer and retail areas
In Chapter 4 we explained that areas in the Netherlands are defined by their postal codes. We use the
decision rule that 𝑃 𝐶4 areas that are larger than 𝑋 and that have more inhabitants than 𝑌 are divided
into 𝑃 𝐶5 areas. We want to determine the effects of this division. Obviously, reducing 𝑋 or 𝑌 produces
more areas at 𝑃 𝐶5 level. First of all, this increases computational time since more locations should
be considered. Secondly, the closest assignment constraints change which could produce a different
solution.

Figure 6.2: A boxplot of the required extra capacity at retailers given that the required extra capacity is larger than 0 for different
levels of aggregation.

# Open # Close # PC4 # PC5 Comp. time [s]

𝑋 = ∞, 𝑌 = ∞ 522 757 4026 0 185
𝑋 = 3.235.000, 𝑌 = 10.000 659 693 3763 4885 557
𝑋 = 1.000.000, 𝑌 = 5.000 968 538 2693 19941 2055
𝑋 = 0, 𝑌 = 0 1242 559 0 32244 2219

Table 6.7: Results for different aggregation levels of customer and retail areas. The columns signify: the number of locations
that should be opened and closed, the number of areas at 𝑃 𝐶4 and 𝑃 𝐶5 level and the computational time respectively.

In Figure 6.2 and Table 6.7 we show results on the required extra capacity at open retailers and some
statistics for four different aggregation levels. First of all, in Table 6.7 it can be seen that the smaller
𝑋 and 𝑌 the more 𝑃 𝐶5 areas and the less 𝑃 𝐶4 areas there are. Consequently, the computational
time increases with the number of 𝑃 𝐶5 areas. Furthermore, we see that the number of open locations
increases with the number of 𝑃 𝐶5 areas. First of all, this is because there is less aggregation and thus
more locations in general. Secondly, this is because closest assignment constraints are much stronger
on 𝑃 𝐶5 aggregation level than on 𝑃 𝐶4 aggregation level. Therefore, more new retailers are required.
Moreover, the required extra capacity at the open retailers also slightly increases with the number of
𝑃 𝐶5 areas. This is because more retailers means that fewer customers are satisfied by each individual
retailer. Consequently, the aggregated normal distribution of demand remains wider compared to a
situation where many independent customers visit a single retailer.

6.8. Sensitivity of cost parameters
We investigate the model’s sensitivity to the the fixed (𝑓 𝑛

𝑗 ) and variable (𝑓𝑗) costs of a new facility. In
Table 6.8 we show that our model responds intuitively to these parameters. High fixed costs and low
variable costs lead to fewer larger sized retailers whereas lower fixed costs and higher variable costs
lead to more smaller sized retailers.
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#Open #Close Comp.
time [s]

𝑓𝑛 = 2, 𝑓 = 2.56 701 684 552
𝑓𝑛 = 5, 𝑓 = 1.6 659 693 557
𝑓𝑛 = 8, 𝑓 = 0.64 652 735 547

Table 6.8: A table and its boxplot with statistics on the required extra capacity at retailers given that the required extra capacity
is larger than 0. Furthermore, the number of open retailers and the number of retailers that can be closed along with the
computational time is indicated.

6.9. Linear vs Quadratic capacity penalty
In Chapter 2 we indicated that we choose to use a quadratic capacity penalty because it is preferred to
have multiple small capacity deficits compared to a few major deficits. In this section we evaluate the
effect of the quadratic capacity penalty compared to a linear capacity penalty. In Table 6.9 we show a
table with the the number of additional retailers, the number of closed retailers and the computational
time. Additionally, we show a boxplot of the required extra capacity at retailers given that the extra
capacity is larger than zero.

#Open #Close Comp.
time [s]

Quadratic 659 693 558
Linear 646 761 526

Table 6.9: A table with the number of open retailers and the number of retailers that can be closed along with the computational
time. And a boxplot of the required extra capacity at retailers given that the required extra capacity is larger than 0.

Table 6.9 confirms the intended effect of the quadratic capacity penalty that more locations of
smaller size are required. However, the difference in size is not very large and the mean and median
are still well below the average retail size of 2.5𝑚3. Therefore, it could be considered to apply the linear
capacity penalty. A linear capacity penalty enables a tighter lower bound in case the B&B algorithm is
preferred because it can account for some of the ignored demand. For example, suppose that during
calculation of the lower bound we ignore 𝑑 demand. Furthermore, suppose there are three retailers
(𝑥, 𝑦, 𝑧) that can be used to account for the ignored demand 𝑑. Therefore, the 𝑑 demand should
be divided most economically over capacities 𝑐𝑥, 𝑐𝑦 and 𝑐𝑧. This requires solving system 6.1 for the
quadratic capacity penalty. This is difficult compared to solving the linear system 6.2. Therefore, a
linear capacity penalty enables that we can include the capacity penalty on demand 𝑑.

min
𝑥,𝑦,𝑧

𝑎𝑐2
𝑥 + 𝑏𝑐2

𝑦 + 𝑒𝑐2
𝑧 𝑐𝑥 + 𝑐𝑦 + 𝑐𝑧 = 𝑑 (6.1)

min
𝑥,𝑦,𝑧

𝑎𝑐𝑥 + 𝑏𝑐𝑦 + 𝑒𝑐𝑧 𝑐𝑥 + 𝑐𝑦 + 𝑐𝑧 = 𝑑 (6.2)
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6.10. Final solution
After applying our model to the benchmark problem, we also apply our model to multiple other time
periods to see the development of PostNL’s parcel delivery network. We present results for every fourth
quarter within the period 2020-2025. We optimize in a sequential order to keep the model tractable.
This means that all retailers open in one period are also open in the next period. Because we expect
the parcel volume to grow during the entire period it is unlikely that opening and closing a retailer
alternates.

In Figure 6.3 we show the demand at each retailer for every fourth quarter within the period 2020-
2025. From Figure 6.3 it is hard to see the development of the network. Therefore, in Figure 6.4
we show how much extra capacity is required with regards to the network in June 2020. To obtain
the networks shown in Figure 6.3. Therefore, Figure 6.4 can be used to quickly identify regions of
growth. Within the Netherlands it can be seen that Almere, Utrecht, the Hague and Tilburg are the
major growers the upcoming five years with regards to parcel volume at retailers.

(a) Demand in 2020Q4 (b) Demand in 2021Q4 (c) Demand in 2022Q4

(d) Demand in 2023Q4 (e) Demand in 2024Q4 (f) Demand in 2025Q4

Figure 6.3: The development of PostNL’s parcel delivery network. Each dot represents the required total capacity
in an area during the specified period.
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(a) Required extra capacity in
2020Q4

(b) Required extra capacity in
2021Q4

(c) Required extra capacity in
2022Q4

(d) Required extra capacity in
2023Q4

(e) Required extra capacity in
2024Q4

(f) Required extra capacity in
2025Q4

Figure 6.4: The development of the required extra capacity in PostNL’s parcel delivery network. Each dot represents
the required extra capacity in an area during the specified period.

6.10.1. Sequential versus individual optimization
In this section we compare the sequential solution with an individual solution for a specific quarter. We
do this to validate whether it is acceptable to use a sequential solution instead of an integrated solution.
With a sequential solution we mean that we first optimize for the first period, fix those decisions and
move to the second period etc. With an individual solution we mean that we specifically optimize for
one individual period. Obviously, the optimal individual solution for a specific period is the best possible
solution for that period. Therefore, whenever the sequential solution is similar to the individual solution
for each period we conclude that an integrated solution cannot offer much improvement. In Table 6.10
we show the absolute and relative difference between the sequential and the individual solution for
all fourth quarters during the years 2021-2025. 2020Q4 is not considered since the sequential and
the individual solution are equal for that period. Obviously, the absolute difference for the objective
value is positive. Moreover, the positive absolute difference for the number of open locations is a direct
consequence of the sequential solution where we fix the opening status of a retailer upon opening for all
consecutive periods. Consequently, the absolute difference in demand is slightly positive as well since
the standard error at the open retailers is slightly larger because there are more open retailers. The
required extra capacity has a negative absolute difference since the sequential solution could allocate a
small amount of demand in one period to a retailer without foreseeing that at a later period this could
mean that large amounts of demand should be allocated to that retailer or an additional retailer should
be opened. Naturally, all absolute differences increase over time since errors accumulate.
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# open retailers Demand [𝑚3] Objective value Required extra capacity [𝑚3]

Period Seq. Ind. Abs. Rel. % Seq. Ind. Abs. Rel. % Seq. Ind. Abs. Rel. % Seq. Ind. Abs. Rel. %

2021_Q4 2359 2335 24 1.0 6317 6314 3 0.0 9315 9271 44 0.5 573 578 -4 -0.8
2022_Q4 2367 2333 34 1.5 6403 6398 5 0.1 9509 9445 64 0.7 593 603 -9 -1.6
2023_Q4 2392 2342 50 2.1 6601 6594 7 0.1 9959 9795 164 1.7 652 671 -19 -2.9
2024_Q4 2425 2345 80 3.4 6879 6869 11 0.2 10645 10415 230 2.2 745 781 -36 -4.7
2025_Q4 2460 2361 99 4.2 7238 7226 12 0.2 11475 11170 305 2.7 890 929 -39 -4.2

Table 6.10: Absolute and relative difference in results between a sequential solution for multiple periods (Seq.) and an individual
solution (Ind.). Difference is shown in absolute numbers (Abs.) and relative with respect to the individual solution (Rel. %).
The absolute difference is calculated with 𝑆𝑒𝑞. − 𝐼𝑛𝑑.. The relative difference is calculated with (𝑆𝑒𝑞. − 𝐼𝑛𝑑.)/𝐼𝑛𝑑.
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Conclusion and future research

In this Chapter we summarize the report and present our conclusions. Furthermore, we indicate future
research directions.

7.1. Conclusions
The goal of this project is to construct a sustainable parcel delivery network for PostNL operating in
the Netherlands for the upcoming five years. Restrictions that characterize a sustainable network are
that each customer is free to select a retailer of his or her preference. Furthermore, each customer
should have access to a retailer within a specific distance depending on their address. Additionally, a
parcel from the PostNL stream should be delivered at the retailer closest to the recipient of the parcel.
Moreover, each retailer should have sufficient capacity with a specific certainty to satisfy customer
demand. On top of that, the objective is that the transition from the current network to the new
network is smooth and that maintaining the new network is cost efficient. We formulate a mathematical
model 𝑃 2.4-2.11 that translates the restrictions and objective to mathematics.

Because model 𝑃 is NP-hard and consists of many variables we develop a method to decompose
the general problem into multiple subproblems to reduce the computational effort. The decomposition
method works without loss of optimality. Decomposition methods decompose PostNL’s network into
1307 subproblems of which 264 are non-trivial. Furthermore, from the initial 6216 binary opening
variables 762 could be fixed. The median number of binary opening variables in a non-trivial cluster is
14.5. Therefore, we obtain a significant problem simplification with our decomposition method.

To solve the decomposed problems individually we developed two solution techniques: an exact
B&B algorithm and a TS heuristic. The exact B&B algorithm is capable of solving 1302 of the 1307
subproblems to optimality within an hour. The average optimality gap is 4.58 %. The optimality gap
signifies the relative gap between the lower bound and the upper bound of the problem. Both of these
bounds are calculated with a custom developed method. To obtain the lower bound it is required to
solve problem 𝐿𝐵 5.3-5.9.

Since problem 𝐿𝐵 is NP-hard and contains many binary decision variables we use extensive pre-
processing to reduce the problem size. On average, for the PostNL case, problem 𝐿𝐵 consists of 115
variables, after pre-processing this can be reduced to 5 variables on average. Therefore, the pre-
processing is on average able to reduce the problem size by 95 %. Moreover, 55 % of the problems
𝐿𝐵 within the PostNL case could be solved to optimality in polynomial time by the pre-processing
techniques.

The TS heuristic is capable of solving 1289 of the 1307 subproblems to optimality. This results in an
optimality gap with respect to the lower bound, obtained with the exact method, of 4.89 %. However,
the required computational time of the TS heuristic is 557 seconds compared to 30266 seconds for the
exact B&B algorithm.

With respect to PostNL’s current model, both our methods open fewer but larger retail locations.
This is a desired outcome according to PostNL’s experts. Furthermore, our new model has some other
new features that are currently unavailable in PostNL’s current model.

45
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By including the maximum capacity constraint as a stochastic constraint instead of relying on a
fixed margin for additional certainty, we obtained solutions with a higher probability of having sufficient
capacity to satisfy customer demand against lower total costs. Therefore, we have shown the relevance
of stochasticity for our specific problem.

All in all, we conclude that we have developed an accurate decision support tool that enables PostNL
to maintain a sustainable parcel delivery network for the upcoming five years in the Netherlands.

7.2. Future work
In this section we indicate several research directions that can be used to extend the work of this
report.

First, multiple periods could be included simultaneously to construct an optimal parcel delivery
network throughout the transition from the current network to an ideal network. Second, the model
scope could be extended from the Netherlands to the Benelux to cover all countries in which PostNL
operates. However, this is mainly a data and aggregation issue not related to the model or solution
techniques.

Moreover, it could be worthwhile to seek for new decomposition rules that are able to further
decompose some of the subproblems. Especially focusing on those subproblems with high connectivity.
Furthermore, the lower bound in the B&B algorithm could be tightened to enable quicker pruning. One
direction would be to investigate whether a lower bound could be developed that does not ignore a
proportion of customer demand. This could be easier if a linear capacity penalty is satisfactory instead
of the quadratic capacity penalty that we currently use. On top of that, it could be investigated whether
it is possible to apply more directed branching rules. Currently, branches are created for all possibilities
whereas an investigation into which branches should be created could pay-off computational time wise.

Furthermore, it could be interesting to see whether more advanced Tabu tenures and neighbour-
hoods lead to better solutions in shorter time. Currently, a relatively basic Tabu tenure to add, remove
and overrule moves on the Tabu list is used concurrently with two basic neighbourhoods. Even broader,
different heuristics could also be evaluated.

More generally, it is advised to optimize the overall implementation of the developed methods.
We expect that a proportion of the computational effort is consumed by inefficient implementation.
Moreover, we expect that the required memory can also be reduced, this would reduce computational
time and required storage space.

Other directions that are less related to the model and solution methods itself but more to the
underlying assumptions and data are also recognised. It is advised to investigate customer preference
for specific retailers. Why do customers select a specific retailer? and more importantly, what is
required to persuade them to select another retailer? This brings the modelled future network closer
to reality. On top of that, it is advised to investigate what enables a location in Locatus to become a
retailer? and what is required to integrate this location in the parcel delivery network? This provides
PostNL more guidance into which areas are likely to contain possible new retailers and at what costs
these can be acquired.
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