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Abstract

This paper applies the hybrid neural network approach introduced by Boek et al. (1995), which has been

shown to outperform artificial neural networks (Andreou et al., 2008), to the modular neural network

from Gradojevic et al. (2009), the multi-criteria modular neural network from Gradojevic (2016) and

the gated neural network from Yang et al. (2017) for the pricing of S&P 500 European call options.

Parametric option pricing models from Black and Scholes (1973), Corrado and Su (1996), Heston (1993),

Kou (2002) and Madan et al. (1998) serve as a benchmark. The option price forecasts of these models

are employed to adjust the target function of the hybrid neural network models. Additional input

parameters, as first proposed by Palmer (2019), are implemented to extend the neural network models.

A single optimal model architecture for all regarded neural network models is utilized to price options.

The option pricing performance is evaluated statistically and economically by means of the Diebold and

Mariano (1995) test, the model confidence set from Hansen et al. (2011) and a delta-hedged trading

strategy. I conclude that introducing a hybrid approach, modularity and additional input parameters

significantly improves the option pricing performance of neural networks. Benchmarks are significantly

outperformed by hybrid neural network models on the entire moneyness and maturity grid. Finally,

I find that the option price forecasts obtained from the hybrid neural networks produce abnormal

risk-adjusted returns before transaction costs when implemented in the delta-hedged trading strategy.

The content of this thesis is the sole responsibility of the author and does not reflect the view of the supervisor, second assessor, Erasmus

School of Economics or Erasmus University.
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1 Introduction

This paper researches the application of a hybrid approach to modular and gated neural networks

for option pricing and hedging. To fully comprehend what this research entails, previously introduced

option pricing techniques must first be reviewed. Both parametric and non-parametric option pricing

techniques are introduced, as these are the two building blocks of the hybrid approach to neural networks.

Subsequently, the modular and gated neural network models are elucidated. Each of these neural network

models introduces modularity, a technique to optimize the option pricing performance specifically per

moneyness and maturity region. Finally, techniques to improve the option pricing performance of the non-

parametric models are introduced, such as an optimal model architecture and additional input parameters.

Non-parametric techniques such as artificial neural networks (ANNs) are promising alternatives to

parametric option pricing models, because they do not make as many assumptions about the underlying

asset price dynamics. They essentially do not rely on any financial theory. Instead, option prices are

inductively estimated from input variables using a multivariate and highly nonlinear option pricing function.

The method is thus robust to specification errors. Malliaris and Salchenberger (1993) and Hutchinson et al.

(1994) were the first to model option prices with ANNs. They showed that ANNs can be used to estimate

an option pricing function with accurate out-of-sample pricing and profitable delta-hedging performance.

While ANNs at times improve upon the parametric models, they struggle to price options on the full

moneyness and maturity grid; Lajbcygier (2004) found that standard neural networks “perform erratically

for deep-in-the-money options due to a lack of option transactions in the region.” Based on the idea

that the conventional parametric models output fairly accurate approximations of option prices accross

moneyness and maturity regions, Boek et al. (1995) first introduced a hybrid neural network model for

option pricing. Because estimating the correct empirical option pricing function is oftentimes troublesome,

the hybrid approach uses a parametric model in appropriate combination with a neural network model.

Instead of estimating the entire option pricing function from scratch, the neural network is configured to

model deviations from outputs of a conventional parametric option pricing model. More specifically, the

target function of the hybrid neural network models is the residual between the observed market price

and the price estimate of a certain parametric option pricing model. This approach has proved valuable,

having succeeded in attaining a more accurate option pricing performance than either parametric models

or artificial neural network methods in numerous papers, e.g. Lajbcygier and Conner (1997), Anders et al.

(1998), Andreou et al. (2002), Andreou et al. (2008) and Chen and Sutcliffe (2012). This paper is mainly

devoted to researching the application of the hybrid approach to neural networks for option pricing.
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An interesting avenue to explore is employing more sophisticated parametric option pricing models

than used in previous research for the hybrid target function and investigating which hybrid neural network

model is able to price options most accurately. Andreou et al. (2008) only used the Black and Scholes

(1973) model and the Corrado and Su (1996) model to calculate the option price estimate needed for

the target function of the hybrid ANN. However, Lajbcygier (2004) noted that comparisons with modern

parametric models may be useful in showing the success of the hybrid neural networks for option pricing.

Examples of modern parametric option pricing models are stochastic volatility models and exponential

Lévy models. This paper therefore intends to further contribute to existing literature by investigating

whether the accuracy of the option price forecasts of hybrid neural networks improves when the target

function is adjusted by the output of stochastic volatility models or exponential Lévy models.

The main reason for introducing additional parametric option pricing models is because it has been

widely shown that the Black and Scholes (1973) model is misspecified and suffers from systematic biases.

These biases are for example demonstrated by Black (1975) and Bakshi et al. (1997). The biases stem

from the fact that “the model has been developed under a set of simplified assumptions, such as geometric

Brownian motion of stock price movements, constant variance of the underlying returns, continuous trading

on the underlying asset and constant interest rates” (Andreou et al., 2006). In recent years, many studies

have tried to discover novel option pricing models by relaxing and generalizing these restrictive assumptions.

Due to the constant volatility assumption, the Black-Scholes model is unable to describe the complete set

of option prices for different moneyness and maturities regions. Heston (1993) proposed a solution to this

problem by considering a random process to model the stochastic volatility, thereby mitigating much of the

volatility smile bias. The Heston model uses stochastic variables to support the assumption that volatility

is not constant but arbitrary. Models based on this assumption are labeled stochastic volatility models.

Another approach to solving the volatility smile problem generalizes the Black-Scholes assumptions by

allowing the stock prices to jump. Stock price data often exhibits discontinuity, such that continuous-path

models are unable to fit the data. Furthermore, the volatility smile shows that distribution of the returns is

non-Gaussian and leptokurtic. Jumps are therefore introduced to represent unique events in the underlying

process. Models with jumps belong to the class of exponential Lévy models. Examples of such models

are the Variance Gamma model introduced by Madan et al. (1998) and the Kou (2002) jump-diffusion

model. As stochastic volatility models and exponential Lévy models are designed to improve upon the

Black-Scholes model, it is appealing to research whether the hybrid neural networks adjusted by these

parametric models are able to outperform hybrid neural networks adjusted by the Black-Scholes model.

2



A drawback of ANNs and the corresponding hybrid ANNs is that they intend to find a single pricing

function for the entire range of traded options. Lajbcygier (2004) noted that in his earlier work (Lajbcygier

and Conner, 1997) there existed pricing biases in boundary regions. For instance, the price of options

approaching maturity was severely underestimated; a phenomenon observed by Dugas et al. (2001) as well.

Gençay and Salih (2003) and Bennell and Sutcliffe (2004) found that estimating option prices separately

per moneyness region improved the pricing accuracy of their neural network methods. Inspired by these

findings, Gradojevic et al. (2009) implemented an ANN whereby they categorized the options based on

their moneyness and time-to-maturity and trained the ANN for each module of options. They referred to

this model as a modular neural network (MNN). The MNN consistently outperformed parametric and non-

parametric benchmark models in terms of out-of-sample pricing performance, implying that introducing

modularity improves the generalization performance of neural networks.

Yang et al. (2017) stated that the categorization of options performed by Gradojevic et al. (2009) may

not be consistent with changing market data over time, as it is completely based on fixed manual heuristics.

To substantiate their claims, Yang et al. (2017) introduced a new class of neural networks for option pricing,

which they labeled the gated neural network (GNN). The GNN also implements a modular approach with

the same input variables but with option grouping that is automatic and learned from data. The GNN

can thus dynamically adjust the grouping and the pricing function of each group as the market changes

over time. Furthermore, Yang et al. (2017) incorporated economic and financial axioms as constraints into

their neural network, expanding the work of Dugas et al. (2001). Zheng (2018) referred to this approach as

a Bayesian-alike design approach in which prior information is encoded into the neural network. The GNN

improves the option grouping of the previously introduced MNN and contributes to the existing literature

a neural network that comes with guarantees about the economic and financial rationality of its outputs.

Finally, Yang et al. (2017) showed that their GNN approach yields significantly better pricing of S&P 500

index options than other neural networks and alternative econometric methods.

Neither Gradojevic et al. (2009) nor Yang et al. (2017) made use of the hybrid target function that

has been shown to outperform the standard target function. This paper intends to further contribute

to existing literature by researching whether hybrid MNNs and GNNs can outperform the option pricing

performance of standard MNNs and GNNs. In doing so, this paper also researches whether the introduction

of modularity based on fixed manual heuristics or automatic option grouping improves the option pricing

performance of standard and hybrid neural networks. The range of parametric and non-parametric models

included in this research ensures an elaborate analysis of the application of the hybrid approach.
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Ruf and Wang (2019) summarized more than 150 papers that use ANNs as a non-parametric option

pricing or hedging tool. Contrary to Gradojevic et al. (2009) and Yang et al. (2017), a fair amount of

these papers considers more than two input variables. The most commonly used input variables besides

moneyness and time-to-maturity are volatility and the risk-free rate, as for example implemented by Culkin

and Das (2017). Recently, Palmer (2019) introduced a parameter space reduction technique that reduces

the resulting four input parameters to three, without information loss. A reduction of the number of input

variables is important as it simplifies inference for the neural network. To expand my research, the ANN,

MNN, GNN and their hybrid counterparts are all examined with three input parameters as well as with

their original input parameters. The modules of the MNN are adjusted accordingly to include a module

for the volatility, resulting in the multi-criteria modular neural network (MCMNN) of Gradojevic (2016).

Instead of assuming a fixed activation function and a fixed number of hidden layers and hidden layer

nodes, I consider various activation functions and a range of numbers of hidden layers and hidden layer

nodes. Especially the optimal architecture of activation functions is an interesting research topic, as in most

previous research on this topic, e.g. by Andreou et al. (2008) and Gradojevic et al. (2009), only the sigmoid

and hyperbolic tangent activation functions for the hidden layer have been employed. However, Glorot

et al. (2011) and Krizhevsky et al. (2012) found that networks with rectifying neurons in the hidden layer

yield better results than networks with hyperbolic tangent neurons and that deep neural networks with

rectified linear unit (ReLU) activation functions train much faster. As faster learning greatly influences the

performance of large neural network models trained on large data sets, it is interesting to examine whether

neural network models with other activation functions in the hidden layer have a superior option pricing

performance. An optimal all-encompassing model architecture for all regarded neural network models is

inspected and ultimately determined based on the optimal option pricing performance of each model.

To be able to compare option pricing performance in this paper I price S&P 500 European call options.

Option price estimates of the parametric models are obtained directly from their respective formulas. The

parameters of the Heston, Kou and Variance Gamma model are calibrated daily. The optimal architecture

for the neural network models is investigated and thereafter used to obtain option prices. The obtained

option prices are first evaluated in terms of mean absolute percentage error (MAPE) and mean squared

error (MSE). To assess the statistical significance of the difference in the out-of-sample forecast accuracy

the Diebold-Mariano test of Diebold and Mariano (1995) is performed and the model confidence set of

Hansen et al. (2011) is regarded. Lastly, the economic significance of the difference in the out-of-sample

forecast accuracy is tested by implementing a simple trading strategy based on the predicted option prices.
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I find that in terms of MAPE and MSE the Kou jump-diffusion model is the best-performing parametric

option pricing model. The optimal all-encompassing model architecture for all neural network models

consists of three hidden layers and applies the linear activation function in the output layer and the

ReLU activation function in the hidden layers. Most importantly, the option prices from the exponential

Lévy models aid the hybrid neural networks in consistently outperforming the respective standard neural

networks. The standard ANN, MNN and GNN with two input parameters are all outperformed by their

hybrid neural network counterparts in terms of both MAPE and MSE. The additional input parameters

further improve the option pricing performance of all standard neural network models. The hybrid neural

network models adjusted by exponential Lévy models are however still able to outperform the standard

neural network models in terms of MSE, as their option pricing performance also improves.

The MNN with three input parameters attains the best option pricing performance in terms of MAPE,

whereas the hybrid GNN with three input parameters adjusted by the Variance Gamma model attains the

best option pricing performance in terms of MSE. The Diebold-Mariano test determines that the forecasts

of these models significantly outperform the forecasts of all other models as measured by the respective

performance metrics. The model confidence sets indicate that the MNN with three input parameters

prices out-of-the-money and at-the-money options significantly better than any other model. However, the

majority of the options in the data set is comprised of in-the-money options. For these options the model

confidence sets consist solely of hybrid neural networks adjusted by exponential Lévy models. Finally,

implementing the delta-hedged trading strategy reveals that the option price forecasts of the MNN with

three input parameters yield a better mean return per invested dollar and Sharpe ratio than the forecasts

of any other model. Hybrid neural networks adjusted by exponential Lévy models are also able to produce

abnormal risk-adjusted returns before transaction costs.

The rest of this paper is constructed as follows. First, the non-parametric option pricing models are

presented in Section 2. The hybrid approach for each of the non-parametric models is also introduced.

Furthermore, the model estimation and evaluation techniques are described. Section 3 then introduces the

data sample consisting of S&P 500 index options and discusses the exclusion criteria that are incorporated.

In Section 4 the option pricing performance of the parametric and non-parametric models is discussed

and the statistical and economic significance of the difference in out-of-sample forecast accuracy is tested.

Finally, Section 5 concludes and Section 6 discusses and provides topics for further research.
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2 Methodology

2.1 Non-Parametric Models

This section introduces the non-parametric models, which consist of several implementations of neural

network models. Neural network models are inspired by the characteristics of the biological nervous

system that enable experiential learning. Neural networks models are attractive methods for option pricing

problems because they are able to effectively approximate non-linear relationships and are not reliant on

the restrictive assumptions implicit in parametric approaches. Furthermore, parametric option pricing

models in appropriate combination with neural networks are introduced as hybrid neural networks.

2.1.1 Artificial Neural Network

A neural network is a collection of interconnected neurons structured in layers. The neurons can be repre-

sented by nodes. The neural network can then be depicted by nodes that are connected by arcs. Hutchinson

et al. (1994), who were among the earliest papers to apply neural networks to option pricing, implemented

two types of regression networks: the multilayer perceptron and the radial basis function network. Both

networks belong to a class of neural networks called feed-forward networks, as the connections between the

nodes do not form a cycle. Even though both networks are appropriate to price options, to facilitate the

introduction of deep learning and to remain consistent with methods introduced later in this paper I opt

to exclusively implement the multilayer perceptron approach, similar to for example Anders et al. (1998).

Hereinafter I simply refer to this network as the artificial neural network (ANN).

The first ANN used in this study is depicted in Figure 1. Each neuron is composed of a vector of input

signals. For the input layer these are simply the N input variables. The H neurons in the hidden layer

also have vector weights and an associated bias term as input variables, represented by wji and bj . After

computing a weighted sum for each hidden unit, a non-linear activation function, fH(·), is applied to the

result. This non-linearity ensures that the model is more powerful than a linear model. The output signals

of the hidden layer are then transferred to the output layer as input signals. Here, the single neuron again

sums the product of the input signals with the corresponding bias and weights, now represented by vj and

a0. Finally, a second activation function, fO(·), is applied to the result. If this second activation function

is disregarded, the output is simply the weighted sum of the input signals from the hidden layer. For

notational convenience, the activation functions of the hidden and output layer are hereinafter symbolized

by respectively σ(·) and σ0(·).
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Figure 1: An artificial neural network with a single hidden layer.

Note: In this figure, xi represent the input variables, bj and wji represent weights and biases in the hidden layer, vj and a0

represent weights and biases in the output layer, ψ
(1)
j and y

(1)
j represent intermediate results and y is the output variable.

Furthermore, fO(·) denotes the activation function of the output layer and fH(·) denotes the activation function of the
hidden layer. Source: Andreou et al. (2008)

The output of the ANN with one hidden layer as depicted in Figure 1 is then generated by

y = σ0

a0 +
H∑
j=1

vjσ

(
bj +

N∑
i=1

wjixi

) . (1)

The Adam optimizer of Kingma and Ba (2015) is utilized to train each neural network. The Adam optimizer

uses gradient descent to iteratively update and ultimately optimize network weights and biases. I choose

the Adam optimizer over other popular gradient descent optimization algorithms such as the adaptive

gradient algorithm (AdaGrad) and root mean square propagation (RMSProp). The Adam optimizer adds

bias-correction and momentum to RMSprop, which is an extension of AdaGrad. Kingma and Ba (2015)

showed that the Adam optimizer outperforms AdaGrad and RMSProp in terms of speed and accuracy.

The weights and the biases of the network with one hidden layer are updated such that the mean

squared error loss function is minimized, i.e. the problem

argmin
ω

1

P

P∑
q=1

(yq − tq)2 = argmin
ω

1

P

P∑
q=1

σ0

a0 +

H∑
j=1

vjσ

(
bj +

N∑
i=1

wjixiq

)− tq
2

(2)
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is solved. Here, P is the number of data points in the training sample, ω = {a0, v, b,W} is the parameter

set containing the weights and biases and tq is the target. The target is defined as the market price of

the call option (cM,q) divided by the strike price, i.e. tq ≡
cM,q

K
. The output that follows from the ANN

thus equals ŷANN,q =
cANN,q

K
, which must be multiplied by K to arrive at the estimated option price. The

target tq is defined in this way because the moneyness bias described by Garcia and Gençay (2000) is taken

into account. Originally, the option pricing formula is assumed to depend on the strike price K, the spot

price St and the time-to-maturity τ , see e.g. Hutchinson et al. (1994) and Malliaris and Salchenberger

(1993). However, Garcia and Gençay (2000) showed that if the return distribution is independent of the

stock price, the pricing model is rescalable with respect to K. In other words, homogeneity of degree one

of the pricing function with respect to St and K is assumed. Garcia and Gençay (2000) therefore called

this the homogeneity hint. Incorporating this homogeneity hint results in an ANN consisting of two input

variables rather than three. This ANN is solely controlled by the moneyness ratio, defined as m ≡ St
K

, and

time-to-maturity, τ . I follow this approach and therefore input two variables into the ANN. Accordingly,

N in (1) equals two. To remain consistent across all methods, time-to-maturity is annually normalized

following Gradojevic et al. (2009) and Yang et al. (2017). The output, in terms of the option pricing

formula C(·), equals

y ≡ C(m, 1, τ) =
C(St,K, τ)

K
. (3)

The main focus of this paper is not on neural networks with the previously introduced standard target

function, but on hybrid neural networks with hybrid target functions. The standard neural networks are

mainly used as benchmarks to which the performance of the hybrid neural networks is compared. Using

ANNs, the hybrid approach has been shown to produce more accurate option pricing than either parametric

option pricing models or standard neural network option pricing models, e.g. by Lajbcygier and Conner

(1997), Andreou et al. (2008) and Chen and Sutcliffe (2012). First introduced by Boek et al. (1995), the

hybrid approach uses a parametric model in combination with a neural network. The basic idea is to

use a parametric model as a base and allowing the neural network to augment its performance. More

specifically, the target function of hybrid neural networks is the residual between the observed market

price and the price estimate of a certain parametric model, i.e. tH,q ≡
cM,q

K
− cj,q

K
, where cj,q is defined

as the option price output from a parametric option pricing model and homogeneity is assumed. The

output that follows from the hybrid artificial neural network (HANN) equals ŷHANN,q =
cHANN,q

K
− cj,q

K
.

In total, five parametric option pricing models are employed. The Black and Scholes (1973) (BS) model

and the Corrado and Su (1996) (CS) model are chosen following the work of Andreou et al. (2008).
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This paper contributes to existing literature by investigating whether using stochastic volatility models,

represented by the Heston (1993) (H) model, or exponential Lévy models, represented by the Kou (2002)

(K) jump-diffusion model and the Variance Gamma (VG) model of Madan et al. (1998), in the hybrid

target function improves the accuracy of the option pricing models. As the Black-Scholes model follows

from a set of simplified assumptions, the Heston model is introduced to account for fluctuating volatility

and the Kou jump-diffusion model and Variance Gamma model are introduced to account for stock price

jumps. The fundamentals of each of these parametric models are described in detail in Appendix A.

Most papers that research hybrid neural networks for option pricing, such as Andreou et al. (2008),

only consider hybrid neural networks with one hidden layer. According to the universal approximation

theorem of Cybenko (1989) a single hidden layer can be trained to estimate most functions and can

attain high accuracy by including enough processing nodes. However, I consider more than one hidden

layer to optimize option pricing accuracy. Heaton (2008) stated that “two hidden layers can represent an

arbitrary decision boundary to arbitrary accuracy with rational activation functions and can approximate

any smooth mapping to any accuracy” and that “additional layers can learn complex representations.”

Therefore, I consider up to three hidden layers for each non-parametric model and examine which number

of hidden layers is optimal for the non-parametric models. In Appendix B, the derivation of the output of

the networks with two and three hidden layers is given. The output of the network with two hidden layers

is given in (42) and the output of the network with three hidden layers in (43). Networks with multiple

hidden layers are created by iteratively inserting an additional hidden layer between the input layer and

the adjacent hidden layer, paying careful attention to the dimensionality of the weight and bias terms. The

new hidden layer is therefore always inserted to the left of the previous hidden layer(s) in Figure 1. For

computational purposes, the same activation function, σ(·), is chosen for each hidden layer.

Andreou et al. (2008), Gradojevic et al. (2009) and Gradojevic (2016) all decided only to consider the

hyperbolic tangent activation function and the sigmoid activation function for the hidden layer of their

neural network models. To extend their research I also examine the softplus, Rectified Linear Unit (ReLU)

and Exponential Linear Unit (ELU) activation functions for the hidden layer. For the output layer I also

consider the exponential activation function, following Culkin and Das (2017). I examine which activation

function architecture works best for each method. All activation functions are defined in Appendix C.

Additional activation functions are considered because analyses have shown that the hyperbolic tangent

activation function and the sigmoid activation function are flawed by design. In short, gradients in limiting

regions are forced to approach zero. A more elaborate discussion on this topic is presented in Appendix C.
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Ruf and Wang (2019) summarized more than 150 papers that use ANNs as a non-parametric option

pricing or hedging tool. A fair amount of these papers considers more than two input variables. The most

commonly used input variables besides moneyness and time-to-maturity are historical volatility and the

risk-free interest rate, as for example implemented by Culkin and Das (2017). Adding these two variables

increases the number of input variables to four, assuming homogeneity of degree one of the pricing function.

Recently, Palmer (2019) introduced a parameter space reduction technique that reduces the number of input

variables from four to three. A reduction of the number of input variables is important as it simplifies

inference for the neural network. Palmer (2019) found that in this case the option pricing formula can be

written as

y ≡ C
(
m, 1, 1, σ

√
τ , rτ

)
= C (S,K, τ, σ, r)K. (4)

The target function for neural networks with these inputs is then defined as tq ≡ KcM,q. I implement this

approach with three input variables to examine whether the increase of input information improves the

performance of the ANN and the neural network methods introduced in upcoming sections.

Because of the large range of magnitudes of option prices the target function must be transformed

before it can be utilized by the neural network. According to Palmer (2019), in general neural networks

work best when all the targets are a similar magnitude in value. Methods later introduced in this paper

overcome this problem by dividing the options with modules or gates and pricing the options with separate

specialised neural networks for specific options. To resolve this issue for the ANN, a data transform is

introduced and applied to the target output: the target function is standardized using the z -score. The

neural network then learns to output the transformed value of the target values. The approximated target

value can then be retrieved by inverting the applied transform. The data transform is applied to the input

variables as well. This way possible neuron saturation is avoided.

2.1.2 Modular Neural Network

A main drawback of the ANN introduced in the previous section is that it tries to find a single pricing

function for the entire range of traded options. Lajbcygier (2004) noted that in his earlier work (La-

jbcygier and Conner, 1997) there existed pricing biases in boundary regions. The price of options that

were approaching maturity were severely underestimated; a phenomenon observed by Dugas et al. (2001)

as well. Gençay and Salih (2003) and Bennell and Sutcliffe (2004) found that estimating option prices

separately per moneyness region increased the pricing accuracy of their neural network methods. Inspired
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by these findings, Gradojevic et al. (2009) implemented an ANN whereby they categorized the options in

modules based on their moneyness and time-to-maturity and trained the ANN for each individual group

of options. They referred to this model as a modular neural network (MNN). The options are divided

into sub-categories, i.e. modules, and are thereupon distinctly priced per module. The MNN introduces

modularity to improve the generalization performance of neural networks.

The options are organized conditional on the moneyness ratio m and the annually normalized time-to-

maturity τ of the options. Following Gradojevic et al. (2009), the options are divided into three time-to-

maturity modules and cut-off points are the following: τ < 0.1 (short term), 0.1 ≤ τ ≤ 0.2 (medium term),

and τ > 0.2 (long term). Similarly, for the three moneyness modules the cut-off points are determined

as follows: m < 0.97 (out-of-the-money), 0.97 ≤ m ≤ 1.05 (at-the-money) and m > 1.05 (in-the-money).

As both criteria are applied concurrently, the option prices are estimated by an MNN with nine modules,

thus M = 9 in Figure 2. However, at a given time only one module is active given the moneyness and

time-to-maturity of the option that is being priced. Seperate modules are thus not interconnected

Each module is defined by a single feed-forward ANN model with two input variables, see Figure 2.

Each of these ANNs is trained independently. Similar to the ANN of the previous section, homogeneity

of degree one of the pricing function with respect to St and K is assumed for each module, such that (3)

holds. As the modules are not interconnected, the output of the MNN can be defined as the combination

of outputs of nine separate ANNs. Specifically, the output of the MNN equals

yk = σ0

a0,k +

Hk∑
j=1

vjkσ

(
bjk +

N∑
i=1

wjikxi

) , (5)

where Hk is the number of neurons in the hidden layer for each module k = 1, . . . ,M . For computational

purposes, Hk is set constant across modules. Furthermore, bjk and wjik represent weights and biases in

the hidden layer for each module and vjk and a0,k represent weights and biases in the output layer for

each module. With input variables m and τ , N = 2. To extend this MNN, I research the case in which

each of the M ANNs consists of up to three hidden layers. The derivation of the output of the neural

networks with two and three hidden layers is given in Appendix D. The output of the neural network with

two hidden layers is given in (44) and the output of the neural network with three hidden layers in (45).

The same additional activation functions as for the ANN are regarded for the hidden layer(s).
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Figure 2: A modular neural network

Note: In this figure, τ and St/K represent the input variables of the MNN. Depending on the value of the input variable per
option, the switch of the NN module decides which ANN, denoted by NN1, . . . , NNM , prices the option. The MNN outputs
cMNN,q/K. The value of M equals nine. Source: Gradojevic et al. (2009).

To extend the MNN with two input variables, I use the approach of Palmer (2019) to introducing

extra input variables to the MNN. This results in an MNN with three input variables. Furthermore, to

improve this model, Gradojevic (2016) introduced the multi-criteria modular neural network (MCMNN).

The MCMNN extends the standard MNN by adding a switch based on the implied volatility value of the

option, see Figure 3. To remain consistent across models and to simplify inference for the neural network,

I use the three Palmer (2019) input variables m, σ
√
τ and rτ in combination with the MCMNN modules.

Historical instead of implied volatility is thus used as input. The time-to-maturity and moneyness ratio

cut-off points are similar to those for the MNN. The volatility criteria classifies options across two ranges

consisting of low volatility options and high volatility options. The cut-off point is dynamically determined

by the median value of volatility across options in the training data. In total, the MCMNN thus consists

of 18 modules. The MCMNN is again examined with up to three hidden layers, several combinations of

hidden layer nodes and with a range of different activation functions. The output of the MCMNN is equal

to that of the MNN. The only difference in (5) is that for the MCMNN it holds that N = 3 and M = 18.
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Figure 3: A multi-criteria modular neural network

Note: In this figure, τ , St/K, σ and r represent the input variables of the MCMNN. Depending on the value of the input
variables τ , St/K and σ per option, the switch of the NN module decides which ANN, denoted by NN1, . . . , NNM , prices
the option. The MCMNN outputs cMCMNN,q/K. The value of M equals 18. Source: Gradojevic (2016).

This paper contributes to existing literature by applying the hybrid approach to the introduced MNN

and MCMNN. In their research, Gradojevic et al. (2009) and Gradojevic (2016) only estimated the option-

price-to-strike-price ratio, such that similar to the previously introduced standard ANN approach the target

was defined as tq ≡
cM,q

K
. To extend this research, I also implement the hybrid approach for the MNN and

MCMNN, resulting in the hybrid modular neural network (HMNN) and the hybrid multi-criteria modular

neural network (HMCMNN). Apart from a change of the target function, nothing changes in terms of

input variables or module organization. In Figure 2 and Figure 3 this means that only the output must be

modified. The output that follows from the HMNN depends on the specification of the input variables. If

two input variables are used, the output equals ŷHMNN,q =
cHMNN,q

K
− cj,q
K

. Again, j ∈ {BS,CS,H,K,VG}.

If the three input variables of Palmer (2019) are used, the output equals ŷHMNN,q = KcHMNN,q − Kcj,q.

For the HMCMNN, the output equals ŷHMCMNN,q = KcHMCMNN,q −Kcj,q. The HMNN and HMCMNN

output must thus be linearly transformed to obtain the estimated option price.
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2.1.3 Gated Neural Network

In a recent paper, Yang et al. (2017) stated that the categorization of options performed by Gradojevic

et al. (2009) may not be consistent with changing market data over time, as it is based on fixed manual

heuristics. To substantiate their claims they introduced a new class of neural networks for option pricing:

a gated neural network (GNN). Gated networks contain gating connections in which the outputs of the

neurons are multiplied. The GNN basically also applies a modular approach, but with option grouping that

is automatic and learned from data rather than performed manually. The GNN can thus dynamically adjust

the grouping and the pricing function of each group as the market changes over time. Yang et al. (2017)

also incorporated economic and financial axioms implemented as constraints into their neural network,

expanding the work of Dugas et al. (2001). Zheng (2018) referred to this approach as a Bayesian-alike

design approach in which prior information is encoded into the neural network. The prior neural network

is then trained to get the posterior neural network. The GNN thus improves the option grouping, i.e.

module organization, of the MNN and contributes to the existing literature a neural network that comes

with guarantees about the economic and financial rationality of its outputs.

Similar to the MNN, the GNN implements a modular approach. For the MNN, the ANN is the building

block of which each module consists. Yang et al. (2017) first defined a GNN with two inputs but no modules

as the building block for the GNN with modules. The GNN model without modules is referred to the single

model and the GNN model with modules as the multi model. The single model is to the multi model what

the ANN is to the MNN. In the results section I refer to this multi model as the GNN. The single model

is portrayed in Figure 4a and the multi model in Figure 4b.

The first step to deriving the single model is defining the theoretical definition of the call option pricing

model C(·) of (3), which is given by

C(K,St, τ) =

∫ ∞
0

max(0, ST −K)f(ST |St, τ)dST (6)

where max(0, ST −K) is the potential revenue that can be obtained from this call option at maturity and

f(ST |St, τ) is the probability density of that revenue. The integral therefore represents the expected revenue

at maturity given the current information. To arrive at this, no arbitrage is assumed and no discount term

is considered because the risk-free rate is obtained independently. C(·) can be easily obtained from a

regression problem. However, this does not necessarily yield a relevant predictive model unless f(·) is a

valid probability density function.
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Following Föllmer and Schied (2011), Yang et al. (2017) listed six conditions that must hold to ensure a

valid probability density function for an option pricing model. To assess the consequences some conditions

have for the neural network specification, the standard ANN of (1) is adjusted accordingly. The first

condition reads
∂C

∂K
≤ 0. (C1)

This ensures that the option price increases when the strike price decreases, ceteris paribus, which is a condi-

tion that must hold on a fair market. Mathematically, it must hold because
∂C

∂K
=

∫ K

0
f(ST |St, τ)dST −1,

and the integral represents a cumulative distribution function P(ST ≤ K), thus its value cannot exceed

one. When the strike price decreases, ceteris paribus, moneyness m =
St
K

increases and inverse moneyness

m−1 decreases. Yang et al. (2017) input inverse moneyness such that C4 can hold. I therefore also follow

this approach. To guarantee that the output of the neural network is monotonically decreasing with its

single input variable x, according to Zheng (2018), one can use

y = σ0

a0 +
H∑
j=1

evjσ1 (bj − ewjx)

 , (7)

where σ1(x) =
1

1 + e−x
is the sigmoid function, which has the useful property that its derivative is strictly

positive. The second condition is given by
∂2C

∂K2
≥ 0 (C2)

and ensures convexity of the option price related to the strike price. This condition follows from the fact

that
∂2C

∂K2
= f(ST |St, τ) is a probability density function so its value cannot be smaller than zero. Ensuring

C2 holds can be done designing a neural network as

y = σ0

a0 +
H∑
j=1

evjσ2 (bj + ewjx)

 , (8)

where σ2(x) = log(1 + ex) is the softplus function. C2 holds because the derivative of the softplus function

with respect to K equals the sigmoid function. The third condition follows from intuition: the option price

must be non-decreasing with time-to-maturity, because a longer time-to-maturity corresponds to a larger

probability that the underlying asset price becomes greater than the strike price. Mathematically, this

gives
∂C

∂τ
≥ 0. (C3)
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The consequences of this condition are similar to those of C1, but now concern that the output of the

neural network must be monotonically increasing with its single input variable x. This can be attained by

specyfying

y = σ0

a0 +

H∑
j=1

evjσ1 (bj + ewjx)

 , (9)

where σ1(·) again corresponds to the sigmoid function.

When the strike price of an option approaches infinity, there is a no chance of making a profit from this

option because the underlying asset price invariably fails to exceed the strike price. The fourth condition

states that the price of this option must be zero, i.e.

lim
K→∞

C(K,St, τ) = C(∞, St, τ) = 0. (C4)

This condition can only hold when the input variable x is defined as the inverse moneyness m−1. This

way, when K approaches infinity, inverse moneyness also approaches infinity and σ2 (bj − ewjx) in (7)

approaches 0, such that the option price finally approaches 0. Apart from defining inverse moneyness as

an input variable, the bias term a0 for the output layer must be set equal to 0 for this condition to hold.

The neural network must therefore be designed as

y = σ0

 H∑
j=1

evjσ2 (bj − ewjx)

 , (10)

where σ2(·) again corresponds to the softplus function.

At maturity, when τ = 0, the option price must equal its theoretical value, max(0, St −K), because it

is possible for market practitioners to execute the option at once. The fifth condition is therefore defined

as

C(K,St, 0) = max(0, St −K) when τ = 0 (C5)

The sixth condition provides boundaries for the option price. The option price cannot be smaller than

max(0, St − K), because of the time value of the option contract. Furthermore, the option price cannot

exceed the underlying stock price, because otherwise exploitable arbitrage opportunities arise. Specifically,

max(0, St −K) ≤ C(K,St, τ) ≤ St. (C6)
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Figure 4: (a) The single model (b) The multi model

Note: This figure shows in (a) the single model with input variables m and τ and in (b) the multi model consisting of M
modules of single models and a seperate weighting model to softly switch the single models. Furthermore, ⊗ is the
multiplication gate that outputs the product of the inputs and ⊕ is the addition gate that outputs the sum of the inputs.
Source: Zheng et al. (2019)

These last two conditions are hard to achieve by model architecture design and are therefore met by

synthesising virtual option contracts in training. These virtual options are appended to the training data

of the GNN. How these virtual option contracts are generated is discussed in Section 3.

To arrive at the single model, the consequences in (7), (8), (9) and (10) are regarded. Each of the

conditions discusses the case of one input variable, but all the neural networks specified before consisted of

more than one input variable. To combine all conditions, the single model is designed as a GNN with two

sides as defined by Sigaud et al. (2015). For two input variables, m−1 and τ , the single model is specified

by the formula

y =

H∑
j=1

evjσ1 (b1,j + ewj1τ)σ2

(
b2,j − ewj2m−1

)
, (11)

where σ1(x) is the sigmoid function, σ2(x) is the softplus function and H is the number of neurons. The

multiplication gate, represented by ⊗ in Figure 4a, merges the neurons from the different input gates. The

activation function of the output layer is linear, such that the output is simply the weighted sum of the

input signals from the hidden layer. The output layer produces the output y using weights vj . The single

model provides a simple option pricing model for all options.
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The multi model simultaneously trains M single pricing models and a weighting model to switch

between the single models, see Figure 4b. Following Yang et al., M = 9, as the MNN also has this setting.

Each single model can be expressed as

yk =

Hk∑
j=1

evjkσ1 (b1,jk + ewj1kτ)σ2

(
b2,jk − ewj2km−1

)
, (12)

for k = 1, . . . ,M . This gives the output of the left-hand side of the multi model of Figure 4b.

The right-hand side of the multi model of Figure 4b, the side that provides a model selector for the left

branch, is a network consisting of one R unit hidden layer and an output layer with an M -way softmax

activation function. The softmax activation functions takes as input a vector and enforces the outputs to

sum to one. The weights ωk thus sum to one. The output weights of the right-hand side that follow from

the softmax activation function are given by

ωk =
e
∑R
r=1 σ1(ψ1,rm−1+ψ2,rτ+βr)υr,k+γk∑M

k=1 e
∑R
r=1 σ1(ψ1,rm−1+ψ2,rτ+βr)υr,k+γk

, (13)

where ψ (υ) and β (γ) denote the weight and bias term for the hidden (output) layer. Finally, the output

of the multi model equals the softmax weighted average of the M single models’ outputs, i.e.

y =
M∑
k=1

ykωk. (14)

I extend the work of Yang et al. (2017) by introducing the hybrid approach to the GNN. The output

of the parametric models are used to construct the hybrid GNN (HGNN) from the standard GNN. For the

standard GNN inverse moneyness is examined as input variable, such that the target function of the GNN

with two input parameters is defined as tq ≡
cM,q

St
. This can be deduced from (3). Furthermore, tq ≡ StcM,q

when three input parameters are used. Consequently, the output of the GNN with two input variables is

given by ŷGNN,q =
cGNN,q

St
and the output of the GNN with three input variables equals ŷGNN,q = StcGNN,q.

Because of this different input variable specification, the target function of the HGNN is also defined

contrary to the target function of the HANN and HMNN. The HGNN target functions for two and three

input parameters are respectively given by tH,q ≡
cM,q

St
− cj,q

St
and tH,q ≡ StcM,q − Stcj,q. The outputs of

the HGNNs are then respectively given by ŷHGNN,q =
cHGNN,q

St
− cj,q

St
and ŷHGNN,q = StcHGNN,q − Stcj,q.

All outputs must thus again be linearly transformed to obtain the estimated option price.
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Finally, since the activation functions are chosen such that conditions C1 – C4 hold, I do not consider

other activation functions for the GNN. I do expand the GNN from two input variables to three input

variables, to remain consistent with the other neural network models. As it is trivially known that
∂C

∂r
≥ 0

and
∂C

∂σ
≥ 0, and it has already been shown that

∂C

∂τ
≥ 0, gates for the Palmer (2019) input variables

σ
√
τ and rτ can be added to (11) similar to that of τ . Following Yang et al. (2017), inverse moneyness is

again used as input variable. Each single model with three input variables can then be expressed as

yk =

Hk∑
j=1

evjkσ1

(
b1,jk + ewj1kσ

√
τ
)
σ1 (b2,jk + ewj2krτ)σ2

(
b3,jk − ewj3km−1

)
. (15)

Because of the distinctive multiplicative relationships between the inputs, I disregard multiple hidden layers

for the GNN. It is not possible to deduce the historical volatility for the virtual options (see Section 3).

Therefore, the virtual options are only generated for the GNN with two input variables. The GNN with

virtual options is henceforth denoted as GNN*.

2.2 Model Estimation and Evaluation

For the Black-Scholes model and the Corrado-Su model, the option price can be obtained directly from

the option pricing formula of the models using historical estimates for the volatility, skewness and kurtosis

parameters. For the parametric models of which the characteristic function is known, options are priced

using fractional FFT, as described in Section A.3. For these models, parameters are calibrated on the

last training day’s data, following Yang et al. (2017). The parameters are calibrated using the Levenberg-

Marquardt algorithm. The neural networks are created using Google’s TensorFlow package. Furthermore,

the neural networks are all trained utilizing the Adam optimizer of Kingma and Ba (2015). The weights

and the biases of the network are updated such that the mean squared error loss function is minimized, as

described in Section 2.1.1.

For the neural networks the data for each year are divided into four quarters consisting of three months

of data, split chronologically. Each set of 3 months of trading days can be used for training, validation or

out-of-sample testing using overlapping rolling windows. The training set consists of two blocks of three

months of data, the validation set and out-of-sample testing set each consist of one block of three months.

In the training set, the neural network is trained to obtain first estimates of weight and bias parameters.

In the validation set the optimal number of hidden neurons and the corresponding weights are decided.

Overfitting is prevented by ending the training process as soon as the validation set error begins increasing.

Finally, in the out-of-sample testing set the pricing capability of the neural network is tested.
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This chapter has introduced nine models: five parametric models and four non-parametric models. The

five parametric models are used as a benchmark to which the performance of the neural network models is

compared. They are also used as inputs for the target function of the hybrid neural network models. Each

neural network model thus has six variants: a standard approach and five hybrid approaches. Furthermore,

the neural network models are estimated with both two and three input variables. The MCMNN is only

examined with three input variables. Also, the GNN with two input variables is examined with and without

virtual options. Consequently, eight different neural networks are researched and in total 8 + 5 × 8 = 48

non-parametric models are estimated. The optimal all-encompassing model architecture for all neural

network models—the number of input variables, the number of hidden layers, the number of nodes in each

hidden layer and the activation functions for each layer—is determined by the performance on the full data

set. All neural network models are set up with the same model architecture such that it is possible to

adequately analyze the contrast between the different approaches.

The statistical performance in this paper is measured by the mean absolute percentage error (MAPE),

defined as MAPE =
1

P

P∑
i=1

|yi − ŷi|
yi

, and the mean squared error (MSE), defined as MSE =
1

P

P∑
i=1

(yi − ŷi).

Here, P is the total number of option price forecasts, yi is the observed option price and ŷi is the estimated

option price. Two statistical performance metrics are employed to ensure that the models are capable of

producing accurate option price forecasts while not making any excessive errors. The accuracy is mostly

measured by the MAPE whereas the excessive errors are better detected by the MSE.

Finally, similar to Gradojevic (2016) the training of the neural networks is performed from different

random seeds to control for possible sensitivity of the neural networks to the initial parameter values. The

average MSE and MAPE values are therefore reported throughout this paper. For computational purposes

the number of random seeds is set equal to three.

2.2.1 Diebold-Mariano Test

The statistical significance of the difference in the out-of-sample forecast accuracy is tested using the

Diebold-Mariano test of Diebold and Mariano (1995). The Diebold-Mariano test states that two forecasts

i are equally accurate if and only if the loss differential dq = g(e1q)−g(e2q) of the forecasts error eiq = ŷiq−yq

for i = 1, 2 has zero expectation for all q = 1, . . . , P . Here, P is the total number of option price forecasts.

The size of the loss differential depends on the chosen statistical performance metric g(·). Again, both the

MAPE and MSE performance metrics are scrutinized. The null hypothesis is that the two forecasts are
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equally accurate, i.e. H0 : E [dq] = 0 ∀ q. The alternative hypothesis is that the two forecasts are not

equally accurate, i.e. H1 : E[dq] 6= 0. Diebold and Mariano (1995) showed that under H0 it must hold that

DM =
d̄√

2πfd(0)
P

→ N(0, 1), (16)

where d̄ =

P∑
q=1

dq is the sample mean of the loss differential, fd(0) =
1

2π

( ∞∑
k=−∞

γd(k)

)
is the spectral

density of the loss differential at frequency 0 and γd(k) is the autocovariance of the loss differential at lag

k. Simulation experiments in Diebold and Mariano (1995) showed that the normal distribution is a poor

approximation of the finite-sample null distribution. Therefore, Harvey et al. (1997) made a bias correction

to the DM test-statistic which improves the small-sample properties of the test. The corrected statistic is

obtained as

DM2 =

√
P + 1− 2h+ h(h− 1)

P
DM, (17)

where h is the step-ahead forecast, which is set equal to 1. This test-statistic is compared with a t-

distribution with P − 1 degrees of freedom. In this paper, the DM test-statistic with bias correction

is implemented and the null hypotheses that there is no difference in the MAPE and MSE of the two

alternative models are tested.

2.2.2 Model Confidence Set

The statistical significance of the difference in the out-of-sample forecast accuracy is also determined by

constructing the model confidence set (MCS) of Hansen et al. (2011). The MCS procedure yields a set of

models that contains the best model(s) with a given level of confidence. Because the MCS is not pairwise,

as opposed to the Diebold and Mariano (1995) test, MCS can be efficiently used to test the statistical

significance of the difference in the out-of-sample forecast accuracy per moneyness and maturity region.

The MCS therefore assists in determining which option pricing model simultaneously has the most accurate

and consistent overall option pricing performance.

The MCS procedure excludes models unable to pass the null hypothesis of equal predictive ability

(EPA) at confidence level α from the MCS. The EPA hypothesis of Hansen et al. (2011) is formulated as

H0 : E [dijq] = 0 ∀ i, j = 1, 2, . . . ,m. The alternative EPA hypothesis is formulated as H1 : E [dijq] 6= 0 ∀

i, j = 1, 2, . . . ,m. Here, m is the total number of option pricing models and dijq = g(eiq)− g(ejq). Similar

to the Diebold-Mariano test, the size of the loss differential depends on the chosen statistical performance
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metric g(·), as both the MAPE and MSE performance metrics are scrutinized. In order to test the null

hypothesis, the test-statistic

tij =
d̄ij√

ˆvar
(
d̄ij
) (18)

is examined. Here, ˆvar
(
d̄ij
)

is the bootstrapped variance of the mean loss difference d̄ij . The variance is

bootstrapped using a block-bootstrap procedure of 1,000 samples in which blocks are of length 2, following

Hansen et al. (2011). The null hypothesis can then be tested by the test-statistic TM = max
i,j∈M

|tij |, for

which the natural elimination rule defined by

emax,M = argmaxi∈M supj∈M tij (19)

is followed. The MCS procedure iteratively excludes models that are unable to pass the EPA hypothesis

at a significance level α. The MCS can thus efficiently be used to determine which option pricing models

have significant forecast accuracy for each moneyness and maturity region.

2.2.3 Delta-Hedged Trading Strategy

The economic significance of the difference in the out-of-sample forecast accuracy is tested by implementing

a simple trading strategy based on the option price forecasts. The trading strategy is loosely based on a

trading strategy designed by Bernales and Guidolin (2014). I adapt their trading strategy, which is based

on implied volatility forecasts, to a strategy suited for option price forecasts. The strategy consists of

purchasing (selling) an option contract on day t if a model forecasts that the price of the option contract is

going to increase (decrease) on the next trading day t+ 1. This strategy is also implemented by Andreou

et al. (2008). Excessive trading is avoided by requiring the option price to increase or decrease by at least

1%. The purchasing and selling of option contracts is performed simultaneously with the purchasing and

selling of the underlying stock. The amount of stocks to be purchased or sold is determined by the option’s

delta. Adhering to this strategy ensures the trading position does not contain risks caused by stock-price

movement of the underlying assets, i.e. the strategy is delta-hedged.

The total value of all delta-hedged positions in the portfolio on day t is given by

Vt,i =
∑

m∈Q+
t,i

(Cm,t − St∆m,t)−
∑

m∈Q−
t,i

(Cm,t − St∆m,t) , (20)
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where St is the stock price at time t, Q+
t,i (Q−t,i) is the set of option contracts to be purchased (sold) at time

t according to model i, ∆m,t is the absolute value of delta of option m at time t. Following Bernales and

Guidolin (2014), on each day a fixed amount of $1000 is invested in the delta-hedged portfolio. The portfolio

is then rebalanced on a daily basis. Consequently, when the total value of all delta-hedged positions in

the portfolio, Vt,i, is positive, Xt,i = $1000/Vt,i units of the delta-hedged portfolio are purchased. The

corresponding one-day net gain then equals Gt+1,i = Xt,i (Vt+1,i − Vt,i). When Vt,i is negative, Xt,i =

$1000/ |Vt,i| units of the delta-hedged portfolio are sold and the obtained $1000 plus the daily acquired

$1000 are altogether saved. This procedure earns a one-day net gain of Gt+1,i + $2000× (ert − 1), where rt

is the risk-free rate. The performance of each model is assessed based on mean return per invested dollar

and the Sharpe ratio. Furthermore, the significance of the abnormality of the returns is tested by means

of a t-test.

3 Data

The data are daily S&P 500 index European call option prices obtained from OptionMetrics. The data

sample covers the period 04/01/1996—31/12/2016, closely following Yang et al. (2017) to make this study

comparable. As the data is split in quarters, the results consist of 21 × 4 − 3 = 81 quarters. For the

market price of the call option the historical end-of-day bid and ask quotes are used. The market price of

the call option is approximated by the mid-quote, the mid-point of the bid-ask spread quoted for the call

option. The corresponding risk-free rates and index dividend yields are also provided by OptionMetrics.

Similar to Andreou et al. (2008), nonlinear cubic spline interpolation is used to match each option contract

with a risk-free rate that corresponds to the option’s maturity. For the volatility, skewness and kurtosis

parameters 60-day historical estimates are obtained from the S&P 500 index quotes.

Following Yang et al. (2017), contracts with maturity less than 2 days are omitted. Furthermore, option

quotes smaller than 0.5 are excluded because they are close to tick size. Other than that no exclusion criteria

are incorporated, such that a wide range of options is priced. After the procedures 3346668 option quotes

are left. Descriptive statistics of the data are given in Table 1. Over the years an increase in option prices

and in the number of traded options are observed. Remarkably, more than 50% of all the options is traded

between 2014 and 2016. Furthermore, the highest mean implied volatilities are observed around 2000, 2008

and 2011. In these years the dot-com bubble, the global financial crisis and European debt crisis occurred.

As option pricing is more complicated during crises, these periods are explicitly featured in the graphs in

the results section.
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Table 1: Descriptive statistics

1996—1998 1999—2001 2002—2004 2005—2007 2008—2010 2011—2013 2014—2016

c 109.96 148.95 105.40 147.71 162.83 258.70 299.19
K 849.21 1282.4 995.92 1263.3 1006.2 1247.4 1781.4
S 909.55 1319.4 1031.9 1360.2 1090.3 1470.1 2046.5
T 147.97 168.09 169.51 143.49 138.16 128.65 98.032
r 0.0565 0.0533 0.0167 0.0484 0.0108 0.0030 0.0041
q 0.0187 0.0096 0.0152 0.0193 0.0210 0.0221 0.0198
σIV 0.2680 0.2774 0.2494 0.2198 0.3496 0.3144 0.2722
σ60 0.1637 0.2046 0.1755 0.1217 0.2599 0.1425 0.1311
Σ 124596 139990 129914 186869 388568 660689 1716042

Note: This table presents the mean market price of the call option (c), mean strike price (K), mean spot price of the underly-
ing S&P 500 asset (S), mean maturity (T ), mean risk-free interest rate (r), mean dividend yield (q), mean implied volatility
(σIV ), mean 60-day historical volatility (σ60) and total number of options (Σ) for various time periods.

Besides the original S&P 500 option contracts, virtual option contracts are generated for the GNN to

meet conditions C5 and C6. To meet condition C5, τ = 0 is fixed, K is sampled uniformly in [0, St] and

the option price exactly equals St − K. These virtual options compel the neural network to learn the

lower boundary of option prices such that options with small time-to-maturity are not mispriced. To meet

condition C6, for every unique τ an option with K = 0 is created and St is drawn from the historical range.

These virtual options correspond to the most expensive options; their existence leads to coincidence of the

lower and upper bound, forcing the option price to equal the underlying price. It is not possible to deduce

the historical volatility for the virtual options. Therefore, the virtual options are only generated for the

GNN with two input variables.

4 Results

I proceed by presenting my findings, which are structured as follows. First, the option pricing perfor-

mance of the parametric models is discussed. Subsequently, the optimal model architecture is analyzed.

Then, the option pricing performance of the non-parametric models is evaluated, both for the hybrid and

non-hybrid approaches. The analyses for the ANN, MNN and GNN are performed separately such that a

more clear overview is given than when all models are compared simultaneously. Separately discussing the

performance of each non-parametric method facilitates clear and concise discussions and in-depth analyses.

The statistical significance of the difference in pricing accuracy of each model is tested by means of the

Diebold-Mariano test and the model confidence set. Finally, the economic significance of the difference in

pricing accuracy of each model is tested by means of a delta-hedged trading strategy.
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4.1 Parametric Models

The MAPE and MSE of the option price forecasts of each of the five parametric models are given in

Table 2. From Table 2 it can be concluded that the Kou jump-diffusion model outperforms all of the other

parametric models in terms of MAPE and MSE. Figure 5 displays that the Kou jump-diffusion model

achieves the lowest MAPE by almost constantly outperforming the other models on the whole data set.

The Heston model achieves a MAPE almost similar to that of the Kou jump-diffusion model prior to 2012,

but its MAPE increases significantly in 2014 and 2016. The Variance Gamma model, similar to the Kou

jump-diffusion model, has a fairly constant MAPE. However, its value is almost consistently higher than

that of the Kou jump-diffusion model. The Black-Scholes and Corrado-Su models perform worse than the

three exponential Lévy models. This is presumably caused by the use of historical (60-day) parameters

rather than daily calibrated parameters. Especially in crisis periods, indicated by the shadowed parts in

Figure 5, the Black-Scholes and Corrado-Su models perform worse. From the MSE plot, given in Figure

22 in Appendix H, similar conclusions can be drawn. The Kou jump-diffusion model is able to outperform

all of the other parametric models by varying its jump intensity, indicated by its calibrated parameters.

A more elaborate analysis of the option pricing performance of the parametric models based on the daily

calibrated parameters of each model is given in Appendix E.

Table 2: MAPE and MSE of the option price forecasts of the parametric models

Black-Scholes Corrado-Su Heston Kou Variance Gamma

MAPE 0.419 0.404 0.203 0.112 0.149
MSE 180.2 183.8 19.32 12.96 16.10

This table presents the MAPE and MSE of the option price forecasts of the Black-Scholes model, the Corrado-Su model, the
Heston model, the Kou jump-diffusion model and the Variance Gamma model. The data are daily S&P 500 index European
call option prices obtained from OptionMetrics covering the period 04/01/1996–31/12/2016.

Figure 5: MAPE of the option price forecasts of the parametric models over time
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Note: This figure shows how the MAPE of the option price forecasts of each of the parametric models evolves over time. The
shadowed parts correspond to the dot-com bubble (2000), global financial crisis (2008) and European debt crisis (2011).
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4.2 Optimal Model Architecture Analysis of Non-Parametric Models

As described in Section 2.2, the optimal all-encompassing model architecture for all neural network

models—the number of hidden layers, the number of nodes in each hidden layer and the activation functions

for each layer—is determined based on the performance on the whole data set in terms of the mean absolute

percentage errors and the mean squared errors. I first perform a preliminary assessment to determine the

combination of hidden layer nodes to test for each method. For the ANN with two input variables I

perform a full run on the data set with one hidden layer, two hidden layers and three hidden layers. Also,

two activation functions (sigmoid and ReLu) for the hidden layers are examined such that the preliminary

decision is not influenced by the activation function. In this case the linear activation function is used for

the output layer. For the single hidden layer I examine the case with two, four and eight hidden layer

nodes. The second hidden layer either gets 16, 32 or 48 nodes. Finally, the cases with 64, 96 and 128

nodes in the third hidden layer are examined. From the results shown in Table 15 and 16 in Appendix

F meaningful insights can already be deduced. The first obvious inference that can be made is that the

models with three hidden layers outperform those with one and two hidden layers. The MAPE and MSE

from the ANNs with one and two hidden layers are simply much higher than those of the ANN with three

hidden layers. Therefore, each model is henceforth examined with three hidden layers. What remains is

to decide the number of nodes for each of these three hidden layers per neural network methods.

For the ANN with three hidden layers, poor results are found when using only two nodes in the first

hidden layer. The best results when using 64 nodes in the third hidden layer are attained in combination

with 32 nodes in the second hidden layer. In the case of 96 nodes in the third hidden layer, either using 16

or 48 nodes in the second hidden layer seems to yield a good pricing performance. When using 128 nodes

in the third hidden layer, having 32 nodes in the second hidden layer performs best. For the in-depth

analysis of each neural network method the performance of neural networks with combinations of these

hidden layer nodes is therefore investigated. Lastly, it can be observed that the results for the sigmoid and

ReLU activation functions are similar. Keeping tractability in mind, it therefore suffices to only use one

activation function for the following analyses. Therefore, for deciding the optimal number of hidden layer

nodes, only neural networks with the ReLU activation function for the hidden layer and linear activation

function for the output layer are assumed. Later in this section the activation functions are scrutinized.

Table 3 and 4 show the MAPE and MSE of the option price forecasts of ANNs, MNNs and MCMNNS

with various numbers of hidden layer nodes. The choice for eight different combinations of hidden layer

nodes for each method is based on performance during the preliminary assessment. It can be observed that
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the architecture composed of eight nodes in the first hidden layer, 48 nodes in the second hidden layer and

96 nodes in the third hidden layer yields the best overall ranked pricing performance across all the models.

This architecture of nodes attains the lowest MAPE and MSE for the ANN with 2 inputs, the ANN with 3

inputs and MNN with 3 inputs. Furthermore, for the MNN with 2 inputs the lowest MSE is also realized

by the neural network configured with this architecture. The difference with the lowest MAPE for the

MNN with 2 inputs is 0.007. Lastly, for the MCMNN this architecture attains the second lowest MAPE

and MSE with differences of respectively 0.001 and 1.69 with the lowest values. Consequently, I decide

to use this architecture of nodes for each of the ANN, MNN and MCMNN configurations, including the

hybrid approaches. This way all the neural networks have an architecture of nodes that has been proved

to work well for the specific neural network and simultaneously no arguments can be brought up about

differences in performance due to a different architecture of nodes. Henceforth I refer to this architecture

composed of eight, 48 and 96 nodes in the three hidden layers as the optimal architecture of nodes.

Using the optimal architecture of nodes, which was found using the ReLU and linear activation func-

tions, the optimal architecture of activation functions is researched. I perform additional preliminary

analyses to discover if combinations of hidden and output layer activation functions can be disregarded

because of poor performance. The preliminary analyses are performed with all five activation functions

for the hidden layer introduced in Appendix C. For the activation function of the output layer the linear

and exponential activation functions are explored. Table 17 in Appendix F shows that for each activation

function of the hidden layer a better performance is achieved when combined with the linear activation

function in the output layer. Consequently, the exponential activation function for the output layer is

hereinafter disregarded.

Table 3: MAPE from ANNs, MNNs and MCMNNs with various numbers of hidden layer nodes

ANN MNN MCMNN

[32,64] [16,96] [48,96] [32,128] [32,64] [16,96] [48,96] [32,128] [32,64] [16,96] [48,96] [32,128]

Panel A
4 0.587 0.599 0.597 0.499 0.307 0.311 0.306 0.286
8 0.526 0.654 0.522 0.614 0.285 0.283 0.289 0.281

Panel B
4 0.374 0.394 0.513 0.411 0.059 0.055 0.060 0.054 0.072 0.060 0.048 0.056
8 0.486 0.459 0.371 0.424 0.060 0.056 0.054 0.055 0.075 0.048 0.047 0.046

This table presents the MAPEs of the option price forecasts of ANNs, MNNs and MCMNNs with various numbers of hidden
layer nodes. Panel A (B) displays the MAPEs of the models with two (three) input variables. In all cases, the ReLU activa-
tion function is used for the hidden layers and the linear activation function for the output layer. On the vertical axis, the
number of hidden layer nodes for the first hidden layer is given. On the horizontal axis the number of nodes for the second
and third hidden layer are given; the first number in brackets represents the number of nodes in the second hidden layer.
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Table 4: MSE of the option price forecasts of ANNs, MNNs and MCMNNs with various numbers of hidden
layer nodes

ANN MNN MCMNN

[32,64] [16,96] [48,96] [32,128] [32,64] [16,96] [48,96] [32,128] [32,64] [16,96] [48,96] [32,128]

Panel A
4 153.9 113.8 170.2 131.5 152.1 162.2 272.2 219.5
8 110.7 184.6 86.77 156.8 113.7 213.5 96.90 148.6

Panel B
4 52.34 60.25 94.93 91.40 59.04 56.47 69.67 64.58 110.8 58.51 60.43 62.94
8 78.93 77.66 40.05 146.8 79.24 57.15 53.93 55.75 79.20 44.99 46.68 46.90

This table presents the MSEs of the option price forecasts of ANNs, MNNs and MCMNNs with various numbers of hidden
layer nodes. Panel A (B) displays the MSEs of the models with two (three) input variables. In all cases, the ReLU activation
function is used for the hidden layers and the linear activation function for the output layer. On the vertical axis, the number
of hidden layer nodes for the first hidden layer is given. On the horizontal axis the number of nodes for the second and third
hidden layer are given; the first number in brackets represents the number of nodes in the second hidden layer.

Table 5: MAPE of the option price forecasts of ANNs, MNNs and MCMNNs with various activation
functions for the hidden layers

ANN MNN MCMNN

σ1 σ2 σ3 σ4 σ5 σ1 σ2 σ3 σ4 σ5 σ1 σ2 σ3 σ4 σ5

2 1.005 0.962 1.151 1.393 0.522 0.293 0.290 0.277 0.275 0.289
3 0.763 1.008 1.820 1.019 0.371 0.058 0.061 0.056 0.050 0.054 0.054 0.064 0.048 0.057 0.047

This table presents the MAPE of the option price forecasts of ANNs, MNNs and MCMNNs with three hidden layers for five
hidden layer activation functions. The five activation functions are the sigmoid (σ1), softplus (σ2), hyperbolic tangent (σ3),
ELU (σ4) and ReLU (σ5) activation functions. The number of input variables is given on the vertical axis. The linear activa-
tion function is used for the output layer.

Table 6: MSE of the option price forecasts of ANNs, MNNs and MCMNNs with various activation functions
for the hidden layers

ANN MNN MCMNN

σ1 σ2 σ3 σ4 σ5 σ1 σ2 σ3 σ4 σ5 σ1 σ2 σ3 σ4 σ5

2 191.6 123.9 358.7 337.3 86.77 231.9 197.6 188.3 96.93 96.90
3 114.1 155.2 772.7 125.1 40.05 136.0 79.26 202.1 67.58 53.93 257.8 129.7 276.6 164.9 46.68

This table presents the MSE of the option price forecasts of ANNs, MNNs and MCMNNs with three hidden layers for five hid-
den layer activation functions. The five activation functions are the sigmoid (σ1), softplus (σ2), hyperbolic tangent (σ3), ELU
(σ4) and ReLU (σ5) activation functions. The number of input variables is given on the vertical axis. The linear activation
function is used for the output layer.
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Table 5 and 6 show the MAPE and MSE of the option price forecasts of ANNs, MNNs and MCMNNs for

five hidden layer activation functions. The poor performance of the hyperbolic tangent activation function

stands out; the neural networks with the hyperbolic tangent function have the highest MSE in four out

of the five investigated neural network methods. For the MNN with two input variables—the case in

which tanh is not the worse performing activation function in terms of MSE—the sigmoid function attains

the highest MSE. Overall, the performance of the models with sigmoid activation functions can also be

considered poor. The poor performance by the neural networks with tanh and sigmoid activation functions

is caused by the vanishing gradient problem, which is described and discussed in detail in Appendix C.

Table 6 confirms that the neural networks with ReLU activation functions outperform all other archi-

tectures in terms of MSE. For the MNN, the performance of the ELU activation function is similar to

that of the ReLU activation function. Table 5 shows that the networks with ELU activation even slighly

outperform the networks with ReLU activation function in terms of MAPE for the MNN with both two and

three input variables. However, both Table 5 and 6 reveal that for the ANN and MCMNN the networks

with the ELU activation function are not nearly as accurate as the networks with the ReLU activation

function. I therefore conclude that for the purpose of option pricing the ReLU activation function has

an overall better performance than the ELU activation function across all neural network models studied.

Consequently, I decide to use the architecture consisting of the optimal architecture of nodes, the linear

activation function for the output layer and the ReLU activation function in each of the three hidden layers

of the ANN, MNN and MCMNN. This way, all the neural networks that are examined have an architecture

of activation functions that has been proved to work well for the specific neural network and simultane-

ously no arguments can be brought up about differences in performance due to a different architecture of

activation functions. Henceforth, I refer to this architecture as the optimal architecture of the ANN, MNN

and MCMNN.

4.3 Non-Parametric Models

In this section the option pricing performance of the non-parametric models is evaluated, both for the

hybrid and non-hybrid approaches. A distinction is made for models with two and three inputs; models

with two and three input variables are scrutinized similarly but separately. Therefore, for each method the

best performing model with two inputs and three inputs is selected in terms of MAPE and MSE. Plots of

how the MAPE and MSE of each model behave over time are examined as well. Separately discussing the

performance of each non-parametric method facilitates clear and concise discussions and in-depth analyses.
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4.3.1 Artificial Neural Network

Table 7 exhibits the MAPE and MSE of the option price forecasts of the standard ANN and each of

the hybrid ANN approaches, each with either two or three input variables. The first striking takeaway

is that the hybrid approach yields a better option pricing performance than the standard approach for

both two and three input variables; the hybrid ANNs adjusted by the Heston, Kou and Variance Gamma

achieve MAPEs and MSEs which are reasonably smaller than the MAPE and MSE of the option price

forecasts of the standard ANN. In Section 4.1 these three models already showed a superior option pricing

performance when compared to the Black-Scholes and Corrado-Su model. Their pricing thus allows the

HANN to outperform the standard ANN model. The hybrid approach thus prospers in combination with

accurate parametric estimates. For the two input variables, the HANN adjusted by the Kou jump-diffusion

model option prices achieves the lowest MAPE and MSE. With three input variables the HANN adjusted

by the Variance Gamma model option prices has the lowest MAPE and MSE. The Kou jump-diffusion

model is the best performing parametric model, but the HANN with three input variables apparently

achieves better results when the target function is adjusted by the Variance Gamma model outputs. A

first conclusion that can thus be drawn is that it does not hold that a hybrid neural network adjusted by

a parametric model with superior performance in terms of MAPE and MSE necessarily outperforms other

hybrid neural networks adjusted by inferiorly performing parametric models. This is related to the pricing

of options with high volatilities and is more extensively discussed in Section 4.3.3.

Table 7 further reveals that there is no artificial neural network with two input variables, neither

standard nor hybrid, that outperforms the parametric Kou jump-diffusion model in terms of MAPE. The

MAPE of the Kou jump-diffusion model output is 0.112 and no ANN or HANN succeeds in attaining a

lower MAPE. For this reason the Kou jump-diffusion model is included as a benchmark in the MAPE plots

of Figure 6 and 7. However, the HANNs adjusted by the Kou jump-diffsion model and Variance Gamma

model with two input parameters do succeed in attaining a lower MSE than the parametric Kou jump-

diffusion model. Another interesting observation is that for each model the MAPE decreases when adding

extra input variables, whereas the MSE only decreases for the ANN. The additional input variables thus

cause the accuracy of the option pricing performance to increase. However, more severe misestimation are

observed, such that the consistency of the option pricing performance decreases. Finally, the extra input

parameter in general seems to have a bigger influence on the standard model than on the hybrid models.

This can be explained by the fact that the volatility information is already encompassed in the information

provided by the parametric models.
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Table 7: MAPE and MSE of the option price forecasts of the ANN and HANNs with optimal architecture

ANN HANN-BS HANN-CS HANN-H HANN-K HANN-VG

2 0.474 (98.34) 0.599 (143.9) 0.619 (180.7 ) 0.265 (19.07) 0.143 (10.70) 0.182 (10.80)
3 0.317 (41.60) 0.572 (157.6) 0.600 (196.7 ) 0.255 (26.61) 0.138 (16.22) 0.123 (15.19)

This table presents MAPEs (MSEs) from the ANN and HANNs with either two (m, τ) or three (m,σ
√
τ , rτ) input variables

and with optimal architecture. The number of input variables is given on the vertical axis. For the hybrid neural networks,
the target function is adjusted by the output of a parametric model. The employed parametric models are the Black-Scholes
model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model (K) and Variance Gamma model (VG).

Figure 6: MAPE of the option price forecasts of the Kou jump-diffusion model, the standard ANN with
two input variables and the HANNs with two input variables over time
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Note: This figure shows how the MAPE from the Kou jump-diffusion model, the standard ANN with two input variables and
the HANNs with two input variables evolves over time. The two input variables are m and τ . For the hybrid neural networks,
the target function is adjusted by the output of a parametric model. The employed parametric models are the Black-Scholes
model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model (K) and Variance Gamma model (VG).
The shadowed parts correspond to the dot-com bubble (2000), global financial crisis (2008) and European debt crisis (2011).

Figure 6 shows that in most of the quarters the Kou jump-diffusion model outperforms the ANN

and HANNs with two input variables. Also, the poor performance of the ANN stands out. The ANN is

oftentimes outperformed by all other methods. The HANNs adjusted by the Heston, Variance Gamma and

Kou models at times outperform the parametric Kou jump-diffusion model, but no persistence is shown.

Figure 23 in Appendix H shows that in terms of MSE the HANN-K model with two input parameters

succeeds in frequently outperforming the Kou jump-diffusion model.

Figure 7 displays that the HANNs with three input parameters adjusted by the Variance Gamma and

Kou model frequently outperform the Kou jump-diffusion model. After 2011 the Kou jump-diffusion model

is consistently outperformed by either of the two models. In earlier years, the Kou jump-diffusion model

nonetheless has a much better option pricing performance in terms of MAPE. Also, the standard ANN

with three inputs seemingly performs much better. In terms of MSE it even outperforms all other models

in 1999, as can be observed in Figure 24 in Appendix H. However, the performance is inconsistent. The

consistency is key to truly outperform the Kou jump-diffusion model in terms of both MAPE and MSE.
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Figure 7: MAPE of the option price forecasts of the Kou jump-diffusion model, the standard ANN with
three input variables and the HANNs with three input variables over time
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Note: This figure shows how the MAPE of the option price forecasts of the Kou jump-diffusion model, the standard ANN
with three input variables and the HANNs with three input variables evolves over time. The three input variables are
m,σ
√
τ and rτ . For the hybrid neural networks, the target function is adjusted by the output of a parametric model. The

employed parametric models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou
jump-diffusion model (K) and Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000),
global financial crisis (2008) and European debt crisis (2011).

So far, no neural network model that can consistently outperform the exponential Lévy models has

been found. However, the introduction of additional information at times improves the option pricing

performance of the models, especially for the standard ANN. Furthermore, the hybrid approach improves

the performance of the artificial neural network. The conclusions drawn by e.g. Boek et al. (1995), Andreou

et al. (2008) and Lajbcygier (2004) that the hybrid approach outperforms the standard approach and

parametric models such as the Black-Scholes and Corrado-Su model thus prove to be correct. Nevertheless,

no convincing evidence has been found to substantiate the claim that neural networks can consistently

outperform more sophisticated parametric models such as exponential Lévy models. The next section

researches whether introducing modularity to hybrid neural networks can help succeed in doing so.

4.3.2 Modular Neural Network

Table 8 exhibits the MAPE and MSE from the standard MNN and each of the hybrid MNN approaches,

each with either two or three input variables. For the models with two input parameters the same conclu-

sions can be drawn from the results as from the results of the ANN and HANNs with two input variables:

the standard approach outperforms the hybrid approaches adjusted by the Black-Scholes and Corrado-Su

models, but is outperformed by the hybrid approaches adjusted by the Heston, Kou and Variance Gamma

models in terms of MAPE and MSE. Furthermore, the hybrid approach adjusted by the Kou jump-diffusion

model is again the best performing neural network with two input variables. In the results of the HMNN

models with three input variables a similar tendency can be found as in the results of the HANN models.
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Table 8: MAPE and MSE of the option price forecasts of the MNN and HMNNs with optimal architecture

MNN HMNN-BS HMNN-CS HMNN-H HMNN-K HMNN-VG

2 0.282 (92.36) 0.596 (141.2) 0.637 (180.1) 0.256 (18.92) 0.139 (10.64) 0.174 (10.67)
3 0.056 (52.62) 0.588 (154.7) 0.631 (196.0) 0.242 (22.78) 0.139 (14.37) 0.138 (14.37)

This table presents MAPEs (MSEs) from the MNN and HMNNs with either two (m, τ) or three (m,σ
√
τ , rτ) input variables

and with optimal architecture. The number of input variables is given on the vertical axis. For the hybrid neural networks,
the target function is adjusted by the output of a parametric model. The employed parametric models are the Black-Scholes
model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model (K) and Variance Gamma model (VG).

The hybrid model adjusted by the Variance Gamma is again the best performing hybrid model in terms

of MAPE and MSE. Furthermore, for each of the hybrid models the MAPE has again decreased with the

introduction of additional inputs, whereas the MSE has increased. The additional input variables again

increase the accuracy but decrease the consistency of the option pricing performance.

A big discrepancy between the results of the artificial and modular neural network models with three

input variables is the performance of the standard approach. The standard MNN is the first model that

is able to outperform the Kou jump-diffusion model in terms of MAPE. However, in terms of MSE the

performance of the standard MNN with three input variables is suboptimal. A closer look into the estimated

option prices learns that the high MSE is caused by the severe misestimation of options with high market

call prices. While the percentage error of such estimations can be relatively small, the squared error inflates

when the absolute estimation error increases. The small MAPE is obtained by accurately pricing options

with low market call prices; other models often struggle with pricing these options.

Figure 8 shows that at times the HMNNs with two input parameters adjusted by the Heston, Variance

Gamma and Kou models are able to outperform the Kou jump-diffusion model. However, the performance

is not consistent enough to obtain a MAPE lower than 0.112. Figure 25 in Appendix H shows that the

hybrid MNNs adjusted by the Variance Gamma and Kou models outperform the Kou jump-diffusion model

in terms of MSE by constantly realizing a lower MSE from 2012 until 2016 and realizing comparable MSEs

in the years prior. Figure 9 depicts that the MNN almost constantly attains a MAPE lower than that of

the parametric or hybrid models. The MNN with three input parameters has the lowest MAPE in all but

13 quarters, thereby outperforming all other models on approximately 84% of the data set. The suboptimal

option pricing performance of the MNN with three input parameters in terms of MSE is depicted in Figure

26 in Appendix H. While in earlier years the performance is at times paramount, after 2007 it fails to

maintain this performance. Overall, none of the MNNs or HMNNs is able to simultaneously outperform

the parametric Kou jump-diffusion models in terms of both MAPE and MSE.
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Figure 8: MAPE of the option price forecasts of the Kou jump-diffusion model, the standard MNN with
two input variables and the HMNNs with two input variables over time
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Note: This figure shows how the MAPE of the option price forecasts of the Kou jump-diffusion model, the standard MNN
with two input variables and the HMNNs with two input variables evolves over time. The two input variables are m and τ .
For the hybrid neural networks, the target function is adjusted by the output of a parametric model. The employed
parametric models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model
(K) and Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000), global financial crisis
(2008) and European debt crisis (2011).

Figure 9: MAPE of the option price forecasts of the Kou jump-diffusion model, the standard MNN with
three input variables and the HMNNs with three input variables over time
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Note: This figure shows how the MAPE of the option price forecasts of the Kou jump-diffusion model, the standard MNN
with three input variables and the HMNNs with three input variables evolves over time. The three input variables are
m,σ
√
τ and rτ . For the hybrid neural networks, the target function is adjusted by the output of a parametric model. The

employed parametric models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou
jump-diffusion model (K) and Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000),
global financial crisis (2008) and European debt crisis (2011).

The results of the MCMNN in Table 9 closely resemble the results of the MNN with three input

parameters. The introduction of an extra volatility criterion seems not to have a considerable impact.

In fact, the performance of the standard MCMNN is inferior to the performance of the standard MNN

with three inputs in terms of MAPE and MSE. Similar to the MNN a low MAPE in combination with a

high MSE is observed. This can again be attributed to the misestimation of options with high market call

prices and the accurate pricing of options with low market call prices. When looking at the HMCMNNs an

improvement in option pricing performance is observed when compared to the performance of the HMNNs.

The HMCMNN-K attains the lowest MAPE thus far of all the hybrid neural networks.
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Table 9: MAPE and MSE of the forecasts of the MCMNN and HMCMNNs with optimal architecture

MCMNN HMCMNN-BS HMCMNN-CS HMCMNN-H HMCMNN-K HMCMNN-VG

3 0.068 (43.64) 0.624 (156.4) 0.729 (207.1) 0.252 (22.02) 0.122 (11.14) 0.130 (11.40)

This table presents MAPEs (MSEs) from the MCMNN and HMCMNNs with two (m, τ) and three (m,σ
√
τ , rτ) input variables

and with optimal architecture. The number of input variables is given on the vertical axis. For the hybrid neural networks,
the target function is adjusted by the output of a parametric model. The employed parametric models are the Black-Scholes
model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model (K) and Variance Gamma model (VG).

Figure 10: MAPE of the forecasts of the Kou jump-diffusion model, the standard MCMNN with three
input variables and the HMCMNNs with three input variables over time
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Note: This figure shows how the MAPE of the option price forecasts of the Kou jump-diffusion model, the standard
MCMNN with three input variables and the HMCMNNs with three input variables evolves over time. The three input
variables are m,σ

√
τ and rτ . For the hybrid neural networks, the target function is adjusted by the output of a parametric

model. The employed parametric models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou
jump-diffusion model (K) and Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000),
global financial crisis (2008) and European debt crisis (2011).

Figure 10 exhibits the optimal performance of the MCMNN as measured by the MAPE, especially

after 2008. Figure 27 in Appendix H exhibits how the HMCMNNs adjusted by the Variance Gamma

and Kou model outperform the standard MCMNN in terms of MSE over time. However, no MCMNN

or HMCMNN model succeeds in consistently attaining a MAPE and MSE lower than that of the Kou

jump-diffusion model.

Because of the discrepancy between the MAPE and MSE from the (hybrid) MNNs and MCMNNs,

it proves insightful to examine the option pricing performance as a function of moneyness and maturity.

Figure 11 and 12 show the MAPE and MSE behavior of standard and hybrid modular neural networks

together with two parametric models as a function of moneyness. The hybrid BS and CS models have

proved to perform inferiorly and are therefore omitted for visibility purposes. In the figures a red line is

included to indicate the percentage of options per moneyness region. The bulk of the options is evidently

centered around a moneyness of 1. It is noteworthy that approximately 60% of the options is defined as

in-the-money, whereas the at-the-money and out-of-the-money options each constitute approximately 20%.
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Figure 11: MAPE of the option price forecasts of standard and hybrid modular neural networks and
parametric models as a function of moneyness
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Note: This figure shows how the MAPE from several (hybrid) neural networks with three input parameters that implement
modularity based on fixed manual heuristics and two parametric benchmark models, Kou and VG, evolves as moneyness
increases. The three input variables are m,σ

√
τ and rτ . For the hybrid neural networks, the target function is adjusted by

the output of a parametric model. The employed parametric models are the Heston model (H), Kou jump-diffusion model
(K) and Variance Gamma model (VG). The red line represents the percentage of options per moneyness region. Moneyness
regions consist of options whose moneyness is equal at two decimal places. The red line has a separate y-axis on the right.

Figure 12: MSE of the option price forecasts of standard and hybrid modular neural networks and para-
metric models as a function of moneyness
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Note: This figure shows how the MSE from several (hybrid) neural networks with three input parameters that implement
modularity based on fixed manual heuristics and two parametric benchmark models, Kou and VG, evolves as moneyness
increases. The three input variables are m,σ

√
τ and rτ . For the hybrid neural networks, the target function is adjusted by

the output of a parametric model. The employed parametric models are the Heston model (H), Kou jump-diffusion model
(K) and Variance Gamma model (VG). The red line represents the percentage of options per moneyness region. Moneyness
regions consist of options whose moneyness is equal at two decimal places. The red line has a separate y-axis on the right.

Figure 11 indicates that the MNN and MCMNN achieve their supreme performance in terms of MAPE

by more accurately pricing out-of-the-money options. Most models are able to accurately price at-the-

money and in-the-money options, such that the pricing of out-of-the-money options is decisive. Figure

12 however shows that for deep-in-the-money options the MNN and MCMNN attain a poor performance.

The price of deep-in-the-money options on average is very high, due to the big difference between strike

and asset price. These results therefore corroborate the claim that the MNN and MCMNN severely

misestimate higher priced options but that this is not clearly indicated by the MAPE performance metric.

The importance of employing multiple performance metrics is thus emphasized.
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Figure 31 and 32 in Appendix I show the MAPE and MSE behavior of standard and hybrid modular

neural networks as a function of maturity. As indicated by the red line, the options are more evenly

distributed over the maturity regions. The MNN is able to constantly outperform all other models in

terms of MAPE. However, in terms of MSE the superior performance of the hybrid modular neural networks

adjusted by the Variance Gamma model stands out. Furthermore, the HMCMNNs perform well for short-

term maturities, but the MSE increases as maturity increases. Finally, the performance of the hybrid

neural networks adjusted by the Heston models deteriorates with maturity, indicating that the hybrid

neural networks adjusted by exponential Lévy models are in this case better able to fit the maturity grid

than hybrid neural networks adjusted by stochastic volatility models.

Generally, the introduction of simple modularity based on fixed manual heuristics to neural network

models improves the pricing performance of the standard approaches in terms of MAPE. This feat is

achieved by a more accurate pricing of out-of-the-money options. However, the performance in terms

of MSE indicates that the models severely misestimate deep-in-the-money options, such that overall the

benefit of introducing simple modularity is questionable. Another interesting result is that introducing

the hybrid approach to modular neural networks improves the option pricing performance. Especially the

hybrid modular neural networks adjusted by exponential Lévy models are able to accurately fit options on

the entire moneyness and maturity grids. However, the hybrid models do not gain much from the intro-

duction of modularity, as the results that are acquired do not differ substantially from the results acquired

by the HANNs in the previous section. This suggests that the hybrid approach already partly incorporates

simple modularity through the information encompassed in the parametric option price forecasts.

4.3.3 Gated Neural Network

Table 10 exhibits the MAPE and MSE of the option price forecasts of the standard GNN and each of

the hybrid GNN approaches, each with either two or three input variables. Furthermore, the MAPE and

MSE of the option price forecasts of the GNN* and each of the hybrid GNN* approaches is presented.

I observe that adding virtual options to the GNN with two input variables slightly improves the option

pricing performance of the model. This statement does however not hold for the hybrid approaches. The

goal of the introduction of the virtual options is to encode prior information based on financial axioms

as constraints. These constraints compel the GNN* to better price options close to maturity and force

boundaries upon the estimated option price, thereby increasing the pricing performance of the GNN*.

However, the benefit of these constraints is apparently lost in the implementation of the hybrid approach.
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Table 10: MAPE and MSE of the forecasts of the GNN, GNN* and HGNNs with optimal architecture

GNN HGNN-BS HGNN-CS HGNN-H HGNN-K HGNN-VG

2 0.242 (47.30) 0.603 (140.2) 0.639 (173.7) 0.264 (18.37) 0.100 (8.897) 0.115 (8.835)
2* 0.234 (46.42) 0.676 (153.5) 0.848 (200.0) 0.323 (41.01) 0.113 (10.95) 0.125 (13.44)
3 0.108 (9.311) 0.563 (137.9) 0.586 (152.1) 0.258 (19.19) 0.094 (8.791) 0.094 (8.179)

This table presents MAPEs (MSEs) of the option price forecasts of the GNN, GNN* and HMNNs with either two (m, τ) or
three (m,σ

√
τ , rτ) input variables and with optimal architecture. The number of input variables is given on the vertical axis,

where an asterisk (*) implies that virtual options are appended to the training data. For the hybrid neural networks, the tar-
get function is adjusted by the output of a parametric model. The employed parametric models are the Black-Scholes model
(BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model (K) and Variance Gamma model (VG).

An important takeaway from Table 10 is that both the GNN and HGNN are able to outperform the

option pricing performance of the Kou jump-diffusion model in terms of both MAPE and MSE. These

models are however not able to improve upon the MAPE of the MNN and MCMNN with three input

variables. Nevertheless, it must be noted that these neural network are the only ones able to consistently

outperform the introduced exponential Lévy models as measured by all performance metrics. This is

done by introducing modularity with option grouping that is automatic and learned from data instead of

categorizing options based on fixed manual heuristics, such that the grouping and the pricing function of

each group can dynamically be adjusted by the neural network as the market changes over time.

Furthermore, the results in Table 10 confirm the overall superiority of the GNN concerning the hybrid

approach; the HGNNs outperform the HANNs, HMNNs and HMCMNNs in terms of both performance

metrics for all parametric models except for the Heston model. This can be observed more conveniently in

the comprehensive overview of results in Table 18 in Appendix G. For the GNNs with two and three input

parameters and for the GNN* the hybrid models are able to outperform the standard model when the

target function is adjusted by the option prices obtained from the Variance Gamma or Kou jump-diffusion

model. This emphasizes the contribution of the hybrid approach. In general, introducing the hybrid

approach and additional input variables improves the option pricing performance of the GNN sufficiently.

The results of the GNN* do not exactly mimic the results obtained by Yang et al. (2017), although

approximately the same data set and implementation are adopted. This could be explained by the fact

that I do not discard in-the-money option quotes. In-the-money option quotes make up roughly 60% of

the data set and disregarding these options ultimately means disregarding three modules of the MNN and

six modules of the MCMNN. For the sake of completeness these options are therefore not discarded. This

means that the GNN* in this paper is dictated to price a larger array of options than the GNN* in Yang

et al. (2017), which leads to more diverse options and larger corresponding prediction errors.
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Out of the four models that are able to outperform the Kou jump-diffusion model in terms of both

MAPE and MSE the HGNN adjusted by the Variance Gamma model overall attains the best option pricing

performance. As previously observed for the HANN and HMNN, the hybrid approach in combination with

the Variance Gamma model and three input variables trumps all other hybrid models with three input

variables. Although the parametric Variance Gamma model is outperformed by the Kou jump-diffusion

model, its performance in combination with the Palmer (2019) input parameters is superior. This can be

explained by the fact that the Variance Gamma model prices option with high volatilities more accurately.

Figure 35 in Appendix J convincingly depicts that the Variance Gamma models prices high volatility

options better than the Kou jump-diffusion model, especially after 2012. This feat, in combination with

the additional input parameters and the GNN specification, helps the HGNN adjusted by the Variance

Gamma model attain the most consistent option pricing performance.

The performance of the GNN, GNN* and HGNNs over time in terms of MAPE is displayed in Figure

13, 14 and 15. The MSE plots of these models are exhibited in Figure 28, 29 and 30 in Appendix H. The

first thing that stands out from the plots is the option pricing performance during and after the global

financial crisis. Previously examined models mostly struggle with outperforming the Kou jump-diffusion

model in times of financial turmoil. Models that succeed in attaining a better option pricing performance

than the Kou jump-diffusion model in 2008, such as the ANN and MNN with three input variables, fail to

maintain this performance after 2008. The four models that are able to outperform the Kou jump-diffusion

model in terms of both MAPE and MSE mainly do so by outperforming the Kou jump-diffusion model in

2008 and thereafter maintaining their performance.

Figure 13: MAPE of the option price forecasts of the Kou jump-diffusion model, the standard GNN with
two input variables and the HGNNs with two input variables over time
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Note: This figure shows how the MAPE of the option price forecasts of the Kou jump-diffusion model, the standard GNN
with two input variables and the HGNNs with two input variables evolves over time. The two input variables are m and τ .
The employed parametric models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou
jump-diffusion model (K) and Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000),
global financial crisis (2008) and European debt crisis (2011).
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Figure 14: MAPE of the option price forecasts of the Kou jump-diffusion model, the standard GNN* with
two input variables and the HGNN*s with two input variables over time
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Note: This figure shows how the MAPE of the option price forecasts of the Kou jump-diffusion model, the standard GNN*
with two input variables and the HGNN*s with two input variables evolves over time. The two input variables are m and τ .
The employed parametric models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou
jump-diffusion model (K) and Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000),
global financial crisis (2008) and European debt crisis (2011).

Figure 15: MAPE of the option price forecasts of the Kou jump-diffusion model, the standard GNN with
three input variables and the HGNNs with three input variables over time
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Note: This figure shows how the MSE of the option price forecasts of the Kou jump-diffusion model, the standard GNN with
three input variables and the HGNNs with three input variables evolves over time. The three input variables are m,σ

√
τ and

rτ . The employed parametric models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou
jump-diffusion model (K) and Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000),
global financial crisis (2008) and European debt crisis (2011).

Comparing the MAPE from the GNN in Figure 13 and that from the GNN* in Figure 14 shows that

the due to introduction of virtual options the MAPE for each period decreases slightly. This indicates a

more consistent and accurate option pricing performance. The performance of the GNN* also contains less

excessive errors, as illustrated by the MSE plots over time in Figure 28 and 29. Additionally, applying the

hybrid approach to the GNN* further improves the option pricing performance.

I again examine the option pricing performance as a function of moneyness and maturity. Figure 16

and 17 show the MAPE and MSE behavior of standard and hybrid gated neural networks as a function of

moneyness, whereas Figure 33 and 34 in Appendix I show the MAPE and MSE as a function of maturity.
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Figure 16: MAPE of the option price forecasts of standard and hybrid gated neural networks and parametric
models as a function of moneyness
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Note: This figure shows how the MAPE from several (hybrid) neural networks with three input parameters that implement
modularity based on dynamic option grouping and two parametric benchmark models, Kou and VG, evolves as moneyness
increases. The three input variables are m,σ

√
τ and rτ . For the hybrid neural networks, the target function is adjusted by

the output of a parametric model. The employed parametric models are the Heston model (H), Kou jump-diffusion model
(K) and Variance Gamma model (VG). The red line represents the percentage of options per moneyness region. Moneyness
regions consist of options whose moneyness is equal at two decimal places. The red line has a separate y-axis on the right.

Figure 17: MSE of the option price forecasts of standard and hybrid gated neural networks and parametric
models as a function of moneyness
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Note: This figure shows how the MSE from several (hybrid) neural networks with three input parameters that implement
modularity based on dynamic option grouping and two parametric benchmark models, Kou and VG, evolves as moneyness
increases. The three input variables are m,σ

√
τ and rτ . For the hybrid neural networks, the target function is adjusted by

the output of a parametric model. The employed parametric models are the Heston model (H), Kou jump-diffusion model
(K) and Variance Gamma model (VG). The red line represents the percentage of options per moneyness region. Moneyness
regions consist of options whose moneyness is equal at two decimal places. The red line has a separate y-axis on the right.

In terms of MAPE and MSE, the performance of most neural network models that implement modularity

based on dynamic option grouping is comparable for out-of-the-money options. The poor performance

of non-hybrid models for deep-in-the-money options in terms of MSE is again noteworthy. The hybrid

approach thus seems necessary to properly price the entire moneyness grid. Additionally, all hybrid gated

neural networks are able to maintain an accurate and consistent option pricing performance as maturity

increases. The performance of most hybrid models is fairly equivalent. To truly differentiate between the

models across maturity and moneyness regions the statistical significance of the difference in the out-of-

sample forecast accuracy must therefore be scrutinized.
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Overall, the results in this section indicate that neural network models for option pricing benefit from

introducing modularity with option grouping that is automatic and learned from data. The resulting GNN

attains a better option pricing performance than the previously introduced ANN, MNN and MCMNN.

Introducing virtual options to the GNN slightly enhances its performance. Most importantly, applying

the hybrid approach—specifically an exponential Lévy model in appropriate combination with a GNN—

further improves the option pricing performance of the GNN. The option pricing performance of the

resulting HGNNs is even more enhanced by introducing additional input parameters. Finally, the HGNNs

attain an accurate and consistent option pricing performance across moneyness and maturity regions.

4.4 Diebold-Mariano Test

Based on the MAPE and MSE performance in the previous sections the best-performing model per

neural network model approach and number of input parameters is selected. When judged by the MAPE

performance metric the MNN with three input variables is the overall best-performing model, whereas

judged by the MSE performance metric the HGNN with three input parameters adjusted by the Variance

Gamma model is the overall best-performing model. The Diebold-Mariano test assesses if the forecasts

accuracy of these models is significantly better than that of other models based on a given loss differential.

The null hypotheses that there is no difference in the MAPE and MSE of these models are tested in

Table 11 and 12. A positive test-statistic implies that the performance of the model on the vertical axis

is superior, whereas a negative test-statistic implies that the performance of the model on the horizontal

axis is superior. The number of option price forecasts equals P = 3325494, such that the test-statistic is

compared with a t-distribution with P −1 degrees of freedom. As the t-distribution approaches the normal

distribution for large values of P, the null hypothesis of no significant difference in forecast accuracy is

rejected at the 1% significance level if the absolute value of the test-statistic exceeds 2.58.

It follows from the results in Table 11 that the forecasts of the MNN with three input variables are

significantly more accurate than the forecasts of all other models if the loss differential is measured by the

MAPE performance metric. The results in Table 12 indicate that the forecasts obtained by the HGNN with

three input parameters adjusted by the Variance Gamma model are significantly more accurate than the

forecasts of all other models if MSE is used as performance metric. Two performance metrics are employed

to ensure that the models are capable of producing accurate option price forecast while not making any

excessive errors, as mentioned in Section 2.2. Working with two different performance metrics leads to the

unavoidable but unsatisfactory conclusion that a different model is favored by each performance metric.
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Table 11: Diebold-Mariano test-statistics based on the MAPE loss differential

Kou HANN-K2 HANN-VG3 HMNN-K2 MNN3 HMNN-VG3 MCMNN HMCMNN-K HGNN-K2 HGNN-VG3

Kou 114.3 15.52 102.7 -271.0 36.15 -82.71 13.24 -92.37 -123.5
HANN-K2 -114.3 -76.68 -10.74 -295.3 -0.397 -130.5 -24.70 -167.8 -185.1
HANN-VG3 -15.52 76.68 72.12 -236.7 38.41 -96.09 9.206 -69.84 -92.6
HMNN-K2 -102.7 10.74 -72.12 -278.8 1.201 -130.4 -23.42 -153.1 -170.5
MNN3 271.0 295.3 236.7 278.8 109.0 35.53 91.03 240.1 213.4
HMNN-VG3 -36.15 0.397 -38.41 -1.201 -109.0 -86.88 -42.06 -53.97 -60.83
MCMNN 82.71 130.5 96.09 130.4 -35.53 86.88 68.33 55.16 44.40
HMCMNN-K -13.24 24.70 -9.206 23.42 -91.03 42.06 -68.33 -32.31 -39.55
HGNN-K2 92.37 167.8 69.84 153.1 -240.1 53.97 -55.16 32.31 -49.94
HGNN-VG3 123.5 185.1 92.58 170.5 -213.4 60.83 -44.40 39.55 49.94

This table presents the Diebold-Mariano test statistics for the best-performing models, as determined in Section 4.1, 4.3.1,
4.3.2 and 4.3.3. The parametric model is the Kou jump-diffusion model, denoted by Kou. All other models are non-parametric
models. Non-parametric models whose abbreviation starts with an H are hybrid models. For the hybrid models, -K (-VG)
denotes that the input of the model is adjusted by the option prices obtained from the Kou (Variance Gamma) model. The
integer behind each non-parametric model abbreviation represents the number of input variables. The null hypothesis that
there is no difference in the MAPE of the models is tested.

Table 12: Diebold-Mariano test-statistics based on the MSE loss differential

Kou HANN-K2 HANN-VG3 HMNN-K2 MNN3 HMNN-VG3 MCMNN HMCMNN-K HGNN-K2 HGNN-VG3

Kou -223.5 20.22 -206.3 300.6 12.37 188.1 -32.33 -180.1 -207.46
HANN-K2 223.5 68.21 40.35 324.4 44.61 207.1 8.775 -87.15 -119.9
HANN-VG3 -20.22 -68.21 -65.51 265.5 -2.033 170.3 -56.45 -98.65 -118.9
HMNN-K2 206.3 -40.35 65.51 322.9 42.84 206.1 6.530 -92.92 -124.3
MNN3 -300.6 -324.4 -265.5 -322.9 -241.2 -41.20 -282.21 -345.5 -353.1
HMNN-VG3 -12.37 -44.61 2.033 -42.84 241.2 159.8 -68.95 -66.52 -78.75
MCMNN -188.1 -207.1 -170.3 -206.1 41.20 -159.8 -188.2 -221.3 -227.1
HMCMNN-K 32.33 -8.775 56.45 -6.530 282.2 68.95 188.2 -36.67 -51.29
HGNN-K2 180.1 87.15 98.65 92.92 345.5 66.52 221.3 36.67 -72.04
HGNN-VG3 207.5 119.9 118.9 124.3 353.1 78.75 227.1 51.29 72.04

This table presents the Diebold-Mariano test statistics for the best-performing models, as determined in Section 4.1, 4.3.1,
4.3.2 and 4.3.3. The parametric model is the Kou jump-diffusion model, denoted by Kou. All other models are non-parametric
models. Non-parametric models whose abbreviation starts with an H are hybrid models. For the hybrid models, -K (-VG)
denotes that the input of the model is adjusted by the option prices obtained from the Kou (Variance Gamma) model. The
integer behind each non-parametric model abbreviation represents the number of input variables. The null hypothesis that
there is no difference in the MSE of the models is tested.

4.5 Model Confidence Set

Because a comprehensive conclusion does not ensue from the Diebold-Mariano tests, the statistical

significance of the difference in the out-of-sample forecast accuracy per moneyness and maturity region

is tested by means of the model confidence set. If the entire data set is once more examined the model

confidence set comes to the same conclusion as the Diebold-Mariano test: the set consists solely of the MNN

with three input parameters if the loss differential is measured by the MAPE and solely of the HGNN-VG

with three input parameters if the loss differential is measured by the MSE. However, the model confidence

set can also easily be computed per moneyness and maturity region. This leads to more insightful results.
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Table 13: Model confidence set per moneyness and maturity region

OTM ATM ITM

short medium long short medium long short medium long

Panel A: MAPE
MNN3 MNN3 MNN3 MNN3 MNN3 MNN3 HMCMNN-K HANN-VG3 HANN-K2

MCMNN HMNN-VG3 HGNN-K2
HMCMNN-K HMCMNN-K

Panel B: MSE
MNN3 MNN3 MNN3 MNN3 MNN3 MNN3 HMCMNN-K HANN-VG3 HGNN-K2

HMNN-VG3 HGNN-VG3
HGNN-VG3

Panel C: %
2 5 12 8 6 7 15 16 29

This table presents the model confidence set for each moneyness and maturity region combination. The model confidence set
contains the best model(s) with a level of confidence of 90%, as α = 0.1. Each moneyness and maturity region is given on the
horizontal axis, whereas the models for each region are denoted vertically. The regions are based on the MNN cut-off points.
The order in which the models are presented vertically is not of importance. Non-parametric models whose abbreviation
starts with an H are hybrid models. For the hybrid models, -K (-VG) denotes that the input of the model is adjusted by the
option prices obtained from the Kou (Variance Gamma) model. The integer behind each non-parametric model abbreviation
represents the number of input variables. The null hypothesis that there is no difference in the MAPE and MSE is tested in
respectively Panel A and Panel B. Panel C indicates the percentage of options belonging to each region.

Table 13 shows the model confidence set for α = 0.1 per moneyness and maturity region based on the

option price forecasts of all parametric models, neural network models and hybrid neural network models

introduced in this paper. First of all, it is evident that the MNN with three input parameters significantly

outperforms all other models in terms of pricing out-of-the-money and at-the-money options. The model

confidence set for these options consists almost exclusively of this model for all maturity regions. This

indicates that implementing modularity based on fixed manual heuristics is sufficient to accurately price

out-of-the-money and at-the-money options. Additionally, no parametric model is able to improve the

pricing performance of the MNN for these options through the hybrid approach.

However, the out-of-the-money and at-the-money options comprise only roughly 40% of the entire data

set, as indicated by Panel C of Table 13. It is therefore essential to scrutinize the model confidence sets of

the in-the-money options. All of the model confidence sets for the in-the-money options consist entirely of

hybrid neural networks, indicating that the applying the hybrid approach to ANNs, MNNs, MCMNNs and

GNNs improves their pricing performance of in-the-money options. The HMCMNN-K model superiorly

prices in-the-money options with short-term maturities. For medium-term and long-term maturities the

model confidence set consists of multiple hybrid neural network models. For the in-the-money options with

medium-term maturities only models with three input parameters are present in the model confidence set

based on both performance metrics. For the in-the-money options with long-term maturities, the region to

which most options belong, the hybrid GNN is the only model present in both the model confidence sets.
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Overall, the model confidence sets reveal that for out-of-the-money and at-the-money options neural

network models that introduce modularity based on fixed manual heuristics suffice to attain a superior

option pricing performance. For these options no complex hybrid approach or dynamic option grouping is

needed. However, these option comprise only roughly 40% of the entire data set. To properly price the

majority of the data set, consisting of in-the-money options, applying the hybrid approach has been proved

necessary to significantly outperform all introduced parametric and standard neural network benchmark

models. For in-the-money options with medium-term maturities hybrids neural network models with

additional input parameters attain the best option pricing performance. Finally, for in-the-money options

with long-term maturities, hybrid gated neural networks models are preferred. This indicates that for the

region to which the majority of options belong hybrid neural networks that introduce modularity based on

dynamic option grouping are required to attain the most accurate option price forecasts.

4.6 Delta-Hedged Trading Strategy

In this section the economic significance of the difference in pricing accuracy is tested by means of a

delta-hedged trading strategy based on the option price forecasts. After all, options are mainly priced

for trading purposes. Furthermore, no all-encompassing conclusion can be drawn from the two methods

for testing the statistical significance of the difference in pricing accuracy; the Diebold-Mariano test finds

different significantly best-performing models for different performance metrics and the model confidence

sets vary by moneyness and maturity region. The trading performance of the same best-performing models

as in Section 4.4 is examined.

Table 14 shows that the delta-hedge trading strategy based on the option price forecasts of the MNN

with three input parameters attains the highest mean return per invested dollar. In comparison, a buy

and hold strategy in which $1000 is invested daily in the S&P500 index yields a mean return per invested

dollar of 0.03%. All models thus outperform this benchmark buy and hold strategy. The MNN and

MCMNN attain the highest mean return per invested dollar. This performance can likely be attributed to

the accurate pricing of out-of-the-money and at-the-money options; the MNN significantly outperforms all

other models in these moneyness regions as indicated by the model confidence sets. Although these options

comprise only roughly 40% of the data set it is evident that they are of high importance for determining

the trading performance of the models. The poor option pricing performance of the MNN for deep-in-the-

money options in terms of MSE apparently does not considerably harm the trading performance of the

MNN. This can be due to the fact that the trading strategy is based solely on the direction of the forecasts.
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Table 14: Outcomes of the implementation of a delta-hedged trading strategy

Kou HANN-K2 HANN-VG3 HMNN-K2 MNN3 HMNN-VG3 MCMNN HMCMNN-K HGNN-K2 HGNN-VG3

µ (%) 1.785 1.164 1.685 1.256 4.413 1.229 2.847 1.550 1.716 1.975
σ (%) 22.86 17.67 28.56 17.71 61.38 19.63 35.37 29.44 22.19 27.06
t 5.564 4.693 4.204 5.053 5.123 4.461 5.736 3.753 5.511 5.201
SR 4.092 1.777 2.925 2.293 5.805 1.932 5.647 2.380 3.905 4.159
buy 907823 846538 789488 853874 757143 778231 751441 766645 838137 793729
sell 699957 743199 791424 736014 811385 796567 775192 803909 751437 785522

This table presents the Diebold-Mariano test statistics for the best-performing models, as determined in Section 4.1, 4.3.1,
4.3.2 and 4.3.3. The parametric model is the Kou jump-diffusion model, denoted by Kou. All other models are non-parametric
models. Non-parametric models whose abbreviation starts with an H are hybrid models. For the hybrid models, -K (-VG)
denotes that the input of the model is adjusted by the option prices obtained from the Kou (Variance Gamma) model. The
integer behind each non-parametric model abbreviation represents the number of input variables. On the vertical axis, µ and
σ denote the mean and standard deviation of the return per invested dollar. Both are expressed in percentages. Furthermore,
t indicates the t-statistic and SP the Sharpe ratio. Finally, buy and sell denote the number of options bought and sold.

The t-statistics confirm the significance of abnormal returns for all models. Although all hybrid models

are outperformed by the MNN and MCMNN, the significance of their abnormal returns indicates that their

performance must not be neglected. Because the trading strategy runs a considerable risk, the risk-adjusted

returns (indicated by the Sharpe ratio) are also examined. As for the mean returns, the MNN with three

input parameters records the highest risk-adjusted return. The MCMNN and the HGNN-VG with three

input parameters respectively attain the second-highest and third-highest mean return per invested dollar

and Sharpe ratio. It is noteworthy that the two best-performing models in terms of mean return and mean

risk-adjusted return execute the least number of combined buy and sell orders. This conveys that the MNN

and MCMNN price related options within a 1% interval more often than all other models.

Overall, in terms of trading performance the models with higher accuracy, indicated by their MAPE,

thus outperform the models with less excessive errors. These models mainly achieve their optimal trading

performance by accurately pricing out-of-the-money and at-the-money options and by executing the least

number of orders. Finally, it must be remarked that no transaction costs are incorporated. Doing so can

potentially influence the magnitude of the returns.

5 Conclusion

The efforts of this paper have focused on improving the option pricing performance of neural networks by

introducing a hybrid approach, an optimal model architecture, additional input parameters and modularity

to neural network models. To assess the option pricing performance of all the models, daily S&P 500

index European call options are priced. Parametric option pricing models from Black and Scholes (1973),

Corrado and Su (1996), Heston (1993), Kou (2002) and Madan et al. (1998) serve as benchmark models.
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Simultaneously, the output of these five parametric models is employed to adjust the target function of

the hybrid neural network models. Especially the option pricing performance of the exponential Lévy

models proves useful. The best performing parametric option pricing model is the Kou jump-diffusion

model; this model slightly outperforms the Variance Gamma model in terms of MAPE and MSE. For

a data set of 20 years that alternates between regular and crisis periods, the finite jumps of the Kou

jump-diffusion model appear to be more adequately fitting than the infinitely many jumps of the Variance

Gamma model. However, the performance of the Variance Gamma model trumps the performance of the

Kou jump-diffusion model for options with high volatilities specifically.

The optimal model architecture of the non-parametric models is first analyzed based on the option

pricing performance of ANNs for several numbers of hidden layers and hidden layer nodes. In general

the neural networks with three hidden layers convincingly outperform all other models. Furthermore, the

constructed optimal architecture of nodes works best in combination with the linear activation function for

the output layer and the ReLU activation function for the hidden layers. The optimal model architecture

is implemented by all the neural network models. This way all the neural networks that are examined have

an architecture that has been proved to work well for the specific neural network and simultaneously no

arguments can be brought up about differences in performance due to a different model architecture.

Most importantly, the obtained option prices from the exponential Lévy models aid the hybrid neural

networks in consistently outperforming the standard approach in terms of MSE, as can be observed in Panel

B of the comprehensive overview of results in Table 18 in Appendix G. In most cases the hybrid approach

in combination with an exponential Lévy model also attains more accurate option pricing forecasts than

the standard approach, as for example demonstrated by the MAPEs obtained by the HGNNs adjusted by

the Kou and Variance Gamma model option prices. The main contribution of this paper therefore consists

of showing that allowing the neural networks to augment the option pricing performance of exponential

Lévy models generally decreases the amount and magnitude of excessive option price forecast errors.

Another insightful conclusion from the option price forecasts of the non-parametric models is that each

model with three input parameters outperforms its counterpart with two input parameters in terms of

MAPE. This statement holds for all neural network models introduced in this paper. The extra informa-

tion contained in the additional input parameters thus enables the neural networks to achieve a better

understanding of the option pricing function. Because the extra information of two variables—the risk-free

rate and the historical volatility—is encapsulated in a single additional input parameters, inference is still

easily attainable for the neural networks.
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Aside from analyzing the benefits of incorporating a hybrid approach and additional input parameters,

this paper is devoted to investigating the benefits of introducing modularity to neural network for option

pricing. The MNN introduces modularity based on fixed manual heuristics. The MCMNN then extends

the standard MNN by adding dynamic volatility modules. Finally, the GNN incorporates modularity with

option grouping that is automatic and learned from data. Based on the option price forecasts the MNN has

the most accurate option pricing, whereas the option price forecasts of the hybrid GNN contain the least

excessive errors. In general, I can conclude from the option price forecasts that introducing modularity to

neural network for option pricing is beneficial for the option pricing performance.

The MNN with three input parameters attains the lowest MAPE of all the models. However, due

to the severe misestimation of deep-in-the-money options, the MSE of the option price forecasts of the

MNN with three input parameters is outperformed by numerous models. Only four models are able to

outperform all benchmark models in terms of both MAPE and MSE and all of these models are GNN or

HGNN models. In addition to incorporating modularity, the GNNs also encodes prior information based

on financial axioms as constraints into its modules. I therefore conclude that incorporating modularity

by means of dynamic option grouping in combination with a Bayesian-alike design approach enables the

GNN to consistently outperform advanced parametric and non-parametric models as measured by multiple

performance metrics. Based on the option pricing performance of the HGNN I also conclude that applying a

hybrid approach—specifically an exponential Lévy model in appropriate combination with a GNN—further

improves the option pricing performance of the GNN.

In this paper I employ both the MAPE and MSE performance metrics to ensure that models are capable

of producing accurate option price forecast while not making any excessive errors. However, working with

two different performance metrics leads to the unavoidable but unsatisfactory conclusion that different

models are favored by each performance metric. Specifically, the Diebold-Mariano test concludes that

based on the MAPE of the option price forecasts the MNN with three input parameters significantly

outperforms all other models, whereas based on the MSE of the option price forecasts the hybrid GNN

with three input parameters adjusted by the Variance Gamma model significantly outperforms all other

models. The model confidence sets reveal that for out-of-the-money and at-the-money options neural

network models that introduce modularity based on fixed manual heuristics suffice to attain a superior

option pricing performance. To properly price in-the-money options the hybrid approach proves necessary

to significantly outperform all introduced parametric and standard neural network benchmark models.

Combining multiple neural network methods is thus advised to accurately price the entire moneyness grid.
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To be able to draw an all-encompassing conclusion the economic significance of the difference in pricing

accuracy is tested by means of a delta-hedged trading strategy based on the option price forecasts. This final

test reveals that the accurate forecasts of the MNN with three input parameters yield a better mean return

per invested dollar and Sharpe ratio than the forecasts of any other model. From the trading performance

I conclude that forecasts from neural networks that augment the option pricing performance of exponential

Lévy models and implement modularity add significant economic value. For trading purposes modularity

based on fixed manual heuristics is favored over modularity based on dynamic option grouping.

6 Discussion and Further Research

Although I conclude that introducing a hybrid approach and modularity significantly improves the

option pricing and hedging performance of neural networks, certain remarks must be made regarding the

analyses presented. First of all, for the Black-Scholes model and the Corrado-Su model 60-day historical

estimates for the volatility, skewness and kurtosis parameters are used. The poor performance of these two

models and the hybrid models adjusted by these models can be explained by the relatively long 60-day

horizon which causes a significant delay in information processing. Option pricing of these models can

possibly be improved by introducing implied parameters, as shown by Andreou et al. (2008). For the

parametric models of which the characteristic function is known options are priced using fractional FFT.

For these models parameters are calibrated on the last training day’s data using the Levenberg-Marquardt

algorithm. These models are thus given an unfair advantage by being optimized daily. Furthermore, the

parameters of the parametric models at times rise or fall abruptly and rapidly because few parameters

restrictions are implemented. Further research into an optimal and fair fitting of the parametric model

parameters and the corresponding option pricing is therefore recommended.

Several comments must be made concerning the employed neural network methods. First of all, I

exclusively implement the multilayer perceptron approach. Generally, the multilayer perceptron approach

is considered to be a simple deep learning technique. More complex techniques that can be implemented

for option pricing are convolutional neural networks and recurrent neural networks. Recent analyses have

also demonstrated that deep reinforcement learning is a suitable deep learning technique for option pricing,

see e.g. Kolm and Ritter (2019) and Carbonneau and Godin (2020). I recommend researching introducing

modularity and the hybrid approach to models that incorporate more complex deep learning techniques.

The optimal model architecture of the neural network models is determined based on the performance

of the ANN with two input parameters for various numbers of hidden layers, hidden layer nodes and acti-
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vation functions. I then implement this optimal model architecture for the ANNs, MNNs and MCMNNs

and their hybrid counterparts. This is done such that the contrast between the two approaches can be

adequately analyzed. I thus assume that the optimal model architecture found for the ANN with two input

parameters holds for all other models. Because this simplifying assumption can most likely be easily de-

bunked, further research into the optimal model architecture of neural networks that introduce modularity

and neural networks with additional input parameters is therefore recommended. Additionally, more so-

phisticated techniques for conducting research into the optimal model architecture are recommended, such

as Bayesian optimization techniques to optimize model architectures. Finally, the fact that the optimal

model architecture is based on the performance on the whole data set possibly induces a data mining bias.

For the neural networks the data for each year are divided into four quarters consisting of three months

of data, split chronologically. The training set consists of two quarters of data, whereas the validation set

and the out-of-sample testing set consist of one quarter of data. However, Yang et al. (2017) only utilized

five days of data to train the neural networks. They stated that “feeding multiple days’ data implicitly

assumes the market structure is stable in those days, but that this is likely to be violated as the number of

days grows, thereby introducing a domain-shift problem.” For computational purposes I do not implement

this approach, but I recommend future researchers to do so. This approach also possibly solves the unfair

advantage of the parametric models, whose parameters are calibrated daily.

Finally, I implement a simplified version of a delta-hedged trading strategy in this paper. The analysis of

the economic significance of the difference in pricing accuracy can be improved by incorporating transaction

costs. Furthermore, the trading strategy can be expanded by introducing modularity. This can for example

be implemented by applying a different trading strategy per moneyness and time-to-maturity region.

Although this section discusses several limitations of the undertaken research I deem the main results

relevant for practitioners seeking to introduce the hybrid approach and modularity to neural networks for

option pricing and hedging. My findings indicate the importance of considering exponential Lévy models

for the hybrid neural networks and considering modularity with dynamic option grouping to attain an

accurate and consistent option pricing performance. Given the vast amount of unexplored possibilities of

refinement and extensions I believe there exist ways for further research and improvements in implementing

the hybrid approach and modularity to forecast option prices with neural networks. I highly recommend

further researching neural networks that implement different modularity approaches and hybrid approaches

based on the features of the option contract.
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Appendices

A Parametric Models

This section introduces the parametric models. The contribution of the parametric models is twofold.

First of all, they serve as benchmark models to which the performance of the neural network models is

compared. Additionally, they are used as inputs for the target function of the hybrid neural network

models.

A.1 The Black-Scholes Model

The price of a European call option, using the notation by Hull (2008), that follows from the Black

and Scholes (1973) model, is

cBS = S0e−qτN(d1)−Ke−rτN(d2), (21)

with

d1 =
log S0

K + (r − q + σ2

2 )τ

σ
√
τ

(22)

and

d2 = d1 − σ
√
τ . (23)

Here, cBS is the market price to be charged for the European call option, S0 is the current spot price of

the underlying asset, N(·) is the cumulative distribution function of the standard normal distribution, τ

is the time-to-maturity, K is the strike price of the option, r is the risk-free interest rate, q is the dividend

yield paid by the underlying asset and σ is the volatility of the stock. This option pricing formula relies

on the assumption that the underlying asset follows a geometric Brownian motion with constant drift and

volatility, that is

dS = µSdt+ σSdW, (24)

where W is a Wiener process or Brownian motion, and µ and σ are constants. Using Itô’s lemma,

considering a delta-hedged portfolio and simplifying equations, Black and Scholes arrive at their partial

differential equation, given by

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
= rV − (r − q)S∂V

∂S
, (25)
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where V is the price of the derivative. Solving this partial differential equation numerically gives (21).

Since (25), and thus (21), follows from a set of simplified assumptions, such as efficient markets, constant

volatility and normally distributed asset prices, the Black-Scholes model has several well-documented

biases, see e.g. Black (1975) and Bakshi et al. (1997). Each of the following parametric models that is

introduced extends the Black-Scholes model by accounting for some of these biases.

A.2 The Corrado-Su Model

Corrado and Su (1996) stated that the Black-Scholes biases are caused by the violation of the assumption

that asset prices are normally distributed. They accounted for this bias by expanding the normal density

function with third and fourth moments. This way they allowed for non-normal skewness and kurtosis

in the returns distribution, thereby removing systematic strike price biases. Brown and Robinson (2002)

noted that the proposed model contained an economically significant error and proposed a correction. The

price of a European call option that follows from Corrado-Su the model, with correction, is

cCS = cBS + µ3Q3 + (µ4 − 3)Q4, (26)

with

Q3 =
1

3!
S0e−qτσ

√
τ
(
(2σ
√
τ − d1)φ(d1) + σ2τN(d1)

)
,

Q4 =
1

4!
S0e−qτσ

√
τ
((
d2

1 − 1− 3σ
√
τ(d1 − σ

√
τ)
)
φ(d1) + σ3τ

3
2N(d1)

)
,

φ(z) =
1√
2π

e
−z2
2 .

(27)

Here, µ3 and µ4 are the coefficients of skewness and kurtosis implied by option prices.

A.3 The Heston Model

Heston (1993) introduced a second Brownian motion and revised (24) to account for the fact that the

Black-Scholes model cannot adequately capture the observed fact that volatility starts to fluctuate when

new information enters the market. The Black-Scholes model cannot capture this feat because it relies on

a constant volatility assumption. The Heston model assumes that volatility changes stochastically over

time. Models with a second Brownian motion to describe the volatility fluctuation are therefore called

stochastic volatility models. The Heston model, one of the most notable stochastic volatility models, also

allows for correlation between the underlying and volatility. Finally, the volatility follows a mean-reverting
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square root process to model the interest rate, as first proposed by Cox et al. (1985). The model is defined

by the system of stochastic differential equations

dSt = µStdt+
√
vtStdW

(1)
t ,

dvt = κ(θ − vt)dt+ σ
√
vtdW

(2)
t ,

dW
(1)
t dW

(2)
t = ρdt,

(28)

where St is the underlying price, µ is the rate of return, vt is the variance of the underlying price, θ

is the long-term variance, κ is the mean-reversion rate, σ is the volatility of the volatility and ρ is the

correlation between the Brownian motions that drive the underlying price and its variance. Henceforth,

ξ :=
[
θ κ σ ρ

]
.

For a spot price S0, interest rate r and dividend yield q, the formula for pricing of a European call

option that follows from the stochastic differential equations becomes

C(ξ;K, τ) =
1

2
(S0 − e−(r−q)τK) +

e−rτ

π

∫ ∞
0

Re

(
eiu log K

iu
φ(ξ;u− i, τ)

)
du

− e−rτK

π

∫ ∞
0

Re

(
eiu log K

iu
φ(ξ;u, τ)

)
du,

(29)

where i is the imaginary unit and φ(·) is the characteristic function. The characteristic function of a

random variable X is defined as φX(u, t) ≡ E
[
eiuX

]
. The characteristic function of the logarithm of the

stock price process, φS(θ;u, t), proposed by Heston causes discontinuities to appear for moderate to long

maturities because of the branch switching of the complex power function (Kahl and Jäckel, 2005). A

slight alteration, originally proposed by Schoutens et al. (2004), has been shown by Albrecher et al. (2007)

to be continuous and to give numerically stable prices. This characteristic function is given by

φS(θ;u, t) = exp

{
iu(log S0 + (r − q)t) +

κθ

σ2

[
(ξ − d)t− 2 log

1− g2e−dt

1− g2

]
+
v0

σ2
(ξ − d)

1− e−dt

1− g2e−dt

}
, (30)

where

ξ := κ− σρiu,

d :=
√
ξ2 + σ2(u2 + iu),

g2 :=
ξ − d
ξ + d

.

(31)
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Although the Heston formula for pricing a European call option is not as analytically tractable as those

previously seen for the Black-Scholes or Corrado-Su models, knowing the characteristic function of the

logarithm of the stock price process is sufficient to calculate option prices for the Heston model. Aside

from his seminal stochastic volatility model, Heston (1993) also introduced the Fourier transform approach

to option pricing. The Fourier transform approach is applicable when only the characteristic function is

known. This is explained by the fact that the probability density function of a distribution can be computed

by taking the inverse Fourier transform of this characteristic function. This approach has been shown to

be substantially more efficient than other methods, such as finite difference solutions to partial differential

equations or integro-differential equations, for pricing options under general stochastic volatility processes.

Therefore, Heston refers to solutions of this approach as closed-form solutions.

The fast Fourier transform (FFT) algorithm, introduced by Cooley and Tukey (1965) is an algorithm

designed to efficiently compute Fourier transforms. Carr and Madan (1999) were the first to develop an

application of the FFT for option pricing. An advantage of this algorithm is that it “exploits periodicities

and symmetries in the characteristic function evaluations to reduce the number of operations” (Crisóstomo,

2018). Furthermore, it enables the simultaneous calculation of prices for a range of strikes. Carr and Madan

(1999) concluded that using FFT is considerably faster and more accurate than most available methods,

such as the approach described by Heston. Chourdakis (2004) showed that the fractional FFT algorithm

can also be used to price options using solely the characteristic function information. Fractional FFT uses

the information of the characteristic function in an even more efficient manner than regular FFT, thus

needing fewer function evaluations. Consequently, fractional FFT generally outperforms regular FFT in

terms of computation time. Similar to Yang et al. (2017), I therefore opt to use fractional FFT for the

parametric option pricing models of which the characteristic function is known.

A.4 The Kou Jump-Diffusion Model

As can be observed in stock price data, jumps often occur in stock prices due to unpredictable events.

Stock price data therefore often exhibits discontinuity. Consequently, another source of bias of the Black-

Scholes model is the assumption that the underlying asset follows a geometric Brownian motion, as the

geometric Brownian motion path is continuous. Exponential Lévy models generalize the Black-Scholes

model by allowing stock prices to jump.

There are two categories of parametric exponential Lévy models. The first category consists of jump-

diffusion models. In jump-diffusion models the price evolution is given by a diffusion process, disrupted
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by a finite number of jumps at random intervals. The jumps represent events such as breaking news and

corresponding crashes. The two building blocks of a jump-diffusion model are the Poisson process (for

the jumps) and the Brownian motion (for the diffusion). The price evolution is given by a Lévy process

consisting of a Gaussian part and a jump part with a finite number of jumps, i.e.

Xt = µt+ σWt +

N(t)∑
i=1

Yi (32)

where Wt is a standard Brownian motion and N(t) is a Poisson process with jump intensity λ. The set

{Yi} is a sequence of independent identically distributed non-negative random variables.

The Lévy process is used to model stock prices, according to

St = S0eXt , (33)

to ensure positive, independent and stationary log-returns. The process evolves like a geometric Brownian

motion in between jumps. Equations (32) and (33) can be merged as

dSt
St−

= µdt+ σdWt + d

N(t)∑
j=1

eYi − 1

 , (34)

where the notation St− implies that the process’s value prior to the jump is employed in case of a jump.

To simplify notation for option pricing, similar to Cont and Tankov (2002) and Tankov and Voltchkova

(2009) the interest rate is contained in the construction of the exponential Lévy model:

St = S0ert+Xt . (35)

Merton (1976), who was the first to propose a jump-diffusion model for option pricing, assumed the

jumps Yi to be normally distributed. Kou (2002) extended this model by suggesting the jumps to follow a

double exponential distribution. The density of a double exponential distribution is

fY (y) = pη1e−η1y1y≥0 + qη2eη2y1y<0, (36)

where η1 and η2 are the expected positive and negative jump sizes respectively, η1 > 1, η2 > 0, p, q ≥ 0,

p+ q = 1. In (36), p and q represent the probabilities of upward and downward jumps. In the model, all
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sources of randomness are assumed to be independent. Henceforth, γ :=
[
σ λ η1 η2 p

]
.

For jump-diffusion models, the characteristic function of Xt is given by the Lévy–Khintchine formula:

φX(u, t) = exp

{
t

(
iµu− σ2u2

2
+

∫ ∞
−∞

(eiuy − 1)λfY (y)dy

)}
(37)

For the Kou jump-diffusion model, the characteristic function of Xt can be derived analytically. The

characteristic function that emerges, as for example shown in Jeanblanc et al. (2009), is given by

φX(γ;u, t) = exp

{
t

(
iµu− σ2u2

2
+ λ

(
pη1

η1 − iu
− qη2

η2 + iu
− 1

))}
. (38)

Because the characteristic function of Xt is known, the characteristic function of the logarithm of the stock

price process can be deduced from (35). Fractional FFT can then be used to retrieve option prices.

A.5 The Variance Gamma Model

In the previous section, the existence of two categories of parametric exponential Lévy models was

mentioned and the first category was described. The second category consists of Lévy processes with

infinitely many jumps in every interval, called infinite activity models. In general, the jumps are smaller

than the jumps in jump-diffusion models, but the jumps occur much more frequently.

The simplest example of an infinite activity model is the gamma process. Like the Poisson process and

the Brownian motion for the jump-diffusion models, the gamma process is the building block for infinite

activity models. The gamma process γt(µ, ν) with mean rate µ and variance rate ν is a process with

independent and stationary gamma distributed increments over non-overlapping intervals of time. The

marginal distribution of the increment x = γt+h(µ, ν)− γt(µ, ν) is the gamma density function with mean

µx and variance νx, given by

fh(x) =
x
µ2h
ν
−1
(µ
ν

)µ2h
ν exp

(−µx
ν

)
Γ
(
µ2h
ν

) , (39)

where Γ(·) is the gamma function. The gamma process is a pure-jump increasing Lévy process.

A more complex infinite activity model, the Variance Gamma (VG) model of Madan et al. (1998), is

constructed by time-changing a Brownian motion with drift with a gamma process with unit mean rate,

γt(1, ν). Specifically,

Xt = θγt(1, ν) + σWγt(1,ν), (40)
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where θ is the drift of the Brownian motion, σ is the volatility of the Brownian motion and ν is the variance

rate of the gamma time change. Madan et al. (1998) asserted that the process “provides two dimensions of

control on the distribution over and above that of the volatility”, as control over the skewness is attained

via θ and control over the kurtosis via ν. The VG process acquires the feature of an infinite arrival rate of

stock price jumps from the gamma process and is therefore also regarded as an infinite activity model.

Similar to the Kou jump-diffusion model, the characteristic function of the log of the price process can

be deduced from (35) if the characteristic function of Xt is known. According to Madan et al. (1998) the

characteristic function of Xt is given by

φX(ζ;u, t) =

(
1− iθνu+

1

2
σ2νu2

)− t
ν

(41)

where ζ :=
[
θ σ ν

]
. Again, fractional FFT is used to retrieve option prices.
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B ANN With Multiple Hidden Layers

The ANN with two hidden layers is created by adding a hidden layer of Ḣ nodes to the left of the

hidden layer in Figure 1. To obtain the output of this network, σ

(
bj +

N∑
i=1

wjixi

)
, which represents the

contribution of the input layer and the hidden layer, is replaced by σ

cj +

Ḣ∑
k=1

ẇjkσ

(
bk +

N∑
i=1

wkixi

)
in (1). This term consists of a weight and bias term for the new hidden layer, an activation function for

the new hidden layer, as well as the contribution of the input layer and the original hidden layer. The

output of the network with two hidden layers is then given by

y = σ0

a0 +

H∑
j=1

vjσ

cj +
Ḣ∑
k=1

ẇjkσ

(
bk +

N∑
i=1

wkixi

) , (42)

where ẇ and c are the weight and bias term for the second hidden layer. Similarly, the ANN with three hid-

den layers is created by adding another hidden layer to (42), now with Ḧ nodes. Again, the hidden layer is

inserted to the left of the existing hidden layers. In this case, σ

(
bk +

N∑
i=1

wkixi

)
, which represents the con-

tribution of the input layer and the adjacent hidden layer, is replaced by σ

dk +
Ḧ∑
l=1

ẅklσ

(
bl +

N∑
i=1

wlixi

).

The output of the network with three hidden layers therefore reads

y = σ0

a0 +
H∑
j=1

vjσ

cj +
Ḣ∑
k=1

ẇjkσ

dk +
Ḧ∑
l=1

ẅklσ

(
bl +

N∑
i=1

wlixi

) , (43)

where ẅ and d are the weight and bias term for the third hidden layer. For computational purposes, the

same activation function, σ(·), is chosen for each hidden layer.

C Activation Functions

I investigate five different activation functions for the hidden layer(s), σ(·), denoted as σ1(·) . . . σ5(·).

The sigmoid activation function is defined as σ1(x) =
1

1 + e−x
and the softplus activation function as

σ2(x) = log(1 + ex), as introduced in Section 2.1.3. The hyperbolic tangent activation function is defined

as σ3(x) = tanh(x). The ReLU activation function is defined as σ4(x) = max(0, x) and the ELU activation

function is defined as σ5(x) =


x if x > 0

α(ex − 1) otherwise

, where α > 0.
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A closer look into the workings of these activation functions reveals why tanh and sigmoid as activation

function for hidden layers of deep neural networks should be considered with caution. Both functions

take a real-valued input and compress it into a predefined range. The definition of the sigmoid causes the

output to range between 0 and 1, as lim
x→−∞

1

1 + e−x
= 0 and lim

x→∞

1

1 + e−x
= 1. Similarly, the output of the

tanh function is compressed between -1 and 1, for it holds that lim
x→−∞

tanh(x) = lim
x→−∞

ex − e−x

ex + e−x
= −1 and

lim
x→∞

ex − e−x

ex + e−x
= 1. The outputs of the activation functions thus saturate, thereby forcing the gradients in

limiting regions to approach zero. The gradients, however, are of upmost importance during the training

of the neural networks. The gradient for each neuron is the rate of change of the loss function with respect

to the neuron’s bias, which controls the changes in weight and biases of the network. The Adam optimizer

uses gradient-based optimization, i.e. each gradient is multiplied with the gradient of other output gates.

Gradients close to zero then effectively shut down a signal, such that no signal flows through the neurons

and inescapably much less information reaches deeper layers. This is lethal to the performance of deeper

neural networks, through which lots of information flows to build up multiple layers of abstraction.

Consequently, this problem—first dubbed the vanishing gradient problem by Hochreiter et al. (2001)

and later extensively researched by many others—requires a solution. In search thereof, Nair and Hinton

(2010) first introduced the rectified linear units for restricted Boltzmann machines to replace sigmoid units.

Then, Glorot et al. (2011) asserted that for neural networks it also holds that networks with rectifying

neurons yield better results than networks with hyperbolic tangent neurons. Krizhevsky et al. (2012)

further found that deep neural networks with ReLU activation functions train much faster than equivalent

deep neural network with tanh activation functions. Importantly, faster learning greatly influences the

performance of large neural network models trained on large data sets. This faster learning is mainly

achieved by the simplicity of the ReLU activation function, as ReLU can simply be implemented by

performing a threshold at zero for all inputs. Also, ReLUs partly alleviate the vanishing gradient problem

by not saturating the inputs for both limiting cases. To fully alleviate the vanishing gradient problem,

Clevert et al. (2015) introduced the ELU activation function, which enables negative values. However, the

introduction of negative values comes at the expense of speed. It is therefore interesting to research which

of these two solutions to the vanishing gradient problem best fits hybrid neural networks for option pricing.

Furthermore, it is interesting to research whether or not neural networks with these activation functions

indeed outperform the neural networks with tanh and sigmoid activation functions.
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D MNN and MCMNN With Multiple Hidden Layers

Following the approach outlined in Appendix B, the MNN and MCMNN with two hidden layers are

created by adding a hidden layer of Ḣk nodes to the left of the hidden layer in each of the k = 1, . . . ,M

modules in Figure 2. To obtain the output of this network, σ

(
bjk +

N∑
i=1

wjikxi

)
, which represents the

contribution of the input layer and the hidden layer, is replaced by σ

cjk +

Ḣk∑
l=1

ẇjlkσ

(
blk +

N∑
i=1

wlikxi

)
in (5). This term consists of a weight and bias term for the new hidden layer, an activation function for

the new hidden layer, as well as the contribution of the input layer and the original hidden layer. The

output of the network with two hidden layers is then given by

y = σ0

a0,k +

Hk∑
j=1

vjkσ

cjk +

Ḣk∑
l=1

ẇjlkσ

(
blk +

N∑
i=1

wlikxi

) , (44)

where ẇ and c are the weight and bias term for the second hidden layer.

Following the same approach, the MNN and MCMNN with three hidden layers are created by adding

another hidden layer to (44), now with Ḧk nodes. Again, the hidden layer is inserted to the left of the

existing hidden layers. In this case, σ

(
blk +

N∑
i=1

wlikxi

)
, which represents the contribution of the input

layer and the adjacent hidden layer, is replaced by σ

dlk +

Ḧk∑
m=1

ẅlmkσ

(
bmk +

N∑
i=1

wmikxi

). The output

of the network with three hidden layers therefore reads

y = σ0

a0,k +

Hk∑
j=1

vjkσ

cjk +

Ḣk∑
l=1

ẇjlkσ

dlk +

Ḧk∑
m=1

ẅlmkσ

(
bmk +

N∑
i=1

wmikxi

) , (45)

where ẅ and d are the weight and bias term for the third hidden layer. For computational purposes, the

same activation function, σ(·), is chosen for each hidden layer. Evidently, the number of nodes per hidden

layer, respectively H, Ḣ and Ḧ, does differ. However, for each model, the number of nodes across modules,

respectively Hk, Ḣk and Ḧk is set constant across modules, again for computational purposes. Finally, for

the MNN, M = 9 and N = 2 and for the MCMNN, M = 18 and N = 3.
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E Analysis of the Daily Calibrated Parameters of the Parametric Mod-

els

To better understand the optimal performance of the three parametric models, the daily calibrated

parameters of each model are scrutinized. In Figure 18, 19 and 20 parameters are standardized for visibility

purposes such that it is more easily observable in which periods the parameters need to fluctuate most for

the model to have an optimal pricing performance.

Figure 18 shows the standardized parameters of the Heston model. For the Heston model, the most

variation is observed in the mean reversion rate, κ, and the volatility of the volatility, σ. These parameters

respectively control the volatility smile and skew. The parameters fluctuate more after 2004; this can

possibly be linked to the fact that starting in 2004 more options must be priced, see Table 1, such that

more complex volatility surfaces are fit. Furthermore, in the crisis periods of 2008 and 2011 the optimal

value of ρ is much smaller than in other periods. This can be explained by the fact that in this period

the underlying price of the S&P500 underlying price is strongly decreasing, whereas the volatility in this

period is extremely high, leading to a large negative correlation between the underlying price and the

corresponding variance. Finally, starting in 2014 the Heston model performs much worse than prior to

2014, as can be observed in Figure 5. Prior to 2014, the Heston model is among the top-performing

parametric models, but fails to do so in 2014 and 2016. This poor performance can possibly be due to

large negative values of θ, the long-term variance, which accounts for the overall level of volatility skew.

This poor performance has a big impact on the overall performance of the Heston model, as approximately

half of the options is traded between 2014 and 2016.

Figure 18: Standardized parameters of the Heston model over time
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Note: This figure shows how the standardized parameters θ, σ, κ and ρ of the Heston model evolve over time. Here, κ is the
mean-reversion rate, θ is the long-term variance, σ is the volatility of the volatility and ρ is the correlation between the
underlying price and its variance. Parameters are standardized for visibility purposes. The shadowed parts correspond to the
dot-com bubble (2000), global financial crisis (2008) and European debt crisis (2011).
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The standardized parameters of the Kou jump-diffusion model are displayed in Figure 19. First of all,

in crisis periods low values for the volatility of the Brownian motion, σ, are observed. The two building

blocks of a jump-diffusion model are the Poisson process (for the jumps) and the Brownian motion (for the

diffusion). For the Kou jump-diffusion models the low values of σ in crisis periods therefore indicate that

the Lévy process of (32) is then mostly influenced by the Poisson process. As the jumps represent events

such as breaking news and corresponding crashes, it appears to be valid that prices are greatly influenced

by jumps in periods of distress. Accordingly, in these periods the highest values for λ and η2 are observed,

respectively representing the jump intensity of the Poisson process and the expected negative jump size.

Furthermore, for high values of η2, low probabilities of upward jumps, p, are observed. After 2011, high

values of σ and relatively low values of η2 are observed, indicating that that the Lévy process of (32) is

mostly influenced by the Brownian motion.

Figure 19: Standardized parameters of the Kou jump-diffusion model over time
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Note: This figure shows how the standardized parameters σ, λ, η1, η2 and p of the Kou jump-diffusion model evolve over
time. Here, σ is the volatility of the Brownian motion, λ is jump intensity of the Poisson process, η1 and η2 are the expected
positive and negative jump sizes respectively and p represents the probability of upward jumps. Parameters are standardized
for visibility purposes. The shadowed parts correspond to the dot-com bubble (2000), global financial crisis (2008) and
European debt crisis (2011).

Figure 20: Standardized parameters of the Variance Gamma model over time
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Note: This figure shows how the standardized parameters σ, θ and ν of the Variance Gamma model evolve over time. Here,
σ is the volatility of the Brownian motion, θ is the drift of the Brownian motion and ν is the variance rate of the gamma
time change. Parameters are standardized for visibility purposes. The shadowed parts correspond to the dot-com bubble
(2000), global financial crisis (2008) and European debt crisis (2011).
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The standardized parameters of the Variance Gamma model are shown in Figure 20. The drift of the

Brownian motion, θ, is the parameter that fluctuates the most, whereas the volatility of the Brownian

motion, σ, and the variance rate of the gamma time change, ν, are fairly constant. The Variance Gamma

model thus mostly fits option prices by varying the θγt(1, ν) term in (40). Furthermore, especially in crisis

periods each of the three parameters seems to be smaller than in other periods. Similar to the Kou jump-

diffusion model, the low values of σ between 2008 and 2011 stand out, indicating that this exponential

Lévy model also neglects the Brownian motion in periods of financial turmoil. After the crises of 2008 and

2011 the mean market price of call options starts increasing, see Table 1. The parameters of the VG model

all increase to account for the higher market prices. The interpretation of the Variance Gamma parameters

is an interesting topic to examine. According to Madan et al. (1998) one of the paramount features of

the VG model is that there are parameters that control for skewness and kurtosis, which is done by the

parameters θ and ν. In Figure 21 it can be observed that when both skewness and kurtosis are high θ is

negative. When skewness and kurtosis are low, ν increases and when skewness and kurtosis are opposite

θ and ν are centered around 0. This shows that θ and ν together control for skewness and kurtosis.

Overall, the best performing parametric models in terms of MAPE and MSE mainly achieve their

optimal performance by implementing jumps. The Kou jump-diffusion model slightly outperforms the

Variance Gamma model. For a data set that alternates between regular and crisis periods, the finite jumps

of the Kou jump-diffusion model appear to be more adequately fitting than the infinitely many jumps of

the Variance Gamma model. The stochastic volatility of the Heston model also has its advantages and at

times outperforms both jump models. It is therefore interesting to research which parametric model can

help hybrid neural networks achieve the best option pricing performance.

Figure 21: Parameters of the Variance Gamma model over time plotted together with skewness and kurtosis
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Note: This figure shows how the parameters θ and ν of the Variance Gamma model evolve over time. Here, θ is the drift of
the Brownian motion and ν is the variance rate of the gamma time change. Skewness, µ3 and kurtosis, µ4 of the S&P500
index are also shown in this figure. Parameters are not standardized. The shadowed parts correspond to the dot-com bubble
(2000), global financial crisis (2008) and European debt crisis (2011).
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F Preliminary Hidden Layer and Activation Function Analyses

Table 15: Preliminary analysis of MAPE of the option price forecasts of an ANN with two input variables
for various numbers of hidden layers, hidden layer nodes and activation functions

0 64 96 128

0 16 32 48 16 32 48 16 32 48 16 32 48

Panel A
2 4.668 1.943 1.558 1.156 0.717 3.006 3.691 2.812 3.470 4.471 0.769 3.236 4.596
4 3.288 1.269 1.368 1.074 0.661 0.587 0.713 0.599 0.765 0.597 3.063 0.499 2.077
8 2.473 1.054 1.235 1.021 0.706 0.526 0.623 0.654 0.685 0.522 0.624 0.614 0.771

Panel B
2 5.276 0.963 1.201 0.922 1.110 6.100 3.307 2.812 1.669 2.386 3.211 1.423 1.355
4 5.001 1.087 1.164 1.107 0.860 0.597 0.642 0.549 0.715 0.668 1.110 0.487 0.616
8 4.619 1.295 1.205 1.214 0.601 0.605 0.635 0.498 0.680 0.649 0.606 0.555 0.525

This table presents the MAPE of the option price forecasts of an ANN with two input variables, m and τ , for various numbers
of hidden layers, hidden layer nodes and activation functions. Panel A displays the MAPEs from the ANN with the ReLU
activation function, Panel B from the ANN with sigmoid activation function. In both panels the linear activation is used for
the output layer. On the vertical axis, the number of hidden layer nodes for the first hidden layer is given. The horizontal axis
is split; the lower number is the number of nodes in the second hidden layer and the upper number is the number of nodes in
the third hidden layer.

Table 16: Preliminary analysis of MSE of the option price forecasts of an ANN with two input variables
for various numbers of hidden layers, hidden layer nodes and activation functions

0 64 96 128

0 16 32 48 16 32 48 16 32 48 16 32 48

Panel A
2 6310 3500 2980 1791 376.7 8409 12259 10357 9914 18488 421.9 11813 15413
4 3439 1825 2410 1579 144.9 153.9 332.6 113.8 382.3 170.2 8084 131.5 7397
8 2336 1249 2025 1419 263.8 110.7 121.7 184.6 466.3 86.77 153.8 156.8 261.8

Panel B
2 1676 202.4 221.5 204.7 604.7 19805 8955 10236 1980 8227 10307 1961 3449
4 1468 199.9 212.1 187.8 401.9 138.5 222.2 108.4 236.0 211.4 116.9 309.1 136.9
8 1227 227.0 208.3 168.9 180.4 139.0 139.5 94.86 241.0 143.7 110.1 103.0 99.69

This table presents the MSE from an ANN with two input variables, m and τ , for various number of hidden layers, hidden
layer nodes and activation functions. Panel A displays the MSEs for the ANN with the ReLU activation function, Panel B for
the ANN with sigmoid activation function. In both panels the linear activation is used for the output layer. On the vertical
axis, the number of hidden layer nodes for the first hidden layer is given. The horizontal axis is split; the lower number is the
number of nodes in the second hidden layer and the upper number is the number of nodes in the third hidden layer.
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Table 17: Preliminary analysis of MAPE and MSE of the option price forecasts of an ANN with two input
variables for various activation functions

σ1 σ2 σ3 σ4 σ5

linear 1.005 (191.6) 0.962 (123.9) 1.151 (358.7) 1.393 (337.3) 0.522 (86.77)
exponential 1.205 (193.7) 1.397 (21934) 4.281 (1250) 3.510 (17595) 1.299 (33649)

This table presents the MAPE (MSE) of the option price forecasts of an ANN with two input variables, m and τ , and three
hidden layers with respectively 96, 48 and 8 hidden layer nodes for five activation functions. The five activation functions are
the sigmoid (σ1), softplus (σ2), hyperbolic tangent (σ3), ELU (σ4) and ReLU (σ5) activation functions. On the vertical axis
the activation function of the output layer is displayed.

G Comprehensive Overview of Results of the Non-Parametric Models

Table 18: Comprehensive overview of results of the non-parametric models

ANN MNN MCMNN GNN GNN*

2 inputs 3 inputs 2 inputs 3 inputs 3 inputs 2 inputs 3 inputs 2 inputs

Panel A: MAPE
Standard 0.474 0.317 0.282 0.056 0.068 0.242 0.108 0.234
Hybrid-BS 0.599 0.572 0.596 0.588 0.624 0.603 0.563 0.676
Hybrid-CS 0.619 0.600 0.637 0.631 0.729 0.639 0.586 0.848
Hybrid-H 0.265 0.255 0.256 0.242 0.252 0.264 0.258 0.323
Hybrid-K 0.143 0.138 0.139 0.139 0.122 0.100 0.094 0.113
Hybrid-VG 0.182 0.123 0.174 0.138 0.130 0.115 0.094 0.125

Panel B: MSE
Standard 98.34 41.60 92.36 52.62 43.64 47.30 9.311 46.42
Hybrid-BS 143.9 157.6 141.2 154.7 156.4 140.2 137.9 153.5
Hybrid-CS 180.7 196.7 180.1 196.0 207.1 173.7 152.1 200.0
Hybrid-H 19.07 26.61 18.92 22.78 22.02 18.37 19.19 41.01
Hybrid-K 10.70 16.22 10.64 14.37 11.14 8.897 8.791 10.95
Hybrid-VG 10.80 15.19 10.67 14.37 11.40 8.835 8.179 13.44

This table presents MAPEs (in Panel A) and MSEs (in Panel B) of the option price forecasts of the ANN, MNN, MCMNN
GNN, GNN* and their hybrid counterparts with either two (m, τ) or three (m,σ

√
τ , rτ) input variables and with optimal ar-

chitecture. The number of input variables is given below each model on the horizontal axis. For the hybrid neural networks,
the target function is adjusted by the output of a parametric model. The employed parametric models are the Black-Scholes
model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model (K) and Variance Gamma model (VG).
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H MSE Plots of All Parametric and Non-Parametric Models

Figure 22: MSE of the parametric models over time
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Note: This figure shows how the MSE of the option price forecasts of each of the parametric models evolves over time. The
shadowed parts correspond to the dot-com bubble (2000), global financial crisis (2008) and European debt crisis (2011).

Figure 23: MSE of the option price forecasts of the Kou jump-diffusion model, the standard ANN with
two input variables and the HANNs with two input variables over time
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Note: This figure shows how the MSE from the Kou jump-diffusion model, the standard ANN with two input variables and
the HANNs with two input variables evolves over time. The two input variables are m and τ . For the hybrid neural networks,
the target function is adjusted by the output of a parametric model. The employed parametric models are the Black-Scholes
model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model (K) and Variance Gamma model (VG).
The shadowed parts correspond to the dot-com bubble (2000), global financial crisis (2008) and European debt crisis (2011).
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Figure 24: MSE of the option price forecasts of the Kou jump-diffusion model, the standard ANN with
three input variables and the HANNs with three input variables over time
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Note: This figure shows how the MSE from the Kou jump-diffusion model, the standard ANN with three input variables and
the HANNs with three input variables evolves over time. The three input variables are m,σ

√
τ and rτ . For the hybrid

neural networks, the target function is adjusted by the output of a parametric model. The employed parametric models are
the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model (K) and Variance
Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000), global financial crisis (2008) and
European debt crisis (2011).

Figure 25: MSE of the option price forecasts of the Kou jump-diffusion model, the standard MNN with
two input variables and the HMNNs with two input variables over time
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Note: This figure shows how the MSE from the Kou jump-diffusion model, the standard MNN with two input variables and
the HMNNs with two input variables evolves over time. The two input variables are m and τ . The employed parametric
models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model (K) and
Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000), global financial crisis (2008)
and European debt crisis (2011).
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Figure 26: MSE of the option price forecasts of the Kou jump-diffusion model, the standard MNN with
three input variables and the HMNNs with three input variables over time
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Note: This figure shows how the MSE from the Kou jump-diffusion model, the standard MNN with three input variables
and the HMNNs with three input variables evolves over time. The three input variables are m,σ

√
τ and rτ . The employed

parametric models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model
(K) and Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000), global financial crisis
(2008) and European debt crisis (2011).

Figure 27: MSE of the option price forecasts of the Kou jump-diffusion model, the standard MCMNN with
three input variables and the HMCMNNs with three input variables over time
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Note: This figure shows how the MSE from the Kou jump-diffusion model, the standard MCMNN with three input variables
and the HMCMNNs with three input variables evolves over time. The three input variables are m,σ

√
τ and rτ . The

employed parametric models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou
jump-diffusion model (K) and Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000),
global financial crisis (2008) and European debt crisis (2011).
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Figure 28: MSE of the option price forecasts of the Kou jump-diffusion model, the standard GNN with
two input variables and the HGNNs with two input variables over time
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Note: This figure shows how the MSE from the Kou jump-diffusion model, the standard GNN with two input variables and
the HGNNs with two input variables evolves over time. The two input variables are m and τ . The employed parametric
models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model (K) and
Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000), global financial crisis (2008)
and European debt crisis (2011).

Figure 29: MSE of the option price forecasts of the Kou jump-diffusion model, the standard GNN* with
two input variables and the HGNN*s with two input variables over time
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Note: This figure shows how the MSE from the Kou jump-diffusion model, the standard GNN* with two input variables and
the HGNN*s with two input variables evolves over time. The three input variables are m and τ . The employed parametric
models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model (K) and
Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000), global financial crisis (2008)
and European debt crisis (2011).
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Figure 30: MSE of the option price forecasts of the Kou jump-diffusion model, the standard GNN with
three input variables and the HGNNs with three input variables over time
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Note: This figure shows how the MSE from the Kou jump-diffusion model, the standard GNN with three input variables and
the HGNNs with three input variables evolves over time. The three input variables are m,σ

√
τ and rτ . The employed

parametric models are the Black-Scholes model (BS), Corrado-Su model (CS), Heston model (H), Kou jump-diffusion model
(K) and Variance Gamma model (VG). The shadowed parts correspond to the dot-com bubble (2000), global financial crisis
(2008) and European debt crisis (2011).
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I Performance Plots of Modular and Gated Neural Networks as a Func-

tion of Maturity

Figure 31: MAPE of the option price forecasts of standard and hybrid modular neural networks and
parametric models as a function of maturity
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Note: This figure shows how the MAPE from several (hybrid) neural networks with three input parameters that implement
modularity based on fixed manual heuristics and two parametric benchmark models, Kou and VG, evolves as maturity
increases. The three input variables are m,σ

√
τ and rτ . For the hybrid neural networks, the target function is adjusted by

the output of a parametric model. The employed parametric models are the Heston model (H), Kou jump-diffusion model
(K) and Variance Gamma model (VG). The red line represents the percentage of options per maturity region. Maturity
regions are measured in weeks. Maturity is divided by 7 and rounded up to obtain the maturity in weeks. The red line has a
separate y-axis on the right.

Figure 32: MSE of the option price forecasts of standard and hybrid modular neural networks and para-
metric models as a function of maturity
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Note: This figure shows how the MSE from several (hybrid) neural networks with three input parameters that implement
modularity based on fixed manual heuristics and two parametric benchmark models, Kou and VG, evolves as maturity
increases. The three input variables are m,σ

√
τ and rτ . For the hybrid neural networks, the target function is adjusted by

the output of a parametric model. The employed parametric models are the Heston model (H), Kou jump-diffusion model
(K) and Variance Gamma model (VG). The red line represents the percentage of options per maturity region. Maturity
regions are measured in weeks. Maturity is divided by 7 and rounded up to obtain the maturity in weeks. The red line has a
separate y-axis on the right.
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Figure 33: MAPE of the option price forecasts of standard and hybrid gated neural networks and parametric
models as a function of maturity
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Note: This figure shows how the MAPE from several (hybrid) neural networks with three input parameters that implement
modularity based on dynamic option grouping and two parametric benchmark models, Kou and VG, evolves as maturity
increases. The three input variables are m,σ

√
τ and rτ . For the hybrid neural networks, the target function is adjusted by

the output of a parametric model. The employed parametric models are the Heston model (H), Kou jump-diffusion model
(K) and Variance Gamma model (VG). The red line represents the percentage of options per maturity region. Maturity
regions are measured in weeks. Maturity is divided by 7 and rounded up to obtain the maturity in weeks. The red line has a
separate y-axis on the right.

Figure 34: MSE of the option price forecasts of standard and hybrid gated neural networks and parametric
models as a function of maturity
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Note: This figure shows how the MSE from several (hybrid) neural networks with three input parameters that implement
modularity based on dynamic option grouping and two parametric benchmark models, Kou and VG, evolves as maturity
increases. The three input variables are m,σ

√
τ and rτ . For the hybrid neural networks, the target function is adjusted by

the output of a parametric model. The employed parametric models are the Heston model (H), Kou jump-diffusion model
(K) and Variance Gamma model (VG). The red line represents the percentage of options per maturity region. Maturity
regions are measured in weeks. Maturity is divided by 7 and rounded up to obtain the maturity in weeks. The red line has a
separate y-axis on the right.
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J Performance Plot of Parametric Models for High Volatility Options

Figure 35: MSE of the option price forecasts of the Variance Gamma model and the Kou jump-diffusion
model over time for options with high volatilties
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Note: This figure shows how the MSE from the Variance Gamma model and Kou jump-diffusion model evolves over time.
Included in this analysis are only options with high volatilties, i.e. options for which the volatility exceeds 0.9. The
shadowed parts correspond to the dot-com bubble (2000), global financial crisis (2008) and European debt crisis (2011).
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