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Non-parametric Bayesian inference in

multidimensional marked Hawkes processes

Thijs de Vries

Abstract

In this thesis, I expand the Gibbs-Hawkes algorithm, a non-parametric Bayesian inference

algorithm that can be used to estimate the kernel function of a uni-dimensional unmarked

Hawkes process, for the estimation of kernel functions of multidimensional marked Hawkes

processes. The new expanded algorithm (called Multidimensional Gibbs-Hawkes) allows for

flexible estimation of kernel functions for Hawkes kernels for multivariate Hawkes processes.

It also accounts for marked processes, where the marks can have influence on the offspring

intensity. I show how the Multidimensional Gibbs-Hawkes is expanded from the original

Gibbs-Hawkes process and show empirically using two simulated datasets that it is able to

estimate flexible triggering kernels. I also show that it performs similar or better to two

benchmarks: a parametric approach and a non-parametric non-Bayesian approach.
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1 Introduction

Point processes are used to describe random events triggering in some dimension (e.g. time).

A particular class of point processes is the self-exciting point process, where an event trigger-

ing can increase the likelihood of more events triggering. The Hawkes process is a common

type of self-exciting point processes and can be used to model these self-exciting point pro-

cesses. Hawkes processes (first described by Hawkes (1971)) are used in a variety of fields,

including modelling earthquake occurrences (Ogata (1998)), social interactions on Twitter

(Simma & Jordan (n.d.)), systemic risk in finance (Aı̈t-Sahalia et al. (2015)), civilian deaths

during wars (Lewis et al. (2012)) and transcriptional regulatory events in biology (Carstensen

et al. (2010)).

The Poisson point process (or simply Poisson process) is often used for describing point

processes (of all kinds, not necessarily self-exiting point processes) due to its mathematical

properties. Hawkes processes are typically described as Poisson processes. Poisson processes

can be homogeneous or inhomogeneous. This relates to the parameter λ, called the rate

or intensity. The intensity λ describes how often events happen and is always positive (i.e.

λ ≥ 0). If λ is a constant, the Poisson process is homogeneous. In the inhomogeneous case,

the intensity is described by some locally integrable positive function λ(x), where x is some

variable in the underlying parameter space.

Estimating the intensity on the homogeneous Poisson process is less complicated than

estimating the intensity on the inhomogeneous Poisson process, but homogeneous Poisson

processes lack the ability to change the intensity, hence Hawkes processes are described as

a type of inhomogeneous Poisson processes. This is done due to the convenient and well

understood properties of the inhomogeneous Poisson process.
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Figure 1: Schematic of a branching structure

In a Hawkes process, events are categorized as either immigrants or offspring. Immi-

grants are new arrivals; events that could happen any time. Offspring events follow from

immigrants, and are what differentiates the Hawkes process from the Poisson process. This

creates a branching structure which describes the relation between the immigrants and their

offspring. The branching structure is unknown, but can be retrieved from the data. A simple

example is shown in figure 1. Here, t1 is an immigrant, with t2, t3 and t4 as its offspring.

Immigrants do not need to have offspring (t5).

The Hawkes process can be extended into a marked Hawkes process (e.g. Embrechts et al.

(2011)). In a marked Hawkes process, the events also have some variables associated to that

event. Earthquakes can be considered as a marked Hawkes process (Ogata (1998)). Here,

the magnitude and coordinates of the epicenter can be considered as marks to the earth-

quake. Any offspring events can be dependent on the marks. In the earthquake example,

if an earthquake has a high magnitude, we can expect more aftershocks compared to an

earthquake with low magnitude. Similarly, we expect aftershocks to be close to the epicenter

of the earthquake.

A multidimensional Hawkes process (also called a multivariate Hawkes process) is a point

process where events are generated in multiple dimensions. Here, an event triggering in

one dimension can create offspring in another dimension. A simple example is that of earth-

quakes and volcanic eruptions. Both can be seen as a Hawkes process (in the case of volcanic

eruptions, large eruptions causing smaller eruptions), and there has been some research on

volcanic eruptions causing earthquakes (and vice versa, e.g. Hill et al. (2002)). In a mul-

tidimensional Hawkes process, these interactions are dimensions onto themselves with their
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own offspring intensity.

Hawkes processes can be used to describe a wide variety of events and are useful in studying

the interactions between these events. Multidimensional Hawkes processes allow for inves-

tigation into the correlation between events happening, such as spillover effects in finance

(Embrechts et al. (2011)) and the interactions between orders of futures and their size (Ram-

baldi et al. (2017)).

Although defining the Hawkes process theoretically is straightforward, estimation using

maximum likelihood (the most common frequentist method) can prove difficult (Veen &

Schoenberg (2008)). Likelihood functions for Hawkes processes tend to be non-linear and (in

case of multidimensional Hawkes processes) complex, leading to multimodal or flat likelihood

functions, which are difficult and computationally intensive to numerically optimize. A non-

parametric EM-algorithm has been proposed by Lewis & Mohler (2011) that uses maximum

penalized likelihood estimation (MPLE) to make a computationally tractable problem. This

MPLE algorithm is computationally fast and works well and I use it in the simulation study

to compare my proposed algorithm against.

Bayesian inference using samplers can provide alternative methods in analyzing Hawkes Pro-

cesses. Bayesian inference has some advantages over frequentist methods. They allow the

researcher to include prior information. Inference on data are exact and not asymptotic

approximations, and it is generally easier to interpret the parameters in a Bayesian setting

compared to a frequentist setting. Thus, Bayesian methods for Hawkes processes are useful

and desired (see O’Hagan (2004) for a more in depth review of Bayesian methods).

Rasmussen (2013) was the first to use a Bayesian approach to estimate parameters for a

marked Hawkes process. The research used a Metropolis-within-Gibbs method to sample

the parameters. Linderman & Adams (2015) then proposed a discrete-time formulation and

developed a scalable and computationally efficient algorithm for Bayesian inference on mul-

tidimensional unmarked Hawkes processes. Donnet et al. (2019) showed a non-parametric

Bayesian approach using Markov Chain Monte Carlo sampling, also for multidimensional un-

marked Hawkes processes. Their non-parametric approach, based on an infinite-dimensional

parameter space, remains theoretical and the Markov Chain Monte Carlo sampling algo-

rithm is not easily scalable.

Non-parametric approaches allow for inference in statistical processes without relying on

some assumed structure of the process. They are thus less dependent on the assumptions
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of the researcher, and rely more on the data. They usually sacrifice some accuracy over

parametric models, but are better suited in cases where the structure of the underlying data

is unknown. Zhang et al. (2019) proposed a Bayesian non-parametric algorithm for Hawkes

process by modeling the Hawkes process with a Laplace Bayesian Poisson process (an inho-

mogeneous Poisson process, Walder & Bishop (2017)) and use Gibbs sampling, but limited

themselves to an univariate unmarked Hawkes process. They also show in their study that

their proposed methods have a linear time complexity, making it more efficient than Donnet

et al. (2019). For this reason, in this thesis I examine an extension of Zhang et al. (2019) by

proposing non-parametric Bayesian inference for multidimensional marked Hawkes process.

The proposed algorithm, called Multidimensional Gibbs-Hawkes, extends the work of Zhang

et al. (2019) by conditioning the Laplace Bayesian Poisson process on the marks of the events

and defining how to apply the process to a multidimensional Hawkes process.

In this thesis I explain the methodology behind the proposed algorithm. I detail how the

multidimensional Hawkes process is split up for Bayesian inference into separate conditional

posterior distributions. Using the conditional posterior distributions I describe a computa-

tional algorithm similar to the Gibbs-Hawkes algorithm proposed by Zhang et al. (2019).

I then describe the simulation study I performed to evaluate my proposed algorithm, and

finally discuss the results. The simulations show that Multidimensional Gibbs-Hawkes per-

forms sometimes better and sometimes worse compared to two non-Bayesian benchmarks.

Specifically, in some dimensions, Multidimensional Gibbs-Hawkes performed better than

the benchmarks, and in others one of the benchmarks performed better. Multidimensional

Gibbs-Hawkes is unable to detect when there is no triggering mechanism from one dimen-

sion to another, similar to one of the benchmarks. It is able to account for different types of

offspring intensity kernels. The computation time remains a barrier to the practical use of

Multidimensional Gibbs-Hawkes, as computation time is too long, especially compared to the

benchmarks. Multidimensional Gibbs-Hawkes took approximately eight hours to complete,

whereas the benchmarks completed near instantly.

2 Methodology

In this section, I first describe the Hawkes process on a mathematical level. Then, follow-

ing the approach of Zhang et al. (2019), I first propose a computational algorithm called

Multidimensional Gibbs-Hawkes. I describe the distribution of the branching structure con-

ditional on the immigrant and offspring intensities. Then I detail the posterior distributions
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of immigrant and offspring intensities conditional on the branching structure and marks.

2.1 Hawkes processes

In the Hawkes process, the intensity λ(t) depends on time t (that is, time t is some real

number; t ∈ R) of the events and is given as

λ(t) = µ(t) +
∑
ti<t

φ(t− ti). (1)

Here µ(t) is the base intensity and dictates how often new events (often called immigrants)

happen. In the general case µ can be inhomogeneous and thus time dependent, but it is

often assumed as a constant. With i the index for a previous event (that is, ti < t), φ(t− ti)
is some function (often called the kernel function of the Hawkes process) that causes the self-

exciting behaviour of a Hawkes process, and influences how often events trigger following an

immigrant event with arrival time ti (which are often called offspring).

In a marked Hawkes process every event has some variables x ∈ Rd associated with that

event, such that each event (t, x) contains the time of the event t and some variable or a

d-dimensional vector of variables x that are associated with that event. For example, t is

the time of the earthquake and x could be the magnitude of an earthquake. The probability

density function of x is model specific and can depend on the time of the event, the previous

events, all previous events or be fully independent. Let Ht be the collection of all points

(ti, xi) until time t (that is, (ti, xi) ∈ Ht∀ti < t), then the most general probability density

function of xi at the event time ti is described as

ρ(xi|ti,Hti), (2)

although it is generally not necessary to include the all events from Hti . In fact, the distribu-

tion of x is often modelled differently depending on whether the event is an immigrant or an

offspring. Embrechts et al. (2011) describe the distribution of the marks as only dependent

on the dimension and independent of the past. The marks themselves can also have an ef-

fect on the generation of offspring; in the epidemic type aftershock sequences model (Ogata

(1988)), a higher magnitude can increase the likelihood of aftershocks). Thus, we adapt the

intensity λ(t) to include the marks in the most general case (Rasmussen (2013)):

λ(t) = µ(t) +
∑
ti<t

φ(t− ti|xi). (3)

A multidimensional Hawkes process (also called a multivariate Hawkes process) is a point

process where points are generated in multiple dimensions d. Note that in a multidimensional
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Hawkes process where the dimensions are independent of each other one can simply separate

the dimensions and consider a Hawkes process for each dimension individually. Embrechts

et al. (2011) describe two notations for a multidimensional marked Hawkes process; the

scalar-valued notation and the vector-valued notation. In the scalar-valued notation, which

I use from now on, each point is noted in the form (t, i, x) where t is the time of the event,

i the dimension of the event and x the mark of the event. In this case, each dimension has

its individual intensity λd(t), given in the most general form as

λi(t) = µi(t) +
d∑
j=1

∑
ti<t

φij(t− ti|xi), (4)

where i is the dimension of interest, d is the number of dimensions and j the parent dimension.

such that each dimension has its own base intensity µi(t) and offspring intensity φij(t−ti|xi).
Here the intensity in one dimension is dependent on the offspring intensity of all other

dimensions. The offspring intensities can be dependent on the direction of the dimension.

For example, in a 2-dimensional Hawkes process, the offspring intensity from dimension 2 to

dimension 1 is not necessary equal to the offspring intensity from dimension 1 to dimension 2

(i.e. φ12 6= φ21). Thus, for d dimensions there are (at most) d2 different offspring intensities.

The density of the marks follows similarly. Let Hd,t describe the the collection of all points in

dimension d until time t, then the probability density of the mark in dimension d is described

in the most general case as

ρi(xi|ti,
d∑
j=1

Hj,ti). (5)

In this thesis, I will use the following model:

λi(t) = µi +
d∑
j=1

∑
ti<t

φij(t− ti|xi), (6)

that is, the immigrant intensity is homogeneous and specific to its dimension, and the off-

spring intensity is only dependent on the mark of the to be examined event.

Non-parametric Bayesian models are different from a non-parametric frequentist model.

Non-parametric frequentist models try to make as few assumptions on the form of the actual

model (in contrast to a parametric model, where the form of the model is set and the param-

eters are fitted to the data). The Bayesian method inherently requires model assumptions in

the prior distribution, so a non-parametric Bayesian model avoids assumptions on the data
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by modelling the data on an infinite-dimensional parameter space for a given problem. As

this is infeasible in reality, practical Bayesian non-parametric models only use a finite subset

of the infinite-dimensional parameter space. This infinite-dimensional parameter space con-

sists of a number of random functions or random measures (also called stochastic processes).

Typical processes include Gaussian processes, Dirichlet processes and beta processes, al-

though mixtures are also found. Orbanz & Teh (2010) provide a (somewhat dated) overview

of non-parametric Bayesian models. In this thesis I make use of a Laplace Bayesian Poisson

process, which can be seen as a specific type of Gaussian process.

2.2 Computational algorithm Multidimensional Gibbs-Hawkes

I propose the following Gibbs sampling algorithm, called Multidimensional Gibbs-Hawkes

(MGH). First, begin by initializing µi,0, φij,0, Σi,imm,0, Σij,0 and Σi,off,0 for all i, j ∈ D

randomly. Then, for hmax iterations, repeat:

• Sample a branching structure Bh from p(B|S, µh−1,φh−1) (equation (7))

• Calculate ω̂ and Q̂−1 from equations (22) and (23) for all i, j ∈ D

• Sample µi,h and φij,h from p(µi,h|Bh,S) (equation (11)) and p(φij|Bh,S) (equation 15)

for all i, j ∈ D

• Sample βi,h, Πij,h and Πi,h from p(βi|Σi,imm,h−1,xi) (equation (26)), p(Πij|Σij,h−1,xi)

(equation (31)) and p(Πi|Σi,off,h−1,xi) (equation (35)) for all i, j ∈ D

• Sample Σi,imm,h, Σij,h and Σi,off,h from p(Σi,imm|βi,h,xi) (equation (27)), p(Σij|Πij,h,xi)

(equation (32)) and (Σi,off |Πi,h,xi) (equation (36)) for all i, j ∈ D

The parameters can then be estimated using (for example) a quadratic loss functions by

taking the means of the samples after the sampler has reached convergence. Similar to

Zhang et al. (2019) I expect the estimated parameters to converge to the true parameters.

2.3 Conditional distribution of the branching structure

The branching structure (see figure 1 for an example) is unknown from the data and must be

estimated. I do this in a similar manner to Zhang et al. (2019)). First I denote the branching

structure as B (that is, B is defined as a set structured like in figure 1, with offspring events

starting from an immigrant) and the collection of all events as S (that is, S is defined as

the set of all events). Second, I assume that the triggering events are independent, allowing
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the the probability of the full branching structure to be the product of the probabilities of

triggering events:

p(B|S, µ, φ) =
∏
i,j∈S

pij,∀tj < ti (7)

where pij is the probability of event j triggering event i. With µj(ti) and φij(ti − tj|xj)
given, pij is explained as the ratio between the offspring intensity and the full intensity, i.e.

pij =
φij(ti − tj|xj)

µi(ti) +
∑d

k=1

∑
tl<tj

φik(ti − tl|xl)
, j ≤ i. (8)

To clarify, φij(ti− tj is the offspring intensity between event i and event j. The denominator

is the sum of all intensities; µi(ti) is the immigrant intensity of event i and the sum of all

offspring intensities across all dimensions d between event i and all events that happened

before event j. In short, it is the sum of all relevant intensities. The larger the intensity φij

relative to all other intensities, the more probable that event i was triggered by event j.

Similarly the probability of event i being an immigrant (called pi0) is the ratio between

the immigrant intensity and all other relevant intensities:

pi0 =
µi(ti)

µi(ti) +
∑d

k=1

∑
tl<tj

φik(ti − tl|xl)
, j ≤ i (9)

Thus, to sample a branching structure we sample for each ti whether it has a parent or is

an immigrant according to the probabilities pi0 and pij∀j < i (where it should be noted that

pi0 +
∑

j<i pij = 1). Doing this for all events gives us a branching structure conditional on

the intensities.

2.4 Conditional posterior of the immigrant intensity

The posterior distribution of the immigrant intensity is estimated similar to Zhang et al.

(2019) and adapted for a multidimensional case. First, let Sµ,d denote the set of all real

immigrants in dimension d. Second, assume that Sµ,d is generated by a homogeneous Poisson

process with intensity µd (the immigrant intensity in dimension d). Since the immigrants

are independently generated in each dimension, the Poisson likelihood for each dimension is

separate. Thus, given a set of events with event times ti over parameter space Ωd = [0, T ],

the Poisson likelihood for generating immigrants in dimension d is given as the following

probability:

p(Sµ,d|µd,Ωd) = e−µdT
(µdT )Nµ,d
Nµ,d!

, (10)

10



where Nµ,d is the number of immigrant events in Sµ,d. Next, we place a conjugate Gamma

prior (which causes the posterior to be Gamma distributed as well), such that µdT ∼
Gamma(αd, βd), which gives the posterior distribution of µd ∼ Gamma(αd + Nµ,d, βd + 1)

(see e.g. Fink (1997)). Similar to Zhang et al. (2019), by choosing αd = Nµ,d and βd = 1

such that the mean of the posterior is equal to Nµ,d and the variance as 2, we obtain the

posterior for the immigrant intensity:

p(µdT |Sµ,d, α, β) = Gamma(2N, 2) (11)

2.5 Conditional posterior of the offspring intensity

The posterior distribution of the offspring intensity is more involved than the immigrant

intensity due to the non-parametric setting. I model the posterior distribution of φij() as

a Laplace Bayesian Poisson process (similar to Zhang et al. (2019)). The Laplace Bayesian

Poisson process is detailed by Walder & Bishop (2017) and uses a Gaussian process prior.

Specifically, like Zhang et al. (2019) I use their covariance function for thin-plate semi-norms

on the hyper-cube. By choosing the Gaussian process (GP) as the prior, we can specify a

non-parametric setting. In a Gaussian process all sets of events across some finite parameter

space have a multivariate normal distribution. The Gaussian process then is the joint distri-

bution of the collection of all these multivariate normal distribution. In short, the Gaussian

process is a distribution of functions and measures the similarity between sets of events.

This is convenient since it doesn’t rely on assumining a model beforehand, thus avoiding

misspecifying the model.

Below is a general description of the Laplace Bayesian Poisson process, as given by Zhang

et al. (2019). As the Hawkes process require that the general intensity λ is non-negatively

valued, a deterministic link function is added, such that the prior over λ is defined as the

function composition λ = g ◦ f (i.e, a deterministic link function g ◦ f = g(f(x))), where

f ∼ GP (k) (a Gaussian process) and k is the covariance function for the Gaussian process.

Walder & Bishop (2017) use the permanental process for g, that is g(z) = 1
2
z2 for its

computational and analytical advantages over the more common exponential function for

g(z).

The covariance function k(x, y) = Cov(f(x), f(y)) (with x and y some dependent vari-

ables) can be written as a Mercer expansion (Mercer (1909))

k(x, y) =
K∑
i=1

ξiei(x)ei(y), (12)

11



where K = ∞ for non-degenerate kernels, ξi is some scalar and ei are chosen as orthonor-

mal eigenfunctions. This Mercer expansion has some convenient convergence properties for

positive semi-definite functions. This lets f be represented as a linear combination of the

eigenfunctions ei: f() = ω′e(), where ω has a Gaussian prior (that is, ω ∼ N (0,Ξ), with

Ξ = diag(ξ1, ξ2, . . . , ξK) as a diagonal covariance matrix) and e() = [e1(), e2(), . . . , eK()]
′

is

a vector of basis functions.

The posterior distribution of the intensity λ() is then equivalent to the posterior dis-

tribution of ω in the Laplace Bayesian Poisson process and is approximated by a normal

distribution (called a Laplace approximation (Rasmussen (2003))):

p(ω|X,Ω, k) ≈ N (ω|ω̂, Q), (13)

where X ∈ Rd is a dataset containing points in d dimensions, Ω is the d-dimensional sample

space, k is the kernel of the Gaussian process, ω̂ is selected as the mode of the true posterior

and Q is the negative inverse Hessian of the true posterior. Both ω̂ and Q are estimates.

Thus, to estimate λ, we can use this Laplace approximation, which is computationally simple.

Since the f() is ω multiplied by the eigenfunctions e(), the approximate posterior distribution

of f(t) is normally distributed, i.e.:

f(t) ∼ N (ω̂′e(t), e(t)′Qe(t)). (14)

Then, since λ = g ◦ f with g(z) = 1
2
z2, the posterior distribution of is given as

λ(t) ∼ Gamma(α, β) (15)

with hyper-parameters

α =
(ν2 + σ2)2

4ν2σ2 + 2σ4
(16)

and

β =
ν2 + σ2

2ν2σ2 + σ4
, (17)

where ν is the mean of f(t) (i.e. ν = ω̂′e(t)) and σ2 is the variance of f(t) (i.e. σ2 =

e(t)′Qe(t)).

The above process is a general description using the Laplace Bayesian Poisson process from

Walder & Bishop (2017). For the posterior distribution of φij() I apply the above process as

follows. Similar to Zhang et al. (2019), I assume that φij(t) = 1
2
f(t)2 and consider for the

GP distribution (over the sample domain [0, π]) the so-called cosine kernel by Zhang et al.
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(2019) (which is described in Walder & Bishop (2017) as a series expansion of the so-called

m-th order thin-plate spline semi-norm):

k(x, y) =
∑
γ≥0

ξγeγ(x)eγ(y), (18)

ξγ =
1

a(γ2)m + b
(19)

eγ(x) =
( 2

π

) 1
2
√

1/2
Iγ=0

cos (γx) (20)

where γ is a multi-index with non-negative (integer) values and Iγ = 0 is an indicator func-

tion, whose value is 1 if an index of γ is 0, and is valued 0 for any non-zero indices of γ.

a and b are parameters controlling smoothness and I set m = 2. In the experiments from

Zhang et al. (2019), a and b are set to 0.002. Furthermore they also recommend using 32

basis functions for γ, as this gives a suitable trade off between fitting accuracy and speed.

The above is a general description of the Laplace Bayesian Poisson process.

As I am examining a multi-dimensional marked Hawkes process, this next part is an ex-

tension of the Gibbs-Hawkes algorithm from Zhang et al. (2019). First I condition on the

branching structure by considering the aligned sequences. An aligned sequence is a set of

offspring events in dimension j that originate from some immigrant ti. Let Sti,j denote the

aligned sequence in dimension j generated by event ti. An aligned sequence is similar to a

branch from figure 1, but moves in only one direction dimensionally. For example, if im-

migrant ti is in dimension 1, then Sti,2 is the set that contains all offspring in dimension 2

that can be traced back to immigrant ti. Using figure 1, suppose that events t1 and t3 are

in dimension 1 and t2 and t4 are in dimension 2, then the aligned sequence St1,2 contains

events t1, t2 and t4. These aligned sequences are used in the log-likelihood of ω.

Secondly, to introduce a dependency on the marks, I define sti = (ti + 1
||xi||), a scalar with

the time of the event and the magnitude of its mark xi. As the unidimensional likelihood

from Zhang et al. (2019) was only dependent on time, this new scalar adds dependency on

the marks for the offspring intensity. Since the time between events is inversely related to

the offspring intensity, and that a larger magnitude should increase the offspring intensity,

I add the inverse of the magnitude so that a larger magnitude causes a larger intensity. I

take the magnitude to compensate for the (possible) different dimensions of the marks across

dimensions (since the immigrant might spawn events in other dimensions). The joint distri-

bution of ω and the set of all aligned sequences starting in dimension l, {Sti,j}l (note that
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the dimension of all immigrants ti in this set is l), is given by the log-likelihood

log p(ω, {Sti,d}l|Ωj, k) =
∑
{Sti,j}

{ ∑
∆s∈Sti

log
1

2
(ω′e(∆s))2 − 1

2

∫ T−ti− 1
||xi||

0

(ω′e(s))2ds
}

− 1

2
log[(2π)K |Ξ|]− 1

2
ω′Ξ−1ω,

(21)

where ∆s is (ti + 1
||xi||) − (tj + 1

||xj ||) with ti the immigrant event of sequence {Sti,j}l and

tj an offspring in the aligned sequence {Sti,j}l. The summation over {Sti,j is similar to

the likelihood used in Hawkes processes (see for example, equation (2) in Lewis & Mohler

(2011)). and the last two terms come from the normal distribution (see equation (7) in

Walder & Bishop (2017)). This joint distribution is then used to calculate the approximate

log-posterior of ω by using

ω̂ = argmax
ω

log p(ω, {Sti,d}l|Ωj, k) (22)

and

Q−1
il = −

∑
{Sti,j}

{ ∑
∆s∈Sti

2e(∆s)e(∆s)′

(ω̂′e(∆s))2
−
∫ T−ti− 1

||xi||

0

e(s)e(s)′ds
}

+ Ξ−1, (23)

with Ξ as a matrix with ξk on the diagonal. Optimizing equation (22) can be done using L-

BFGS (which was developed by Byrd et al. (1994), and is proposed by Zhang et al. (2019)).

An analytical expression of the integral in equation (23) can be found in appendix A.

With these equations we can then draw from equation (14) and estimate a conditional

intensity for φij() from the function composition λ = g ◦ f , that is, φij(t) = 1
2
f(t)2.

2.6 Conditional posterior of the marks

As the distribution of equation (5) is the most general case I make some assumptions for

simplicity, without reducing the practicality of the multidimensional marked Hawkes process.

The first assumption is that the immigrant and offspring distribution of the marks are dif-

ferent. Specifically, the distributions of the marks of immigrants are independent (i.e. ρd ∼
I.I.D.). Secondly, I assume that the distributions of the marks of offspring only depends on

its parent (i.e. ρd(xi|ti, (xj, tj)), where (xj, tj) is the parent of (xi, ti)), similar to Rasmussen

(2013).

In a practical application these assumptions are reasonable as some knowledge on the struc-

ture of the marks is usually present. For example, consider the ETAS earthquake models

where aftershocks are modeled as offspring of the earthquake (with the magnitude of the
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earthquake as mark). It is reasonable to assume that the magnitude of the aftershock is only

dependent on the earthquake that came before it. These assumptions on the structure of

the marks are not necessary, but the focus of this work is not on the most general case of

distributions of the marks.

2.6.1 Conditional posterior of the immigrant marks

For simplicity, I assume that the immigrant mark xd (a [m × 1] vector, similar to e.g. Em-

brechts et al. (2011)) has a standard normal distribution with unknown mean and variance.

Let xd = [x1d, x2d, . . . , xnd] be the collection of all N immigrant marks in dimension d. The

distribution is then xd ∼ N (µd,Σd,imm). I use a diffuse prior specification, where

p(µd|Σd,imm) ∝ 1, (24)

p(Σd,imm) ∝ |Σd,imm|−(m+1)/2, (25)

which is a degenerate inverted-Wishart prior. Then we have the conditional posterior dis-

tributions for βd and Σd,imm given as

p(µd|Σd,imm,xi) ∼ N
(
x̄d,Σd,imm), (26)

p(Σd,imm|xi) ∼ W−1
(
S, N

)
, (27)

where x̄d = 1/N
∑N

i=1 xdi and S = 1/N
∑N

i=1(xdi − x̄d)(xdi − x̄d)
′.

2.6.2 Conditional posterior of the offspring marks

First, I distinguish two cases: when an event has a parent in the same dimension, and

when an event has a parent in a different dimension. Since the amount of parameters can

be different across dimensions this distinction must be made. In the first case, I will use

a multivariate regression model, and in the second case I will use a vector autoregressive

model (or VAR model). Other models are possible and can be used when more is known

about the data generating process, but these two models are quite general. The first model

is described in Greenberg (2012), the second model is described in Schorfheide & Song (2015).

In the first case, let xi be a [l × 1] dimensional mark of the offspring in dimension i and xj

be a [m × 1] dimensional mark of the parent in dimension j. The multivariate regression

model is given by

xi = xjΠij + εi (28)
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where xi = (x1i, x2i, . . . , xni)
′ is a [n×m] matrix, xj = (x1j, x2j, . . . , xnj)

′ is a [n× l] matrix,

εi = (ε1, ε2, . . . , εn)′ is a [n ×m] matrix and Πij is a [l ×m] matrix of parameters. Further,

the error vector has a multivariate normal distribution (i.e. εi ∼ N (0,Σij), where Σij is

a [m ×m] covariance matrix). Then xi ∼ MN (xjΠij,Σij ⊗ In), which is a matricvariate

normal distribution.

Without assuming prior knowledge I use a diffuse prior specification, that is

p(Πij) ∝ 1 (29)

and

p(Σij) ∝ |Σij|−(k+1)/2, (30)

which is a degenerate inverted-Wishart prior. These give the following full conditional dis-

tributions:

p(Πij|Σij,xi) ∼MN
(
(x′jxj)

−1x′jxi,Σij ⊗ (x′jxj)
−1
)
, (31)

p(Σij|Πij,xi) ∼ W−1
(
(xi − xjΠij)

′(xi − xjΠij), n
)
, (32)

For the second case where the parent and offspring events are in the same dimension I

use a simple VAR(1) model. It can be written in a similar format as equation (28), where xd

is the [m×1] dimensional offspring mark of an event in dimension d, and xd,−1 is the [m×1]

dimensional mark of the parent (i.e. the lags). Then the VAR(1) model is given as

xd = xd,−1Πd + εi, (33)

where xd = (x1d, x2d, . . . , xnd)
′ is a [n × m] matrix with all the offspring marks, xd,−1 =

(1, x1d,−1, x2d,−1, . . . , xnd,−1)′ is a [n × (1 + m)] matrix with all the parent marks, εi =

(ε1, ε2, . . . , εn)′ is a [n×m] matrix and Πd = (α′d, φ
′
d)
′ is a [(1 + m)×m] matrix of parame-

ters. Here α′ is a [m × 1] vector of intercepts and φd is a [m ×m] matrix of autoregressive

parameters. The error vector has a multivariate normal distribution (i.e. εi ∼ N (0,Σd,off ),

where Σd,off is a [m×m] covariance matrix). Assuming no prior information, I use a diffuse

priors, that is a uniform distribution for Πd and Jeffreys’ prior for Σd,off :

p(Πd,Σd,off ) ∝ |Σd,off |−(m+1)/2. (34)

With these priors the parameters Πd have a matricvariate normal distribution and the

variance Σ has an inverted Wishart distribution:

p(Πd|xd,Σd,off ) ∼MN
(
(x′d,−1xd,−1)−1x′d,−1xd,Σd,off ⊗ (x′d,−1xd,−1)−1

)
, (35)

p(Σd,off |Πd,xd) ∼ W−1
(
(xd − xd,−1Πd)

′(xd − xd,−1Πd), n−m
)
. (36)

More details can be found in Schorfheide & Song (2015).
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3 Simulation study

In this section I describe the simulation study I run to study the proposed algorithm. First

I describe the data generating processes (DGP) I use. Then I describe the two non-Bayesian

algorithms (a parametric algorithm and a non-parametric algorithm) that I use to compare

the proposed algorithm to. Lastly I describe how I will evaluate the proposed algorithm.

3.1 Data Generating Processes

I simulate two data generating processes (DGP) to test the proposed algorithm on. The

first DGP uses exponential decays functions for the offspring intensities, and is a common

decay function for Hawkes processes. The second DGP I use power decay functions fot the

offspring intensities. To simulate the DGP I use a multivariate extension of Ogata’s modified

thinning algorithm (Daley & Vere-Jones (2003)), which is described in Liniger (2009).

For both simulations I consider a simple two-dimensional DGP. The DGP is sampled

on the time-frame t ∈ [0, 10]. One of the processes has a 3-dimensional mark, the other

has a 2-dimensional mark. The parameters for the DGPs are chosen such that the DGP

generates between 100 and 200 events. The first DGP uses exponential decay functions for

the offspring intensities, which have the form of

φ(t) = α exp (−βt).

The parameter α is given by the norm of the mark of the parent event (i.e. αij = ||xj,−1||
where xj,−1 is the mark of the parent). The marks for immigrants are drawn from a mul-

tivariate normal distribution. The marks for offspring are drawn using an autoregressive

model:

xi = γxj + ε,

where the regressor is the parent event and the dependent variable the child event and the

error ε is standard normally distributed (i.e. ε ∼ N (0, I). The exact parameters are as

follows:
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µ1(t) =2

µ2(t) =1.5

φ11(t) =||x1,−1|| exp (−5t)

φ12(t) =||x2,−1|| exp (−2t)

φ21(t) =0

φ22(t) =||x2,−1|| exp (−8t)

γ1 ∼N ((1, 2, 3)′, I)

γ2 ∼N (0, 2I)

γ11 : x1 =0.8x1,−1 + ε

γ12 : x1 =0.5x2 + ε

γ21 =0

γ22 : x2 =0.3x2,−1 + ε,

where in γ11, γ12 and γ22, x1,x1 and x2 are the marks of offspring and x1,−1 and x2,−1 are

the marks of their respective parents, ε ∼ N (0, I) and I is the identity matrix. Note that

the offspring intensity for φ12 = 0, meaning that there are no offspring events in dimension

2 whose parents are in dimension 1.

For the second DGP, I use power decay functions for the offspring intensities, which have

the form of

φ(t) = α(1 + b ∗ t)−β.

The idea for using power decay functions is that the parametric algorithm is expected to

have more trouble with this DGP. Similar to the first DGP, I choose α as the norm of the

mark of the parent event (i.e. αij = ||xj,−1|| where xj,−1 is the mark of the parent), and b
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and β are chosen. The exact parameters are as follows:

µ1(t) =2

µ2(t) =1.5

φ11(t) =||x1,−1||(1 + 2t)−2

φ12(t) =||x2,−1||(1 + 2t)−3

φ21(t) =||x1,−1||(1 + 2t)−1.5

φ22(t) =||x2,−1||(1 + 8t)−2

γ1 ∼N ((1, 2, 3)′, I)

γ2 ∼N (0, 2I)

γ11 : x1 =0.8x1,−1 + ε

γ12 : x1 =0.5x2 + ε

γ21 : x2 =2x1 + εγ22 : x2 = 0.3x2,−1 + ε,

where in γ11, γ12, γ21 and γ22, x1 and x2 are the marks of offspring, x1,−1 and x2,−1 are the

marks of their respective parents, ε ∼ N (0, I) and I is the identity matrix.

3.2 Algorithm evaluation

Since there are no equivalent Bayesian estimation methods for multi-dimensional marked

Hawkes processes, I will compare my algorithm to two non-Bayesian algorithms suited for

multidimensional Hawkes processes: a parametric exponential Hawkes model that is esti-

mated using maximum likelihood (that I will call Exp-ML and is similar to what can be

found in Embrechts et al. (2011)) and the MPLE algorithm from Lewis & Mohler (2011)

for non-parametric models. Both these algorithms are available in the tick package for

Python (Bacry et al. (2017)). The tick package is a library for machine learning techniques.

I specifically use the tick.hawkes module, which is a collection of algorithms for Hawkes

processes.

The MGH algorithm is programmed in Python. To optimize the log-likelihood, I use the

L-BFGS algorithm implemented in the SciPy package. The SciPy package is a Python li-

brary with a large collection of modules for scientific and technical computing. The L-BFGS

algorithm is found in the optimization module.

The Exp-ML algorithm uses the following model for the offspring intensities:

φij(t) = αijβij exp (−βijt). (37)
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It is important to note that in the implementation in tick requires that β is specified be-

forehand, and that the algorithm estimates α. I expect the Exp-ML algorithm to be thus

quite accurate for DGP 1 and less so for DGP 2. Since α is dependent on the norm of the

mark of the parent event, estimation of α is not straightforward however.

The MPLE algorithm is a non-parametric EM-algorithm from Lewis & Mohler (2011), that

specifies the following intensity for the Hawkes process:

λi = µi +
D∑
j=1

∫
φijdNj (38)

where D is the number of dimensions, µi is the immigrant intensity of dimension i, φij is

the offspring intensity of dimension j going to dimension i add Nj is the sum of events in

dimension j. The algorithm uses a maximum penalized likelihood estimation (MPLE) for the

maximization step. This maximum penalized likelihood maximizes the following equations:

n∑
i−1

pii log(µ(ti)) +

∫ T

0

µ(t)dt+ α1||(µ1/2)′||22 (39)

for the immigrant intensity with ≥ 0 and α1 a penalty parameter, and

n∑
i=2

i−1∑
j=1

(
pij log(φ(ti − tj))−

∫ T

tj

φ(t− tj)dt
)

+ α2||(1/2)′||22 (40)

for the offspring intensity with φ ≥ 0. This is done by solving an Euler-Lagrange equation

which maximizes the penalized likelihood which works quite efficient.

First, a dataset is simulated from the DGP. Next, the parameters are estimated using MGH,

the MPLE algorithm and the Exp-ML method. To compare the frequentist models to my

Bayesian model, and since the true DGP is known, I can take the squared distance over the

true parameters and estimated parameters by adapting the l2 distance from Zhang et al.

(2019):

d(g(t), ĝ(t)) =
(∫

Ω

(g(t)− ĝ(t))2dt
)1/2

, (41)

where g(t) is a function generating an intensity (i.e. g(t) is some φij(t)), ĝ(t) is the estimated

φ̂ij and Ω is the parameter space). In this case, Ω = [0, 10]. Additionally I plot the estimated

intensities of φij of all the algorithms against the true offspring intensity.
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4 Results simulation study

This section discusses the results of the simulation study. First I present discuss the key

findings of the simulation study on the MGH algorithm. Then I discuss for both simulations

a comparison between the true and estimated offspring intensity by MGH with regard to both

time since previous event and the mark of the previous event. I compare the the true and

estimated offspring intensities of both MGH and the benchmarks next for both simulations.

Then I discuss the l2 distances for both simulations. Then I discuss the estimates on the

parameters on the marks for both simulations.

4.1 Key findings

For the proposed algorithm to work, I must set some parameters. The first are for ξγ in

the cosine kernel (from equation (19)), where I set m = 2, a = b = 0.002. To improve

computation speed, I set 8 basis functions for γ. This is lower than the 32 basis functions

Zhang et al. (2019) used, but computation time proved quite significant, hence my choice for

less basis functions. The basis functions are 0, 1, . . . , 7. I also choose to run 5000 iterations,

of which the first 1000 are discarded as burn-ins. A full list of all events can be found in

appendix D.

One of the main results of Zhang et al. (2019) is that the Gibbs-Hawkes algorithm has linear

computational complexity (meaning that the computation time increases linearly with the

number of datapoints). It is important to note that this is due to using Halpin’s procedure

(in Halpin (2012)). Halpin’s procedure is used to reduce the computational complexity of

Expectation-Maximization type algorithms for Hawkes processes. It does so by dividing the

data into branches and treating each branch as an independent Poisson process. They then

introduce a missing value to denote to which specific branch an event belongs to and estimate

this missing value using an Expectation-Maximization algorithm. As Halpin’s procedure is

for Expectation-Maximization type algorithm, I did not use it, thus I cannot guarantee the

linear computational complexity of MGH.

The first conclusion from the simulation study is that the algorithm works well in estimating

the offspring intensities compared to the benchmarks. Especially going from the l2 distances,

the MGH algorithm performs sometimes better and sometimes worse than the benchmarks.

The graphs also show that the MGH algorithm is able to give feasible estimates. A solution

to obtain better estimates is to use more basis functions for γ (i.e. 32 instead of the 8 used

in the simulation study), but this increases computation time.
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Secondly, Gibbs-Hawkes and MGH rely on numerically optimizing the likelihood to find

ω̂ from equation (22). This is very time consuming, and took 99.98% of computation time of

a single iteration. Although runtime cannot be directly compared across systems, running

the datasets of the simulation study took eight hours, whereas runtime on the benchmarks

was near instantaneous.

Lastly, in the simulation setup there were not enough datapoints to find good estimates

for the mark parameters. Although they are not the focus of this thesis, I will note that

more datapoints in each dimension than used in this thesis should be used for improved

results.

4.2 Relation between time and marks offspring intensity

In this section I discuss the relation between the offspring intensity, time (in seconds) and the

norm of the mark of the previous event, which I show in a 3-d surface plot. I compare this

relation for the true offspring intensity to the estimated offspring intensity, first for dataset

1 and then for dataset 2.

4.2.1 Dataset 1

Figure 2: Relation between offspring intensity φ11, time in seconds and the norm of the mark

of the previous event for dataset 1

(a) Surface plot of the true offspring intensity φ11.
(b) Surface plot of the MGH estimated offspring

intensity φ11.

Note: surface plots of the relation between time, the marks and the offspring intensities On the x-axis is the time in seconds,

on the y-axis the norm of the mark of the parent, and on the z-axis the offspring intensity φ11

The first dataset is generated using exponential decay functions for the offspring inten-
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sities. The offspring intensity is dependent on both the norm of the mark of the parent and

the β-parameter. First, in figure 2b the MGH estimate somewhat follows the curved shape

of the true offspring intensity in figure 2a. The true offspring intensity shows a linear relation

between the norm of the mark of the parent event, which the MGH algorithm does not show.

A reason for this could be the lack of data on smaller marks (whith norms < 0.5). Another

more likely reason could be that in the log-likelihood from equation (21) I use s instead of

t, and the norm of the mark means that there is never a small time difference.

Another difference is the height of the peak of the true offspring intensity, which is three

times higher than the estimated intensity. The same explanation is possible here; the es-

timated intensities are not high enough for small time differences, but this becomes lesser

with larger time differences. For example, the estimated offspring intensity in figure 2b at

t = 0.5 is about equal to the true offspring intensity in 2a at t = 0.5. It is again possible

that there are not enough events with such small time differences.

Figure 3: Relation between offspring intensity φ12, time in seconds and the norm of the mark

of the previous event for dataset 1

(a) Surface plot of the true offspring intensity φ12.
(b) Surface plot of the MGH estimated offspring

intensity φ12.

Note: surface plots of the relation between time, the marks and the offspring intensities On the x-axis is the time in seconds,

on the y-axis the norm of the mark of the parent, and on the z-axis the offspring intensity φ12

A similar thing can be seen in in figure 3b. The relation to the norms is not quite linear,

and the estimated offspring intensity is much lower compared to the true offspring intensity

at smaller time differences. This figure estimate is worse compared to the estimate for φ11.
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Figure 4: Relation between offspring intensity φ21, time in seconds and the norm of the mark

of the previous event for dataset 1

(a) Surface plot of the true offspring intensity φ21.
(b) Surface plot of the MGH estimated offspring

intensity φ21.

Note: surface plots of the relation between time, the marks and the offspring intensities On the x-axis is the time in seconds,

on the y-axis the norm of the mark of the parent, and on the z-axis the offspring intensity φ21

MGH was unable to adequately detect that the true offspring intensity φ21 is 0. Although

the estimates go to zero quickly with larger time differences, it is not exactly zero, as is seen

in figure 4b.
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Figure 5: Relation between offspring intensity φ22, time in seconds and the norm of the mark

of the previous event for dataset 1

(a) Surface plot of the true offspring intensity φ11.
(b) Surface plot of the MGH estimated offspring

intensity φ22.

Note: surface plots of the relation between time, the marks and the offspring intensities On the x-axis is the time in seconds,

on the y-axis the norm of the mark of the parent, and on the z-axis the offspring intensity φ22

The shape in figure 5b is very different from the true shape in figure 5a. The true relation

is a smooth curve, but 5a behaves more wavelike. Here the non-near-zero estimates are also

off for larger time differences (say t > 1). Again, the MGH estimates are lower than the true

offspring intensities for small time differences.
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4.2.2 Dataset 2

Figure 6: Relation between offspring intensity φ11, time in seconds and the norm of the mark

of the previous event for dataset 2

(a) Surface plot of the true offspring intensity φ11.
(b) Surface plot of the MGH estimated offspring

intensity φ11.

Note: surface plots of the relation between time, the marks and the offspring intensities On the x-axis is the time in seconds,

on the y-axis the norm of the mark of the parent, and on the z-axis the offspring intensity φ11

The estimated results are similar to those in dataset 1. The clearly linear relation between

offspring intensity and the norm of the mark of the previous event in figure 6a is not seen

in the estimate in figure 6b, and the height is also about three times lower for small time

differences and large norms of the marks of the previous event.
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Figure 7: Relation between offspring intensity φ12, time in seconds and the norm of the mark

of the previous event for dataset 2

(a) Surface plot of the true offspring intensity φ12.
(b) Surface plot of the MGH estimated offspring

intensity φ12.

Note: surface plots of the relation between time, the marks and the offspring intensities On the x-axis is the time in seconds,

on the y-axis the norm of the mark of the parent, and on the z-axis the offspring intensity φ12

The linear relation between the norm of the mark of the previous event is even less

present in figure 7a compared to figure 7b, and there is a much sharper drop in the relation

between time and the offspring intensity. A reason could be due to the shape of power decay

functions having a sharper drop, but difference is quite large.
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Figure 8: Relation between offspring intensity φ21, time in seconds and the norm of the mark

of the previous event for dataset 2

(a) Surface plot of the true offspring intensity φ21.
(b) Surface plot of the MGH estimated offspring

intensity φ21.

Note: surface plots of the relation between time, the marks and the offspring intensities On the x-axis is the time in seconds,

on the y-axis the norm of the mark of the parent, and on the z-axis the offspring intensity φ21

This time the estimated offspring intensity in figure 8a is closer in height in figure 8b

compared to previous figures. Instead of a curved shape the estimate is more a peak. It

is possible that the estimated offspring events in this dimension only had large norms and

little time between previous events, and that more data could solve this.
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Figure 9: Relation between offspring intensity φ22, time in seconds and the norm of the mark

of the previous event for dataset 2

(a) Surface plot of the true offspring intensity φ22.
(b) Surface plot of the MGH estimated offspring

intensity φ22.

Note: surface plots of the relation between time, the marks and the offspring intensities On the x-axis is the time in seconds,

on the y-axis the norm of the mark of the parent, and on the z-axis the offspring intensity φ22

For φ22 the true offspring intensity has a large drop when time increases (as seen in 9b),

which is not captured by the estimates from MGH. Again the shape of the surface in 9a

shows a wave-like pattern that does not approach the shape of the true offspring intensity.

4.3 Comparison to benchmarks

To compare the benchmarks against the MGH algorithm I plot the true and estimated

offspring intensities for each case. Each plot shows the offspring intensity of φij over time in

seconds on the interval [0, 10]. First I discuss the first dataset and then I discuss the second

dataset.
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4.3.1 Dataset 1

Figure 10: Offspring intensities over time (seconds) on [0, 10] for dataset 1

(a) True and estimated offspring intensities φ11

on [0, 10].

(b) True and estimated offspring intensities φ12

on [0, 10].

(c) True and estimated offspring intensities φ21 on

[0, 10].

(d) True and estimated offspring intensities φ22

on [0, 10].

The offspring intensities over time. For each figure, the blue line is the true offspring intensity, the orange line is the estimated

offspring intensity by the MPLE algorithm (labeled EM in the legend), the green line is the estimated offspring intensity by

the Exp-ML algorithm and the red line is the estimated offspring intensity by the MGH algorithm. On the x-axis is the time

in seconds and on the y-axis is the offspring intensity.

In figure 10 the offspring intensities are plotted over time. It can here clearly be seen

that the Exp-ML algorithm performs very similar to the true algorithm, especially in figure

10a. Similarly, due to the model in equation (37), the estimates when β = 0 is also straight-

forward. It does underestimate the offspring intensity in figure 10b, and overestimates the

offspring intensity in figure 10d.

The MPLE algorithm performed worse in all figures. The main reason is that it is not
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accurately able to detect the parent-child combinations (i.e. when events happen in the

graphs). For example, in figure 10a, two events happen before t = 1 (as seen by the blue

peaks), but the MPLE estimate is 0. It does however give better estimates in the heights of

the offspring intensity compared to MGH. It also overestimated the number of events from

dimension 1 to dimension 2 (seen in figure 10c)

The MGH algorithm is generally able to detect the correct parent-child combinations ex-

cept from dimension 1 to dimension 2 (figure 10c), and is worse than the MPLE algorithm.

Additionally, the offspring intensity estimates are too low for all figures. One possible reason

could be that MGH overestimated the immigrant intensity (see table 3 in the next section),

which could cause the offspring intensities to be too low since this will overestimate the

number of immigrants in that dimension. This will in turn cause the number of parent-child

combinations to be lower, hence the worse estimates.
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4.3.2 Dataset 2

Figure 11: Offspring intensities over time (seconds) on [0, 10] for dataset 2

(a) True and estimated offspring intensities φ11

on [0, 10].

(b) True and estimated offspring intensities φ12

on [0, 10].

(c) True and estimated offspring intensities φ21 on

[0, 10].

(d) True and estimated offspring intensities φ22

on [0, 10].

Note: the offspring intensities over time. For each figure, the blue line is the true offspring intensity, the orange line is the

estimated offspring intensity by the MPLE algorithm (labeled EM in the legend), the green line is the estimated offspring

intensity by the parametric ML algorithm and the red line is the estimated offspring intensity by the MGH algorithm. On the

x-axis is the time in seconds and on the y-axis is the offspring intensity.

The comparison of offspring intensities to the benchmarks is given in figure 11. In this

dataset, where the true intensity is given by power decay functions, you can see that Exp-

ML clearly performs much worse. It underestimates the height of the offspring intensity in

figures 11a, figure 11b and in figure 11d it estimated no events. Furthermore it seems unable

to respond correctly to events happening.

Similar performance as in the first dataset is seen for the MPLE algorithm. It estimated

no events in figure 11c. It gave better estimates for the offspring intensity in figure 11b,
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but gave similar estimates in the other figures. It also did not seem to correctly guess when

events happened.

The effect of the shape of the estimated surface in figure 8b can be seen in figure 11c.

Here MGH correctly estimates the height when events happen, but the offspring intensity

drops off too quick. It clearly performs better than MPLE and Exp-ML. MGH does again

underestimate the offspring intensity in the other figures. Again MGH overestimated the

immigrant intensity for dimension 2 as seen in table 4 in the next section. It does show a

much better response to events happening than the benchmark algorithms.

4.4 l2 distances of the algorithms

In this section I compare the l2 distances from equation (41) for each algorithm. First for

dataset 1, then for dataset 2.

4.4.1 Dataset 1

Table 1: l2 distance of offspring intensities for dataset 1. The lowest distances are in bold.

φij MGH MPLE Exp-ML

φ11 5.802 6.929 6.494

φ12 7.545 12.874 4.303

φ21 4.285 13.203 0

φ22 6.211 5.430 12.417

Despite that the height of the peaks in figure 10 is too low for MGH, looking at the l2

distances from equation (41) shows that MGH does perform quite well. The results are given

in table 1. The MGH algorithm shows good performance, especially compared to the MPLE

algorithm, and there are no cases where the l2 distance is particularly high.
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4.4.2 Datset 2

Table 2: l2 distance of offspring intensities for dataset 2. The lowest distances are in bold.

φij MGH MPLE Exp-ML

φ11 6.104 7.704 7.979

φ12 7.028 8.425 7.155

φ21 6.699 7.892 4.204

φ22 5.564 4.541 4.596

From table 2 the performance of MGH is reflected in the l2 distances. MGH outperforms

both MPLE and Exp-ML in the first two dimensions, whilst Exp-ML performs better for

φ21 and MPLE performs better for φ22. MGH give similar values for the l2 distances.

4.5 Posterior means of the marks

In this section I discuss the posterior means of the marks, again first for dataset 1 and second

for dataset 2.

4.5.1 Dataset 1

The lack of events in any of the categories for the offspring marks is a problem for estimating

the parameters for the marks. Posterior means for Π21 are missing because there were not

enough parent-child combinations for this dimension, and thus not enough events could be

used to make a prediction. The posterior variance for all mark parameters is high and most

posterior means are either insignificant or unreasonable. Hence tables with the posterior

means of the mark parameters can be found in appendix B.1.

The exception to this is table 3. This contains the MGH posterior means for the im-

migrant intensities µ1 and µ2. From the posterior The posterior means for the parameters

of the marks are given in tables 5 to 14. The immigrant mark parameters are close for

dimension 1, but are overestimated for dimension 2. This could also affect the estimation of

the offspring intensities, as discusses earlier in section 4.3.

12 to 14)
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Table 3: Posterior mean and variance µ1 and µ2

True parameter Posterior mean Posterior variance

µ1 2 2.761 0.421

µ2 1.5 16.044 0.979

4.6 Dataset 2

The same problems for estimations for the parameters for the marks in dataset 1 are present

in the estimates for dataset 2. Again the variance for the offspring marks is too high to make

any conclusions on the estimates. All the estimates are given in appendix B.2. Table 4 gives

the posterior means of the immigrant intensities µ1 and µ2. The posterior mean for both µ1

and µ2 are worse than for dataset 1. Similarly, the posterior mean for µ1 is much closer to

the true value than µ2. It might also affect the estimation of the offspring intensities similar

to dataset 1..

Table 4: Posterior mean and variance µ1 and µ2

True parameter posterior mean posterior variance

µ1 2 3.156 0.586

µ2 1.5 17.932 1.024

5 Conclusion

In this thesis I expanded the Gibbs-Hawkes algorithm made by Zhang et al. (2019) to allow

non-parametric Bayesian inference for multidimensional marked Hawkes processes. I adapted

the algorithm (called Multidimensional Gibbs-Hawkes) by adapting the log-likelihood to use

the norm of the marks in order to account for the influence of the marks on the offspring

intensity.

Simulations have shown that the Multidimensional Gibbs-Hawkes algorithm performs some-

times better and sometimes worse to two benchmark algorithms. It is able to account for

different offspring intensity kernels due to the non-parametric nature as well when the off-

spring intensity kernel is related to the marks of the events.

However, due to the unreasonably long computation time compared to the benchmarks,
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it is not a practical algorithm to use. Especially when using more basis functions, the com-

putation time is not really worth the slightly better results compared to the benchmark.

Either a faster numerical optimization scheme or a different way to optimize ω is needed to

make this algorithm better for practical use. This would be the best direction for improving

the MGH algorithm in further research.

Another problem is that the algorithm consistently underestimates the offspring intensity

and overestimates the immigrant intensity. This causes the algorithm to assign more events

as immigrants in sampling the branching structure, which in turn causes an increase in the

immigrant intensity. It is possible that more data improves these estimates, but further

research could go into the relation between the marks and the time. More specifically, how s

and ∆s are calculated for the log-likelihood in equation (21) can be an interesting avenue for

further research into different forms of this relation. This could also help improve situations

with a very small time difference and large norms of the parent marks.

References
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Poulsen, Søren V. 2017. Tick: a Python library for statistical learning, with an em-

phasis on hawkes processes and time-dependent models. The Journal of Machine Learning

Research, 18(1), 7937–7941.

Byrd, Richard H, Nocedal, Jorge, & Schnabel, Robert B. 1994. Representa-

tions of quasi-Newton matrices and their use in limited memory methods. Mathematical

Programming, 63(1-3), 129–156.

Carstensen, Lisbeth, Sandelin, Albin, Winther, Ole, & Hansen, Niels R. 2010.

Multivariate Hawkes process models of the occurrence of regulatory elements. BMC bioin-

formatics, 11(1), 456.

Daley, Daryl J, & Vere-Jones, David. 2003. An introduction to the theory of point

processes: volume 1. Springer Science & Business Media.

36



Donnet, Sophie, Rivoirard, Vincent, & Rousseau, Judith. 2019. Nonparametric

Bayesian estimation of multivariate Hawkes processes. To appear in Annals of Statistics,

arXiv:1802.05975.

Embrechts, Paul, Liniger, Thomas, & Lin, Lu. 2011. Multivariate Hawkes processes:

an application to financial data. Journal of Applied Probability, 48(A), 367–378.

Fink, Daniel. 1997. A compendium of conjugate priors.

http://www.people.cornell.edu/pages/df36/CONJINTRnew%20TEX.pdf, 46.

Greenberg, Edward. 2012. Introduction to Bayesian econometrics. Cambridge University

Press.

Halpin, Peter F. 2012. An EM algorithm for Hawkes process. Psychometrika, 2.

Hawkes, Alan G. 1971. Spectra of some self-exciting and mutually exciting point pro-

cesses. Biometrika, 58(1), 83–90.

Hill, David P, Pollitz, Fred, & Newhall, Christopher. 2002. Earthquake-volcano

interactions. Physics Today, 55(11), 41–47.

Lewis, Erik, & Mohler, George. 2011. A nonparametric EM algorithm for multiscale

Hawkes processes. Journal of Nonparametric Statistics, 1(1), 1–20.

Lewis, Erik, Mohler, George, Brantingham, P Jeffrey, & Bertozzi, An-

drea L. 2012. Self-exciting point process models of civilian deaths in Iraq. Security

Journal, 25(3), 244–264.

Linderman, Scott W, & Adams, Ryan P. 2015. Scalable Bayesian inference for exci-

tatory point process networks. arXiv Preprint.

Liniger, Thomas Josef. 2009. Multivariate Hawkes processes. Ph.D. thesis, ETH Zurich.

Mercer, James. 1909. Xvi. functions of positive and negative type, and their connection

the theory of integral equations. Philosophical transactions of the royal society of London.

Series A, containing papers of a mathematical or physical character, 209(441-458), 415–

446.

Ogata, Yosihiko. 1988. Statistical models for earthquake occurrences and residual analysis

for point processes. Journal of the American Statistical association, 83(401), 9–27.

37



Ogata, Yosihiko. 1998. Space-time point-process models for earthquake occurrences.

Annals of the Institute of Statistical Mathematics, 50(2), 379–402.

Orbanz, Peter, & Teh, Yee Whye. 2010. Bayesian Nonparametric Models. Encyclo-

pedia of machine learning.

O’Hagan, Anthony. 2004. Bayesian statistics: principles and benefits. Frontis, 31–45.

Rambaldi, Marcello, Bacry, Emmanuel, & Lillo, Fabrizio. 2017. The role of

volume in order book dynamics: a multivariate Hawkes process analysis. Quantitative

Finance, 17(7), 999–1020.

Rasmussen, Carl Edward. 2003. Gaussian processes in machine learning. Pages 63–71

of: Summer School on Machine Learning. Springer.

Rasmussen, Jakob Gulddahl. 2013. Bayesian inference for Hawkes processes. Method-

ology and Computing in Applied Probability, 15(3), 623–642.

Schorfheide, Frank, & Song, Dongho. 2015. Real-time forecasting with a mixed-

frequency VAR. Journal of Business & Economic Statistics, 33(3), 366–380.

Simma, Aleksandr, & Jordan, Michael I. Modeling events with cascades of Pois-

son processes. Proceedings of the Twenty-Sixth Conference on Unvertainty in Artificial

Intelligence, 546–555.

Veen, Alejandro, & Schoenberg, Frederic P. 2008. Estimation of space–time

branching process models in seismology using an EM–type algorithm. Journal of the

American Statistical Association, 103(482), 614–624.

Walder, Christian J, & Bishop, Adrian N. 2017. Fast Bayesian intensity estimation

for the permanental process. Pages 3579–3588 of: Proceedings of the 34th International

Conference on Machine Learning-Volume 70. Journal of Machine Learning Research.

Zhang, Rui, Walder, Christian, Rizoiu, Marian-Andrei, & Xie, Lexing. 2019.

Efficient Non-parametric Bayesian Hawkes processes. Pages 4299–4305 of: Proceedings of

the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19).

ICJAI.

38



A Integral of the log-likelihood

The computation of the integral in the log-likelihood in equation (21) is similar to the

derivation found in appendix A of Zhang et al. (2019).The notation is slightly different for

ti and ||xi||:

= −1

2

N∑
i=1

∫ (T )

0

f 2(s)d(s)

= −1

2

N∑
i=1

∫ (T−ti− 1
||xi||

)

0

( K∑
k=1

ωkek(s)
)2
d(s)

= −1

2

N∑
i=1

K∑
k=1

K∑
k′=1

ωkωk′

∫ (T−ti,||xi||)′

0

ek(s)ek′(s)d(s)

= −1

2

N∑
i=1

ω′Ukk′ω

With ek(x) =
(

2
π

) 1
2√

1/2
Iγ=0

cos (γx) we get

ek(x)ek′(x) =
1

π

√
1/2

Ik−1=0
√

1/2
Ik′−1=0 ×

[
cos
(
(k − 1)x− (k′ − 1)x

)
+ cos

(
(k − 1)x+ (k′ − 1)x

)]
.

The matrix Ukk′ , with k = 1, 2, . . . , has following elements:

U1,1 =

∫ T−ti− 1
||x||

0

1

π
d(s) =

T − ti − 1
||xi||

π

Uk>1,1 =U1,k′>1 =

√
2

π(k − 1)
sin
[
(k − 1)(T − ti −

1

||xi||
)
]

Uk,k(k>1) =
1

π

[
T − ti −

1

||xi||
+

1

2(k − 1)
sin
(
2(k − 1)(T − ti −

1

||xi||
)
)]

Uk,k′(k 6=k′) =
[
π
(
(k − 1)2 − (k′ − 1)2

)]−1

×
[
(k − 1) sin

(
(k − 1)(T − ti −

1

||xi||
)
)

cos
(
(k′ − 1)(T − ti −

1

||xi||
)
)

− (k′ − 1) cos
(
(k − 1)(T − ti −

1

||xi||
)
)

sin
(
(k′ − 1)(T − ti −

1

||xi||
)
)]

Similarly the integral in equation (23) is the same as calculating −
∑N

i=1 U
(i)
kk′ .

B Posterior means for the marks

The posterior means for the marks are given in this appendix.
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B.1 dataset 1

Posterior means immigrant marks mean 0.645 2.102 3.059

Table 5: Posterior means dataset 1: mean immigrant marks dimension 1

Posterior means immigrant marks mean 1.169 1.159

Table 6: Posterior means dataset 1: mean immigrant marks dimension 2

0.271 0.0167 0.0399

Posterior means variance immigrant marks dimension 1 0.0167 0.235 0.033

0.0399 0.033 0.188

Table 7: Posterior means dataset 1:s variance immigrant marks dimension 1
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Posterior means variance immigrant marks dimension 1 0.0646 0.047

0.047 0.062

Table 8: Posterior means dataset 1: variance immigrant marks dimension 2

0.829 -0.180 -0.130

Posterior means Π1 0.811 -0.0678 -0.737

0.074 0.180 0.911

Table 9: Posterior means dataset 1: for Π1 from equation (31)

B.2 Dataset 2
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Posterior means for Π12 -0.389 0.059 0.100

0.773 0.556 0.656

Table 10: Posterior means dataset 1: for Π12 from equation (35)

Posterior means for Π2 -0.346 0.107

0.054 0.108

Table 11: Posterior means dataset 1: for Π2 from equation (31)

6543.94 304.071 2385.809

Posterior means for Σ1 304.071 17288.929 10123.555

2385.809 10123.555 8584.739

Table 12: Posterior means dataset 1: for Σ1 from equation (32)

3.993 2.901 4.326

Posterior means for Σ12 2.901 9.587 12.949

4.326 12.949 21.552

Table 13: Posterior means dataset 1: for Σ12 from equation (36)

Posterior means for Σ2 7.140 6.007

6.007 7.087

Table 14: Posterior means dataset 1: for Σ1 from equation (32)

Posterior means immigrant marks mean 1.083 1.531 2.437

Table 15: Posterior means dataset 2: mean immigrant marks dimension 1

Posterior means immigrant marks mean 1.079 1.144

Table 16: Posterior means dataset 2: mean immigrant marks dimension 2

0.148 0.023 0.030

Posterior means variance immigrant marks dimension 1 0.023 0.234 0.083

0.030 0.083 0.167

Table 17: Posterior means dataset 2: variance immigrant marks dimension 1
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Posterior means variance immigrant marks dimension 1 0.047 0.036

0.036 0.0486

Table 18: Posterior means dataset 2: variance immigrant marks dimension 2

0.454 0.602 -0.862

Posterior means Π1 0.489 2.085 -0.855

0.166 -0.305 0.941

Table 19: Posterior means dataset 2: for Π1 from equation (31)

Posterior means for Π12 -0.387 0.090 0.141

0.769 0.534 0.629

Table 20: Posterior means dataset 2: for Π12 from equation (35)

Posterior means for Π2 -0.331 0.128

0.037 0.099

Table 21: Posterior means dataset 2: for Π2 from equation (31)

9080.584 6570.586 9619.308

Posterior means for Σ1 6570.586 11140.455 11847.319

9619.308 11847.319 21190.766

Table 22: Posterior means dataset 2: for Σ1 from equation (32)

4.099 2.904 4.314

Posterior means for Σ12 2.904 9.658 12.955

4.314 12.955 21.482

Table 23: Posterior means dataset 2: for Σ12 from equation (36)

Posterior means for Σ2 7.187 6.049

6.049 7.128

Table 24: Posterior means dataset 2: for Σ1 from equation (32)
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