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Abstract

This paper tries to find a reliable early warning system for tail risk. To do this we forecast Value

at Risks of real and financial variables. The forecasts are made through autoregressive models which are

estimated through linear regression, lineair quantile regression and quantile regression forests. Furthermore

we investigate the impact of extending the models through the addition of factors. These factors are

extracted from a large data set through principal components analysis and partial least squares regression.

Last, we combine the indivual model forecasts through equally weighted pools to find out its possibly added

value.
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1 Introduction

This research is based on the paper ‘Forecasting Tail Risks’ by De Nicolò & Lucchetta (2017). The informal

definition of tail risk is the possibility of large loss due to an extremely rare event. An example of such an event

is the financial crisis in 2008. As the financial crisis has had a tremendous impact, it would be useful to create

an Early Warning System (EWS) for similar future events. For this reason De Nicolò & Lucchetta (2017) try

to come up with such a model. The difficulty lies in creating an EWS that is reliable. The feature that makes

an early warning system reliable is its out-of-sample forecasting performance. For this research we implement

the same methods and models as De Nicolò & Lucchetta (2017) and extend them to try to find a model that

generates reliable early warnings.

A standard risk measure that has been widely used is Value at Risk (VaR). De Nicolò & Lucchetta (2017)

propose autoregressive models and factor-augmented autoregressive models to forecast the Value at Risks of

indicators of real activity and financial stress. Just like De Nicolò & Lucchetta (2017) we use the methods

linear regression and quantile linear regression to generate VaR forecasts. As an extension, this research adds

quantile regression forests to those methods.

We consider several autoregressive models that differ in the sense that the forecasts are done iterated or

direct, whether a rolling or an expanding window is applied and whether the models are extended through the

addition of factors. De Nicolò & Lucchetta (2017) extract these factors from a large dataset using Principal

Components Analysis (PCA). As an extension to this, this research also uses Partial Least Squares (PLS)

regression to extract factors from the data and find out if there is a significant difference between the methods.

Besides the individual model forecasts, we also analyse the impact of Equally Weighted Pools (EWPs) which

generate Value at Risks forecasts that are averages of the Value at Risks forecasts generated by individual

models.

Through comparing all models we aim on becoming acquainted with: which estimation method is preferable

(linear regression, quantile linear regression or quantile regression forests), whether the addition of factors to

the autoregressive models gives a significant improvement, and whether EWP forecasts are superior to those

generated by individual models. Through this acquired knowledge we try to answer the research question:

“Can we find a model or several models that can deliver reliable early warning signals of tail real and financial

risk?”

Using a data set of monthly US data ranging from January 1973 to December 2014 we find a few main

results. First, factor-augmented models can give forecasts that are more accurate than the models without

factors, however, this is variable dependent. Furthermore, adding factors seems to improve the quantile models

to a larger extent than the models estimated through linear regression. Using PCA or PLS does in general not

give significantly different forecasts. However, in combination with quantile models, PLS seems to be preferred

over PCA. Second, combining the models through an EWP equals, or even improves the predictive ability of

the individual models in the pool. Third, the linear regression method is preferable for most cases compared
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to the two quantile estimation methods. However, for one particular financial variable we find that quantile

forest regression strongly outperforms the other methods.

The remainder of the article is organized as follows. Section 2 discusses previously written literature on this

topic. Section 3 describes the data that has been used. Section 4 discusses the models, methods and forecasting

evaluation tools. section 6 concludes, and Section 7 gives some final comments and discusses possible future

research. The Appendix provides supporting information in the form of extra Tables and Figures.

2 Literature review

This research is mainly based on the article of De Nicolò & Lucchetta (2017) ‘Forecasting tail risks’. They

propose several methods for forecasting tail risks, this section explains the reasoning behind choosing these

particular methods and extensions to these methods based on previously published literature.

However, theoretical aspects of tail risks have been discussed by Acemoglu et al. (2017), they do not forecast

them. De Nicolò & Lucchetta (2017) propose linear regression and quantile linear regression for the estimation

of autoregressive models and factor-augmented autoregressive models for forecasting tail risks. Autoregressive

models are among the most commonly used in the field of macroeconomic time series introduced by Akaike

(1969). The key idea of an autoregressive model is to regress the response variable on its own previous

observations. However, adding factors extracted from a large data set might improve the autoregressive models

as additional economic information could be relevant to modeling the dynamics of the tail risk indicators. Stock

& Watson (2006) find that factor models with many predictors have a superior predictive ability. De Nicolò

& Lucchetta (2017) make those factors through the well-known PCA method. Although the idea of PCA had

already been acknowleged in traditional statistics, it has become more popular thanks to Stock & Watson

(2002). Another method, however, for factor extraction is PLS regression. Groen & Kapetanios (2016) find

that when the factor structure in the data gets weak PLS outperfroms PCA. In empirical research on a large set

of monthly U.S. macroeconomic data set they find that PLS usually gives a better out-of-sample performance.

De Nicolò & Lucchetta (2017) measure the tail risks by means of Value-at-Risk (VaR). This is by far the

most popular measure of downside risk. Taken from van Os & van Dijk (2020) VaR is the maximum value that

will not be exceeded over a given time period with a probability (1− α). The other way around it is also the

minimum value that could occur over a given time period with a specified probability α. Using the autoregressive

models the one-day VaR at (1 − α) can be estimated based on normal density. A crucial assumption for this

way of estimating VaR is that the values of the variable of interest have the same distribution. As Value at

Risk is a quantile α of the distribution of the variable of interest, it can also be estimated in ‘one step’ through

quantile linear regression of the autoregressive model and factor-augmented autoregressive model. Quantile

autoregressive models do not require the knowledge of the underlying distribution which could be a potential

advantage (Komunjer, 2013). An alternative to quantile linear regression is quantile regression forest. This is a

quantile version of the random forests that were introduced by Breiman (2001). This is a machine learning tool

that has gained great popularity throughout the years. Quantile regression forests have been designed to take
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the advantages of quantile linear regression and random forests to predict quantiles. To my knowledge there

is no generally known literature yet on using quantile forests for estimating Value at Risk of a macroeconomic

time series. The use of EWPs of the individual models is based on Geweke & Amisano (2011) who find that

simple pooled forecasts are superior for first moments. We are interested if this result also extends to the

quantiles of a predicted distribution.

3 Data

The data used in this research is retrieved from the database of the ‘Journal of Applied Econometrics’. It is

monthly U.S. data that ranges from January 1973 until December 2014 (504 months). The datafile consists of

a total of 164 macroeconomic series which are divided into nine groups. Except for 36 macroeconomic series

that are retrieved from DataStream and one variable that is retrieved from the FRED Chicago website, the

rest of the series are retrieved from the FRED-MD database. The series were retrieved from these platforms

including all revisions known at that date. After obtaining the data we transform it, transformation codes and

their explanation can be found in the Appendix (Table A1).

3.1 Tail risk measures

From the 164 macroeconomic variablese, we use five macroeconomic variables (IPG, EMG, CDI, BDI and

DNFCI) to measure tail risk. The tail risk measures are VaRs of these five variables. As stated in Section 2,

VaR is the minimum value that could occur over a given time period with a specified probability. We only

consider the probability level 5% (α = 0.05). Descriptive statistics and transformation of these five variables

can be found in Table A1 in the Appendix.

IPG and EMG are indicators of real activity. The VaRs of those variables will be used as measures of tail

real risk. The variable IPG is the log change in the industrial production index. The industrial production

index is a monthly economic indicator “measuring real output in the manufacturing, mining, electric and gas

industries (Industrial Production Index (IPG), n.d.)”. EMG is the log change in total employment. A defining

characteristic of the log change is that it represents the percentage change.

CDI, BDI and DNFCI are indicators of financial stress. The VaRs of those variables will be used as measures

of tail financial risk. ’DI’ in CDI ad BDI stands for distance-to-insolvency (DI). In short, DI is the ratio of the

firms’ leverage over the asset volatility. A negative percentage corresponds with the firm being in debt. The

DI ratio gives the decrease in asset value that would make the firm insolvent, measured in units of the firms

asset standard deviation. CDI and BDI are portfolio versions of DI which have been introduced by Atkeson et

al. (2017). CDI and BDI are respectively the DI of a value-weighted portfolio of the corporate sector and the

banking sector. Summarizing, CDI and BDI can be interpreted as the lower bound of the chance on insolvency

of respectively the entire corporate and banking sector.

DNFCI is the negative first difference in the National Financial Condition Index (NFCI). The NFCI has

been produced by the Federal Reserve Bank of Chicago ans is a weekly updated index on “financial conditions
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in money markets, debt and equity markets and the traditional and “shadow” banking systems (National

Financial Conditions Index (NFCI), n.d.)”. The NFCI serie ranges from January 1973 until December 2013

for a total of 492 observations. As DNFCI is NFCI’s first difference this variable ranges from February 1973

until December 2013 for a total of 491 observations.

4 Methodology

De Nicolò & Lucchetta (2017) propose several models and methods for forecasting the five tail risk measures

which are elaborated on in this section. An important part of the research is to perform every estimation and

forecast pseudo real time. This implies that on time i we can only make use of the data known until time i.

Furthermore, we use two window-based forecasting schemes: a rolling window of 120 months and an expanding

window starting from 120 months. We compute the forecasts at a 3-month, 6-month, and 12-month horizon.

An overview of all models is given in Table A2 in the Appendix. This Table also reports the EWPs, which

are the average forecasts of the forecasts generated by the individual models in the pool. Finally, this section

elaborates on scores and tests used for forecast evaluation.

4.1 Autoregressive models

This section will elaborate on all implemented autoregressive models estimated through linear regression. We

consider, autoregressive (AR) models (4.1.1) which deliver direct and iterated forecasts, factor-augmented au-

toregressive (FAAR) models (4.1.2), which generate direct forecasts and factor-augmented vector autoregressive

(FAVAR) models (4.1.3) which create iterated forecasts.

4.1.1 AR models

In an AR model, the dependent variable is described by a regression model that includes only its own lagged

observations. An AR model of order p (AR(p)) can be written as:

yt = β0 + β1yt−1 + · · ·+ βpyt−p + εt. (1)

In which β0 is a constant, β1, ..., βt−p are (unknown) parameters and εt is white noise with zero mean and

constant variance σ2. From this equation you could state that the observation yt is related to the p previous

observations, however this is a bit misleading as there is actually a dependence between yt and all its past

observations. The forecasts created by this model are made in an iterated or in a direct way. We also make

use of two different forecasting windows, this gives a total of four individual AR models, all of them have five

lags (p = 5). (See Table A2).

Direct Based on Marcellino et al. (2006), direct forecasts are made using a horizon-specific estimated model,

where the dependent variable is the multi-period ahead value being forecasted. The model generating direct
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forecasts is given by the following equation:

yt+fh = β0 + β1yt + β2yt−1 + β3yt−2 + β4yt−3 + β5yt−4 + εt+fh. (2)

In which fh represents the forecasting horizon (fh = 3, 6 or 12). The variance is estimated in-sample.

Example: First window (1 : 120) and 3-month forecasting horizon To give an illustration we

consider the following example for a 3-month forecasting horizon and the first estimation window (1 : 120). For

this window we regress the vector (y8, . . . , y120)′ on a matrix consisting of a column of ones and five vectors

with its lagged valued (y5, . . . , y117)′ until (y1, . . . , y112)′. Such that, for example, y50 will be regressed on a

constant, y47, y46, y45, y44 and y43. In this way we estimate the model in Equation 2 and retrieve estimated

parameters b0, . . . , b5 for β0, . . . , β5. To get the forecasted value ŷ123 we fill in the values y120, . . . , y116 in the

estimated model:

ŷ123|120 = b0 + b1y120 + b2y119 + b3y118 + b4y117 + b5y116 (3)

We retrieve the forecasted value σ̂123|120 through taking the root mean squared error of the estimated model.

This is the root of the variance of the residuals. Subsequently we generate the VaRα as:

V aRα(yt+fh|t) = ŷt+fh|t + σ̂t+fh|tF
−1(α). (4)

In which F−1(α) is the inverse Gaussian cumulative distribution function (cdf) which is equal to −1.645 for

α = 0.05. Furthermore fh is the forecasting horizon and t is the last observation of the current window.

Shift variables Note that, as the shift variables IPG, EMG and DNFCI represent monthly changes, we

need to adjust them to get their realized values. Instead of regressing the original variable on its lagged values,

we regress the realized variable on the lagged values of the original variable. The adjusted versions of the

original variable differ for each forecasting horizon and can be computed as:

yrealized,t = yt + yt−1 + · · ·+ yt−fh+1. (5)

Note that for DNFCI we take the negative sum as this variable is a negative first difference. Thus for the shift

variables, the model generating direct forecasts can be written as:

yrealized,t+fh = β0 + β1yt + β2t−1 + β3yt−2 + β4yt−3 + β5yt−4 + εt+fh. (6)

As we regress the realized variable, the model also automatically returns a ‘realized’ version of the variance.

Iterated In contrast to direct forecasts, iterated forecasts are made using a one-period ahead model (Equa-

tion 1) and subsequently iterated forward for the desired number of periods (Marcellino et al., 2006). For all

iterated forecasts we introduce a GARCH(1,1) specification to account for time-varying volatility.
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Example: First window (1 : 120) and 3-month forecasting horizon To illustrate, we take the first

window (1 : 120) and a 3-month forecasting horizon as an example. We estimate a model by regressing the

vector (y6, . . . , y120)′ on a matrix containing a vector of ones and five vectors containing the lagged values of y:

(y5, . . . , y119)′ until (y1, . . . , y116)′. We retrieve a model with estimated parameters b0, b1, . . . , b5 for β0, . . . , β5

in Equation 1 (for p = 5). To get the value ŷ123, we first need to estimate y122 and y121 through the estimated

model and then plug in those values to get ŷ123:

ŷ123|120 = a+ b1ŷ122|120 + b2ŷ121|120 + b3y120 + b4y119 + b5y118. (7)

Thus for every estimation window we (re-)estimate the model, and predict fh values for y instead of only one

directly as done with direct forecasting. The estimated variance is retrieved through a GARCH(1,1) model:

σ2
t = ω + ασ2

t−1 + βε2t−1. (8)

For forecasting the volatility through the GARCH(1,1) model we make use of the following equations:

σ̂2
t+1|t = ω + ασ2

t + βε2t ,

σ̂t+fh|t = ω + (α+ β)σ̂t+fh−1|t.
(9)

We compute the VaRα as in Equation 4.

Shift Variables Again we need to take note of the fact that the variables IPG, EMG and DNFCI represent

monthly changes. For the iterated forecasts, we use the original variables as response variable, but we still need

to make a slight adjustion. To get the forecast of the realized variable instead of the original variable, we add

up all one-period ahead forecasts and get the multi-period forecasts:

ŷrealized,t+fh|t = ŷt+fh|t + ŷt+fh−1|t + · · ·+ ŷt+1|t

σ̂2
realized,t+fh = σ̂2

t+fh + σ̂2
t+fh−1 + · · ·+ σ̂2

t+1.
(10)

Note that, to get ŷrealized,t+fh|t for DNFCI, we take the negative sum of the one-period ahead forecasts as

this variable is the negative first difference. To get σ̂2
adjusted,t+fh for DNFCI we take the positive sum as in

Equation 10, due to V ariance(A−B) = V ariance(A) + V ariance(B), assuming no (or little) correlation. We

compute the VaRα as

V aRα(yt+fh) = ŷadjusted,t+fh|t + σ̂realized,t+fh|tF
−1(α). (11)

4.1.2 FAAR models

The factor-augmented autoregressive (FAAR) model generates direct forecasts, which means the same ‘rules’

apply to the shift variables IPG, EMG and DNFCI as described in the ‘Direct’ section in 4.1.1. A FAAR model

of order p can be specified as:

yt+fh = α+β1yt+ · · ·+βpyt−p+1 +γ1,1f1,t+ · · ·+γ1,pf1,t−p+1 + · · ·+γk,1fk,t+ · · ·+γk,pfk,t−p+1 +εt+fh. (12)
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In which fi,t is the value of factor i at time t, α is a constant and β1, . . . , γk,p are (unknown) parameters. Or

shorter as:

yt+fh = α+ βp(L)yt + γ1,p(L)f1,t + · · ·+ γk,p(L)fk,t + εt, (13)

or

yt+fh = α+ βp(L)yt + Γp(L)Ft + εt. (14)

In which L is the lag operator and βp(L) = (β1 +β2L+β3L
2 + · · ·+βp−1L

p), Γp(L) =
[
γ1,p(L) . . . γk,p(L)

]
and Ft =

[
f1,t . . . fk,t

]′
.

4.1.3 FAVAR models

In this section we use multivariate time series model instead of a univariate time series model as in section

4.1.1 and 4.1.2. There are a few reasons for using a multivariate time series model according to Wang (2020).

We might be able to provide a better forecast with additional information on closely related variables. We

are able to examine the dynamic relationship between several variables and furthermore, ignoring relationships

with other variables may give rise to complications in univariate modelling. For this reasons we consider factor-

augmented vector autoregressive (FAVAR) models. As the FAVAR model generates iterated forecasts we need

to apply the same ‘rules’ for the shift variables IPG, EMG and DNFCI as described in the ‘Iterated’ section in

4.1.1. A FAVAR model of order p is set up as follows:

Ft+1

yt+1

 = A(1)

Ft
yt

 + · · ·+A(d)

Ft−p+1

yt−p+1

 +

ηt+1

εt+1

 . (15)

Where the volatility of y again follows a GARCH(1,1) process (Equation 8 and 9). Note again that the iterated

volatility and y forecasts of the shift variables IPG, EMG and DNFCI need to be summed as in Equation 10

to get the multi-period forecasts. The VaRα for these variables is then again computed as Equation 11.

4.2 Quantile projections

This section elaborates on quantile autoregressive (QAR) models (4.2.1) and on factor-augmented (FAQAR)

models (4.2.2) that generate forecasts using quantile linear regression.

4.2.1 QAR models

In contrast to the autoregressive models described in previous section 4.1, which are estimated through least

squares regression, QARs are estimated using quantile linear regression. Least squares regression, on the one

hand, wants to model the conditional mean of the response variable, and quantile regression, on the other hand,

models the conditional α-th quantile of the response variable for some value of α ∈ (0, 1). In this research

we are interested in forecasting the VaRα for a value of α = 0.05, which is the 0.05-th quantile. The α-th

conditional quantile function of yt+fh can be written as:

Q(α|yt, . . . , yt−p+1) = β0(α) + β1(α)yt + · · ·+ βp(α)yt−p+1, (16)
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based on Koenker & Xiao (2006). Note that the AR models delivering direct forecasts can be seen as a special

case of the QAR model by setting βi for i = 1, . . . , p to a constant. Note too, that for the shift variables IPG,

EMG and DNFCI we thus need to apply the rules as described in the ‘Direct’ section in 4.1.1.

The parameter vector β(α) minimizes

1

T − fh

T−fh∑
t=1

ρα(yt+fh − β0(α)− β1(α)yt − · · · − βp(α)yt−p+1), (17)

where fh is the forecasting horizon of interest and ρα(u) defines a loss function:

ρα(u) =

 uα u ≥ 0

u(1− α) u < 0.
(18)

The forecast generated by the QAR model of order p is thus given by

Qα(yt+fh) = V aRα(yt+fh) = b0(α) + b1(α)yt + · · ·+ bpyt−p+1. (19)

In which b0(α), . . . , bp(α) are estimated parameters of β0, . . . , βp in Equation 17.

4.2.2 FAQAR models

Adding factors to QAR models gives factor-augmented quantile autoregressive (FAQAR) models. We get these

models by taking (1, yt, . . . , yt−p+1, f1,t, . . . , fk,t−p+1) as regressor variables in Equation 16 and 17 instead of

(1, yt, . . . , yt−p+1). The loss function is still defined as in Equation 18. For the FAQAR models we again need

to take into account that the sift variables IPG, EMG and DNFCI need to be adjusted as described in the

‘Direct’ section in 4.1.1.

4.3 Factor extraction methods

This section describes how the two factor extraction used in this research work. The essence of most factor

methods is that a few factors, summarizing a large set of data, are used in forecasting equations.

4.3.1 Principal Component Analysis

The most well-known method for factor extaction is Principal Component Analysis (PCA). For this research,

PCA finds a linear combinations of the 164 variables that are uncorrelated and have maximum variance. PCA

can be applied on the correlation matrix or on the covariance matrix. De Nicolò & Lucchetta (2017) choose to

use the correlation matrix. To be able to compare results we do so too. Let

V̂ =
1

T

T∑
t=i

(Xt − X̄)(Xt − X̄)′ (20)

denote the (N ×N) sample covariance matrix of Xt = (X1t, X2t, . . . , XNt)
′. Where X̄ = 1

T

∑T
t=1Xt, note that

for our data N = 164 and T = 504. Then the i-th principal component is the linear combination fit = e′iXt

that maximizes Variance(fit) = e′iV̂ ei subject to the constraint e′iei = 1 and Cov(fit, fjt) = e′iV̂ ej = 0 for
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j = 1, . . . , i−1. Note that the solution ei to the maximization problem is an eigenvector of V̂ . Each eigenvector

of matrix V̂ corresponds to an eigenvalue (constant) λi such that V̂ ei = λiei. The sum of the eigenvalues is

equal to the total variance of Xt and the fraction λi∑N
j=1 λj

is the fraction of the total variance in Xt explained

by the i-th principal component. If (λ1, ei), . . . , (λN , eN ) are the eigenvalues-eigenvector pairs of V̂ , then they

are ordered such that λa ≥ λ2 ≥ · · · ≥ λN ≥ 0. This implies that the first principal component explains the

largest part in the total variance in Xt after which the second principal component follows and so on.

We make use of this fact when selecting the number of factors to add to the model. We either select

five factors to add or the number of factors is determined according to the AH selection criterion (Ahn &

Horenstein, 2013). The AH selection criterion selects the number of factors that maximizes the ratio of two

sequential eigenvalues arranged in descending order. As we have seen that the factor corresponding to the

largest eigenvalue explains the greatest part of the variation in the data.

4.3.2 Partial Least Squares

A more unknown alternative of factor extraction is Partial Least Squares (PLS) regression. Both methods

construct new variables, known as factors or components, as linear combinations of a large data set. However,

there is a main difference between PCA and PLS. PLS also takes the response variable into account, whereas

PCA does not. PLS asssumes that the response variable is directly depending on the set of 164 variables.

Linear, orthogonal combinations of the set of 164 variables are made such that the covariance between the

response variable and the factors is maximized.

Again we either select five factors to add to the model or we use a similar selection procedure as the

AH selection criterion: dividing the percentages of variance explained in the data set of 164 series X and

subsequently maximizing this ratio gives us the number of factors to add.

4.4 Quantile regression forests

As an alternative to quantile linear regression which is the method used for estimating the Quantile Autoregres-

sive and factor-augmented Quantile Autoregressive models, we consider quantile regression forest (Meinshausen,

2006). This section will shortly explain this method.

The quantile regression method in section 4.2 is solved by optimizing the parameters such that the the

loss function in Equation 18 is minimized. However, the quantile regression forest method does not directly

use this loss function but is based on the random forest method (Breiman, 2001). The main idea of random

forests is that it grows an ensemble of trees, using independent observations of the predictor variables and

the response variable. A defining characteristic of regression trees are its splitpoints. For each tree and node,

the random forests use randomness for splitpoint selection, which the name of the method reveals. The main

difference between quantile forests and random forests is that random forests, for each node in each tree, only

keep the mean of the observations that fall into the node and ignores all other information. In contrast, quantile

regression forests does not only keep the wanted quantile but keeps the value of all observations in this node
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and in this way it assesses the conditional distribution based on all observations. The mathematical notation

is as follows (Meinshausen, 2006):

F (y|X = x) = P (Y ≤ y|X = x) = E(I(Y ≤ y)|X = x)|X = x) (21)

is the conditional distribution function of Y given X = x, which is subsequently estimated as:

F̂ (y|X = x) =

n∑
i=1

wi(x)I(Yi ≤ y). (22)

Where wi(x) = k−1
∑k
t=1 wi(x, θt), where k is the number of trees, each constructed with an idenpendent and

identically distributed vector θt.

4.5 Forecast evaluation

To analyse the forecasts we make use of two score functions. We consider the quantile score (QS) and quantile-

weighted probability score (QWPS) (Gneiting & Ranjan, 2011). The scoring rules are set up such that a

lower score indicates a better performance. Consequently we can rank the forecasting methods and test if they

significantly differ from each other by means of a Diebold Mariano (DM) test.

Quantile score To assign a quantile score to forecast F−1(α) for y we use the following equation:

QS(F−1(α), y, α) =

 2(1− α)(F−1(α)− y) y ≤ F−1(α)

−2α(F−1(α)− y) y > F−1(α),
(23)

where the forecast F−1(α) is a VaRα forecast. The quantile score can be interpreted as the corresponding loss

of an under- or overprediction.

Quantile-weighted probability score The quantile score assigns weight w(α) = 1 to the all values of

asymmetry parameter α ∈ (0, 1). However, this may not represent realistic assumptions on actual costs

corresponding to the loss. In our case, as we are interested in the Value at Risk forecasts (for α = 0.05), we

will focus on the left tail. Gneiting & Ranjan (2011) propose a quantile weigthed version of the continuous

ranked probability score as:

QWPS(f, y) =

∫ 1

0

QS(F−1(α), y)w(α)dα (24)

Gneiting & Ranjan (2011) propose a few weight functions w(α). For emphasis on the left tail, as we wish, they

propose w(α) = (1 − α)2. Note that we cannot compute the QWPS for the VaR forecasts generated through

quantile linear regression nor quantile regression forests as these methods require an input of α. To compute

the QWPS, we approach the integral in Equation 24, by using the 2-nd until the 99-th value of a vector with

100 evenly spaced values between 0 and 1.
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Diebold Mariano test The Diebold Mariano test is used to compare the predictive ability of two forecasts.

The DM test statistic is computed as:

DM =
d̄√
σ̂2
d/T

, (25)

where d̄ represents the sample mean of the difference between two scores dt = (QS1,t − QS2,t) or dt =

(QWPS1,t − QWPS2,t) and σ̂2
d represents the variance of dt. T is the number of forecasts, and is equal

to 382, 379 or 373 for the 3-, 6- and 12-month forecasting horizon respectively. Except for the variable DNFCI,

the values of T are 371, 368 and 362 respectively. Under the null hypothesis of equal performance, the DM

statistic is asymptotically N(0, 1) distributed. As this is a two-sided test, we reject the null hypothesis of equal

predictive performance at a (1 − α) confidence interval if |DM | > zalpha/2. For α = 0.05, zalpha/2 is equal to

1.96.

5 Results

5.1 Results for (factor-augmented) AR models

Table A3 in the Appendix gives the average left tail QWPSs of the four individual AR models, the two EWPs of

the AR models, the eight individual factor-augmented AR models1 and the two EWPs of the factor-augmented

AR models. Thus in total it reports the results for sixteen individual AR models and four EWPs. According

to pair-wise DM test, the models with the yellow marks are the models with superior predictive ability for that

particular variable and forecasting horizon. The other bold values indicate that this particular model does not

significantly differ from the best (yellow-marked) model in that column. We consider the AR models and the

factor-augmented AR models seperately. From Table A3 there is no ultimate type of estimation window, way

of forecasting, number of AR lags or number of factors that stands out to be preferable for all variables and

horizons. However, for some variables the way of forecasting (direct or iterated) is dominating. For example

for the factor-augmented AR models, we find that for the variables EMG, CDI and BDI the direct forecasts

are dominating and for DNFCI iterated forecasts are dominating. This is in line with Marcellino et al. (2006)

and Pesaran et al. (2011) who find that direct or iterated forecasts may be preferred depending on the variable

and forecasting horizons. Table 1 reports the ratios of the QWPSs of the best individual factor-augmented

AR model over the best individual AR model. In this case ‘best’ means that the forecast generated by this

particular model gives the lowest average QWPS. Ratios in bold indicate that a pair-wise DM test of equal

predictive ability has been rejected. Illustrating, a bold ratio less than one indicates that the best individual

factor-augmented AR model for the particular variable and horizon is strictly better than the best individual

AR model.

From Table 1 we can conclude that for the variables CDI and BDI a factor-augmentation of the AR model

does not improve their forecasts as the ratios are greater than one. For half of these cases a DM test proves

1Throughout the Results section, the name ‘factor-augmented AR’ models is used as a general name for the FAAR and FAVAR

models.
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Table 1: Ratios of average left tail QWPSs of best FA(V)AR models over average left tail QWPSs of best AR models

Horizon

Variable 3 months 6 months 12 months

IPG 0.91 0.91 0.92

EMG 0.84 0.81 0.88

CDI 1.03 1.02 1.03

BDI 1.02 1.04 1.05

DNFCI 0.95 0.95 0.99

Bold ratios indicate a rejection of equal performance at 5%.

the difference between the models is significant.

For the rest of the variables IPG, EMG and DNFCI we find ratios less than one, indicating the best factor-

augmented model gives a lower average QWPS than the best AR model without factors. For EMG we even find

that for all horizons the best factor-augmented AR model is strictly better than the best AR model without

factors. We can thus conclude that adding factors to the AR models improves the model for certain variables

and horizons.

To analyse the gain of using EWPs over individual AR models we set up Table 2 which consists of four

subtables. Table 2(a) reports ratios of QWPSs of the best AR EWP over the average QWPSs of the best

individual AR model. Table 2(b) reports ratios of the average QWPSs of the best FA(V)AR EWP over

the average QWPSs of the best individual factor-augmented AR model. Table 2(c) reports ratios of average

QWPS of the worst AR EWP over the average QWPS of the worst individual AR model. Table 2(d) reports

ratios of the average QWPSs of the worst FA(V)AR EWP over the average QWPSs of the worst individual

factor-augmented AR model.

From Table 2(a) and 2(b) we can conclude that an EWP does not necessarily improve the predictive

performance compared to the best individual models as most ratios are equal to one or greater than one.

However there are only few cases where equal predictive performance is actually rejected. There are even a few

cases where ratios are less than one indicating that the best EWP for the corresponding horizon and variable

gives even a lower QWPS than the best individual model. For BDI and a 12-month forecasting horizon, the best

EWP of factor-augmented AR models (FAAR D) is strictly better than the best individual factor-augmented

AR model (FAAR D 5 EW).

From Subtable 2(c) and 2(d) we can conclude that the worst EWP is always strictly better than the worst

individual AR or factor-augmented AR model. The only exception applies to variable BDI and a 3-month

forecasting horizon in Subtable 2(c). For this case the worst individual AR model (AR D RW) and the worst

EWP (AR I) are not proven to be signficantly different.

Thus from Table 2 the worst EWPs strictly outperform the worst individual model. Compared to the best

individual models EWPs are not proven to perform significantly different. Considering this finding we have a

closer look at the EWPs. Table 3 gives the DM statistics of pair-wise DM tests between the four EWPs of AR

and factor-augmented AR models.
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Table 2: Ratios of average left tail QWPSs of best (factor-augmented) AR EWP over average left tail QWPSs of

best individual (factor-augmented) AR.

Horizon Horizon

Variable 3 months 6 months 12 months Variable 3 months 6 months 12 months

IPG 1.00 1.02 1.04 IPG 0.99 1.05 1.06

EMG 1.01 1.01 1.01 EMG 0.98 0.97 0.98

CDI 1.03 1.03 1.03 CDI 1.02 1.03 0.99

BDI 1.00 1.00 1.02 BDI 1.01 1.00 0.96

DNFCI 0.98 1.00 1.04 DNFCI 0.97 0.97 1.04

(a) Best AR EWP versus best AR (b) Best FA(V)AR EWP versus best FA(V)AR

Horizon Horizon

Variable 3 months 6 months 12 months Variable 3 months 6 months 12 months

IPG 0.97 0.96 0.94 IPG 0.93 0.89 0.90

EMG 0.96 0.94 0.91 EMG 0.96 0.96 0.95

CDI 0.97 0.96 0.94 CDI 0.94 0.92 0.86

BDI 0.99 0.98 0.95 BDI 0.92 0.88 0.84

DNFCI 0.87 0.93 0.91 DNFCI 0.79 0.84 0.81

(c) Worst AR EWP versus worst AR (d) Worst FA(V)AR EWP versus worst FA(V)AR

Bold ratios indicate a rejection of equal performance at 5%.

Table 3: Pair-wise DM statistics of left tail QWPSs of EWPs of AR and factor-augmented AR models

Horizon 3 months 6 months 12 months

Variable Model AR I AR D FAAR D AR I AR D FAAR D AR I AR D FAAR D

AR D 5.65 5.85 3.42

IPG FAAR D -2.49 -4.41 -1.54 -4.42 -1.71 -4.63

FAVAR I -1.17 -3.55 2.32 -1.66 -5.14 -0.13 -0.67 -3.37 0.94

AR D 2.66 2.88 3.26

EMG FAAR D -3.87 -4.19 -4.04 -4.72 -3.15 -4.60

FAVAR I 0.95 0.62 5.60 1.04 0.58 5.35 1.61 1.03 4.30

AR D 0.83 1.00 0.57

CDI FAAR D 1.77 0.80 2.50 1.25 -0.04 -0.69

FAVAR I 4.03 3.53 2.79 4.97 4.35 3.40 5.64 6.29 5.77

AR D 0.22 -1.88 -4.01

BDI FAAR D 2.21 1.35 0.32 2.34 -2.17 1.26

FAVAR I 5.72 5.81 4.94 4.53 5.84 4.59 4.90 7.56 6.60

AR D 8.50 9.38 5.22

DNFCI FAAR D 3.27 -1.80 3.71 -3.08 1.13 -2.46

FAVAR I -0.89 -6.97 -6.88 -0.98 -6.27 -4.84 -0.26 -4.46 -1.60

Bold ratios indicate a rejection of equal performance at 5%

A negative and significant (in bold) DM statistic implies the EWP in the corresponding row performs

strictly better than the EWP in the corresponding column. The results differ among the variables, however for

each variable we can see quite the same patterns for each forecasting horizon.

For the real variables IPG and EMG we see that for each horizon FAAR D strictly dominates AR D. For
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both variables the FAAR D model also generates better forecasts than, or no significantly different forecasts

than AR I and FAVAR I.

For the financial variables CDI and BDI the forecasts generated by the FAVAR I EWP is clearly out-

performed by the other EWPs. For BDI, this is in line with the paper by De Nicolò & Lucchetta (2017).

Furthermore, in the paper, CDI and BDI are the only variables for which the FAAR D EWP strictly outper-

forms the direct EWP without factors (AR D) for every horizon. We find this too.

For the financial variable DNFCI, it seems that the iterated forecasting method with GARCH volatility is

dominating. For all forecast horizons the models AR I and FAVAR I deliver strictly better forecasts than AR

D. Furthermore, for the 3- and 6-month forecasting horizons AR I and FAVAR I also outperform FAAR D.

There is no significant difference between FAVAR I and AR I, however the FAVAR I forecasts have slightly

lower average QWPSs.

5.2 Results for (factor-augmented) Quantile Projections

Table A4 in the Appendix reports the average QSs of the two individual QAR models, the six individual

factor-augmented QAR models, an EWP of the QAR models and an EWP of the factor-augmented QAR

models.

First we consider the impact of adding factors to the individual QAR models. From Table A4 it seems that

again, for the variables IPG, EMG and DNFCI the factor-augmented models are preferable and for variable

CDI the models without factors are peferable. For BDI there seems to be no clear preference. Table 4 gives

the ratios of the QS of the best individual FAQAR model over the QS of the best individual QAR model for

each variable and horizon.

Table 4: Ratios of QSs of best QAR models over QSs of

best FAQAR models

Horizon

Variable 3 months 6 months 12 months

IPG 0.82 0.81 0.79

EMG 0.88 0.74 0.85

CDI 1.18 1.12 1.09

BDI 1.20 0.99 1.14

DNFCI 0.62 0.64 0.73

Table 5: Ratios of average QSs of FAQAR EWPs over

average QSs of QAR EWPs

Horizon

Variable 3 months 6 months 12 months

IPG 0.85 0.84 0.88

EMG 0.77 0.81 0.90

CDI 1.20 1.15 1.17

BDI 1.11 1.07 0.95

DNFCI 0.64 0.65 0.66

Bold ratios in the tables above (left and right) indicate a rejection of

equal performance at 5%

From Table 4 we can confirm that the addition of factors to the individual QAR models indeed strictly

improves the forecasting ability for each horizon for the real variables IPG and EMG and the financial variable

DNFCI. The extent to which the QAR models are improved through the addition of factors compared to the

AR models is even greater. For the other financial variables CDI and BDI, however, we find that the best QAR

model without factors is better than, or not significantly different from the best FAQAR models.
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Just like for the AR models we find that the best individual models only for a few cases significantly

outperform the best EWPs, and again from the other point of view, the worst EWP significantly outperfoms

the worst individual model. Ratios supporting this are given in Table A5 in the Appendix.

Ratios of QSs of FAQAR EWPs over QSs of QAR EWPs are given in Table 5. The FAQAR EWP

significantly outperforms the QAR EWP for the financial variable DNFCI and the real variables IPG and

EMG. The 12-month forecasting horizon for EMG is the only exception. However for the financial variable

CDI we find that the QAR EWP is strictly better than the FAQAR EWP. As we have found similar results

for the individual models (Table 4) and considering the observations of previous section, we recommend using

EWPs. we will from now on particularly focus on the EWPs.

5.3 Comparing (factor-augmented) AR and (factor-augmented) QAR models

Table 6 compares the FAQAR EWPs and the best factor-augmented AR EWPs (FAAR D or FAVAR I) for

the corresponding variable and forecasting horizon by dividing their average quantile scores.

Table 6: Ratios of average QSs of FAQAR EWPs over

average QSs of best FA(V)AR EWPs

Horizon

Variable 3 months 6 months 12 months

IPG 1.00 1.02 1.01

EMG 1.16 1.27 1.31

CDI 1.07 1.11 1.00

BDI 1.11 1.05 1.26

DNFCI 1.22 1.20 1.11

Bold ratios indicate a rejection of equal performance at 5%.

All ratios in Table 6 are greater than one, indicating factor-augmented AR EWP forecasts get lower average

quantile scores than FAQAR EWP forecasts. However, for the variable IPG, the DM test indicates that there is

no significant difference between the FAQAR EWPs and best factor-augmented AR EWP for all horizons. For

the variable EMG, on the other hand, there clearly is. For CDI and BDI it seems better to not add factors. For

this reason we also compare the best (factor-augmented) AR EWP (AR I, AR D, FAAR D or FAVAR I) to the

best quantile projection EWP (QAR or FAQAR), see Table A6. This gives simalar results: (Factor-augmented)

AR EWPs in general produce lower quantile scores than (factor-augmented) quantile projection EWPs. Only

for CDI there seems to be potential in using quantile projections.

Based on De Nicolò & Lucchetta (2017) we also compare the best (factor-augmented) AR EWPs and the

FAQAR EWPs through coverage ratios. In this way we want to find out if the VaR forecasts are appropriate

as early warning signals. The coverage ratios are given in Table A7, for the whole sample and for a subsample.

The subsample starts from 2007, to see how the coverage ratios behave when a reliable early warning system

is needed most (just before a financial crisis). A coverage ratio higher than 0.05 means that the VaR forecast

underestimates tail risk, as this means that the VaR forecast is violated more than 5% of the time. A coverage
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ratio lower than 0.05 means that the VaR forecast overestimates risk, as the VaR forecast is violated less than

5% of the time. Assuming one is risk-adverse, we prefer overestimating risk over underestimating risk which

corresponds to preferring a lower coverage ratio than than the target probability (0.05) over a higher coverage

ratio than the target.

For all variables and horizons, coverage ratios for the best (factor-augmented) QAR EWP forecasts are

higher than for the best (factor-augmented) AR EWP. For the 12-month horizon and the subsample 2007 -

2014 (or 2007 - 2013 for DNFCI) all ratios clearly exceed 0.05. However, the coverage ratios of FAQAR EWP

forecast are even double the coverage ratios of the best (factor-augmented) QAR EWP forecasts. This finding

confirms that (factor-augmented) AR EWPs are generally preferable over the (factor-augmented) QAR models.

Figure 3 until 12 in the Appendix show the two best (factor-augmented) AR EWP and best (factor-augmented)

QAR EWP 12-month horizon forecasts of each variable.

5.4 Results for Partial Least Squares

In Table A8 all average QWPSs of PLS factor-augmented AR models and their EWPs are reported. Just like

for PCA factor-augmented AR models, the best forecasting method (iterated or direct) seems to be variable

depending. For the variables IPG, EMG, CDI and BDI the direct method seems to be preferable and for

DNFCI the iterated method. For the individual models these methods seem to be preferable in combination

with respectively an expanding window and a rolling window. There seems to be no particular preference for

number of factors or number of lags.

Table 7 compares the PCA factor-augmented AR EWPs and the PLS factor-augmented AR EWPs.

From Table 7 it becomes clear that for the real variables IPG and EMG the direct forecasting method

is indeed strictly preferable. Both direct PLS EWPs and direct PCA EWPs outperform the iterated EWPs.

Between the two direct EWPs is no significant difference. For the financial variables CDI and BDI, the direct

PCA EWP significantly outperforms the two iterated EWPs. Furthermore, for CDI the iterated PCA EWP

always outperforms the iterated PLS EWP whereas for BDI the iterated PLS EWP always outperforms the

iterated PCA EWP. For the financial variable DNFCI, the iterated EWPs are preferable.

Table A9 in the Appendix reports all average QSs of PLS factor-augmented quantile projections. Table 8

compares the PCA factor-augmented QAR models and the PLS factor-augmented QAR models. For CDI the

PLS method strictly outperforms the PCA method for the 6-, and 12-month forecasting horizon. For BDI

the PLS method strictly outperforms the PCA method for the 3-month horizon. For DNFCI however, the

PCA method seems to dominate, which also accounts for IPG for the 3-month forecasting horizon. Thus

the preferable factor extraction method with regards to quantile projections,differs among the variables and

horizons or does not differ significantly.

For BDI the PLS method is significantly proven to improve the FAQAR EWP the most compared to the

PCA method for a 3-month forecasting horizon.
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Table 7: Pair-wise DM statistics of left tail QWPSs of PCA factor-augmented AR EWPs and PLS factor-augmented AR

EWPs

Horizon 3 months 6 months 12 months

Variable Model D PCA I PCA D PLS D PCA I PCA D PLS D PCA I PCA D PLS

I PCA 2.32 -0.13 0.94

IPG D PLS 0.46 -1.65 -0.62 -0.39 1.29 -0.11

I PLS 2.44 0.82 2.59 1.20 3.03 2.13 3.31 7.83 3.41

I PCA 5.60 5.35 4.30

EMG D PLS 1.95 -4.09 1.95 -4.44 0.99 -4.06

I PLS 6.49 3.37 5.28 7.18 6.49 6.80 3.93 2.11 3.40

I PCA 2.79 3.40 5.77

CDI D PLS 0.80 -1.66 1.62 -1.50 1.78 -4.35

I PLS 3.64 3.42 2.48 4.03 2.92 2.03 6.50 3.24 5.03

I PCA 4.94 4.59 6.60

BDI D PLS 1.75 -1.68 1.41 -2.59 1.30 -4.57

I PLS 4.37 -2.20 1.24 4.25 -2.73 2.18 5.58 -5.23 3.83

I PCA -6.88 -4.84 -1.60

DNFCI D PLS 2.05 6.76 3.02 6.88 1.86 3.90

I PLS -4.14 0.45 -8.16 -3.72 0.70 -9.08 -1.02 0.04 -5.69

Bold ratios indicate a rejection of equal performance at 5%.

Table 8: Ratios of average QSs of PLS FAQAR EWPs

over average QSs of PCA FAQAR EWPs

Horizon

Variable 3 months 6 months 12 months

IPG 1.13 0.94 1.05

EMG 0.90 0.92 0.94

CDI 0.97 0.93 0.91

BDI 0.90 1.02 1.08

DNFCI 1.42 1.29 1.15

Bold ratios indicate a rejection of equal performance at 5%.

5.5 Results for Quantile Forests

Table A10 reports all average QSs for two individual quantile forests (QF) models, four individual factor-

augmented quantile forest (FAQF) models and two EWPs. Just as for the least squares regression and quantile

linear regression methods, we analyse if the addition of factors to the models give any improvement using the

ratios in Table 9. From this Table we can conclude that forecasts produced by the FAQF EWP are either not

significantly different from, or outperforming the forecasts generated by the QF EWP .

Table 10 reports the ratios of the average QSs of the best quantile forest EWP (QF EWP or FAQF EWP)

over the average QSs of the best quantile projection EWP (QAR EWP or FAQAR EWP).

Table 10 shows that for the variable DNFCI the use of Quantile Forests is a great improvement. For the

other variables however, there is no significant difference between the forecasts generated by the quantile forest
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Table 9: Ratios of average QSs of FAQF EWPs over average QSs of QF EWPs

Horizon

Variable 3 months 6 months 12 months

IPG 0.78 0.86 0.94

EMG 0.92 0.84 0.85

CDI 1.07 1.04 1.03

BDI 1.01 1.02 0.98

DNFCI 1.02 1.02 1.06

Bold ratios indicate rejected equal predictive performance at 5%.

Table 10: Ratios QSs best (FA)QF EWP over QSs best

(FA)QAR EWP

Horizon

Variable 3 months 6 months 12 months

IPG 1.05 1.10 1.04

EMG 1.09 0.99 0.99

CDI 1.08 1.08 1.06

BDI 1.02 1.12 1.01

DNFCI 0.69 0.66 0.69

Table 11: Ratios average QSs PLS FAQF EWPs over

average QSs PCA FAQF EWPs

Horizon

Variable 3 months 6 months 12 months

IPG 0.94 0.90 1.07

EMG 0.99 0.95 1.04

CDI 0.94 0.97 0.99

BDI 0.98 0.99 1.00

DNFCI 1.17 1.13 1.01

Bold ratios in the two tables above (left and right) indicate rejected

equal predictive performance at 5%.

EWPs and quantile projection EWPs. Or the quantile projection EWPs are proved to be significantly better

(IPG and BDI: 6-month horizon).

To give an illustration, Figure 1 shows the 12-month FAQAR EWP VaR forecast for DNFCI and Figure 2

shows the 12-month QF EWP VaR forecast. Both are respectively the best quantile projection EWP and

quantile forest EWP for DNFCI for a 12-month horizon. Remarkable is that the quantile forest EWP does

way better with regards to the period around 2008 when the financial crisis happened. This seems promising

as it is for such periods that we particularly need an early warning system to be reliable. For DNFCI, the

quantile forest EWP even strictly outperforms the best AR EWP with ratios of their average quantile scores

being equal to respectively 0.85, 0.79 and 0.76.

Finally we have combined the two methods of PLS factor-extraction and quantile forests. Table A11 reports

all average QSs for four individual PLS factor-augmented QFs and one EWP (FAQF PLS). Table 11 helps us

compare the two factor-augmented quantile forest EWPs: FAQF PCA EWP and FAQF PLS EWP. Most of the

ratios in he Table are less than one, indicating that the PLS factor-augmented quantile forest EWP forecasts

have a lower average quantile score than the PCA factor-augmented quantile forest EWP forecasts. However,

this improvement is not proven to be significant for any horizon nor variable.

As our main goal is to generate an early warning system for events like the financial crisis as in 2007-2009,

we have a better look at the coverage ratios (VaR violations) of the 12-month forecasts created by the PCA

FAQF EWPs and PLS FAQF EWPs for subsample 2007 - 2014. These coverage ratios are given in Table 12.

18



Figure 1: Realized DNFCI and it’s FAQAR EWP VaR0.05

forecast for a 12-month horizon

Figure 2: Realized DNFCI and it’s QF EWP VaR0.05 forecast

for a 12-month horizon

Table 12: Coverage ratios for 12-month horizon PCA FAQF EWP and PLS FAQF EWP VaR forecasts for the subsample

2007M01 - 2014M12

Model | Variable IPG EMG CDI BDI DNFCI

FAQF PCA EWP 0.15 0.25 0.15 0.23 0.12

FAQF PLS EWP 0.15 0.20 0.11 0.23 0.06

Although both models still produce VaR forecasts which are violated way more than the target probability,

we do see an improvement of using PLS over PCA in this case. Furthermore, both the PCA FAQF EWP as the

PLS FAQF EWP give lower coverage ratios than the best quantile projection EWP for a 12-month forecasting

horizon for all variables (except one, Table A7).

6 Conclusion

In this research we have tried to find an early warning system for tail risk. Therefore we have analysed Value

at Risks forecasts of two real variables (IPG,EMG) and three financial variables (CDI,BDI,DNFCI) created by

individual autoregressive and factor-autoregressive models and their equally weighted pools. We have found a

few main results. To start we have found that extending the models through factors seem to really improve the

autoregressive and quantile autoregressive models for the real variables IPG and EMG and the financial variable

DNFCI. Whether the addition of factors improves the model is thus variable dependent. Second, we find that for

the factor-augmented autoregressive models the way of forecasting seems to dominate (in line with Marcellino et

al. (2006) and Pesaran et al. (2011)) instead of the factor-extraction method. As the factor-augmented quantile

autoregressive models are all similar to the direct forecast method we cannot draw the same conclusions for

those models. For the factor-augmented quantile autoregressive models, we find that the PLS method is strictly

superior to the PCA method for several variables and forecasting horizons. Except for DNFCI, PLS gives better
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evaluation scores of the Value at Risks forecasts than PCA for at least one forecasting horizon for all variables,

extending the emperical results of Groen & Kapetanios (2016). Third, we find that it can be recommended to

use equally weighted pool forecasts instead of forecasts generated by only one individual model. As sometimes

EWPs are proven to outperform all individual models and the best model is horizon and variable dependent,

EWPs are considered more reliable. Comparing the (factor-augmented) autoregressive and (factor-augmented)

quantile autoregressive EWPS, we find that the (factor-augmented) autoregressive EWPs are superior, the

coverage ratios of the Value at Risks confirm this. Last, we have analysed the possible improvement of the

Value at Risk forecasts through to the use of a quantile forest method instead of quantile linear regression

for estimating the quantile autoregressive models. We find that for the financial variable DNFCI this method

strongly improves the Value at Risk forecasts for every horizon. The quantile forest EWP even outperforms

its best (factor-augmented) autoregressive EWP forecast. Again extending the quantile forest models through

the addition of factor generates significantly better forecast scores, but only for particular variables. In this

case it is improving for the EWP forecasts of the real variables IPG and EMG. For the other variables we do

not specifically see a significant improvement. Using PLS instead of PCA for the factor-augmented quantile

forests does in general not create significantly different forecasts according to the quantile scores. However, if

we have a look at the coverage ratios for when early warnings are needed most, adding PLS seems to be more

recommendable than PCA. All in one, we do not find one very best model for all variables. However, we do

find some important extending results on De Nicolò & Lucchetta (2017) for the research field of forecasting tail

risks.

7 Discussion

Looking back on this research, there are a few points of attention and possibilities for future research. First,

this research analyses several models that forecast Value at Risks. However, a disadvantage of Value at Risks

is that is does not say anything about the amount of loss when exceeding the Value at Risk threshold. A

complementing measure could be Expected Shortfall. An Expected Shortfall of α is defined as the conditional

expectation of exceedances when violating the corresponding VaRα. Li et al. (2020) for example propose a

method that jointly forecasts the Value at Risk and Expected Shortfall through a Bayesian model. De Nicolo

(2018) actually already considers forecasting combinations of Value at Risks and Expected Shortfalls. Another

comment on this research is that the models are evaluated through Quantile Scores and Quantile Weighted

Probability Scores (Gneiting & Ranjan, 2011). However, we cannot assign probability scores to the forecasts

made through quantile regression. This makes it slightly harder to compare the autoregressive models and the

quantile models, as sometimes the best model according to the quantile score does not match the best model

according to the quantile weighted probability score. Possible further research could thus be on finding an

extended evaluation tool to compare the VaR generated through the density forecasts and quantile forecasts.

As the autoregressive models appeared to be best, we could also consider optimizing the weighing scheme for

the models in the pools using scoring rules according to Opschoor et al. (2017). As the results for quantile
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forests seem promising, we could also consider other quantile methods such as in Taylor (2000).
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Appendix

Table A1: Descriptive statistics

Variable Group Serie Transformation Observations Mean Std dev Min Max

IPG 1 3 (3) 503 0.176 0.731 -4.299 2.068

EMG 2 11 (3) 503 0.114 0.276 -0.852 1.502

CDI 9 2 (1) 504 0.083 0.032 0.014 0.241

BDI 9 7 (2) 504 0.082 0.044 0.008 0.316

DNFCI 9 10 (2) 491 0.002 0.253 -1.389 1.281

The data is retrieved from the database of the Joumrnal of Applied Econometrics. The data consists

of 9 groups of series and should be transformed according to their transformation code. (1) means no

transformation, (2) means first difference and (3) stands for the first difference of the natural logarithm.

The group, serie and transformation for the five variables we use to forecast their VaR as tail risk

measures are stated in the Table above. Together with their descriptive statistics.
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Table A2: Model overview

Model number Model name Lags Factors Estimation window Estimation Volatility

AR models

1 AR D RW 5 - Rolling window Direct In-sample

2 AR D EW 5 - Expanding window Direct In-sample

3 AR I RW 5 - Rolling window Iterated GARCH(1,1)

4 AR I EW 5 - Expanding window Iterated GARCH(1,1)

Factor-augmented AR models

5 FAAR D AH RW 2 AH Rolling window Direct In-sample

6 FAAR D AH EW 2 AH Expanding window Direct In-sample

7 FAAR D 5 RW 2 5 Rolling window Direct In-sample

8 FAAR D 5 EW 2 5 Expanding window Direct In-sample

9 FAVAR I AH RW 2 AH Rolling window Iterated GARCH(1,1)

10 FAVAR I AH EW 2 AH Expanding window Iterated GARCH(1,1)

11 FAVAR I 5 RW 1 5 Rolling window Iterated GARCH(1,1)

12 FAVAR I 5 EW 1 5 Expanding window Iterated GARCH(1,1)

Quantile Projections

1 QAR RW 5 - Rolling window

2 QAR EW 5 - Expanding window

Factor-augmented Quantile Projections

3 FAQAR AH RW 2 AH Rolling window

4 FAQAR AH EW 2 AH Expanding window

5 FAQAR 5 RW 1 5 Rolling window

6 FAQAR 5 EW 1 5 Expanding window

Equally weighted pools

EWP AR models EWP QP models

(1,2) AR D (1,2) QAR

(3,4) AR I (3,4,5,6) FAQAR

(5,6,7,8) FAAR D

(9,10,11,12) FAVAR I
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Figure 3: Realized IPG and it’s FAAR D EWP VaR0.05 forecast for a

12-month horizon

Figure 4: Realized IPG and it’s FAQAR EWP VaR0.05 forecast for a

12-month horizon

Figure 5: Realized DNFCI and it’s FAAR D EWP VaR0.05 forecast for

a 12-month horizon

Figure 6: Realized DNFCI and it’s QF EWP VaR0.05 forecast for a

12-month horizon
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Table A5: Best EWPs versus individual models Quantile Projections

(a) Best EWP versus best individual model (b) Worst EWP versus worst individual model

Horizon Horizon

Variable 3 months 6 months 12 months Variable 3 months 6 months 12 months

IPG 0.95 1.00 1.13 IPG 0.92 0.86 0.72

EMG 0.93 1.16 1.12 EMG 0.91 0.86 0.75

CDI 1.00 1.01 1.04 CDI 0.91 0.81 0.76

BDI 1.02 1.06 1.08 BDI 0.90 0.76 0.86

DNFCI 0.95 0.95 0.88 DNFCI 0.92 0.93 0.83

Bold ratios indicate a rejection of equal performance at 5%

Table A6: Ratios average QSs of best (FA)QAR EWP over

average QSs of best (FA(V))AR EWP

Horizon

Variable 3 months 6 months 12 months

IPG 1.00 1.02 1.01

EMG 1.16 1.27 1.31

CDI 0.89 0.98 1.02

BDI 1.00 0.98 1.26

DNFCI 1.22 1.20 1.11

Bold ratios indicate a rejection of equal performance at 5%

Table A7: Coverage ratios of the best (factor-augmented) AR EWP and the best (factor-augmented) QAR EWP for each

variable.

Model FA(V)AR EWP FAQAR EWP

Variable Sample | Horizon 3m 6m 12m 3m 6m 12m

IPG 1984M01 - 2014M12 0.03 0.03 0.06 0.05 0.08 0.10

2007M01 - 2014M12 0.05 0.09 0.13 0.07 0.09 0.14

EMG 1984M01 - 2014M12 0.06 0.08 0.12 0.09 0.11 0.17

2007M01 - 2014M12 0.09 0.15 0.18 0.16 0.17 0.28

CDI 1984M01 - 2014M14 0.06 0.07 0.06 0.06 0.08 0.08

2007M01 - 2014M12 0.08 0.10 0.08 0.08 0.16 0.16

BDI 1984M01 - 2014M12 0.04 0.04 0.05 0.09 0.09 0.17

2007M01 - 2014M12 0.06 0.06 0.11 0.13 0.18 0.26

DNFCI 1984M01 - 2013M12 0.03 0.03 0.03 0.02 0.05 0.06

2007M01 - 2013M12 0.07 0.07 0.07 0.08 0.13 0.19
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Figure 7: CDI and it’s FAAR D EWP VaR0.05 forecast for a 12-month

horizon

Figure 8: CDI and it’s QAR EWP VaR0.05 forecast for a 12-month

horizon

Figure 9: BDI and it’s AR D EWP VaR0.05 forecast for a 12-month

horizon

Figure 10: BDI and it’s QAR EWP VaR0.05 forecast for a 12-month

horizon
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Figure 11: Realized DNFCI and it’s FAVAR I EWP VaR0.05 forecast

for a 12-month horizon

Figure 12: Realized DNFCI and it’s FAQAR EWP VaR0.05 forecast

for a 12-month horizon

Figure 13: Realized DNFCI and it’s 3-, 6- and 12- month FAQAR

EWP VaR0.05 forecast

Figure 14: Realized DNFCI and it’s 3-, 6- and 12- month QF EWP

VaR0.05 forecast
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