
ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Improving t-SNE for applications on

word embedding data in text mining

Bachelor Thesis Econometrie & Operationele Research

Supervisor: prof. dr. P.J.F. Groenen

Second Assessor: A. Castelein MSc

Christopher Claassen

456177cc@student.eur.nl

July 22, 2020

Abstract

There is an abundance of textual data in the present world. Recently proposed word embed-

ding methods are able to provide meaningful quantitative word representations of textual

data that can be used in various text mining tasks. However, this type of data is generally

high-dimensional, such that it cannot be intuitively understood by looking at a graph. An

interpretable graph can be made by using a technique called t-distributed stochastic neighbour

embedding (t-SNE). In particular, this paper applies t-SNE to a word embedding generated

by the word2vec model. Two extensions for t-SNE are proposed in this paper: local per-

plexities based on word similarities and a method for inserting a new point into an existing

t-SNE. It is shown that these extensions work well and improve the usability of t-SNE for

application in text mining.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam

Contents

1 Introduction 3

2 Related Works 4

2.1 T-SNE . 4

2.2 Word embeddings . 6

3 Data 8

4 Methodology 9

4.1 An improved t-SNE implementation . 9

4.2 Extensions . 10

4.2.1 Multi-scale local perplexities based on word similarities 10

4.2.2 Adding a new point to an existing t-SNE output 11

4.3 Evaluation criteria . 14

5 Results 15

5.1 Replication . 15

5.2 Evaluation results . 16

6 Conclusion 20

References 21

A Appendix A: programming code instructions 23

B Appendix B: composition of the dataset used 24

1 Introduction

Obtaining insight from data is a fundamental part of scientific research. Before conducting any

research, it is often a good first step to make a graph of two phenomena in order to detect

a pattern between them. However, it is not feasible to do this for multiple high dimensional

variables. An inherent problem of high dimensional data is that it cannot be visualized in a

simple graph. Various dimension reduction methods have been used to address this problem. An

example of this is principal component analysis (PCA; (Pearson, 1901; Hotelling, 1933)), which is

a linear dimension reduction technique commonly used in multivariate analysis. PCA constructs

a new orthogonal basis by performing an eigenvalue decomposition on the covariance matrix of

the data. It then achieves a reduction in dimensions by discarding principal components that

only represent a small portion of the variance in the original data. The visualization made by

using the first two principal components can be represented in a graph, but the resulting points

always retain some global structure of two dissimilar data points. This is not a useful property

for visualization in a domain where one is mostly interested in local structure. Because of this,

more sophisticated (non-)linear dimension reduction techniques have been developed.

In this research paper, I use a non-linear dimensionality reduction technique to visualize

data resulting form a word embedding technique. This non-linear reduction technique is called

t-distributed stochastic neighbour embedding (t-SNE) and was first introduced by Maaten and

Hinton (2008). T-SNE is extension of stochastic neighbour embedding (SNE; Hinton and Roweis

(2003)), which maps the original data to a low dimensional space by preserving the local structure

of the data as much as possible. In particular, t-SNE improves SNE by solving the so called

’overcrowding’ problem that causes data points to cluster in the middle of the graph. T-SNE and

related methods can be seen as clustering methods because of the objective of local structure

preservation.

T-SNE is applied on text representations generated by the word2vec model (Mikolov, Chen,

Corrado, & Dean, 2013) in this paper. Word2vec is a word embedding algorithm that provides

high dimensional representation of various words in order to process large amount of text effi-

ciently. The algorithm primarily considers the local context a word appears in to produce the

word embedding. The quality of the vectors will therefore largely depend on some local struc-

ture in the data. For this reason, it seems reasonable that t-SNE is able to visualize the word

embedding data points in a good way, as t-SNE aims to retain the local structure of the data

in favour of the global structure. Moreover, t-SNE is useful in this case, because researchers are

often interested in finding clusters of words in a word embedding, as word embeddings do not

label words automatically. Using t-SNE for word embeddings is straightforward, but it is not

directly clear how one should can optimize t-SNE for this particular application. The core of

this paper can therefore be best defined as the following research question:

How can t-SNE generated embeddings be improved for processing text via word embedding data?

The result of this paper is an improved t-SNE embedding algorithm for visualizing word repre-

sentations. This paper finds that it is often useful to differentiate the perplexity parameter of

t-SNE for individual points. This is done by combining the global perplexity value with a newly

3

constructed local perplexity value. Furthermore, this papers shows how a new word represen-

tation can be meaningfully placed in an existing t-SNE output, without running t-SNE on the

entire dataset again. This is achieved by determining effective neighbours via word representa-

tion similarity weighing. The code used in this paper is written in the Julia language (Bezanson,

Edelman, Karpinski, & Shah, 2017) and is available at this location. All figures and tables can

be reproduced by individual functions that can be found inside the code. Appendix A contains

instructions for the provided code.

The remainder of this paper consists of five sections. A brief overview of the related literature

is provided in Section 2. Section 3 discusses the datasets that will be used in the research. Next,

Section 4 describes the details of the t-SNE implementation, two extensions of t-SNE for text

data and the evaluation criteria. This is followed by Section 5, where the replication and

experimental results are discussed. Last, Section 6 concludes with an overview of this paper and

recommendations for future works.

2 Related Works

This paper applies a non-linear dimensionality reduction technique on word embedding data.

This is a popular topic, which means that various relevant papers are available. The most

relevant papers will be presented in two subsections. Subsection 2.1 discusses the original imple-

mentation and limitations of the t-SNE technique and related methods. Subsection 2.2 contains

an overview of the different architectures used in the word2vec word embedding algorithm.

2.1 T-SNE

Stochastic neighbour embedding (SNE; Hinton and Roweis (2003)) is a method for reducing the

dimensionality of a dataset in a non-linear way. SNE allows for better visualization of data in

comparison to standard principal component analysis (PCA; (Pearson, 1901; Hotelling, 1933)) if

one is interested in representing the local structure of high-dimensional data well. As such, SNE

can be seen as trying to capture the local structure of a high-dimensional data matrix X with a

low-dimensional data representation Y . The resulting visualization can be seen as a clustering

method because the individual points are positioned by being attracted to similar points and

repelled by dissimilar points. This is achieved by modelling high-dimensional Euclidean distance

by a probability pij and matching this with another probability qij from a low dimensional space.

The initial positions in the low-dimensional space are originally randomly initialized.

The original SNE implementation uses non-symmetric probabilities, which is contrasted by

symmetric SNE. For symmetric SNE, the pij ’s from a high dimensional space are matched with

the corresponding qij ’s coming from a low-dimensional space through symmetric probabilities.

The equations for calculating pij and qij between two datapoints for symmetric SNE are given

by:

pij =
exp(−||xi − xj ||2/2σ2)∑
k 6=l exp(−||xk − xl||2/2σ2)

(2.1)

4

https://github.com/CClaassen/t-SNE

and

qij =
exp(−||yi − yj ||2)∑
k 6=l exp(−||yk − yl||2)

, (2.2)

where σ2 is variance of the Gaussian curve, which is fixed at 1√
2

for every qij as it less likely

that the density will vary greatly between different points in that case.

The objective of symmetric SNE is to model every pij with a corresponding qij in a faithful

manner. As stated previously, this faithful manner corresponds to preserving as much local

structure as possible. In particular, symmetric SNE want to avoid modelling a small qij with a

large pij , whereas this is less problematic the other way around. This feature is captured by the

non-symmetric Kullback-Leibler divergence cost function that is given by:

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij
. (2.3)

The variance σ2 of the Gaussian curve for every pij still needs to be specified. This can

be done through the so called perplexity setting of symmetric SNE. The perplexity setting is a

global setting that can be interpreted as a proxy for the effective amount of neighbouring points

the algorithm needs to consider for every individual point. The variance of the Gaussian curve

for pij can be found through fitting the user-specified perplexity via:

Perplexity(Pi) = 2Pi , (2.4)

where Pi is defined as the Shannon entropy that corresponds to:

H(Pi) = −
∑
j

pij log2 pij . (2.5)

The objective of the optimization routine is to minimize the total cost of the Kullback-Leibler

divergence for all points. This can be done by performing (stochastic) gradient descent of the

corresponding gradient. The gradient and gradient update scheme, as defined in Maaten and

Hinton (2008), are given by:

∂C

∂yi
= 4

∑
j

(pij − qij)(yi − yj) (2.6)

and

Y (t) = Y (t−1) + η
∂C

∂Y
+ α(t)(Y (t−1) − Y (t−2)). (2.7)

where η indicates the learning rate and α(t) equals the current momentum at iteration t, which

can be set as parameter initially.

However, the (symmetric) SNE method described above suffers from what is known as the

’crowding problem’. In short, this problem entails that SNE tends to clutter data points in the

middle of the graph, because there is not enough low-dimensional space to model all the pairwise

high-dimensional relations. T-distributed stochastic neighbour embedding (t-SNE; Maaten and

Hinton (2008)) is a very similar non-linear dimension reduction technique that addresses the

overcrowding problem of SNE. SNE and t-SNE work similar as they both map points from a

5

high dimensional space to a low dimensional space via a stochastic approach. However, t-SNE

uses a Student t-distribution with a single degree of freedom, instead of the normal distribution

of SNE, to model the qij ’s. This adjustment addresses the crowding problem as the t-distribution

has fatter tails. This means that t-SNE is able to better model large pairwise high-dimensional

distances by large low-dimensional distances. The equation of qij is now given by:

qij =
(1 + ||yi − yj ||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

. (2.8)

This adjustment also changes the form of the gradient function, which is now easier to opti-

mize. As it is strongly related, the updating scheme in equation (2.7) can still be used. The

corresponding gradient of t-SNE is adjusted to:

∂C

∂yi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ||yi − yj ||2)−1. (2.9)

A potential drawback of t-SNE is that the objective function is not convex. It can there-

fore occur that a qualitatively lacking embedding is generated due to the optimization routine

getting stuck in poor local minima. This concern can partially be addressed by putting certain

restrictions on the learning rate and momentum. Furthermore, Maaten and Hinton (2008) show

that exaggerating the value of early pij ’s can also be helpful. Other solutions to address this

problem will be discussed later.

A second drawback of T-SNE is the total running time of O(n2). T-SNE works well for

visualizing smaller datasets, but it is not a feasible method for visualizing larger datasets that

are found in practical research. For this reason, various theoretical (Van Der Maaten, 2014;

Linderman, Rachh, Hoskins, Steinerberger, & Kluger, 2017) and hardware based (Pezzotti et

al., 2018; Chan, Rao, Huang, & Canny, 2019) improvements have been proposed. These methods

all reduce the running time of t-SNE significantly such that it can still be practically used on

large datasets.

2.2 Word embeddings

Word embeddings are a collection of methods that map a large amount of words to a single

vector space. This results in a vector representation for a word that contains, for example,

300 features for every word. This has the advantage that further mathematical manipulation

can be done through vector arithmetic. Moreover, every vector retains some semantic and/or

syntactic relations to other words. For example, vec(Germany)−vec(Berlin) results in a vector

that is remarkably similar to the result of vec(Austria) − vec(V ienna). Word embeddings

outperform traditional co-occurrence counting methods for various text mining tasks, as word

embeddings are able to leverage more information. Word embeddings can be used in various

practical applications in text mining, like building a recommendation system based on words an

individual uses or classifying the sentiment of a review based on the words it contains.

Word2vec is a widely used machine learning algorithm for building word embedding models.

The core architectures of the algorithm, called CBOW and Skip-gram, were first introduced by

Mikolov, Chen, et al. (2013). The algorithm does not use a restricted Boltzmann machine to

6

reconstruct data, but rather attempts to predict the word given its local context or vice versa.

As such, word2vec is able to make word embeddings by either predicting a word given its context

(CBOW) or the context given the word (Skip-gram). Both CBOW and Skip-gram learn their

word embeddings through a shallow, two-layer neural network. This neural network is trained

on text datasets that are known as the training corpus. The related loss functions are given by:

CBOW : L =
1

v

V∑
t=1

log p(wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c) (2.10)

and

Skip-gram : L =
1

v

V∑
t=1

t+c∑
i=t−c,i 6=t

log p(wi|wt) (2.11)

where V is the size of the learned vocabulary, [−c, c] represents the context window of the target

word wt and p(wt+j |wt) is softmax function defined by:

p(wO|wI) =
exp(v

′
wO
vwI)∑W

w=1 exp(v′
wO
vwI)

, (2.12)

where wO is the word representation in the output layer and wi is the word representation in

the input layer.

The softmax function is impractical in the sense that it requires too much computing time

for large training sets. For this reason, Mikolov, Sutskever, Chen, Corrado, and Dean (2013)

developed an alternative method called Skip-Gram with Negative Sampling (SGNS). SGNS at-

tempts to distinguish a target word wO from a noise distribution Pn(w). The SGNS objective

function is given by:

log σ(v
′
wO
vwI) +

k∑
i=1

Ewi∼Pn(w)[log σ(v
′
wO
vwI)]. (2.13)

The quality of the resulting word embedding vectors is usually assessed by calculating the

cosine similarity between various words to see if the most similar ones match the excepted most

similar words. The cosine similarity is used in favour of the Euclidean distance, because the

word vector magnitude is correlated with the amount of times the word appears in the training

corpus (Schakel & Wilson, 2015). Therefore, one is interested in whether certain words appear

together often. The cosine similarity is usually normalized to lie within the interval [0, 1], where

a cosine similarity of 0 or 1 indicates a very dissimilar or similar word respectively. The cosine

similarity between word vectors xi and xi is defined as:

cos(θ) =
x′ixj

||xi|| ||xj ||
. (2.14)

There are other word embedding methods that mirror the performance of SGNS, such as

GloVe (Pennington, Socher, & Manning, 2014) and fastText (Bojanowski, Grave, Joulin, &

Mikolov, 2017). GloVe produces word embeddings by factorizing the global word co-occurrences

matrix in a separate word and context matrix, whereas fastText considers a subword version

of Skip-Gram to produce embeddings at the n-gram level. These word embedding methods

7

provide similar word representations in practice when given a sufficiently large training corpus

for different tasks. There is no clear best method among these word embedding models. This

paper will use data generated by a SGNS model, as it is the most widely studied and used in

the scientific literature.

3 Data

Maaten and Hinton (2008) use the MNIST dataset for the evaluation, which is a standard

dataset in the literature. It contains 60000 grayscale images of handwritten digits. For the sake

of replication, it is enough to use a smaller dataset. This is done because it takes a lot of time

to evaluate the entire dataset. I will therefore use the Iris flower dataset that was originally

used in Fisher (1936). This dataset consists of four measurement of 150 different flowers. It

is originally only possible to replicate the original results to a certain degree. This is because

t-SNE produces slightly different results due to its inherent random initialization and the form

of the cost function. This problem is partially addressed by fixing the initialization to the same

values in both cases.

The proposed extensions will make use of different data produced by the word2vec word

embedding method. These word embeddings can either be trained manually or retrieved from

a general pre-trained dataset. A pre-trained dataset has the advantage that is based on a large

training set, which means that it can use a lot information for learning word representations. On

the other hand, a manually trained model is potentially better suited for a particular research

problem at hand. As the aim of this research is to introduce general improvements for visualizing

word embeddings models, a pre-trained word2vec model will be used. This is the Google-news-

300 dataset (Google, 2013), which is trained on a corpus of roughly 100 billion words that

contains 3 billion running words using the previously discussed SGNS method. The dataset

contains about 3 million word representation vectors, where each word representation has a

feature dimensionality of 300.

A typical requirement for the practical use of word embeddings is that the raw word repre-

sentations are clustered in groups of related terms as these groups are generally not provided. A

representative graph produced by t-SNE is ideal for this purpose. A selection of 601 word repre-

sentations of the original dataset will be used to evaluate the proposed extensions. These words

belong to one of eleven categories. Examples of these categories are countries, food and univer-

sity subjects. These groups are not evenly balanced nor necessarily related to one another. This

is intentionally done such that the effect of the extensions on groups with different characteristics

can be examined. Figure 1 contains a scatter plot based of the first two principal components. It

can be seen that the first two principal components do not provide a clear separation of clusters

for all the different groups, especially when one does not consider the colours the labels provide.

These labels are assigned manually and will not be used for the t-SNE algorithm. More details

on the composition of the different word groups can be viewed in Appendix B. This subset of

the Google news dataset can be generated and viewed at the same location as the project code.

8

-0.002 -0.001 0.000 0.001 0.002

Country
Capital
Food
Animal
Jobs
Sports
Economics
Chemistry
Drinks
University
Family

Word type

-0.002

-0.001

0.000

0.001

0.002

Figure 1. Scatter plot of the first two (scaled) principal components, coloured by word group

4 Methodology

This section contains a discussion of the methodology used in this paper. It is split in three

subsections on implementation, extensions and evaluation. Subsection 4.1 discusses the original

implementation and limitations of the t-SNE technique. Two new extensions are presented in

Subsection 4.2. The first extension can be describes as local perplexity scaling and the second

extension introduces a method for efficiently inserting new points. Last, Subsection 4.3 contains

an overview of the evaluation criteria that are utilized to validate the resulting embeddings.

4.1 An improved t-SNE implementation

T-SNE is widely studied and used since its introduction. Because of this, the original t-SNE

implementation of Maaten and Hinton (2008) is dated in the sense that there have been various

improvements to the algorithm over the years. I will know discuss two such features that I

have incorporated in my implementation of t-SNE. This implementation of t-SNE contains all

to be discussed features and extensions, which are written in the Julia language (Bezanson et

al., 2017) due to its high computing performance.

The original t-SNE implementation initializes the low-dimensional coordinates by performing

random draws from a N(0, 0.0012) distribution. My implementation adds three additional initial-

ization settings for the algorithm based on either PCA, classical MDS or a custom initialization.

These initializations are scaled to be more comparable to the original random initialization. Us-

ing either of these first two initialization provides three advantages over a random initialization.

9

Firstly, they address the reproducibility problem caused by initial randomness. Secondly, they

prevent a poor embedding that is caused by a bad random draw. Thirdly, they result in an

embedding where a higher portion of the global structure is retained (Kobak & Berens, 2019).

The original cost function of t-SNE is non-convex which makes it prone to getting stuck in

local minima during optimization. Maaten and Hinton (2008) originally address this problem by

using early exaggeration in the gradient descend algorithm. This results in replacing the original

pij ’s with α pij (α > 1) such that the embedding is improved. The original implementation uses

α = 4 for the first 50 iterations, but Linderman and Steinerberger (2019) show alternative

early exaggeration settings that provide better results in a more general setting. Linderman

et al. (2017) introduce the concept of late exaggeration, which applies the principle of early

exaggeration to the last few optimization iterations. Late exaggeration potentially results in

better defined clusters. My implementation features both early and late exaggeration options

for the reasons listed above.

4.2 Extensions

4.2.1 Multi-scale local perplexities based on word similarities

The perplexity parameter of t-SNE can be interpreted as a measure of the number of effective

neighbours the algorithm considers, which is a similar concept to the number of nearest neigh-

bours used in other algorithms. The perplexity setting is a global parameter in the original

implementation. However, a common feature of language is that individual words have a dif-

ferent amount of semantically or syntactically related words. This means, for example, that we

might want the word Greece to consider all other countries for an embedding, whereas as we

want the word Twitter to consider a quantitatively smaller amount of big social media platforms.

Moreover, training a word embedding model for a specific task implicitly implies the existence

of quantitatively unbalanced groups, as we want to capture as many terms related to the task

at hand. As such, it is reasonable to assume that the quality of the embedding can be improved

by implementing this information.

Following this, it is useful to tweak the perplexity setting of an individual word representation

to a certain extent. This can be done by averaging the pij based on a global perplexity and a

different pij based on a local perplexity. Kobak and Berens (2019) show this is approximately

equal to replacing the Gaussian kernel exp(−||xi − xj ||2/2σ2) of pij in t-SNE by a multi-scale

kernel defined by Lee, Peluffo-Ordóñez, and Verleysen (2015) as:

1

σ
exp(−||xi − xj ||2

2σ2
) +

1

τ
exp(−||xi − xj ||2

2τ2
), (4.1)

where σ and τ are fitted such that they equal the global and local perplexity values respectively.

The global and local perplexity values can easily be set as an algorithmic parameter in this

framework. However, it is not immediately clear how individual local perplexity values can be

determined from the data. The goal of this extension is not to precisely determine all individual

perplexities, but rather to differentiate the relative perplexities in such a way that it improves

the visualization. In other words, the local perplexity should complement the global perplexity.

This can be achieved by first assigning a perplexity score to each word based on the cosine

10

similarity surpassing some threshold θ1, after normalization. More specifically, this means that

the perplexity score of word representation i is determined by:

Perplexity scorei =
∑
j 6=i

I[cos sim(xi,xj) ≥ θ1], (4.2)

where xj (j ∈ {1, . . . , N}) are all n representation in the original data and θ1 is a threshold

value that obeys 0 ≤ θ1 ≤ 1. A global value of θ1 will likely not work well for all word

representations in the dataset because the similarity vectors of different word embeddings are

differently distributed. θ1 should have a specific value for each word representation in order to

account for this issue. θ1i can accordingly be defined as:

θ1i = µsi + kσsi , (4.3)

where µsi and σsi represent the mean and standard deviation of the similarity vector of word

representation i respectively and k corresponds to a settable parameter. A higher value of k

leads to lower perplexity scores. In practice, one can set k to be equal to either 2 or 3, while

keeping in mind the resulting value of θ1i should not surpass the maximum similarity value of 1.

The calculated perplexity scores can be used to construct individual local perplexities. This

is done by adjusting the entire high dimensional similarity matrix. Similarity values of each

column are set to 0 until only the most similar words embeddings are still represented with a

positive similarity. More specifically, each column only retains a number of positive similarities

that is equal to its perplexity score. Afterwards, the local perplexity matrix is normalized such

that the columns each sum up to a value of 1. Consequently, the adjusted perplexity matrix

is not constructed like in equation 4.1 by averaging perplexities of different Gaussian kernels.

Instead, this adjusted perplexity matrix is constructed by averaging the fitted perplexities of

the original Gaussian kernel based on the global perplexity setting and the matrix of local

perplexities described in this paragraph.

4.2.2 Adding a new point to an existing t-SNE output

A practical problem of t-SNE is that a not already embedded point cannot directly be inserted

into an existing embedding as t-SNE does not provide an explicit mapping. Nevertheless, we

are often interested in looking at which already present terms are similar to a newly introduced

term. For this application, we are not specifically interested in the global structure of this new

term as we want to match the new term to specific terms. We would want to insert a point in

such a way that it mostly depends on the high dimensional data of directly related terms. This

is a similar objective as t-SNE. However, running t-SNE again on the expanded dataset is not

an efficient way of addressing this problem because of the running time.

It is possible to insert points in t-SNE output in a different way by making use of the

geometric median. The geometric median is the point that minimizes the total distance between

itself and the other points in the embedding. The cost function of the geometric median for a

new point z in an embedding with n points is given by:

11

C(z) =
n∑

i=1

||yi − z||, (4.4)

where this equation can be minimized by using the Weiszfeld algorithm (Aftab, Hartley, &

Trumpf, 2014). This algorithm updates an initial solution z0 by using the update:

zt+1 =

∑n
i=1w

t
iyi∑n

i=1w
t
i

=

∑n
i=1 ||zt − yi||−1yi∑n
i=1 ||zt − yi||−1

, (4.5)

where z0 is the initial solution that can be set equal to the (weighted) mean and wt
i denotes the

vector of weights that is set equal to the inverse of the norm for the unweighted problem.

However, the resulting solution for z has two disadvantages in this case. The first disadvan-

tage is that it does not provide a unique solution for multiple different points, whereas t-SNE

does provide unique embeddings. The second disadvantage is that this solution considers every

other point, whereas t-SNE effectively neglects a point if the high-dimensional pairwise dis-

tance is too big. These drawbacks can be addressed by adjusting the weights wt
i and by only

considering a set of effective neighbours, which we now turn to.

As previously mentioned, it makes sense to only consider some directly related words for

the positioning of a new word from both a t-SNE and language point of view. For example, we

prefer that the predicted position of the newly added word Berlin is close to the word Germany,

whereas we do not want it to be close to the word towel. We can do this by limiting the number

of considered points, or effective neighbours, in equation (4.4) to k, where it holds that k ≤ n.

This adjusts the cost equation (4.4) to:

C(z) =
∑
i∈E
||yi − z||, (4.6)

where E denotes the set of effective neighbours, such that only k neighbours are relevant to the

minimization of the cost function.

As we want to represent the high-dimensional data, it makes sense to only consider the t-SNE

embeddings of the k most (cosine) similar words in the high-dimensional data. The value of k

can either be set manually, or equal to the perplexity score of equation (4.2). This last option

effectively allows us to add a point to the embedding by only considering the position of the

words that have a cosine similarity of at least θ1i in the high-dimensional data.

It is still possible that a solution based on the restricted geometric median is not unique,

because it is possible that two word representation share the exact same set of effective neigh-

bours in the high-dimensional space. This issue can be addressed by changing the weights in

equation 4.5 such that the solution becomes a weighted geometric median. The weights can be

rescaled by multiplying them by similarity si which results in:

siw
t
i =

si
||zt − yi||

, (4.7)

where si represents the cosine similarity between word i and the newly added target word,

after rescaling all si such that the largest similarity equals 1. This creates a unique solution

by incorporating an additional bit of information of the high-dimensional data. However, this

12

does not affect the solution significantly due to fact that the similarities are positioned relatively

close together on a linear scale. Moreover, they are all fairly large if they were picked according

to being the most similar to the new word. Multiplying all similarities by a constant does not

solve this problem as only the relative values of all similarities are important. I thus consider

two non-linear functions of si that reduce the relative importance of lesser related terms, such

that it becomes either a power weighing function f1(si, p):

f1(si, p)w
t
i = spiw

t
i =

spi
||zt − yi||

(4.8)

or an exponential weighing function f2(si, p):

f2(si, p)w
t
i =

psi − 1

p− 1
wt
i =

psi − 1

(p− 1)||zt − yi||
, (4.9)

where p is a tuning parameter of which the effects are illustrated in Figure 2. This figure shows

the shape of the weighing function compared to the base similarity input for various values of

p. It can be seen in the figure that the power weights quickly push the similarities towards 0,

whereas the exponential weights remain relatively closer to the base similarities for more extreme

values of p. Both weighing function have some interesting properties for particular p: p = 0

gives uniform weights and p = 1 gives the original similarities. As such, it is also possible to

acquire the unweighted or similarity weighted solutions through these non-linear functions.

0.0 0.5 1.0

Base similarities
Power transform (f1, p = 0.5)
Power transform (f1, p = 5)
Power transform (f1, p = 100)
Exponential transform (f2, p = 0.5)
Exponential transform (f2, p = 5)
Exponential transform (f2, p = 100)

Transform type

0.0

0.5

1.0

Figure 2. Example of the non-linearly rescaled similarities for various parametric values

The tuning parameter p in equation (4.8) can be interpreted by rewriting f1 as:

p =
log(f1(si, p))

log(si)
=

log(θ2)

log(starget)− log(smax)
, (4.10)

13

where the interpretation is as follows: p sets all similarities according to equation (4.8) such

that some target word is weighed exactly θ2 times as effective as the most similar word in the

embedding. This tells us, for example, how we can set p in such a way that the least similar

effective neighbour is exactly 0.05 times as important as the most similar effective neighbour.

This interpretation holds for p in equation (4.9) as well, but the value of p can only be acquired

numerically in that case. It is important to note that the primary interest of weighing simi-

larities is to acquire a useful relative difference between these similarities. Both equation (4.8)

and equation (4.9) can be used for that purpose, where equation (4.8) is preferred if we want

to discard most of the information of words with relatively low similarity. Lastly, the power

weighting procedure can also be used as a substitute for the effective neighbour selection by

setting the similarity score of some target word in the whole similarity set to near zero. This

effectively discards the information of all words that are less similar than that target word in

the high-dimensional space.

In conclusion, a new point can be added to an existing t-SNE embedding by using the

effective neighbour similarity weighted geometric median, which has a cost function defined as:

C(z) =
∑
i∈E

fk(si, p)||yi − z||, (4.11)

where z is a point that is added in an embedding consisting of all xi, E denotes the set of effective

neighbours and fk(si, p) corresponds to a transformation function in either equation (4.8) or

equation (4.9).

4.3 Evaluation criteria

Both extensions can be evaluated by looking at whether the (adjusted) t-SNE embedding is

able to retain high-dimensional information in the low-dimensional embedding. This can be

done informally by inspecting the graph, or formally, by making use of evaluation metrics. Of

particular interest is the ability to retain local and global structure in an embedding generated

by using local perplexities. In addition, the quality of a newly inserted point can also be assessed.

The quality of the local structure of a single point in the embedding can be evaluated by

looking at the fraction of words that appear in the set of k closest points in both the low- and

high-dimensional space. The chosen integer value k should not be too high in this case, as it

is used to measure local structure. Both sets of k closest points can be obtained by using a

k-nearest-neighbour (kNN) algorithm. The overall local structure evaluation metric µlocal can

consequently be defined as the average of all these fractions for each word representation in the

embedding:

µlocal =
1

n

n∑
i=1

Fi, (4.12)

where Fi represents the fraction of words that appear in both sets of k closest points for word

representation i. The quality of the local structure of a newly inserted point can be evaluated in

a similar way by comparing the sets of k closest points for every newly added point individually.

The overall quality of the global structure of the embedding can be evaluated by measuring

14

to what extent the ordering of pairwise distances in the high-dimensional dataset is retained in

the low-dimensional embedding. The quality of the global structure for an individual point i

can be assessed by comparing the vectors dL and dH , which contain that all pairwise distances

between i and all other points in either the low or high dimensional space. The evaluation of dL

and dH can be done by calculating the Spearman rank-order correlation, which is defined by:

ρi =
cov(rankdL

, rankdH
)

σrankdL
σrankdH

, (4.13)

where rankd represents the rank ordering vector of d. The evaluation metric µglobal, which

represents the overall quality of the global structure, can consequently be calculated as:

µglobal =
1

n

n∑
i=1

ρi. (4.14)

The quality of the global structure of a newly inserted point can be evaluated in a similar way

by calculating the Spearman rank-order correlation for every newly added point individually.

5 Results

The experimental results will be presented and discussed in this section. It consists of two

subsections. Subsection 5.1 discusses the faithfulness of the t-SNE implementation that is used in

this paper. The experimental results and corresponding graphs are presented in Subsection 5.2.

All results are obtained using Julia version 1.4.1 on a system with an Intel Core i5-4690K CPU

and 16GB of RAM.

5.1 Replication

It is useful to consider to what extent the output of this paper’s t-SNE implementation resembles

the output of the by van der Maaten recommended Julia t-SNE implementation. Figure 3 shows

the output of running t-SNE on the Iris flower dataset by using a PCA initialization and a

perplexity value of 15 for both implementations. It appears that the graphs show the same

three clusters, but the graphs can certainly not be called identical. However, the average local

structure retained is almost the same, as can be seen in Table 1. The difference in graphical

representation is mainly caused by the inclusion of late exaggeration in the algorithm of the right

figure. Disabling this feature would make the graphs a lot more similar, but this feature is useful

for processing textual data. This is because late exaggeration causes the final embedding to show

more well-defined clusters, as can be clearly seen in Figure 3. The benchmark implementation

takes significantly less time to produce the t-SNE output. This is primarily due to the fact that

the benchmark implementation uses various features of Julia to accelerate costly calculations.

Another interesting result of Table 1 is the fact the first two principal components are also able to

retain a relatively large amount of local structure. This is primarily caused by the fact that the

difference between low- and high-dimensional in the Iris flower dataset is only two dimensions.

The quality of the local structure in the PCA output will certainly not be as good as the t-SNE

output in general.

15

Figure 3. T-SNE outputs of the benchmark implementation (left) and my implementation (right)

Table 1. Evaluation results for the Iris flower dataset

Method µlocal SElocal

PCA 74.73% 13.98%
Benchmark t-SNE 77.53% 14.19%
T-SNE implementation 78.33% 12.55%

5.2 Evaluation results

It is important to determine the optimal perplexity value first, before evaluating the effect of the

proposed extensions. Table 2 contains the results of using t-SNE to reduce the dimensionality of

the word dataset from 300 to 2. A bold value indicates the best value of a column, where the local

structure metric considers the sets with the 10 closest points. It can be seen in the table that the

Kullback-Leibler divergence is generally lower for higher perplexity values. Consequently, it is a

good idea to determine the optimal perplexity value by looking at the structural quality metrics.

The quality of the local structure is robust for different perplexity values. The two embeddings

with perplexity values of respectively 25 and 40 arguably perform best. The embedding with a

perplexity value of 40 has the lowest Kullback-Leibler divergence and the best local structure,

whereas the embedding with a perplexity value of 25 has the best global structure and the second

best local structure. The standard errors of the evaluation metrics do not vary greatly.

16

Table 2. Evaluation results of the word representation dataset for various perplexity values

Perplexity KL-divergence µlocal SElocal µglobal SEglobal

5 0.5583 55.06% 16.91% 46.21% 21.08%
10 0.5595 56.26% 17.14% 51.77% 20.30%
15 0.5551 57.10% 17.13% 51.75% 21.02%
20 0.5278 57.62% 17.24% 51.52% 21.27%
25 0.5011 58.55% 17.68% 53.19% 20.02%
30 0.5079 58.02% 17.61% 49.26% 21.38%
35 0.4786 58.20% 17.58% 48.44% 22.18%
40 0.4780 58.92% 17.55% 52.03% 19.59%
45 0.4868 57.37% 18.24% 48.45% 20.42%
50 0.5036 58.17% 17.78% 52.13% 21.09%

A visual representation of the embedding with a perplexity value of 25 can be seen in Figure 4.

It can be seen there that t-SNE is able to separate the different word groups fairly well. Some

categories have a fair bit of overlap. For example, the category drinks is intertwined with

some food word representations. The two largest categories, capitals and countries, form a big

separate cluster, which seems to contain some subsclusters. A closer inspection tells us that

these subsclusters correspond the to the topographic location of the words represented. This is

an indication that it is perhaps better to specify these labels by continent. There are also some

points that repel almost all other points. The embedding is generated in about 5 minutes.

-150 -100 -50 0 50 100

Country
Capital
Food
Animal
Jobs
Sports
Economics
Chemistry
Drinks
University
Family

Word type

-100

-50

0

50

100

Figure 4. T-SNE output of the word representation dataset, global perplexity = 25

17

Table 3 contains the same type of evaluation results as Table 2, but now with the inclusion

of the proposed extension of local perplexity scaling. It can be seen in Table 3 that both the

local and global structural quality become more robust for different global perplexity values.

Moreover, the introduction of local perplexity scaling increases the quality of the local structure

retained for all evaluated global perplexity values. Most importantly, the quality of the best

embedding is about three percentage points higher than before. The quality of the global

structure also improves, especially for embeddings with lower global perplexity values. The

results of Table 3 can be compared with the performance of the first two principal components.

The PCA embedding has a local structure performance of about 23.4% and a global structure

performance of about 50.9%. As such, the t-SNE output significantly outperforms PCA on the

quality of the local structure. A visual representation of an embedding generated with local

perplexity scaling will be discussed later on in this subsection. Last, it is important to note that

the values of the Kullback-Leibler divergence cannot directly be compared between tables, as

adjusting the perplexities will always change the Kullback-Leibler divergence.

Table 3. Results for various perplexity values
*Perplexity is now complemented by local perplexity

Perplexity* KL-divergence µlocal SElocal µglobal SEglobal

5 0.8192 59.80% 16.65% 52.04% 20.08%
10 0.7948 60.68% 17.07% 54.02% 20.22%
15 0.7838 60.05% 17.27% 53.11% 19.40%
20 0.7758 60.40% 17.77% 53.31% 20.41%
25 0.7234 61.43% 17.34% 53.05% 19.87%
30 0.7175 61.18% 17.53% 53.33% 19.27%
35 0.6976 61.85% 17.25% 53.16% 21.13%
40 0.6898 61.26% 16.82% 52.32% 18.20%
45 0.7132 61.41% 17.64% 49.50% 22.58%
50 0.6954 61.33% 17.69% 51.25% 21.69%

The second proposed extensions gives a method for inserting new points into an existing t-

SNE embedding. Local perplexity scaling will be used in the evaluation of the second extension,

as this feature improves the structural quality of the embedding. The second extension can be

evaluated by first considering a small collection of words that directly correspond to one of the

manually created labels. This collection consists of the following five words: (1) econometrics,

(2) hippo, (3) Mexico, (4) parent and (5) statistician. Table 4 shows the evaluation results for

inserting the vector representations of these words into an existing t-SNE embedding (perplexity

value of 35), where the local structure metric is based on the sets with the 25 closest points. An

interesting finding is that the similarity weighted geometric median already provides good results

with a moderately large power, such that the effective neighbour selection method does not need

to be used explicitly. The local structure metric of these points is slightly better overall than

the average local structure given in Table 3, whereas the global structure metric is somewhat

worse overall.

18

Table 4. Evaluation results for five newly inserted words

Inserted word econometrics hippo Mexico parent statistician

Local structure 64% 64% 72% 60% 52%
Global structure 28.24% 49.99% 62.52% 45.30% 60.09%

The placement of these five words can also be evaluated by looking at the encircled points

in the graph of Figure 5. The words econometrics, hippo, Mexico and parent are all placed

in the correct clusters of university, animal, country and family respectively. Only the word

statistician is not inserted into a single well-defined cluster, as it is placed in between the two

clusters of university and jobs. This is perhaps due to the fact that most words of the category

jobs are also drawn to other clusters. Consequently, this might actually not be that problematic

as more words seem to have this complication. Figure 5 also shows that local perplexity scaling

arguably gives better defined clusters than the original t-SNE in a visual sense. This is most

likely due to the fact that each point considers a more refined amount of neighbours at each

iteration step.

Figure 5. Newly inserted words (encircled) in an existing embedding, global perplexity = 35

The more practical application of inserting possibly unrelated words in an embedding can also

be evaluated. For this purpose, fifty randomly selected nouns are inserted into the embedding

according to the same principles as the five previously inserted words. It is not known if these

words can be placed in one of the manually assigned categories as the words are randomly

19

selected. Of particular interest is the difference in results between using the similarity weighted

geometric median on the test points and using t-SNE on the entire expanded dataset. The

results of inserting these points according to both methods can be seen in Table 5. It can be

seen there that t-SNE performs a fair amount better on the local structure metric, whereas the

similarity weighted geometric median performs a slight bit better on the global structure metric.

The difference in performance is primarily caused by the fact that t-SNE is able isolate points

that are very dissimilar to other points. Stated differently, the proposed method will always

place a point closely to its most similar words, even if these words are in fact very dissimilar.

This can be addressed by giving a warning when a to be inserted point is too dissimilar from

all points currently present in the embedding. Nevertheless, the primary advantage of using

the proposed similarity weighted geometric median is that it takes almost no computation time

because it is performed on the low-dimensional embedding. This means that it is practically

independent of the number of observations and dimensions, unlike t-SNE. As such, the second

proposed method is especially useful in practice.

Table 5. Average structural quality of 50 added words for the proposed method and rerunning t-SNE

µlocal SElocal µglobal SEglobal

Proposed method 30.80% 20.35% 28.43% 18.53%
Rerunning t-SNE 36.72% 17.92% 27.76% 18.75%

6 Conclusion

In this research paper, I proposed two different extensions for the t-SNE algorithm based on

the similarities between word representations. This was done by first presenting some relevant

published papers, which was followed by a discussion of the dataset. Afterwards, two extensions

for the t-SNE method were introduced, discussed and evaluated. The first extension is called

local perplexity scaling, which refines the number of effective neighbours t-SNE considers at

each step in the algorithm. The second extension makes use of the effective neighbour similarity

weighted geometric median to efficiently and accurately place new points into an existing t-

SNE embedding. Both extensions improve the quality and usability of the t-SNE method for

representing textual data generated by the word2vec algorithm. In other words, the proposed

extensions can be used to improve the t-SNE method for processing text via word embedding

data.

The ideas presented in this paper can be more thoroughly researched in future work. The

idea of inserting points in an embedding can be extended by investigating how completely

dissimilar word can still be meaningfully placed in a t-SNE embedding. For example, this can

potentially be done by first detecting whether a point is too dissimilar and then deciding how

a certain dissimilarity measure can be incorporated in that case. The idea of local perplexity

scaling can potentially be expanded by finding a more sophisticated method that differentiates

the perplexities for every individual point even more faithfully.

20

References

Aftab, K., Hartley, R., & Trumpf, J. (2014). Generalized Weiszfeld algorithms for lq optimiza-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37 (4), 728–745.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to

numerical computing. SIAM Review , 59 (1), 65–98. doi: 10.1137/141000671

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with

subword information. Transactions of the Association for Computational Linguistics, 5 ,

135–146.

Chan, D. M., Rao, R., Huang, F., & Canny, J. F. (2019). GPU accelerated t-distributed

stochastic neighbor embedding. Journal of Parallel and Distributed Computing , 131 , 1–

13.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of

eugenics, 7 (2), 179–188.

Google. (2013). Word2vec Google news model. https://code.google.com/archive/p/word2vec/.

Hinton, G. E., & Roweis, S. T. (2003). Stochastic neighbor embedding. In Advances in neural

information processing systems 15 (pp. 857–864). MIT Press.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.

Journal of educational psychology , 24 (6), 417.

Kobak, D., & Berens, P. (2019). The art of using t-SNE for single-cell transcriptomics. Nature

communications, 10 (1), 1–14.

Lee, J. A., Peluffo-Ordóñez, D. H., & Verleysen, M. (2015). Multi-scale similarities in stochastic

neighbour embedding: Reducing dimensionality while preserving both local and global

structure. Neurocomputing , 169 , 246–261.

Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S., & Kluger, Y. (2017). Ef-

ficient algorithms for t-distributed stochastic neighborhood embedding. arXiv preprint

arXiv:1712.09005 .

Linderman, G. C., & Steinerberger, S. (2019). Clustering with t-SNE, provably. SIAM Journal

on Mathematics of Data Science, 1 (2), 313–332.

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine

learning research, 9 (Nov), 2579–2605.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word represen-

tations in vector space. arXiv preprint arXiv:1301.3781 .

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representa-

tions of words and phrases and their compositionality. In Advances in neural information

processing systems (pp. 3111–3119).

Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points in space. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2 (11),

559-572. doi: 10.1080/14786440109462720

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word repre-

sentation. In Proceedings of the 2014 conference on empirical methods in natural language

processing (emnlp) (pp. 1532–1543).

21

Pezzotti, N., Mordvintsev, A., Hollt, T., Lelieveldt, B. P. F., Eisemann, E., & Vilanova, A.

(2018). Linear t-SNE optimization for the web. arXiv preprint arXiv:1805.10817 .

Schakel, A. M., & Wilson, B. J. (2015). Measuring word significance using distributed repre-

sentations of words. arXiv preprint arXiv:1508.02297 .

Van Der Maaten, L. (2014). Accelerating t-sne using tree-based algorithms. The Journal of

Machine Learning Research, 15 (1), 3221–3245.

22

A Appendix A: programming code instructions

The provided code contains ten Julia files that contain various functions each. The code is

designed to be modular, such that every function with a similar purpose is grouped together

in a file. The Julia console requires that you change the current working environment to the

correct directory. All functions can then be accessed by copying the following block of code into

the Julia console:

include(”tsne init.jl”)

include(”tsne distances.jl”)

include(”tsne wordvec.jl”)

include(”tsne perplexity.jl”)

include(”tsne weights.jl”)

include(”tsne insert.jl”)

include(”tsne main.jl”)

include(”tsne evaluation.jl”)

include(”tsne save.jl”)

include(”tsne experiments.jl”)

The code is originally written in version 1.4.1 of Julia. Each file contains a brief overview

at the top and in-line comments. Of particular interest is the tsne experiments.jl file, which

contains functions to directly reproduce all tables and figures of this paper. In short, the ten

files provide the following functions:

tsne init.jl contains different initialization options for the t-SNE algorithm.

tsne distances.jl contains various (pseudo-)distance and similarity metrics.

tsne wordvec.jl contains some word embedding related functions.

tsne perplexity.jl contains local perplexity functions that can be used in t-SNE.

tsne weights.jl contains the discussed similarity weighing functions and solvers.

tsne insert.jl contains the discussed method for inserting new points in t-SNE.

tsne main.jl contains the main t-SNE algorithm and directly related functions.

tsne evaluation.jl contains functions for evaluation metrics.

tsne save.jl contains options to save and report the t-SNE output.

tsne experiments.jl contains functions for generating the figures and tables of this paper.

23

https://github.com/CClaassen/t-SNE

B Appendix B: composition of the dataset used

The dataset consists of eleven word categories that contain a total of 601 words. The file the-

sis words.csv contains the words with corresponding labels and can be loaded through: words,

labels = import words(). The word embeddings of these terms can be obtained directly with

the function get embeddings(words) after downloading and compiling the code. The code also

contains a file called test words.csv that contains the 50 words that are used for evaluating the

point insertion method

The following eleven different word categories are included:

- Countries (105 word representations) contains words like Greece and Japan.

- Capitals (105 word representations) contains words like Rome and Stockholm.

- Drinks (17 word representations) contains words like coffee and water.

- Animals (75 word representations) contains words like duck and fox.

- Food (96 word representations) contains words like cheese and meat.

- Jobs (52 word representations) contains words like actress and nurse.

- Family (17 word representations) contains words like father and sister.

- Sports (20 word representations) contains words like baseball and tennis.

- University subjects (32 word representations) contains words like biology and philosophy.

- Chemistry (39 word representations) contains words like catalyst and hydrolysis.

- Economics (43 word representations) contains words like budget and stock.

24

	1 Introduction
	2 Related Works
	2.1 T-SNE
	2.2 Word embeddings

	3 Data
	4 Methodology
	4.1 An improved t-SNE implementation
	4.2 Extensions
	4.2.1 Multi-scale local perplexities based on word similarities
	4.2.2 Adding a new point to an existing t-SNE output

	4.3 Evaluation criteria

	5 Results
	5.1 Replication
	5.2 Evaluation results

	6 Conclusion
	References
	A Appendix A: programming code instructions
	B Appendix B: composition of the dataset used

