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1 Introduction
The relation between government spending and output is an interesting topic for many policy makers. Es-
timating the precise relation between these two variables is rather difficult, since standard linear regressions
capture only the central tendency of effects (Linnemann & Winkler, 2016). Many papers suggest that the
effect of government spending shocks on US macroeconomic activity is not linear. Makinng use of nonlinear
methods is then a more suitable approach. Therefore, this paper estimates the relation between fiscal policy
and economic activity, using two different nonlinear methods; quantile regressions and neural networks. Both
methods are used in combination with a vector autoregression (VAR) model.

Linear models focus only on the mean of the conditional distribution of the dependent variable. Quantile
methods on the other hand, have the advantage that they are able to examine how the whole conditional
distribution of the outcome variable gets affected by changes in the explanatory variables. The effects may
differ at various parts of the distribution. Linnemann & Winkler (2016) perform quantile regressions to eval-
uate whether output (GDP) responds different to changes in fiscal policy, when the conditional distribution
of output is in its lowest or highest 10 per cent.

Nowadays, there are many more methods in order to estimate and predict nonlinear relations. Nonlinear
machine learning methods seem to have interesting features, which make it easier to catch the nonlinear
trend. To estimate the relation between government spending and macroeconomic activity, we use another
nonlinear method, next to quantile regressions, namely a neural network (Hornik, Stinchcombe, & White,
1989); (Gu, Kelly, & Xiu, 2020). This paper deals with the following research question: "Does a neural net-
work outperform a quantile regression in terms of estimation and prediction of the nonlinear relation between
US government spending and US output?"

According to (Linnemann & Winkler, 2016), quantile regressions have advantages, both relative to linear
methods and nonlinear methods. Quantile methods do not depend on the regime the economy inhabits at.
In this case, these regimes are the recessions and booms. Furthermore, it is not necessary to choose an index
as a measure of the business cycle. Also, the quantile regressions are capable of estimating the impact of
changes in explanatory variables on the whole distribution of the outcome variable, since there are no restric-
tions for the parameters. Another advantage of this method is that it does not demand an exact definition of
the regimes. Moreover, quantile regressions are able to pick up the nonlinearities that can not be estimated,
since the economy is in an expansion or recession.

Linnemann & Winkler (2016) also mention some disadvantages of the quantile regressions. Quantile methods
do not present a specific and testable model which investigates the nonlinear behaviour in the data. Also,
policy makers might experience it as a challenge to use the results of a quantile regression, since they do
not know the exact quantile of macroeconomic activity that the economy resides in. However, they have an
indication whether the economy is in a lower or higher quantile than its mean/median.

Machine learning is a more modern approach. Gu, Kelly and Xiu (2020) state in their paper that a neural
network is one of the most powerful modeling device in machine learning. This method is known for its
flexibilty. A neural network may outperform a quantile regression in terms of estimation and prediction of
the nonlinear relation between fiscal policy and output. As a result, policy makers can use this nonlinear
relation to predict the macroeconomic activity.
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To determine whether neural networks outperform quantile regressions in estimation and prediction of the
nonlinear relation between government spending and output, we first reproduce a part of the results of the
paper (Linnemann & Winkler, 2016). This is the first model. For the second model, we use a fully connected
feed-forward neural network.

To estimate and predict the relation between US output and US government spending, we use a data set
which contains quarterly US data from 1966Q1 to 2013Q4. The variables Government Spending, Output,
Net Taxes and Interest Rate are included in the VAR model. We find that the neural network estimates
a larger proportion of the relation between government spending and output, than the quantile regressions.
Moreover, it predicts the relation better; the MSFE is lower and the out-of-sample R2 is higher compared to
the MSFE and out-of-sample R2 of the quantile regressions.

In the rest of the paper we first discuss relevant literature in the literature section. Thereafter, we describe
the variables used for the VAR models in the data section. We then elaborate on the methods used for
both models to estimate the relation between government spending and output. Next, we explain how the
impulse responses are constructed in order to obtain how output and government spending respond to a fiscal
expansion. The measures used to evaluate the predictive performance of these models are also discussed in
this section. Subsequently, the result section presents the results of the two models. After this, we answer
our research question by making a comparison between the two models in the conlusion section. Finally, the
discussion mentions the limitations of the methods used for this research.

2 Literature
Literature proposes various methods to estimate the relation between fiscal policy and US macroecomic ac-
tivity. Both linear and nonlinear methods have been used.

Blanchard & Perotti (2002) made use of linear vector autoregressive models in combination with event studies
to estimate the aforementioned relation. The results of (Blanchard & Perotti, 2002) indicate that an increase
in government spending leads to an increase in output as well, but output decreases when there is a positive
change in tax. However, linear models are not able to estimate the nonlinear impact of a fiscal expansion on
the macroeconomic activity.

Other papers used nonlinear statistical methods. The paper (Auerbach & Gorodnichencko, 2012) investigates
how the economy responds to a change in fiscal policy, by using "regime-switching models". After obtaining
the results, they state that fiscal policy has a greater impact on the macroeconomic activity when the econ-
omy is in a recession rather than in an expansion. Blanchard & Leigh (2013) estimate how the forecast errors
for the growth of the economy are related to the plans the government made in order to reduce their deficits
and total debt, during the crisis. They find that governments of developed countries had a greater fiscal
consolidation strategy when the growth of their economy was lower than predicted. According to (Blanchard
& Leigh, 2013), predicting the results of fiscal consolidation too positively might lead to an underestimation
of the size of the effects of changes in government spending and tax.

To obtain results for our first model, we will use the same method as described in (Linnemann & Winkler,
2016). They use quantile regressions in two different contexts. As measures for US macroeconomic activity,
they either use output or the unemployment rate.
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First they estimate vector autoregressions (VAR) models by performing quantile regressions. They also eval-
uate the impact of a fiscal expansion on output (GDP) by estimating the quantile-specific impulse responses.
For the second framework, they evaluate the impact of government spending on predictions of output for
different quantiles. To do so, they use the local projection method (Blanchard & Perotti, 2005). They find
that a change in government spending affects the lowest decile of output more than higher deciles of this
variable. On the other hand, for the highest quantile of unemployment, higher government spending decreases
the unemployment in the US.

There has been numerous studies, that apply machine learning (ML) methods to solve complex finacial prob-
lems. The papers (Feng, Giglio, & Xiu, 2017) and (Kelly & Pruitt, 2015) use linear and nonlinear machine
learning methods such as Partial Least Squares (PLS) and Neural Networks. These methods are able to han-
dle a huge amount of explanatory variables. Gu et al. (2020) state that the use of machine learning methods
in a financial context results in huge benefits for the economy. Machine learning methods are able to increase
the amount of variables, without negatively affecting the R-squared of the model. Machine learning methods
are very flexibily, which has a positive effect on the estimates of the model. The paper also states that a
neural network is the preferred nonlinear method when it comes to machine learning.

3 Data
In this section the data set which is used to perform the quantile regression and to create a neural network
is described. First, in section 3.1, the samples will be discussed. Section 3.2 shows the variables used for this
paper and their descriptive statistics.

3.1 Calibration
The data set used for our research contains US data from 1966Q1 to 2013Q4, with 236 quarterly observations.
To obtain the predictive performance of the models, we split our sample into sub-samples. For the quantile
regressions, we use roughly 80 % of the data to estimate the model. This is the estimation sample, which
spans 1955Q1-2002Q4. The remaining 20 % is predicted by means of an expanding window. This sub-sample
is the test sample and contains 44 observations, from 2003Q1 till 2013Q4. For our second model, the neural
network, we split the sample in three sub-samples: the estimation, validation and test sample, which contain
60, 20 and 20 per cent of the observations, respectively. The validation sample makes sure that the neural
network is shielded from overfitting (Gu et al., 2020). The estimation sample spans 1955Q1-1990Q4, the
validation 1991Q1-2002Q4 and for the test sample we still use the observations from 2003Q1 till 2013Q4.

3.2 Variables
The variables are the same as used in (Linnemann & Winkler, 2016). The data set is obtained from the
FRED database. This database contains many economic time series from US and international sources. The
data set used for this paper consists of the following four variables:

• Government Spending: real government consumption and gross investment

• Output: real gross domestic product (GDP)

• Net Taxes: measured as the real value of government current tax receipts deflated with the GDP
hhhhhhhhhhl deflator

• Interest Rate: the short-run real interest rate, constructed as the annualized difference between the
hhhhhhhhhhhhh Federal Funds Rate and the log-change
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Linnemann & Winkler (2016) use another variable; the ratio of government debt held by the public. Since
there was no quarterly data available for this variable, for the period 1955Q1 to 2013Q4, we did not include it.

All variables are selected in order to take influences into account, that might have an effect on the nonlinear
relation between output and government spending. To detrend the data, we modify the variables government
spending, output and net taxes by taking the differences between the log of these variables and the quadratic
time trends. This makes it easier to compare our results with earlier literature, since most empirical studies
measure their variables this way. Table 1 shows the descriptive statistics of the four variables. The range
of the variable Net Taxes is larger than the range of the other three variables. That’s why Net Taxes has
the highest standard deviation among the four variables. Also, the mean of Interest Rate is higher than the
mean of the other variables.

Table 1: Properties of the variables.

Mean Maximum Minimum Std. Dev. Observations
Government Spending -3.39E-08 0.141 -0.102 0.049 236
Output 1.20E-08 0.057 -0.087 0.033 236
Net Taxes -8.47E-09 0.323 -0.441 0.141 236
Interest Rate 0.019 0.101 -0.027 0.026 236

Note: The table displays the descriptive statistics of the four variables.

4 Methodology
As we mentioned in the introduction, in this paper we estimate the nonlinear relation between government
spending shocks and US macroeconomic activity, by using two nonlinear methods. We compare the two
models to conclude which method is more suitable for this problem. In section 4.1, the quantile regressions,
which are used for the first model, are described first. After that, the neural network is discussed. To estimate
the effect of government spending shocks on output, we calculate the impulse responses by means of a QVAR
(Quantile Vector Autoregressive) model. Section 4.2 covers this part. The methods used to evaluate the
predictive power of the two models are explained in section 4.3 .

4.1 The two models
The two models used for this research are described below. Both models are used in combination with a
VAR model.

4.1.1 Quantile Regressions

For the first model, the same method will be used as (Linnemann & Winkler, 2016) did in their paper. We
will apply quantile regression estimation to a VAR model. This model consists of a constant and four lags
of the four variables in the vector autoregressions (VAR). (Cecchetti & Li, 2008) have been the first to use
quantile regressions in the context of VAR models.

Quantile regressions, as described by (Koenker & Bassett, 1987), are an extensive form of the basic regres-
sions. To understand how quantile regressions work, it is required to be familiar with standard least squares
regressions. These regressions estimate the conditional mean of the dependent variable yt across values of a
vector, xt, which contains explanatory variables, such that

E(yt|xt) = xtβ (1)
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The model aims to minimize the sum of squared residuals, ε2, by estimating the parameters for the explana-
tory variables xt, which are presented by the vector β. The dimensions of x and β are (n x k) and (k x 1)
respectively, where n denotes the amount of observations and k the amount of explanatory variables. This
linear model explains variations in the mean of yt, caused by changes in the explanatory variables, xt.

Whereas the least suqares method only focuses on the conditional mean, quantile regessions take the whole
distribution of the dependent variable into account. The quantiles, q ∈ (0, 1), describe the distribution.
When q = 0.1 for example, the output is in the lowest 10 percent of its conditional distribution. Similarly, if
q = 0.9, output is in the highest 10 percent of its conditional distribution. The model then explains changes
in this part of the distribution of the dependent variable as a result of variations in the explanatory variables.
The quantile function Qq(.) for quantile q is Qq(yt) = F−1(q), where F (yt) is the PDF of the variable yt.
Given xt, the qth quantile of the dependent variable is explained as follows:

Qq(yt|xt) = xtβ(q) (2)

Here, the vector β contains values which show how the dependent variable is affected by a change in the
corresponding explanatory variable. The difference between standard least squares regressions and quantile
regressions is visible in the notation βq. For each quantile q, there is a different vector β. This vector is
estimated as follows:

β̂(q) = argminβ(q)
∑
t

ρq[yt − xt(β(q))] (3)

This estimation is given by (Koenker & Bassett, 1987). Let ωt = yt − xt(β(q)), then pq[ωt] = (q − Iωt<0
)ωt.

Here Iωt<0
is an indicator function which is equal to one if ωt < 0 and zero otherwise.

The parametric vector β̂(q) is an estimation of the marginal effect of the explanatory variables. Since basic
regressions only focus on changes in the conditional mean of yt, the results we obtain by performing quantile
regressions contain much more information. By estimating the model for different quantiles, the influence of
xt on the whole distribution of yt can be evaluated, rather than only on the mean of yt.

For this model, a VAR(4) model (VAR(p), with p = 4 lags) is used. Let zt = (z1t, z2t, ..., zkt)
′ be a vector of k

variables measured at time t and let q = (q1, q2, ..., qk)
′ be a vector of k quantiles. In this case, k is equal to

4, since we are using four variables. For the quantile regressions, the order of the variables is very important,
since the variables have to be in line with their corresponding quantiles. Our model uses the explanatory
variables in the following order: government spending (gt), output (yt), net taxes (τt) and interest
rate (rt).

Since we are estimating the effect of government spending shocks on different quantiles of output (0.1, 0.5
and 0.9), we are using the same model thrice, with a different vector q. These vectors are:

q =


0.5
0.1
0.5
0.5

 q =


0.5
0.5
0.5
0.5

 q =


0.5
0.9
0.5
0.5
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The linear QVAR model is then as follows:

Qq(zt|zt−1, ..., zt−4) = c(q) +

4∑
i=1

Bi(q)zt−i, (4)

where

Bi(q) =


βi,11(q1) ... βi,14(q1)
βi,21(q2) ... βi,24(q2)
βi,31(q3) ... βi,34(q2)
βi,41(q4) ... βi,44(q4)

 , and c(q) =


c1(q1)
c2(q2)
c3(q3)
c4(q4)



Here, the coefficients βijn(qj) show how the qth quantile of the conditional distribution of variable zjt gets
affected by lag i of variable n. The constant c is also different for each quantile q. This is obvious from the
notation cq. Thus, the estimated model is able to determine how a change in the qthi quantile of the condi-
tional distribution of zit gets affected by the qthj quantile of the conditional distribution of the jth variable, zjt.

VAR models have the advantage that the right-hand side of each equation is the same. In our case this side
contains the four variables, with four lags for each variable. Thus, the model can be estimated equation-by-
equation.

4.1.2 Neural Network

For our second model, we use a "fully connected feed-forward neural network". Gu et al (2020) states that
a neural network is one of the most powerful machine learning techniques. Neural networks were also used
in the paper (Akimov, Azagouag, Djibuti, Ilyas & Lingsveld, 2020). In this section, we elaborate on this
machine learning method.

A neural network is able to handle difficult machine learning problems, such as computer vision and automated
game-playing. Its most attractive feauture is its flexibility. This felixibility is caused by the large amount
of hidden layers the networks can contain, which increases the performance of the model. However, the
network also loses its transparency due to the hidden layers. It makes them extremely complex and difficult
to interpret. Therefore, neural networks are also called "black boxes".

Figure 1: Neural Network, illustration from (Gu et al., 2020)
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Neural networks contain different kinds of layers. The simplest neural network consists of an input layer and
an output layer. See Figure 6 in the appendix. This linear model is identical to an ordinary least squares
(OLS) regression. Let x1....xk be our predictors and β a parametric vector. The dimension of the predictors is
equal to the amount of units in the input layer. After giving the model its input, the network assigns weights
to these variables and transfers them together with a constant to the output layer. Here, the weighted signals
are aggregated into the forcast:

β0 +

k∑
i=1

xiβi (5)

The network becomes more flexible when we include hidden layers. The amount of hidden layers are noted
as l....L and the amount of neurons within each hidden layer are noted as n....N l. These layers are added
between the input and output layer. The variables from the input layer are passed on to the first hidden
layer, together with a constant. Each hidden layer contains neurons and each neuron receives information
from the input layer. The network then applies the activation function f(x) to the neurons, which trans-
forms the input variables nonlinearly. After that, signals are passed on to each neuron in the following
hidden layer. These signals contain information from the previous layer. This goes on until the network
reaches the last hidden layer, which then sends signals to the output layer. The output layer aggregates
all the information from every neuron linearly as an target variable. To understand how this happens, we
take a look at a neural network with only one hidden layer. The outcome variable is then computed as follows:

y(x, β) = β
(1)
0 +

N1∑
n=1

s(1)n β(1)
n (6)

Such a network is called a "fully connected feed-forward neural network": each neuron from each hidden layer
receives information from each neuron from the previous hidden layer. An example of this network is shown
in Figure 1. The pink circles denote the input layer and the red circle denotes the output layer. In between,
there is one hidden layer, which contains 5 neurons. Each arrow between the different layers is associated
with a weight parameter.

It is quite a challenge to set up the neural network. Many choices need to be made carefully, inlcuding the
amount of parameters and hidden layers and the number of neurons within each hidden layer. Increasing
this amount can ehance the performance of the model. On the other hand, including to many parameters
can make the recursive calculation of derivatives (or "back-propagation") difficult.

The fully connected neural network used for this research has three hidden layers, since (Gu et al., 2020)
conclude that a neural network performs the best if it contains three hidden layers. When another hidden
layer is added, the performance of the network decreases. The input layer consists of 16 units, given that we
have 4 variables and we are including 4 lags per variable. The three hidden layers have 16, 8 and 4 neurons,
respectively. We choose the amount of neurons in each layer according to the geometric pyramid rule, which
is introduced by (Masters, 1993). Each neuron in our neural network has the same activation function: the
Sigmoid function. This function is used the most when it comes to machine learning. The function is defined
as:

f(x) =
1

1 + e−x
(7)

Let Kl be the number of neurons in each hidden layer, with l = 1, 2.....L hidden layers. In our case L = 3.
The recursive formula for the output at each neuron of the neural network is given by:

s
(l)
k = Sigmoid(s(l−1)

′

β
(l−1)
k ) (8)
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The final output is then:
y(x;β) = s(L−1)

′

β
(L−1)
k (9)

The network we created is complex and loaded with many parameters. Overall, the neural network has 560
parameters. Since this method is very nonlinear and not convex, the optimization becomes almost infeasible.
A general solution is to train the network by making use of the stochastic gradient descent (SGD) method.
This method uses an arbitrary subset of the data to estimate the gradient at every iteration of the optimiza-
tion. This is an advantage over the standard descent methods, since those methods use the whole training
sample. Consequently, this gives a huge boost to the optimization routine. At the same time the accuracy
of the approximations decreases.

Another problem caused by the flexibility and parametrization of the network, is overfitting. An overfitted
model is a model that contains too many parameters and is able to notice even the slightest variations in
the training data, which worsens the forecasting performance. To prevent overfitting, regularization tools are
used. For our model, we use four tools.
The learning rate is one of these tools. This method controls the step size of the descent and makes sure the
calculation noise does not affect the descent.
The second regularization tool, is the ridge penalization. This is a general form of regularization, which
reduces the multicollinearity and complexity of the model.
Another general regularization tool, is early stoppage. This method decreases the forecast errors in the data
by updating the parameters at every iteration. The optimization is put to an end, when the forecast errors
of the validation sample begin to increase.
The last regularization tool we use, is "batch normalization" (Ioffe & Szegedy, 2015), which normalizes the
input for every hidden layer and smooths the objective function. This technique improves the speed and
stability of the network. It minimizes internal covariate shift, which occurs when inputs of the hidden layers
follow different distributions for the training and validation sample. With batch normalization, the network
is able to use a higher learning rate, without vanishing or exploding gradients.

Figure 2 shows a representation of the neural network. The input variables are named X1...X16. The neurons
are noted as Sln, where n is the number of the neuron and l is the number of the hidden layer.

Figure 2: A representation of the neural network

For the coding of the neural network in Python, we used the packages (Abadi et al., 2015) and (Chollet et
al., 2015).
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4.2 Impulse Response
To examine the quantile-specific effects of variations in fiscal policy, we compute the impulse responses for
the variables government spending and output. These impulse responses show us, how the variables respond
to a 1 percent positive shock in government spending. We use the following procedure. For the quantiles
q = 0.1, q = 0.5 and q = 0.9, we estimate the VAR models. After that we make use of a Cholesky decom-
position to orthogonalize the covariance matrix of the errorterms. The order of the variables is extremely
relevant here. We stick to the same order as we used for the regressions: gt, yt, τt, rt. Finally we create a
response vector by means of a loop which generates the responses at each point in time. Plotting this vector
gives us the desired impulse responses. To compute this in MATLAB, we followed the steps and used the
formulas described by Dr. Lutz Kilian in his book "Structural Vector Autoregressive Analysis" (Kilian, 2017).

4.3 Forecasting Performance
To analyse the predictive performance of both models, we perform rolling regressions. One of the measures
used in the paper (Gu et al., 2020) to compare the methods, is the out-of-sample R2. This R2 is equal to one
minus the summed squared error of the residuals (SSR) divided by the summed squared observations (SST).
The formula for the out-of-sample R2 of the quantile regressions is shown in the equation below. T3 denotes
the testing sample.

R2
oos = 1−

∑
(i,t)∈T3

(Qq(zt)− c(q)−
∑4
i=1Bi(q)zt−i)

2∑
(i,t)∈T3

z2t
(10)

Another predictive performance measure is the mean squared forecast error (MSFE). This MSFE is the
expectation of the summed squared error of the residuals. In this context, that is:

MSFE =

√∑
(i,t)∈T3

(Qq(zt)− c(q)−
∑4
i=1Bi(q)zt−i)

2

NT3

(11)

Here NT3
denotes the amount of observations in the test sample, which is equal to 44 in our case.
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5 Results
In this section the estimates of the two models, the impulse responses for the QVAR model and the results
for the out-of-sample forecasts are presented. In section 5.1, the results of the quarterly quantile regressions
and the neural network are shown. The impulse responses are displayed in section 5.2. Section 5.3 contains
the out-of-sample results using an expanding window.

5.1 Model Estimates
The model estimates consist of two parts. First, the fitted values for the quantile vector autoregressive model
are shown. After that, the R2 of the two models are discussed.

Fitted Values

Before we start with the comparison between the two models, we take a look at the fitted values. We perform
quantile vector autoregressive (QVAR) regressions for the quantiles q = 0.1 (lower decile) and q = 0.9 (upper
decile) and estimate the corresponding fitted values. To get an indication of their deviations from trend,
we plot these fitted values together with the actual output. Since the actual output is denoted by yt, the
lower and upper decile are given by Q0.1(ŷt|zt−1, ..., zt−4) and Q0.9(ŷt|zt−1, ..., zt−4), respectively. Here ŷt
represents the fitted values for output. The graphs is shown in Figure 3, where the actual output is shown by
the solid green line. The orange and blue line show the 0.1 and 0.9 quantiles of the conditional distribution
of output, respectively.

From the figure we observe the parts in our data where the fitted values for the upper and lower decile are
close to the actual output. These parts represent periods when a change in fiscal policy occurred, which had
a large influence on output, since output was far from its mean. We notice that this mostly happens when
output is strongly positive or negative and thus not at its peak. So, output is in its lowest or highest 10 per
cent, when the economy is turning to a recession or expansion, respectively. However, output is close to its
mean when the economy resides in one of the two regimes.

When we compare Figure 3 with Figure 1 from (Linnemann & Winkler, 2016), we see that the upper and
lower decile are closer to the actual output in their paper. As mentioned before, we excluded one variable
from the data set used by (Linnemann & Winkler, 2016), namely the ratio of government debt held by the
public. This is because the "debt" variable worsens the results; the gap between the actual output and
the fitted values for the upper and lower decile were larger than shown in Figure 3. This difference can be
explained by the size of the data set, since there was no quarterly data available for the "debt" variable for
the period 1955Q1-1965Q4. The appendix contains the graph of the fitted values where the "debt" variable
is included in the QVAR model (Figure 5).
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Figure 3: Actual output versus quantile forecasts

R squared

The table below shows the R2 of the quantile regressions, performed at q = 0.5, and the neural networks.
Since a VAR model can be estimated equation-by-equation, we performed 4 quantile regressions. Each
regression consists of one dependent variable (mentioned left in the table), a constant and 16 explanatory
variables (4 lags for each variable). To obtain these values for the neural networks, we constructed 4 different
neural networks with one node in the output layer. An illustration of this network is included in the appendix
(Figure 7). From the table we can conclude that the R2 for the neural networks are higher than the R2 for
the quantile regressions. This means that the neural network explains a larger proportion of the dependent
variable.

Table 2: R2 of the models

Quantile Regressions Neural Networks
Government Spending 0.813 0.900
Output 0.782 0.941
Net Taxes 0.736 0.916
Interest Rate 0.521 0.722

When we compute the system as a whole, we get a R2 equal to 0.513. The R2 for the neural network with
4 nodes in the output layer, is equal to 0.718. Again, we obtain a larger R2 for the neural network, which
indicates that the neural network outperforms the quantile regression in terms of estimation of the nonlinear
relation between the variables.

The R2 for the quantile regression, where output is the dependent variable and q = 0.1, is equal to 0.760.
When q = 0.9, the R2 equals 0.773. These values are lower than the R2 of the neural network, with the
variable output in the output layer; 0.941. The R2 for the neural network is still higher. However, this
comparison is not completely fair, since we are comparing the R2 at different quantiles for different methods.
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5.2 Impulse Responses
To investigate the effect of fiscal policy expansions, we take a look at the quantile-specific impulse responses.
These impulse responses are based on the QVAR models.

The impact of a positive 1 percent shock in the median of government spending on the variables output
and government spending, for different quantiles (q = 0.1, q = 0.5 and q = 0.9) of output, can be obtained
by the orthogonalized impulse responses shown in Figure 4. The order of the variable in this model is: gt
(government spending), yt (output), τt (net taxes), rt (interest rate).

From the graphs displayed in the first part of the figure (part a), it is visible that output responds positively
to a shock in government spending. When we compare the three graphs in the first row, we oserve a difference
in the responses. When output is in its lowest 10 percent (q = 0.1), the positive shock in government spending
causes a strong return with a peak that lasts about 7 to 8 quarters after the change. At the median (q = 0.5),
output reponds relatively weaker and shorter compared to the response at q = 0.1. There is an increase in
the economic activity which is only visible till approximately 2 to 3 quarters after the shock. At the highest
decile, q = 0.9, there is even a sign of a negative response after approximately 4 quarters. However, after
about 11 quarters, the economy rises and output becomes positive again. Output responds differently for the
three different quantiles. Consequently, we obtain a nonlinear relation.

When we compare these three graphs with the first row of Figure 2 from (Linnemann & Winkler, 2016), we
observe that the responses at q = 0.1 and q = 0.5 are approximately the same. However, at q = 0.9, there
is a difference between the responses we obtained: in their graph, when output becomes negative, it stays
negative, but the response we observe becomes positive again after some quarters. A reason for this difference
may be the omitted "debt" variable, which was mentioned earlier. However, the response we obtained stays
in the 90 percent confidence interval shown in Figure 2 from (Linnemann & Winkler, 2016).
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(a) Output

y to g, 0.1 quantile y to g, 0.5 quantile y to g, 0.9 quantile

(b) Government Spending

g to g, 0.1 quantile g to g, 0.5 quantile g to g, 0.9 quantile

Figure 4 Impulse responses at different quantiles of the output distribution

Note: The solid lines show the responses of output and government spending to a 1 percent government spending shock,
when the parameters are estimated at the 0.1, 0.5, and 0.9 output quantiles.

The second part of the figure (part b) displays how government spending responds to the fiscal expansion.
When we compare the responses at different quantiles, we observe that government spending has a strong
response when output is relatively low (q = 0.1). The responses of government spending for the 0.5 and 0.9
quantile of output are almost the same. Again, we observe a brief and relatively weak response at these two
quantiles: after approximately 6 quarters there is no further increase in government spending.

Comparing these three graphs with the second row of Figure 2 from (Linnemann & Winkler, 2016), shows
that the responses at the different quantiles are more or less the same. However, we notice a difference in the
response at q = 0.1: in their graph the increase in government spending declines, but it still keeps increasing.
However, from the corresponding graph shown in this paper, we can see that government spending decreases
after about 14 quarters. Again, the omitted variable may be the reason behind this difference.
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5.3 Rolling Regressions
Since both methods are performed on VAR models, we forecast the system equation-by-equation. We use an
expanding window to predict the data one step ahead for 2003Q1-2013Q4, given the data from 1955Q1 till
2002Q4. The results are shown below.

Table 3 displays the out-of-sample R2 for both models. We observe larger values for the neural networks
than for the quantile regressions. This indicates that the neural network explains a larger proportion of the
forecasted dependent variable. Also, the R2 for Interest Rate is lower than the other values.

Table 3: Out-of-sample R2 of the models

Quantile Regressions Neural Networks
Government Spending 0.834 0.920
Output 0.791 0.967
Net Taxes 0.724 0.890
Interest Rate 0.539 0.773

The out-of-sample R2 for the QVAR model as a whole is equal to 0.527. When we forecast the neural network
with 4 nodes in the output layer, we get an out-of-sample R2 equal to 0.764. Again, this value is higher than
the out-of-sample R2 for the QVAR model.

Table 4 shows the mean squared forecast errors (MSFE) of the two models. We observe smaller values for the
MSFE of the neural networks than the quantile regressions. This implies that the forecasts obtained by means
of a neural network are closer to the actual data than the forecasts obtained by means of a quantile regression.

Table 4: MSFE of the models

Quantile Regressions Neural Networks
Government Spending 0.328 0.235
Output 0.397 0.214
Net Taxes 0.623 0.529
Interest Rate 0.701 0.535

The MSFE for the the QVAR model as a whole is equal to 0.642. For the neural network with 4 variables in
the output layer, the MSFE is 0.498. Again, the MSFE for the QVAR model is higher.
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6 Conclusion
The research question we stated in the introduction, is: "Does a neural network outperform a quantile regres-
sion in terms of estimation and prediction of the nonlinear relation between US government spending and US
output?" First we estimated this relation. Then, to compare the predictive performance of the two models,
we performed rolling regressions.

To estimate the nonlinear relation between fiscal policy and macroeconomic activity, we started with repro-
ducing the quantile vector autoregressive (QVAR) models. For our second model, we used a fully connected,
feed-forward neural network. This network estimates the same VAR model. We obtained larger values for
the R2 of the neural networks, compared to the R2 for the quantile regressions. This indicates that a neural
network outperforms a quantile regression in estimation of the nonlinear relation.

To predict the relation between government spending and output, we had a look at the out-of-sample forecasts.
We made use of an expanding window, where we used the observations from 1955Q1 till 2002Q4 to predict the
data from 2003Q1 till 2013Q4. The results show that the neural network explains a larger proportion of the
forecasted dependent variable, since the out-of-sample R2 are higher than the out-of-sample R2 for the quan-
tile regressions. Also, the MSFE for the neural networks are lower compared to the corresponding values for
the quantile regressions, indicating that the neural network gives forecasts which are closer to the actual data.

Thus, we conclude that neural networks estimate and predict the nonlinear relation between US government
spending and US output better than quantile regressions.
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7 Discussion
This paper gives the impression that the machine learning method outperforms quantile regressions in terms
of estimation and prediction of the nonlinear relation between fiscal policy and macroeconomic activity. How-
ever, this does not mean that machine learning methods do not have limitations.

For our research we used the nonlinear machine learning method neural networks. This method is complex
and not transparent. The network requires a large data set in order to catch the nonlinear trend between
the variables. The sample we used to train the modek contained 188 data points, which is very small. The
neural network may have failed to capture the nonlinear behaviour in our data.

Another important point is the fact that we did not use the ratio of debt held by the public. When repli-
cating the results of (Linnemann & Winkler, 2016), this causes differences. However, this does not affect
the comparison between the two models used in this paper, since the same variables are used for both models.

We estimated the nonlinear relation between US government spending and US output at different quantiles
of output by means of a QVAR model (q = 0.1, q = 0.5 and q = 0.9). However, for the neural network,
we only estimated the relation at q = 0.5. For further research it might be interesting to include different
quantiles of output for the neural network as well.
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8 Appendix

Additional Figures
Figure 5 shows the fitted values for the lower and upper conditional output decile and the actual output.
Here, we included the "debt" variable. The solid green line refers to actual output, the orange line refers to
the lower output decile, and the blue line refers to the upper output decile. After comparing this figure to
figure 3, we can conclude that the deviations are larger when the debt ratio variable is included.

Figure 5: Actual output versus quantile forecasts, including the debt variable

Figure 6 gives an illustration of a neural network without any hidden layers. This network is the same as
OLS.

Figure 6: Neural Network without hidden layers, illustration from (Gu et al., 2020)
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In Figure 7 the neural network, used to estimate the nonlinear relation equation-by-equation, is shown. This
network has only one node in the output layer.

Figure 7: Neural Network with one variable in the output layer

Code
To obtain the results for this research, three softwares were used: EViews, MATLAB and PyCharm (Python).
The attached ZIP file, contains the three folders with the code. Here, the folder Python contains three files,
namely "NN", "QuantileRegressions" and "Expanding window". The last mentioned file is used in combinatio
with the two models, in order to evaluate the predictive performance. Since we also used neural networks
for the paper (Akimov, Azagouag, Djibuti, Ilyas & Lingsveld, 2002), the code for this research does contain
parts of the seminar paper.

(Akimov, 2020)
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