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Abstract

In this paper, we extend parametric t-distributed Stochastic Neighbor Embedding (t-SNE)

as introduced by Van Der Maaten (2009). In particular, we combine the abilities of autoen-

coders and parametric t-SNE into one efficient autoencoder network by introducing Regularized

Parametric t-SNE (RP t-SNE), a technique that learns a parametric mapping for dimension-

ality reduction able to preserve the local structure of data in low-dimensional projections, and

simultaneously learns to reconstruct these projections with high precision. We evaluate the

performance of RP t-SNE by comparing it with Principal Component Analysis (PCA), ker-

nel t-SNE, autoencoders and parametric t-SNE in terms of generalization and reconstruction

performance on the MNIST and COIL-20 image datasets. Results show that RP t-SNE pro-

vides similar reconstruction and generalization performances as autoencoders and parametric

t-SNE respectively. Moreover, RP t-SNE is able to reconstruct projections more precisely than

autoencoders for smaller sample sizes.
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1 Introduction

Real world data is often represented in a high-dimensional space, and manipulation in this space

is difficult because of the so-called “curse of dimensionality” (Schubert and Gertz, 2017), which

states that the amount of data needed to obtain a statistically sound and reliable result increases

exponentially with the dimensionality. Typically, the number of dimensions needed to represent all

the information in the input data, the intrinsic dimensionality (Schubert and Gertz, 2017), is often

lower than the actual dimensionality of the high-dimensional input data. Hence, dimensionality

reduction techniques are able to alleviate the curse of dimensionality by finding low-dimensional

projections of high-dimensional datapoints from the input data. Solving this curse is important in

many computer vision and machine learning applications, both as a preprocessing step for other

algorithms and as a goal for interpolation, data compression or visualization. Many dimension-

ality reduction techniques are thus proposed with the aim to preserve as much of the significant

structure from the high-dimensional data as possible. In particular, we focus on t-distributed

Stochastic Neighbor Embedding (t-SNE) as introduced by Maaten and Hinton (2008), which is

a nonlinear dimensionality reduction technique mainly used for data visualizations. The visual-

izations obtained from t-SNE distinguish different clusters from high-dimensional data fairly well,

since t-SNE is able to preserve the local structure of data.

However, t-SNE, just like many other nonlinear dimensionality reduction techniques are non-

parametric, that is, they do not provide an explicit parametric mapping f : X −→ Y between the

high-dimensional input space X = {xi : xi ∈ RD, i = 1, ..., n} and the low-dimensional projection

space Y = {yi : yi ∈ Rd, i = 1, ..., n}, where D > d and d is usually equal to one or two. One

benefit from the lack of a parametric mapping is the flexibility of visualization that the technique

could provide, since no constraints have to be met due to a predefined form of the mapping.

Though, this flexibility comes with the drawback that a direct way to map new datapoints on

demand does not exist after having computed the projection space. This drawback causes non-

parametric dimensionality reduction techniques to be unsuitable for streaming applications, where

the full dataset is often not available a priori. Parametric mappings for out-of-sample extension

of dimensionality reduction techniques are thus in high demand.

Ideally, the parametric mapping is able to project nonlinear input data into a lower dimension.

As an example, Principal Component Analysis (PCA) (Hotelling, 1933) is a parametric technique,

but due to its linear nature it is unable to successfully project data which lays on a nonlinear

manifold. For this reason, we specifically focus on parameterizing t-SNE, since this is a nonlinear

dimensionality reduction technique outperforming many existing dimensionality reduction tech-

niques as will be discussed in Section 2.2. In particular, Van Der Maaten (2009) already described

a way to obtain a parametric mapping for dimensionality reduction with t-SNE by introducing

parametric t-SNE, a technique which trains an encoder network by minimizing the t-SNE cost

function. Though, another popular approach to obtain nonlinear parametric mappings is by train-
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ing autoencoder networks (Hinton and Salakhutdinov, 2006), which minimizes the reconstruction

loss. Both these neural networks have their own abilities: autoencoders have the ability to recon-

struct the input data from their projections, while parametric t-SNE has the ability to preserve

the local structure fairly well in the projection space (Van Der Maaten, 2009).

Currently, there does not exist a way to train one network containing both of these abilities.

For this reason, we extend parametric t-SNE by introducing Regularized Parametric t-SNE (RP t-

SNE), a technique which retains both abilities of autoencoders and parametric t-SNE by optimizing

their cost functions into one autoencoder network. Consequently, to investigate whether RP t-

SNE is able to retain or even improve these abilities, we formulate the following research question:

“To what extent are the abilities of autoencoders and parametric t-SNE retained or improved in an

autoencoder network that optimizes both the reconstruction loss and t-SNE cost?”. The research

question is answered by comparing RP t-SNE against autoencoders in terms of its reconstruction

performance, and against parametric t-SNE in terms of its generalization performance on the

MNIST and COIL-20 image datasets. Additionally, the generalization performance of RP t-SNE

is compared against two simple benchmark: PCA and kernel t-SNE (Gisbrecht et al., 2012). We

find that RP t-SNE is able to retain the abilities of autoencoders, and parametric t-SNE. Moreover,

for smaller sample sizes RP t-SNE seems to improve autoencoders due to less susceptibility to

overfit on the reconstruction loss.

The remainder of this paper is structured as follows. In Section 2 we discuss relevant work

found in the literature. Section 3 describes RP t-SNE, the employed benchmarks, and several

generalization performance measures. Afterwards, the experimental setup and results of our ex-

periments are given in Sections 4 and 5 respectively. Lastly, in Section 6 we provide the concluding

remarks, limitations, and possible future research.

2 Related Work

In this section we discuss relevant literature to our research. First, in Section 2.1 we describe the

t-SNE algorithm. Next, Section 2.2 provides an overview of the advantages of t-SNE over several

existing dimensionality reduction techniques, and lastly Section 2.3 elaborates on autoencoder

networks.

2.1 t-Distributed Stochastic Neighbor Embedding

The main approach of t-SNE is to construct an affinity probability distribution P for the high-

dimensional input data, and then use gradient descent to optimize the low-dimensional projections

with respect to the Kullback-Leibler (KL) divergence between P and the projection distribution

Q. The KL divergence is a measure for the mismatch between two probability distribution such

that gradient descent results in projections exhibiting affinities where Q is similar to P . Moreover,

t-SNE preserves the local neighborhoods of high-dimensional data, because the affinities have more

weight on datapoints that are nearby each other.

2



In particular, t-SNE constructs the joint probability distribution P by first converting the

pairwise distances between high-dimensional datapoints into conditional probabilities pj|i repre-

senting similarities using a Gaussian kernel, that is, given a high-dimensional datapoint xi, the

conditional probability pj|i that xi would pick xj as its neighbor is computed as

pj|i =
exp(−||xi − xj ||2/2σ2i )∑
k 6=i exp(−||xi − xk||2/2σ2i )

, (1)

where || · || denotes the Euclidean distance and σi is the kernel width which is chosen with binary

search such that every datapoint xi has a desired user-specified perplexity. The perplexity is an

input parameter roughly corresponding to the number of neighbors to preserve (Maaten and Hin-

ton, 2008). A detailed procedure to find the kernel width is given in Appendix A.1. Furthermore,

pi|i is set to zero, because we are only interested in pairwise similarities. The joint probabilities

pij from P are then obtained as the average of the conditional probabilities pij =
pi|j+pj|i

2n , which

has the property that
∑

j pij >
1
2n for all datapoints xi.

Next, t-SNE constructs the joint projection distribution Q by using a Student-t distribution.

The joint probabilities qij are thus given by

qij =
(1 + ||yi − yj ||2/γ)−

γ+1
2∑

k 6=l(1 + ||yk − yl||2/γ)−
γ+1
2

, (2)

where γ denotes the degrees of freedom that is set to one for 2-dimensional projections, and

the denominator normalizes qij such that
∑

i 6=j qij = 1. A nice property of these probability

distributions is that they are symmetric, that is, pij = pji and qij = qji for ∀i, j. Hence, we only

have to minimize a single KL divergence between P and Q to find the optimal low-dimensional

projection from the high-dimensional input data. The t-SNE cost function Ct-SNE to minimize is

then given as

Ct−SNE = KL(P ||Q) =

n∑
i

n∑
j

pij log
pij
qij
, (3)

where every datapoint xi makes a significant contribution to this cost function due to the property

that
∑

j pij >
1
2n . The vector gradient ∂Ct-SNE

∂yi
is then used to find the corresponding optimal

projections yi with gradient descent. Specifically, this vector gradient is derived by Maaten and

Hinton (2008) as

∂Ct-SNE

∂yi
=

2γ + 2

γ

n∑
j

(pij − qij)(yi − yj)(1 + ||yi − yj ||2/γ)−
γ+1
2 . (4)

The resulting projection yi after gradient descent produces visualizations (i.e. projections of two

or three dimensions) often better than other dimensionality reduction techniques, since t-SNE ob-

tains nonlinear projections that preserve local neighborhoods. Moreover, it solves a big part of the

“crowding problem” (Maaten and Hinton, 2008), which is the problem that the projection space
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has not enough room to accommodate all neighbors of a datapoint xi from the high-dimensional

input space. Though, the crowding problem becomes less severe for high projection dimensionali-

ties, since the extent to which this problem occurs depends on the ratio between the intrinsic and

projection dimensionality (Maaten and Hinton, 2008).

2.2 Comparative overview of t-SNE

First, we compare t-SNE against Stochastic Neighborhood Embedding (SNE) (Hinton and Roweis,

2003), the method which Maaten and Hinton (2008) have extended and improved. In particular,

t-SNE improves SNE by two differences: (1) t-SNE uses a symmetrized version of the SNE cost

function, and (2) t-SNE uses a Student-t distribution rather than a Gaussian to compute the

similarity between two points in the projection space. The combination of these two differences

results in a cost function that is easier to optimize. Moreover, t-SNE resolves a big part of the

crowding problem which SNE has, since the heavier tails of the Student-t distribution ensures

that moderately dissimilar high-dimensional datapoints are faithfully projected by a much larger

distance in the projection space.

Next, t-SNE is compared against two linear techniques: PCA and classical scaling (Gower,

1966). These techniques are closely related to each other since they both construct a linear

mapping to the projection space that describes most of the variance from the input data. As

a result they preserve large dissimilarities between different objects, whereby the problem arises

that the low-dimensional projection of dissimilar points are far apart. In contrast, t-SNE focuses

on placing similar objects close to each other, that is, it preserves local neighborhoods rather than

distances or density. Furthermore, for high-dimensional data that lies on or near a low-dimensional

nonlinear manifold it is not possible to keep the low-dimensional projections of similar objects close

together with a linear mapping, which t-SNE is able to do (Maaten and Hinton, 2008).

Other techniques such as Isomap (Tenenbaum et al., 2000) and Locally Linear Embedding

(LLE) (Roweis and Saul, 2000) are nonlinear techniques, which first construct a neighborhood

graph representation of the high-dimensional datapoints. Isomap tries to preserve the geodesic

distances by finding the shortest paths between two datapoints in the graph (Tenenbaum et al.,

2000), opposed to LLE, which tries to preserve more of the local properties of the data by writ-

ing the datapoints as a linear combination of their nearest neighbors (Roweis and Saul, 2000).

However, these two techniques perform poorly on data consisting of two or more widely separated

submanifolds, since such data gives rise to a disconnected neighborhood graph (Maaten and Hin-

ton, 2008). This problem is not encountered by t-SNE, because it constructs an affinity probability

distribution for the high-dimensional datapoints, instead of a neighborhood graph.

Lastly, we consider Sammon mapping (Sammon, 1969) a nonlinear technique related to mul-

tidimensional scaling (Groenen and van de Velden, 2005). As mentioned before, the problem of

classical scaling is that it does not preserve local neighborhoods, since it mainly focuses on pre-

serving large dissimilarities. Sammon mapping tries to solve this problem by adding weights to
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the cost function of classical scaling as proposed by Sammon (1969). The weakness of Sammon

mapping is that the importance of preserving small pairwise distances is highly dependent on

the small differences between these distances (Maaten and Hinton, 2008), that is, a small error

in the model of two high-dimensional datapoints that are extremely close together could result

in a large contribution to its cost function. The advantage of t-SNE over Sammon mapping is

that the employed Gaussian kernel in high-dimensional space causes the modeling of separation

between pairs of close datapoints, relative to the standard deviation of the Gaussian, to be almost

independent of the magnitude of those separations (Maaten and Hinton, 2008), therefore these

kinds of errors do not have such a large impact on its cost function.

2.3 Autoencoder networks

The increase in popularity of neural networks is due to their high flexibility, and capability to

learn arbitrarily complex nonlinear functions using nonlinear activation functions. In particular,

autoencoder networks, also referred to as autoassociative neural networks (Kramer, 1991), are

popular networks for unsupervised dimensionality reduction. They are often symmetric with an

odd number of hidden layers, and they consist of an encoder and decoder network as illustrated in

Figure 1. The bottleneck layer of an autoencoder contains the projection yi and the reconstruc-

tion layer contains the reconstructed input x̂i. Autoencoders, thus learn the mapping from the

high-dimensional input data to the low-dimensional projections, but also the mapping to recon-

struct these projections back to the input data. However, autoencoders learn these mappings by

minimizing the reconstruction loss, causing them to primarily focus on maximizing the variance of

this data in the projection space (Maaten and Hinton, 2008). As a result, autoencoders are often

not successful in preserving the local structure of neighborhoods when mapping high-dimensional

datapoints to a projection space. In contrast, Van Der Maaten (2009) introduces parametric t-

SNE, a technique that trains an encoder network with the t-SNE cost as objective. It is shown by

Van Der Maaten (2009) that the mapping function obtained from this network is able to preserve

the local structure of neigborhoods fairly well compared to techniques as PCA or autoencoders.

Encoder

Decoder

Bottleneck
layer

Reconstruction
layer

Input 
layer

Figure 1: Schematic structure of an autoencoder with five hidden layers.

Overall, neural networks have shown to be reliable in many machine learning applications.

However, they also have some drawbacks such as the lack of interpretability, long training times

and tendency to get stuck in poor local minima. Though, the tendency to get stuck in poor
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local minima can be partially solved by following a three-stage training procedure using RBMs

(Hinton and Salakhutdinov, 2006). The main goal of the RBMs is to pretrain the weights of the

neural network such that it is closer to a good optimal solution before finetuning the weights via

backpropagation.

3 Methodology

This section elaborates on the methods used in this paper. First, in Section 3.1 we discuss RP

t-SNE. Then, in Sections 3.2 and 3.3 we describe the two benchmarks: PCA and kernel t-SNE

respectively. Lastly, Section 3.4 describes several generalization performance measures.

3.1 Regularized Parametric t-SNE

The main objective of dimensionality reduction is to preserve the available information of the

high-dimensional input data as much as possible in the projection space (Lee and Verleysen,

2009). Consequently, the ability to reconstruct the datapoint xi from its projection yi, measured

by the reconstruction loss E, could act as a valid measure. Ideally, this would mean that the

mapping function f has an inverse mapping f−1, but in general the exact inverse does not exist.

So instead, we consider an approximate inverse mapping function g : Y 7→ X̂, where X̂ consists

of the reconstructed high-dimensional datapoints x̂. Then, the reconstruction loss can be defined

as the mean squared error between xi and x̂i:

E =
1

n

n∑
i

||xi − x̂i||2. (5)

In particular, the decoder part of autoencoders has the ability to provide an approximate

inverse mapping g that optimizes this reconstruction loss, unlike parametric t-SNE which only

consists of an encoder network, and is thus not able to provide an explicit inverse mapping g.

However, the advantage of parametric t-SNE is the ability to preserve the local structure by

optimizing the t-SNE cost function (Van Der Maaten, 2009). Thus, to combine the abilities of

both autoencoders and parametric t-SNE, we propose RP t-SNE, a technique that optimizes a

weighted loss function between the reconstruction loss and the t-SNE cost in an autoencoder

network. The weighted loss function is obtained by using the decoder part of an autoencoder as

a regularizer on the encoder network from parametric t-SNE, resulting in the regularized t-SNE

cost function Creg with θ ∈ [0, 1] as a trade-off parameter between Ct-SNE and E:

Creg = θCt-SNE + (1− θ)E. (6)

The autoencoder network of RP t-SNE is trained with a three-stage training procedure using

RBMs as described by Hinton and Salakhutdinov (2006). A short summary of RBMs is given in

Section 3.1.1, where more details RBMs are given in Appendix A.2. Afterwards, in Section 3.1.2

we provide the three-stage training procedure.
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3.1.1 Restricted Boltzmann Machine

RBMs are Markov Random Fields (Kindermann, 1980) with a bipartite graph structure consisting

of visible nodes v modelling the input data, and hidden nodes h modelling the features of this

data as illustrated in the left panel of Figure 2. The objective of RBMs is to learn the probability

distribution over a set of input data by minimizing the contrastive divergence (Hinton, 2002). By

doing this, the features of the hidden layer learn to represent the higher-order correlations of the

input data (Hinton, 2009). Thus, when a RBM is given some input data it has to learn to generate

this data with high probability. To accomplish this the RBM must find weights on its connec-

tions such that, relative to other possible data, the input data has low values for the contrastive

divergence (Hinton, 2009). Intuitively, this means that the structure of the input distribution of

a layer is reflected in the initial weights of the network. Therefore, less information should be lost

by the changes made during the finetuning stage of the three-stage training procedure.

The visual and hidden nodes are typically Bernoulli distributed, meaning that these nodes

only model binary data. However, if the mean field approximation is used, then the nodes may

follow any exponential family distribution (Welling et al., 2005), allowing RBMs to model real-

valued data with Gaussian distributed units as described by Salakhutdinov (2015). In particular,

the RBM corresponding to the top layer uses Gaussian distributed hidden units to give rise to

a linear activation function, since this makes the output of the neural network more stable (Van

Der Maaten, 2009).

3.1.2 Three-stage training procedure

The training of our autoencoder networks consists of three stages as illustrated in the right panel

of Figure 2. The first stage starts at the bottom layer where the first RBM is trained on the input

data xi. Afterwards, this trained RBM infers the most likely values for the hidden nodes from

each datapoint. These values are then used as input data to train the next RBM. This iterative

procedure results in a stack of RBMs. In the second stage the weights of the trained RBMs are

used to construct a pretrained autoencoder network by “unrolling” the stack of RBMs, that is,

the inverse of the pretrained weights between the input layer and the the bottleneck layer is used

as the weights between the bottleneck layer and the reconstruction layer. Finally, in the third

stage the pretrained autoencoder network is finetuned by backpropagation.

Notice that the pretrained autoencoder network provides us with two mapping functions fW :

X 7→ Y and hW : X 7→ X̂, where W are the weights of the network parameterizing the mappings.

The gradient of Creg with respect to W can be written as

∂Creg

∂W
= θ

∂Ct-SNE

∂W
+ (1− θ) ∂E

∂W
, (7)

using yi = fW (xi), x̂i = hW (xi), and the chain rule the gradient can be further written down as

θ
∂Ct-SNE

∂fW (xi)

∂fW (xi)

∂W
+ (1− θ) ∂E

∂hW (xi)

∂hW (xi)

∂W
. (8)
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This gradient can be computed using standard backpropagation for the terms ∂fW (xi)
∂W and ∂hW (xi)

∂W .

Moreover, ∂Ct-SNE
∂fW (xi)

can be simply obtained by plugging yi = fW (xi) into Equation (4), and ∂E
∂hW (xi)

can be derived as
∂E

∂hW (xi)
= − 2

n
(xi − hW (xi)). (9)

The backpropagation starts at the reconstruction layer with the gradient of E, and it is combined

with the gradient of Ct-SNE when it reaches the bottleneck layer containing the projections yi.

Hidden layer

RBM

Visible layer

Weights 500
RBM

500
RBM

500

2000
RBM

500

2000

RBM

(1) Pretraining

500

500

2000

2000

500

500

(2) Construction 
(unrolling RBMs)

Decoder

Encoder

500

500

2000

2000

500

500

Regularized parametric t-SNE

(3) Finetuning 
(backpropagation)

Stack of RBMs

Pretrained autoencoder

Bottom layer

Top layer

Three-stage training procedure

Start backpropagation:

Combining gradients:

Figure 2: Left panel: schematic structure of a Restricted Boltzmann Machine. Right panel: schematic structure

of the three-stage training procedure inspired by Hinton and Salakhutdinov (2006) for a |xi| − 500− 500− 2000− d

autoencoder network, where |xi| denotes the dimensionality of xi, and the ε’s denote the changes in the weights

during backpropagation. Notice that setting θ = 1 results in parametric t-SNE, setting θ = 0 results in an

autoencoder, and setting θ ∈ (0, 1) results in RP t-SNE.

3.2 Principal Component Analysis

As described by Hotelling (1933) PCA is an unsupervised technique that constructs low-dimensional

linear projections of high-dimensional data by preserving as much of the variance in the data as

possible. PCA finds the directions of these projections with a linear basis M
D×d

= [m1, ...,md],

where mi
D×1

is the “principal component” that seeks to maximize the variance of the linear com-

bination from the columns of X
n×D

. If we denote cov(X) as the sample covariance matrix of X,

which is equal to 1
n−1XᵀX, then the variance of the linear combination Xmi is given by

var(Xmi)
1×1

= mᵀ
i

1×D
cov(X)
D×D

mi
D×1

. (10)

However, without a constraint on mi, var(Xmi) could be maximized by picking mi arbitrarily

large. Thus, a normalization constraint is used such that the mi’s have a unit norm, that is,
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||mi||2 = 1. To enforce this constraint when maximizing var(Xmi), the method of Lagrange

multipliers (Bertsekas, 2014) is employed by maximizing the following Lagrangian function:

L(mi, λi) = var(Xmi)− λi(mᵀ
imi − 1), (11)

where λi is the Lagrange multiplier. Furthermore, it can be shown that Xmi is able to maximize

its variance subject to uncorrelatedness with previous linear combinations (Hotelling, 1933), if

also the constraint of orthogonality between the principal components mi is added to L(mi, λi),

that is, mᵀ
imj = 0 if i 6= j. In particular, differentiating the Lagrangian function with respect to

mi for all mi’s subject to orthonormality and equating to the null vector results in the following

eigenproblem:

cov(X)
D×D

M
D×d

= M
D×d

diag(λ1, ..., λd)
d×d

, (12)

where the principal components mi’s form an orthonormal set of vectors and diag(λ1, ..., λd)

denotes the diagonal matrix with the λi’s as the diagonal elements.

PCA solves the eigenproblem given in equation (12) for the d largest principal eigenvalues.

The linear basis M is then constructed with the principal components mi’s corresponding to the

d largest eigenvalues λi in decreasing order. The out-of-sample projections Ytest
p×d

can thus be

computed by first employing PCA on the training set Xtrain
m×D

to obtain the linear basis Mtrain
D×d

,

where p and m denote the number of datapoints in the test and training set respectively. Then,

Ytest is obtained by mapping the test set Xtest
p×D

onto Mtrain as

Ytest
p×d

= Xtest
p×D

Mtrain
D×d

. (13)

3.3 Kernel t-SNE

Kernel functions allow us to operate in high-dimensional space without computing the datapoints

in that space, since instead we compute the inner products between the high-dimensional data-

points. This is also referred to as the “kernel trick” (Hofmann et al., 2008) and it allows us to give

a linear model the ability to construct nonlinear mappings. Specifically, the mapping of kernel

t-SNE is obtained by a linear combination of normalized Gaussian kernels as

fα : xi 7→ yi =

m∑
j

κ(xi,xj)∑m
l κ(xi,xl)

αj , (14)

where j runs over a training set Xtrain = {x1, ...,xm} sampled from the input data X such

that xj corresponds to a fixed sample of datapoints, αj ∈ Rd×1 the parameters to be optimized

corresponding to the projection yj , and κ the Gaussian kernel defined as

κ(xi,xj) = exp(−||xi − xj ||2/2σ2j ), (15)

where the kernel width σj is chosen as the distance of xj to its closest neighbor scaled with a small

factor c = 0.05 as done by Gisbrecht et al. (2012).
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The mapping fα is obtained with a two-step approach, where the first step is to retrieve a

pair of train samples Xtrain and projections Ytrain by employing the t-SNE algorithm on Xtrain as

described in Section 2.1. Then, the second step is to optimize αj by minimizing the least squares

error between yj and fα(xj):
m∑
j

||yj − fα(xj)||2. (16)

Let A
m×d

be the matrix containing the vectors αᵀ
j in its rows and K

n×n
the Gram matrix with as

entries the normalized inproduct between the high-dimensional datapoints in X:

[K]i,j =
κ(xi,xj)∑m
l κ(xi,xl)

. (17)

If we define Ktrain
m×m

to be the Gram matrix with as entries the inproduct between the datapoints

in Xtrain, then the rows αᵀ
j of A can be retrieved as

A
m×d

= K+
train

m×m
Ytrain
m×d

, (18)

where K+
train is the Moore-Penrose inverse (Penrose, 1956) of Ktrain providing the solution to the

least squares problem. Consequently, if we define Ktest
p×m

to be the Gram matrix with as entries the

inproduct between the datapoints in Xtest and Xtrain, then the out-of-sample projections Ytest

are obtained as

Ytest
p×d

= Ktest
p×m

A
m×d

. (19)

3.4 Generalization performance measures

When the dimensionality of high-dimensional data is reduced it is generally not possible to preserve

all similarities in the data. Consequently, a criterion of a good dimensionality reduction technique

is the ability to cluster the datapoints correctly which is similar to preserving the local neighbor-

hood of a high-dimensional datapoint in the projection space. For this reason, we consider general

measures that employ the k-Nearest Neighbor (k-NN) algorithm, since this algorithm is able to

find the corresponding nearest neighbor clusters of datapoints. Using this algorithm we compute

the trustworthiness T (k) ∈ [0, 1] and continuity M(k) ∈ [0, 1] quality measures as introduced by

Kaski et al. (2003), and the generalization error ∈ [0, 1].

The trustworthiness and continuity are based on two kinds of errors caused by dimensionality

reduction: (1) datapoints that are not neighbors in the input space can be mapped too close to

each other in the projection space causing datapoints to be falsely identified as neighbors, and

(2) datapoints that are originally close to each other in the input space can be mapped faraway

in the projection space causing some neighbor relations to be absent in the projection space.

These two errors negatively affect the trustworthiness and continuity respectively. The precise

computations of these two measures are described in Appendix A.3. Note that these measures

have an interpretation similar to precision and recall, that is, T (k) measures to what extent

the k nearest neighbors of yi correspond to the k nearest neighbors of xi, and M(k) measures
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to what extend the k nearest neighbors of xi are retrieved in the k nearest neighbors of yi.

Thus, contrary to the precision and recall, the trustworthiness and continuity do incorporate the

similarity ranking between the k nearest neighbors, resulting in larger error for datapoints that

come into a neighborhood from faraway than from closer by.

Furthermore, the generalization error can be computed for labeled data and it measures how

accurately our mappings are able to place projections of unseen data in the correct cluster. This

measure is computed by training an 1-NN classifier on the train projections Ytrain, and then

measuring the error rate of this classifier on the out-of-sample projections Ytest.

4 Experimental setup

The generalization performances of the parametric mappings from our techniques are evaluated

in terms of visualizations and the generalization performance measures as previously described in

Section 3.4. Furthermore, the reconstruction performances for the autoencoder and RP t-SNE are

evaluated in terms of reconstruction losses and quality of the reconstructed images.

In Section 4.1 we specify the employed image datasets for our experiments. Afterwards, Section

4.2 discusses our optimization procedure of the t-SNE algorithm. Lastly, in Section 4.3 we provide

the architecture and optimization procedure of the implemented autoencoder networks.

4.1 Datasets and preprocessing

To evaluate the generalization and reconstruction performance of RP t-SNE, we employ the

MNIST1 and COIL-202 grayscale image datasets. The MNIST dataset is employed, since it is

a commonly used dataset in many machine learning applications such that this paper is easily

comparable with other papers in the literature, while the COIL-20 dataset is employed due to its

more complex images.

Specifically, the MNIST dataset contains 70,000 grayscale images of handwritten digits. The

images have 28 × 28 = 784 pixels (i.e. 784 dimensions), and there are 10 classes corresponding to

the integers ranging from 0 to 9. The COIL-20 dataset contains 20 × 72 = 1440 grayscale images

of 20 different objects taken at 72 different angels, where each image has 32 × 32 = 1024 pixels (i.e.

1024 dimensions), and there are 20 classes corresponding to the different objects. Furthermore,

the pixels of grayscale images correspond to single RGB values in the range of [0, 255]. Thus, to

convert the data into a more manageable form for our techniques, we can normalize the datasets

by dividing each pixel by 255 such that the values of these features are in the range of [0, 1].

Furthermore, we split the MNIST and COIL-20 datasets into a training and test dataset. The

MNIST dataset has already been split into a training and test dataset consisting of 60,000 and

10,000 images respectively, but due to computational reasons we do not employ the complete

datasets. Instead, we randomly sample 10,000 training and 5,000 test images from the original

1The MNIST dataset is publicly available at http://yann.lecun.com/exdb/mnist/index.html
2The COIL-20 dataset is publicly available at https://cs.columbia.edu/CAVE/software/softlib/coil-20.php
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MNIST training and test datasets respectively. From the COIL-20 dataset we randomly sample

960 and 480 images for our training and test dataset respectively. However, due to the relatively

small sample size we sample the images in a way such that each class in our training and test

datasets contain an equal number of images. By balancing the classes we avoid the risk of our

parametric mappings not learning certain classes due to the limited number of samples.

4.2 Optimization of t-SNE

To optimize the t-SNE algorithm we first discuss the setting of the degrees of freedom γ of the

Student-t distribution that is used to model the probabilities in the projection space. The t-

SNE cost function Ct-SNE with a degree of freedom γ set to one performs well for 2-dimensional

projections as shown by Maaten and Hinton (2008). However, the volume of the projection space

grows exponentially with its dimensionality d due to the “curse of dimensionality”. Implying that

to appropriately model the local structure of input data for projections with a dimensionality

higher than two, a degree of freedom higher than one is required. This is because higher degrees

of freedom lead to more space availability in the projection space due to the lighter tails of the

Student-t distribution as discussed by Van Der Maaten (2009). Specifically, the thickness of the

tail of a Student-t distribution decreases exponentially with the degrees of freedom γ. It thus

seems likely that γ is linearly dependent on d. Therefore, we set γ = d − 1 as proposed by Van

Der Maaten (2009) such that γ is linearly dependent on d for which the 2-dimensional projections

still uses a single degree of freedom.

In addition, to validate our implementation of t-SNE, we employ and compare three different

gradient descent methods: regular Stochastic Gradient Descent (SGD) as a benchmark, adaptive

SGD (a-SGD) with momentum as the implementation of Maaten and Hinton (2008), and the

recently introduced Adaptive moment estimation (Adam) (Kingma and Ba, 2014) as our imple-

mentation. The update steps for these methods are given as

SGD: y
(t)
i ←− y

(t−1)
i − η∆y

(t−1)
i , (20)

a-SGD with momentum: y
(t)
i ←− y

(t−1)
i − η(t)a ∆y

(t−1)
i + ρ(t)(y

(t−1)
i − y

(t−2)
i ), and (21)

Adam: y
(t)
i ←− y

(t−1)
i − η m(t)/(1− βt1)√

v(t)/(1− βt2) + ε
. (22)

In these update steps, t is the current iteration, ∆yi is equal to the gradient ∂Ct-SNE
∂yi

, η is the

learning rate, η(t)
a is the learning rate using the adaptive learning scheme described by Jacobs

(1988), ρ(t) is a momentum term that is set to 0.5 for t < 20 and 0.8 for t > 20, ε is a small number

set to 10−9 to avoid dividing by zero, and the hyperparameters β1 and β2 are the exponential

decay rates controlling the biased first moment estimate m(t) and second moment estimate v(t)

as described by Kingma and Ba (2014). The initial learning rates for both SGD and a-SGD
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with momentum are set to 100 as done by Van Der Maaten (2009). Furthermore, for Adam we

find that a learning rate of 0.1 works well for the implementation of t-SNE combined with the

hyperparameters β1 and β2 set to 0.85 and 0.90 respectively.

The remainder of the setup for t-SNE is kept similar as the approach by Maaten and Hinton

(2008), that is, first we set the perplexity to 40 and reduce the dimensionality of the MNIST and

COIL-20 datasets to 30 with PCA for noise suppression and computational reasons. Moreover,

the number of gradient descent iterations is set to 1000, and the “early exaggeration” trick is

applied, which is to multiply all the pij ’s with 4 in the first 100 iterations of the gradient descent

to help the clusters find a good global organization as discussed by Maaten and Hinton (2008).

4.3 Optimization of autoencoder networks

The same network architecture is used for the autoencoder, parametric t-SNE and RP t-SNE

networks to make the comparison between these techniques fair, where it has to be noted that

parametric t-SNE only consists of the encoder part of an autoencoder network. Specifically,

for the MNIST dataset we use a 784 − 500 − 500 − 2000 − d autoencoder network motivated

by the experimental results from Hinton and Salakhutdinov (2006). Consequently, we use a

1024− 500− 500− 2000− d autoencoder network for the COIL-20 dataset. All the layers of these

networks use a logistic activation function except for the bottleneck layer which instead uses a

linear activation function to make the projections more stable (Van Der Maaten, 2009).

These networks are trained using the three-stage training procedure as previously described

in Section 3.1.2. The pretraining of the three networks are similar. Though, the finetuning stage

differ for the three networks due to the different objective function. Specifically, parametric t-

SNE minimizes Ct-SNE, the autoencoder minimizes E and RP t-SNE minimizes Creg as given in

equations (3), (5) and (6) respectively. The networks are finetuned for 50 epochs using Adam

with β1, β2 and η set to 0.90, 0.99 and 0.1 respectively.

Furthermore, the optimal trade-off parameters θ∗ for RP t-SNE are found with 3-fold cross-

validation from the range of values θ ∈ {0.01, 0.10, 0.30, 0.50, 0.70, 0.90, 0.99}. We consider this

range, since θ is a continuous trade-off parameter between zero and one, and thus it is not possible

to consider all possibilities. Therefore, we instead choose the range such that it sufficiently covers

the values between zero and one by starting with a low value 0.1 and incrementing with small steps

of 0.2. In addition, we also include two extreme cases 0.01 and 0.99 to account for the possibilities

when θ gives very high weights to Ct-SNE or E. Next, we require a criterion to pick the optimal

trade-off parameters θ∗. A logical choice for the criterion would be Creg, since this is the objective

of RP t-SNE. However, the magnitudes of the terms Ct-SNE and E might substantially differ

depending on the input data. This means that Creg is not a fair criterion, since θ would have

a bias by giving the highest weight to the term with the lowest magnitude as this achieves the

lowest value of Creg. Therefore, we instead use the generalization error as the criterion, since it is

not dependent on the values of Ct-SNE and E, and thus it does not has the bias that Creg has.
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5 Results

In this section we provide the results of our techniques. The techniques are implemented using

Python 3.7, where our autoencoder networks employ the Keras library (Chollet et al., 2015) with

TensorFlow (Abadi et al., 2016) as backend. The code can be found at: https://github.com/

StefanLam99/OOS__tSNE, where a brief description of the Python files is given in Appendix C.

In Section 5.1 we compare and validate our implementation of the t-SNE algorithm with the

implementation of Maaten and Hinton (2008). Following, Section 5.2 provides the optimal trade-

off parameters for RP t-SNE. Lastly, in Sections 5.3 and 5.4 we compare the generalization and

reconstruction performances of our techniques.

5.1 Implementation of t-SNE

We validate our implementation of t-SNE by comparing the convergence rates of the t-SNE cost

and visualizations by the three implemented gradient descent methods as shown in Figures 3 and 4,

where similar convergence rates are retrieved for the 10- and 20-dimensional projections as shown

in Appendix B.1. The visualizations of the implementations are compared with each other, because

t-SNE mainly focuses on preserving the local neighborhoods, implying that our implementation

should provide similar clusters in the visualizations as the original implementation of Maaten and

Hinton (2008). Furthermore, the convergence rates are able to show us the differences in update

steps between the implementations, and whether it converges to similar t-SNE costs. It has to be

noted however that similar t-SNE costs are not able to guarantee similar projections, but it does

demonstrate similar performances from the projections of the implementations.

MNIST COIL-20

Figure 3: Plots of the t-SNE cost against the number of iterations for the three gradient descent methods when

applying the t-SNE algorithm on the MNIST and COIL-20 training datasets for 2-dimensional projections. The

plots start after the early exaggeration, which is after the 100th iteration.
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MNIST

COIL-20

SGD (benchmark implementation) a-SGD with momentum (Implementa-

tion of Maaten and Hinton (2008))

Adam (our implementation)

Figure 4: Visualizations of the MNIST and COIL-20 training datasets by the t-SNE algorithm using (from left to

right) SGD, a-SGD with momentum, and Adam as the gradient descent methods, where each color corresponds to

a different class.

In particular, Figures 3 and 4 show two important observations. First, the benchmark im-

plementation using SGD achieves a relatively high t-SNE cost due to the slow convergence rate

which results in inferior visualization compared to the other methods. Second, our implementation

with Adam converges to a similar t-SNE cost as a-SGD with momentum, the implementation of

Maaten and Hinton (2008). This can also be observed in the visualizations, since similar clusters

are formed for the two datasets. However, we do observe that the clusters of these visualizations

might differ slightly in shape or even relative placements in the projection space. The latter can

be explained, because t-SNE focuses on preserving clusters, rather than the distance between

clusters. Implying that the similar t-SNE costs of the implementations are reflected in similar

shaped clusters, and not the placements of those clusters. In general, the differences in shape and

placements of the clusters can be explained by the non-convexity of the t-SNE cost function. The

non-convexity implies that while our implementation converges to a similar t-SNE cost as that of

Maaten and Hinton (2008), the similar t-SNE costs might still correspond to local optima with

different projections due to the different update steps between Adam and a-SGD with momentum.

Thus, we validate our implementation, since it provides similar results as that from Maaten

and Hinton (2008), where small differences between the implementations are explained by the

different update steps of the gradient descent methods. Moreover, Adam has a better convergence

rate than a-SGD with momentum, since it converges slightly faster and it reaches a similar or

lower t-SNE cost. For this reason, when implementing kernel t-SNE we opt for Adam as the

gradient descent method to obtain the train projections.
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5.2 Optimal trade-off parameters

To validate our choice of the generalization error as the criterion for 3-fold cross-validation, we

illustrate the difference in magnitudes between the t-SNE cost and reconstruction loss by present-

ing in Figure 5 plots of the costs when finetuning the autoencoder and parametric t-SNE networks

for 2-dimensional projections. From this it is clear that the magnitude of the t-SNE cost is higher

than the reconstruction loss. This implies that the optimal trade-off parameter should give the

highest weight to the reconstruction loss, since this choice would achieve the lowest regularized

t-SNE cost. Thus, the regularized t-SNE cost is not a fair criterion as discussed in Section 4.3.

MNIST COIL-20

Figure 5: Plots of the t-SNE cost and reconstruction loss against the number of epochs, when finetuning the

autoencoder and parametric t-SNE networks for 2-dimensional projections on the MNIST and COIL-20 training

datasets.

Moreover, we provide plots of the generalization errors against θ in Figure 6, where the star

marker indicates the lowest generalization errors. This figure shows that the generalization error

does not has a bias for a specific trade-off parameter, since the generalization errors are fairly

steady for different values of the trade-off parameter. Therefore, we validate the choice of the

generalization error as the criterion, where Table 1 provides the optimal trade-off parameters.

MNIST COIL-20

Figure 6: Plots of the generalization errors of RP t-SNE

against θ ∈ {0.01, 0.10, 0.30, 0.50, 0.70, 0.90, 0.99} obtained by

3-fold cross-validation on the MNIST and COIL-20 training

datasets, where the star marker indicates the lowest generaliza-

tion error.

Table 1: Optimal trade-off parameters for RP t-

SNE corresponding to the lowest generalization er-

ror when using 3-fold cross-validation on the MNIST

and COIL-20 training datasets.

MNIST COIL-20

2D 10D 20D 2D 10D 20D

θ∗ 0.90 0.10 0.01 0.99 0.90 0.70
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5.3 Generalization performance

First, we compare the out-of-sample visualizations of the MNIST test dataset by our parametric

mappings as shown in Figure 7, where the visualizations of the COIL-20 test dataset can be found

in Appendix B.2. From the results, it is clear that the mappings of PCA and the autoencoder are

not able to preserve the local structure well enough compared to the other mappings. PCA has

an inferior performance due to its linear nature which is too restrictive to find good projections

for nonlinear data. The autoencoder does demonstrate some cluster forming, but there is no

clear separation between these clusters which is caused by the maximization of its variance in

the projection space to achieve low reconstruction losses. In contrast, kernel, parametric and RP

t-SNE do preserve the local structure fairly well, likely because these techniques are all focused on

obtaining a parametric mapping that optimizes the t-SNE cost. It is notable that the visualizations

of parametric and RP t-SNE are almost identical to each other.

PCA Kernel t-SNE Autoencoder

parametric t-SNE RP t-SNE

Figure 7: Out-of-sample visualizations of the MNIST test dataset by PCA, Kernel t-SNE, an autoencoder, para-

metric t-SNE and RP t-SNE.

Next, the generalization errors, trustworthiness and continuity of our mappings are compared

by presenting the generalization errors with the lowest error in bold in Table 2 and the plots of the

trustworthiness-continuity curves in Figure 8. In particular, the best performing trustworthiness-

continuity curves are at the upper right corner of these plots, since this indicates both a high

trustworthiness and continuity. Moreover, the curves demonstrate that generally the trustworthi-

ness and continuity decreases as the neighborhood size increases, which is to be expected since it

is harder to preserve a large neighborhood than a small one. We can thus interpret short curves

as a measure on how robust our parametric mappings are for changes in neighborhood size, while

long curves indicate that the mapping is not able to preserve large neighborhoods fairly well.
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Table 2: Generalization errors of the projections from the trained models on the MNIST and COIL-20 test datasets.

Generalization errors

MNIST COIL-20

2D 10D 20D 2D 10D 20D

PCA 0.633 0.140 0.069 0.344 0.080 0.021

Autoencoder 0.319 0.096 0.065 0.331 0.194 0.104

Kernel t-SNE 0.175 0.185 0.184 0.021 0.017 0.017

Parametric t-SNE 0.201 0.087 0.073 0.158 0.017 0.015

RP t-SNE 0.200 0.083 0.063 0.163 0.019 0.017

MNIST

COIL-20

Figure 8: Trustworthiness T (k) plotted against the continuity M(k) of d-dimensional projections for the MNIST

(upper row plots), and the COIL-20 (bottom row plots) test datasets. The number of neighbors k is varied from 1

to 200, and the markers on the curves are set to 50 point invervals.

In summary, the results reveal that parametric and RP t-SNE have similar visualizations,

generalization errors and trustworthiness-continuity curves. It can thus be concluded that the

local structure preservation ability of parametric t-SNE is retained in RP t-SNE. Moreover, the

parametric mappings from these techniques provide overall the best generalization performances.

Although, kernel t-SNE might obtain the lowest generalization errors for 2-dimensional projec-

tions, in terms of generalization performance we still give the edge to parametric and RP t-SNE

due to the more robust trustworthiness-continuity curves. However, for higher dimensionalities

(i.e. 10 and 20) of the projections space, we recognize that a linear benchmark such as PCA

is able to give generalization errors and trustworthiness-continuity curves on par with that from

parametric and RP t-SNE. This suggests that parametric and RP t-SNE only have a strong gen-

eralization performance for relatively low-dimensional projections. An explanation for this lies

in a key characteristic of t-SNE, which is to solve the crowding problem. This problem is less
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severe for higher projection dimensionalities as mentioned before in Section 2.1, hence at some

point the crowding problem becomes negligible such that t-SNE eventually stops improving the

generalization performance, if the projection dimensionality keeps increasing.

5.4 Reconstruction performance

In Table 3 we present the reconstruction losses of the autoencoder and RP t-SNE networks with

the lowest loss in bold. This table shows that RP t-SNE provides similar reconstruction losses

as the autoencoder for the MNIST test dataset, while RP t-SNE does seem to clearly improve

the reconstruction losses for the COIL-20 test dataset. These results can be explained on the

basis of the following two observations. First, the sample size of the COIL-20 training dataset is

relatively small making the networks susceptible to overfitting. Second, RP t-SNE obtains extra

information from the t-SNE cost due to the combined backpropagation. These observations imply

that both networks might learn the noise of the data for small sample sizes, but RP t-SNE also

learns to preserve the local structure in the bottleneck layer making it less susceptible to overfit

on the reconstruction loss. Hence, the t-SNE cost can also be seen as a kind of regularization on

the reconstruction loss.

To illustrate the improved reconstruction performance by RP t-SNE, we present in Figure 9 the

original and reconstructed images of four random samples from the COIL-20 test dataset. These

images clearly show that RP t-SNE is able to distinguish more details of the images than the

autoencoder for the 2- and 10-dimensional projections. However, from the results we also observe

that reconstructions of these images by RP t-SNE might worsen, if the projection dimensionality

becomes too high. This is likely because of the similar generalization performances for high

projection dimensionalities (due to the less severe crowding problem). Implying that the marginal

increase in information from the t-SNE cost decreases with its projection dimensionality, and

thus the regularization on the reconstruction loss becomes less effective for higher projection

dimensionalities.

Original: 

Autoencoder:

RP t-SNE:

Figure 9: Four random sampled images from the COIL-20 test dataset. The middle and lower rows contain the

reconstructed images by the autoencoder and RP t-SNE respectively with its reconstruction loss above the image,

where d denotes the dimensionality of the projection in the bottleneck layer.
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Table 3: Reconstruction losses of the autoencoder, and RP t-SNE on the MNIST and COIL-20 test datasets.

Reconstruction losses

MNIST COIL-20

2D 10D 20D 2D 10D 20D

Autoencoder 0.039 0.017 0.010 0.031 0.028 0.021

RP t-SNE 0.039 0.019 0.011 0.026 0.018 0.020

6 Conclusion

In this paper we investigated whether it is possible to combine the reconstruction ability from

autoencoders and the local structure preservation ability from parametric t-SNE into one autoen-

coder network. To investigate whether the performances of these abilities are able to be retained

or improved in a single autoencoder network, we formulated the following research question: “To

what extent are the abilities of autoencoders and parametric t-SNE retained or improved in an

autoencoder network that optimizes both the reconstruction loss and t-SNE cost?”.

From the results, we find that RP t-SNE has similar generalization performances as para-

metric t-SNE. Moreover, these techniques provide overall the best generalization performances.

On the other hand, RP t-SNE provides similar reconstruction performances as autoencoders for

large sample sizes, and for smaller sample sizes the results show a clear improvement of the recon-

struction ability. However, simple benchmarks as kernel t-SNE and PCA provide generalization

performances on par with RP t-SNE for low and high projection dimensionalities respectively due

to the less severe crowding problem for higher projection dimensionalities.

In conclusion, to answer the research question, RP t-SNE retains the abilities from autoen-

coders and parametric t-SNE fairly well, and even improves the reconstruction ability for smaller

sample sizes. Furthermore, RP t-SNE has a similar or stronger performance than the implemented

benchmarks, but it has to be noted that this stronger performance is only noticeable for relatively

low projection dimensionalities. Nonetheless, we have introduced a technique that trains a single

autoencoder network able to provide us with a parametric mapping for projections that preserve

the local structure of high-dimensional input data, and simultaneously able to reconstruct these

projections with equal or higher precision than regular autoencoders.

A limitation of this paper is the setting of the trade-off parameter for RP t-SNE. We opted for

the generalization error as the criterion for cross-validation, but this means that the choice is in

favor of improving generalization rather than reconstruction performance. Ideally, the magnitudes

of the reconstruction loss and t-SNE cost are similar such that the regularized t-SNE cost could act

as a criterion measuring both costs. In this research, we measured the reconstruction loss with the

mean squared error. However, since we normalize our data to be in the range of [0, 1], we can also

measure the reconstruction loss with the cross-entropy error as done by Salakhutdinov and Hinton

(2007), which is an log-based entropy measure just as the t-SNE cost. We thus propose to further

investigate whether the regularized t-SNE cost could act as a valid criterion for cross-validation,

if the reconstruction loss is measured by the cross-entropy error.
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A Additional information

In this appendix we present some additional information of our techniques. Specifically, Appendix

A.1 describes how to obtain the kernel widths of t-SNE with binary search, Appendix A.2 gives

more details about RBMs, and Appendix A.3 describes the computation of the trustworthiness,

and continuity quality measures.

A.1 Binary search to obtain kernel widths for t-SNE

In Section 2.1 we mentioned binary search to find the kernel width σi, which given a datapoint

xi induces a conditional probability distribution Pi, corresponding to the conditional probabilities

pj|i as given in Equation (1), over all of the other datapoints. Finding the appropriate σi is

important, since it is unlikely that a single value of σi would be optimal for all datapoints. This

is because the density of the data is likely to vary. This means that a smaller value of σi is more

appropriate in dense regions than for sparse regions and vice versa.

Furthermore, the probability distribution Pi has a Shannon entropy H(Pi) measured in bits,

which is defined as

H(Pi) = −
n∑
j

pj|ilog2pj|i. (23)

The Shannon entropy monotonically increases as σi increases. Therefore, binary search can be

used to find the value of σi which produces a Pi with a user-specified perplexity Perp(Pi). Hinton

and Roweis (2003) defines the perplexity as

Perp(Pi) = 2H(Pi). (24)

Notice that given xi and σi we can compute the probabilities of Pi by using equation (1). Let

Pi = P (xi, σi), then we can write H(Pi) as H(P (xi, σi)), whereby H(P (xi, σi)) increases as σi

increases. Moreover, given an user-specified perplexity Perp the entropy H0 = log2(Perp), can

be seen as the desired Shannon entropy for a datapoint xi. We thus optimize σi with respect to

H0 by using binary search. An algorithm for this procedure is given in Algorithm 1.
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Algorithm 1 Binary search to obtain kernel widths with an user-specified perplexity

Input: User-specified perplexity Perp, tolerance ε, maximum number of tries T , and

input data X.

Output: The kernel widths corresponding to an user-specified perplexity, σ.

H0 ←− log2(Perp) . Desired Shannon entropy

σ ←− Ø . Initialisation set of widths σi

for i ∈ {1, 2, ..., |X|} do
σi ←− 1; σmin ←− −∞; σmax ←− +∞; tries←− 0 . Initialisation for each datapoint

Hi ←− H(P (xi, σi)) . Note: H(P (xi, σi)) is increasing in σi

while |Hi −H0| > ε AND tries < T do

if Hi −H0 < 0 then
σmin ←− σi . Increase σi if Hi −H0 < 0

if σmax = +∞ then
σi ←− 2σi

else

σi ←− (σi + σmax)/2

end

else
σmax ←− σi . Decrease σi if Hi −H0 ≥ 0

if σmin = −∞ then

σi ←− σi/2

else

σi ←− (σmin + σi)/2

end

end

Hi ←− H(P (xi, σi))

tries←− tries+ 1

end

σ ←− σ ∪ σi
end

return σ

A.2 In depth overview of Restricted Boltzmann Machines

A RBM is a special case of a Markov random Field, hence the joint distribution over all nodes is

given by a Boltzmann distribution that corresponds to an energy function E(v,h). As stated by

Van Der Maaten (2009), the most common choice of E(v,h) is a linear function over the states

of the visual nodes v and hidden nodes h given by
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E(v,h) = −
∑
i,j

Wijvihj −
∑
i

bivi −
∑
j

cjhj , (25)

where Wij denotes the weights of the connection between the nodes vi and hj , bi the bias on node

vi, and cj the bias on node hj . Moreover, the states of the visual and hidden notes are conditionally

independent from each other given one-another. Combining this with equation (25) we can derive

p(vi = 1|h), and in a similar way p(hj = 1|v) as the following conditional probabilities:

p(vi = 1|h) = σ(bi +
∑
j

Wijhj), and (26)

p(hj = 1|v) = σ(cj +
∑
i

Wijvi). (27)

In these equations σ(z) = 1/(1 + e−z) is defined as the sigmoid function.

The objective of RBMs is to learn the weights W , and the biases b and c in such a way

that the probability distribution over the visual nodes under the model Pmodel(v), is close to

the observed data distribution Pdata(v). Thus, we would like to minimize the KL-divergence

KL(Pdata(v)||Pmodel(v)) between these two distributions. The gradient with respect to W of this

KL-divergence is given by

∂KL(Pdata(v)||Pmodel(v))

∂Wij
= EPdata

[vihj ]− EPmodel
[vihj ], (28)

where EPdata
[·] and EPmodel

[·] denote the expectation under the data and model distribution respec-

tively. However, this gradient can not be computed, because EPmodel
[vihj ] is intractable (Hinton

and Salakhutdinov, 2006). So instead, we minimize the contrastive divergence (Hinton, 2002)

which measures the tendency of the model distribution to diverge from the data distribution:

KL(Pdata||Pmodel)−KL(Precon||Pmodel), (29)

where Precon represents the probability distribution of the reconstructed visual nodes after one

iteration of the RBM. Combining equations (26) and (27), we can estimate EPrecon [vihj ] from

samples obtained by Gibbs sampling (Geman and Geman, 1984). Thus, the approximate gradient

of the contrastive divergence with respect to the weights Wij can be computed, since it is given

by

EPdata
[vihj ]− EPrecon [vihj ]. (30)

Furthermore, instead of modelling binary input data, real-valued input data can also be mod-

elled by using Gaussian distributed visible units as described by Salakhutdinov (2015). In partic-

ular, we consider modelling visible real-valued nodes v ∈ RD whose mean is determined by the

hidden units with the following conditional probabilities:

p(vi = x|h) =
1√

2πσi
exp(−

(x− bi − σi
∑

j hjwij)
2

2σ2i
), and (31)
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p(hj = 1|v) = σ(cj +
∑
i

Wij
vi
σi

), (32)

where x ∈ R is a value from the input data. The corresponding energy term for these conditional

probablities is given by

E(v,h) =
∑
i

(vi − bi)2

2σ2i
−
∑
j

bjhj −
∑
i,j

hjwij
vi
σi
. (33)

The gradient for the contrastive divergence with respect to the weights Wij using these conditional

probabilities and energy term takes the following form:

EPdata
[

1

σi
vihj ]− EPrecon [

1

σi
vihj ], (34)

where σ2i is set to one as done by Salakhutdinov and Hinton (2007) to obtain the same approximate

gradient given in Equation (30).

A.3 Computing trustworthiness and continuity

• Trustworthiness T (k) ∈ [0, 1]: measures the “precision” of the projections yi, that is, to

what extent do the k nearest neighbors of yi correspond to the k nearest neighbors of xi.

Mathematically, Kaski et al. (2003) defines T (k) as

T (k) = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
j∈U(k)

i

(r(i, j)− k), (35)

where r(i, j) represents the rank of datapoint xj in the ordering from lowest to highest

Euclidean distance from xi and U
(k)
i represents the set of points that are among the k

nearest neighbors of yi, but not of xi. Notice that the term 2
nk(2n−3k−1) scales the measure

to be in the range [0, 1] if k < n
2 (Venna et al., 2007).

• Continuity M(k) ∈ [0, 1]: measures the “recall” of the projections yi, that is, to what extend

are the k nearest neighbors of xi retrieved in the k nearest neighbors of yi. The continuity

M(k) can be computed analogous to the trustworthiness by replacing r(i, j) and U
(k)
i in

equation (35) with r̂(i, j) and V
(k)
i respectively, resulting in the following expression:

M(k) = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
j∈V (k)

i

(r̂(i, j)− k). (36)

In this case, r̂(i, j) represents the rank of datapoint yj in the ordering from lowest to highest

Euclidean distance from yi and V
(k)
i represents the set of points that are among the k nearest

neighbors of xi, but not of yi, where again the term 2
nk(2n−3k−1) scales the measure to be in

the range [0, 1] if k < n
2 .
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B Additional Results

Due to space constraints we present in this appendix some relevant additional results of our

research. Appendix B.1 shows the plots of the t-SNE cost of the three gradient descent methods,

and Appendix B.2 the out-of-sample visualization of the COIL-20 test dataset by our parametric

mappings.

B.1 Plots: t-SNE cost

MNIST

COIL-20

.

Figure 10: Plots of the t-SNE cost of the three gradient descent methods when applying t-SNE on the MNIST

and COIL-20 datasets. The plots start at the 100th iteration which is after the early exaggeration
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B.2 Visualizations: COIL-20 test dataset

PCA Kernel t-SNE Autoencoder

Parametric t-SNE RP t-SNE

Figure 11: Visualizations of the COIL-20 test dataset by PCA, Kernel t-SNE, an autoencoder, Parametric t-SNE

and RP t-SNE.
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C Code description

In this appendix we present a brief description of the Python files used in this paper, which can

be found at https://github.com/StefanLam99/OOS__tSNE. The descriptions of the classes for

our implemented techniques, the classes to pretrain an autoencoder network, and the main and

utility classes are given in Tables 4, 5, and 6 respectively.

Table 4: Classes for our implemented techniques.

Python file Description

tSNE.py Class which implements the t-SNE algorithm with three differ-

ent gradient descent methods: SGD, a-SGD with momentum

and Adam. Note that a-SGD with momentum is the same as

the implementation by Maaten and Hinton (2008).

reg tSNE.py Class to make an object for the RP t-SNE model, it is able

to finetune the autoencoder network, predict projections from

input data and reconstruct the input data from projections.

Note that depending on the value of the trade-off parameter θ,

this class can also be used for parametric t-SNE, and regular

autoencoders.

par tSNE.py Class to make an object for the parametric t-SNE model, it is

able to finetune an encoder network and to predict projections

from input data.

kernel tSNE.py Class to make an object for the kernel t-SNE model, it is able to

train a parametric mapping with kernels and predict projections

from input data.

pca tSNE Class to make an object for the PCA model, it is able to predict

projections from input data.

kNN.py Class to train a k-nearest neighbor classifier on given input data.
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Table 5: Classes to pretrain an autoencoder network.

Python file Description

RBM.py Class that trains a RBM with Bernoulli distributed binary visual

and hidden nodes. Used to pretrain the weights of a layer in the

autoencoder network.

RBM linear hidden.py Identical to RBM.py, but with Gaussian distributed hidden

nodes.

RBM linear visible.py Identical to RBM.py, but with Gaussian distributed visual

nodes.

pretrain autoencoder.py Class that pretrains an autoencoder network using the previous

mentioned RBM classes.

Table 6: Main and utility classes

Python file Description

kcrossfold.py Main to perform k-fold cross-validation to find the optimal

trade-off paramerter for RP t-SNE with respect to the lowest

generalization error.

main results.py Main to obtain the generalization errors and trustworthiness-

continuity curves of our techniques.

main trainNN.py Main to pretrain and finetune the autoencoder, parametric t-

SNE and RP t-SNE networks.

datasets.py Class to make an object for a Dataset, which is able to prepro-

cess and load several datasets.

utils.py Contains different utility functions used for our techniques.
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