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Abstract

This paper aims to compare two highly popular data visualization techniques for high dimen-

sional data, t-SNE and MDS, since the seminal work on t-SNE (Van Der Maaten & Hinton, 2008)

and later literature lack a comparison between t-SNE and the broader field of MDS methods.

The focus on retaining the local structure of the high dimensional data by t-SNE is introduced in

MDS by considering stress based MDS with weights (De Leeuw & Heiser, 1980). Moreover, Local

MDS (Chen & Buja, 2009) is introduced to recreate the clustering characteristic of t-SNE. The

two approaches are tested on three data sets: the MNIST data, a simulated data set and data on

country characteristics. It is found that t-SNE overall is superior to the MDS implementations

in retaining the local structure of the data. However, Local MDS is also able to show a clear

cluster structure, which was not found in the t-SNE literature until now.
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1 Introduction

In the scientific fields including but not limited to international-, policy- and development economics

much policy advice is provided on a country specific level.This does not mean, however, that policies

are not completely unsuited to be generalized and used in different situations. One of the main

challenges in these fields is that policy areas cannot be considered to function in a economic vacuum.

Therefore, the generalization of economic policies designed for a single country cannot be performed

solely on the basis of a comparison between the countries on the specific area at which the policy

was targeted. Many researchers (a.o. Saggi, Maskus, and Hoekman (2004)), aim to circumvent this

problem by dividing countries in certain groups, based on for example their national income level.

Even though Saggi et al. (2004) realize that this is not optimal, they use these categorizations to

propose policy ideas to groups of countries. Due to the intertwined nature of the economy within

countries, such one dimensional cross country comparisons are limited in their power. A similarity in

one aspect of the economic system between two countries might be offset by a difference in another

area, potentially yielding surprising outcomes. As a consequence of the vast amount of data that is

collected by (economic) organizations around the world (e.g. IMF, World Bank, United Nations),

data sets that consist of a broad spectrum of country characteristics can be constructed. Anderson

and Hussey (2001), for example, compare the health system in OECD countries on the basis of a

wide variety of metrics, ranging from immunization rates to the number of hospital beds per capita.

These ubiquitous data sets theoretically allow researchers to compare countries on a high number

of characteristics, ranging from economic indicators to freedom scores and quality of government to

anthropological factors. However, the mere size and dimensionality of these data sets introduce a

fundamental difficulty in gaining an intuitive understanding of the data (Van Der Maaten, Postma,

& Van den Herik, 2009). In this type of situations, there is a strong desire to be able to obtain some

intuition in the structure of the data. The fields of dimension reduction and data visualization aim

to provide solutions to these problems.

Dimension reduction techniques aim to represent a high dimensional data set in a lower, easier to

handle dimensionality. This field of research was partly developed to solve some inherent challenges

in the world of statistics, data science and computer science, since many models experience trouble if

the dimensionality of the data becomes too high (Bellman & Dreyfus, 1962). While this composes

an interesting field of this research, this paper focuses on another important goal of dimension

reduction: data visualization.

1



As was hinted upon earlier, one of the disadvantages of high dimensional data is the inherent

difficulty to gain intuitive insights in the data structure. For a large part, this is caused by the

limitations of humans to visualize data in maximally three dimensions. In image and textual

analysis, for example, objects are often represented by thousands of dimensions (Van Der Maaten

et al., 2009). Over the last decades, the field of data visualization has developed a broad scope of

powerful methods and algorithms to map high dimensional data onto a 2D or 3D map that aids in

gaining an understanding in the structure of the data.

In particular, this paper will focus on t-Distributed Stochastic Neighbour Embedding (t-SNE)

(Van Der Maaten & Hinton, 2008), a highly popular method of visualizing high dimensional data.

This method has gained enormous popularity mainly due to its superior ability to map data points

in such a way that clear clusters in the data become apparent. Introduced as an improvement over

the less successful Stochastic Neighbour Embedding (SNE) method (Hinton & Roweis, 2003), it

frequently outperforms a wide array of other techniques, such as Principal Component Analysis,

Sammon Mapping and Isomap (Van Der Maaten & Hinton, 2008). The main advantage is the ability

of t-SNE to clearly separate clusters of points in the low dimensionality, whereas other methods

have trouble letting clusters drift apart. Even though the seminal work by Van Der Maaten and

Hinton (2008) compares the method to a wide variety of methods, its specific relationship with the

more general defined methods of non-linear multidimensional scaling (MDS) is not investigated. As

will be discussed in a later stage of this paper, t-SNE was designed to focus on modelling the local

structure of data sets. Van Der Maaten and Hinton (2008) argue that the way in which this is

approached, sets the method apart from other methods. Contrarily, Groenen and Van De Velden

(2016) argue that by tweaking some weight parameters, MDS can be instructed also focus on the

local structure. Moreover, Chen and Buja (2009) developed a variant of MDS (Local MDS), which

shows similarities with t-SNE. This paper hopes to shed some light on this particular relationship

between t-SNE and non-linear MDS, as this is still underdeveloped in the literature.

Concretely, t-SNE has been applied to a broad scope of fields, ranging from genetic data (Li,

Cerise, Yang, & Han, 2017) to computer security (Gashi, Stankovic, Leita, & Thonnard, 2009),

image analysis (Gisbrecht, Schulz, & Hammer, 2015) and musical analysis (Hamel & Eck, 2010).

Despite its universal applicability and strong performance, the above-mentioned list primarily fo-

cuses on natural and computer sciences. Social sciences, such as psychology and economics have not

seen a prominent rise of t-SNE based visualizations of data sets. Reflecting on the first paragraph

of this paper, much multilateral policy advise hinges on the comparison of countries and formulat-
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ing similarities between them. t-SNE and MDS are therefore potentially powerful methods in an

international policy adviser’s toolbox.

As such, this paper aims to introduce t-SNE in this field and investigate the power and useful-

ness of the method in comparison to the widely used method of MDS based on stress functions.

Consequently, the main research question this paper aims to address is: ”How does the performance

of t-SNE compare to MDS in the field of visualizing high dimensional country similarities?”

In particular, a high dimensional data set of country characteristics (e.g. GDP, level of corrup-

tion, economic freedom, etc.), obtained from the World Government Summit 2019, will be used to

investigate this. For many researchers in the field of (international) policy economics, it is interest-

ing to see whether t-SNE and MDS can be used as a powerful tool to visualize country similarities.

Especially with regards to Van Der Maaten and Hinton’s (2008) observation that other visualiza-

tion techniques have trouble to let clusters of similar points drift apart, is of interest in this field.

Clearly identifying clusters of countries is helpful in many policy applications. To gain a more

complete comparison between the two methods, they will also be applied to the MNIST data set

and a simulated data set containing a low dimensional cluster structure.

In summary, this paper aims to fill two distinguishable gaps in the current literature. Firstly, as a

concrete and complete comparison between MDS and t-SNE has not been conducted before, it aims

to shed light on their comparative performance. Secondly, by applying this comparison on a high

dimensional data set of country characteristics, the performance of these visualization techniques

will be investigated in a new context. The rest of this paper is structured as follows. Firstly, the

two methods of interest, t-SNE and non-linear MDS will be discussed in detail. This review of

literature will be focused on the main idea behind the methods. The paper then continues with a

Algorithms section, which will elaborate upon the mechanics of the two methods in greater detail.

Afterwards, the experiments corresponding to the three data sets are described and their results

are presented. Finally, the results are used to answer the research question and the limitations of

this paper are discussed.

2 Literature Review

Over the years many powerful visualization and dimension reduction techniques have been devel-

oped. In general, these methods aim to map a high dimensional data set X = {x1, x2, ...xn} into

the two- or three dimensional set Y = {y1, y2, ..., yn}. The main difficulty of these methods is
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the preservation of as much of the information in the data as possible. As was mentioned in the

Introduction, this paper focuses on two specific methods of dimension reduction and visualization:

t-SNE and multidimensional scaling (MDS). The interested reader can refer to Van Der Maaten et

al. (2009), Lee and Verleysen (2007) or Saul, Weinberger, Ham, Sha, and Lee (2006) for a general

and complete overview of the field.

2.1 t-SNE

2.1.1 Stochastic Neighbour Embedding

Before the main method of this paper is introduced it is necessary to gain some insight in the

ancestor/predecessor of the t-SNE method: Stochastic Neighbour Embedding. This method was

introduced by Hinton and Roweis (2003) and forms the basis for the t-SNE method that uses the

same framework with some profound deviations. The main idea of SNE is based on the conversion of

the high dimensional data to pairwise similarities. Data points that are close in the high dimensional

space should have high similarity scores, while points that are far away should have low scores. The

SNE algorithm then aims to find a set of points in the low dimensional space and that generates

pairwise similarity scores that are as close as possible to the high dimensional similarities.

There are multiple ways to compute the similarity between points, and SNE describes the simi-

larity between two points xi and xj as the conditional probability pj|i, which models the probability

that xj is xis neighbour. The probability distribution over all points is taken as a Gaussian that

is centered at xi, taking the Euclidean distance between a pair of points as its argument. The pj|is

are characterized by the following equation:

pj|i =
exp(−‖xi − xj‖2/2σi)∑
k 6=i exp(−‖xi − xj‖2/2σi)

, (1)

where σi denotes the variance of the Gaussian centered at xi. In Section 3.1 the method of determin-

ing the value of σi is discussed. As was mentioned in the previous paragraph, the low dimensional

points are chosen in such a way that their similarities are as close as possible to the high dimensional

similarities pj|i. The low dimensional similarities qj|i are defined as similarly:

qj|i =
exp(−‖yi − yj‖2)∑
k 6=i exp(−‖yi − yj‖2)

, (2)

where the variance is set to 1/
√

2 without loss of generality and yi and yj refer to the low dimensional

representations of points i and j respectively.
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Hinton and Roweis (2003) argue that when the points in the low dimensional space faithfully

model the similarity between the points in the high dimensional space, the conditional probabilities

pj|i and qj|i should be equal. Therefore they introduce the Kullback-Leibler divergence (Kullback

& Leibler, 1951), which is a measure of equality between two probability distributions. The SNE

algorithm aims to find the points yi (with corresponding qj|i) that minimize the Kullback-Leibler

divergences over all datapoints. The cost function C is defined as follows

C =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

pj|ilog
pj|i

qj|i
. (3)

Due to the structure of this cost function, the authors argue that SNE constitutes an improvement

over previous methods. Analyzing the sum of Kullback-Leibler divergences, it can be shown that

modelling a high pj|i with a small qj|i (i.e. modeling two points xj and xi that are far apart in a

high dimension with two points yj and yi that are close in the low dimension) will result in a large

loss, while a small pj|i that is modelled by a large qj|i will result in a smaller loss (Van Der Maaten

& Hinton, 2008). Consequently, SNE puts more emphasis on the local structure of the data.

In isolation, the cost function is decreasing in qij . However, the restriction that qij represents

probabilities (
∑

i

∑
j qij = 1) introduces the asymmetry in the cost function. When a small pij is

modeled by a large qij , some of the density is wasted which means that the other pij values must

be modeled with lower values, introducing a cost. When this happens, the ’wasted’ density can be

shared among all other values of pij . Since the log of the ratio between pij and qij is weighted by

pij , the cost in this situation is decreased in its importance. When the opposite happens, the cost

will be higher due to the increased importance induced by the weight.

This can be illustrated in a simplified case by considering the following ternary plots, which

show all possible combinations of probabilities with the restriction that they sum up to one. The

simplification stems from the fact that a probability of only three discrete values is considered.

The Kullback-Leibler loss function is illustrated by the colour and contour lines of the plot. Each

plot corresponds to a unique combination of three values for pij , whereas the plot itself shows the

Kullback-Leibler value for each combination of qijs. Note that the restriction p1 > p2 = p3 is made

such that the plots can be compared. Without this restriction, the plot is free to be rotated, without

changing the fundamentals. When comparing the two plots, two points (indicated by blue and red

dots) are of special interest. On the left graph, the red plot denotes a combination of qij values

that model the highest pij value much too low. The corresponding value for the Kullback-Leibler

function is 0.1838. On the right plot the the red dot denotes a combination of qij values that model
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the highest pij value much too high. The corresponding value for the Kullback-Leibler function is

0.1920, signifying the asymmetry as it is higher than the previous value.

Figure 1: Contour plot of Kullback-Leibler divergence in ternary coordinate system. Left: p1 = 0.7, p2 =

0.15, p3 = 0.15. Right: p1 = 0.4, p2 = 0.3, p3 = 0.3. The blue dots represent the values of qi that correspond

to the true values (pi). The red dots model the values of pi incorrectly (Left: p1 is modeled too low. Right:

p1 is modeled too large.)

The specific algorithm for finding the points yi is provided in the methodology section of this

paper.

2.1.2 t-Distributed Stochastic Neighbour Embedding

Even though SNE provided somewhat better results than previous methods with respect to the

visualization of high dimensional data, Van Der Maaten and Hinton (2008) identified two points

of improvement. Firstly, the optimization over the Kullback-Leibler divergences is time consuming

and difficult. Secondly, the ”crowding problem is introduced as another problem using SNE.

Firstly they aim to simplify the optimization of the method by introducing the concept of sym-

metric SNE. Instead of optimizing the sum of Kullback-Leibler divergences between all conditional

distributions, the idea is implemented to mimimize a single Kullback-Leibler divergence between

two joint probability distributions P and Q:

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij
. (4)
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In this symmetric SNE, the joint probabilities in the low dimensional space (qij) are given by:

qij =
exp(−‖yi − yj‖2)∑
k 6=l exp(−‖yk − yl‖2)

. (5)

Instead of defining pij in a similar fashion, the high dimensional similarities are constructed as a

symmetrized version of the conditional probabilities in equation (1):

pij =
pj|i + pi|j

2n
. (6)

The main reason for defining pij in this fashion is explained by Van Der Maaten and Hinton (2008)

due to the fact that outliers would have extremely low values of pij if they would be defined similarly

to equation (5). The effect of this would be that the loss associated with this observation would be

negligible, regardless of its position in the low dimensional map.

Next to this symmetric version of SNE, Van Der Maaten and Hinton (2008) discuss and improve

upon the weakness of SNE to create a low dimensional clutter of points. In visualizing the high

dimensional data, one of the desires is to be able to distinguish different data structures, which is

hard if all points tend form a clutter in the middle of the map. The authors refer to this as the

”crowding problem” and argue that this is an inherent problem of reducing the dimensionality of

a data set. The main element of this phenomenon is that it is impossible to embed all pairwise

differences perfectly in a lower dimension (i.e. lower than the intrinsic dimensionality of the data).

The consequence of this is that there is insufficient space in the lower dimension to model mod-

erate distances, which results in them being modeled too far apart. As we have seen in previous

paragraphs, the purpose of SNE is to match the similarities (i.e. pij and qij) in the high- and low

dimensional space as good as possible. If the distances between moderately distant data points in

the high dimension are modelled too far apart in the low dimension, these points will be pulled

towards each other. As this happens between many points, the system is unable to let the points

in the map drift apart.

To solve this cluttering of points in the center of the low dimensional map, Van Der Maaten and

Hinton (2008) consider a different distribution than the previously proposed Gaussian in the low

dimensional space: a Student t-distribution. The well known characteristic of its fat tails (relative

to a Gaussian) raises a natural way to allow the larger pairwise distances for moderately distant

data points. This is illustrated in a simple case in Figure 2, where the shaded areas represent a

symmetric interval around the mean of 50%. The figure shows that the same probability can be

attained with a greater distance from the mean under the Student-t distribution. This solves the
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crowding problem as now the moderate distances in the high dimensional space can be reliably

modeled by larger distances in the low dimensional map. When using the Student-t distribution,

the joint probabilities in the low dimensional space then become

qij =
(1 + ‖yi − yj‖2)

−1∑
k 6=l(1 + ‖yk − yl‖2)−1

. (7)

Next to the circumvention of the crowding problem, the authors argue that the introduction of the

Student-t distribution increases the efficiency of the method somewhat, as the values for qij can be

computed faster than for regular SNE. In conclusion, t-SNE aims to match the similarities between

points in the high dimensional space, given by pij (Equation 6) and low dimensional space, given

by qij (Equation 5), by minimizing the Kullback-Leibler divergence (Equation 4) over yi.

Figure 2: Comparison Gaussian and Student-t Distributions. Shaded areas cover equivalent probabilities

2.2 Multidimensional Scaling

Even though Sammon mapping can be considered a special case of non-linear multidimensional

scaling (MDS), the comparison between t-SNE and MDS in Van Der Maaten and Hinton (2008)

is limited. Moreover, later literature mainly deals with the application or improvement of t-SNE,

making a broader comparison of the method with non-linear MDS underdeveloped. As such, this

subsection will concisely introduce MDS and compare it to t-SNE. In Section 4, experiments will

be described to compare the two highly popular methods for visualizing high dimensional data.

Multidimensional scaling is based on the premise that a similarity or dissimilarity score can be

determined between all pairs of points in a data set. Using these scores, MDS aims to find a map

of points in a low dimension, where the pairwise distance between points represents the original

dissimilarity between the high dimensional data points as well as possible (Cox & Cox, 2008). This

paper considers the non-metric subclass of MDS methods that are based on the formulation of

stress functions. Generally, these are based on the minimization of the squared difference between

the original dissimilarity and distance of the low dimensional representation of the original data.
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The method can be applied with a wide variety of distance measures (for an overview, see Cox

and Cox (2008)), but as the final aim of this paper is to compare MDS to t-SNE, this paper

considers Euclidean distances. As the method optimizes a potentially non-linear stress function,

the optimization is not trivial.

Under the name of least-squares MDS, Groenen and Van De Velden (2016) review a variety

of stress based MDS approaches and their optimization and implementation using the SMACOF

package in R. The focus is on the raw Stress function as described by De Leeuw and Heiser (1980):

σ2raw(X, δij) =
∑
i<j

wij(δij − dij(X))2, (8)

where δij is the measured dissimilarity between points i and j, dij(X) is the distance in low dimen-

sional space between points i and j and wij is a weight determining the importance of a certain

pair of points in the determination of the stress function. The main innovation of this particular

formulation of the stress function is the introduction of the weights (wij). As Groenen and Van

De Velden (2016) describe, these weights greatly improve the applicability of MDS and facilitate a

wider variety of problems that can be tackled with MDS. This increased versatility of MDS imple-

mentations is not considered by Van Der Maaten and Hinton (2008), who only compare t-SNE to

relatively simple variant of MDS.

The introduction of these weights, however, increase the difficulty of finding the low dimensional

embedding that minimizes the stress function. In finding the set of points in the low dimension that

matches the similarities in the high dimension as close as possible, this stress function is minimized

using the SMACOF algorithm. This technique was developed by De Leeuw and Heiser (1980) and

uses the technique of majorization to find the optimal solution to the objective function.

One of the critiques expressed by Van Der Maaten and Hinton (2008) about MDS is its poor

performance to focus on the local structure of the data. This argument is substantiated by the

comparison of t-SNE and Sammon mapping (Sammon, 1969), which can be considered a variant of

this MDS formulation with wij = δ−1ij . We have seen, now, that MDS can be defined in a broader

way than that. When the MDS method is formulated as is done in this paper, these weights can be

used to discover and explore to what extent t-SNE might be able to capture the local structure of

the data in a superior fashion.

As Groenen and Van De Velden (2016) discuss, the focus on retaining the local or global structure

in this model formulation can be altered by taking advantage of the phenomenon of power weights.

Using power weights, the weigths wij are formulated as a power of the dissimilarity measures δij :
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wij = δqij . As the value of q varies, the emphasis on local or global structure is emphasized. Values

below zero put more emphasis on the small dissimilarities (local structure) and values above zero

emphasize large dissimilarities (global structure). This observation can be used in the comparison

to t-SNE and a suitable value for q should be determined.

In addition to power weights, a nearest neighbour weighting function can be employed to enforce

the focus on the local structure of the data. This method takes a pre-specified number of neighbours

and assigns a value wij = 1 if point j is one of the nearest neighbours of point i. The advantage of

this method is that the MDS algorithm focuses on retaining the relationship between the nearest

neighbours of all points.

Lastly, an exponential kernel type function can be used to differentiate the importance of the

local and global structure in the data. Similarly to power weights, points that are further away are

given less importance in their contribution to the stress function. In general, this method defines the

weights as follows: wij = e−δ
2
ij . The main difference with power weights is the shape of the weights

as a function of the distance (See Appendix A). This weighting works best when the distances are

not too far from zero and hence, it is often combined with standardization of the data.

The weights that are described above all focus on increasing the importance of the small dis-

similarities. We have seen, however, that even though t-SNE focuses on retaining small distances,

it also aims to let clusters of locally similar points drift apart. This ’outside’ force has been re-

searched in the context of MDS as well. Chen and Buja (2009) extend the stress based MDS

definition by altering some of the dissimilarities and weights. In essence, they propose an extension

of the above-mentioned k-nearest neighbour approach. Their idea is to introduce a penalty for large

dissimilarities, essentially making them larger. To compensate for the larger dissimilarity and to

prevent them from dominating the stress function, these penalties are accompanies by a reduction

in the weight of these points. The implementation is introduced as follows: for each point i, a local

neighbourhood (Ni) is constructed with a pre specified number of neighbours. For the points that

are not in this neighbourhood, δij is changed to a fixed large value, D∞, and the corresponding wij

is set very low. For the points that are in the local neighbourhood, nothing is changed, and their

weight is set equal to one. As such, the stress formulation in Equation 8 is changed to:

σ2raw(X, δij) =
∑

(i,j)∈N

wij(δij − dij(X))2 +
∑

(i,j)/∈N

wij(D∞ − dij(X))2, (9)

where D∞ is set very high and wij is set equal to one for the nearest neighbours and set in such a

way that it off-sets the penalty in the stress function (D∞) for the points that are not among the
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nearest neighbours. In that way, X is chosen in such a way that points i and j are far away from

each other, as the contribution of the distance between the pair of points to the cost function is

minimal when dij(X) = D∞. In this way, Chen and Buja (2009) try to induce a force that pushes

points away from each other when they are not similar. In general, they find that this Local MDS

approach is better able to retain the local structure of the data than other MDS implementations.

In this paper, the values for wij and D∞ are constructed from a penalty coefficient c: wij = c

if point j is not in the local neighbourhood of point i and D∞ is differentiated for each pair of

points as Dij = δij/c. When c is chosen low (such as 0.01 or 0.001), this creates the desired outside

force between points that are not in each other’s neighbourhood. This deviates slightly from the

original approach that is taken by Chen and Buja (2009), who work out Equation 9 and combine

the wij and D∞ parameters by a single parameter t. Doing this, however, changes the structure

of the stress function, making it unsuitable for the SMACOF package to find the solution. The

implementation with the penalty parameter c, however, captures the same idea and is implemented

in other literature as well (Groenen & Van De Velden, 2016).

We have seen that both t-SNE and MDS aim to preserve the similarity between pairs of data

points in the high dimensional space, by mapping them in a lower dimension. The methods, however,

take different approaches. Van Der Maaten and Hinton (2008) argue that MDS is not capable of

retaining the local structure well, because because extremely small distances in the high dimensional

space excessively contribute to the cost function, compared to the ’regularly’ small distances. As

the local structure of the data consists of more than only the extremely small distances, MDS, is

not well able to capture this. This shortcoming, however, is not entirely generalizable to all MDS

models based on stress equation (8), when other weighting functions are considered. This paper

will investigate whether this finding is still valid when different weight functions are considered as

their effect on the degree of locality in MDS is different.

3 Algorithms

We now turn to the mechanics of both methods and consider how the optimal solution can be found

for both t-SNE, using the algorithm that Van Der Maaten and Hinton (2008) introduced, and MDS

based on the SMACOF algorithm (Groenen & Van De Velden, 2016; De Leeuw & Mair, 2009).
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3.1 Implementing t-SNE

To find the set of points yi that represent the high dimensional data points xi as well as possible,

t-SNE optimizes the Kullback-Leibler divergence that is given in Equation 4 over all datapoints yi

(the points in the low dimensional map). A gradient descent approach is used for this purpose.

Before we consider the mechanics of this method, the method to determine the σi parameter in

Equation 6 is described. This parameter is a measure of the variance of the Gaussian that is

centered around a point xi in the high dimension space. Hinton and Roweis (2003) argue in their

initial introduction of SNE that using a fixed variance for all points is unlikely to be optimal due

to varying density of points in the high dimensional space. To account for this, a binary search is

conducted to find the value of σi that results in a pre-specified perplexity.

PP (Pi) = 2H(Pi), (10)

where H(Pi) is defined as the Shannon entropy: H(Pi) = −
∑

j pij log2pij . Intuitively, the authors

argue that the perplexity can be seen as the effective number of neighbours of a point xi, employed

in k nearest neighbours clustering methods.

After the definition of the final parameter σi, the Kullback-Leibler divergence can be optimized

over the points yi in the low dimension using a gradient descent. Van Der Maaten and Hinton

(2008) show that the gradient of Equation 4 has a surprisingly simple form:

∂C

∂yi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1, (11)

The gradient descent is initialized by taking a random sample of a small variance Gaussian, centered

around the origin. As the optimization is not a convex problem, a momentum term is added in

the update of the gradient to avoid the algorithm to get stuck in poor local minima. The update

formula is then defined as follows:

Y(t) = Y(t−1) + η
∂C

∂Y
+ α(t)(Y(t−1) −Y(t−2)), (12)

where Y(t) is the matrix containing solutions yi at iteration t of the algorithm, η is the learning rate,

and α(t) denotes the momentum at iteration t. The learning rate is added to speed up the process

of the optimization. In accordance with Jacobs (1988), an adaptive learning rate is implemented

which increases the importance of the direction of the gradient that are stable. As a final trick to

find better visualizations, t-SNE is implemented with an ’early exaggeration’. When the number

of iterations is still low in the initial stage of the optimization, the values of pij are multiplied by
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a constant (usually 4). Due to this exaggeration of the pij values, the algorithm is forced to model

relatively large corresponding qij values, which generally results in tight and widely separated clus-

ters in the low dimensional map. Algorithm 1 provides the pseudo-code as it is described in Van

Der Maaten and Hinton (2008).

Algorithm 1: Simplified description t-SNE (Van Der Maaten & Hinton, 2008)

Result: Low dimensional embedding of high dimensional data Y(T )

Input: high dimensional data set X(0); perplexity; optimization parameters: number

iterations T, learning rate η , momentum α(t), early exaggeration parameter;

begin

normalize or standardize data and perform initial PCA compute pj|i with fixed

perplexity (using binary search and Equation 1);

compute pij =
pji+pi|j

2n ;

initialize low dimensional embedding: Y(0) ∼ N (0, 10−4In);

for t = 1→ T do

compute qij (Equation 5);

compute gradient: ∂C
∂Y(t−1) (Equation 11);

update solution: Y(t) = Y(t−1) + η ∂C
∂Y(t−1) + α(t)(Y(t−1) −Y(t−2))

end

end

3.2 Implementing MDS

The MDS approach that is taken in this paper is based on the optimization of the stress function

defined in Equation 8. There are multiple ways to minimize the stress function, which is not trivial

to optimize (Groenen & Van De Velden, 2016). This paper considers the highly effective SMACOF

algorithm with implementation in R, as introduced by De Leeuw and Mair (2009). This method

is based on an optimization technique named majorization, which results in an algorithm that

guarantees the descent of the objective function. More information on the technical details can be

found in De Leeuw and Mair (2009) and Groenen and Van De Velden (2016).

4 Experiments and Results

This section will present a variety of implementations of the t-SNE and MDS methods that were

discussed throughout this paper. Firstly, the replication of the t-SNE algorithm in R will be
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discussed and verified. Then, some experiments, based on three different data sets will be performed

and analysed. Firstly a comparison between the MDS implementations and t-SNE will be made

using the MNIST data set. This data set is analyzed first, since Van Der Maaten and Hinton

(2008) describe t-SNE’s good performance especially in the context of these data. However, such

a real world data sets lacks a certain ground truth, making the comparison limited in its power.

Consequently, simulated data is analyzed using both implementations to gain more insight in the

comparison of the method in an controlled environment. Lastly the performance of the methods is

introduced in the field of visualizing the similarities between countries around the world.

4.1 Replication t-SNE

Since the original software for the t-SNE was developed for MATLAB implementations 1, we first

focus on testing this paper’s implementation of t-SNE in R. For this purpose, Fisher’s well-known

iris data set (with standard implementation in MATLAB and R) will be considered. The data set

consists of 150 entries, corresponding to a particular iris flower and member of one of three categories:

Setosa, Virginica or Versicolor. Each flower has four corresponding variables that describe the sepal

width, sepal length, petal length and petal width. To verify the R implementation of the t-SNE

algorithm, this four dimensional data set is reduced to two dimensions and visualized accordingly.

To verify the correctness of the R implementation and maximize the comparability between the

two implementations, we initialize both implementations with the same low dimensional embedding

(see Appendix B). In the standard settings for the MATLAB software, the values for the hyper

parameters are defined as: η = 500, α(t) = 0.5 for t < 250 and α(t) = 0.8 for t ≥ 250, perplexity

is set equal to 30, pij is blown up by a factor 4 in the first 100 iterations, 1000 iterations are done.

These values are provided for the application of the method on the MNIST dataset. Performing the

algorithm on the iris data set with these parameters does not give optimal results. Especially the

learning rate is too high and harms the convergence of the algorithm. This can be seen in Appendix

B, where two graphs show a cost function that shows undesirable jumps, making the algorithm

unable to converge. This also emphasises that t-SNE is an algorithm for which the optimization is

far from trivial. Accordingly, for the iris data set, the learning rate is changed to 10 based on the

analysis of the cost function, as this value yields the lowest Kullback-Leibler divergence for these

data.

Figure 3 shows the output of the two implementations (left: R, right: MATLAB). On a first

1https://lvdmaaten.github.io/tsne/
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glance the two figures look nearly identical, indicating the correctness of the R code. Extending

the analysis and considering the left plot in Figure 4, the two methods indeed produce the same

outcome, which can be seen by distances between all points lying on the 45◦ line for both imple-

mentations. Finally, we investigate the value of the Kullback-Leibler divergence over the iterations

of the algorithm. In Figure 4, a clear decreasing function can be seen that converges to a minimum

value. The jump around iteration 100 corresponds to the values for pij that are changed to their

true value again (i.e. the end of the early exaggeration stage). Thus, we can conclude that the R

implementation works correctly and can be used for further analysis of the data sets under scrutiny

in this paper.

Figure 3: Low dimensional embeddings of Iris data set (learning rate = 10)

Figure 4: Results comparison R and MATLAB. Left: comparison distances MATLAB and R. Right:

Kullback-Leibler divergence for R implementation
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4.2 Comparison t-SNE and MDS

One of the main aims of this paper is to compare the performance to visualize a high dimensional

data set using t-SNE and MDS. Two approaches are taken to investigate this. Firstly both MDS

and t-SNE are applied to a data set that has a particularly good performance for the t-SNE method

(Van Der Maaten & Hinton, 2008): the MNIST data set. Afterwards both methods are applied to

a simulated high dimensional data set for which the low dimensional structure is known.

Before the specific experiments are described and their corresponding results discussed, we

introduce a method to compare the visualizations that result from t-SNE and MDS. As t-SNE

and MDS both rely on different cost functions and algorithm design, a new evaluation metric is

introduced, based on the work of Chen and Buja (2009). The metric is based on the idea of

neighbourhood preservation by the methods. As the aim of t-SNE is to retain the local structure of

the data, and we also try to accomplish this with the MDS implementations, this is an interesting

characteristic to assess. A high degree of overlap between the local neighbourhoods of a data point

in the high dimension and low dimension indicates that the embedding is a good representation of

the high dimensional data structure. Therefore, the metric for the pointwise overlap is defined as:

NK(i) = |NY
K (i) ∩NX

K (i)|, (13)

where NY
K (i) is defined as the set of K-nearest neighbours of point i in the low dimensional em-

bedding, and NX
K (i) is the high dimensional equivalent. A global measure for the overlap is simply

obtained by averaging over all individual overlap coefficients. To normalize this global overlap

coefficient, we divide by K:

MK =
1

K

n∑
i=1

NK(i). (14)

In this paper a value of K = 10 will be used to construct the nearest neighbourhoods. In the rest

of this paper, the embeddings that are visualized in the main text have the characteristic that the

specific parameter values of the method yield the highest average overlap coefficient, unless stated

otherwise.

4.2.1 MNIST Data Set

The MNIST data set is constructed from 60,000 images of handwritten digits (0 to 9). These

images each consist of 784 (=28x28) pixels, corresponding to the dimensionality of the data. For

each pixel, a gray scale value ranging from 0 to 1 is provided. For the comparison a subset of 6000
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data points of this data set is used that was collected by Van Der Maaten and Hinton (2008) 2, of

which a random sample of 1000 digits is taken. The t-SNE algorithm will be implemented in close

correspondance to the work of Van Der Maaten and Hinton (2008) and equivalent parameters will

be used the implementation.

As has been described before, this paper attempts to shed more light on the relationship between

t-SNE and MDS. To focus on the local structure of the data (as is the goal of t-SNE), MDS will be

implemented with the following weights as introduced in Section 2.2: 1) power, 2) k-nearest neigh-

bour and 3) kernel weights. In addition, Local MDS will be implemented to investigate whether the

introduction of an outside force can lead to similar visualization as t-SNE. These implementations

will initially be performed in the traditional way, where the weights are based on the Euclidean dis-

tances. Next to this, the P matrix that is constructed in t-SNE will be used to create the weights

and as input to create a dissimilarity matrix as alternative for the Euclidean distance. This idea

comes from the Bibliometry literature. In that field, a MDS-like method was introduced (VOS

Viewer) that uses similarity scores as input for the weights (Van Eck, Waltman, Dekker, & van den

Berg, 2010). This paper uses that idea and creates a simple dissimilarity score, that is derived from

the P matrix: 1− pij .

In summary, MDS will be applied in three different fashions: 1) Using δij = ‖xi − xj‖ and

wij constructed from δij 2) Using δij = ‖xi − xj‖ and wij constructed from 1 − pij and 3) Using

δij = 1−pij and wij constructed from 1−pij . In Appendix A a table can be found where an overview

is provided of which MDS implementations will be done. This structure will also be followed for

the other two data sets.

The t-SNE parameter setting to analyze the MNIST data set is constructed in accordance with

Van Der Maaten and Hinton (2008). That means that a perplexity of 30 and learning rate of 500 is

be used. Fifty random initialization are considered, after which the result with the lowest Kullback

Leibler divergence will be analyzed. More details can be found in the supplementary material and

code.

The final low dimensional embedding can be found in Figure 5. Clear clusters can be identified

from this embedding, although not all clusters are separated from each other. Moreover, there are

some points that seem to be represented in the wrong cluster.

2https://lvdmaaten.github.io/tsne/
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Figure 5: t-SNE: Left: Low dimensional embedding MNIST data set. Right: Overlap local neighbourhoods

of each point in high and low dimension (K: number of points which are in both the high and low dimensional

neighbourhoods of point i)

However, when considering the corresponding picture, those can be attributed to anomalies in

the way the digits were drawn. Figure 6 shows two of these cases. The left to pictures show the

drawing of a 6 and 1, which corresponds to the observation of 6 that is found between the 1s. The

right figure denotes a 9 and 4 that are mapped very closely together. From these pictures, we can

see that it is not surprising that t-SNE is not well able to separate these values, as they look very

similar, even though their label is different.

Figure 6: Comparison seemingly wrong embedded points. From left to right: 6, 1, 9, 4

Moreover, we can see that the points corresponding to the digits 3, 5 and 8, and 4 and 9 are not

clearly separable as clusters. This can also be explained by the previous argument that digits can

be drawn in similar ways and have similar grayscale values for the pixels. For these digits, we can

also observe that t-SNE is less able to preserve the local structure of the data in the low dimensional

embedding. The right plot in Figure 5 shows for each point the level of overlap between the nearest
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neighbourhoods (of size 10) around the point when comparing the high and low dimension. The

better separated a cluster is, the higher the overlap seems to be and as such the better the local

structure is preserved.

The results for the MDS approach in embedding the MNIST data in two dimensions are highly

variable. We start with the implementations that use δij = ‖xi − xj‖ and use δij as input for wij .

In Figure 7 three examples of the δijs are given for which the weight is larger than zero. Here we see

a desired spread of the values that is needed for MDS. For the Local MDS histogram, there seems

to be hardly any variation. However, the very small bar on the left of the histogram is equivalent

to the middle histogram corresponding to k-nearest neighbour weights, when one would zoom in.

Figure 7: MNIST: Histograms δij = ‖xi −xj‖ for which wij > 0. Note: k-nearest neighbour with k = 5 and

Local MDS with k = 5 and c = 0.001

In Appendix C, the plots corresponding to the embedding with the highest average overlap

coefficient (MMDS) for all types of weights (power, kernel and kNN) can be found. In this section,

we present and focus on the best results from the different MDS approaches. In general, we can

observe that MDS has more trouble differentiating between the digits than t-SNE. Even though

some clusters in the data are apparent (e.g. corresponding to 0s, 1s and 2s), the method is unable

to clearly separate these values from the rest of the values for the power, k-nearest neighbour and

kernel weighting methods. This can be seen in the left plot in Figure 8, corresponding to the MDS

embedding using power weights (q = 2), which resulted in the largest overlap coefficient for the

power, kernel and k-nearest neighbour (MMDS,power = 0.181). It is somewhat surprising that this

overlap coefficient is highest for this particular power, as a positive power suggests the relative high

importance of high dissimilarities.

It is not entirely surprising that these weight types are not able to separate the categories from

one another, as these weights do not specifically impose a condition that drives dissimilar points
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away from each other. When introducing this force with Local MDS, we can see that for certain

values for c and k, some of the clusters can be separated from the other digits. The right plot

in Figure 8 shows that the groups corresponding to the zero and six digit have drifted away from

the other data points. Moreover, there seems to be a clear cluster of 2s and 3s in the top of the

plot, which, however, have not drifted away much from the other points. Lastly, the local MDS

implementation yields a higher average overlap coefficient than the other three weighting methods:

MLMDS = 0.291, with c = 0.001 and k = 5, making it better at retaining the local structure.

Figure 8: MDS solutions for MNIST data set using δij = ‖xi − xj‖ and use δij as input for wij . Left: MDS

with power weights (q = 2). Right: Local MDS (c = 0.001, k = 5)

Extending the standard MDS implementation with the Euclidean distance as input for the

weighting function, we now briefly discuss using the P matrix from t-SNE as input to create the

MDS weights, while still using δij = ‖xi − xj‖. Due to the large number of points and little

variation in the pij values (Figure 10), using power weights does not differ significantly from ’plain’

MDS, as the weights are close to the same value for all pairs of points. The kernel based method

suffers from the same phenomenon and also produces similar results. Further normalization of

these values does not help to solve this. Hence, using the similarity matrix as input for the weights

does not improve the embeddings significantly. Furthermore, the k-nearest neighbour weighting

function yields similar weights when P is used as input, since the pij values are constructed from

the Euclidean distances and therefore, the neighbourhoods created from distances and pij values are

highly similar. Their average overlap coefficient is also very similar: MkNN,distance,distance = 0.0309

and MkNN,P,distance = 0.051 (k = 5) . In Appendix C, the embeddings for these methods can be
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found and their similarity to the distance based weight solutions can be checked. Overall, it can

be observed that the MDS approach that uses the P matrix from t-SNE as input for the weighting

functions does not perform much different from the standard implementation.

The Local MDS implementation, however, does give different shaped embeddings when P is

solely used to construct the weights. This can be seen as a consequence of the changes that are

made to the weights as a consequence of the penalty term c. Even though the k-nearest neighbours

are similar due to the high correlation between the distances and pij values, the penalty term

emphasises and magnifies their difference. Figure 9 shows the plot of this embedding, for which

some clusters can be separated from each other. It is especially interesting to see that these clusters

are similar to the clusters that t-SNE is able to separate relatively well from the other points.

However, when comparing this solution to the t-SNE embedding, it can be seen that the digits

that are not well distinguishable from others show less structure. The points corresponding to,

for example, fours and nines are plotted more separate in the t-SNE embedding than in the MDS

plot. Moreover, comparing the average overlap coefficients for t-SNE and Local MDS suggests that

t-SNE is better able to capture the local structure of the data: Mt-SNE = 0.515 and MLMDS = 0.318

(k = 5, c = 0.001). Visually, this can also be observed from the plot on the right (Figures 5 and 9),

where the local neighbourhoods are preserved better using t-SNE, considering both the relatively

well separated clusters and the clutter of points which have not drifted apart.

Figure 9: MDS solutions for MNIST data set using δij = ‖xi − xj‖ and use 1 − pij as input for wij . Left:

Local MDS (c = 0.001, k = 5). Right: Overlap local neighbourhoods of each point in high and low dimension

(K: number of points which are in both the high and low dimensional neighbourhoods of point i)
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Next to the previous approach, we can use P as input for both the weights and to construct a

dissimilarity matrix (δij = 1−pij) that is used for MDS. In general, this does not yield good results

for the power and kernel weighting types. Again, since the values in P are all very close to zero and

do not differ highly, the elements of the dissimilarity matrix that is constructed (δij = 1− pij) are

very similar for power and kernel weights (see Figure 10). When this is the case, all points want to

be spaced equidistantly, which creates a typical ’ball’ of points (see Appendix C). From Figure 10

we can see that the k-nearest neighbour weight do show variation, making them suitable for MDS.

This, however, yields a worse embedding than using the Euclidean distance as dissimilarity and P

as input for the weights: MkNN,P,P = 0.0336.

Since similar results for MDS using P to construct the weights and dissimilarity matrix are also

visible for the other data sets, this will not be discussed again later in detail. Hence, we will focus

on the Local MDS using δij = ‖xi − xj‖ and t-SNE embeddings for the other data sets.

The main disadvantage and limitation of the analysis described above is that the underlying low

dimensional structure in the data is unknown (if it even exists). That brings us to the next method

of comparison, which aims to compare the two visualization techniques for simulated data with a

known structure.

Figure 10: MNIST: Histograms δij = 1 − pij for which wij > 0. Left: power and kernel weights. Middle:

k-nearest neighbour weights with k = 5. Right: Local MDS (k = 5, c = 0.001)

4.2.2 Simulated Data Set

The second comparison will be based on a simulated two dimensional data set containing five of

clusters of data, each containing 100 data points. This low dimensional data set will then be blown

up to twenty dimensions using a rotation-expansion matrix. Using this approach, the distances and

angles between the points in the data will preserved in the high dimension.
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To create the data set, the clusterSim 3 package in R will be used. This packages uses a separate

bivariate Gaussian distribution with a known mean and covariance matrix for each cluster. Two

dimensional clusters are then generated by doing a number of random draws from the corresponding

Gaussian distribution for each cluster. For this paper, five clusters with means: (0,0), (10,0), (0,10),

(10,10) and (5,5) and unit covariance matrix are generated. The increase in dimensionality of the

data is achieved by using the characteristics of square rotation(-expansion) matrices:

RT = R−1 ⇐⇒ RTR = I⇐⇒ RRT = I. (15)

It is easy to show that using a rotation matrix to make transformation of the data preserves the

distance between the data points:

‖Rx‖2 = (Rx)T (Rx) = xTRTRx = xTx = ‖x‖2,

where R denotes a rotation matrix characterized by Equation 15 and x is a vector.

Using these properties of rotation matrices, we can blow up the dimensionality of the artificial

low dimensional data set. When we post-multiply our two dimensional simulated data set with the

transpose of the first two columns of an arbitrary rotation matrix, we obtain a new data set with

dimensionality equal to the dimension of the rotation matrix:

Xhigh = XlowR1,2
T ,

where Xhigh denotes the high dimensional data set, Xlow is the original two dimensional data and

R1,2 denotes the first two columns of a rotation matrix with size [N ×N ], where N is the number

of rows of Xlow. Similarly to the proof provided above, it can be shown that the distance and

angles between the data points will be preserved in this higher dimension. The rotation matrix

to blow up the dimensionality of the simulated data set will be obtained from the Singular Value

Decomposition of a randomly generated square matrix of dimensionality [20 x 20]. This method

decomposes a matrix in the following way:

A = UΣVT ,

where U and VT are orthogonal matrices, satisfying the characteristics of a rotation matrix, and Σ

is a diagonal matrix containing the singular values of matrix A.

One disadvantage of using this rotation matrix to blow up the dimensionality, is that if the

distances do not change, MDS will be able to exactly recover the low dimensional structure. For that

3https://cran.r-project.org/web/packages/clusterSim/index.html
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reason, Gaussian noise will be added to move the data way from the low dimensional manifold that is

embedded in the high dimension. Two data sets will be created: 1) the high dimensional coordinates

are contaminated with εi ∼ N(0, 1) 2) the high dimensional coordinates are contaminated with

εi ∼ N(0, 2). As the noise is increased, both methods should have more trouble recreating the

clusters in the low dimensional embeddings.

The comparison between t-SNE and MDS will be performed similarly to the analysis on the

MNIST data set. As some of the results with respect to the MDS implementations are very similar,

we will focus our attention on the Local MDS implementation in this case.

Figure 11 gives a visual representation of the low dimensional data, which results from the

simulation.

Figure 11: Low dimensional simulated data set with five clusters

The t-SNE implementation is performed with a perplexity of 50 and a learning rate of 50. This

configuration of learning rate and perplexity was found by first assessing the effects of changing the

learning rate while keeping the perplexity fixed. The optimal learning rate for this perplexity was

chosen and kept fixed while changing the perplexity. This approach was favoured over a full grid

search due to computational limitations. When t-SNE is applied to the simulated data, we can

observe that the method is able to distinguish between the clusters is a good way for the data with

low noise (Figure 12). When the higher variance contamination is considered, t-SNE is still able to

give a relatively good overview of the structure of the data, but the method cannot clearly separate

the clusters anymore, which is normally one of the main strenghts of t-SNE. Furthermore, we can

see that for the low noise data, t-SNE does not always preserve the orientation among the clusters.
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In Appendix D, a plot is shown for which the purple and blue clusters are shown to be adjacent,

while in the true data representation they should be on opposite sides.

Figure 12: t-SNE Embeddings for simulated data. Left: low noise (σ = 1). Right: high noise (σ = 2)

The general results for the MDS implementations with power, kernel and k-nearest neighbour

weights are very similar to the results for the MNIST data set. Overall, these implementations

reconstruct the structure relatively well, especially for the little contamination data, without being

able to let some clusters of similar points drift apart. Due to these similar observations as before,

we do not present the embeddings in the main text.

The Local MDS, however, changes the weights and dissimilarity matrix and is, unlike the other

MDS implementations, theoretically not able to perfectly reconstruct the low dimensional structure.

Figure 13 shows the embeddings for Local MDS for the light contamination (left) and stronger noise

data (right), corresponding to the configurations that attain the highest average overlap coefficient.

Just like for the MNIST data set, constructing the weights from P (with δij = ‖xi − xj‖)

creates embeddings that preserve the local neighbourhood in a better way, although the difference

is minor (MLMDS, dist, σ =1 = 0.303 and MLMDS, P, σ =1 = 0.311). We can observe that the Local

MDS approach seems to reconstruct tighter clusters of the same points than t-SNE. On the other

hand, when considering the overlap coefficients, it becomes clear that t-SNE again performs better

in the preservation of the local structure of the data (Mt-SNE, σ =1 = 0.4150 and MLMDS, P, σ =1 =

0.3108). Especially for the higher noise case, the difference is apparent (Mt-SNE, σ =2 = 0.3452

and MLMDS, P, σ =2 = 0.1818). Lastly, it is interesting to observe the behaviour of the Local MDS

embeddings as the penalty parameter c is changed. For the simulated data set, we can clearly see
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that when c is made smaller (and hence the penalty higher), the clusters move further away. When

we interpret 1
c as the ’outside force’, this seems logical. The retainment of the local structure,

however, goes down as the clusters move further away from each other. This is visualized for the

low contamination case in Appendix E.

Figure 13: Local MDS Embeddings for simulated data. Left: low noise (σ = 1, k=5, c = 0.001). Right: high

noise (σ = 2, c = 0.00001, k = 10)

4.3 Application: Country Characteristics

After assessing and analyzing the comparative performance of both t-SNE and MDS on the well

known MNIST dataset and a simulated data set, we will now apply both methods in a new context

of a high dimensional country comparison. The data is obtained from the World Government

Summit 2019, World Visualization Prize, which is organized in collaboration with the organization

Information Is Beautiful 4. The data consists of 195 countries around the world. For each country,

32 different variables are recorded that characterize the country. These variables range from GDP

to happiness scores and government effectiveness. In Appendix F, a list with all countries, variables

and sources is provided. The main goal of this application is to investigate whether t-SNE and

MDS can create visualizations that help to distinguish clusters and structure in the country data

set, to gain insights in the similarity structure between countries.

Since the data set has a significant number of missing values (10.8%), we continue to describe

how the final input for the methods is derived. The decision is made that if there are five or more

4https://informationisbeautiful.net/wdvp/

26



missing values for a country, the country is deleted from the list. This results in the deletion of 18

countries. From this set of 32 variables, 73 values out of 159 are missing for the variables Education

Spending (% of GDP) and Education Spending ($ per capita) respectively. As such, these two

variables are not considered. Due to the high number of missing values, imputation is not a reliable

option. After the deletion of these two variables, the two happiness score variables have the highest

number of missing values: 27. The countries with these missing values mainly include small pacific

islands and African nations with low freedom and high levels of violence (e.g. Mali). Therefore, for

these countries the mean of the lowest 50% happiness scores is imputed. For the other variables,

the mean value of all remaining countries is inserted. This leaves us with a set of 159 countries.

Since the data set is smaller than the other two, it becomes computationally feasible to run a

grid search to find the optimal values for the learning rate and perplexity. The perplexity is chosen

from Perp ∈ {5, 10, 15, ..., 50} and the learning rate is chosen from η ∈ {10, 30, 50, ..490}.

Whereas the Kullback Leibler divergence seems to be decreasing as the perplexity increases,

the overlap coefficient is not much influenced by this. For a wide range of perplexity values, the

overlap coefficient is around 55%. As Van Der Maaten and Hinton (2008) argue, the value for

the perplexity should be chosen higher, as the data set increases in the number of observations.

Since we are dealing with a relatively small data set, we now prefer to chose a lower value for the

perplexity. Figure 14, shows two embeddings corresponding to a lower and higher chosen value for

the perplexity. Note that for the sake of convergence, the number of iterations for the country data

set is increased to 2000. Larger plots can be found in Appendix G for a more detailed overview.

Figure 14: t-SNE embeddings for country data set. Left: perplexity = 10, learning rate = 250. Right:

perplexity = 30, learning rate = 30
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The colours correspond to the continents a country belongs to. To maximize the comparability

of the results, we use a Procrustean rotation of the high perplexity result. This rotation aims to

represent one embedding as close as possible to another embedding, using the distance preserving

characteristic of rotations. The procrustes method from the SMACOF package is used to achieve

this. It can be seen from the plots that the left embedding shows a stronger cluster structure.

However, the rest of the structure seems to be very similar between both plots. Both embeddings

tend to place western and northern European countries close together with the United States,

Canada and Australia. Moreover, there seems to be a close link between some Middle Eastern

countries, Singapore and eastern European countries like Azerbaijan. Closer inspection shows that

these countries are characterized by relatively small populations, small surface area and high income.

Hence, the t-SNE method indeed seems to be able to give structure to the data.

For the MDS approach, MDS with power weights (with q = 1, hence equivalent to Sammon

mapping) and Local MDS (with δij = ‖xi − xj‖ and δij to create weights) give the best results for

the overlap coefficient. Power weight MDS attains an average overlap coefficient of 0.484 and Local

MDS (with k = 5 and c = 0.01) attains an average overlap coefficient of 0.468. These values are

lower than the t-SNE embeddings and hence MDS seems less able to retain the local structure of the

data. When inspecting the embeddings (Figure 15), we can see that even though the average overlap

coefficient is similar for both embeddings, the Local MDS approach is able to let the countries drift

apart further. A clear cluster of north/western European countries is visible, which is very similar

to a cluster found in the t-SNE embedding. For a more detailed overview, larger plots are provided

in Appendix G.

Figure 15: MDS embedding country data set. Left: power weights (q = 1). Right: Local MDS (k = 5 and

c = 0.01)
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5 Conclusion and Discussion

The purpose of this paper was twofold. Firstly the relationship and comparison between two highly

popular data visualization techniques, MDS and t-SNE, was researched, as a comparison of the two

methods was lacking in the literature. In addition, the methods were introduced in a new context

to assess whether they can be used as a powerful tool for cross country comparisons in many policy

fields. In this respect, the paper aims to answer to the research question ”How does the performance

of t-SNE compare to MDS in the field of visualizing high dimensional country similarities?”.

With regards to the comparison between various forms of MDS and t-SNE, this paper shows that

Local MDS can be used as an alternative for t-SNE in some situations. Interestingly, introducing

the similarity matrix from t-SNE as input for the weights in MDS greatly improves the performance

of the MDS embeddings. This is an interesting result that might improve MDS implementations

in other settings as well. The preservation of the local neighbourhood, however, is superior when

one considers the t-SNE method. For the MNIST data set, t-SNE seems to be better at generating

clearly separated clusters of data, but Van Der Maaten and Hinton’s (2008) observation that MDS-

like methods are not able to separate the clusters in the low dimensional embedding must be

nuanced. Even though the MDS approaches with power, k-nearest neighbour and kernel weighting

functions are indeed not well able to separate the clusters, Local MDS is able to do so and at the same

time retain the local structure of the data in a superior fashion to the other MDS approaches. Also

for this, however, it holds that t-SNE is superior when it comes to retaining the local structure as

measured by the average overlap coefficient. For the simulated data set, we can conclude that MDS

and t-SNE can both yield good well separated representations of the initial clusters. Overall, though,

t-SNE clearly performs better for all data sets when we consider the average overlap coefficient.

Using this metric, we can conclude that t-SNE is better able than various MDS approaches to

retain the high dimensional local structure in the low dimensional embedding.

When considering the second part of the research question, we see that the implementation of

t-SNE and MDS leads to interesting insights with respect to the comparison of different countries,

based on 30 variables. Even though this paper does not aim to find new relationships between

countries, some well known groups of similar countries can be identified. As was mentioned in the

previous section, the northern European countries are represented close together, and also countries

like Italy, Portugal and Spain, who are often considered similar in many respects, are represented

close together. As such, we can conclude that t-SNE and MDS can indeed be used to represent a
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high dimensional data set of country characteristics in a 2D map. This analysis, however, is only

based on 30 high level macroeconomic variables. The advantage of using this broad data set is

that patterns in this data are well known and hence can be easily verified by glancing over the

embedding. For the final conclusion on how powerful these methods are in this field and how policy

advisors can use these data visualization methods, it is interesting to look at other data sets in the

future that are highly specific with respect to the policy area they attempt to address.

One of the main limitations of this paper is that the specific relationship between the penalty

coefficient, c, and the embeddings from Local MDS is not thoroughly researched. Moreover, it is

not entirely clear what the effect of the simplification of Chen and Buja’s (2009) implementation

is. In their work, Chen and Buja (2009) take a more complex approach to model the weights

and corresponding penalized dissimilarities. It would therefore be interesting for future research

to investigate whether this more complex formulation of Local MDS yields different results in the

context of the data sets considered in this paper, espacially because Local MDS yields superior

results than the other MDS implementations.

Moreover, the interpretability of the results with regards to the simulated data set is subject

to some limitations. As has been described in the paper, the first step of the construction of the

high dimensional data preserves the distances from the low dimension. Only after contaminating

the data with Gaussian noise, MDS will not yield the exact initial low dimensional representation

of the clusters. When the distances stay exactly equal in the high dimension, this means that the

data actually lies on a manifold that has an intrinsic dimension lower that the dimensionality of

the data. This paper then only considers two levels of Gaussian noise. The results thus, have to

be interpreted in this context, where the noise induces the data to ’move away’ from the manifold.

This means that the comparison of t-SNE and MDS for the simulated data set is mainly applicable

to data sets that are already close to a lower dimensional manifold. In many cases, this might be

the case, but for future research it might be interesting to look at data that has been constructed

in a different fashion to extend the analysis presented in this paper. Lastly, the average overlap

coefficient M is determined only for neighbourhood size 10. In the future, robustness checks for

this should be provided.

In summary, this paper presents a more nuanced comparison between MDS and t-SNE than

previous literature has provided. Even though t-SNE’s performance in retaining local structure is

once again confirmed, we have seen that Local MDS is able to yield similar embeddings that show

a cluster structure in the data.
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6 Appendix

6.1 Appendix A: Overview MDS Implementations

Table 1: Overview MDS implementations

Name Weight Input

Power Weights wij = δqij q = {−10,−9, . . . , 9, 10} δij = ‖xi − xj‖

k-NN wij =


1 if j is in the k NN of i

0 otherwise.

k ∈ {5, 10, . . . , 25, 30} δij = ‖xi − xj‖

Kernel wij = e−δ
2
ij δij = ‖xi − xj‖

Local MDS wij =


1 if j is in the k NN of i

c otherwise.

c ∈ {0.01, 0.001, 0.0001, 0.00001} δ∗ij =


δij if j is in the k NN of i

δij
c otherwise.

Power Weights wij = (1− pij)q q = {−10,−9, . . . , 9, 10} δij = ‖xi − xj‖

k-NN wij =


1 if j is in the k NN of i

0 otherwise.

k ∈ {5, 10, . . . , 25, 30} δij = ‖xi − xj‖

Kernel wij = e−(1−pij)
2

δij = ‖xi − xj‖

Local MDS wij =


1 if j is in the k NN of i

c otherwise.

c ∈ {0.01, 0.001, 0.0001, 0.00001} δ∗ij =


δij if j is in the k NN of i

δij
c otherwise.

Power Weights wij = (1− pij)q q = {−10,−9, . . . , 9, 10} δij = 1− pij

k-NN wij =


1 if j is in the k NN of i

0 otherwise.

k ∈ {5, 10, . . . , 25, 30} δij = 1− pij

Kernel wij = e−(1−pij)
2

δij = 1− pij

Local MDS wij =


1 if j is in the k NN of i

c otherwise.

c ∈ {0.01, 0.001, 0.0001, 0.00001} δ∗ij =


δij if j is in the k NN of i

δij
c otherwise.
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Figure 16: Weights as function of the dissimilarity for power weights (q = 2, q = 10, q = −2, q = −10) and

Kernel weights

34



6.2 Appendix B: Comparison R and MATLAB implementations

Table 2: Initialization comparison R and MATLAB Implementations for t-SNE for the IRIS data set

n y1 y2 n y1 y2 n y1 y2 n y1 y2 n y1 y2

1 -1.78E-05 -0.00011 31 1.01E-05 0.000118 61 -0.00011 4.82E-05 91 0.000127 7.49E-05 121 -0.00015 0.000155

2 -4.11E-05 0.000134 32 -0.00019 2.81E-05 62 2.28E-05 4.41E-05 92 -0.00016 3.02E-05 122 -0.00012 3.92E-05

3 2.10E-05 -5.41E-05 33 -3.91E-05 9.94E-05 63 -0.00019 -2.45E-05 93 3.47E-05 -4.41E-05 123 6.03E-06 0.000209

4 -0.00015 -4.29E-05 34 -8.01E-05 -6.45E-05 64 3.78E-05 9.08E-05 94 -1.48E-05 0.000105 124 -6.95E-05 -8.44E-05

5 0.000113 -0.00011 35 -0.00019 -0.00024 65 -0.0001 0.000166 95 8.01E-05 -2.99E-05 125 0.000115 7.42E-05

6 -3.03E-05 4.86E-05 36 -2.86E-06 -8.90E-05 66 -5.60E-05 -0.00022 96 8.19E-05 0.000118 126 6.27E-05 -7.64E-05

7 -2.26E-05 -0.00021 37 4.44E-05 -0.00013 67 -0.00013 0.00016 97 -0.00018 3.01E-05 127 6.46E-05 7.12E-05

8 4.49E-05 -5.04E-06 38 0.000148 -1.84E-05 68 4.91E-05 -1.80E-05 98 -0.00011 0.00024 128 -2.42E-05 -0.00013

9 0.000189 -0.00017 39 -5.50E-05 -0.00017 69 -0.00016 -1.13E-05 99 -9.00E-05 0.000258 129 -5.66E-05 7.15E-05

10 4.16E-05 0.000113 40 9.02E-05 -3.04E-05 70 2.03E-05 -1.26E-05 100 -3.10E-05 2.10E-05 130 8.18E-05 -1.75E-05

11 1.33E-05 6.30E-05 41 -2.76E-05 -0.00016 71 1.44E-05 -8.73E-06 101 2.17E-05 -7.89E-05 131 3.83E-05 -0.00017

12 0.000105 2.21E-05 42 0.000154 2.83E-05 72 -0.00017 -6.38E-05 102 7.76E-05 -0.00012 132 -6.29E-05 -1.19E-05

13 -0.00014 -5.79E-05 43 7.67E-05 0.000108 73 -2.33E-05 8.53E-05 103 -7.31E-05 -0.00011 133 -0.00014 -2.52E-05

14 0.000176 6.35E-05 44 0.000158 7.90E-07 74 2.32E-05 -6.78E-05 104 4.08E-05 -9.29E-05 134 -0.00014 2.07E-05

15 0.000129 1.99E-05 45 0.000312 3.54E-05 75 5.18E-05 -6.93E-05 105 8.47E-05 8.46E-05 135 8.81E-06 -0.00014

16 7.32E-05 1.72E-05 46 6.55E-05 -9.06E-05 76 -3.76E-05 -6.22E-06 106 -8.54E-06 -2.30E-05 136 9.26E-06 1.08E-05

17 1.86E-06 0.000151 47 5.28E-05 8.43E-05 77 0.000199 8.23E-05 107 8.86E-05 5.92E-05 137 0.000186 -5.46E-05

18 -0.0001 7.94E-05 48 -5.04E-05 6.33E-05 78 -6.35E-06 1.47E-05 108 -4.27E-05 6.86E-05 138 0.000194 0.000216

19 0.000184 -5.13E-05 49 -3.15E-05 0.000216 79 -1.50E-05 -7.97E-05 109 -3.13E-05 -5.50E-05 139 0.000211 7.75E-05

20 3.17E-05 6.00E-05 50 0.00013 -4.68E-05 80 9.55E-06 -7.89E-05 110 0.000207 -0.00015 140 5.95E-05 -8.20E-05

21 0.00022 6.19E-06 51 4.71E-05 -0.00015 81 -4.92E-05 7.67E-06 111 0.000129 -1.57E-05 141 -3.57E-05 1.80E-05

22 -9.21E-05 -1.43E-05 52 -4.96E-05 -8.87E-05 82 5.38E-06 0.000104 112 6.99E-05 -0.0002 142 -5.99E-05 -0.00015

23 8.75E-05 -1.17E-05 53 -4.41E-05 1.13E-05 83 -6.52E-05 -0.0001 113 4.02E-05 -3.67E-05 143 -8.63E-05 -1.47E-05

24 -6.31E-05 0.000132 54 4.03E-05 8.57E-05 84 -0.00018 3.26E-05 114 9.39E-05 0.000182 144 -7.02E-05 0.000151

25 6.55E-06 6.80E-05 55 2.03E-05 -3.60E-05 85 4.69E-05 -4.46E-05 115 -2.45E-05 -9.34E-05 145 7.84E-06 -0.00012

26 -7.43E-05 2.79E-05 56 -5.57E-05 0.000122 86 1.51E-06 -3.72E-05 116 0.000154 -0.00014 146 -6.40E-05 5.57E-05

27 -9.69E-05 -5.48E-05 57 -9.50E-05 0.000163 87 -8.79E-05 1.46E-05 117 9.83E-05 6.53E-05 147 -0.00024 -0.00012

28 1.67E-05 2.75E-05 58 0.000128 -0.00011 88 -0.00013 -6.61E-05 118 -8.75E-05 4.28E-05 148 2.51E-05 9.42E-05

29 -3.14E-05 -0.0003 59 0.000251 -8.91E-05 89 4.39E-05 0.000127 119 -6.56E-05 0.000248 149 1.33E-05 -3.01E-05

30 0.000111 -0.00015 60 -3.40E-05 5.31E-05 90 4.69E-05 0.000145 120 -9.44E-05 -2.44E-05 150 -0.00018 6.04E-06
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Figure 17: Value of Kullback-Leibler divergence for learning rates 500 (left) and 1000 (right)
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6.3 Appendix C: MDS Embeddings MNIST data set

Figure 18: MNIST MDS Embeddings for Power weights: q = 2. Left: Euclidean distance as input for weights.

Right: P as input for weights

Figure 19: MNIST MDS Embeddings for k-nearest neighbours: k = 5. Left: Euclidean distance as input for

weights. Right: P as input for weights

37



Figure 20: MNIST MDS Embeddings for Kernel type weights. Left: Euclidean distance as input for weights.

Right: P as input for weights

Figure 21: MNIST MDS Embedding using P as input for weighting function and dissimilarity matrix
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6.4 Appendix D: Orientation t-SNE for Simulated Data

Figure 22: t-SNE does not preserve the orientation among the clusters
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6.5 Appendix E: Simulated Data Local MDS

Figure 23: Local MDS implementation for Simulated data. Left: k = 5, c = 0.01. Right: k = 5, c = 0.001

Figure 24: Local MDS implementation for Simulated data. Left: k = 5, c = 0.0001. Right: k = 5, c = 0.00001
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Figure 25: Local MDS implementation for Simulated data. Left: k = 5, c = 0.000001. Right: k = 5,

c = 0.00000001
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6.6 Appendix F: Country Data Information

Table 3: Variables in the country data set

Variable Source Mean Std Min Max Median #NA

Population World Bank 38518215.38 142562477.71 11000.00 1386000000.00 9000000.00 0.00

Surface Area CIA World Factbook 662406.32 1832712.93 2.00 16377742.00 111890.00 0.00

GINI Index CIA World Factbook 39.13 8.75 23.20 63.20 38.55 47.00

Happy Planet Index Happy Planet Index 26.50 7.26 12.80 44.70 26.40 58.00

Human Develoment Index UNDP 0.71 0.15 0.35 0.95 0.74 9.00

World Happiness Score World Happiness Report 5.50 1.13 2.66 7.79 5.60 57.00

Sustainable Economic Development Assessment Boston Consulting Group (BCG) 51.88 16.90 16.10 85.30 49.50 45.00

GDP Heritage Foundation 649.04 2260.74 0.20 21291.80 73.20 11.00

GDP per capita Heritage Foundation 20061.17 23252.97 652.00 160526.00 12262.00 14.00

GDP growth Heritage Foundation 2.41 4.18 -28.10 10.20 2.95 11.00

Health Expenditure (% GDP) World Bank 6.80 2.98 2.03 22.12 6.27 7.00

Health Expenditure () World Bank 1373.74 1675.21 32.00 9536.00 762.00 12.00

Education Expenditure (% GDP) World Bank 4.69 1.52 1.02 7.68 4.84 106.00

Education Expenditure (percapita) World Bank 951.50 1371.08 2.56 7465.68 314.31 108.00

School Life Expectancy CIA World Factbook 13.35 3.16 5.00 20.00 13.00 42.00

Unemployment Rate Heritage Foundation 8.58 6.29 0.20 31.40 6.60 16.00

Government Spending Score Heritage Foundation 63.23 23.24 0.00 96.30 69.10 14.00

Government Expenditures (% GDP) Heritage Foundation 33.67 13.11 11.00 117.60 32.05 15.00

Political Rights Score Freedom House 3.43 2.19 1.00 7.00 3.00 0.00

Civil Liberties Score Freedom House 3.33 1.93 1.00 7.00 3.00 0.00

Political Stability and Absence of violence World Bank -0.07 0.99 -2.96 1.65 0.03 1.00

Government Effectiveness World Bank -0.07 0.99 -2.48 2.21 -0.17 3.00

Regulatory Quality World Bank -0.07 0.98 -2.34 2.12 -0.19 3.00

Rule of Law World Bank -0.08 0.99 -2.31 2.03 -0.23 3.00

Control of corruption World Bank -0.07 1.00 -1.83 2.24 -0.27 3.00

Judicial Effectiveness Score Heritage Foundation 46.64 20.17 5.00 93.80 44.50 12.00

Government Integrity Score Heritage Foundation 41.87 18.50 7.50 95.70 36.80 12.00

Property Rights Score Heritage Foundation 51.24 19.87 5.20 98.40 49.40 12.00

Tax Burden Score Heritage Foundation 76.60 13.43 0.00 99.90 78.50 16.00

Overall Economic Freedom Score Heritage Foundation 60.86 10.99 5.80 88.80 61.20 17.00

Financial Freedom Score Heritage Foundation 48.38 19.32 0.00 90.00 50.00 16.00

Women MPs (%) World Bank 21.34 11.78 0.00 61.30 20.00 2.00

The data can be retrieved from https://informationisbeautiful.net/wdvp/. Here, more information

is provided on the data set.
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Table 4: Overview Countries and Country Codes

Afghanistan AFG Dominican Republic DOM Liberia LBR Saint Vincent and the Grenadines VCT

Albania ALB Ecuador ECU Libya LBY Samoa WSM

Algeria DZA Egypt EGY Liechtenstein LIE San Marino SMR

Andorra AND El Salvador SLV Lithuania LTU Sao Tome and Principe STP

Angola AGO Equatorial Guinea GNQ Luxembourg LUX Saudi Arabia SAU

Antigua & Barbuda ATG Eritrea ERI Macedonia MKD Senegal SEN

Argentina ARG Estonia EST Madagascar MDG Serbia SRB

Armenia ARM Eswatini SWZ Malawi MWI Seychelles SYC

Australia AUS Ethiopia ETH Malaysia MYS Sierra Leone SLE

Austria AUT Fiji FJI Maldives MDV Singapore SGP

Azerbaijan AZE Finland FIN Mali MLI Slovakia SVK

Bahamas BHS France FRA Malta MLT Slovenia SVN

Bahrain BHR Gabon GAB Marshall Islands MHL Solomon Islands SLB

Bangladesh BGD Gambia, The GMB Mauritania MRT Somalia SOM

Barbados BRB Georgia GEO Mauritius MUS South Africa ZAF

Belarus BLR Germany DEU Mexico MEX South Sudan SSD

Belgium BEL Ghana GHA Micronesia FSM Spain ESP

Belize BLZ Greece GRC Moldova MDA Sri Lanka LKA

Benin BEN Grenada GRD Monaco MCO Sudan SDN

Bhutan BTN Guatemala GTM Mongolia MNG Suriname SUR

Bolivia BOL Guinea GIN Montenegro MNE Sweden SWE

Bosnia and Herzegovina BIH Guinea-Bissau GNB Morocco MAR Switzerland CHE

Botswana BWA Guyana GUY Mozambique MOZ Syria SYR

Brazil BRA Haiti HTI Myanmar MMR Taiwan TWN

Brunei BRN Honduras HND Namibia NAM Tajikistan TJK

Bulgaria BGR Hungary HUN Nauru NRU Tanzania TZA

Burkina Faso BFA Iceland ISL Nepal NPL Thailand THA

Burundi BDI India IND Netherlands NLD Timor-Leste TLS

Cabo Verde CPV Indonesia IDN New Zealand NZL Togo TGO

Cambodia KHM Iran IRN Nicaragua NIC Tonga TON

Cameroon CMR Iraq IRQ Niger NER Trinidad and Tobago TTO

Canada CAN Ireland IRL Nigeria NGA Tunisia TUN

Central African Republic CAF Israel ISR Norway NOR Turkey TUR

Chad TCD Italy ITA Oman OMN Turkmenistan TKM

Chile CHL Jamaica JAM Pakistan PAK Tuvalu TUV

China CHN Japan JPN Palau PLW Uganda UGA

Colombia COL Jordan JOR Panama PAN Ukraine UKR

Comoros COM Kazakhstan KAZ Papua New Guinea PNG United Arab Emirates ARE

Congo (Dem. Rep.) COD Kenya KEN Paraguay PRY United Kingdom GBR

Congo (Rep.) COG Kiribati KIR Peru PER United States USA

Costa Rica CRI Korea (Dem. People’s Rep.) PRK Philippines PHL Uruguay URY

Cote d’Ivoire CIV Korea (Rep.) KOR Poland POL Uzbekistan UZB

Croatia HRV Kosovo - Portugal PRT Vanuatu VUT

Cuba CUB Kuwait KWT Qatar QAT Venezuela VEN

Cyprus CYP Kyrgyzstan KGZ Romania ROU Vietnam VNM

Czech Republic CZE Laos LAO Russia RUS Yemen YEM

Denmark DNK Latvia LVA Rwanda RWA Zambia ZMB

Djibouti DJI Lebanon LBN Saint Kitts and Nevis KNA Zimbabwe ZWE

Dominica DMA Lesotho LSO Saint Lucia LCA
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6.7 Appendix G: Low Dimensional Embeddings Country Data

Figure 26: t-SNE embeddings for country data set. Top: perplexity = 10, learning rate = 250. Bottom:

perplexity = 30, learning rate = 30 44



Figure 27: MDS embedding country data set. Top: power weights (q = 1). Bottom: Local MDS (k= 5 and

c = 0.01)
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