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Abstract

Stopping production and marketing of a product, does not remove the need for spare parts. Therefore,

this end-of-life decision requires the manufacturer to determine how many components have to be

produced in the final production run. However, this size decision is often found to be a complex

problem. The demand for spare parts is closely related to the amount of products in use by consumers,

the installed base, but retailers of consumer products do not keep track of the installed base of their

products. This paper uses four installed base concepts in order to replace the functionality of the real

measurement. Forecasting with these concepts indeed improved the forecast performance in majority of

the cases. In addition, the failure rate functions of the spare parts are estimated and the assumption of

a fixed lifetime is relaxed. However, when dealing with larger amount of spare parts, estimating failure

rates is not a suggested approach. The same advice holds for gaining different expected lifetimes

through five adaptations of lifetime length. Sampling life expectancy from uniquely specified Weibull

distributions could, however, be beneficial for forecasting spare part demand.

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second assessor,
Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

When products are in use by consumers, essential parts might break down or fail to fulfill their

role in making the product usable. The owners might want to replace these failing components

with spare parts, in order to repair the product and extend its lifetime. However, the production

of these spare parts is a complicated process. The components differ in demand size and their

availability seems of great importance when the production of the product itself has stopped.

Logically, the demand of the spare parts and thus the production depends on the amount of

products in use at that moment, the so called Installed Base (IB). However, in business-to-

consumer situations specifically, the sellers often do not keep track of the IB of their products,

as selling the item is their main goal. Therefore, including this measurement when forecasting

spare part demand is only a recent method and is at the early stages of development. Previous

published papers tend to only address the use of historical data. However, letting the forecast

depend only on sales and returns might not be accurate, as demand may depend on more factors.

Kim, Dekker, and Heij (2017) have developed four installed base concepts as a replacement

for the lack of information on the real installed base. The research concludes that in majority

of the cases these concepts seem to produce better forecasts than only using historical data.

However, not one specific model is suitable for every spare part. This leads to the research

question of this paper;

“Which installed base concept produces the best forecast performance for what type

of spare part?”

To give an answer to this question, this paper will deal with three sub questions;

1. Do all forecasts of spare part demand improve when adding installed base information as

explanatory factor?

2. Are forecasts being improved when adding estimated failure rate information of the spare

part to the installed base models?

3. Are forecasts being improved by letting the product units that are sold vary in expected

lifetime length?

To answer these questions the research done by Kim, Dekker, and Heij (2017) is replicated

first. The dataset that is used is provided by the Western European warehouse of Samsung

Electronics. It contains demand data for spare parts of different types of products, which is

smoothed by means of the exponential weighted moving average method. These data are used
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to specify the four different IB concepts, which are being modelled to forecast the demand

of spare parts in the products end of life phase. Based on three forecast-error measures, the

forecasts are compared with each other to confirm or deny the hypotheses of which installed base

fits which spare part best. Besides this replication part, I examine two potential ways to increase

the forecasting performance. First, the failure rates of the spare parts are estimated through

the Weibull distribution and are added as an explanatory factor for their demand. Secondly,

the assumption of a fixed lifespan of the products is relaxed by giving each unit sold a different

expected lifetime. This is done in two ways; (i) by five predefined lifetime alternatives and (ii)

by sampling from a Weibull distribution. Replicating the research, however, did not give the

same results. Moreover, applying the new methods did not give a clear suggestion for when

these approaches might be beneficial.

The continuation of the paper is organized as follows. In Section 2, an overview is given of

previous research directions regarding spare part demand. In Section 3, the methodology that

is used in this research is discussed and elaborated. Section 4 illustrates the given dataset by

Samsung Electronics and the results of applying the methods on this information are given in

Section 5. The research finishes with concluding remarks in Section 6.

2 Research background

The life cycle of a product consists of three time phases; (i) the initial phase where the sales of

the product increase, (ii) the mature phase where the sales decline towards zero and (iii) the

end-of-life (EOL) phase where the product is no longer produced nor sold. The demand for

spare parts in this last phase is of great importance. In the first phase the amount of consumers

requiring spare parts is expected to be relatively low, as most products are at the early stages

of consumption. In the second phase the demand is expected to rise, but in the EOL phase the

demand is more erratic. Demand could possibly still increase in the beginning of this phase, but

that is not always the case. Besides, demand will eventually reduce to zero because the products

all reach the end of their lifetimes. That is why this paper focuses on forecasting the demand

for spare parts in this last period, the end-of-life phase.

2.1 Historical sales data

Forecasting demand in general has been a relevant problem for stores and manufacturers. How-

ever, the demand of spare parts is intermittent; periods of zero demand interchange with periods

of very high demand. The methods that are used the most for these cases are moving average

modelling and exponential smoothing of the data, Axsäter (2015). Because the demand of spare
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parts fluctuates heavily over time, exponential smoothing turns out to be a strong and often

used method, as it reduces the high changes in demand. However, both these methods tend to

overestimate the mean level of intermittent demand, Boylan and Syntetos (2010). Johnston and

Boylan (1996) proposed an adjusted exponentially weighted moving average (EWMA) method

for forecasting the intermittent demand. The research concludes that this adjusted method

performs better, in terms of the mean square prediction errors, than a traditional EMWA.

In business-to-business (B2B) relations, an often discussed forecasting method for intermit-

tent demand was written by Croston (1972). Instead of focusing on the mean demand per period,

he divided the demand into the time of occurrence and its size. By dividing these components

he made two separate estimates: one of the inter-demand interval and one of the size of the

demand when it occurs. This approach in forecasting is called the Croston’s method (CR) and

is very popular in previous literature regarding spare part demand.

Besides Croston’s method various other approaches for forecasting this demand have been

developed. Bootstrapping, for example, is a non-parametric approach that does not require to

make an assumption on the distribution of the demand, Efron (1992). Another non-parametric

tool for forecasting intermittent demand is neural networks, Gutierrez, Solis, and Mukhopadhyay

(2008). It captures the relation between points with non-zero demand and the inter-arrival rate

of demands. Thirdly, judgmental forecasting is often used to adjust quantitatively derived fore-

casts (Goodwin (2002)) and can result in an improved forecast accuracy, Syntetos et al. (2009).

However, this is not a practical application as it requires managing time and in practice one is

easily dealing with thousands of spare parts.

2.2 Installed base

The amount of iPhones that Apple has sold, the amount of cars that Volkswagen has manufac-

tured, the amount of solar panels that JinkoSolar has placed, et cetera. These are all examples of

installed base. In general, the installed base is defined as the set of products or systems that have

been sold by an organization and are still in use (Summers (2007)). However, these products

and systems require maintenance service or supply for new spare parts when they break down.

As these services are required in this research, I define the installed base as the set of systems

or products for which an organization provides after-sales services (Dekker et al. (2013)).

As previously mentioned, forecasting spare part demand using installed base methods is a re-

cent point of interest. In the startup phase of this research direction, installed base was assumed

to be constant over time. This means that the amount of products in use is not changing in the

initial, mature and end-of-life phase. Soon after, several researchers acknowledge the change of
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the installed base over the products life cycle. The amount of products in use increases during

the initial phase, reaches a maximum level in the mature phase, and decreases during the end-

of-life phase, Inderfurth and Mukherjee (2008).

A lot of papers investigate the life cycle of products which are not sold after their production

stop, which indicates a decrease in installs in the EOL phase. This decline in installed base

values is of great importance concludes Chou, Hsu, and Lu (2016). They argue that the spare

part production costs may be much larger during the EOL phase than in the mature phase.

This decrease in spare part demand can also be a cause of non-replacement decisions by the

consumers. They might not want to replace the component when the product is relatively old.

The probability of this non-replacement decision is introduced by Ritchie and Wilcox (1977).

Chou, Hsu, and Lu (2016) conclude that regressing on this probability produces more accurate

forecasts than using only historical sales data. Lu and Wang (2015) discuss another reason for

the decrease in this willingness; the cumulative number of breakdowns that the product has ex-

perienced. A combination of the two reasons is examined by Lu and Hjelle (2016), they depend

the probability of repairing on both; the number of failures and the use time.

Kim, Dekker, and Heij (2017) also deal with products that are not sold after their produc-

tion stop. They propose four different installed base concepts to forecast the future demand

of spare parts. However, there are some limitations regarding this research. A long estimation

period during the first two phases is necessary and a short EOL phase is preferred. Besides

this, the deterioration of the spare parts depends on the age of the product (Van der Auweraer,

Boute, and Syntetos (2019)). Additionally, Van der Auweraer and Boute (2019) state another

weakness; the part age and product age are not distinguished. Moreover, only the age of the

products are considered. The part age, however, can be of great importance too, as it contains

information about the failure frequency of the spare parts. Using this information could pos-

sibly lead to better explanation of the occurrence and frequency of spare part demand, which

is the goal of the research. The paper evaluates the acquired forecasts by means of the mean

absolute prediction error (MAPE) and root mean squared prediction error (RMSPE). However,

these measures are not necessarily the best choice when intermittent data is studied (Kolassa

(2016)). The MAPE is indeed suitable for comparing multiple forecasts, but it is not optimal for

evaluating the overall performance of the results. Moreover, Murray, Agard, and Barajas (2018)

state that the RMSPE is not as useful for comparing performance between clusters because error

size is skewed by data magnitude. The forecast evaluation should therefore focus more on the

differences between the predicted and the actual time-series.

Another research direction when examining spare parts is the impact of the environment.
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Environmental factors like air pressure, temperature, humidity, etc., can have an effect on the

reliability characteristics of products. Research done by Ghodrati (2011) suggests a method

using system reliability and environmental data to calculate the expected number of spare parts

needed. Forecasting spare part demand with environment factors is of great importance accor-

ding to Ghodrati, Akersten, and Kumar (2007). Their research concludes that ignoring these

factors results in potential losses. Due to not considering the operating environment, the risk

of shortage of spare parts could lead to unnecessary downtime of machines. This results in a

temporary production stop, which affects companies both production wise and financially.

Finally, we look at the very first attempt in including installed base in forecasting spare part

demand. Shaunty and Hare Jr (1960) investigate the connection between spare part demand

and product usage based on the number of landings of airplanes. They estimate the failure rate

of a spare part per landing. Another approach for estimating the failure rate of spare parts can

be found in the continuation of this paper. However, contrary to the research by Shaunty and

Hare Jr (1960), I propose this method in a business-to-consumer (B2C) setting.

3 Methodology

3.1 The installed base concepts

Manufacturers and sellers of machines for B2B trading, like airplanes and cars, do not only

earn their money from selling their products, but also from repairing them. In contrary to B2C

trading, where the goals of the seller is accomplished when the retailer sells the product. This is

one of the reasons why B2B sellers keep track of their installed base and B2C sellers do not. In

this last case, four installed base concepts can be defined and used to replicate the functionality

of the real installed base. First, the lifetime installed base (IBL) is the amount of units in use by

the consumers. It keeps track of the amount of products leaving and returning to the warehouse

and decreases with the amount of products that exceed their expected lifetime. The definition

for the IBL at the end of week t, formulated by Kim, Dekker, and Heij (2017), is given by

IBL(t) =

t∑
i=t−L+1

(S(i)−R(i)). (1)

With S(t) being the product sales in time period t, R(t) is the amount of returned products from

customers in that period, and L denotes the expected average lifetime of the product. Where

S(i) = R(i) = 0 for i < 1.

Second, we define the warranty installed base (IBW). Consumers might let the choice of

replacing a component depend on the warranty regulations. In some cases, they might only
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repair the broken component if it is covered by the products warranty. Afterwards, customers

have to invest in the reparation themselves, but this might lead to them buying a new product

instead. When a product comes with a warranty of W periods of time, the IBW is equal to

IBW (t) =
t∑

i=t−W+1

(S(i)−R(i)) (2)

(with S(i) = R(i) = 0 for i < 1) (Kim, Dekker, and Heij (2017)). The warranty period is part

of the lifetime of the product, hereby the IBL and IBW will be the same in the warranty period,

but will diverge afterwards.

When the warranty has expired, the demand for spare parts might still exist. This is due to

the effect that the remaining economic value exceeds the costs of repairing the product. This

occurrence leads to the third installed base concept; the economic installed base (IBE). The

following notation by Kim, Dekker, and Heij (2017) is used. Let c(t) be the repair costs in

period t and let vi(t) be the remaining economic value in period t of a product bought in period

i. If vi(t) > c(t), then the decision for repair is defined as Ei(t) = 1. When vi(t) ≤ c(t), the

user will not replace the component: Ei(t) = 0. The IBE is then defined as the part of the IBL

where repair is economically beneficial, given by,

IBE(t) =

t∑
i=t−L+1

Ei(t)× (S(i)−R(i)) (3)

(with S(i) = R(i) = 0 for i < 1). As reparation is free in the warranty period, the economic

value always exceeds the repair costs in this time period.

The IBE assumes that the evaluation of economic value is the same for all customers, but this

can differ from person to person, depending on their preferences and tastes. Some people might

want to have the newest product or want to follow the latest trends. For these cases the mixed

economic installed base (IBM) is defined. It is identical to the IBE, but with heterogeneous

decay rates for the consumers. As previously done by Rogers (2010) and Kim, Dekker, and Heij

(2017), the consumers are divided in five groups. The groups differ in quickness of willing to

replace the product, resulting in a different expected life cycle for each group. Identical to Rogers

(2010), the size of the segments are as follows: 2.5% innovators (0.6), 13.5% early adopters (0.7),

34% early majority (1.0), 34% late majority (1.05), and 16% laggards (1.3). With in parenthesis

the concerned life cycle as a fraction of the average product lifetime.

3.2 Installed base modelling & estimation

As the demand of spare parts is intermittent the demand data is smoothed by taking an expo-

nentially weighted moving average (EWMA) with smoothing factor α. The model specification
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that is used follows from Kim, Dekker, and Heij (2017) and is given by

ln(1 +Ds(t)) = b0 + b1 × ln(1 + IB(t)) + b2 ×AGE(t) + ε(t). (4)

With Ds(t) equal to the size of smoothed demand in period t. AGE(t) denotes the mean age of

the products included in the installed base at the end of period t and is specified for all installed

base concepts. The unobserved error term ε(t) is assumed to follow an autoregressive (AR)

process. By making this assumption, ordinary least squares can be used to estimate the model

coefficients b0, b1, and b2 in (4). This model is estimated for all four installed base concepts. As

the demand must be positively related to installed base, the installed base term ln(1 + IB(t))

is removed when its coefficient is negative (b1 < 0).

To generate black box forecasts, a pure AR model is examined. This model is obtained

when b1 = b2 = 0 in (4). The error term is hereby modelled as εt = c1εt−1 + · · · + cpεt−p + ωt.

The amount of lags p is determined by forward selection; the order is increased until the extra

lag term becomes insignificant at a 5% significance level. This AR order p is specified for each

product and is also used in the installed base models of the product.

In summary, the models are estimated in the initial and mature phases as follows. First,

the average lifetime, sales and the spare part demand data is determined. With the smoothed

demand data, an AR model is estimated for the initial and mature phases of the product

and a suitable AR order p is selected. With this order p, four types of installed base models

are estimated for the first two phases and the installed base variable is removed when it has a

negative coefficient. With these models, the spare part demand in the EOL phase of all products

is forecasted. These forecasts are, just like the dependent variable, smoothed demand values.

3.3 Forecast measures

Afterwards, these forecasts are compared with each other based on their predictive power, which

is measured based on five criteria. These prediction measures are calculated by comparing the

forecast of Ds(t) directly with the actual demand values D(t). The first measure being the sum

of the forecast errors. Suppose the EOL phase runs from t2 to t3 and let F (t) be the smoothed

demand forecasts, with t2 ≤ t ≤ t3. Then the sum of forecast errors is given by

SUM =

t3∑
t=t2

(F (t)−D(t))/

t3∑
t=t2

D(t). (5)

The closer to zero, the better the accuracy of the forecasts. A negative value indicates under-

estimation of the demand of spare parts and a positive value corresponds with over-estimation.

The other two measure criteria are the mean absolute prediction error (MAPE) in (6) and the
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root mean squared prediction error (RMSPE) in (7).

MAPE =

∑t3
t=t2
|F (t)−D(t)|∑t3
t=t2

D(t)
, (6)

RMSPE =

√
1

t3−t2+1

∑t3
t=t2

(F (t)−D(t))2

1
t3−t2+1

∑t3
t=t2

D(t)
=

√∑t3
t=t2

(F (t)−D(t))2∑t3
t=t2

D(t)/
√
t3 − t2 + 1

. (7)

Finally, to test if the forecasts of two models are significantly different from each other, I use

the Diebold-Mariano test statistic

DM =
d√

V (d̂t+1)/P

a∼ N(0, 1), (8)

where P is the amount of weeks in the EOL phase and dt+1 is the loss function. The loss function

is the difference between the squared forecast errors of the first model (a) minus the squared

forecast errors of second model (b): dt+1 = e2
a,t+1− e2

b,t+1. Furthermore, d is the mean difference

of the squared prediction errors produced by the two models and the variance is approximated

by the loss function V (d̂t+1) = 1
P−1

∑T+P−1
t=T (dt+1−d)2. Under the null hypothesis, the forecast

errors are the same. Thus, when the resulting p-value exceeds 0.05, the null-hypothesis can be

rejected with a significance of 5%; the forecast errors of model a and model b differ significantly.

3.4 Failure rate estimation & modelling

According to Van der Auweraer, Boute, and Syntetos (2019), information on the failure rate is

something which captures a large part of the demand generating process. As this rate is not

available, I estimate the failure rate function of each spare part and include these values into

the existing model to possibly further improve the forecasts. This is done as follows. Let Y be

the time of failure of the product requiring a spare part for repair. Then Y is assumed to follow

a 2-parameter Weibull distribution, Y ∼WEI(β, η) with probability density function given by

f(yi|β, η) =
βtβ−1

ηβ
× exp

{
−
(
yi
η

)β}
, (9)

with i = 0 . . . n and n the amount of demand occurrences. The shape parameter β and scale

parameter η are being estimated by means of Maximum Likelihood Estimation (MLE) with ML

function denoted as

L(β, η|y) =

n∏
i=1

f (yi|β, η)

=

n∏
i=1

[
β

ηβ
y

(β−1)
i exp

{
−
(
yi
η

)β}]

=

(
β

ηβ

)n n∏
i=1

y
(β−1)
i × exp

{
−
(∑

yi
η

)β}
.

(10)
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When taking the logarithm and simplifying the equation, we get the final optimization function

`(β, η|y) = n log(β)− βn log(η) + (β − 1)
n∑
i=1

log (yi)−
n∑
i=1

(
yi
η

)β
. (11)

Minimizing this function gives an estimation for the parameters β and η. When β < 1 the

failure rate decreases over time, β > 1 indicates an increasing failure rate and β = 1 states that

the failure rate is constant over time. With these estimated parameters, the failure rate on a

given time t is the failure rate over the last t time periods and can be calculated through the

Weibull failure rate function (FR(t)), that is,

FR(t) =
β̂ML

η̂ML

(
t

η̂ML

)β̂ML−1

. (12)

In the model specification process done by Kim, Dekker, and Heij (2017), Y was assumed to

follow an exponential distribution. Which means that the failure rate is assumed to be constant

over time and the installed base model (4) is based on this assumption. However, this is unlikely

to be the case with products that experience a production stop. As rewriting the demand

probability pd(t) with Weibull survival functions is too complex, the failure rate function (12)

is simply added to (4) and results in the following model specification

ln(1 +Ds(t)) = b0 + b1 × ln(1 + IB(t)) + b2 ×AGE(t) + b3 × FR(t) + ε(t). (13)

Which is again estimated with least squares estimation and follows the forecast procedure stated

in Section 3.2.

3.5 Varying lifetime

In all methodology aforementioned, the lifetime of the product is assumed to be fixed. However,

in practice the lifetime of a product is different for every unit produced. This is due to external

factors that the product experiences, like influences of the environment. Just as IBM assumes

five different lifetimes for every product, I apply this assumption while redetermining the lifetime

installed base and the corresponding average age. Every unit sold will be associated by one of

the following five types of expected lifetimes (L): 0.6L (2.5%), 0.7L (13.5%), 1.0L (34%), 1.05L

(34%) and 1.3L (16%). These percentages can be seen as probabilities that a product will be

unusable by one of these points in time. With these probabilities, s lifetimes are generated, with

s being the amount of sales in the initial and mature product phases. For example, the amount

of products that are expected to be discarded after 0.6L time units is given by 0.025× s. When

the lifetimes are generated, every unit that is sold is given a randomly sampled lifetime. This

requires the number of units that are exceeding their expected lifetime to be corrected for the
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newly associated lifespans. When a certain end-of-life is given, the time where the products life

is expected to end, is registered. When the IBL and its average age are recalculated, forecasts

are made with the new data to determine what effect a varied lifetime has on the forecast

performance of the IBL model. Implementing this part of the IBM in the IBL, still make the

two non-identical. Where the IBM includes the exponential decay rate of the product, the new

IBL only takes the expected life ending of products into account. Which results in IBL only

altered slightly and IBE and IBM still being more accommodating installed base concepts.

To further investigate the effect of different lifetimes for a specific kind of product, another

method is applied. In this method, the time until a product reaches the end of its lifetime

is assumed to follow a Weibull distribution: L ∼ WEI(β, η). To be clear, in Section 3.4 the

time until a product fails and requiring repair was assumed to follow this distribution, whereas

here the time until the product is unusable is assumed to be Weibull distributed. Let li be the

expected lifetime of the i’th sold product unit, then the pdf for this lifetime is given by

f(li|β, η) =
βtβ−1

ηβ
× exp

{
−
(
li
η

)β}
, (14)

with i = 1, . . . , s. In order to acquire the lifetimes from a Weibull distribution that matches the

reliability characteristics of the product, the shape (β) and scale (η) parameters are predefined

for every product category. Just like in the five lifetimes method, s lifetimes are sampled from

the Weibull pdf specified for the concerned product category. Hereafter, every unit sold gets an

expected end-of-life date and the IBL and average age values are recalculated and used to make

new forecasts. In this way of sampling the lifetimes, I allow them to be chosen continuously

instead out of five predefined alternatives.

4 Data

To test the performance expectations of the installed base concepts and to give an answer to the

research question, data provided by the Western European warehouse of Samsung Electronics

is investigated. My supervisor Dekker provided me with the dataset. It contains six products;

three product categories consisting of two product types. The range and amount of weeks

included in the data is different for each product, as can be seen in Table 1. This is due to the

difference in expected lifetime of the product categories. Besides this information, the amount

of sales, life expectancy and sensitivity for technological trends is included. Emphasizing the

diversity in characteristics of the refrigerators, televisions and smartphones.

For the amount of weeks of data, information on the amount of sales and returns is available,

as well as the amount of units that reach the end of their warranty period and lifetime. The
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Table 1: Product characteristics and available data

Type Life cycle Trendy Sales From Till Estimation Forecast Lifetime

Refrigerator 1 Long Low 538,386 08.12 14.13 279 36 676

2 Long Low 166,782 08.32 14.13 229 66 676

Television 1 Short Low 36,766 09.23 14.13 100 152 360

2 Short Low 50,986 10.12 14.13 108 102 360

Smartphone 1 Short High 348,153 10.24 14.13 109 89 160

2 Short High 694,816 11.19 14.13 90 61 160

Sales shows the total product sales.

From and Till indicate the data range in the format year.week (e.g., 14.13 is week 13 of 2014).

Estimation and Forecast are the number of weeks of data available for estimation and forecast analysis, respectively.

Lifetime is average lifetime in weeks.

Source: Kim, Dekker, and Heij (2017).

dataset includes actual and smoothed demand data for three spare parts of each product, re-

sulting in eighteen spare parts in total. Besides this, the installed base values for each of the

four IB specifications and the mean age of the products are available for each week in the data

range. To illustrate the behaviour of the four installed bases over time, Figure 1 shows the size

of the four installed base concepts for television type 1, with IBE and IBM specified for its LCD

panel. These IB values were not available before the research of Kim, Dekker, and Heij (2017).

They computed these values themselves and made them available to me for further research. To

check their results, I replicated the data by performing the calculations myself. The procedure

and used code can be found in Section A.1 included in the Appendix. However, the calculated

smoothed demand of the refrigerator types is lagged by one time unit in the dataset. Corre-

sponding with Ds(t) actually being equal to Ds(t− 1). I recalculated these values and corrected

them, but is it unclear whether this error was made before or after the research done in 2017.

Figure 1: Size of installed base concepts for television type 1 (regarding LCD panel)
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The available spare parts have their own value to the consumers of the products. In Table

2 is visible that spare parts differ from each other in necessity and price, resulting in differences

in importance to the customers.

Table 2: Spare part characteristics and data information

Essential Expensive Demand Price (%) Hypothesis

1 2 1 2

Refrigerator Compressor Yes Yes 5,678 6,090 46.7 39.8 L

Circuit board No Yes 9,596 3,518 7.6 5.6 E

Door gasket No No 4,581 698 3.5 3.4 W

Television LCD panel Yes Yes 868 889 47.0 39.4 W

Circuit board No Yes 562 774 9.6 8.2 W

Cover No No 152 230 3.2 4.5 W

Smartphone Touch screen Yes Yes 21,499 58,413 19.8 25.8 1W, 2M

Circuit board No Yes 6,325 14,492 28.6 40.0 1W, 2M

Back cover No No 5,259 11,033 1.6 1.2 L

Essential indicates whether spare part is essential for product, and Expensive describes relative price of spare

part compared to product price.

Demand is amount of spare parts demanded by customers for products of type 1 and type 2.

Price (%) is price of spare part as percentage of product price.

Hypothesis is the installed base concept that is expected to forecast best (L for IBL, W for IBW, E for IBE,

M for IBM).

Source: Kim, Dekker, and Heij (2017).

Due to expected unequal demand behaviour, the four installed base concepts are expected to fit

best for certain spare parts and thus to forecast best in specific situations. The four hypotheses

given by Kim, Dekker, and Heij (2017) are as follows. (i) “The IBL, is expected to give the

best forecasts for essential and expensive spare parts of non-trendy products with long lifetime.”

This is due to the decision whether the consumer will repair the product after it is covered by

warranty, by trading off the potentially extended lifetime against the costs. When a product

has a long lifetime, the benefits are larger. (ii) “The IBW is expected to better forecast the

spare part demand for products with a short life cycle.” This is due to the assumption that the

consumer might only want to replace the failing component when it is covered by the warranty,

as a repair does not extend its lifetime considerably. (iii) “Non-essential spare parts of products

with a long lifetime are expected to get the best forecasts from IBE.” When a non-essential part

fails, the consumer has to make the decision whether the remaining lifetime compensates for the

repair costs. If the failing spare part is expensive but not necessary, the product can still be

used without replacing the component. Finally, (iv) “the IBM is expected to forecast the best
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if consumers differ much in their acceptance of new products.” Based on these expectations,

Table 2 also includes these hypotheses applied for every spare part. As refrigerators have a long

expected lifetime, the essential compressor is expected to forecast best with the IBL. However,

just like the circuit board, it could also be explained best by IBE, as a wide lifespan indicates

that the remaining economic value will be greater than the repair cost for a considerable amount

of time. Television spare parts are expected to be forecasted best by the IBW, as their utility

declines rather fast over time. The estimation period of smartphone type 1 is not sufficiently

long enough as that of type 2. Therefore, the hypotheses of the essential and expensive parts

differ for both types. These hypotheses are being tested and discussed in the next section.

5 Results

5.1 Installed base models

To illustrate the modelling and forecasting procedure from Section 3.2, I examine in Section A.2

one specific spare part and follow through the roadmap of the code that is used. I have fully

written the program myself in R and requires the following input; the spare part in question,

the last week of the mature phase (t2) and the last week of the EOL phase of the product (t3).

Running the code gives the forecast results of the black box model and the four installed base

models for that specific spare part. This includes the five produced forecasts, its prediction

errors and the three forecast measures for every model. I have written the program such that it

automatically follows the steps elaborated in Section A.2, without interruption. The full script,

including code for correcting the smoothed demand values of the refrigerators, can be found in

Section A.5. The results of all spare parts regarding the television types can be found in Table

3. The forecast measures for the refrigerator and smartphone types can be found in Table 8 and

9 in Section A.3.

If we compare the results with those obtained in the research of Kim, Dekker, and Heij

(2017), then 17 out of 90 forecasts give substantially different error measures. Especially for the

LCD panel case detailed in Section A.2. The forecast for this spare part give measures between

2.00-3.00 for the lifetime installed base, whereas these values were found to be between 22.00-

25.00 in the paper published in 2017. This seems like a significant improvement on the research

of 2017, but some measures are higher than acquired before. This specific case is, however, the

most extreme difference of the seventeen anomalies. The other sixteen cases state differences

between 1.00 and 4.50 approximately. If we compare the television results in Table 3 with our

hypotheses given in Table 2, then the best choice indeed seems using the warranty installed base
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to predict demand for the last three spare parts. On the other hand, the forecast results of the

first three components do not show a clear suggestion for the warranty installed base.

Table 3: Forecast results for television spare parts

Installed base

Spare part Type AR L W E M

LCD panel 1 SUM 3.93 2.40 0.33 -1.00 -1.00

MAPE 4.02 2.51 1.08 1.00 1.00

RMSPE 4.25 2.67 1.72 1.75 1.75

2 SUM 3.30 1.47 0.59 -1.00 -1.00

MAPE 3.30 1.51 1.08 1.00 1.00

RMSPE 3.58 1.69 1.51 1.43 1.43

Circuit board 1 SUM 2.20 -0.12 -0.37 -0.12 0.21

MAPE 2.43 0.67 0.66 0.69 0.76

RMSPE 2.64 0.92 0.97 0.97 0.98

2 SUM 6.07 8.80 1.07 4.27 9.26

MAPE 6.07 8.80 1.68 4.40 9.26

RMSPE 7.15 10.83 2.33 5.82 11.36

Cover 1 SUM 13.83 6.92 2.80 6.99 7.47

MAPE 14.44 7.59 3.45 7.65 8.12

RMSPE 14.67 8.24 6.45 8.41 8.66

2 SUM 4.38 1.53 0.96 1.61 1.56

MAPE 4.76 2.24 1.76 2.30 2.27

RMSPE 5.11 2.86 2.85 2.90 2.87

Underlined values are found to be the best results.

Overall, the results of six out of the eighteen spare parts seem to confirm their hypothesis, but

twelve do not. However, in several cases the differences are not of large magnitude. Therefore,

the results of the hypothesis installed base are tested against the seemingly best performing

installed base according to the outcomes. These two installed base concepts can also be given

as input in the estimation and forecast program given in Section A.5. This produces beside

the forecasts results, also the p-values of the corresponding t-test and DM-test. These p-values

regarding every spare parts one-sided null-hypothesis can be found in Table 4. As can be

concluded from this table, few hypotheses are confirmed by the findings of this research. This

is in contradiction with the paper by Kim, Dekker, and Heij (2017), which confirmed the stated

hypothesis in about 50% of the tests. Whereas here, only about 25% is confirmed by the results.

Page 14



Bachelor Thesis Econometrics & OR Tim van den Toorn

Table 4: Results of hypothesis tests

Type Hypothesis Outcome Test Conclusion

2020 2017 H0 SUM MAPE

Refrigerator

Compressor 1 L L L L >W 0.718 0.017 Confirmed (1x)

2 L M L M >L 0.000 0.014 Denied (2x)

Circuit board 1 E M E M >E 0.000 0.104 Denied (1x)

2 E AR AR AR >E 0.000 0.746 Denied (1x)

Door gasket 1 W AR M AR >W 0.999 0.999 Weakly denied (2x)

2 W AR W AR >W 0.000 0.000 Denied (1x)

Television

LCD panel 1 W W W W >E - 0.433 Weakly confirmed (1x)

2 W W W W >M - 0.697 Weakly confirmed (1x)

Circuit board 1 W L E L >W 0.000 0.094 Denied (1x)

2 W W W W >E 0.000 0.000 Confirmed (2x)

Cover 1 W W W W >L 0.000 0.000 Confirmed (2x)

2 W W W W >L 0.000 0.463 Confirmed (1x)

Smartphone

Circuit board 1 W E/M W M >W - 0.000 Denied (1x)

2 M E M E >M - 0.324 Weakly denied (1x)

Touch screen 1 W E W E >W 0.000 0.000 Denied (2x)

2 M AR W AR >M 0.000 0.000 Denied (2x)

Back cover 1 L W W W >L 0.000 0.000 Denied (2x)

2 L AR W AR >L 0.000 0.000 Denied (2x)

Outcome shows the installed base that provides the best forecasts in this research and results of Kim, Dekker, and

Heij (2017). If best method is not clear, then method with best SUM is taken as outcome.

Test H0, given by A > B, tests null-hypothesis that method A provides better forecasts than method B; if the

outcome confirms the hypothesis, then A is the hypothesis and B is second-best method; if the outcome differs from

the hypothesis, then A is the outcome and B is the hypothesis.

Test SUM and MAPE show the one-sided p-value (H0 : A > B) of the t-test for mean error and Diebold-Mariano

test for absolute errors, respectively. “-” corresponds with two forecast means with opposites signs, which makes it

unable to preform a one-sided t-test.

Conclusion “Confirmed” states that the outcome equals the hypothesis and that it is significantly better than the

second best outcome. “Weakly confirmed” states that the hypothesis is the best outcome, but not significantly better

than the second best. “Denied” states that the outcome is significantly better than the hypothesis. “Weakly denied”

states that the outcome is not significantly better than the hypothesis.

5.2 Adding estimated failure rates

As mentioned in Section 3.4, the failure rate function is estimated through MLE. Using RStudio,

I estimate the loglikelihood function and generate the failure rate for every point in time with

the code given in Section A.6. For the previously used example, the LCD panel component

of television type 1, this results in the parameter estimations β̂ = 0.013 and η̂ ≈ 0.000, which
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indicate a decreasing failure rate over time for this spare part. Moreover, small shape parameters

are found for all eighteen spare parts, indicating high variability and a decrease in need for spare

parts over time. The failure rate is calculated for every time period t with (12). The results of

including this failure rate function into the models can be found in Table 5.

Table 5: Forecast results for television spare parts with estimated failure rates

Installed base

Spare part Type Shape β̂ Scale η̂ AR L W E M

LCD panel 1 0.013 0.000 SUM 3.93 2.37 0.81 -1.00 -1.00

MAPE 4.02 2.42 1.49 1.00 1.00

RMSPE 4.25 3.61 2.44 1.75 1.75

2 0.021 0.000 SUM 3.30 1.40 0.64 -1.00 -1.00

MAPE 3.30 1.44 1.12 1.00 1.00

RMSPE 3.58 1.64 1.57 1.43 1.43

Circuit board 1 0.014 0.000 SUM 2.20 -0.10 -0.34 -0.08 0.26

MAPE 2.43 0.67 0.66 0.71 0.77

RMSPE 2.64 0.92 0.96 0.97 0.99

2 0.017 0.000 SUM 6.07 8.66 1.08 4.23 9.26

MAPE 6.07 8.66 1.69 4.37 9.26

RMSPE 7.15 10.63 2.34 5.76 11.36

Cover 1 0.009 0.000 SUM 13.83 9.43 3.81 9.51 10.05

MAPE 14.44 9.98 4.35 10.05 10.59

RMSPE 14.67 10.73 8.17 10.96 11.21

2 0.010 0.000 SUM 4.38 1.64 1.08 1.72 1.68

MAPE 4.76 2.32 1.84 2.39 2.35

RMSPE 5.11 2.93 2.95 2.97 2.94

Green indicates a decreased error measure and red indicates an increased error measure.

The AR results do not change as these do not depend on the failure rate.

As can be seen in the table, only 5 out of these 24 forecasts improved by adding estimated

failure rates. The demand forecasts for the cover of the televisions even got worse in all cases.

The results for the spare parts of the refrigerators and smartphones can be found in Tables

10 and 11 in Section A.4. For these two product categories, this approach is in general not

beneficial. Except for the door gasket of the refrigerators, these forecasts tend to improve based

on the change in forecast measures. In conclusion, it depends on the ageing of the spare part

whether it is beneficial to also model the failure rates. Where the LCD panel and circuit board of
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the televisions give mixed results, the demand for door gaskets of the refrigerators are predicted

better. Therefore, it seems that this refrigerator component ages the fastest of all parts, resulting

in better demand explanation when estimating and including its failure rate function.

5.3 Varying lifetime

The code that implements the methods discussed in this section can be found in Section A.7.

5.3.1 Predefined alternatives

First, the lifetimes are varied by means of the five predefined lifespan alterations by Rogers

(2010); 0.6L (2.5%), 0.7L (13.5%), 1.0L (34%), 1.05L (34%) and 1.3L (16%). The earliest a

product could reach the end of its lifespan is 0.6 times the average. The average lifetime of the

refrigerators is 676 weeks, 0.6 times 676 is 406, but there are only 315 and 295 weeks of data

available for the refrigerator types. This is also a problem for television type 2. In these three

cases, this variation of expected lifetime thus does not have an influence on the installed base

concepts. The results of forecasting with varied expected lifetimes for the smartphone types and

television type 1 can be found in Table 6.

Table 6: Changes in IBL forecast measures with predefined lifetime alternatives

Type SUM Difference MAPE Difference RMSPE Difference

Television

LCD panel 1 2.39 -0.01 2.51 -0.01 2.67 =

Circuit board 1 -0.13 -0.01* 0.67 = 0.93 +0.01

Cover 1 6.90 -0.02 7.56 -0.03 8.23 -0.01

Smartphone

Touch screen 1 5.79 -0.82 5.80 -0.81 6.11 -0.84

2 1.22 -0.01 1.27 = 1.47 =

Circuit board 1 3.38 -1.16 3.52 -1.24 3.77 -1.06

2 5.44 +0.37 5.44 +0.37 6.18 +0.50

Back cover 1 9.63 +4.72 9.93 +4.72 14.86 +9.09

2 0.73 = 1.13 -0.01 1.37 +0.01

Difference indicates the subtraction of old result from new result: a negative sign indicates that forecast

measure has decreased and thus, new forecast is better based on this specific forecast measure.

* as the measure is already of negative size, the decrease here is not an improvement.

It can be concluded that out of the nine spare parts, only two forecasts are worse when using

flexible lifetimes. These being the circuit board of smartphone type 2 and the back cover of

smartphones of type 1. On the other hand, there are also only two cases for which the method

improves the forecasts substantially; the touch screen and circuit board of smartphone type 1.
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5.3.2 Weibull distribution

Instead of letting the lifetimes be one out of five options, I now sample the lifetimes from a

Weibull distribution. The parameters that are used for the refrigerators are β = 2.15 and

η = 18.76. These parameters change the average lifetime from 13 years to 16.6 years, but are

suggested by Welch and Rogers (2010) for refrigerators specifically. The parameters used for

the televisions are found by Kalmykova et al. (2015), where the parameters were estimated for

lifetime data of LCD televisions with an average lifespan of six years. They find the shape

parameter β = 3.75 and scale parameter η = 6.45. The parameters used for the smartphones

originate from the research done by He, Wang, and Zuo (2018), where they investigated the

lifespan of several mobile phones. The resulting parameters for smartphones are given by β =

2.45 and η = 2.83. These three Weibull specifications are used to redetermine when a product

reaches its end-of-life after it is sold to the customer. The results from forecasting with the

newly obtained IBL and average age values can be found in Table 7 for every product.

Table 7: Changes in IBL forecast measures with Weibull distributed lifetimes

Type SUM Difference MAPE Difference RMSPE Difference

Refrigerator

Compressor 1 0.80 -0.01 0.90 -0.01 1.04 -0.01

2 0.32 -0.01 0.62 = 0.74 -0.01

Circuit board 1 0.09 = 0.26 = 0.34 =

2 0.62 +0.01 0.69 +0.01 0.84 +0.01

Door gasket 1 0.19 = 0.54 = 0.68 =

2 2.20 -0.01 2.27 -0.01 2.48 -0.01

Television

LCD panel 1 2.30 -0.10 2.42 -0.09 2.58 -0.09

2 1.41 -0.06 1.45 -0.06 1.64 -0.05

Circuit board 1 -0.19 -0.07* 0.68 +0.01 0.93 +0.01

2 9.11 +0.31 9.11 +0.31 11.30 +0.47

Cover 1 6.52 -0.40 7.18 -0.41 7.98 -0.26

2 1.45 -0.08 2.18 -0.06 2.83 -0.03

Smartphone

Touch screen 1 6.50 -0.11 6.51 -0.10 6.83 -0.12

2 1.23 = 1.27 = 1.47 =

Circuit board 1 4.37 -0.17 4.51 -0.25 4.65 -0.18

2 5.08 +0.01 5.08 +0.01 5.69 +0.01

Back cover 1 5.10 +0.19 5.40 +0.19 6.07 +0.30

2 0.73 = 1.12 = 1.36 =

Difference indicates the subtraction of old result form new result: a negative sign indicates that measure has

decreased and thus, new forecast is better based on this specific forecast measure.

* as the measure is already of negative size, the decrease here is not an improvement.
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The first thing that can be concluded from the table is that varying the lifetime does little

to the refrigerator forecasts. Secondly, the forecast measures of the televisions’ LCD panels and

covers seem to decrease. Which indicate better forecasts for these spare parts, but the circuit

board forecasts tend to get worse. For smartphone type 1, only the forecasts of demand for a

new back cover get worse. The demand for the other two components is predicted better with

a varied lifetime. Similar to the refrigerators, the forecasts for smartphone type 2 seem to differ

very little to none. In short, the demand for six spare parts are predicted better, those of nine

do not change significantly and three spare part predictions got worse.

6 Discussion & Conclusion

Stopping the production of a product brings the decision on how many spare parts the manufac-

turer has to produce in the final production run. This depends heavily on the size expectation

of spare part demand in the end-of-life phase. The installed base of products is a measure which

correlates heavily with the demand for its spare parts. Which brings me to the research question

of this paper: Which installed base concept produces the best forecast performance for what type

of spare part?. This paper proposed several methods to use installed base concepts to predict

the size of spare part demand for consumer products. In addition to a replication of the research

done by Kim, Dekker, and Heij (2017), three standalone extensions of the original methods have

been performed. First, by estimating the failure rate of the spare parts and adding these to the

models. Second, by relaxing the assumption of a fixed lifespan by attaining a different lifetime to

every unit that is sold over the initial and mature phases. This is done by (i) attaining one of the

five lifetime alternatives defined by Rogers (2010) or (ii) by sampling a lifetime from uniquely

specified Weibull distributions. These methods were applied to eighteen spare parts belonging

to six products from three product categories to give an answer to the three sub questions.

Do all forecasts of spare part demand improve when adding installed base information as

explanatory factor? Unfortunately, replicating the research of Kim, Dekker, and Heij (2017)

did not give the previously obtained results. 44% of the outcomes regarding the preferred in-

stalled base type were equal to those obtained in 2017. However, forecasting with installed base

information is in 72% of the cases better than forecasting with a simple black box model. The

hypothesis that the warranty installed base would forecast best for the television spare parts can

be confirmed for the most part, suggesting that the warranty installed base is indeed expected

to better forecast the spare part demand for products that experience a rather fast decline in

utility. On the other hand, the remainder of the hypotheses cannot be confirmed by the results

of this research.
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Are forecasts being improved when adding estimated failure rate information of the spare part

to the installed base models? Estimating the failure rate function of a spare part and adding

this to the installed base models results in different effects. There is only one spare part that

is predicted noticeably better and for two components adding their failure rates has its pros

and cons. In general, executing this method is not in favour of the forecast performance of the

installed base models.

Are forecasts being improved by letting the product units that are sold vary in expected lifetime

length? The first method of varying the lifespans only gave in 22% of the cases better forecasts,

but also 22% of the predictions showed a decreased forecasting performance. However, sampling

the lifetimes from a Weibull distribution gave more promising results. 17% of the forecasts got

worse and 33% got better. The only clear pattern in these results is that varying the lifetime

of refrigerators does little to the forecast performance. Which can be argued by the fact that

refrigerators have a very long lifetime. Variations in this average lifetime of sixteen years did

not impact the lifetime installed base substantially as the available data only captured six years.

In conclusion, Which installed base concept produces the best forecast performance for what

type of spare part?. The previously obtained results of 2017 are only partly confirmed by the

research in this paper. As I have applied the methodology that is stated in the paper by Kim,

Dekker, and Heij (2017), I question the full reproducability of the estimation and forecast pro-

cedure. Presumably, the used methodology contains several details that have been left out in

writing the report. Concluding which installed base is best for which type of spare part is thus

not possible based on the results of this research. Furthermore, the newly introduced methods

improved the forecasts in some cases, but did not change which installed base performed best.

Therefore, it seems that the installed base concepts indeed perform best for certain spare parts

and that extending the methodology only impacts the size of the predictive power. The forecast

performance mostly decreased when estimating the failure rate function. This method is not

suggested when dealing with larger amount of spare parts, as it depends on the ageing of the

spare part whether this approach would be beneficial. Moreover, the failure rate is estimated

with demand occurrences for the spare part, not with actual failure data. There could also be

consumers who do not want to replace the component when it fails. The same advice holds for

attaining different lifetimes by means of the five alternatives, where no clear suggestion could be

concluded from the results. Sampling lifetimes from the Weibull distributions, however, could

be beneficial for forecasting spare part demand. For further research I suggest examining these

newly proposed methods in combination with the correct methodology used by Kim, Dekker,

and Heij (2017), as this could possibly result in different conclusions.
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A Appendix

A.1 Data replication

In this section, I try to replicate the given data for the compressor spare part of the first type

of refrigerator. Originally, the following data are available to the previous researchers:

1. S(t); the amount of units sold in period t.

2. R(t); the amount of units returned to the store in period t.

3. D(t); the real demand for the spare part in period t.

4. ‘out of life’(t); the amount of units exceeding their expected lifetime in period t.

5. out of warranty(t); the amount of units exceeding their warranty period in period t.

The following variables are also given, but computed by Kim, Dekker, and Heij (2017):

1. Ds(t); the smoothed demand for the spare part in period t.

2. IBL(t), IBW(t), IBE(t) & IBM(t); the size of the installed base concepts in period t.

3. IBLnr(t) & IBWnr(t); IBL and IBW in period t without taking the returns into account.

4. AGEP(t), AGEW(t), AGEE(t) & AGEM(t); the mean age of the installed base concepts

in period t.

Smoothing the demand

In order to smooth the demand, the exponentially weighted moving average method is used,

with smoothing factor α = 0.06. This should lead to the following recursive relation:

Ds(t) = α×D(t) + (1− α)×Ds(t− 1) (15)

= 0.06×D(t) + 0.94×Ds(t− 1). (16)

Running this recursive calculation with the R code below, gives indeed the smoothed demand

given in the dataset. However, the smoothed demand of the refrigerators lags one time unit.

Code for correcting this error is included in the model estimation code of Section A.5.

1 DSMO <− rep (0 , 315)

2 f o r ( i in 1 : 315 ) {

3 i f ( i != 1) {

4 DSMO[ i ] <− data$DACT [ i ]∗0 . 0 6 + DSMO[ i −1]∗0.94

5 }

6 }
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Installed base concepts

The IBL and IBW are calculated through (1) and (2). When running the R code for calculating

these vectors, as can be seen below, the values are indeed equal to those given in the dataset.

1 IBL <− rep (0 , 315)

2 IBW <− rep (0 , 315)

3 IBL [ 1 ] <− da ta$ sa l e s [ 1 ] − data$return [ 1 ]

4 IBW[ 1 ] <− da ta$ sa l e s [ 1 ] − data$return [ 1 ]

5 f o r ( t in 2 : 315 ) {

6 IBL [ t ] <− IBL [ t−1] + da ta$ sa l e s [ t ] − data$return [ t ] − data$ ‘ out o f l i f e ‘ [ t ]

7 IBW[ t ] <− IBW[ t−1] + da ta$ sa l e s [ t ] − data$return [ t ] − data$ ‘ out o f warranty ‘ [ t ]

8 }

9 IBW <− i f e l s e (IBW < 0 , 0 , IBW)

For the IBE and IBM the repair cost and remaining economic value have to be known in order

to construct Ei(t) in (3). As this information is not available, the repair cost is set equal to

the price of the spare part and the remaining economic value of the product is determined by

assuming exponential value decay and final unity value at the end of the expected lifetime (Kim,

Dekker, and Heij (2017)). As the price of the spare part is only available in a percentage of the

product price, I assume the price of the spare part on time t (c(t)) is equal to the price of the

product on time t (pt) times this percentage. This leads to the following equation

vi(t) = pi × exp{ai × (t− i)}. (17)

With pi the price of the product bought at time i and ai the decay rate for products sold in

this period: ai = −ln(pi)/L. Obtained from the condition that 1 = pi × exp{ai × L}. The R

code given below should produce the economic installed base values for the refrigerator type 1,

unfortunately the outcome is different.

1 IBE <− rep (0 , 315)

2 f o r ( t in 1 : 315 ) {

3 f o r ( i in 1 :min ( t , 279) ) {

4 a <− −l og (p [ i ] ) /L

5 v <− p [ i ]∗ exp ( a ∗( t−i ) )

6 i f (v>(p [ min ( t , 279) ] ∗ 0 . 4 6 7 ) ) {

7 IBE [ t ] <− IBE [ t ] + da ta$ sa l e s [ i ] − data$return [ i ]

8 }

9 }

10 }

11 IBE <− i f e l s e ( IBE < 0 , 0 , IBE)
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Due to this circumstance, replicating the mixed economic installed base is not possible. The

explanation of the computations made by Kim, Dekker, and Heij (2017) are not detailed enough

to reproduce. Moreover, the example elaborated in the paper of 2017, does not equal the

information given in the paper and the data that is available to me. For example, the price

of the refrigerator type 1 is said to be ¤550 instead of an average price of ¤220 in the given

dataset. The price of the spare part is said to equal ¤100, which is 18.3% of the product price.

However, the table which is given in the paper states that the price of the spare part is 46.7%.

Mean age

The mean age of the installed base concepts is defined for the end of each time period, that is,

the products bought in period t are in this period treated as already 1 time period old. This

results in the following calculation for the mean age of the lifetime and warranty installed bases

AGEP (t) =
(AGEP (t− 1) + 1)× IBLnr(t− 1) + S(t)− (L+ 2)× out of life(t)

IBLnr(t)
(18)

AGEW (t) =
(AGEW (t− 1) + 1)× IBWnr(t− 1) + S(t)− (W + 1)× out of warranty(t)

IBWnr(t)
(19)

With the R code below, the values given in the dataset are acquired.

1 AGEL <− rep (0 , 315)

2 AGEW <− rep (0 , 315)

3 AGEL[ 1 ] = 1

4 AGEW[ 1 ] = 1

5 f o r ( t in 2 : 315 ) {

6 AGEP[ t ] <− ( (AGEP[ t−1]+1)∗data$ ‘ IBL(no return ) ‘ [ t−1]+da ta$ sa l e s [ t ] ) /data$ ‘ IBL(no

return ) ‘ [ t ]

7 AGEW[ t ] <− ( (AGEW[ t−1]+1)∗data$ ‘IBW(no return ) ‘ [ t−1]+da ta$ sa l e s [ t ]−(105)∗data$ ‘

out o f warranty ‘ [ t ] ) /data$ ‘IBW(no return ) ‘ [ t ]

8 }

A.2 Estimation and forecast procedure

To illustrate the modelling and forecasting procedure from Section 3.2, I examine one spare part

and follow through the roadmap of the code that is used. The spare part that will be examined

in specific is the LCD panel of television type 1. First, the AR order p has to be determined.

This is done by regressing the dependent variable ln(1+Ds(t)) on a constant and forming an AR

model with the produced residuals. As Section 3.2 describes, the order p is increased until the

next added lag of residuals is found to be insignificant. For this LCD panel, significant lags for

the residuals are found for p = 2, resulting in the following relation: εt = 1.19εt−1−0.22εt−2+ωt.
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With this equation, the model in (4) is rewritten as follows. Let Yt be equal to ln(1 + Ds(t)),

X1,t equal to ln(1 + IB(t)) and let X2,t be AGE(t), then (4) is equivalent to

Yt = b0 + b1 ×X1,t + b2 ×X2,t + εt (20)

= b0 + b1 ×X1,t + b2 ×X2,t + 1.19εt−1 − 0.22εt−2 + ωt (21)

= b0 + b1 ×X1,t + b2 ×X2,t + 1.19× (Yt−1 − (b0 + b1 ×X1,t−1 + b2 ×X2,t−1))

− 0.22× (Yt−2 − (b0 + b1 ×X1,t−2 + b2 ×X2,t−2)) + ωt.
(22)

Which simplifies to

Yt − 1.19Yt−1 + 0.22Yt−2 = (b0 − 1.19b0 + 0.22b0)

+ (b1X1,t − 1.19b1X1,t−1 + 0.22b1X1,t−2)

+ (b2X2,t − 1.19b2X2,t−1 + 0.22b2X2,t−2) + ωt

(23)

Yt − 1.19Yt−1 + 0.22Yt−2 = b0(1− 1.19 + 0.22) + b1(X1,t − 1.19X1,t−1 + 0.22X1,t−2)

+ b2(X2,t − 1.19X2,t−1 + 0.22X2,t−2) + ωt

(24)

Y ∗
t

c0
= b0 + b1 ×

X∗
1,t

c0
+ b2 ×

X∗
2,t

c0
+ ωt (25)

Y ∗∗
t = b0 + b1 ×X∗∗

1,t + b2 ×X∗∗
2,t + ωt. (26)

With c0 = (1 − 1.19 + 0.22) = 0.03, Y ∗∗
t = (Yt − 1.19Yt−1 + 0.22Yt−2)/c0 and X∗∗

i,t = (Xi,t −

1.19Xi,t−1 + 0.22Xi,t−2)/c0. This model is estimated with least squares and gives the following

coefficients for the lifetime installed base; b̂0 = 2.50, b̂1 = −0.01 and b̂2 = −0.005. This indicates

a negative relation between installed base and the demand for the LCD panel. Hereby, the

installed base values are set equal to zero while forecasting. To obtain the black box model, b1

and b2 are set to equal zero before performing least squares, resulting in a regression of Y ∗∗
t on

a constant. This gives a b0 estimate of 2.11.

With these two models, forecasts of smoothed demand are produced by inserting the data of

the explanatory variables into an alteration of (26). For (i) the black box model this is given as

Y ∗∗
t+1 = 2.11 (27)

Y ∗
t+1 = 2.11× 0.03 (28)

Yt+1 = 0.08 + 1.19Yt − 0.22Yt−1. (29)
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and for (ii) the (lifetime) installed base given as

Y ∗∗
t+1 = 2.50− 0.01×X∗∗

1,t+1 − 0.005×X∗∗
2,t+1 (30)

Y ∗
t+1 = 2.50× 0.03− 0.01×X∗

1,t+1 − 0.005×X∗
2,t+1 (31)

Yt+1 = 0.09− 0.01×X∗
1,t+1 − 0.005×X∗

2,t+1 + 1.19Yt − 0.22Yt−1. (32)

Where the lifetime installed base X∗
1,t+1 is equal to zero, as argued before. The forecasts of

smoothed demand calculated with (29) and (32) are compared with the real demand values in

order to produce the forecast measures and test statistics stated in Section 3.3.

A.3 Forecast results

Table 8: Forecast results for refrigerator spare parts

Installed base

Spare part Type AR L W E M

Compressor 1 SUM 1.22 0.81 0.73 1.27 1.27

MAPE 1.32 0.91 1.07 1.36 1.36

RMSPE 1.47 1.05 1.24 1.52 1.52

2 SUM 0.79 0.33 0.57 0.43 0.26

MAPE 0.96 0.62 0.80 0.70 0.58

RMSPE 1.07 0.75 0.90 0.80 0.73

Circuit board 1 SUM -0.10 0.09 -0.21 0.06 0.04

MAPE 0.27 0.26 0.38 0.25 0.25

RMSPE 0.33 0.34 0.54 0.33 0.32

2 SUM -0.09 0.61 0.11 0.64 0.55

MAPE 0.27 0.68 0.31 0.72 0.63

RMSPE 0.36 0.83 0.38 0.87 0.75

Door gasket 1 SUM -0.09 0.19 -0.12 0.17 -0.18

MAPE 0.38 0.54 0.53 0.52 0.53

RMSPE 0.60 0.68 0.69 0.67 0.67

2 SUM 1.43 2.21 2.27 2.21 2.22

MAPE 1.61 2.28 2.33 2.28 2.28

RMSPE 1.80 2.49 2.54 2.49 2.50

Underlined values are found to be the best results.
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Table 9: Forecast results for smartphone spare parts

Installed base

Spare part Type AR L W E M

Touch screen 1 SUM 5.82 6.61 3.11 -1.00 -1.00

MAPE 5.84 6.61 3.17 1.00 1.00

RMSPE 6.16 6.95 4.63 2.07 2.07

2 SUM 0.64 1.23 1.25 -0.08 0.29

MAPE 0.80 1.27 1.29 0.84 0.87

RMSPE 0.95 1.47 1.49 1.03 1.07

Circuit board 1 SUM 4.80 4.54 2.32 1.34 3.03

MAPE 4.96 4.76 2.60 1.71 3.25

RMSPE 5.15 4.83 3.64 2.62 3.97

2 SUM 1.45 5.07 4.15 1.57 2.39

MAPE 1.50 5.07 4.15 1.68 2.41

RMSPE 1.63 5.68 4.51 1.88 2.59

Back cover 1 SUM 3.30 4.91 1.01 5.41 5.38

MAPE 3.64 5.21 1.76 5.70 5.68

RMSPE 3.94 5.77 2.31 6.43 6.46

2 SUM 0.38 0.73 0.72 0.67 1.05

MAPE 0.83 1.12 1.11 1.06 1.42

RMSPE 1.11 1.36 1.35 1.30 1.67

Underlined values are found to be the best results.
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A.4 Forecast results with estimated failure rates

Table 10: Forecast results for refrigerator spare parts with estimated failure rates

Installed base

Spare part Type β̂ η̂ AR L W E M

Compressor 1 0.034 0.445 SUM 1.22 0.83 0.75 1.29 1.30

MAPE 1.32 0.93 1.09 1.39 1.39

RMSPE 1.47 1.07 1.26 1.55 1.55

2 0.060 4.728 SUM 0.79 0.70 1.01 0.84 0.62

MAPE 0.96 0.89 1.14 1.00 0.83

RMSPE 1.07 0.97 1.26 1.10 0.92

Circuit board 1 0.167 23.133 SUM -0.10 0.11 -0.19 0.09 0.07

MAPE 0.27 0.26 0.38 0.26 0.25

RMSPE 0.33 0.35 0.54 0.34 0.33

2 0.044 0.903 SUM -0.09 0.66 0.17 0.70 0.61

MAPE 0.27 0.74 0.34 0.77 0.68

RMSPE 0.36 0.89 0.41 0.93 0.81

Door gasket 1 0.042 0.954 SUM -0.09 0.18 -0.11 0.17 -0.18

MAPE 0.38 0.53 0.53 0.52 0.53

RMSPE 0.60 0.67 0.70 0.67 0.67

2 0.016 1.089 SUM 1.43 2.01 2.11 2.02 2.03

MAPE 1.61 2.09 2.18 2.10 2.11

RMSPE 1.80 2.31 2.40 2.32 2.32

Green indicates a decreased error measure and red indicates an increased error measure.

The AR results do not change as these do not depend on the failure rate.
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Table 11: Forecast results for smartphone spare parts with estimated failure rates

Installed base

Spare part Type β̂ η̂ AR L W E M

Touch screen 1 0.015 0.000 SUM 5.82 9.28 4.72 -1.00 -1.00

MAPE 5.84 9.28 4.77 1.00 1.00

RMSPE 6.16 9.69 6.95 2.07 2.07

2 0.080 36.498 SUM 0.64 2.20 2.85 0.51 1.43

MAPE 0.80 2.22 2.87 1.41 1.99

RMSPE 0.95 2.40 3.18 1.77 2.53

Circuit board 1 0.056 13.745 SUM 4.80 7.12 4.00 1.96 4.47

MAPE 4.96 7.25 4.26 2.32 4.67

RMSPE 5.15 7.48 6.09 3.59 5.72

2 0.156 227.693 SUM 1.45 14.22 14.15 8.60 11.02

MAPE 1.50 14.22 14.15 8.67 11.02

RMSPE 1.63 15.79 15.70 10.16 12.07

Back cover 1 0.024 0.007 SUM 3.30 4.66 1.13 5.48 5.50

MAPE 3.64 4.96 1.88 5.78 5.79

RMSPE 3.94 5.47 2.48 6.50 6.55

2 0.123 35.764 SUM 0.38 0.90 1.22 0.96 1.30

MAPE 0.83 1.26 1.57 1.32 1.64

RMSPE 1.11 1.45 1.79 1.51 1.84

Green indicates a decreased error measure and red indicates an increased error measure.

The AR results do not change as these do not depend on the failure rate.
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A.5 Code for modelling and forecasting

This R code gives the forecast results of the black box model and the four installed base types

in the form of vectors with the name corresponding to the concerned measure or outcome. This

also includes the tests for hypothesis versus outcome, several additional forecast tests and code

for correcting the incorrect smoothed demand values of the refrigerators. In lines 85 through

93, the excel sheet and the other variables can be changed to examine a different spare part.

1 ’ import ’

2 l ibrary ( r eadx l )

3 l ibrary ( f o r e c a s t )

4 l ibrary (Hmisc )

5 l ibrary ( lmtes t )

6

7 REF1 E <− read ex c e l ( ”REF1 AGE. x l sx ” , shee t = ”REF1 E” )

8 REF1 M <− read ex c e l ( ”REF1 AGE. x l sx ” , shee t = ”REF1 M” )

9 REF1 C <− read ex c e l ( ”REF1 AGE. x l sx ” , shee t = ”REF1 C” )

10 REF2 E <− read ex c e l ( ”REF2 AGE. x l sx ” , shee t = ”REF2 E” )

11 REF2 M <− read ex c e l ( ”REF2 AGE. x l sx ” , shee t = ”REF2 M” )

12 REF2 C <− read ex c e l ( ”REF2 AGE. x l sx ” , shee t = ”REF2 C” )

13

14 CTV1 E <− read ex c e l ( ”CTV1 AGE. x l sx ” , shee t = ”CTV1 E” )

15 CTV1 M <− read ex c e l ( ”CTV1 AGE. x l sx ” , shee t = ”CTV1 M” )

16 CTV1 C <− read ex c e l ( ”CTV1 AGE. x l sx ” , shee t = ”CTV1 C” )

17 CTV2 E <− read ex c e l ( ”CTV2 AGE. x l sx ” , shee t = ”CTV2 E” )

18 CTV2 M <− read ex c e l ( ”CTV2 AGE. x l sx ” , shee t = ”CTV2 M” )

19 CTV2 C <− read ex c e l ( ”CTV2 AGE. x l sx ” , shee t = ”CTV2 C” )

20

21 MOB1 E <− read ex c e l ( ”MOB1 AGE. x l sx ” , shee t = ”MOB1 E” )

22 MOB1 M <− read ex c e l ( ”MOB1 AGE. x l sx ” , shee t = ”MOB1 M” )

23 MOB1 C <− read ex c e l ( ”MOB1 AGE. x l sx ” , shee t = ”MOB1 C” )

24 MOB2 E <− read ex c e l ( ”MOB2 AGE. x l sx ” , shee t = ”MOB2 E” )

25 MOB2 M <− read ex c e l ( ”MOB2 AGE. x l sx ” , shee t = ”MOB2 M” )

26 MOB2 C <− read ex c e l ( ”MOB2 AGE. x l sx ” , shee t = ”MOB2 C” )

27

28 ’ c o r r e c t i n g f o r r e f r i g e r a t o r type 1 ’

29 DSMOnew <− matrix (0 , 315 , 3)

30 data <− REF1 E

31 t2 <− 279

32 t3 <− 315

33 t4 <− t3−t2

34
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35 for ( a in 1 : 3 ) {

36 i f ( a == 2) {

37 data <− REF1 M

38 }

39 i f ( a == 3) {

40 data <− REF1 C

41 }

42

43 ’ expont en t i a l weighted moving average smoothing ’

44 DSMO <− rep (0 , t3 )

45 DSMO <− data$DACT[ 1 ]

46 for ( i in 2 : t3 ) {

47 DSMO[ i ] <− data$DACT[ i ] ∗0 .06 + DSMO[ i −1]∗0 .94

48 }

49 DSMO <− round(DSMO, d i g i t s = 2)

50 DSMOnew[ , a ] <− DSMO

51 }

52 REF1 E$DSMO <− DSMOnew[ , 1 ]

53 REF1 M$DSMO <− DSMOnew[ , 2 ]

54 REF1 C$DSMO <− DSMOnew[ , 3 ]

55

56 ’ c o r r e c t i n g f o r r e f r i g e r a t o r type 2 ’

57 DSMOnew <− matrix (0 , 295 , 3)

58 data <− REF2 E

59 t2 <− 229

60 t3 <− 295

61 t4 <− t3−t2

62

63 for ( a in 1 : 3 ) {

64 i f ( a == 2) {

65 data <− REF2 M

66 }

67 i f ( a == 3) {

68 data <− REF2 C

69 }

70

71 ’ expont en t i a l weighted moving average smoothing ’

72 DSMO <− rep (0 , t3 )

73 DSMO <− data$DACT[ 1 ]

74 for ( i in 2 : t3 ) {

75 DSMO[ i ] <− data$DACT[ i ] ∗0 .06 + DSMO[ i −1]∗0 .94

76 }
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77 DSMO <− round(DSMO, d i g i t s = 2)

78 DSMOnew[ , a ] <− DSMO

79

80 }

81 REF2 E$DSMO <− DSMOnew[ , 1 ]

82 REF2 M$DSMO <− DSMOnew[ , 2 ]

83 REF2 C$DSMO <− DSMOnew[ , 3 ]

84

85 ’−−−>INPUT<−−−; change f o r d i f f e r e n t r e s u l t s

86 ( outcome and hypothes i s correspond with index :

87 BB = 1 , IBL = 2 , IBW = 3 , IBE = 4 , IBM = 5) ’

88 data <− CTV1 C

89 t2 <− 100

90 t3 <− 252

91 t4 <− t3−t2

92 outcome <− 3

93 hypothes i s <− 2

94

95 ’ s e t t i n g a l l non−numeric va lue s equal to zero ’

96 for (c in 1 : t2 ) {

97 i f (data$DACT[ c]==”−” | | i s .na(data$DACT[ c ] ) ) {

98 data$DACT[ c ] <− 0

99 }

100 i f (data$DSMO[ c]==”−” | | i s .na(data$DSMO[ c ] ) ) {

101 data$DSMO[ c ] <− 0

102 }

103 i f (data$ s a l e s [ c]==”−” | | i s .na(data$ s a l e s [ c ] ) ) {

104 data$ s a l e s [ c ] <− 0

105 }

106 }

107 data$DACT <− as .numeric (data$DACT)

108 data$DSMO <− as .numeric (data$DSMO)

109 data$ s a l e s <− as .numeric (data$ s a l e s )

110

111 ’ i n i t i a t i n g r e s u l t matr i ce s and ar rays ’

112 f o r e c a s t <− matrix (0 , t4 , 5)

113 colnames ( f o r e c a s t ) <− c ( ”BB” , ”IBL” , ”IBW” , ”IBE” , ”IBM” )

114 e r r o r f <− matrix (0 , t4 , 5)

115 colnames ( e r r o r f ) <− c ( ”BB” , ”IBL” , ”IBW” , ”IBE” , ”IBM” )

116 sum <− rep (0 , 5)

117 mape <− rep (0 , 5)

118 rmspe <− rep (0 , 5)

Page 34



Bachelor Thesis Econometrics & OR Tim van den Toorn

119

120 ’ computat ional code i s l oop ing f o r every i n s t a l l e d base type ’

121 for ( a in 2 : 5 ) {

122 IBX <− 0

123 AGE <− 0

124 for (b in 1 : t3 ) {

125 IBX [ b ] <− as .numeric (data [ b ,(7+a ) ] )

126 AGE[ b ] <− as .numeric (data [ b ,(13+a ) ] )

127 }

128

129 ’ d e f i n i n g v a r i a b l e s f o r s imp l i c i t y ’

130 y <− log (data$DSMO[ 1 : t2 ]+1)

131 y t e s t <− data$DACT[ t2+1: t3 ]

132 y t e s t <− y t e s t [ 1 : t4 ]

133 x <− cbind ( log (IBX+1) , AGE)

134

135 ’ determining the AR order p ’

136 BB <− lm( log(1+data$DSMO[ 1 : t2 ] ) ˜1)

137 pval <− 0

138 p <− 0

139 while ( a l l ( pval < 0 . 05 ) ) {

140 p <− p+1

141 r e s l a g <− Lag (BB$residuals , 1)

142 i f (p>1){

143 for ( i in 2 : p) {

144 r e s l a g <− cbind ( r e s l ag , Lag (BB$residuals , i ) )

145 }

146 }

147 AR <− lm(BB$residuals ˜ r e s l a g )

148 for ( i in 1 : p) {

149 pval [ i ] <− c o e f t e s t (AR) [ i +1 ,4]

150 }

151 }

152 p <− p−1

153 AR <− lm(BB$residuals ˜ r e s l a g [ , 1 : p ] )

154

155 ’ e s t imat ing the models ’

156 b0 <− 1

157 ynew <− y

158 x1new <− x [ , 1 ]

159 x2new <− x [ , 2 ]

160 for ( i in 1 : p) {
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161 b0 <− b0 − AR$coef f ic ients [ i +1]

162 ynew <− ynew − AR$coef f ic ients [ i +1]∗Lag (y , i )

163 x1new <− x1new − AR$coef f ic ients [ i +1]∗Lag (x [ , 1 ] , i )

164 x2new <− x2new − AR$coef f ic ients [ i +1]∗Lag (x [ , 2 ] , i )

165 }

166 ynew [ 1 ] <− y [ 1 ]

167 x1new [ 1 ] <− x [ 1 , 1 ]

168 x2new [ 1 ] <− x [ 1 , 2 ]

169 i f (p>1){

170 ynew [ 2 ] <− y [2]−AR$coef f ic ients [ 2 ] ∗y [ 1 ]

171 x1new [ 2 ] <− x [2 ,1 ]−AR$coef f ic ients [ 2 ] ∗x [ 1 , 1 ]

172 x2new [ 2 ] <− x [2 ,2 ]−AR$coef f ic ients [ 2 ] ∗x [ 1 , 2 ]

173 }

174 i f (p>2){

175 ynew [ 3 ] <− y [3]−AR$coef f ic ients [ 2 ] ∗y [2]−AR$coef f ic ients [ 3 ] ∗y [ 1 ]

176 x1new [ 3 ] <− x [3 ,1 ]−AR$coef f ic ients [ 2 ] ∗x [2 ,1 ]−AR$coef f ic ients [ 3 ] ∗x [ 1 , 1 ]

177 x2new [ 3 ] <− x [3 ,2 ]−AR$coef f ic ients [ 2 ] ∗x [2 ,2 ]−AR$coef f ic ients [ 3 ] ∗x [ 1 , 2 ]

178 }

179 xnew <− cbind ( x1new , x2new)/b0

180 xtrainnew <− cbind ( x1new [ 1 : t2 ] , x2new [ 1 : t2 ] ) /b0

181 ynew <− ynew/b0

182 IBmodel <− lm(ynew˜xtrainnew )

183 BBmodel <− lm(ynew˜1)

184

185 ’ f o r e c a s t i n g smoothed demand with IB ’

186 i f ( IBmodel$coef [2 ]<0) {

187 xnew [ , 1 ] <− 0

188 }

189 for ( i in ( t2+1) : t3 ) {

190 ylagged <− 0

191 for ( j in 1 : p) {

192 ylagged <− ylagged + AR$coef f ic ients [ j +1]∗y [ i−j ]

193 }

194 i f (IBX [ i ]>0){

195 y [ i ] <− IBmodel$coef f ic ients [ 1 ] ∗b0 + IBmodel$coef f ic ients [ 2 ] ∗xnew [ i , 1 ] ∗b0 +

IBmodel$coef f ic ients [ 3 ] ∗xnew [ i , 2 ] ∗b0 + ylagged

196 } else {

197 y [ i ] <− 0

198 }

199 }

200 f <− y [ t2+1: t3 ]

201 f <− f [ 1 : t4 ]
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202 f o r e c a s t [ , a ] <− exp( f )−1

203 e r r o r f [ , a ] <− y t e s t − f o r e c a s t [ , a ]

204

205 ’ f o r e c a s t i n g smoothed demand with BB ’

206 for ( i in ( t2+1) : t3 ) {

207 ylagged <− 0

208 for ( j in 1 : p) {

209 ylagged <− ylagged + AR$coef f ic ients [ j +1]∗y [ i−j ]

210 }

211 y [ i ] <− BBmodel$coef f ic ients [ 1 ] ∗b0 + ylagged

212 }

213 fBB <− y [ t2+1: t3 ]

214 fBB <− fBB [ 1 : t4 ]

215 f o r e c a s t [ , 1 ] <− exp( fBB)−1

216 e r r o r f [ , 1 ] <− y t e s t − fBB

217

218 ’ f o r e c a s t e r r o r measures IB ’

219 sumnom <− 0

220 mapenom <− 0

221 rmspenom <− 0

222 denom <− 0

223 for ( i in 1 : t4 ) {

224 sumnom <− sumnom + f o r e c a s t [ i , a]− y t e s t [ i ]

225 mapenom <− mapenom + abs ( f o r e c a s t [ i , a]− y t e s t [ i ] )

226 rmspenom <− rmspenom + ( f o r e c a s t [ i , a]− y t e s t [ i ] ) ˆ2

227 denom <− denom + yt e s t [ i ]

228 }

229 sum [ a ] <− sumnom/denom

230 mape [ a ] <− mapenom/denom

231 rmspe [ a ] <− sqrt ( rmspenom)/ (denom/sqrt ( t3−t2+1) )

232

233 ’ f o r e c a s t e r r o r measures BB ’

234 sumnom <− 0

235 mapenom <− 0

236 rmspenom <− 0

237 denom <− 0

238 for ( i in 1 : t4 ) {

239 sumnom <− sumnom + f o r e c a s t [ i ,1]− y t e s t [ i ]

240 mapenom <− mapenom + abs ( f o r e c a s t [ i ,1]− y t e s t [ i ] )

241 rmspenom <− rmspenom + ( f o r e c a s t [ i ,1]− y t e s t [ i ] ) ˆ2

242 denom <− denom + yt e s t [ i ]

243 }
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244 sum [ 1 ] <− sumnom/denom

245 mape [ 1 ] <− mapenom/denom

246 rmspe [ 1 ] <− sqrt ( rmspenom)/ (denom/sqrt ( t3−t2+1) )

247

248 }

249

250

251 ’ outcome vs hypothes i s : t−t e s t ’

252 i f (mean( e r r o r f [ , outcome ] )<0 && mean( e r r o r f [ , hypothes i s ] )<0){

253 t <− t . t e s t ( e r r o r f [ , outcome ] , e r r o r f [ , hypothes i s ] , pa i r ed = TRUE, a l t e r n a t i v e =

” g r e a t e r ” )

254 be t t e r tpva l <− t$p . va lue

255 i f ( t$p . value <0.05){

256 be t t e r t <− ” yes ”

257 } else {

258 be t t e r t <− ”no”

259 }

260 }

261 i f (mean( e r r o r f [ , outcome ] )>0 && mean( e r r o r f [ , hypothes i s ] )>0){

262 t <− t . t e s t ( e r r o r f [ , outcome ] , e r r o r f [ , hypothes i s ] , pa i r ed = TRUE, a l t e r n a t i v e =

” l e s s ” )

263 be t t e r tpva l <− t$p . va lue

264 i f ( t$p . value <0.05){

265 be t t e r t <− ” yes ”

266 } else {

267 be t t e r t <− ”no”

268 }

269 }

270 i f ( (mean( e r r o r f [ , outcome ] )>0 && mean( e r r o r f [ , hypothes i s ] )<0) | | (mean( e r r o r f [ ,

outcome ] )<0 && mean( e r r o r f [ , hypothes i s ] )>0) ) {

271 be t t e r t <− ” oppos i t e mean e r r o r s i gn : unable to perform t−t e s t ”

272 }

273

274

275 ’ outcome vs hypothes i s : DM t e s t ’

276 dm2 <− dm. t e s t ( e r r o r f [ , outcome ] , e r r o r f [ , hypothes i s ] , a l t e r n a t i v e = ” l e s s ” )

277 be t t e r dmpval <− dm2$p . va lue

278 i f (dm2$p . value <0.05){

279 be t t e r dm <− ” yes ”

280 } else {

281 be t t e r dm <− ”no”

282 }
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A.6 Code for modelling and forecasting with estimated failure rates

This R script gives, just like the previous program, the forecast results of the black box model

and the four installed base types. Additionally, this program estimates the failure rate function;

the failure rate of the spare part for every time period. This information is then included in the

estimation of the models. In lines 86 through 92, the excel sheet and the other variables can be

changed to examine a different spare part.

1 ’ import ’

2 l ibrary ( r eadx l )

3 l ibrary ( f o r e c a s t )

4 l ibrary (Hmisc )

5 l ibrary ( lmtes t )

6 l ibrary ( we i bu l l n e s s )

7

8 REF1 E <− read ex c e l ( ”REF1 AGE. x l sx ” , shee t = ”REF1 E” )

9 REF1 M <− read ex c e l ( ”REF1 AGE. x l sx ” , shee t = ”REF1 M” )

10 REF1 C <− read ex c e l ( ”REF1 AGE. x l sx ” , shee t = ”REF1 C” )

11 REF2 E <− read ex c e l ( ”REF2 AGE. x l sx ” , shee t = ”REF2 E” )

12 REF2 M <− read ex c e l ( ”REF2 AGE. x l sx ” , shee t = ”REF2 M” )

13 REF2 C <− read ex c e l ( ”REF2 AGE. x l sx ” , shee t = ”REF2 C” )

14

15 CTV1 E <− read ex c e l ( ”CTV1 AGE. x l sx ” , shee t = ”CTV1 E” )

16 CTV1 M <− read ex c e l ( ”CTV1 AGE. x l sx ” , shee t = ”CTV1 M” )

17 CTV1 C <− read ex c e l ( ”CTV1 AGE. x l sx ” , shee t = ”CTV1 C” )

18 CTV2 E <− read ex c e l ( ”CTV2 AGE. x l sx ” , shee t = ”CTV2 E” )

19 CTV2 M <− read ex c e l ( ”CTV2 AGE. x l sx ” , shee t = ”CTV2 M” )

20 CTV2 C <− read ex c e l ( ”CTV2 AGE. x l sx ” , shee t = ”CTV2 C” )

21

22 MOB1 E <− read ex c e l ( ”MOB1 AGE. x l sx ” , shee t = ”MOB1 E” )

23 MOB1 M <− read ex c e l ( ”MOB1 AGE. x l sx ” , shee t = ”MOB1 M” )

24 MOB1 C <− read ex c e l ( ”MOB1 AGE. x l sx ” , shee t = ”MOB1 C” )

25 MOB2 E <− read ex c e l ( ”MOB2 AGE. x l sx ” , shee t = ”MOB2 E” )

26 MOB2 M <− read ex c e l ( ”MOB2 AGE. x l sx ” , shee t = ”MOB2 M” )

27 MOB2 C <− read ex c e l ( ”MOB2 AGE. x l sx ” , shee t = ”MOB2 C” )

28

29 ’ c o r r e c t i n g f o r r e f r i g e r a t o r type 1 ’

30 DSMOnew <− matrix (0 , 315 , 3)

31 data <− REF1 E

32 t2 <− 279

33 t3 <− 315

34 t4 <− t3−t2
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35

36 for ( a in 1 : 3 ) {

37 i f ( a == 2) {

38 data <− REF1 M

39 }

40 i f ( a == 3) {

41 data <− REF1 C

42 }

43

44 ’ expont en t i a l weighted moving average smoothing ’

45 DSMO <− rep (0 , t3 )

46 DSMO <− data$DACT[ 1 ]

47 for ( i in 2 : t3 ) {

48 DSMO[ i ] <− data$DACT[ i ] ∗0 .06 + DSMO[ i −1]∗0 .94

49 }

50 DSMO <− round(DSMO, d i g i t s = 2)

51 DSMOnew[ , a ] <− DSMO

52 }

53 REF1 E$DSMO <− DSMOnew[ , 1 ]

54 REF1 M$DSMO <− DSMOnew[ , 2 ]

55 REF1 C$DSMO <− DSMOnew[ , 3 ]

56

57 ’ c o r r e c t i n g f o r r e f r i g e r a t o r type 2 ’

58 DSMOnew <− matrix (0 , 295 , 3)

59 data <− REF2 E

60 t2 <− 229

61 t3 <− 295

62 t4 <− t3−t2

63

64 for ( a in 1 : 3 ) {

65 i f ( a == 2) {

66 data <− REF2 M

67 }

68 i f ( a == 3) {

69 data <− REF2 C

70 }

71

72 ’ expont en t i a l weighted moving average smoothing ’

73 DSMO <− rep (0 , t3 )

74 DSMO <− data$DACT[ 1 ]

75 for ( i in 2 : t3 ) {

76 DSMO[ i ] <− data$DACT[ i ] ∗0 .06 + DSMO[ i −1]∗0 .94
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77 }

78 DSMO <− round(DSMO, d i g i t s = 2)

79 DSMOnew[ , a ] <− DSMO

80

81 }

82 REF2 E$DSMO <− DSMOnew[ , 1 ]

83 REF2 M$DSMO <− DSMOnew[ , 2 ]

84 REF2 C$DSMO <− DSMOnew[ , 3 ]

85

86 ’−−−>INPUT<−−−; change f o r d i f f e r e n t r e s u l t s

87 ( outcome and hypothes i s correspond with index :

88 BB = 1 , IBL = 2 , IBW = 3 , IBE = 4 , IBM = 5) ’

89 data <− CTV1 C

90 t2 <− 100

91 t3 <− 252

92 t4 <− t3−t2

93

94 ’ s e t t i n g a l l non−numeric va lue s equal to zero ’

95 for (c in 1 : t2 ) {

96 i f (data$DACT[ c]==”−” | | i s .na(data$DACT[ c ] ) ) {

97 data$DACT[ c ] <− 0

98 }

99 i f (data$DSMO[ c]==”−” | | i s .na(data$DSMO[ c ] ) ) {

100 data$DSMO[ c ] <− 0

101 }

102 i f (data$ s a l e s [ c]==”−” | | i s .na(data$ s a l e s [ c ] ) ) {

103 data$ s a l e s [ c ] <− 0

104 }

105 }

106 data$DACT <− as .numeric (data$DACT)

107 data$DSMO <− as .numeric (data$DSMO)

108 data$ s a l e s <− as .numeric (data$ s a l e s )

109

110 ’ i n i t i a t i n g r e s u l t matr i ce s and ar rays ’

111 f o r e c a s t <− matrix (0 , t4 , 5)

112 colnames ( f o r e c a s t ) <− c ( ”BB” , ”IBL” , ”IBW” , ”IBE” , ”IBM” )

113 e r r o r f <− matrix (0 , t4 , 5)

114 colnames ( e r r o r f ) <− c ( ”BB” , ”IBL” , ”IBW” , ”IBE” , ”IBM” )

115 sum <− rep (0 , 5)

116 mape <− rep (0 , 5)

117 rmspe <− rep (0 , 5)

118
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119 ’ e s t imat ing the f a i l u r e ra t e ’

120 f a i l s <− data$DACT[ 1 : t3 ]

121 for ( x in 1 : t3 ) {

122 i f ( f a i l s [ x]==0 | | i s .na( f a i l s [ x ] ) ) {

123 f a i l s [ x ] <− 1e−100

124 }

125 }

126 weib <− we ibu l l . mle ( f a i l s , th r e sho ld = 0)

127 beta <− weib$shape

128 eta <− weib$scale

129 f a i l r a t e <− seq (1 , t3 )

130 f a i l r a t e <− (beta/eta )∗ ( ( f a i l r a t e /eta ) ˆ(beta−1) )

131

132 ’ computat ional code i s l oop ing f o r every i n s t a l l e d base type ’

133 for ( a in 2 : 5 ) {

134 IBX <− 0

135 AGE <− 0

136 for (b in 1 : t3 ) {

137 IBX [ b ] <− as .numeric (data [ b ,(7+a ) ] )

138 AGE[ b ] <− as .numeric (data [ b ,(13+a ) ] )

139 }

140

141 ’ d e f i n i n g v a r i a b l e s f o r s imp l i c i t y ’

142 y <− log (data$DSMO[ 1 : t2 ]+1)

143 y t e s t <− data$DACT[ t2+1: t3 ]

144 y t e s t <− y t e s t [ 1 : t4 ]

145 x <− cbind ( log (IBX+1) , AGE, f a i l r a t e )

146

147 ’ determining the AR order p ’

148 BB <− lm( log(1+data$DSMO[ 1 : t2 ] ) ˜1)

149 pval <− 0

150 p <− 0

151 while ( a l l ( pval < 0 . 05 ) ) {

152 p <− p+1

153 r e s l a g <− Lag (BB$residuals , 1)

154 i f (p>1){

155 for ( i in 2 : p) {

156 r e s l a g <− cbind ( r e s l ag , Lag (BB$residuals , i ) )

157 }

158 }

159 AR <− lm(BB$residuals ˜ r e s l a g )

160 for ( i in 1 : p) {
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161 pval [ i ] <− c o e f t e s t (AR) [ i +1 ,4]

162 }

163 }

164 p <− p−1

165 AR <− lm(BB$residuals ˜ r e s l a g [ , 1 : p ] )

166

167 ’ e s t imat ing the models ’

168 b0 <− 1

169 ynew <− y

170 x1new <− x [ , 1 ]

171 x2new <− x [ , 2 ]

172 x3new <− x [ , 3 ]

173 for ( i in 1 : p) {

174 b0 <− b0 − AR$coef f ic ients [ i +1]

175 ynew <− ynew − AR$coef f ic ients [ i +1]∗Lag (y , i )

176 x1new <− x1new − AR$coef f ic ients [ i +1]∗Lag (x [ , 1 ] , i )

177 x2new <− x2new − AR$coef f ic ients [ i +1]∗Lag (x [ , 2 ] , i )

178 x3new <− x3new − AR$coef f ic ients [ i +1]∗Lag (x [ , 3 ] , i )

179 }

180 ynew [ 1 ] <− y [ 1 ]

181 x1new [ 1 ] <− x [ 1 , 1 ]

182 x2new [ 1 ] <− x [ 1 , 2 ]

183 x3new [ 1 ] <− x [ 1 , 3 ]

184 i f (p>1){

185 ynew [ 2 ] <− y [2]−AR$coef f ic ients [ 2 ] ∗y [ 1 ]

186 x1new [ 2 ] <− x [2 ,1 ]−AR$coef f ic ients [ 2 ] ∗x [ 1 , 1 ]

187 x2new [ 2 ] <− x [2 ,2 ]−AR$coef f ic ients [ 2 ] ∗x [ 1 , 2 ]

188 x3new [ 2 ] <− x [2 ,3 ]−AR$coef f ic ients [ 2 ] ∗x [ 1 , 3 ]

189 }

190 i f (p>2){

191 ynew [ 3 ] <− y [3]−AR$coef f ic ients [ 2 ] ∗y [2]−AR$coef f ic ients [ 3 ] ∗y [ 1 ]

192 x1new [ 3 ] <− x [3 ,1 ]−AR$coef f ic ients [ 2 ] ∗x [2 ,1 ]−AR$coef f ic ients [ 3 ] ∗x [ 1 , 1 ]

193 x2new [ 3 ] <− x [3 ,2 ]−AR$coef f ic ients [ 2 ] ∗x [2 ,2 ]−AR$coef f ic ients [ 3 ] ∗x [ 1 , 2 ]

194 x3new [ 3 ] <− x [3 ,3 ]−AR$coef f ic ients [ 2 ] ∗x [2 ,3 ]−AR$coef f ic ients [ 3 ] ∗x [ 1 , 3 ]

195 }

196 xnew <− cbind ( x1new , x2new , x3new)/b0

197 xtrainnew <− cbind ( x1new [ 1 : t2 ] , x2new [ 1 : t2 ] , x3new [ 1 : t2 ] ) /b0

198 ynew <− ynew/b0

199 IBmodel <− lm(ynew˜xtrainnew )

200 BBmodel <− lm(ynew˜1)

201

202 ’ f o r e c a s t i n g smoothed demand with IB ’
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203 i f ( IBmodel$coef [2 ]<0) {

204 xnew [ , 1 ] <− 0

205 }

206 for ( i in ( t2+1) : t3 ) {

207 ylagged <− 0

208 for ( j in 1 : p) {

209 ylagged <− ylagged + AR$coef f ic ients [ j +1]∗y [ i−j ]

210 }

211 i f ( ! i s .na(IBX [ i ] ) && IBX [ i ]>0){

212 y [ i ] <− IBmodel$coef f ic ients [ 1 ] ∗b0 + IBmodel$coef f ic ients [ 2 ] ∗xnew [ i , 1 ] ∗b0 +

IBmodel$coef f ic ients [ 3 ] ∗xnew [ i , 2 ] ∗b0 + IBmodel$coef f ic ients [ 4 ] ∗xnew [ i , 3 ] ∗b0 +

ylagged

213 } else {

214 y [ i ] <− 0

215 }

216 }

217 f <− y [ t2+1: t3 ]

218 f <− f [ 1 : t4 ]

219 f o r e c a s t [ , a ] <− exp( f )−1

220 e r r o r f [ , a ] <− y t e s t − f o r e c a s t [ , a ]

221

222 ’ f o r e c a s t i n g smoothed demand with BB ’

223 for ( i in ( t2+1) : t3 ) {

224 ylagged <− 0

225 for ( j in 1 : p) {

226 ylagged <− ylagged + AR$coef f ic ients [ j +1]∗y [ i−j ]

227 }

228 y [ i ] <− BBmodel$coef f ic ients [ 1 ] ∗b0 + ylagged

229 }

230 fBB <− y [ t2+1: t3 ]

231 fBB <− fBB [ 1 : t4 ]

232 f o r e c a s t [ , 1 ] <− exp( fBB)−1

233 e r r o r f [ , 1 ] <− y t e s t − fBB

234

235 ’ f o r e c a s t e r r o r measures IB ’

236 sumnom <− 0

237 mapenom <− 0

238 rmspenom <− 0

239 denom <− 0

240 for ( i in 1 : t4 ) {

241 sumnom <− sumnom + f o r e c a s t [ i , a]− y t e s t [ i ]

242 mapenom <− mapenom + abs ( f o r e c a s t [ i , a]− y t e s t [ i ] )
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243 rmspenom <− rmspenom + ( f o r e c a s t [ i , a]− y t e s t [ i ] ) ˆ2

244 denom <− denom + yt e s t [ i ]

245 }

246 sum [ a ] <− sumnom/denom

247 mape [ a ] <− mapenom/denom

248 rmspe [ a ] <− sqrt ( rmspenom)/ (denom/sqrt ( t3−t2+1) )

249

250 ’ f o r e c a s t e r r o r measures BB ’

251 sumnom <− 0

252 mapenom <− 0

253 rmspenom <− 0

254 denom <− 0

255 for ( i in 1 : t4 ) {

256 sumnom <− sumnom + f o r e c a s t [ i ,1]− y t e s t [ i ]

257 mapenom <− mapenom + abs ( f o r e c a s t [ i ,1]− y t e s t [ i ] )

258 rmspenom <− rmspenom + ( f o r e c a s t [ i ,1]− y t e s t [ i ] ) ˆ2

259 denom <− denom + yt e s t [ i ]

260 }

261 sum [ 1 ] <− sumnom/denom

262 mape [ 1 ] <− mapenom/denom

263 rmspe [ 1 ] <− sqrt ( rmspenom)/ (denom/sqrt ( t3−t2+1) )

264

265 }

A.7 Code for varying the lifetime

The following code snippet is added before the loop at line 124 in the program of Section A.5.

It varies the lifetime according to the five predefined lifetime alterations explained in Section

3.5 and recalculates the ’out of life’, IBL and AGEP values. The input variables in lines 2 and

3 can be added to the input section of the original script of Section A.5.

1 ’−−−> INPUT <−−− ’

2 s a l e s <− 36766

3 L <− 252

4

5 ’ a t t a i n i n g an expected l i f e t im e to a l l un i t s s o ld ’

6 l i f e t im e <− c ( 0 . 6 , 0 . 7 , 1 , 1 . 05 , 1 . 3 )

7 count <− c ( cei l ing ( s a l e s ∗0 .025 ) , cei l ing ( s a l e s ∗0 .135 ) ,

8 cei l ing ( s a l e s ∗ 0 . 34 ) , cei l ing ( s a l e s ∗ 0 . 34 ) ,

9 cei l ing ( s a l e s ∗ 0 . 16 ) )

10 consumers <− c ( rep (1 , count [ 1 ] ) , rep (2 , count [ 2 ] ) ,

11 rep (3 , count [ 3 ] ) , rep (4 , count [ 4 ] ) ,
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12 rep (5 , count [ 5 ] ) )

13 o u t o f l i f e <− rep (0 , t3 )

14 for ( i in 1 : t2 ) {

15 buyers <− sample ( consumers , data$ s a l e s [ i ] )

16 sort ( buyers )

17 for ( j in 1 : 5 ) {

18 i f (round( i+L∗ l i f e t im e [ j ] )<(t3+1) ) {

19 o u t o f l i f e [ cei l ing ( i+L∗ l i f e t im e [ j ] ) ] <− o u t o f l i f e [ cei l ing ( i+L∗ l i f e t im e [ j ] ) ]+

length (which( buyers==j ) )

20 }

21 count [ j ] <− count [ j ] − length (which( buyers==j ) )

22 }

23 consumers <− c ( rep (1 , count [ 1 ] ) , rep (2 , count [ 2 ] ) ,

24 rep (3 , count [ 3 ] ) , rep (4 , count [ 4 ] ) ,

25 rep (5 , count [ 5 ] ) )

26 }

27 data$ ‘ out o f l i f e ‘ <− o u t o f l i f e

28

29 ’ r e c a l c u l a t i n g IBL and AGEP’

30 IBL <− rep (0 , t3 )

31 noreturn <− rep (0 , t3 )

32 IBL [ 1 ] <− data$ s a l e s [ 1 ] − data$return [ 1 ]

33 noreturn [ 1 ] <− data$ s a l e s [ 1 ]

34 for ( t in 2 : t3 ) {

35 noreturn [ t ] <− noreturn [ t−1] + data$ s a l e s [ t ] − data$ ‘ out o f l i f e ‘ [ t ]

36 IBL [ t ] <− IBL [ t−1] + data$ s a l e s [ t ] − data$return [ t ] − data$ ‘ out o f l i f e ‘ [ t ]

37 }

38 data$IBL <− IBL

39 data$ ‘ IBL(no return ) ‘ <− noreturn

40 AGEP <− rep (0 , t3 )

41 AGEP[ 1 ] = 1

42 for ( t in 2 : t3 ) {

43 AGEP[ t ] <− ( (AGEP[ t−1]+1)∗data$ ‘ IBL(no return ) ‘ [ t−1]+data$ s a l e s [ t ] ) /data$ ‘ IBL(no

return ) ‘ [ t ]

44 }

45 data$AGEP <− AGEP

The following code snippet can also be added before the loop at line 124 in the program of

Section A.5. It varies the lifetime by means of the Weibull distribution explained in Section 3.5

and recalculates the ’out of life’ vector. The ’recalculating IBL and AGEP’ fragment here is the

same as that of the previous lifetime script. The input variables in lines 2, 3 and 4 can be added

to the input section of the original script of Section A.5.
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1 ’−−−> INPUT <−−−− ’

2 s a l e s <− 36766

3 shape <− 3.75014

4 scale <− 6.45085

5

6 ’ a t t a i n i n g an expected l i f e t im e to a l l un i t s s o ld ’

7 set . seed (1 )

8 l i f e t i m e s <− rweibull ( s a l e s , shape=shape , scale=scale )

9 l i f e t i m e s <− cei l ing ( l i f e t i m e s ∗52)

10 o u t o f l i f e <− rep (0 , 1000)

11 for ( i in 1 : t2 ) {

12 i f (data$ s a l e s [ i ] != 0) {

13 buyers <− sample ( l i f e t im e s , data$ s a l e s [ i ] )

14 buyers <− sort ( buyers )

15 o u t o f l i f e [ buyers+i ] <− o u t o f l i f e [ buyers+i ] + 1

16 for ( j in 1 : length ( buyers ) ) {

17 index <− match( buyers [ j ] , l i f e t i m e s )

18 l i f e t i m e s [ index [ 1 ] ] <− NA

19 }

20 l i f e t i m e s <− l i f e t i m e s [ ! i s .na( l i f e t i m e s ) ]

21 }

22 }

23 o u t o f l i f e <− o u t o f l i f e [ 1 : t3 ]

24 data$ ‘ out o f l i f e ‘ <− o u t o f l i f e

25

26 ’ r e c a l c u l a t i n g IBL and AGEP’

27 IBL <− rep (0 , t3 )

28 noreturn <− rep (0 , t3 )

29 IBL [ 1 ] <− data$ s a l e s [ 1 ] − data$return [ 1 ]

30 noreturn [ 1 ] <− data$ s a l e s [ 1 ]

31 for ( t in 2 : t3 ) {

32 noreturn [ t ] <− noreturn [ t−1] + data$ s a l e s [ t ] − data$ ‘ out o f l i f e ‘ [ t ]

33 IBL [ t ] <− IBL [ t−1] + data$ s a l e s [ t ] − data$return [ t ] − data$ ‘ out o f l i f e ‘ [ t ]

34 }

35 data$IBL <− IBL

36 data$ ‘ IBL(no return ) ‘ <− noreturn

37 AGEP <− rep (0 , t3 )

38 AGEP[ 1 ] = 1

39 for ( t in 2 : t3 ) {

40 AGEP[ t ] <− ( (AGEP[ t−1]+1)∗data$ ‘ IBL(no return ) ‘ [ t−1]+data$ s a l e s [ t ] ) /data$ ‘ IBL(no

return ) ‘ [ t ] }

41 data$AGEP <− AGEP
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