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Abstract

The worldwide spread of Covid-19 has caused an increasing demand on medical care. Hence it is

of importance to identify which factors influence the spread, and find a model that can forecast the

regional spread of the disease. The data used consist of 213 features, which are county-specific data on

health, socioeconomics and weather. This paper aims to predict the weekly increase of Covid-19 cases per

county using these features with multiple lasso and ridge regressions, and determines which regressions

perform best using the mean squared error. It also identifies which factors are associated with the spread

of Covid-19 and accordingly makes policy recommendations. It determines that the pooled lasso and a

version of the joint lasso method are the best models for predicting the increase in cases. Two policy

recommendations are made: 1. Covid-19 tests and related health-care should be financially accessible for

everyone 2. Residents of multi-unit housing should be given priority in testing.
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1 Introduction

On December 31, 2019, a cluster of pneumonia cases was reported in Wuhan, China (World Health Organi-

zation, 2020). Later, the World Health Organization (WHO) declared a novel coronavirus called Covid-19 as

the cause of the infections. Though at first the outbreak of Covid-19 was mainly limited to China, it soon

after started to infect more people in Western countries, including the United States (US). On March 11,

2020, the spread of the disease had become uncontrollable in an alarming amount of countries in different

parts of the world, for the WHO to declare the virus a pandemic. With 2.37 million confirmed Covid-19

cases as per June 21, the US currently has the most reported cases in the world. Because of the increasing

demand on medical care in the US, it is imperative to identify which populations are at risk of contracting

Covid-19 and protect high risk communities.

As the disease is still relatively new, much is uncertain about which factors play a role in Covid-19

transmission and fatality rates. It is suspected that health, socioeconomics, and weather conditions are all

factors that play a role in this. This paper tries to identify these factors, combining county-level data on

confirmed Covid-19 cases, health, socioeconomics, and weather conditions. Together these factors comprise

of 213 features, which are used to predict the weekly increase of Covid-19 cases per county in the US.

Because there are 213 possible explanatory variables, the data is of high dimensionality. High-dimensional

data sets can undermine the predictive ability of the model and compromise its efficiency because of high

variance. Multiple models that are often used when the data are of high-dimensionality will be reviewed in

this paper.

A popular selection method that is often used when the data is of high-dimensionality is lasso regression,

which was proposed by Tibshirani (1996). Lasso regression performs parameter estimation and variable

selection simultaneously, by setting some of the coefficients to zero. This process is called regularization and

induces sparsity of the model, which reduces the high-dimensionality of the model and its corresponding

negative effects. Another similar method is ridge regression, which is a shrinkage method. Ridge differs from

lasso in the way it sets the coefficients: whereas lasso sets certain coefficients to zero, thereby selecting certain

variables, ridge will only shrink coefficients closer to zero.

Recently, Dondelinger & Mukherjee (2018) proposed a new variation of the lasso method, called joint

lasso regression. This method assumes that the dependent variables can be divided into subgroups, each

having a different underlying model. If this is indeed the case for counties, a single regression model used for

all the data, such as a normal lasso-regression, could be misspecified. It might seem intuitive to simply split

the data into different groups, and then build a seperate model for each group. However, the sample size

per model would then decline, which would exacerbate the negative effects of high-dimensionality even more.

Furthermore, although the underlying models of the subgroups might not be entirely the same, there can

still be similarities among them. The joint lasso method takes advantage of this: it allows subgroups to have

different sparsity patterns, but at the same time induces global sparsity and encourages similarity between

subgroup-specific coefficients. Dondelinger & Mukherjee (2018) showed the joint lasso has promising results
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on biomedical applications. Not much research has been done in other applications yet. As there are many

features involved in the spread of COVID-19, it poses an interesting field to apply the joint lasso to.

For the implementation of the joint lasso method, it is necessary to divide the counties into subgroups

in some logical way. Because there is much uncertainty about the way Covid-19 spreads, it is difficult to

determine which types of subgroups have different underlying models. Consequently, subgroups can only be

defined based on speculation and logical reasoning, not on empirical/experimental data. Therefore, multiple

ways of splitting the counties into subgroups have been evaluated, of which two perform best: subgroups

based on the amount of Covid-19 cases per head, and subgroups based on the population density. Hence,

only the results from these subgroups will be reviewed in this paper.

This paper evaluates the performance of the aforementioned models: it reviews a lasso and ridge regression

performed on all data pooled together, lasso and ridge regressions performed on each subgroup individually,

and multiple variations of the joint lasso. These lasso-regressions use tuning parameters, which are set using

10-fold cross-validation. The mean squared error (MSE) is used to compare each method with another: the

lower the MSE, the better the model. To test whether the MSE of one model is significantly lower than

the MSE of another, a bootstrapping procedure is used to determine the distribution of the MSE’s. For an

out-of-sample model evaluation, the weekly increase of Covid-19 cases of a week later will be used. Next to

evaluating these models, an analysis of the coefficients and policy recommendations are made.

After applying all models, it was found that the pooled lasso regression and one form of the joint lasso

regression with cases per head subgroups perform best in terms of the out-of-sample MSE. The group-wise

lasso and ridge, as well as some of the joint lassos perform worse than a regression with only an intercept

in regards of the out-of-sample MSE. Therefore, these models do not add any value in the prediction of the

spread of Covid-19. Additionally, none of the other methods that use subgroups significantly outperform

the pooled lasso, which indicates that the defined subgroups might not have differing underlying regression

models.

Analysis of the coefficients yields multiple contributing factors to the spread of the virus, which consist of

bad weather conditions, socioeconomic factors, and health factors. Two important policy recommendations

are made after analysis. Firstly, insurance status of people was found to be a strong contributing factor to

the spread of the infection. The rationale behind this is that unsinsured residents are less likely to take a

test, in spite of showing symptoms, and as they remain undetected are likely to infect others, hereby resulting

in a faster spread. Therefore, the first recommendation is to make tests and related health-care financially

accessible to all members of the public, regardless of whether one is insured. Secondly, it was found that the

percentage of people living in multi-unit housing is a contributing factor to the spread of the virus. This is

a sensible finding, as habitants of these buildings live very close to each other, which increases the chance

of the infection being transmitted to another person. Hence, residents of multi-unit housing should be given

priority in testing, so infected habitants can be placed quickly into lockdown, thereby mitigating the spread

of the virus.
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The paper is organized as follows. Section 2 presents the data used in this paper and the cleaning

procedures of the data. In Section 3, the formulation of the lasso regressions is described and the methods

to evaluate their performance. Section 4 presents the results of this paper. Finally, the main findings are

highlighted in section 5.

2 Data

This section discusses the data used and the way subgroups are defined. It elaborates on cleaning the data

and the motivation behind the data and the subgroups. All variables are standardized before implementing

them in models.

2.1 Socioeconomics, weather conditions and health features

Data on health, socioeconomics, and weather conditions on county-level are provided by John Davis on

Kaggle (Davis, 2020).

A lot of the features have missing data. Some of these have a large amount of missing data (>10% missing)

and are therefore deleted from the dataset. Others only have a small amount of missing data (<10% missing).

The imputation method ”classification and regression trees” (CART) is used to fill in these missing spots,

using R package ”mice”(Breiman et al., 1984). CART are a popular class of machine learning algorithms,

because they can deal with multicollinearity and skewed distributions, are robust against outliers, and can

fit interactions and nonlinear relations. See Saar-Tsechansky & Provost (2007) for an introductory overview

on the idea of using CART methods for imputation of missing data.

Another problem encountered with the data is that weather conditions vary daily, whereas socioeconomics

and health data are constant over time. Because the time of infection with Covid-19 is not the same as the

time that the infection is diagnosed and reported, weather conditions prior to diagnosis should be considered,

instead of weather conditions at the day of diagnosis. Determining the exact time of infection is impossi-

ble, due to large variations in the incubation period and time between testing and official diagnosis. The

incubation time of Covid-19 varies considerably between patients, with 95% of people developing symptoms

between 2.2 and 11.5 days and the median being 5.1 days (Lauer et al., 2020). It should be noted that there

is also time between the onset of symptoms and testing, of which the statistics are not known. Time between

testing and official diagnosis also varies substantially. Patients who are very ill or high-risk typically receive

their results within 24 hours, while others wait for multiple weeks (Cleveland Clinic, 2020), (Petri, 2020). It

can also depend on the county, as some testing facilities are overwhelmed by the number of people getting

tested, which protracts the waiting time. Therefore the time of infection that is linked to a positive test

can have occured between approximately three to thirty days before diagnosis. For this reason, averages of

weather conditions will be used in the regression and will be taken for 3 to 9 days before diagnosis, 10 to 16

days, 17 to 23 days, 24 to 30 days, and 3 to 30 days. The dataset includes 12 different weather conditions,
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so with five different averages, there are now 12 · 5 = 60 weather conditions used in the regressions.

Next to these weather conditions, there are also 153 features about socioeconomics and health after

cleaning the data. Thus, in total there are 213 features. An overview of these features can be found in Table

11 and Table 12 in the Appendix.

2.2 Covid-19 cases

This paper uses weekly data on Covid-19 cases in the US per county, provided by Johns Hopkins University

(Johns Hopkins University, n.d.).

As spreading of the disease varies per county, the increase of cases will be measured in percentage of cases

reported the week before, to make comparison between counties fair. Specifically, the weekly increase from

May 7th until May 14th is used. This week is chosen for a specific reason: lockdown had then started more

than a month ago in all counties, meaning almost all diagnosed people during those dates should have been

infected during the lockdown. Hence, the spread of the disease is measured fully during lockdown, which is

especially important, as the disease will spread very differently in a state of lockdown than in a state of no

lockdown. Therefore, the underlying regression model will also be different.

The US comprises 3,142 counties in total, but not all counties have reported cases and some counties

only very little. Counties with only a small amount of reported cases can show extremely large increases

percentage-wise, which can erroneously and dramatically influence the model. Therefore only the counties

having 100 cases or more on May 7th are used, which are 787 in total.

2.3 Subgroup division

Multiple definitions of subgroups have been evaluated. The two definitions that gerenate results with the

highest predictive value are a subgroup division based on the ascending order of the population density of

the county, and one based on the ascending order of the amount of reported Covid-19 cases divided by total

population of the county, which will be called the cases per head subgroup division. This paper will therefore

only review the results on these two definitions of subgroups. Dividing the data into three and five subgroups

have both been evaluated. Using five subgroups gives the most promising results, which is why this paper will

only review these results in this paper. Ideally more numbers of subgroups would have been evaluated, but

because the computations take up a lot of cpu this was not possible due to time and computer restrictions.

The motivation behind using subgroups based on population density is that in densely populated areas

the disease might spread differently than in less dense areas, as is suggested in Florida (2020). The motivation

behind using subgroups based on cases per head, is that the degree of immunization can affect the spread of

the disease (D’Souza & Dowdy, 2020). Table 1 and 2 give an overview of the defined subgroups.
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Table 1: Overview of the subgroups based on

cases per head (cph)

Group # of obs Condition on cph

1 164 cph ≤ 0.0015

2 212 0.0015 < cph ≤ 0.003

3 148 0.003 < cph ≤ 0.005

4 134 0.005 < cph ≤ 0.01

5 129 cph > 0.01

Table 2: Overview of the subgroups based on

population density (pd)

Group # of obs Condition on pd

1 162 pd ≤ 75

2 187 75 < pd ≤ 200

3 222 75 < pd ≤ 200

4 108 500 < pd ≤ 1100

5 108 pd > 1100

3 Methodology

This section first discusses the models used and their formulations. Secondly, it discusses the evaluation

methods. Next, it discusses an analysis of the coefficients. Lastly, it discusses the setting of the tuning

parameters and the optimization methods.

3.1 Models used

This paper uses ridge regression and multiple forms of lasso regression, which will be discussed in this section.

Ridge and Lasso regression are both simple machine learning techniques that reduce model complexity and

prevent over-fitting, which could result from linear regression with high-dimensional data.

The ridge regression as proposed by Hoerl & Kennard (1970) is formulated as:

B̂ = argmin
B

1

n
||y −XB||22 + λ||B||qq, (3.1)

where

X = the n x m matrix of observed features

y = the n x 1 vector of observed dependent variables

B = the m x 1 vector of coefficients to be estimated

λ = a prespecified tuning parameter that determines the amount of regularization

|| · ||q = the `q norm of its argument

q = 2

n = the number of observations

m = the number of features.

(3.1) is the same as minimizing the sum of squares with constraint
∑
B2
m ≤ c, where c is a prespecified

postive number. Hence the last term in (3.1) essentially forces the sum of the squared values of the coefficients

to be less than c, thus shrinking the coefficients and helping to reduce the model complexity and multi-

collinearity. Consequently, ridge regression reduces model variance at the cost of bias.
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The lasso-method as proposed by Tibshirani (1996) can also be formulated as (3.1), but uses an `1 norm

in the last term (q = 1) instead of an `2 norm. Just like ridge regression, lasso is the same as minimizing the

sum of squares with a constraint added, only the constraint takes the sum of the absolute values of coefficients

instead of the squared:
∑
|Bm| ≤ c, where c is again a prespecified postive integer. So the last term in (3.1)

essentially forces the sum of the absolute value of the coefficients to be less than c. This affects the way the

coefficients are set: whereas ridge shrinks coefficients, lasso forces certain coefficients to be set to zero and

therefore effectively chooses a simpler model with less variables.

Equation (3.1) contains the tuning parameter λ. This tuning parameter controls the strength of the `q

norm, thus controlling the amount of shrinkage/parameter selection. When λ is set to zero, (3.1) reduces to

the sum of squared errors. Ergo, the coefficients obtained will be the same as the ones obtained with linear

regression. When λ increases, more coefficients in (3.1) will be shrunk in the `2 norm case or set to zero in

the `1 norm case. Consequently, the larger λ is, the more bias and the less variance the model contains. λ

has to be set prior to optimization. This paper uses k-fold cross validation to do so, which will be elaborated

on in Section 3.3.

The joint lasso method as proposed in Dondelinger & Mukherjee (2018) is an extension on the lasso-

method as proposed by Tibshirani (1996). Two versions of it are formulated, which differ in the type of `q

norm used. The first formulation is:

B̂ = argmin
B=[β1...βk]

K∑
k=1

{
1

nk
||yk −Xkβk||22 + λ||βk||1 + γ

∑
k′>k

τk,k′ ||βk − βk′ ||22

}
, (3.2)

and the second formulation is:

B̂ = argmin
B=[β1...βk]

K∑
k=1

{
1

nk
||yk −Xkβk||22 + λ||βk||1 + γ

∑
k′>k

τk,k′ ||βk − βk′ ||1

}
, (3.3)

where

k = a subgroup and k ∈ {1, ...K}

nk = the sample size of subgroup k

yk = the nk x 1 vector of dependent variables

Xk = the nk x m matrix of features

βk = the m x 1 vector of coefficients

B = [β1...βK ] is an m x K matrix that contains all coefficients

γ = a tuning parameter

τk,k′ = a tuning parameter.

Whereas the lasso method uses all observations, the joint lasso uses predefined subgroups of observations

that can have differing coefficients, while simultaneously encouraging similarity between subgroup-specific

coefficients. The last term in (3.2) and (3.3) is a fusion-type penalty between subgroups. The tuning

constant γ determines the amount of similarity encouraged for the model as a whole, whereas the constants

6



τk,k′ determine the extent to which similarity is encouraged for specific pairs of subgroups. When γ is set to

zero, (3.2) and (3.3) reduce to the classical lasso applied to all subgroups seperately. When the value of γ

increases, more similarity is encouraged between subgroups.

The difference between models (3.2) and (3.3), is that (3.2) encourages similarity between subgroup-

specific coefficients, whereas (3.3) allows for exact similarity. This is because (3.2) has an `2 norm in the last

term, and (3.3) an `1 norm in the last term.

This paper evaluates a lasso and ridge regression as defined in (3.1) pooled on all data together, which is

called the pooled lasso and pooled ridge. Next to that, it evaluates a lasso and ridge regression applied to

every subgroup separately, called the groupwise lasso and groupwise ridge regression. This is done for both

the population density subgroups, as well as the cases per head subgroups. It also evaluates the joint lasso as

described in (3.3) and (3.2), which uses the same subgroups. Multiple variations on the joint lasso are made,

which differ from each other in the way the tuning constants τk,k′ are calculated. This will be elaborated on

in Section 3.4.

3.2 Model evaluation

The general aim of lasso and ridge regressions is to induce sparsity of the model, which lowers variance at

the cost of more bias, known as the bias-variance trade-off. Therefore a comparison metric is needed that

takes both bias as well as variance into account. The mean squared error (MSE) is a suitable metric for this,

as it is composed of two factors: the squared bias and the variance. The MSE is computed as follows:

N∑
i=1

(yi − ŷi)2

N
, (3.4)

where ŷi is the fitted value of yi with the obtained coefficients, yi is the actual value and N is the total

number of observations. The lower the MSE, the better the model is able to predict the increase in COVID-19

cases.

To evaluate the performance of the methods, it is compared to the MSE of a regression with only an

intercept. As the lasso and ridge regressions are prone to overfitting, mainly the out-of-sample performance

of the methods is reviewed. If a method performs worse than a simple regression with only an intercept, it

does not add any value in the prediction of Covid-19 cases.

To determine whether the MSE of one model is significantly lower than the MSE of another, a bootstrap-

ping method has to be performed as the distribution of the MSE is unknown. Technically, this could also be

done by cross-validation, but since only 10-fold cross-validation is used due to computational reasons (which

will be discussed later in Section 3.4), only ten observations are obtained which is too small for determining

the distribution. After performing the bootstrapping procedure, it is necessary to determine whether the

MSE’s are normally distributed, which is done with the Jarque-Bera (JB) test:

JB =
N

6

(
S2 +

1

4
(K − 3)2

)
, (3.5)
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where N is the total number of observations, S the skewness and K the kurtosis. The JB test determines

whether the data have skewness and kurtosis matching a normal distribution. Consequently, if skewness

deviates much from zero and/or kurtosis deviates much from three, the null-hypothesis of normality will be

rejected. Under the null-hypothesis, the JB statistic asymptotically has a chi-squared distribution with two

degrees of freedom.

If the data are indeed normally distributed, the two-sample t statistic can be used to determine whether

the MSE’s differ significantly from eachother:

t =
MSE1 −MSE2√

s1
n1

+ s2
n2

, (3.6)

where MSEi is the MSE of model i, si the estimated standard devation of MSEi, and ni the number of

observations of MSEi.

If the data are not normally distributed, the Mann-Whitney U Test is used, which is a comparison test

that does not assume normality. This test compares the number of times a score from one sample is ranked

higher than a score from another sample. The test statistic is denoted U and is the smaller of U1 and U2:

U1 = n1n2 +
n1(n1 + 1)

2
−R1, (3.7)

U2 = n1n2 +
n2(n2 + 1)

2
−R2, (3.8)

where Ri is the sum of the ranks for model i. The smaller the value of the U statistic, the more likely the

null-hypothesis of equal MSE is rejected.

3.3 Interpretation of model

Next to finding the model that performs best in predicting the increase of COVID-19 cases per county, this

paper also interprets the obtained coefficients of the best model, excluding the joint lasso regressions. The

joint lasso regressions are excluded from this, because the coefficients cannot be analyzed on their P-value.

Generally, lasso regression tends to overfit the model by including coefficients that are not significant

(Tibshirani, 1996). It is therefore necessary to check whether the coefficients obtained from the lasso are

indeed significantly different from zero. To do so, a linear regression is made with the variables that are

selected with the lasso regression. If there are coefficients with P-value > 0.05, the general-to-specific method

will be applied. The general-to-specific method first deletes the variable with the largest P-value from the

data, and then performs another linear regression with the remaining variables. This process is repeated

until all obtained coefficients are significantly different from zero on a 5% significance level.

The coefficients of the remaining variables are then interpreted. Note that the variables have been

standardized, as this alters the interpretation of the coefficients. For example, if a coefficient is -0.5, this

means that if the corresponding variable is one standard deviation above its mean and all other variables are

constant, then the increase in percentage of COVID-19 cases is 0.5 standard deviation lower than normal.
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3.4 Setting the tuning parameters

Ideally all tuning parameters are set using some form of cross validation. However, the computation of the

tuning parameter τk,k′ using cross-validation is onerous. Hence, we pre-set the value of τk,k′ , and only set γ

and λ according to cross-validation.

3.4.1 Setting τk,k′

The tuning parameters τk,k′ control the extent of fusion between specific subgroups. This paper uses both

weighted and unweighted fusion. With unweighted fusion, the extent of fusion does not differ between specific

subgroups, meaning all τk,k′ are set to unity. Weighted fusion means the extent of fusion does differ between

subgroups, and therefore τk,k′ has to be specified before regressing the joint lasso. This paper uses two

different methods to compute τk,k′ which are discussed below.

3.4.2 Distance function based on the features

An alternative method as proposed by Dondelinger & Mukherjee (2018) that does not use cross validation,

is setting τk,k′ using some distance function d(k, k′) based on the features. One of the methods they use is

setting the distance function using the means of the features, according to:

d(k, k′) = ||µk − µk′ ||2, (3.9)

where µk and µk′ are the sample means of the standardized features in the subgroups k and k’ respectively.

The parameters are then set according to the following formula:

τk,k′ = 1− d(k, k′)

dmax
, (3.10)

where dmax is the largest distance between any pair of subgroups k, k′. By using this formula, we have

0 ≤ τk,k′ ≤ 1.

Note that the method above essentially means there will be more fusion between subgroups that are

similar with respect to their features. Thus, this method assumes that similarity between the underlying

regression coefficients reflects similarity in its features, which might not necessarily be the case in this COVID-

19 application. Moreover, in the applications used in Dondelinger & Mukherjee (2018), joint lasso with

weighted τk,k′ never outperforms the unweighted joint lasso, which might indicate that their method is not

proper for setting the tuning constants. Therefore this paper also investigates other methods of setting the

tuning parameters that do not use a distance function based on the features, which possibly reflect more

accurate values of τk,k′ .

3.4.3 Distance function based on regression coefficients from the subgroup wise lasso

An alternative method to set the tuning parameters is to use the regression coefficients from the subgroup

wise lasso as a measure for the distance function. Using these instead of the underlying features, there will
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be more fusion between subgroups that have similar coefficients, which is a more sensible way of determining

the amount of similarity between the underlying regression model of subgroups. A straightforward method

to determine the distance function is to use d(k, k′) = ||βk − βk′ ||2, where βk and βk′ are the regression

coefficients of the features from the subgroup wise lasso in subgroups k and k’ respectively. The parameters

τk,k′ are set according to (3.10).

3.4.4 Setting γ and λ

After τk,k′ is set, the tuning paramaters γ and λ are set by a non-nested k-fold cross validation (CV). A

non-nested k-fold cross validation is a re-sampling procedure that splits the data randomly into a training set

and a test set. The training set is used to fit the model, and the test set is used to evaluate the model with

some form of metric. This is done k times, so for k different training and test sets. The tuning parameters

that on average perform best in the k evaluations are then chosen as tuning parameters. This form of cross

validation poses the problem that the same data is used to tune model parameters and evaluate model

performance. Information can therefore “leak” into the model and overfit the data. A nested CV solves

this issue by using an inner loop CV nested in an outer CV. The inner loop is responsible for determining

the tuning paramaters, while the outer loop is used for determining the MSE. Hereby, information cannot

“leak” into the model anymore and the data will not be overfitted. Because of the benefits of NCV, it was

initially chosen as method to evaluate the best values for γ and λ. A drawback of this method is that it is

computationally strenuous, and given the small period of time and limited access to computationally fast

computers, it was chosen to use non-nested CV instead.

This paper uses 10-fold cross-validation, and the MSE as metric to evaluate the model. It evaluates 47

values of γ and 47 values of λ between zero and one in the cross-validation, thus evaluating 47 · 47 = 2209

unique combinations of λ and γ. The exact values of λ and γ are found in Table 10 in the Appendix. If after

evaluation the optimal value of either λ or γ is the lowest or highest value of the 47 values, then the range

of values for λ and γ is broadened to make sure the optimal value is found.

3.5 Optimization

To optimize the pooled lasso and ridge and subgroup lasso and ridge, glmnet software is used in R (Friedman,

2010) . This software contains extremely efficient procedures for fitting the lasso regularization path for linear

regression. The joint lasso is computationally much more complicated to optimize than the aforementioned

models, and cannot directly be optimized with glmnet. Fortunately, Dondelinger & Mukherjee (2018) have

published their R code used for the optimization of the joint lasso as R package fuser on CRAN (https://cran.r-

project.org/web/packages/fuser), which is used in this paper as well to optimize the joint lasso.
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4 Results

Firstly, the results of the regressions are presented and their performances are evaluated. Secondly, the

coefficients are evaluated and policy recommendations are made.

4.1 Performance of models

The performance of the model with only an intercept is evaluated first. Second, the performance of the pooled

regressions is analyzed. Then, the regressions that use subgroups based on cases per head are analyzed,

and afterwards the regressions that use subgroups based on population density. Lastly, all regressions are

compared with each other.

4.1.1 Linear regression with only an intercept

Because the data are standardized, the in-sample MSE of the model with only an intercept is approximately

equal to one. The out-of-sample data are standardized with the mean and standard deviation of the in-sample

data. Consequently, the out-of-sample MSE of the regression with only an intercept is not equal to one, but

0.504. This indicates that the out-of-sample variance of the cases per county is smaller than in-sample.

These results, along with the standard error, can be found in Table 3. The Jarque-Bera test rejects the

null-hypothesis of normality. Thus, all statistical comparisons with the MSE of the linear regression with

only an intercept are made with the Mann-Whitney U test.

Table 3: Mean squared error of the regression with an intercept only

Model MSE in-sample MSE out-of-sample

Intercept only 0.995 (0.169) 0.502 (0.039)

In between brackets () is the standard error of the MSE

4.1.2 Pooled regressions

Table 4 presents the results of the lasso and ridge regressions on the data pooled together. The lasso and

ridge regressions both perform significantly better than a regression with only an intercept term, both in-

and out-of-sample. In-sample, the ridge seems to perform slightly better than the lasso regression, but out-

of-sample it is the opposite: here the lasso performs better. Thus the problem of over-fitting seems to occur

more in the ridge regression than in the lasso regression. Note that although the out-of-sample MSE is lower

than in-sample, this does not imply that the out-of-sample results are better than the in-sample results. The

reason the out-of-sample MSE is lower is because the standard deviation of the out-of-sample data is lower,

which is why the out-of-sample MSE and in-sample MSE cannot directly be compared with each other.
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Table 4: Tuning parameter and in-sample mean squared error for the pooled lasso and ridge regression

Method λ1 MSE in-sample MSE out-of-sample

lasso 0.02 0.788* (0.144) 0.442* (0.033)

ridge 0.8 0.773* (0.137) 0.460* (0.034)

In between brackets () is the standard error of the MSE

* Model has lower MSE than the intercept model at the 5%

significance level

4.1.3 Cases per head subgroups

Table 5 presents the results of the groupwise cases per head lasso and ridge regressions. The MSE of the

groupwise lasso and ridge is much higher than the MSE of the pooled versions. This can be explained by

the fact that the sample size per regression is much smaller, which results in higher variance and thus higher

MSE. This is observed in the tuning constants as well: the λ’s of the groupwise regressions are much higher

than the λ’s of the pooled regressions, which shows that in the groupwise regressions lasso and ridge set more

coefficients to zero / shrink coefficients more in order to reduce the variance at the cost of more bias.

In-sample, the groupwise lasso does not perform significantly better than a simple regression with only

an intercept, which shows the explanatory power of the groupwise lasso is very poor. The groupwise ridge,

however, does perform significantly better in-sample than a simple regression with only an intercept, but not

out-of-sample. In fact, both the groupwise ridge as well as the lasso perform significantly worse out-of-sample

as compared to a regression with only an intercept.

Table 5: Tuning parameters for each subgroup and mean squared error with subgroups based on cases per

head

Method λ1 λ2 λ3 λ4 λ5 MSE in-sample MSE out-of-sample

lasso 0.2 0.4 0.1 0.1 0.2 0.989 (0.124) 0.638 (0.052)

ridge 1 4 4 3 30 0.916* (0.116) 0.604 (0.054)

In between brackets () is the standard error of the MSE

* Model has lower MSE than the intercept model at the 5% significance level

Table 6 presents the results of the joint lasso method. In-sample, both the joint lasso with `1 norm as

well as `2 norm perform significantly better than a regression with only an intercept. The joint lasso with

`1 norm performs significantly better than the `2 norm. However, out-of-sample only the `2 norm performs

better than a regression with only an intercept, for all values of τ . The `1 is the worst model up until now

in terms of out-of-sample performance for all values of τ .

The `2 norm with τ set with the coefficients method performs best out-of-sample as well as in-sample.

This result can also be seen in the value of γ: The value of γ is relatively higher with the coefficients method
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for τ as compared to the other method. This implies that the subgroups are being forced to have the same

coefficients more than with the other methods, indicating that the inter-subgroup relations are better defined

with the coefficients method.

Table 6: Tuning parameters and mean squared error for the joint lasso methods with subgroups based on

cases per head

Method γ λ τ MSE in-sample MSE out-of-sample

`1 6.00E-02 3.00E-05 Unweighted 0.622* (0.101) 0.796 (0.048)

`1 1.00E-01 6.00E-05 Coef method 0.617* (0.099) 0.810 (0.044)

`1 9.00E-02 8.00E-05 Mean method 0.633* (0.110) 0.791 (0.046)

`2 4.00E-06 3.00E-07 Unweighted 0.866* (0.165) 0.445* (0.041)

`2 4.00E-05 3.00E-07 Coef method 0.842* (0.160) 0.431* (0.037)

`2 6.00E-06 3.00E-07 Mean method 0.870* (0.163) 0.448* (0.039)

In between brackets () is the standard error of the MSE

* Model has lower MSE than the intercept model at the 5% significance level

4.1.4 Population density subgroups

Table 7 presents the results of the groupwise population density lasso and ridge regression. Just like in the

cases per head groups, the MSE of the groupwise lasso and ridge is much higher than the MSE of the pooled

versions. Again, this is explained by the increase in variance because of the smaller group sizes, which is also

observed in the large tuning constants.

In-sample, both the groupwise lasso and ridge perform significantly better than a simple regression with

only an intercept. Out-of-sample, however, both perform significantly worse than a simple regression with

only an intercept, similar to the results of the groupwise lasso with cases per head subgroups.

Table 7: Tuning parameters for each subgroup and mean squared error with subgroups based on population

density

Method λ1 λ2 λ3 λ4 λ5 MSE in-sample MSE out-of-sample

lasso 0.1 0.09 0.05 0.05 0.05 0.924* (0.123) 0.566 (0.122)

ridge 20 20 3 3 3 0.931* (0.048) 0.558 (0.047)

In between brackets () is the standard error of the MSE

* Model has lower MSE than the intercept model at the 5% significance level

Table 8 presents the results of the joint lasso method with population density subgroups. In-sample, both

the joint lasso with `1 norm as well as `2 norm perform significantly better than a regression with only an

intercept. The joint lasso with `1 norm performs significantly better than the `2 norm. However, out-of-
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sample both methods perform worse than a regression with only an intercept, for all values of τ . Just like

in the cases per head subgroups, the `1 norm performs significantly better than the `2 norm out-of-sample.

On average, the coefficients method for setting τ yields the lowest MSE and thus performs best. Again, this

can also be seen by the higher value of γ when τ is set with the coefficients method.

Table 8: Tuning parameters and mean squared error for the joint lasso methods with subgroups based on

population density

Method γ λ τ MSE in-sample MSE out-of-sample

`1 8.00E-02 4.00E-05 Unweighted 0.634* (0.091) 0.825 (0.041)

`1 1.00E-01 6.00E-05 Coef method 0.634* (0.092) 0.815 (0.045)

`1 8.00E-02 4.00E-05 Mean method 0.634* (0.097) 0.825 (0.043)

`2 3.00E-06 4.00E-07 Unweighted 0.918* (0.159) 0.517 (0.038)

`2 5.00E-05 4.00E-07 Coef method 0.896* (0.152) 0.509 (0.034)

`2 9.00E-06 4.00E-07 Mean method 0.904* (0.150) 0.509 (0.037)

In between brackets () is the standard error of the MSE

* Model has lower MSE than the intercept model at the 5% significance level

4.1.5 Comparison of the models

As lasso and ridge regressions are prone to overfitting, only the out-of-sample results of the models are

compared. Generally, both the pooled lasso, as well as the joint lasso with `2 norm with cases per head

subgroups perform the best in terms of their MSE. Ultimately, the joint lasso with `2 norm, τ set with

the coefficients method and cases per head subgroups yields the lowest MSE of all models. All groupwise

regressions and joint lasso with `1 perform worse than a simple regression with intercept. Moreover, the

joint lasso with `2 norm never significantly outperforms the pooled lasso. This indicates that the defined

subgroups (both based on population density as well as cases per head) might not have a different underlying

regression model, especially because the joint lassos do perform better than the pooled regressions in the

biomedical applications in Dondelinger & Mukherjee (2018).

Although some models do perform significantly better than the regression with only an intercept, the

difference in MSE is small. The lowest obtained out-of-sample MSE is only 14% lower than that of the

regression with only an intercept. This means that even the best model cannot predict the increase in cases

of the virus with a high accuracy.

4.2 Interpretation of coefficients

Excluding the joint lasso models, the regression with the lowest out-of-sample MSE is the pooled lasso. Thus,

the coefficients of this model are examined in this section. Note that all data are standardized, which affects
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the way the coefficients are interpreted. This has been discussed in Section 3.3.

The pooled lasso regression selects 53 variables to be in the model. After performing a linear regression on

these 53 variables, 39 variables are insignificant at the 5% significance level. After performing the general-to-

specific method, 14 variables remain that have a significant factor in predicting the spread. The coefficients

and statistical values are found in Table 9.

Of the 14 coefficients seven are weather variables. Note that six of the seven variables are either from the

period 17-23 days or 24-30 days prior diagnosis, which could indicate that infection takes place on average

between 17 to 30 days before diagnosis. A contradictory finding in the weather coefficients is that snow,

rain and thunder 17-23 days before diagnosis have positive coefficients, whereas snow and precipitation 24-30

days before diagnosis have negative coefficients. Thus, “bad” weather, eg. rain, snow or thunder, from 24-30

days prior generally increases the spread of Covid-19, whereas “bad” weather from 17-23 days prior generally

decreases the spread of Covid-19. Adding to the confusion is the fact that rain from 10-16 days prior again

increases the spread of Covid-19, as this coefficient is positive. This makes it difficult to determine the

influence of the weather on the spread of Covid-19, and prohibits making a definite conclusion.

The other seven coefficients are socioeconomic and health variables. The percentage uninsured coefficient,

which indicates the percentage of the population that have no health insurance, is -0.29. This means that

the more people that are uninsured in a county, the less the number of confirmed Covid-19 cases increases.

A possible explanation for this phenomenon is that uninsured citizens will be more reluctant to get tested,

as it will cost them relatively more money. This means that the amount of people that are uninsured only

lowers the amount of detected cases, not the real amount of cases. This coefficient has the largest absolute

value of the 14 coefficients, demonstrating the significance of its influence.

The percentage multi-unit housing coefficient is 0.21, which means that the more people live in multi-

unit housing, such as apartment buildings, the more the amount of Covid-19 cases increases. This can be

explained by the fact that habitants of these buildings live very closely to each other, so when one of the

habitants gets infected it is more likely they will infect someone else, thus worsening the spread of the virus.

This is also supported by empirical evidence, as there are numerous counts of severe outbreaks in apartment

buildings (Khan, 2020).

The percentage physically inactive coefficient is 0.16, indicating that the more people are physically

inactive, the more the amount of Covid-19 cases increases. As a general rule, physical activity ameliorates

the immune system (Shephard & Shek, 1994). Consequently, the immune system of physically inactive people

is inferior at combatting infections such as Covid-19, which explains the relationship between the amount of

Covid-19 cases and the percentage physically inactive people.

The percentage with annual mammogram coefficient is -0.094, meaning the more women have an annual

mammogram, the less the amount of confirmed Covid-19 cases increases. This seems like a strange relation,

and could simply be coincidental. After all, correlation does not imply causation. Furthermore, it is the

smallest coefficient in absolute value of all 14 coefficients, which further bolsters suspicion that it is not a
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true factor in the spread of the virus.

The income ratio coefficient is -0.16, meaning the higher the income ratio, the less Covid-19 spreads. The

income ratio is the ratio between the amount of income at the 80th percentile, and the amount of income

at the 20th percentile. Thus, the higher the income ratio, the bigger the difference is in income between

househoulds in a county, and the less the virus spreads. This is an interesting finding, but no straightforward

explanation can be made for it. It could be coincidental, just like the mammogram coefficient seems to be.

The percentage no highschool diploma coefficient is 0.225, meaning the more people did not finish high

school, the more the amount of confirmed Covid-19 cases increase. An explanation for this could be that

people without a high school diploma generally have a lower income, and will often not have desk jobs.

Therefore in a state of lockdown, these people cannot work as easily from home as other people can, and

thus go to work since they need the money.

The average traffic volume per meter of major roadways coefficient is -0.114, meaning the more traffic

there is on major roadways, the less the amount of confirmed Covid-19 cases increase. At first this seems like

a strange relationship. However, it can be an indirect relationship: a lot of traffic on roadways could indicate

a lot of people take the car, and subsequently not much people take public transportation. Then this would

imply that the more people take public transportation, the more the amount of confirmed Covid-19 cases

increase, which makes sense as there is more interaction between people when they take public transportation

instead of their own car. This indirect relationship is possible, since there is no variable included about public

transportation. It could however also be coincidental, just like it seems to be with the percentage with annual

mammogram coefficient.

4.2.1 Policy recommendations

Based on the results found using the pooled lasso model and analysing the various possible contributing

factors, two clear policy recommendations can be made. First of all, it was found that the percentage

uninsured people has a strong negative influence on the spread of the disease. It is assumed that uninsured

people are less likely to take a test as a result of the high medical costs. If these symptomatic people do not

isolate themselves and are in fact infected with Covid-19, they can infect other people which will exacerbate

the spread. Further research should be conducted to determine if this is indeed the case. If so, Covid-19 tests

and related healthcare should be made financially more accessible to these people.

Second of all, there was a positive relationship found between the number of people living in multi-unit

housing and the increase of the spread of Covid-19. This indicates that the virus can spread more easily

between residents of such buildings. The second policy recommendation is therefore to give residents of

multi-unit housing priority in testing for Covid-19, as an undetected infected habitant could cause a severe

outbreak in such apartment buildings. When one person in such a residency has tested positive for the virus,

it could also be intrumental to test everyone in the residency that shows Covid-19 symptoms. These steps

could prevent an outbreak in such a building, thereby forestalling the need to take drastic measures such as
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Table 9: Coefficients obtained from the pooled lasso after the general-to-specific method has been applied

Variable Estimate Std. Error P-value

income ratio -0.163 0.058 0.005

percentage multi-unit housing 0.214 0.068 0.002

percentage with annual mammogram -0.094 0.045 0.039

percentage uninsured -0.285 0.110 0.010

percentage physically inactive 0.155 0.062 0.013

percentage no highschool diploma 0.225 0.092 0.015

average traffic volume per meter of major roadways -0.114 0.051 0.025

rain 10-16 days prior 0.146 0.067 0.030

snow 17-23 days prior -0.180 0.060 0.003

rain 17-23 days prior -0.115 0.057 0.044

thunder 17-23 days prior -0.110 0.055 0.045

visibility 24-30 days prior 0.148 0.047 0.002

precipitation 24-30 days prior 0.115 0.039 0.003

snow 24-30 days prior 0.205 0.074 0.006

an entire appartment lockdown.

5 Conclusion

In this study it was investigated which lasso/ridge model performs best in predicting the spread of Covid-

19 and which parameters are the strongest contributors. The lasso regression pooled on all data together

is tough to beat in terms of out-of-sample mean squared error. Only one of the 12 investigated versions

of the joint lasso (insignificantly) outperforms the pooled lasso regression. The groupwise lasso and ridge

perform significantly worse than the pooled regression. Together with the fact that none of joint lasso

methods significantly outperform the pooled lasso, this indicates that the defined subgroups might not have

a different underlying regression model, especially since the joint lasso does outperform the pooled lasso in

some biomedical applications in Dondelinger & Mukherjee (2018). Additionally, the lowest obtained out-of-

sample MSE from our models is still only 14% lower than that of a regression with only an intercept, which

is not much of an improvement. It is therefore interesting for future research to investigate whether there

are models that can predict the spread of Covid-19 better, such as time series models.

The coefficients obtained from the pooled lasso have been analyzed. According to this analysis, weather

conditions, socioeconomics and health all seem to have influence on the spread of the virus. From the analysis

of the coefficients, two policy recommendations are made. Firstly, it seems that uninsured people are less likely
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to take a Covid-19 test. It is necessary to investigate if the costs of the tests are an obstacle for people with

no insurance to take tests. If this is indeed the case, it is necessary to make the test financially more accesible,

as undetected infections could exacerbate the spread. Secondly, residents in multi-unit housing should be

given priority in taking tests, as there is increased hazard of an outbreak in such buildings. Another finding

was that bad weather conditions seem to influence the spread of the virus, but because of contradictory

coefficients, no conclusion can be made on the specific relationship it has with regards to the spread.

18



References

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. (1984). Classification and regression trees. Taylor &

Francis.

Cleveland Clinic. (2020). Frequently asked questions about coronavirus disease 2019 (covid-19).

Retrieved from https://newsroom.clevelandclinic.org/2020/03/18/frequently-asked-questions

-about-coronavirus-disease-2019-covid-19/

Davis, J. (2020). Us counties: Covid19 + weather + socio/health data. Retrieved from

https://www.kaggle.com/johnjdavisiv/us-counties-covid19-weather-sociohealth-data?select=

us county sociohealth data.csv

Dondelinger, F., & Mukherjee, S. (2018). The joint lasso: high-dimensional regression for group structured

data. Biostatistics, 21 (2), 219–235.

D’Souza, G., & Dowdy, D. (2020). What is herd immunity and how can we achieve it with covid-19? Retrieved

from https://www.jhsph.edu/covid-19/articles/achieving-herd-immunity-with-covid19.html

Florida, R. (2020). The geography of coronavirus. Retrieved from https://www.bloomberg.com/news/

articles/2020-04-03/what-we-know-about-density-and-covid-19-s-spread

Friedman, J. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of

Statistical Software, 33 (1), 1 – 22.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression:biased estimation for nonorthogonal problems.

Technometrics, 12 (1), 55–67.

Johns Hopkins University. (n.d.). Covid-19 united states cases by county. Retrieved from https://

coronavirus.jhu.edu/us-map

Khan, S. (2020). Coronavirus: people in tall buildings may be more at risk – here’s how to stay

safe. Retrieved from https://theconversation.com/coronavirus-people-in-tall-buildings-may-be

-more-at-risk-heres-how-to-stay-safe-135845

Lauer, S. A., Grantz, K. H., Bi, Q., & Jones, F. K. (2020). The incubation period of coronavirus disease

2019 (covid-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal

Medicine.

Petri, A. E. (2020). The experience of getting tested for coronavirus. Retrieved from https://www.nytimes

.com/article/test-for-coronavirus.html

Saar-Tsechansky, M., & Provost, F. (2007). Handling missing values when applying classification models.

Journal of Machine Learning Research, 8 , 1625–1657.

19

https://newsroom.clevelandclinic.org/2020/03/18/frequently-asked-questions-about-coronavirus-disease-2019-covid-19/
https://newsroom.clevelandclinic.org/2020/03/18/frequently-asked-questions-about-coronavirus-disease-2019-covid-19/
https://www.kaggle.com/johnjdavisiv/us-counties-covid19-weather-sociohealth-data?select=us_county_sociohealth_data.csv
https://www.kaggle.com/johnjdavisiv/us-counties-covid19-weather-sociohealth-data?select=us_county_sociohealth_data.csv
https://www.jhsph.edu/covid-19/articles/achieving-herd-immunity-with-covid19.html
https://www.bloomberg.com/news/articles/2020-04-03/what-we-know-about-density-and-covid-19-s-spread
https://www.bloomberg.com/news/articles/2020-04-03/what-we-know-about-density-and-covid-19-s-spread
https://coronavirus.jhu.edu/us-map
https://coronavirus.jhu.edu/us-map
https://theconversation.com/coronavirus-people-in-tall-buildings-may-be-more-at-risk-heres-how-to-stay-safe-135845
https://theconversation.com/coronavirus-people-in-tall-buildings-may-be-more-at-risk-heres-how-to-stay-safe-135845
https://www.nytimes.com/article/test-for-coronavirus.html
https://www.nytimes.com/article/test-for-coronavirus.html


Shephard, R. J., & Shek, P. N. (1994). Potential impact of physical activity and sport on the immune system

- a brief review. British Journal of Sports Medicine, 28 , 247–255.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society , 58 (1), 267–288.

World Health Organization. (2020). Timeline of covid-19. Retrieved from https://www.who.int/news

-room/detail/27-04-2020-who-timeline\OT1\textemdashcovid-19

20

https://www.who.int/news-room/detail/27-04-2020-who-timeline\OT1\textemdash covid-19
https://www.who.int/news-room/detail/27-04-2020-who-timeline\OT1\textemdash covid-19


6 Appendix

Table 10: Values used for λ and γ in initial cross-validation.

Values of both λ and γ

0 1.00E-05 2.00E-04 3.00E-03 4.00E-02

1.00E-06 2.00E-05 3.00E-04 4.00E-03 5.00E-02

2.00E-06 3.00E-05 4.00E-04 5.00E-03 6.00E-02

3.00E-06 4.00E-05 5.00E-04 6.00E-03 7.00E-02

4.00E-06 5.00E-05 6.00E-04 7.00E-03 8.00E-02

5.00E-06 6.00E-05 7.00E-04 8.00E-03 9.00E-02

6.00E-06 7.00E-05 8.00E-04 9.00E-03 1.00E-01

7.00E-06 8.00E-05 9.00E-04 1.00E-02

8.00E-06 9.00E-05 1.00E-03 2.00E-02

9.00E-06 1.00E-04 2.00E-03 3.00E-02

If the optimal value found was 0 or 1.00E-06, the range was

broadened with values between 0 and 1.00E-06.

If the optimal value found was 1.00E-01, the range was

broadened with values above 1.00E-01

21



Table 11: Overview of used variables in the lasso and ridge regressions (part 1 of 2)

Part 1 of the variables used in the regressions

mean temp 3-9 percent low birthweight num households with severe cost burden

min temp 3-9 percent smokers percent severe housing cost burden

max temp 3-9 percent adults with obesity percent less than 18 years of age

dewpoint 3-9 food environment index percent 65 and over

station pressure 3-9 percent physically inactive num black

visibility 3-9 percent with access to exercise opportunities percent black

wind speed 3-9 percent excessive drinking num american indian alaska native

max wind speed 3-9 num alcohol impaired driving deaths percent american indian alaska native

precipitation 3-9 num driving deaths num asian

fog 3-9 percent driving deaths with alcohol involvement percent asian

rain 3-9 num chlamydia cases num native hawaiian other pacific islander

snow 3-9 chlamydia rate percent native hawaiian other pacific islander

mean temp 10-16 teen birth rate num hispanic

min temp 10-16 num uninsured percent hispanic

max temp 10-16 percent uninsured num non hispanic white

dewpoint 10-16 num primary care physicians percent non hispanic white

station pressure 10-16 primary care physicians rate num not proficient in english

visibility 10-16 num dentists percent not proficient in english

wind speed 10-16 dentist rate percent female

max wind speed 10-16 num mental health providers num rural

precipitation 10-16 mental health provider rate percent rural

fog 10-16 preventable hospitalization rate num housing units

rain 10-16 percent with annual mammogram num households CDC

snow 10-16 percent vaccinated num below poverty

thunder 10-16 high school graduation rate num unemployed CDC

mean temp 17-23 num some college per capita income

min temp 17-23 population num no highschool diploma

max temp 17-23 percent some college num age 65 and older

dewpoint 17-23 num unemployed CHR num age 17 and younger

station pressure 17-23 labor force num disabled

visibility 17-23 percent unemployed CHR num single parent households CDC

wind speed 17-23 percent children in poverty num minorities

max wind speed 17-23 eightieth percentile income num multi unit housing

precipitation 17-23 twentieth percentile income num mobile homes

fog 17-23 income ratio num overcrowding

rain 17-23 num single parent households CHR num households with no vehicle

snow 17-23 percent single parent households CHR num institutionalized in group quarters
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Table 12: Overview of used variables in the lasso and ridge regressions (part 2 of 2)

Part 2 of the variables used in the regressions

thunder 17-23 num associations percent below poverty

mean temp 24-30 social association rate percent unemployed CDC

min temp 24-30 annual average violent crimes percent no highschool diploma

max temp 24-30 violent crime rate percent age 65 and older

dewpoint 24-30 num injury deaths percent age 17 and younger

station pressure 24-30 injury death rate percent disabled

visibility 24-30 average daily pm2 5 percent single parent households CDC

wind speed 24-30 presence of water violation percent minorities

max wind speed 24-30 percent severe housing problems percent limited english abilities

precipitation 24-30 severe housing cost burden percent multi unit housing

fog 24-30 overcrowding percent mobile homes

rain 24-30 inadequate facilities percent overcrowding

snow 24-30 percent drive alone to work percent no vehicle

thunder 24-30 percent long commute drives alone percent institutionalized in group quarters

mean temp 3-30 life expectancy percentile rank below poverty

min temp 3-30 num deaths 2 percentile rank unemployed

max temp 3-30 age adjusted death rate percentile rank per capita income

dewpoint 3-30 percent frequent physical distress percentile rank no highschool diploma

station pressure 3-30 percent frequent mental distress percentile rank socioeconomic theme

visibility 3-30 percent adults with diabetes percentile rank age 65 and older

wind speed 3-30 num food insecure percentile rank age 17 and younger

max wind speed 3-30 percent food insecure percentile rank disabled

precipitation 3-30 num limited access percentile rank single parent households

fog 3-30 percent limited access to healthy foods percentile rank household comp disability theme

rain 3-30 percent insufficient sleep percentile rank minorities

snow 3-30 percent uninsured 2 percentile rank limited english abilities

thunder 3-30 num uninsured 3 percentile rank minority status and language theme

total population percent uninsured 3 percentile rank multi unit housing

area sqmi other primary care provider rate percentile rank mobile homes

population density per sqmi median household income percentile rank overcrowding

years of potential life lost rate percent enrolled in free or reduced lunch percentile rank no vehicle

percent fair or poor health average traffic volume per meter of major roadways percentile rank institutionalized in group quarters

average number of physically unhealthy days num homeowners percentile rank housing and transportation

average number of mentally unhealthy days percent homeowners percentile rank social vulnerability
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