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Abstract 

This research covers the topic of optimal bidding strategies in first-price sealed bid private valuation 

auctions. It aims to answer the research question: How do overconfidence and over-optimism affect 

the optimal bidding strategy in first-price sealed bid auctions? Literature will be used to define these 

behavioural biases and describe the literature on the topic so far. The answer to the research question 

will then be formed by using the model of McMillan (1992) and extending this model to take into 

account these biases. Over-optimism and overconfidence increase the perceived chance of winning 

the auction and leave the optimal bid unchanged if the believed chance of winning the auction is 

increased due to a multiplicative parameter. If the number of bidders is believed to be lower or the 

chance of winning is additively believed to be higher, bidders in optimum decrease their bid.  
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Introduction  

Auctions are important for the economy because they involve enormous amounts of money. Many 

products are standardly sold through auctioning and some markets display similar characteristics as 

auctions without formally being one (Klemperer, 1999). Theory distinguishes between four basic types 

of auctions: the ascending-bid auction, the descending-bid auction, the first-price sealed bid auction 

and the second-price sealed bid auction. The four types have different optimal bidding strategies. The 

valuation of the object for sale can be common value, meaning that the value is the same for everyone 

but private information about the valuation can differ. The value can also be a pure private valuation, 

in which case the buyer has a private valuation only known by himself. It could also be the case that 

there is a combination of both types (Klemperer, 1999).  

It is becoming increasingly clear that individuals do not always act in a way that maximizes 

their utility. In behavioural economics, many biases are found that influence the way people behave 

and make choices. One of these biases is over-optimism. Sharot (2011) states that over-optimism is 

the tendency to overestimate the likelihood of positive events. Capraa, Laniera, and Meerb (2010) 

found that through mood, over-optimism can influence the valuation of the object, the willingness to 

pay, and the bidding behaviour.  Another behavioural bias that occurs in auctioning is overconfidence. 

The difference between over-optimism and overconfidence is that overconfidence often results in 

people tending to believe the precision of their information is higher (Herz, Schunk, & Zehnder, 2014). 

In auctioning, it could thus very well be that overconfident people believe probabilities of winning to 

be higher just as over-optimistic people would. Because this distinction is relatively small and not yet 

exactly determined for auctioning, over-optimism and overestimation will be examined in the same 

sub question. Overconfident people may overestimate how certain they are of the valuation. This is 

also believed to be the reason for the occurrence of the winner’s curse, a situation in which the winner 

of an auction overbids the value of the object because his estimate of the value was the most optimistic 

one. There are three types of overconfidence according to Moore and Healy (2008), namely 

overestimation, overprecision and overplacement. 

Behavioural biases can have a big impact on the outcome of auctions, potentially leading to 

losses for the bidders. To my knowledge, most of the research regarding optimal bidding is done 

focussing on first-price or second-price auctions, but not on sealed bid auctions. Also, there has not 

been a lot of research about over-optimism in auctioning. How these types of biases exactly affect the 

optimal bidding strategy has not yet been determined by researchers. Therefore, it can be very 

insightful to do more research on this subject, as it could help people understand bidding behaviour 
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better. This paper will thus aim to expand the basic model of optimal bidding under first-price sealed 

bid auctions to account for over-optimism and overconfidence. The research question is:  

How do overconfidence and over-optimism affect the optimal bidding strategy in first-price 

sealed bid auctions?  

To answer this question, a few sub questions will be answered. These sub questions are: 

(1) What is the effect of over-optimism or overestimation on the bidding strategy? 

(2) What is the effect of overprecision on the bidding strategy? 

The social relevance is that a lot of money is at stake in total in these types of auctions. Also, 

understanding the effect of behavioural biases is important because of the enormous effect it could 

have on bidders. They can be helped to understand their behaviour and limitations better, potentially 

saving them a lot of money. This does not affect overall surplus, because the bidders loss is the sellers 

gain. In general, the bidder is the weaker party. If society values the interests of the bidder more than 

that of the auctioneer, society as a whole is better off. Also, potentially the results from this research 

can provide auctioneers with information they can use to better organize their auctions. Perhaps 

behavioural biases make people bid more, meaning it is in the auctioneers best interest to let biased 

bidders bid biasedly. On the other hand, if bidders bid less due to biases, the auctioneer would do well 

to reduce bias in the hopes of increasing bids. The scientific relevance is the contribution to auction 

theory and the expansion of theory regarding optimal bidding strategy and behavioural biases to first-

price sealed bid auctions. This research aims to explain how the behavioural biases overconfidence 

and over-optimism can affect bidders and what this does to their optimal bidding strategy. This is a 

contribution to existing theory, as theory regarding this subject is scarce.  

Next, the existing theory will be discussed and the sub questions will be introduced in the 

theoretical framework. After this the model by McMillan (1992), that will be the basis for the models 

that follow, will be explained. It will also be discussed in what ways this model can be altered to account 

for the behavioural biases that are of interest in this research. Following the methodology, is the results 

section. In this section the results of the models will be discussed extensively. After this, a conclusion 

and discussion will follow. 

 

Theoretical framework 

The existing literature on the subject of the optimal bidding strategy for first-price sealed bid private 

valuation auctions for bidders that are subjected to over-optimism and overconfidence is limited. To 



6 
 

my knowledge, there has not yet been explicitly tested how these biases alter the bidding behaviour 

and the bids people make. Also, theoretically there is little known on how these biases change the 

bidding function. Therefore, the literature is not sufficient to convincingly predict in what way 

overconfidence and over-optimism affect the bidding function. This research will thus look at the 

different ways these biases can affect the bidding function and how that would affect the optimal 

bidding strategy. Multiple possible ways in which over-optimism and overconfidence affect bidders 

beliefs will be explored to see how the bidding function would be affected. 

 

Even though the literature does not explicitly state how over-optimism and overconfidence 

alter the optimal bid for first-price sealed bid auctions, it can help predict the potential effects on the 

bidding function. Capraa, Laniera, and Meerb (2010) did an experiment and found that over-optimism 

can have multiple effects on bidding behaviour. This over-optimism was induced through mood. The 

type of auction in this research is not a first-price sealed bid private valuation auction. Nevertheless, 

general lessons about the effect of over-optimism could be used to determine the effect it could have 

on other types of auctions. They found that mood can increase the willingness to pay and can also alter 

peoples valuations and change their bidding behaviour. This research will not go into the origin of the 

over-optimism, but will focus on the effect it has on the bidding strategy. Johnson and Tversky (1983) 

write that over-optimism makes people misperceive probabilities when the outcome of an event is 

desirable or undesirable. People tend to attach higher probabilities to desirable events and lower 

probabilities to undesirable events. Because people willingly join auctions and want to win the object, 

winning the auction can be seen as a desirable event. Over-optimism can thus affect bidders in such a 

way that they consistently believe the chance of winning to be higher and the chance of losing to be 

lower. It can also alter the valuation of a bidder.  

 

In auctions that sell an object that is purely a private value object, it seems unlikely that rational 

bidders would overbid, as it is known to them what the exact valuation is. However, Goeree, Holt and 

Palfrey (2002) show with their model that in first-price private value auctions there can also be 

overbidding if the cost of overbidding is relatively low. The optimal bidding strategy for first price 

private value auctions would be to stop bidding when the price reaches the bidders private valuation. 

It is thus in practice not always the case that individuals act according to what would be their optimal 

strategy. Perhaps people do not always know what their exact private valuation is. Overconfidence 

could be an explanation for this phenomenon. Theory distinguishes between tree different types of 

overconfidence, as described by Moore and Healy (2008). The first one is the overestimation of one’s 

actual performance, also known as overestimation. Overestimation can vary from overestimating the 

chance of success to overestimating the level of control. If overestimation in auctioning leads to 
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bidders overestimating the chance of winning the auction, the effect is similar to that of over-

optimism. Formally, the distinction between over-optimism and overconfidence in the existing 

literature is that over-optimistic people overestimate their chance of success and overconfident 

people tend to overestimate the accuracy with which they estimate this chance of success (Herz, 

Schunk, & Zehnder, 2014). In auctioning however, this distinction is not yet clearly found and the 

effects of these biases can be very similar. Therefore the first sub question is:  

(1) What is the effect of over-optimism or overestimation on the bidding strategy? 

The second type of overconfidence is the overplacement of performance relative to others. 

This is also called the better-than-the-average effect or overplacement. An example of this is asking a 

certain number of people if they believe themselves to be a better driver than the average. In 

expectation, 50% of people are. However, if more than 50% of people believe themselves to be better, 

this is due to overplacement. The last type is excessive precision in one’s beliefs, or overprecision. 

Usually, this is investigated by asking people their 90% confidence intervals for numerical answers to 

questions. If 10 questions are answered, in expectation 9 of those should fall within the confidence 

interval. In general, the results of these experiments show that people are correct significantly less 

than they would be were they actually 90% confident.  

The three types of overconfidence could have different effects on the bidding strategy. 

Overestimation could lead to bidders believing they are more likely to win the auction than they 

actually are. The bidder makes a wrong estimation of the chance of winning, by structurally thinking 

the chance of winning is higher. Bazerman and Samuelson (1983) found that in common value auctions 

overestimation increased in the number of bidders and in the uncertainty of the valuation of the 

object. However, to my knowledge, little research has been done for private value auctions and how 

behavioural biases affect the optimal bidding strategy. Perhaps the chance of winning the auction for 

first-price sealed bid private value auctions would be structurally overestimated dependent on the 

number of bidders, as has been found for common value auctions.  

Overplacement of performance seems less likely to influence the bidding strategy of first-price 

sealed bid private valuation auctions. Overplacement might make bidders believe they performed 

better than the average bidder, but this is after the auction took place. Therefore, this specific type of 

overconfidence will not be investigated in this research. The third type of overconfidence, 

overprecision, could potentially influence the bidding strategy. If a bidder is more confident in his 

private valuation, he believes potential overbidding to be less common. For example, if a bidder values 

an object with a 10% margin of error, but believes this margin to be 5%, he fails to take into account 

some range of potential losses. It could also make the bidder believe others won’t value the object as 
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highly as himself. To examine the effect this can have on the bidding strategy, the second sub question 

is: 

(2) What is the effect of overprecision on the bidding strategy? 

 

Methodology 

The basic model that will be used is the one described by McMillan (1992). It assumes that bidders 

know their own valuation, but not those of other bidders. The valuations lie somewhere between 0 

and 1 and are uniformly distributed. Every bidder has his own private valuation and bidders are 

homogenous. In the model there are i bidders, in which i=1,2,3…n. The bid of bidder i is denoted as 𝐵𝑖. 

The valuation of bidder i is denoted by 𝑉𝑖. Valuations are uniformly distributed between 0 and 1, 

meaning that any valuation ≥0 or ≤1 is equally likely. Bidders assume other bidders shade their bid, so 

that the bid of other bidders 𝐵𝑗 is their valuation 𝑉𝑗 multiplied with a factor k. If k=1 a bidder bids his 

total valuation. Because of the uniform distribution, the probability that 𝐵𝑖  is higher than someone 

else’s bid is: Pr(𝐵𝑖  ≥ k*𝑉𝑗) = Pr(k*𝑉𝑗 ˂ 𝐵𝑖) = Pr(𝑉𝑗 ˂ 
𝐵𝑖

𝑘
 ) = 

𝐵𝑖

𝑘
.  

There are n bidders, of which one is bidder i himself. The probability of winning the auction 

with n bidders therefore is: (
𝐵𝑖

𝑘
)𝑛−1. The probability of winning thus depends on the number of 

competitors (n-1), the bid of bidder i and the shading of other bidders. Assumed is that k is a parameter 

with values above 0 and below or equal to 1. In general, if 𝐵𝑖  is lower than k, 
𝐵𝑖

𝑘
  is smaller than 1. A 

function smaller than one to the power of n-1, decreases if n increases. The more competitors there 

are, the smaller the chance of winning the auction.  

If bidder i wins the auction, he earns his valuation minus his bid. This can be represented by 

(𝑉𝑖 - 𝐵𝑖). The profit for bidder i when winning the auction thus only depends on his own valuation 𝑉𝑖 

and what the bidder has to pay for the object, his bid 𝐵𝑖. Bidder 𝐵𝑖  maximizes his probability of winning 

multiplied with the payoff of winning. This can be seen as the expected value of bid 𝐵𝑖. The 

maximization problem can be represented as: 

(1)  max
𝐵𝑖

(
𝐵𝑖

𝑘
)𝑛−1(𝑉𝑖 - 𝐵𝑖).  

The shape of this function depends on the values of the parameters, but in general the shape 

of the function is comparable to the figure shown below. In Figure 1, the expected value of this function 

is plotted. This has been done for values of 𝑉𝑖 = 0.9, 𝑘 = 0.9 and n = 9. The x-axis is 𝐵𝑖  and the y-axis 

can be seen as the expected value of a certain bid 𝐵𝑖, labelled as EV(𝐵𝑖). For these specific values of 
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the parameters, the bid that maximizes the expected value is at 𝐵𝑖 = 0.8. There are two forces when 

increasing a bid. The higher the bid, the higher the chance of winning the auction. This increases the 

expected profit of the auction. On the other hand, increasing the bid also increases the cost of winning 

the auction. This lowers the expected profit of the auction. Bidders thus have to consider both forces 

when determining what to bid.  

    
Figure 1. Plot of (

𝐵𝑖

𝑘
)𝑛−1(𝑉𝑖 - 𝐵𝑖) with 𝑉𝑖 = 0.9, 𝑘 = 0.9 and n = 9 

 

The maximization problem in expression (1) can be derived more extensively to find the bid 

that maximizes the expected value. This bid can be seen as the optimal bid for bidder i. Graphically, 

the expected value maximizing bid is the peak of the function, which is at 𝐵𝑖 = 0.8 in Figure 1. 

Mathematically, the optimal bid can be found by deriving expression (1) as has been done below: 

(
𝐵𝑖

𝑘
)

𝑛−2
(𝑉𝑖 − 𝐵𝑖)(𝑛 − 1)

1

𝑘
− (

𝐵𝑖

𝑘
)

𝑛−1
= 0  

(
1

𝑘
)𝑛−2(𝐵𝑖)𝑛−2(𝑉𝑖 − 𝐵𝑖)(𝑛 − 1)

1

𝑘
− (𝐵𝑖)𝑛−1(

1

𝑘
)𝑛−1 = 0   

(𝐵𝑖)𝑛−2(𝑉𝑖 − 𝐵𝑖)(𝑛 − 1) − (𝐵𝑖)𝑛−1 = 0  

(𝑉𝑖 − 𝐵𝑖)(𝑛 − 1) =  
𝐵𝑖

𝑛−1

𝐵𝑖
𝑛−2  

(𝑉𝑖 − 𝐵𝑖)(𝑛 − 1) =  𝐵𝑖   

𝑉𝑖(𝑛 − 1) =  𝐵𝑖 +  𝐵𝑖(𝑛 − 1)  

𝐵𝑖
∗ =  𝑉𝑖(1 −

1

𝑛
)  

  The general results from this model is that bidders shade their valuation 𝑉𝑖 with fraction k = 

(1 −
1

𝑛
). The more competitors there are, the closer k will get to 1. Bidder i thus shades less if the 

number of competitors increases. This model will be the basis for expansion to over-optimism and 

overconfidence.  
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Accounting for over-optimims and overconfidence 

Because the existing literature on the topic of overconfidence and over-optimism does not 

convincingly predict how the bidding function is affected by these biases, multiple possibilities will be 

explored. This will be done by translating what theory suggests is the affect of these biases on the 

beliefs of bidders to the models or by trying other possible alterrations to the parameters of the 

models. Both multiplicative or additive parameters will be examined. Moreover, the biases can have 

character traits in common. For example, both over-optimism and overconfidence can change a 

bidders perception of the probability of winning the auction. Therefore, some models could potentially 

be a representation for both biases.  

Over-optimism and overconfidence can make bidders overestimate their chances of success. 

The chance of success, (
𝐵𝑖

𝑘
)𝑛−1, is dependent on 𝐵𝑖, k and n. These parameters could thus all be 

misperceived by bidders because they are over-optimistic or overconfident. It could also be the case 

that the biases do not affect these specific parameters, but instead the total probability of winning the 

auction. This could be perceived to be multiplicatively or additively higher. Because the exact way in 

which the bidding function is affected is not known yet, these options will be examined. 

Firstly, the case for a multiplicative parameter will be examined. This multiplicative parameter 

is a constant that is multiplied with the total probability of winning the auction. To represent this in 

the model, a parameter α will be added. The parameter increases if a bidder believes to have a higher 

chance of winning the auction. In other words, the bidder believes the chance of winning to be 

multiplied by α. If α is 1, the function represents the function of an unbiased bidder. Any value larger 

than 1 means that the bidder believes his chance of winning the auction to be higher. This only 

influences the perceived probability of winning the auction, and not the profit for the bidder if he turns 

out to win the auction. The bidder’s valuation does not change, so the only difference is the beliefs of 

the bidder that he has a higher chance of winning the auction. The probability of winning the auction 

thus becomes 𝛼(
𝐵𝑖

𝑘
)𝑛−1 and the profit for the bidder if he wins the auction remains (𝑉𝑖 − 𝐵𝑖). The 

optimization problem for this setting is defined as expression (A), of which the extensive derivation 

can be found in Appendix A: 

(A) 𝛼(
𝐵𝑖

𝑘
)𝑛−1

𝐵𝑖

𝑀𝑎𝑥 (𝑉𝑖 − 𝐵𝑖) 

Another way the probability of winning the auction could be perceived to be higher, is if the 

total probability of winning the auction is increased with an additive parameter. To represent this in 

the model, a parameter c will be added as a constant to the probability of winning the auction. If c = 0 

the model is the same as for an unbiased bidder. c Can take any value ≥ 0. However, the sum of 
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(
𝐵𝑖

𝑘
)𝑛−1 + 𝑐 ≤  1. This is because probabilities cannot exceed 1. Values smaller than 0 would imply the 

bidder thinks he has less chance to win, which is unlikely for an over-optimistic or overconfident bidder. 

The bidder will thus believe his probability to be c higher than it in reality is. The extensive derivation 

of this setting can be found in Appendix B. The optimization problem is denoted by (B): 

(B) (𝐵𝑖

𝑀𝑎𝑥 (
𝐵𝑖

𝑘
)𝑛−1 + 𝑐)(𝑉𝑖 −  𝐵𝑖) 

One more way in which the bidder can think he has a higher chance of winning the auction, is 

if he believes the chance of bidding more than someone else is additively higher. For every additional 

competitor, the bidder thinks his chance of winning the auction is higher. This can be represented by 

adding a constant d to the chance of bidding higher than someone else. Assumed will be that 
𝐵𝑖

𝑘
+ 𝑑 ≤ 

1, because the probability of winning the auction cannot become higher than 1. The optimization 

problem that follows is denoted by expression (C) and the extensive derivation of this maximization 

problem can be found in Appendix C: 

(C)  (
𝐵𝑖

𝑘
+ 𝑑)

𝑛−1
(𝑉𝑖 − 𝐵𝑖)𝐵𝑖

𝑀𝑎𝑥  

Next, the cases in which the total probability of winning the auction is perceived to be higher 

will be examined by altering the parameters that are an input for this probability. Firstly, the setting 

for which a bidder believes there to be less competitors is investigated. The less competitors there are, 

the more likely the bidder is to win the auction. The number of competitors could be believed to be 

lower by a fixed number of bidders. This will be represented in the model by subtracting an additive 

parameter e. If e = 0, the model becomes the model by McMillan (1992) and represents the case for 

unbiased bidders. Assumed will be that e is never larger than 𝑛 − 1, because otherwise it would mean 

that the bidder can also believe there to be a negative number of competitors. This is not possible. The 

probability of winning the auction therefore becomes: (
𝐵𝑖

𝑘
)𝑛−1−𝑒. The optimization problem for this 

setting is denoted below in equation (D). The derivation of this model is shown in Appendix D. 

(D) max
𝐵𝑖

(
𝐵𝑖

𝑘
)𝑛−1−𝑒(𝑉𝑖 – 𝐵𝑖). 

A similar setting as in equation (D) will be instigated next. However, the parameter will not be 

additive but multiplicative. The bidder will believe his chances of winning the auction to be higher, 

because he believes there to be less competitors by a fraction p. In other words, if the number of 

competitors increases by a certain amount, the bidder does not take all of them into account but just 

a fraction of them. This will be represented in the model by subtracting 𝑝𝑛 from the number of 

competitors, making the probability of winning the auction (
𝐵𝑖

𝑘
)𝑛−1−𝑝𝑛. If p = 0, the model represents 
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bidders that are not subjected to biases. Assumed will be that the value of p can vary between 0 and 

1. In addition, 𝑛 − 1 − 𝑝𝑛 ≥ 0. Otherwise the bidder could potentially believe there to be a negative 

number of competitors, which is not possible. The extensive derivation of this model is found in 

Appendix E. The maximization problem for this setting is: 

(E) max
𝐵𝑖

(
𝐵𝑖

𝑘
)𝑛−1−𝑝𝑛(𝑉𝑖 – 𝐵𝑖). 

Another potential effect these biases could have on the bidding function, is that the bidder 

thinks others shade their bid more. This changes the bidders beliefs about the chance he has to win 

the auction, by changing the beliefs about the probability of bidding higher than someone else. To 

represent this in the model, competitor bidders are believed to bid (k-z)*𝑉𝑗. They are thus believed to 

bid less than in the model for unbiases bidders, as (k-z)*𝑉𝑗 < k*𝑉𝑗. The believed probability of bidding 

higher than someone else therefore becomes: Pr(𝐵𝑖  ≥ (k-z)*𝑉𝑗) = Pr((k-z)*𝑉𝑗 ˂ 𝐵𝑖) = Pr(𝑉𝑗 ˂ 
𝐵𝑖

𝑘−𝑧
 ). 

Assumed will be that 0 ≤ z ˂ k, because otherwise it would mean that bidders shade with a negative 

fraction, which is not possible. If this restriction on z is not assumed, it can also increase the fraction 

of shading to values above 1. This would mean that bidders bid over their private valuation, which 

would result in potential losses. This can happen if z < 0, because (𝑘 −  −𝑧) = (𝑘 + 𝑧). The 

optimization problem for this way of representing biases in the model is derived in Appendix F. The 

new maximization problem denoted by expression (F) becomes:  

(F) max
𝐵𝑖

(
𝐵𝑖

𝑘−𝑧
)𝑛−1(𝑉𝑖 – 𝐵𝑖).  

Increasing the believed probability of winning the auction for the bidder, could also be because 

the bidder believes to be more precise in his estimates than his competitors. This can be represented 

in multiple ways. Again, theory does not convincingly dictate how overconfidence affects the bidding 

function for first-price sealed bid private valuation auctions. Therefore, multiple possibilities will be 

examined. Firstly, the bidder can believe the valuations to be distributed differently. For example he 

does not believe the valuations to be between 0 and 1, but between 0 and a parameter γ. This can be 

represented in the model by changing the range of valuations with parameter γ. This parameter can 

take any value above 0. If γ is 1, the model represents the model for unbiased bidders and is thus the 

same as the basic model. If γ is 1.2, the bidder believes the valuations can be 20% higher than they are 

in reality. Therefore, the valuations of competitors will now be believed to be uniformly distributed 

between 0 an γ. This alters the input of the model, because the introduced parameter changes the 

beliefs the bidder has about the chance of bidding higher than someone else. The probability of bidding 

higher than a competitor becomes Pr(𝑉𝑗 ˂ 
𝐵𝑖

𝑘
) = γ

𝐵𝑖

𝑘
. This changes the probability of winning the auction 
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to (𝛾
𝐵𝑖

𝑘
)𝑛−1. The maximization problem for this setting is denoted in equation (G) and the extensive 

derivation for this model is found in Appendix G. 

(G) (𝛾
𝐵𝑖

𝑘
)𝑛−1(𝑉𝑖𝐵𝑖

𝑀𝑎𝑥 −  𝐵𝑖) 

So far, all the models are based on the model by McMillan (1992). This model is symmetrical, 

and thus assumes all bidders are homogenous. It therefore does not allow for examining situations in 

which bidders are heterogenous. In practice, it can very well be the case that bidders are biased in 

different ways or that some are more biased than others. Examining heterogeneity in bidders that are 

over-optimistic or overconfident could thus be very insightful. A setting in which heterogeneity occurs, 

is when a bidder believes others to not bid at the extremes. This can be a potential effect of 

overconfidence. For example, the bidder believes the valuation of his competitors to have a smaller 

distribution than his own. For simplicity, this setting will be looked at for two bidders. Bidder i is the 

biased bidder and bidder j is the unbiased bidder. In this setting, bidder i believes 0 ≤ 𝑉𝑗  ≤ 0.8. His 

own valuation 𝑉𝑖 can then be either between 0 and 0.8 or above 0.8. This is a heterogenous model, as 

bidder i is different from the other bidder, because of his bias. If 𝑉𝑖 ≥ 0.8, the bidder believes no one 

will bid more than his valuation. Bidding higher than 0.8 would then only result in more costs, without 

increasing the probability of winning. Assumed will be that the unbiased bidder j follows the general 

optimal bidding strategy that follows from the basic model by McMillan (1992), which is to bid 𝐵𝑗
∗ = 

𝑉𝑗(1 - 
1

2
) =

1

2
𝑉𝑗. Bidder i knows bidder j follows this bidding strategy. Because this setting is not for 

symmetrical bidders, the optimal bid of the biases bidder i will be examined from a strategic point of 

view. Model H can be found more extensively in Appendix H. 

 Below in Table 1 an overview of the models is provided. It shortly describes how the models 

are different from the model by McMillan (1992) and what assumptions are made on the parameters: 

Table 1 

Overview of the models describing the difference from the basic model and the assumptions on the 

parameters. 

Model: Difference from basic model: Assumptions parameters: 

A A multiplicative parameter α increases the believed total 

probability of winning the auction to: 𝛼(
𝐵𝑖

𝑘
)𝑛−1. 

α ≥ 1 

B An additive parameter c increases the believed total 

probability of winning the auction to:  ((
𝐵𝑖

𝑘
)𝑛−1 + 𝑐). 

(
𝐵𝑖

𝑘
)𝑛−1 − 1 ≥ 𝑐 ≥ 0  
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C An additive parameter increases the believed chance of 

bidding higher than someone else to: 
𝐵𝑖

𝑘
+ 𝑑. 

0 ≥ 𝑑 ≥ 1 −
𝐵𝑖

𝑘
  

D An additive parameter 𝑒 is subtracted from the number of 

competitors, making the believed probability of winning the 

auction: (
𝐵𝑖

𝑘
)𝑛−1−𝑒.  

𝑛 − 1 > 𝑒 ≥ 0  

E A multiplicative parameter 𝑝𝑛 is subtracted from the number 

of competitors, making the believed probability of winning 

the auction: (
𝐵𝑖

𝑘
)𝑛−1−𝑝𝑛. 

0 ≤ 𝑝 < 1  

𝑛 − 𝑝𝑛 ≥ 1  

F An additive parameter 𝑧 is subtracted from the fraction k with 

witch competitors shade. The believed probability of winning 

the auction becomes: (
𝐵𝑖

𝑘−𝑧
)𝑛−1. 

𝑘 > 𝑧 ≥ 0  

G Parameter γ is multiplied with the potential valuations of 

competitors changing the believed probability of winning the 

auction to: (𝛾
𝐵𝑖

𝑘
)𝑛−1. 

𝛾 > 0  

H The bidder believes his competitors won’t bid above 0.8, this 

model will be looked at from a strategic point of view. 

 

 

 

Results 

Model A in Appendix A contains the model in which a multiplicative parameter α was multiplied with 

the total probability of winning the auction. The optimal bidding strategy is unchanged compared to 

the basic model by McMillan (1992). The optimal bid for a bidder is 𝐵𝑖
∗ = 𝑉𝑖(1 - 

1

𝑛
). This thus means that 

if the number of competitors n increases, the bidder maximizes his expected value by increasing his 

bid. The optimal shading fraction is k = (1 - 
1

𝑛
). In Figure 2 a plot is made to compare the expected value 

function of a bidder that is not biased with a bidder that is biased in the way that is represented by 

model A. The function for the unbiased bidder is in green versus the biased bidder in red. The values 

of the parameters are 𝑉𝑖 = 0.9, 𝑘 = 0.9, n = 9 and α = 2. It can be seen that the parameter α amplifies 

the peak of the function, but does not shift the optimal bid. 



15 
 

 

Figure 2. Plot of model A (red line) and the basic model by McMillan (1992) with 𝑉𝑖 = 0.9, 𝑘 = 0.9, n 

= 9 and α = 2 

 The multiplicative parameter increases the expected value with factor α, but does not change 

the bid at which this expected value is maximized. This is the reason the optimal bidding function 

remains unchanged compared to the original model. This is contradictory with the findings of Capraa, 

Laniera, and Meerb (2010). They wrote that over-optimism increases the perceived chance of winning 

and the willingness to pay. 

 Model B in Appendix B contains the model in which an additive parameter c is added to the 

total probability of winning the auction. Algebraically, this model is difficult to optimize and solve. 

Therefore a plot of this model is  made in comparison to the basic model for different values of c. This 

plot can be found in Figure 8 in Appendix B. For very low values of c there is an optimal bid. This optimal 

bid decreases in c. For higher values of c there is no optimal bid, because the peak is no longer present. 

This is because there are corner solutions when c is not relatively small. It would then be optimal for 

bidders to bid 0. For different values of 𝑉𝑖 these corner solutions also remain, as is shown in Figure 9 

in Appendix B. This model seems less realistic than the other models, because it implies that even if a 

bidder bids 0, he perceives a positive chance of winning the auction.  

In Appendix C model C is shown. In model C an additive parameter d is added to the probability 

of bidding higher than another bidder. The optimal bid for bidder i in this model is 𝐵𝑖
∗ =  𝑉𝑖 (1 −

1

𝑛
) −

 
𝑑

𝑛
(1 −

1

𝑛
). Because both d and n are positive parameters, 𝑉𝑖 (1 −

1

𝑛
) − 

𝑑

𝑛
(1 −

1

𝑛
) <  𝑉𝑖(1 − 

1

𝑛
).  The 

expected value maximizing bid is thus lower than it is in the basic model. Figure 3 contains a plot of 

model C in red and the basic model in green. It can be seen that the peak is amplified in model C and 

shifted to the left. The parameters in this figure have values 𝑉𝑖 = 0.9, 𝑘 = 0.9, n = 9 and d = 0.1. The 

effect of an increase in the parameter d is 𝐵𝑖
∗′

(𝑑) = −
1

𝑛
(1 −

1

𝑛
). Because n is a positive parameter, this 

expression is always negative. The higher d, the lower the optimal bid becomes. 
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Figure 3. Plot of model C in red and the basic model in green with 𝑉𝑖 = 0.9, 𝑘 = 0.9, n = 9 and d = 0.1 

This model corresponds to what Bazerman and Samuelson (1983) found for common value 

auctions. They wrote that overestimation increased in the number of bidders. 

Model D is shown in Appendix D. In this model an additive parameter e is subtracted from the 

total number of  bidders. The optimal bid for this model is 𝐵𝑖
∗ = 𝑉𝑖(1 −

1

𝑛−𝑒
). The fraction k with which 

the bidder shades his bid is thus (1 −
1

𝑛−𝑒
). Because  

1

𝑛
 ˂ 

1

𝑛−𝑒
 , 𝑉𝑖(1 −

1

𝑛−𝑒
) ˂ 𝑉𝑖(1 −

1

𝑛
). Compared to 

the basic model, biased bidders in model D bid less in optimum. The effect of an increase in e on the 

optimal bid is 𝐵𝑖
∗′

(𝑒) = 𝑉𝑖(−
1

(𝑛−𝑒)2). This expression is always negative, meaning that the more biased 

the bidder is, the lower his bid will become. This can also be shown graphically, as can be seen in Figure 

4. The expression 𝐵𝑖
∗′

(𝑒) = 𝑉𝑖(−
1

(𝑛−𝑒)2) becomes very small for large values of n, meaning that if there 

are more competitors, the effect of the bias on the optimal bid becomes smaller. This is also intuitively 

logical, as e represents the number of competitors that are not taken into account by the bidder. If n 

is large, the effect of e becomes relatively small because there are a lot of competitors already. 

 

 

Figure 4. Plot of the basic model by McMillan (1992) in green and model D in red with 𝑉𝑖 = 0.9, 𝑘 =

0.9, n = 9 and e = 4 
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In Appendix E model E is derived extensively. In this model a multiplicative parameter 𝑝𝑛 is 

subtracted from the total number of bidders. The profit maximizing bid for this model is: 𝐵𝑖
∗ = 𝑉𝑖(1 −

1

𝑛(1−𝑝)
). Compared to the optimal bid in the model for unbiased bidders, this is lower. Because 

1

𝑛(1−𝑝)
 

˃ 
1

𝑛
 ,  𝑉𝑖(1 −

1

𝑛(1−𝑝)
) ˂ 𝑉𝑖(1 −

1

𝑛
). The higher 𝑝, the more biased the bidder is. The effect of 𝑝 on the 

optimal bid is: 𝐵𝑖
∗′

(𝑝) = 𝑉𝑖(−
𝑛

𝑝(𝑝−2)
). This expression is always negative. An increase in 𝑝 thus means 

a decrease in the profit maximizing bid. This can also be shown graphically, as follows from Figure 5.  

 

 

Figure 5. Plot of the basic model in green and model E in red with 𝑉𝑖 = 0.9, 𝑘 = 0.9, n = 9 and p = 0.3 

 Both model D and E show that the more biased the bidder is, the less he will bid. This is again 

contradictory to what Capraa, Laniera, and Meerb (2010) wrote. 

Model F is derived extensively in Appendix F. In this model an additive parameter 𝑧 was 

subtracted from the fraction with which competitors shade. The optimal bid for this model remained 

unchanged compared to the model by McMillan (1992), namely 𝐵𝑖
∗ = 𝑉𝑖(1 - 

1

𝑛
). The more competitors 

there are, the less the bidder shades his bid. In Figure 6 the function of this model is plotted in red 

compared to the basic model in green. The peak of model F is amplified, meaning the expected value 

is higher. The optimal bid does not change. 
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Figure 6. Plot of basic model in green and model F in blue with 𝑉𝑖 = 0.9, 𝑘 = 0.9, n = 9 and z = 0.1 

 In Appendix G model G is shown. In this model a multiplicative parameter γ is multiplied with 

the valuations of the competitor bidders. For this model, the optimal bid also remains unchanged 

compared to the basic model. The optimal bid is thus 𝐵𝑖
∗ = 𝑉𝑖(1 - 

1

𝑛
). This can also be shown graphically, 

as has been done in Figure 7. Again, the peak of the function had been amplified due to the beliefs of 

the bidder that he has a higher chance of winning. The bid at which this peak is obtained remains the 

same. 

 

Figure 7. Plot of the basic model in green and model G in red with 𝑉𝑖 = 0.9, 𝑘 = 0.9, n = 9 and γ = 1.1 

 In Appendix H model H can be found more extensively. In this model, the bidder believes his 

competitors to never bid above 0.8. Bidder j follows the optimal bidding function 𝐵𝑗
∗ = 𝑉𝑗(1 - 

1

𝑛
). Bidder 

i knows this, and thus believes that bidder j will never bid above 0.4. Strategically, bidder i would never 

bid above 0.4, because this does not increase the perceived probability of winning and only decreases 

the believed expected value. However, in reality bidder j can bid up to 0.5. It can therefore be the case 

that bidder i loses an otherwise profitable auction, if his competitor bids above 0.4. Table 2 contains 

values for 𝐵𝑖  at which bidder i with a certain value of 𝑉𝑖 believes his expected value to be highest and 
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also the bid that in reality has the highest expected value.1 It can be seen that for valuations above 

0.85 bidder i could have a higher expected value by increasing his bid. Bidder i will thus for some 

valuations make bids that are suboptimal because of his bias. 

 

Table 2 

The bid with the highest believed expected value and expected value for some values of 𝑉𝑖 for a strategic 

bidder with only one competitor that believes his competitor to have a valuation below 0.8. 

𝑉𝑖  𝐵𝑖  with the highest  

believed expected 

value* 

𝐵𝑖  with the highest 

expected value** 

0.8 0.4 0.4 

0.85 0.4 0.4/0.45 

0.9 0.4 0.45 

0.95 0.4 0.45/0.5 

1 0.4 0.5 

*found by choosing the bid with the highest believed expected value for the level of 𝑉𝑖 from Table 4 in 

appendix H 

** found by choosing the bid with the highest expected value for the level of 𝑉𝑖 from Table 4 in 

appendix H 

 

If bidder i were to follow the bidding function 𝐵𝑖
∗ = 𝑉𝑖(1 - 

1

𝑛
), and there would be more 

competitors, at some point increasing his bid would no longer result in higher chances of winning. For 

values of 𝑉𝑖 ≤ 0.8 −
4

5𝑛
  , the optimal bidding function according to bidder i would be 𝐵𝑖

∗ = 𝑉𝑖(1 - 
1

𝑛
).  

For values of 𝑉𝑖 ˃ 0.8 −
4

5𝑛
  it is to bid 𝐵𝑖

∗ = 0.8. For some values of 𝑉𝑖 and n this is shown in Table 2. 

For 𝑉𝑖 = 0.85 and n = 17, 𝐵𝑖
∗ = 0.8. From this point onwards an increase in the number of competitors 

would not increase the optimal bid anymore, as the believed probability no longer increases due to a 

higher bid.  

 

Table 3 

The number of competitors at which increasing 𝐵𝑖  no longer increases the probability of winning the 

auction for model H. 

 
1 Table 2 is based on Table 4 in appendix H, which uses increments of 0.05. It could thus be the case that the 
(believed) expected value maximizing bid differs slightly from the values shown in table 2. 
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𝑉𝑖  n 𝐵𝑖
∗  

0.85 17 0.8 

0.9 9 0.8 

0.95 6 0.79 

7 0.81 

*found by inserting the values of the parameters into 𝑉𝑖(1 - 
1

𝑛
)  

 

Conclusion and discussion 

This research tried to find an answer to the research question by using a theoretical model and trying 

to account for behavioural biases to see how the optimal bid would be affected. This research question 

is: 

How do overconfidence and over-optimism affect the optimal bidding strategy in first-price 

sealed bid auctions?  

The answer depends on how the bidding function is affected by the over-optimism and 

overconfidence. Because existing literature on this topic is relatively little and does not specifically 

address this topic, there is no certainty of how over-optimism and overconfidence will exactly influence 

the bidding strategy. Therefore, multiple possibilities have been explored in this research. The 

distinction between the biases for the specific topic of first-price sealed bid private valuation auctions 

is not defined clearly. The answers to the sub questions will thus be given in general, because the 

models in this research are not convincingly allocable to one specific bias.  

 Overconfidence and over-optimism either decreased the optimal bid or left it unchanged. For 

the cases in which the probability of winning the auction or bidding higher than someone else was 

multiplicatively higher, the optimal bid was not influenced. This can be explained by the shape of the 

function. The function represents the expected value of a bid 𝐵𝑖. Multiplying such a function thus only 

amplifies the peak, but does not shift the optimal bid. This is also intuitively logical, as the bidder 

believes he has the same higher chance of winning the auction for every possible 𝐵𝑖.  

 If the effect of overconfidence and over-optimism is merely an increased belief of winning the 

auction, but the optimal bid does not change, an auctioneer would not benefit from changing his 

procedures. Bidders also would not benefit from bidding differently, because if they were unbiased, 

their optimal bid would be the same. In practice, it may not necessarily be the case that bidders are 
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unharmed. If bidders think the auction has a high expected value, they could be disappointed if they 

do not win the auction. Perhaps mentally this can have a negative effect on people.  

 If overconfidence or over-optimism causes bidders to believe there are less bidders, the 

optimal bid decreases. Because of the shape of the function, the higher n is, the higher the optimal bid 

becomes. Bidders will bid less if they believe there to be less competitors, shifting the peak of the 

function to the right. This is also intuitively logical. If bidders believe to have a higher change of winning 

the auction due to their beliefs about competitors, they may think they can afford to lower their bid.  

 In all models in which overconfidence and over-optimism changed the optimal bid, the optimal 

bid became lower than it would have been for the basic model. The bid is optimized from the 

perspective of the biased bidder. Because in the models the bidders are symmetrical, everyone equally 

lowers their bid. The bidders thus do not become worse off because everyone is symmetrically biased 

and adapts their bid accordingly. In practice it seems more likely that bidders are not equally biased. 

Perhaps if some bidders are more biased than others, they could be worse off. This could be the case 

for when a bidder that is biased relatively much makes a lower bid and loses the auction, but could 

have made a higher bid and won the object at a lower price than his valuation. In such a case, surplus 

for both the bidder and the auctioneer can be lost.  

 In the model where there are two heterogenous bidders and one of them believes others to 

never bid above a certain point, this bidder may lower his bid and will not bid above this point himself. 

This can potentially lead to that bidder losing an otherwise profitable auction. Again, this can happen 

when the biased bidder could have increased his bid to win the auction, and still bid below his private 

valuation.  

 Potentially, auctioneers can be less profitable if biases make their customers bid less. 

Auctioneers could take a few relatively cheap measures to lower biases bidders may have. For 

example, auctioneers can give their customers more information about how many competitors there 

are. This would help bidders correctly estimate this number, decreasing bias. Auctioneers could also 

inform their customers better about the probabilities of winning an auction, helping them in not 

overestimating this chance. If the cost of informing bidders is lower than the lower profits due to 

biases, these measures could be mutually beneficial for both bidders and the auctioneer. 

Because the existing literature on the topic of optimal bidding strategies for first-price sealed 

bid auctions when bidders are over-optimistic or overconfident is limited, there is no guarantee that 

the models are a representation of reality. The results from the models are also contradictory to some 

existing literature that predicts over-optimistic bidders have a higher willingness to pay. This literature, 

however, focussed on other types of auctions and may not be applicable to first-price sealed bid 
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auctions. Also, it could be that over-optimism and overconfidence affect bidders in a different way 

than what is represented in these models. However, they can provide useful insights on what would 

happen if bidders are biased in the way that is represented in the models. Also, many assumptions are 

made in these models, that in reality may not hold. For example, the assumption that valuations are 

uniformly distributed could be unrealistic. Perhaps valuations are normally distributed or skewed. The 

findings of this research are mostly based on one basic model. Therefore it could be useful to 

investigate if similar results are found when it is based on other types of models.  

More research is needed to find out if in practice bidders follow these bidding functions. If 

empirical data can be collected on this topic, it could shed more light on how these biases affect the 

bidding function. Also, more research is needed for the other types of auctions, as there are many 

more auctions in which a lot of money is involved. For example in ascending bid common value 

auctions the bids of others can be seen as signals, which can affect the beliefs of the bidders as well. 

Also, second-price sealed bid auctions could have very different results. In these auctions, the highest 

bidder pays the second highest bid and not his own. Moreover, there can exist many more behavioural 

biases that influence people when joining an auction. Learning more about the biases people have and 

how they affect their behaviour can help them safe money. For the auctioneer, more profit could be 

made if bidding strategies and functions are better understood.  
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Appendix A: model A 

For this model, the same assumptions as in the model by McMillan (1992) are used. The probability of 

having a higher bid than someone else is thus:  Pr(𝐵𝑖  ≥ k*𝑉𝑗) = Pr(k*𝑉𝑗 ˂ 𝐵𝑖) = Pr(𝑉𝑗 ˂ 
𝐵𝑖

𝑘
 ) = 

𝐵𝑖

𝑘
. The 

probability of winning the auction is: (
𝐵𝑖

𝑘
)𝑛−1. The bidder however will believe the probability of 

winning to be α times higher than it in reality is. Thus the maximization problem becomes: 

(1) 𝛼(
𝐵𝑖

𝑘
)𝑛−1

𝐵𝑖

𝑀𝑎𝑥 (𝑉𝑖 − 𝐵𝑖) 

 

Maximizing this expression and solving it gives the optimal bid for this setting, as will be shown below:   

𝛼(
𝐵𝑖

𝑘
)𝑛−2(𝑉𝑖 - 𝐵𝑖)(n – 1)

1

𝑘
  - 𝛼(

𝐵𝑖

𝑘
)𝑛−1 = 0 

𝛼(
1

𝑘
)𝑛−2 (𝐵𝑖)𝑛−2(𝑉𝑖 - 𝐵𝑖)(n – 1) 

1

𝑘
 -  𝛼(𝐵𝑖)𝑛−1(

1

𝑘
)𝑛−1 = 0 

(𝐵𝑖)𝑛−2(𝑉𝑖 - 𝐵𝑖)(n – 1) – (𝐵𝑖)𝑛−1 = 0 

(𝑉𝑖 - 𝐵𝑖 )(n – 1) =  
𝐵𝑖

𝑛−1

𝐵𝑖
𝑛−2   

(𝑉𝑖 - 𝐵𝑖)(n – 1) = 𝐵𝑖    

𝑉𝑖 (n – 1) = 𝐵𝑖  + 𝐵𝑖(n – 1)  

𝑉𝑖(𝑛−1)

𝑛
 = 𝐵𝑖  

𝐵𝑖
∗ = 𝑉𝑖(1 - 

1

𝑛
) 

The optimal bidding strategy thus remains the same. The bidder shades his bid with fraction k 

= (1 - 
1

𝑛
). This fraction k increases in the number of competitor bidders, increasing the bid. 
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Appendix B: model B  

The same assumptions as in the model by McMillan (19992) are used. Over-optimism will now be 

represented by a constant that is added to the total probability of winning the auction. The probability 

of winning the auction in reality is: (
𝐵𝑖

𝑘
)

𝑛−1
. The bidder however believes this probability to be 

((
𝐵𝑖

𝑘
)

𝑛−1
+ 𝑐). This results in the following optimization problem: 

(1)  (𝐵𝑖

𝑀𝑎𝑥 (
𝐵𝑖

𝑘
)

𝑛−1
+ 𝑐)(𝑉𝑖 −  𝐵𝑖) 

 

Maximizing this expression results in the following equation: 

(
𝐵𝑖

𝑘
)

𝑛−1

𝐵𝑖

𝑀𝑎𝑥

(𝑉𝑖 −  𝐵𝑖) + c(𝑉𝑖 − 𝐵𝑖) 

(
𝐵𝑖

𝑘
)𝑛−2(𝑉𝑖 - 𝐵𝑖)(𝑛 − 1)

1

𝑘
 - (

𝐵𝑖

𝑘
)𝑛−1 – c = 0 

 To derive this further, complicated math would be required. This is because for values of c that 

are not relatively low, there is no peak in the function that represents the optimal bid. For higher values 

of c there are corner solutions, meaning it would be optimal for the bidder to bid 0. This can also be 

seen in Figure 8 and Figure 9.  

 
Figure 8. Plot of the basic model by McMillan (1992) in green and of model B for values c = 0.15 and c 

= 0.5 in blue and red respectively with 𝑉𝑖 = 0.9, 𝑘 = 0.9 and n = 9. 
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Figure 9. Plot of model B with 𝑉𝑖 = 0.9, 0.7, 0.4 and 0.1 in orange, red, blue and green respectively 

and with c = 0.15, k = 0.9 and n = 9. 
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Appendix C: model C 

The assumptions used for this model are the same as in the model by McMillan (1992). In this model 

however, the bidder believes that the probability of bidding higher than someone else is d higher than 

it in reality is. This probability thus is 
𝐵𝑖

𝑘
+ 𝑑. The total probability of winning the auction the bidder 

believes to be is therefore  (
𝐵𝑖

𝑘
+ 𝑑)

𝑛−1
. If the bidder wins the auction, he earns: (𝑉𝑖 −  𝐵𝑖). The 

maximization problem becomes: 

(1)  (
𝐵𝑖

𝑘
+ 𝑑)

𝑛−1
(𝑉𝑖 − 𝐵𝑖)𝐵𝑖

𝑀𝑎𝑥  

 

Maximizing this expression and solving it gives the optimal bid for this setting, as will be shown below:   

  (
𝐵𝑖

𝑘
+ 𝑑)

𝑛−2
(𝑉𝑖 −  𝐵𝑖)(𝑛 − 1)

1

𝑘
− (

𝐵𝑖

𝑘
+ 𝑑)𝑛−1 = 0 

(𝑉𝑖 − 𝐵𝑖)(𝑛 − 1)
1

𝑘
 = 

(
𝐵𝑖
𝑘

+𝑑)𝑛−1

(
𝐵𝑖
𝑘

+𝑑)𝑛−2
  

(𝑉𝑖 − 𝐵𝑖)(𝑛 − 1)
1

𝑘
 = 

𝐵𝑖

𝑘
+ 𝑑  

𝑉𝑖(𝑛 − 1) − 𝑑𝑘 = 𝐵𝑖 + 𝐵𝑖(𝑛 − 1) 

𝐵𝑖
∗= 

(𝑉𝑖)(𝑛−1)

𝑛
−  

𝑑𝑘

𝑛
 = 𝑉𝑖 (1 −

1

𝑛
) − 

𝑑𝑘

𝑛
 

This expression for the bid that maximizes the expected value still contains parameter k. The 

optimal bid is thus the bidders valuation shaded with fraction k subtracted with a function that 

depends on the number of bidders, parameter d and this fraction k. Because k equals the fraction with 

which bidders shade their valuation, k can be substituted with (1 −
1

𝑛
) to allow further simplifying of 

the expression into a function that is dependent on les parameters. Substituting k = (1 −
1

𝑛
) into 𝐵𝑖

∗ =  

𝑉𝑖 (1 −
1

𝑛
) − 

𝑑𝑘

𝑛
 yields: 

𝐵𝑖
∗ =  𝑉𝑖 (1 −

1

𝑛
) −  

𝑑

𝑛
(1 −

1

𝑛
) 

Differentiating the optimal bidding strategy, the effect of an increase of the following parameters are 

found:  

𝐵𝑖
∗′

(𝑑) = −
1

𝑛
(1 −

1

𝑛
) 

𝐵𝑖
∗′

(𝑛) = 
1

𝑛
(𝑉𝑖 − 𝑑 −

2𝑑

𝑛
)  
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𝐵𝑖
∗′

(𝑉𝑖) = 1 −
1

𝑛
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Appendix D: model D 

Once again, the same assumption from the model by McMillan (1992) are used. In this setting, 

however, bidders believe there to be e less competitor bidders in the auction. Because the probability 

of winning the auction can never be larger than 1, assumed will be that e ≤ n-1. The chance of winning 

the auction thus changes to (
𝐵𝑖

𝑘
)𝑛−1−𝑒. The maximization problem is given in equation (1): 

(1) max
𝐵𝑖

(
𝐵𝑖

𝑘
)𝑛−1−𝑒(𝑉𝑖 - 𝐵𝑖). 

 

Maximizing this expression and solving it gives the optimal bid for this setting, as will be shown below:   

(
𝐵𝑖

𝑘
)𝑛−2−𝑒(𝑉𝑖 - 𝐵𝑖)(𝑛 − 1 − 𝑒)

1

𝑘
  - (

𝐵𝑖

𝑘
)𝑛−1−𝑒 = 0 

(𝑉𝑖 − 𝐵𝑖)(𝑛 − 1 − 𝑒)
1

𝑘
 = 

(
𝐵𝑖
𝑘

)𝑛−1−𝑒

(
𝐵𝑖
𝑘

)𝑛−2−𝑒
 

(𝑉𝑖 − 𝐵𝑖)(𝑛 − 1 − 𝑒)
1

𝑘
 = 

𝐵𝑖

𝑘
 

𝑉𝑖(𝑛 − 1 − 𝑒) = 𝐵𝑖 + 𝐵𝑖(𝑛 − 1 − 𝑒) 

𝑉𝑖(𝑛 − 1 − 𝑒) = 𝐵𝑖(𝑛 − 𝑒) 

𝐵𝑖
∗ = 

𝑉𝑖(𝑛−1−𝑒)

𝑛−𝑒
 = 𝑉𝑖(1 −

1

𝑛−𝑒
) 

The bidder will now shade with k = 1 −
1

𝑛−𝑒
. 

 

Differentiation gives the effect of the parameters on the optimal bid: 

𝐵𝑖
∗′

(𝑛) = 𝑉𝑖(
1

(𝑛−𝑒)2) 

𝐵𝑖
∗′

(𝑒) = 𝑉𝑖(−
1

(𝑛−𝑒)2) 

𝐵𝑖
∗′

(𝑉𝑖) = 1 −  
1

𝑛−𝑒
 

 

 

 



30 
 

Appendix E: model E 

The same assumptions as are used in the model by McMillan (1992) are used for this model. However, 

now the bidder will believe there to be less competition by fraction (1-p). The probability of winning 

the auction therefore becomes (
𝐵𝑖

𝑘
)𝑛−1−𝑝𝑛. Assumed will be that: 0≤p˂1. If p = 0, the bidder correctly 

estimates the number of competitors. This yields the following maximization problem: 

(1) max
𝐵𝑖

(
𝐵𝑖

𝑘
)𝑛−1−𝑝𝑛(𝑉𝑖 - 𝐵𝑖). 

 

Maximizing this expression and solving it gives the optimal bid for this setting, as will be shown below:   

(
𝐵𝑖

𝑘
)

𝑛−2−𝑝𝑛
(

1

𝑘
) (𝑛 − 1 − 𝑛𝑝)(𝑉𝑖 − 𝐵𝑖) −  (

𝐵𝑖

𝑘
)𝑛−1−𝑛𝑝 = 0 

(𝑉𝑖 − 𝐵𝑖)(𝑛 − 1 − 𝑛𝑝)
1

𝑘
 = 

(
𝐵𝑖
𝑘

)𝑛−1−𝑛𝑝

(
𝐵𝑖
𝑘

)𝑛−2−𝑛𝑝
 

(𝑉𝑖 − 𝐵𝑖)(𝑛 − 1 − 𝑛𝑝)
1

𝑘
 = 

𝐵𝑖

𝑘
 

𝑉𝑖(𝑛 − 1 − 𝑛𝑝) = 𝐵𝑖 +  𝐵𝑖(𝑛 − 1 − 𝑛𝑝) 

𝑉𝑖(𝑛 − 1 − 𝑛𝑝) = 𝐵𝑖(𝑛 − 𝑛𝑝) 

𝐵𝑖
∗ = 

𝑉𝑖(𝑛−1−𝑛𝑝)

𝑛−𝑛𝑝
 = 𝑉𝑖(1 −

1

𝑛(1−𝑝)
) 

Bidders thus shade with k = (1 −
1

𝑛(1−𝑝)
). 

 

Differentiating 𝐵𝑖
∗ to the different parameters gives the effect of those parameters on the optimal bid: 

𝐵𝑖
∗′

(𝑛) = 𝑉𝑖(
1

(𝑛−𝑒)2) 

𝐵𝑖
∗′

(𝑝) = 𝑉𝑖(−
𝑛

𝑝(𝑝−2)
) 

𝐵𝑖
∗′

(𝑉𝑖) = 1 −  
1

𝑛(1−𝑝)
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Appendix F: model F 

The assumptions from the model by McMillan (1992) are a basis for this model. In addition, bidders 

believe others to shade more than themselves. To represent this, competitor bidders in the model will 

bid (k-z)*𝑉𝑗. Also, 0 ≤ z ˂ k, so that bids remain positive and the total fraction of shading should won’t 

exceed 1. The probability of bidding higher than someone else is: Pr(𝐵𝑖  ≥ (k-z)*𝑉𝑗) = Pr((k-z)*𝑉𝑗 ˂ 𝐵𝑖) = 

Pr(𝑉𝑗 ˂ 
𝐵𝑖

𝑘−𝑧
 ). This results in the following bidding function:  

(1) max
𝐵𝑖

(
𝐵𝑖

𝑘−𝑧
)𝑛−1(𝑉𝑖 - 𝐵𝑖).  

 

Maximizing this expression and solving it gives the optimal bid for this setting, as will be shown below:   

(
𝐵𝑖

𝑘−𝑧
)𝑛−2(𝑉𝑖 - 𝐵𝑖)(n – 1)

1

𝑘−𝑧
  - (

𝐵𝑖

𝑘−𝑧
)𝑛−1 = 0 

(
1

𝑘−𝑧
)𝑛−2 (𝐵𝑖)𝑛−2(𝑉𝑖 - 𝐵𝑖)(n – 1) 

1

𝑘−𝑧
 -  (𝐵𝑖)𝑛−1(

1

𝑘−𝑧
)𝑛−1 = 0 

(𝐵𝑖)𝑛−2(𝑉𝑖 - 𝐵𝑖)(n – 1) – (𝐵𝑖)𝑛−1 = 0 

(𝑉𝑖 - 𝐵𝑖 )(n – 1) =  
𝐵𝑖

𝑛−1

𝐵𝑖
𝑛−2   

(𝑉𝑖 - 𝐵𝑖)(n – 1) = 𝐵𝑖    

𝑉𝑖 (n – 1) = 𝐵𝑖  + 𝐵𝑖(n – 1)  

𝑉𝑖(𝑛−1)

𝑛
 = 𝐵𝑖  

𝐵𝑖
∗ = 𝑉𝑖(1 - 

1

𝑛
) 

The optimal bid thus remains unchanged. Bidders shade with k = (1 - 
1

𝑛
). 
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Appendix G: model G 

The basic model by McMillan (1992) is the basis for this model, as the same assumptions are used. A 

parameter will be added to represent the beliefs of bidders about the distribution of the private 

valuations. The parameter can take values larger than or equal to 0. If γ is 1.3, the bidder believes the 

valuations can be 30% higher. The valuations of other bidders will now be uniformly distributed 

between 0 an γ. The bidder will believe the probability of bidding higher than a competitor is Pr(𝑉𝑗 ˂ 

𝐵𝑖

𝑘
) = γ

𝐵𝑖

𝑘
. The maximization problem becomes: 

(1) (𝛾
𝐵𝑖

𝑘
)𝑛−1(𝑉𝑖𝐵𝑖

𝑀𝑎𝑥 −  𝐵𝑖) 

 

Maximizing this expression and solving it gives the optimal bid for this setting, as will be shown below:   

(𝛾
𝐵𝑖

𝑘
)𝑛−2(𝑉𝑖 - 𝐵𝑖)(n – 1)

𝛾

𝑘
  - (𝛾

𝐵𝑖

𝑘
)𝑛−1 = 0 

(
𝛾

𝑘
)𝑛−2 (𝐵𝑖)𝑛−2(𝑉𝑖 - 𝐵𝑖)(n – 1) 

𝛾

𝑘
 -  (𝐵𝑖)𝑛−1(

𝛾

𝑘
)𝑛−1 = 0 

(𝐵𝑖)𝑛−2(𝑉𝑖 - 𝐵𝑖)(n – 1) – (𝐵𝑖)𝑛−1 = 0 

(𝑉𝑖 - 𝐵𝑖 )(n – 1) =  
𝐵𝑖

𝑛−1

𝐵𝑖
𝑛−2   

(𝑉𝑖 - 𝐵𝑖)(n – 1) = 𝐵𝑖    

𝑉𝑖 (n – 1) = 𝐵𝑖  + 𝐵𝑖(n – 1)  

𝑉𝑖(𝑛−1)

𝑛
 = 𝐵𝑖  

𝐵𝑖  = 𝑉𝑖(1 - 
1

𝑛
) 

Again, the optimal bidding strategy remains unchanged. The bidder shades his bid with fraction k = (1 

- 
1

𝑛
), which increases in the number of competitor bidders.  
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Appendix H: model H 

There are two bidders 𝐵𝑖  and 𝐵𝑗 who both compete for an object that is up for auction. Bidder i is the 

biased bidder, and bidder j is the unbiased bidder. Bidder i believes bidder j’s valuation is between 0 

and 0.8. The valuation of the competitor is thus believed to be uniformly distributed between 0 and 

0.8. The unbiased bidder j bids according to the optimal bidding strategy that follows from McMillan 

(1992). The competitor thus bids 𝐵𝑗
∗ = 𝑉𝑗(1 - 

1

2
) =

1

2
𝑉𝑗. The biased bidder knows about the bidding 

function of his competitor, and makes a bid from a strategic point of view. Because bidder i believes 

bidder j will not have a valuation that exceeds 0.8, the believes that bidder j will never bid above 0.4. 

Bidder i will thus never bid above 0.4, because this would not increase his probability of winning and 

would only decrease the profit when he wins. In reality, bidder j can bid up to 0.5, because he can have 

a valuation up to 1. For simplicity, it is assumed that when both bidders make the same bid, bidder i 

wins the auction. 

 

Table 4 

Table containing both the real and believed probability of winning and expected value for different 

values of 𝑉𝑖 when 𝐵𝑖  is a certain value. 

𝐵𝑖  

 

Believed 

probability 

of winning* 

 

Believed 

expected value 

 

Believed EV for a 

certain value of 𝑉𝑖  

Probability 

of 

winning** 

Expected 

value 

EV for a certain 

value of 𝑉𝑖  

𝑉𝑖   Believed 

EV 

𝑉𝑖   EV 

0.5 100% (𝑉𝑖 − 0.5)  0.8 0.3 100% (𝑉𝑖 − 0.5)  0.8 0.3 

0.85 0.35 0.85 0.35 

0.9 0.4 0.9 0.4 

0.95 0.45 0.95 0.45 

1 0.5 1 0.5 

0.45 100% (𝑉𝑖 − 0.45)  0.8 0.35 90% 0.9(𝑉𝑖 − 0.45)  0.8 0.315 

0.85 0.4 0.85 0.36 

0.9 0.45 0.9 0.405 

0.95 0.5 0.95 0.45 

1 0.55 1 0.495 

0.4 100% (𝑉𝑖 − 0.4)  0.8 0.4 80% 0.8(𝑉𝑖 − 0.4)  0.8 0.32 

0.85 0.45 0.85 0.36 

0.9 0.5 0.9 0.4 
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0.95 0.55 0.95 0.44 

1 0.6 1 0.48 

0.35 87.5% 0.875(𝑉𝑖 −

0.35)  

0.8 0.39375 70% 0.7(𝑉𝑖 − 0.35)  0.8 0.315 

0.85 0.4375 0.85 0.35 

0.9 0.48125 0.9 0.385 

0.95 0.525 0.95 0.42 

1 0.56875 1 0.455 

0.3 75% 0.75(𝑉𝑖 − 0.3)  0.8 0.375 60% 0.6(𝑉𝑖 − 0.3)  0.8 0.3 

0.85 0.4125 0.85 0.33 

0.9 0.45 0.9 0.36 

0.95 0.4875 0.95 0.39 

1 0.525 1 0.42 

0.25 62.5% 0.625(𝑉𝑖 −

0.25) 

0.8 0.34375 50% 0.5(𝑉𝑖 − 0.25) 0.8 0.275 

0.85 0.375 0.85 0.3 

0.9 0.40625 0.9 0.325 

0.95 0.4375 0.95 0.35 

1 0.46875 1 0.375 

0.2 50% 0.5(𝑉𝑖 − 0.2) 0.8 0.3 40% 0.4(𝑉𝑖 − 0.2) 0.8 0.24 

0.85 0.325 0.85 0.26 

0.9 0.35 0.9 0.28 

0.95 0.375 0.95 0.3 

1 0.4 1 0.32 

0.15 37.5% 0.375(𝑉𝑖 −

0.15) 

0.8 0.24375 30% 0.3(𝑉𝑖 − 0.15) 0.8 0.195 

0.85 0.2625 0.85 0.21 

0.9 0.28125 0.9 0.225 

0.95 0.3 0.95 0.24 

1 0.31875 1 0.225 

0.1 25% 0.25(𝑉𝑖 − 0.1) 0.8 0.175 20% 0.2(𝑉𝑖 − 0.1) 0.8 0.14 

0.85 0.1875 0.85 0.15 

0.9 0.2 0.9 0.16 

0.95 0.2125 0.95 0.17 

1 0.225 1 0.18 

0.05 12.5% 0.125(𝑉𝑖 −

0.05) 

0.8 0.09375 10% 0.1(𝑉𝑖 − 0.05) 0.8 0.075 

0.85 0.1 0.85 0.08 

0.9 0.10625 0.9 0.085 

0.95 0.1125 0.95 0.09 

1 0.11875 1 0.095 



35 
 

*(
0.4−𝐵𝑖

0.4
) 100% 

**(
0.5−𝐵𝑖

0.5
) 100% 

 

When the number of competitors increases and their bids approach their maximum valuations 

a bidder i that follows the optimal bidding function from the basic model, who believes competitors 

wont bid above 0.8, would at some point believe increasing his bid does not increase the probability 

of winning. The number of competitors for which the optimal bid of bidder i would no longer increase, 

can be calculated for different values of 𝑉𝑖. Using the optimal bidding function 𝐵𝑖
∗ = 𝑉𝑖(1 - 

1

𝑛
) and 

restraining the optimal bid to 0.8, the number of bidders for which increasing the bid does not increase 

the probability of winning the auction can be found.  

𝑉𝑖(1 - 
1

𝑛
) ≤ 0.8 

𝑉𝑖  ≤ 0.8 −
4

5𝑛
  

 

The optimal bidding strategy from the point of view of bidder i is thus: 

𝐵𝑖  = 𝑉𝑖(1 - 
1

𝑛
) if 𝑉𝑖  ≤ 0.8 −

4

5𝑛
  and 𝐵𝑖 = 0.8 if 𝑉𝑖 ˃ 0.8 −

4

5𝑛
 

 

 


