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Abstract

This paper focuses on the robustification of the Ordinary Instrumental Variables Estimator (OIV) in the form of the

Robust Instrumental Variable Estimator (RIV), proposed by Cohen Freue, Ortiz-Molina, and Zamar (2013). The

RIV estimator robustifies the OIV’s closed formula, using the multivariate robust location and scatter S-estimator.

We show that RIV exhibits several attractive properties, such as equivariance, B-robust influence function and a

breakdown point of 50% amongst others. Moreover, we conduct an extensive simulation study to evaluate the

performance of RIV under different types and level of contamination. Overall, we find that RIV outperforms the

OIV estimator for every type and level of contamination. Finally, we showcase the ability of RIV to flag outliers and

uncover true relationships on a real data-set regarding earthquakes.
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1 Introduction

“A discordant small minority should never be able to override the evidence of the majority of the obser-

vations.”

These are the words of Peter J. Huber, well-known for his contribution to the heteroskedastic-consistent Huber-White

standard errors in regression-analysis (Huber, 1978). It captures the intuitive idea of what robustness entails.

In statistics, assumptions about the underlying situation are of crucial importance. These assumptions could

be about the distribution, independence or properties of parameters, and so on. They are vital in the sense that

the assumptions made prior to the analysis of a problem provide a framework in which hypotheses can be tested.

Although these assumptions are vital, they are not expected to be certainly true. Essentially, they are mathematical

convenient rationalizations of often not so certain beliefs. In addition, literature often suggests that small errors in

the mathematical model do not give rise to significant deviations in the (final) conclusion. This is unfortunately not

always true in practice. The aforementioned has prompted researchers to develop robust methods and estimators

that are not influenced as much by outliers (Ricardo, Maronna, Douglas, Yohai, & Salibián-Barrera, 2019).

When the assumption of exogeneity is violated in the linear regression setting, i.e. the independent variables

are uncorrelated with the error terms, the OLS estimator renders inconsistent and biased estimates. A common

solution in literature is to use Ordinary Instrumental Variable (OIV) estimators. In essence, OIV estimators use the

variability of the endogenous variables that is uncorrelated with the error term to form new independent variables.

These variables then render estimates that are consistent when endogeneity is present. However, empirical data sets

often contain outliers that can potentially influence the precision of the mathematical model and in turn disturb

the accuracy of the OIV estimates (Young, 2020). Therefore, in this paper we investigate the robustification of the

ordinary instrumental variable and its robustness measures.

In particular, we follow the framework provided by Cohen Freue et al. (2013) where they propose the Robust

Instrumental Variable (RIV) based on the robustification of the OIV closed-formula. Here, we robustify to the

estimating equations using multivariate location and scatter S-estimators. The reason why we choose the S-estimator

over other robust estimators, is due to its desirable properties under regularity conditions. That is, they are consistent

and asymptotically normal, affine equivariant, positive definite, possess a bounded influence function and can achieve

a maximal breakdown point of 50% Cohen Freue et al. (2013). These concepts will be revisited and proved in the

methodology section.

Besides investigating the robustness measures of the RIV, we also evaluate its practical performance in a simulation

study conducted in R (R Core Team, 2017), where the figures and statistical analysis were produced using the riv

(Cohen Freue, Ortiz-Molina, & Zamar, 2018) package. Here, we examine how the RIV reacts and performs under

different degrees and types of contamination of the data. Moreover, we review the performance of the RIV estimator

in practice by comparing the results between OIV and RIV using data provided in Fuller (1987).

We find that our results are consistent with previous research of Cohen Freue et al. (2013). We prove that the

RIV estimator follows the above-mentioned desirable properties, that is: (i) equivariant and consistent under weak

regularity conditions (ii) the influence function is B-robust; (iii) Breakdown point (BP) is asymptotically 50%; (iv)

RIV can be rewritten as a weighted instrumental variables estimator. Moreover, we find that practically for every

type and degree of contamination the RIV-estimator outperforms the OIV-estimator. Additionaly, in our extension,
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we find that riv is an effective method to flag outliers and uncover the true relationship between the variables.

The remainder of the paper is structured as follows. Section 2 provides an extension literature study. In Section

3, the robustness measures are explained and examined and the methodology for the estimation model containing

dummy covariates is elaborated. The simulation study is conducted in section 4. Section 5 contains the results, for

which a conclusion and discussion is provided in section 6.

2 Literature

This section starts by covering the theoretical generalities that are useful when considering the robustness of a model,

these generalities are used throughout the paper. Following is a review of the current literature on robustness and

robust instrumental variables.

2.1 Generalities

Huber (Huber, 1964) and Hampel (F. R. Hampel, 1974) have introduced a set of generalities that are useful when con-

sidering robust statistics. These general principles are useful in the sense that they allow for a convenient estimation

of parameters based on the majority of the data even when the data set contain outliers.

2.1.1 The Functional Approach

The functional T denotes the function that uses either the probability distribution or the empirical distribution as

an argument. A parameter can be interpreted as the functional of the probability distribution, whereas an estimator

is defined by the same functional of the empirical distribution. As an example, consider the mean with the model Fθ

parametrized by θ. The functional of the mean is then given by T (Fθ) =
∫
xdFθ(x). By the Law of Large Numbers,

we know that for a sequence of iid random variables X1, . . . , Xn, we have X̄ := 1
n

∑n
i=1Xi → Eθ[X] :=

∫
xdFθ(x), as

n→∞. Therefore, asymptotically, we can replace the estimator of the mean by the functional. We can generalize this

to practically all other estimators (Huber & Ronchetti, 2009). For this reason, we prefer to use the mathematically

more elegant functionals. Functionals allow for a convenient method to evaluate models other than Fθ. Moreover, it

allows us to examine the behaviour of the estimator in the neighborhood of the model Fθ, this will be elaborated in

the next generality. One notion should be made before moving on to the next generality, that is the notion of Fisher

Consistency Functionals. In the field of Robust Statistics, we mainly consider Fisher Consistency Functionals. A

functional is said to be Fisher Consistent when T (Fθ) = θ, the necessity behind it comes from the uselessness when

the functional is considered not to be Fisher Consistent, i.e. the functional will not give us an reliable estimate based

on the distribution.

2.1.2 Studying the Neighborhood

The benefit of using the functional, is that it allows for an elegant way to study the neighborhood of a model Fθ. In

the context of Robust Statistics, we are interested in deviations from the main model in the form of outliers. This
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can be mathematically translated as follows.

Fθ,ε = (1− ε)Fθ + εG (1)

Here, G denotes the alternative distribution that the outliers follow, ε denotes the contamination proportion of the

original model and we let ε ∈ [0, 0.5], to account for a natural upper limit. Equation 1 gives an elegant way to evaluate

functionals when considering contaminated probability distributions. In literature, Equation 1 is often referred to as

the gross-error model (Huber & Ronchetti, 2009).

2.1.3 Equivariance

Equivariant translation means that a translation of input features results in an equivalent translation of outputs.

For robust estimators, and estimators in general, this is a desirable property. Informally, we state that an estimator

is equivariant when the function is unchanged after a transformation of the input. Mathematically we say that a

function f(x) is said to be equivariant to a function g(x) if f(g(x)) = g(f(x)).

2.2 Literature Overview

George Box published his early insights on non-normality and its issues when disregarded in 1953 (Box, 1953). Box is

responsible for coining the term “robust”; he was the first to introduce this concept into statistical literature. Since

then, it has sparked researchers to come up with advancements in this field. Compared to the 1960’s where robust

methods were considered to be “dirty” methods, robustness has become a scientific phenomenon that is now seen as

a desirable property and almost unmissable property.

Although Box was the first to introduce the term, it was John Tukey who put down fundamental work (Tukey,

1960) where he recognized the extreme sensitivity of certain conventional statistical methods when small deviations

occurred from the assumptions that were made.

The paper Tukey published led to more theoretical contributions in the field of robust statistics. Especially, the

work of Huber (1964) and F. Hampel (1968) were impactful. They proposed new methods and focussed on optimality

properties (Huber, 1978) by the minimax principle to make the so-called “dirty” methods more acceptable.

These contributions have led to the development of robust estimators. Ricardo et al. (2019) discuss several robust

estimators in their book; M-estimators, S-estimators L-estimators, all providing their own advantages in application

and robustification against outliers. The S-estimator, for example, has the advantage that under weak regularity

conditions the estimator is consistent and asymtpotically normal, affine equivariant, positive definite and is B-robust

(Rousseeuw & Leroy, 1987).

Robustness is also of importance in the branch of instrumental variables. Young (2020) shows in an extensive

review of 31 papers published in the journals of the American Economic Association, that the potential presence

of outliers in a simulation study adversely affects the power of the IV estimates. The study thus suggests that the

reliability of these estimates is doubtful in the application of real world data - where outliers are imminently present.

Several methods and estimators have been developed the past decades to overcome this problem. Cohen Freue et

al. (2013) introduce a robust instrumental variable (RIV) that is easy to compute and has a high breakdown point

(asymptotically 50%), among other attractive robust properties. Their estimator is based on the robustification of
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the closed OIV’s formula - using the aforementioned S-estimator, hence robustifying the multivariate location and

scatter matrix. Our paper builds forth on this particular robust instrumental variable.

Another approach is taken by Krasker and Welsch (1985). Instead of robustifying the closed OIV’s formula, they

robustify the estimating equations using a weighted instrumental variable. Similar to Cohen Freue et al. (2013), the

robustification can also be done in the two separate stages1 of the OIV estimation. Wagenvoort and Waldmann (2002)

has proposed two of those estimators in his paper: Two-stage generalized M (2SGM) and robust generalized method

of moments (RGMM). Although useful in application under the presence of heteroskedasticity and autocorrelated

error, it is shown by Krasker and Welsch (1985) that two-stage robust estimators are generally less efficient.

One common problem with the aforementioned RIV, is that it is often unfeasible to compute the RIV when the

data contain dummy covariates. The problem lays in the fact that the subsampling procedure needed to compute the

S-estimator yields collinear subsamples in the presence of dummy covariates. However, this subsampling algorithm is

necessary due to the fact that the S-estimator cannot be computed exactly (Stromberg, 1993). An iterative algorithm

that allows for both exogenous categorial and continuous predictors has been proposed that solves this exact issue

Maronna and Yohai (2000), which expands the application fields of the RIV.

3 Methodology

The instrumental variable regression with some notation is described first. It is widely known that the IV estimator

is sensitive to outliers and as a result often provides unreliable statistics. We review the robustification approach

similar to the methods proposed by Cohen Freue et al. (2013). Additionaly, we describe the details of our simulation

study to evaluate the performance of RIV as opposed to OIV. Finally, we evaluate the effect in practice of using RIV

over OIV using data on earthquakes provided by Fuller (1987).

3.1 Instrumental variable estimator

Consider the multivariate regression model:

yi = α+ x′iβ + εi for i = 1, . . . , n (2)

where β is a vector of p parameters, xi = (xi1, ..., xip)
′ is a vector of p explanatory variables and ε1, ..., εp represents

the error terms, where E(εi) = 0. A covariate is considered endogenous when the following expression holds:

Cov(xij , εi) 6= 0 for at least one xij (3)

In practice, covariates are often found to be endogenous, as a result, OLS estimates are not consistent and

conventional results no longer hold valid. This prompted researchers to come with the development of instrumental

variables - additional variables that are sufficiently correlated with the endogenous variables but uncorrelated with

the error term. Replacing the current explanatory variables set xi with the instrumental variables, denoted as

1The stages refer to the two stages of the OIV estimation process. The first stage regresses x on the instrumental variable
z, which gives a exogenous covariate. In the second stage, the exogenous covariates are plugged in the normal OLS function.
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z′i = (z1i, . . . , zqi), in a regression leads to estimates that are consistent. Technically, an instrumental variable must

satisfy the following conditions:

E(ziεi) = 0, (4)

rankE(ziz
′
i) = q, (5)

rankE(zix
′
i) = p (6)

Condition (3) implies that the instruments and the disturbance terms are orthogonal, i.e. uncorrelated. (4)

implies the stability condition, i.e. the instruments are informative. Finally, condition (5) requires the number of

instruments to be at least a large as the number of regressors (q ≥ p), this is known in literature as the rank condition.

Instrumental variables often consist of all the exogenous variables in the vector xi and additional instruments that

satisfy the conditions above.

The instrumental variable (IV) estimator βIV is essentially a two-stage least squares estimator (2SLS). In the

first step, the idea is to replace X by linear combinations of Z that approximate X as well as possible. This best

approximation is obtained by regressing every column of X on the instruments Z. The fitted value of this regression

are: X̂ = Z(Z′Z)−1Z′X = PZX. In the second stage, the IV estimator is obtained by regressing y on the exogenous

covariate X̂, resulting in the parameter estimate bIV = (X̂ ′X̂)−1X̂ ′y. The validity of these instruments, i.e. the

exogeneity of the instruments, can be tested using the methods proposed by Sargan (1958). Essentially, (3) can be

tested by checking if zi is uncorrelated with eIV i. If the instruments are valid, one can proceed to use the Hausman

(1978) test for exogeneity of the regressors. The test is based on the difference of OLS and the 2SLS estimators,

when these yield the same results, exogeneity can not be rejected. This allows us to use OLS which is in general more

efficient in an exogeneous setting and thus more desirable. Real data sets however, often contain outliers that can

distort the OIV parameter estimates and its relevant tests. Therefore, it is important to look at estimators analogous

to OIV that are robust to outliers in the same setting. This leads us to the rest of this section.

3.2 Robustification of the Ordinary Instrumental Variable

The robustification of the ordinary instrumental variable in this paper is similar to the approach proposed by Co-

hen Freue et al. (2013). We begin by introducing the robustification process. Relevant statistical theory and key

metrics with associated proofs are discussed afterwards, where we use notation similar to Cohen Freue et al. (2013).

3.2.1 The Estimator

As the real data generating process is often unknown we will proceed by using sample data. Let (µ̂, Σ̂) be the sample

mean and covariance matrix based on a sample (xi, zi, yi)
n
i=1, where yi is univariate and xi, zi are multivariate with

dimensions dx, dz. Now, the sample mean and covariance matrix can be decomposed as follows:
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µ̂ = (µ̂′x, µ̂
′
z, µ̂y)′ and Σ̂ =


Σ̂xx Σ̂xz Σ̂xy

Σ̂zx Σ̂zz Σ̂zy

Σ̂yx Σ̂yz Σ̂yy

 (7)

OIV can now be written as:

α̂OIV = m̂y − m̂xβ̂OIV β̂OIV = [Σ̂xzΣ̂
−1
zz Σ̂zx]−1[Σ̂xzΣ̂

−1
zz Σ̂zx] (8)

As can be seen from expression (7), OIV is a function of the sample mean and sample variance-covariance matrix.

Because both the sample mean and variance-covariance matrix are non-robust estimates, OIV is extremely sensitive

to outliers (Krasker & Welsch, 1985). This is especially the case when the function has an unbounded influence

function and zero breakdown point. The two terms will be explained more in depth in the following subsections, as

these are important terms in literature regarding RIV estimation.

We robustify the OIV by replacing the sample estimators (µ̂, Σ̂) in Equation 8 by a robust multivariate location and

S-estimator (m,S). Now, the robust estimator is given by:

α̂RIV = my −mxβ̂RIV β̂RIV = [ŜxzŜ
−1
zz Ŝzx]−1[ŜxzŜ

−1
zz Ŝzx] (9)

Now that the form of the robust estimator is given, we continue by discussing and analyzing its most important

robustness measures we start off by discussing the equivariance and consistency of the RIV estimator.

3.2.2 Equivariance and Consistency

Equivariant translation means that a translation of input features results in an equivalent translation of outputs.

For robust estimators, and estimators in general, this is a desirable property. When the form of structure for the

(in)dependent variable changes, we want the estimator to change accordingly. This allows us to make meaningful

inferences even when the data were to be transformed. We now proceed by establishing the equivariance of the RIV

estimator.

Lemma 3.1 (Cohen Freue et al., 2013) Let vi = (x′i, z
′
i, y
′
i)
′ and the transformation of the data denoted as

(x̃′i, z̃
′
i, ỹ
′
i)
′ = Avi + b. Where

A =


P ′ 0 0

0 Q 0

γ′ 0 η

 b =


0

0

δ

 (10)

Moreover, let (m,S) be the multivariate location and scatter S-estimator derived from the sample v. Analogously, we

let (m̃, S̃) be the multivariate location and scatter S-estimator of the transformed sample ṽ. Then, we can derive the

RIV estimates based on ṽ:

α̃RIV = m̃y − m̃xβ̃RIV (11)

β̃RIV = [S̃xzS̃
−1
zz S̃zx]−1[S̃xzS̃

−1
zz S̃zy] (12)
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Now, given that S-estimators are affine equivariant, it holds that

(m̃, S̃) = (Am+ b, ASA′) (13)

From (13) we can derive the following:

m̃y = ηmy + γ′mx + δ (14a)

m̃x = P ′mx (14b)

S̃xz = P ′SxzQ (14c)

S̃zz = Q′SzzQ (14d)

S̃zy = Q′[Szxγ + ηSzy] (14e)

Combining (11), (12) and (14), we get

α̃RIV = ηα̂RIV + δ

β̃RIV = (P−1)(ηβ̂RIV + γ)

which completes the proof and shows that RIV satisfies the equivariance property.

Davies (1987) shows in his paper, that under certain regularity conditions, the multivariate S-estimator used

to compute the RIV estimator is consistent. RIV directly inherits this property. Cohen Freue et al. (2013) show

that even under weaker conditions - when possibly the multivariate S-estimator is not consistent - the RIV remains

consistent, given that z and ε are independent.

3.2.3 Influence function and Asymptotic Variance

In this section we show that the RIV estimator is B-robust, i.e. its associated influence function (IF) is bounded,

consistent and asymptotically normally distributed. Before we proof this statement, we first explain the concept

and the importance of B-robustness and the IF. Influence functions can be interpreted as analytical tools used to

investigate the effect on a statistic after an adjustment has been made on individual observations. If the influence

function happens to be unbounded, then outliers may cause potential problems for the reliability of the estimator.

Before giving the functional definition of the IF, it is sensible to first introduce the concept from a sample point of

view. To measure the robustness of a given estimator, we add a x0 ∈ R to the sample x = (x1, ..., xn). Now, we can

define the sensitivity curve (SC) for an estimate θ̂:

SC(X;x1, ..., xn, θ̂) =
θ̂(x1, ..., xn, x0)− θ̂(x1, ..., xn)

1
n+1

(15)

The factor 1
n+1

denotes the standardization, with the purpose that the SC can be plotted and compared against

different sample sizes. As the distribution F is assumed to be known approximately, we are interested in how the

estimator behaves in the “neighborhood” of a distribution F0. Ricardo et al. (2019) show that using the following

neighborhood function is the easiest way to examine the behaviour of θ̂.

F̃θ,ε = (1− ε)Fθ + εG (16)
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ε denotes the so-called, contamination proportion, i.e. the proportion of outliers in the whole data set. Here the

outliers are assumed to follow the distribution G. F. R. Hampel (1974) shows that the IF of an estimator is an

asymptotic version of the sensitivity curve:

IF (x;Fθ;T ) = lim
ε→0

T (F̃θ,ε)− T (Fθ)

ε
(17)

For a given functional T and a model Fθ, IF is a function of x. Given the background of the IF, we will now proceed

by establishing the influence function of the RIV estimator and its asymptotic variance. We follow the notation used

by Cohen Freue et al. (2013).

Theorem 3.2 (Cohen Freue et al., 2013) Let (xi, zi, εi) follow the distribution H, and let (mH , SH) denote the

functionals of the S-estimator. Now, the functional of RIV, T (H) = (a(H), b(H)) can be denoted as:

a(H) = my,H −m′x,Hb(H)

b(H) = [Sxz,HS
−1
zz,HSzx,H ]−1[Sxz,HS

−1
zz,HSzy,H ]

using definition (17) we can obtain the IF of T at (x, y, z) and H as:

IF (x, z, y; a,H) = IFy − IF ′xb(H)−m′x,HIF (x, z, y; b,H)

IF (x, z, y; b,H) = C−1(H)[IFxzS
−1
zz,HD(H)− Sxz,HS−1

zz,HIFzzS
−1
zz,HD(H) + Sxz,HS

−1
zz,H(IFzy − IFzxb(H))]

Where C(H) = [Sxz,HS
−1
zz,HSzx,H ], D(H) = [Szy,H−Szx,Hb(H)], IFr = IF (x, y, z;mr, H). and IFij = IF (x, y, z;Sij , H)

for r, i, j ∈ (x, y, z).

The RIV influence function has the desirable property that it is B-robust, when using a bounded influence S-estimator.

Using the IF, we now proceed to derive the asymptotic covariance matrix:

ÂV (T,H) =
1

n

n∑
i=1

(IF (xi, zi, yi;T,Hn)IF ′(xi, zi, yi;T,Hn) (18)

Hn denotes the empirical joint distribution of (xi, zi, yi)
n
i=1

3.2.4 Breakdown point

The breakdown point (BP) of an estimator β̂ is the largest amount of contamination, expressed in the proportion

against the whole data set, that the data may contain such that it still provides sufficient information about the

distribution of the non-outlier points. We establish that, given that the instrumental variables stay valid under con-

tamination, the RIV estimator inherits the breakdown point of the multivariate location and scatter S-estimators.

To fix ideas, without loss of generality, we consider the exactly identified model (i.e. number of observations is equal

to the number of parameters; q = p). Now, with mathematical manipulation the estimator in Equation 12 can be

rewritten as βRIV = S−1
zx Szy. The RIV has two different ways of breaking down from here. First, it could break down

due to singularity in Szx. Second, it could break down in eithermx,my, or Szy because the vector becomes unbounded.
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Wagenvoort and Waldmann (2002) show in their paper that in order to state relevant points on the BP of IV

estimator, the used IV should be a valid instrumental variable. The IV estimator breaks down if the contamination

of the data results in invalid instrumental variables.

A desirable property of the RIV estimate, when computed by the S-estimator and satisfying condition 4, is that it

achieves the maximal BP, i.e. 50%.

3.2.5 Weighted Instrumental Variables Estimator

For the exactly identified model, we prove that RIV can be rewritten as a weighted instrumental variables estimator

following notation by Cohen Freue et al. (2013). To acquire the weights we use the Mahalonobis Distance (MD). We

illustrate the definition of the MD by an easy example: let x = (x1, . . . xN ) from a set with mean µ = (µ1, . . . µN )

and covariance matrix S. Gives this, the MD is defined as:

MD(x) =
√

(x− µ)′S−1(x− µ) (19)

Hence, the MD can be interpreted as the Euclidian distance corrected for the correlation between variables. This

also shows the usefulness in the context of the RIV estimator due to its correlated nature. The weights for RIV are

acquired by the inverse Mahalonobis Distance (MD) of the observation to the location estimate m adjusted for the

scatter estimate S. The applied weight for the observations (x, z, y) downweights all outlying observations (x, y, z) and

therefore acts as natural outlier flagging tool. We can detect outliers by plotting the weights of every observations

produced by the RIV, against the MDs. A cut-off level can be obtained by using a Chi-Squared distribution with

degrees of freedom equal to the dimension of the data. We now prove that RIV can be rewritten as a weighted

instrumental variables estimator.

Lemma 3.3 (Cohen Freue et al., 2013) RIV defined using an S-estimator with mean m and covariance S as shown

in Equation 11 and Equation 12 can be rewritten as: (α̂RIV , β̂RIV ) = (Z̃′ΩX̃)−1Z̃′). Here X̃ and Z̃ are (n×p) matrix

with ith rows equal to (1, x′i) and (1, z′i), respectively. Moreover, Ω is the diagonal weighting matrix with ith element

ω(di), here di is the square root of the MD, and ω(.) is the same as the weighting matrix used by Cohen Freue et al.

(2013)

3.3 Estimation of Models with both Continuous and Dummy Covariates

As mentioned earlier in the literature section, the presence of dummy covariates can possibly make the computation

of the S-estimator infeasible. The presence of dummy covariates can be captured in an expanded version of the linear

regression model in Equation 2:

yi = α+ c′iβ1 + x′iβ2 + εfor i = 1,. . . , n (20)

Where ci is the vector of exogenous dummy variables, xi is a vector containing both exogenous and endogenous

continuous variables. C and X are matrices with row i equal to ci and xi, respectively. The source of the problem

lays in the fact that the S-estimator can not be computed in an exact manner (Stromberg, 1993), thus subsampling

procedures are necessary. However, in the presence of exogenous dummy variables, the subsampling procedures yield

collinear samples from which the computation of the scale is infeasible.
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We follow the algorithm proposed by Maronna and Yohai (2000) and Cohen Freue et al. (2013). The algorithm

used, L1−RIV , estimates the coefficients of the dummy covariates with a combination of the original RIV estimates

and M-estimators. The iterative procedure can be stated as follows:

β̂
(k)
2 = g(X,Z, y − Cβ̂(k−1)

1 ) (21)

β̂
(k)
1 = L1(C, y −Xβ̂(k)

2 ) for 1 ≤ k ≤ K (22)

where g(X,Z, t) denotes the application of the RIV estimation for the data (X,Z, t), and L1(c, t) are the coefficient

estimates of the aforementioned L1 regression of t on C. Following the proposal for the initiation of the algorithm

of Maronna and Yohai (2000), the effect of the dummy variables are first removed from all the variables, including

the instruments. Then, we proceed by applying RIV on the modified variables to get the initial coefficient β̂
(0)
2 .

Subsequently, the obtained estimate β̂
(0)
2 is used to recover the dummy variables using the L1 regression, yielding

β̂
(0)
1 .

3.4 Simulation

The simulation conducted in this paper is two-fold. We start by comparing the RIV estimates to OIV estimates in

the model containing only continuous covariates. Afterwards, we conduct a similar simulation study, but now the

model also contains dummy covariates. This allows us to put the L1 regression in practice.

The simulation we conduct allows for an effective evaluation of the difference between the OIV estimator and the

RIV estimator. We contaminate the data with different degrees and types, a detailed description follows in the next

subsection. To be specific, we consider the following regression model:

yi = α+ x′1iβ1 + x′2iβ2 + εifor i = 1, ..., n (23)

where x1i and x2i denote respectively the continuous endogenous and exogenous covariates. Moreover, there also

exists an instrumental variable zi.

To conduct our simulation, we generate R = 1000 samples of size n = 250 for the random vector (x1, x2, z, ε).

These samples are drawn using a multivariate normal distribution N (µ,Σ). Here µ = (0, 0, 0, 0) and Σ is constructed

such that all diagonal elements and all correlations in Σ are equal to zero. This is to ensure the use of IV based on

conditions (3) and (4). The correlation between the endogenous variable and the error term is not equal to zero, and

also for the correlation between the endogenous variable and the IV holds the same. We set α = 1 and β1, β2 both

equal to 2, this happens without loss of generality due to the equivariance property of the RIV described earlier.

3.4.1 Data contamination

Four different outliers are generated to make the simulation exhaustive: (i) in the dependent variable y, (ii) in the

endogenous variables x1, (iii) in the exogenous variable x2, (iv) in the instrumental variables z. For each case, a

proportion ε is randomly replaced by values that are drawn from either a N (κ, 0.01) for κ=1, 3, 5, 10 or a Cauchy

random variable C(0, 1) where ε ranges from 0 to 0.3 in 0.05 increments. This can be interpreted as asymmetrical

and symmetrical contamination, respectively.

11



3.4.2 Assessing the estimator’s performance

There are different ways to assess the performance of an estimator in literature. Mainly, we are interested in the

behaviour of the variance and bias of the estimated coefficients, that are caused by the outliers. As the data

contamination happens in two ways, i.e. symmetric and asymmetric, we also distinguish the performance measure

for this criteria.

For the symmetric contamination, we assess the estimator performance by using the Monte Monte Carlo median

squared errors (MedSE). The MedSE can be expressed as MedSE =medianr

∥∥∥θ̂(r) − θ∥∥∥2,. Intuitively, we evaluate the

median of the norm, where the difference between the true parameters θ = (α, β1, β2) and the estimated coefficients θ̂

are measured. The MedSE then equals the median over all r runs. For the asymmetric contamination, we use a similar

method as to the symmetric contamination. Here we use the Maximum MedSE = maxk∈(1,3,5,10)medianr

∥∥∥θ̂(r)k − θ∥∥∥2,.
The intuition is similar, but instead of taking the median over only the runs, the maximum MedSE takes the value

that is equal to the maximum value over all κ. The θ̂
(r)
k denotes the estimated parameter of the rth simulation run,

where the data is contaminated under a N (κ, 0.01).

Moreover, to examine the results of using estimators different than the S-estimator, we include the computation

and simulation of RIV computed using the Stahel-Donoho (SD)(Stahel, 1981) and minimum covariance determinant

(MCD) (Rousseeuw & Leroy, 1987).

3.5 Application of RIV in Geology

Young (2020) shows that the contamination of data-sets with outliers adversely affect the performance of IV. The size

and power of IV estimates are distorted, while the bias of IV relative to OLS increases. Thus, they reduce the power

of the initial reasons to choose OIV over OLS in an endogenous setting. He shows this for 31 prominent published

papers in the journals of the American Economic Association.

Due to the results of Young (2020), we now test the performance of the RIV estimates compared to the IV estimates

of a real data-set under contamination. The data we use in this section is obtained from Fuller (1987). The data-set

contains information on 62 Alaskan Earthquakes in the period 1969-1978.

Fuller translates the information to the following regression:

yi = α+ βxi + ε (24)

Where y denotes the amplitude of the surface waves of the earthquake and x the logarithm of the seismogram ampli-

tude of longitudial body waves. The real explanatory variable is earthquake strength, but as this is not observable

the paper proceeds by using x = x∗+u. Here, x∗ is the earthquake strength and u represents the measurement error.

In this example, the endogenous covariate is therefore x. The logarithm of maximum seismogram trace amplitude

(Z), is used as the instrumental variable.

For the application, we begin by detecting the outliers using the method described in Section 3.5. Then, we proceed

by comparing the estimated coefficients of RIV to OIV and examine whether there are significant differences. The

RIV-estimator down-weights all outliers and thus should help to exhibit the true relationship between the variables.
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4 Results

This section covers the results for both the simulation and the application of the RIV based on Fuller (1987). We

begin by evaluating the performance of both the RIV and OIV under asymmetric and symmetric contamination.

Afterwards, we cover the results of L1−RIV and the RIV-estimator using different estimators.

4.1 Simulation Results

Figure 1 shows the performance of RIV compared to OIV under asymmetric and different levels of contamination.

We find that, as expected, RIV’s Maximum MedSE stays fairly constant for contamination levels up to 25%. After

the 25% it undergoes a slight increase, but nothing compared to the Maximum MedSE of OIV. The OIV Maximum

MedSE increases steeply when the level of contamination increases. It can also be seen that for contamination in

the instrumental variable the performance of OIV stays fairly constant, just as RIV. This can be explained by the

low level of correlation between the instrument and the endogenous variable, which in turn results in effects that are

smaller when the contamination increases.

Figure 1: Results of the simulation for asymmetrical contamination. Figure contains the plots of the
Response, Endogenous, Exogenous and Instrumental Variables under different level of contaminations for

the RIV (Bold Line) and OIV (Dotted Line). On the Y-axis the Maximum MedSE is calculated using
contamination under a N (κ, 0.01) distribution for κ=1, 3, 5, 10. On the X-axis, the different levels of

contamination are displayed in proportions.

Figure 2 shows the performance of RIV compared to OIV under symmetric and different levels of contamination.

We find that, in line with the asymmetric contamination, the OIV’s MedSE increases steeply with the level of

contamination. The MedSE of RIV stays fairly constant over all levels of contamination up to 25%. Moreover, we

also observe that the increase in MedSE for both RIV and OIV is less rapid in the instrument compared to other

covariates. The explanation holds the same reasoning as given for the asymmetric case.
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Figure 2: Results of the symmetrical contamination. Figure contains the plots of the Response,
Endogenous, Exogenous and Instrumental Variables under different level of contaminations for the RIV

(Bold Line) and OIV (Dotted Line). On the Y-axis the MedSE is calculated using contamination under a
Cauchy random variable C(0, 1) distribution. On the X-axis, the different level of contamination are

displayed in proportions.

Figure 3 shows the performance of RIV under symmetric contamination using different estimators. RIV estimation

using S-estimator (solid) exhibits slightly better results compared to MCD (dotted) and SD (dot-dash). Although

overall, all estimators used instead of the S-estimator showcase much better results under contamination compared

to the OIV estimator.

Figure 3: Results of the simulation for symmetrical contamination, where different estimators are used for
the RIV estimation. Figure contains the plots of the Response, Endogenous, Exogenous and Instrumental

Variables under different level of contaminations for the RIV(Bold Line), MCD(Dotted Line) and
SD(dot-dash).

Figure 4 shows the performance of the MedSE of the L1-RIV(dashed), OIV (solid), MCD (dotted) and SD (dot-dash).

We find that the results are, as expected, very similar to that of the model containing only continuous covariates.

Moreover, we conclude that the OIV estimator is very sensitive for low-level contamination as well. Regardless of the

estimator used in the computation for RIV, we find that the RIV estimator stays fairly constant for all types against

different contamination levels. However, there is a minimal efficiency trade-off when the model is not contaminated.
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Figure 4: Results of the simulation for symmetrical contamination using L1-RIV, which includes the use of
dummy variables. Set-up is identical to that of Figure 1.

4.2 Application of RIV

Figure 5 shows the use of RIV for detecting outliers. RIV downweights all points that are far away from the bulk of

the data. Using the Chi-Squared distribution with the freedom of the dimension, we can use the data set to obtain

a cut-off-level for classifying outliers. This gives RIV the natural ability to flag outliers that are present in the data

set and find the true relationship between variables. In Figure 5 the flagged outliers are bolded out, and are the

observations 28, 25, 60 and 54. Moreover, in the right subfigure the weights RIV gives to each observation are set out

against the observation’s distance to the bulk of the data (di). Now that we have shown that certain observations

are flagged as outliers, we can obtain a more accurate representation of the coefficients downweighting these outliers

using RIV estimation.

Figure 5: Left subfigure contains the plot of the Y variable (amplitude of the Surface Waves) against the X
variable (the logarithm of the seismogram amplitude). The outliers have been bolded out. Right subfigure
contains the RIV weights of the observations against the square root of the observation’s MD from the bulk

of the data di.
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Table 1: Coefficient table for the estimated regression as described in Section 3.5 for both RIV and OIV.

Coeff. Std. Err. t-value p-Value

RIV
Intercept -3.95 0.98 -4.03 1.63e-04
x 1.72 0.19 9.20 4.48e-13

OIV
Intercept -4.29 1.11 -3.85 2.89e-04
x 1.80 0.21 8.43 8.96e-12

Table 1 reports the coefficients for the intercept and endogenous variable, standard error, t-value and p-value,

for both the RIV estimation and the OIV estimation, respectively. We find that the significance of the intercept and

coefficient does not change. That is, they both stay significant based on the p-Value with α < 0.5. However, we find

that the coefficient of the endogenous x-variable does change from 1.80 to 1.72, indicating a less strong impact of

the earthquake strength on the amplitude of the surface waves. This result can be explained by the fact that RIV

downweights the outliers that we have flagged earlier.
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5 Conclusion

In this paper, we have researched the variance and bias of the RIV estimator against OIV for different types and

levels of contamination. Overall, we conclude that based on theory and on acquired empirical results the RIV outper-

forms the OIV in the presence of outliers and can thus be useful for researchers who want to robustify their results.

Moreover, we have proved that the RIV has several desirable properties: (i) it is equivariant and consistent under

weak regularity conditions; (ii) the influence function is B-robust, i.e. it is bounded and under regularity conditions

asymptotically normally distributed; (iii) it has a Breakdown point(BP), which reaches 50% asymptotically ;(iv) RIV

can be rewritten as a weighted instrumental variables estimator.

Moreover, we conducted a simulation study with r = 1000 samples and n = 250 observations drawn from a multi-

variate normal distribution. A proportion ε of the data was randomly replaced by values that are drawn from either

a N (κ, 0.01) for κ=1, 3, 5, 10, or a Cauchy random variable C(0, 1) where ε ranges from 0 to 0.3 in 0.05 increments.

This can be interpreted as asymmetrical and symmetrical contamination, respectively. We assessed the performance

in terms of MedSE for symmetrical contamination and Max. MedSE for the asymmetrical contamination. The results

of the simulation study were in line with the theory described in the methodology. As expected, the IV’s assessment

values increased steeply with the level of contamination, whereas in contrast the RIV remained relatively constant

over all contamination levels. Therefore, suggesting to be more robust against outliers.

Finally, we also used the RIV on real earthquake data from Fuller (1987). Here, we found that RIV performs consis-

tently, i.e. the standard errors and estimated parameters stay fairly constant over contamination. Moreover, when

contaminating the data set with outliers as with the simulation, we found that the results were consistent with that

of the simulation.

For further research we suggests researchers to shed more light on certain aspects of this study. By construction the

S-estimator downweights all outliers in the space spanned by the incorporated variables. The caveat here, is that

good leverage points also get downweighted, which is generally undesirable as they can reduce the variance of the RIV

estimates. Therefore, we suggest for further work to develop an efficient manner to solve this problem. Moreover, as

instrumental variables in general are dependent on the validity of the instruments, it is necessary that validity tests

that exist for OIV become adjusted for RIV. This ensures for a correct measure when testing for the validity of the

instruments in a highly-leveraged environment.
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