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Abstract

This research estimates the linear and nonlinear effects of fiscal policy on output and government spend-
ing. Using quarterly US data obtained from the Federal Reserve Bank of St. Louis, we obtain impulse
responses and expanding window forecasts for different estimation procedures, namely a VAR, a VECM
which considers cointegration relations and a quantile VAR. We find that higher government spending
overall increases output and decreases unemployment. Furthermore, nonlinear estimation performed with
quantile regression shows that effects are notably different at different quantiles. Lastly, evaluating the fore-
casting performance of different models leads to the conclusion that the quantile vector autoregression is
most suitable for estimating effects of fiscal policy, even though a linear VAR model is still very adequate.
Considering cointegration relations does not bring improvements in forecasting performance.
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1 Introduction

Fiscal policy refers to government spending, but also the government’s policy towards levying
taxes, which has measurable effects on both microeconomy and macroeconomy. As an example,
economic theory states that increasing government spending will likely lead to increases in eco-
nomic growth and could also possibly reduce the unemployment rate. We draw our attention to
the macroeconomical effects of adjustments in the fiscal policy, where most focus is on government
spending. Namely, this paper mainly focuses on the effects of fiscal policy on output, measured
with GDP, and unemployment.

Earlier contribution to this type of research comes for instance from Blanchard and Perotti
(2002), who partly use a mixed structural VAR to show that an increase in government spending
has a positive effect on output, and that an increase in taxes has a negative effect. More recently,
research has been performed that does not simply analyse the effects of fiscal policy in a linear
fashion, but also looks at the effects in a nonlinear fashion. Take for example Auerbach and Gorod-
nichenko (2012) who partly use regime-switching structural vector autoregression models to find
that effects are dependent on the business cycle. They observe that fiscal policy is more effective
during a recession than during an expansion. Even Owyang et al. (2013) find that fiscal multi-
pliers are larger during recessions, which they found using state-dependent local projections. So,
one can look at the difference between the effects dependent on what the state of the output or
unemployment is and compare the resulting outcomes.

This research thus implements multiple different estimation procedures to estimate linear and
nonlinear effects of fiscal policy. The first estimation is a vector autoregression with first differences
(VAR), the second estimation is a vector error correction model (VECM) and the third is a quantile
vector autoregression (quantile VAR), which is all estimated using macroeconomic variables from
the US. Most of these variables are integrated. The vector autoregression uses first differenced data
and the vector error correction model considers the data in levels to subsequently transform into
first differenced data, whereas the quantile regressions are performed using detrended data and
first differenced data. The main goal of performing both these linear and nonlinear estimations
is to explore whether there are indications that the outcomes depend on how the data is used,
namely by implementing detrending or the first difference operators. Furthermore, the vector
error correction model can be compared to the vector autoregression with first differences and
the quantile vector autoregression with first differences as it considers the cointegration relation.
The interesting aspect of the cointegration relation is that one can transform two or more integrated
variables into a linear combination that has a lower order of integration. This represents a long run
equilibrium among the variables. So, the three models are evaluated according to their forecasting
performance.

Firstly, the quantile regression procedures are based on the research performed by Linnemann
and Winkler (2016). Traditional ordinary least squares regression describes only the effects of
changes in the independent variables on the conditional mean of the dependent variable. It as-
sumes that changes in the explanatory variables shift the whole conditional distribution of the



dependent variables. Contrarily, quantile regression allows for different effects at different tails
of the conditional distribution of the dependent variable, which makes this an adequate model to
investigate whether fiscal policy effects differ among different quantiles.

We perform equation-by-equation quantile regressions, with the structure of a VAR(p), to ob-
tain impulse responses that are quantile-specific. This allows for comparison between results
across different quantiles, which captures whether there are quantile-specific parameters leading
to different responses to the dependent variable. For example, when output is booming and thus
in a higher quantile of its conditional distribution one can observe different responses to a shock
in government spending compared to when output is depressed, so it is in a lower quantile of its
conditional distribution.

The vector autoregression with first differences and vector error correction model (VECM)
again use the same macroeconomic variables from the US. To my knowledge, the relevant existing
literature has not used the VECM to estimate the effects of fiscal policy. These models are imple-
mented in a linear fashion, thus analysing the average relation between the dependent variables
which is decided to be the first difference of output and unemployment. An advantage of this
model is that it represents the central relation, which allows for a general conclusion on the effects
of fiscal policy. A second advantage is that the VECM captures the cointegration between the vari-
ables, which is a linear combination of the non-stationary variables which will be stationary that
represents a long-run relationship among the macroeconomic variables. A disadvantage of both
models is that they do not include information on the state of the economy, but this is nevertheless
accounted for in this research by performing the third estimation procedure, the quantile VAR.

The following main research questions is answered in this research:

Which linear or nonlinear model is most suitable for estimating the effects of fiscal policy, and is there an
improvement in estimating the effects by considering cointegration relations?

The first part of this question refers to comparing the three estimation procedures mentioned
above, in which there is a comparison based on forecasting performances of all three models,
based on first differenced data. Secondly, we explore whether accounting for possible cointegration
relations among the variables improves the forecasting performance, which is done by comparing
all three models as they all have similar structures but the vector error correction model adds the
error correction term derived from the long term equilibrium. This can be considered relevant
for the existing literature as we try to find whether a non-linear or linear model would be more
suitable, but we also want to see whether considering long-run relations in the estimation brings
improvements.

This research can be considered very relevant for governments, and especially the second part,
because if for example this paper proves that the response of output to an increase in government
spending is more positive during a recession compared to an upturn, the government can alter its
policies depending on the state of the economy. It can increase government spending more during

a recession, but it will need to so less during an upturn. This can furthermore be reflected in the



so-called fiscal multiplier, which measures the change of the output relative to the change of the
government spending. One is simply asking: How much of the government spending is reflected
in the GDP? An alternative version of the fiscal multiplier will be considered in this research,
namely the maximum point-to-point ratio, minimum point-to-point ratio and the cumulative ratio
that will be based on response values of output and unemployment on government spending (for
more information see section 3.5).

In this research we find that the best performing model in forecasting output is the VAR model
implemented with first differences, whereas the unemployment rate is forecasted the best using the
quantile VAR model with first differences. We notice a lot of non-linearities among the different
quantiles of the conditional distribution of the dependent variables output and unemployment,
which leads to the notion that the quantile VAR is most prominent for estimating effects of fiscal
policy.

The rest of this research has the following structure: Section 2/informs on the used data, and
Section [3| gives information about the used econometric methods applied. Then, the main results
of this research are in Section 4, and we conclude in Section 5] To consider the limitations of the
research we refer to Section 6l

2 Data

Two sets of data are considered in this research, where both consider the same macroeconomic data
with two different types of transformations. The first set of data contains several log-quadratic
detrended variables in order to represent only the cyclical component of the considered time se-
ries. The Appendix contains more on how this is performed in Section to clarify how the
log-quadratic detrending is performed.

The data consists of quarterly data from the United States considering the sample 1955Q1 to
2013Q4. The variables considered are government spending g;, real net taxes ¢;, output o;, unem-
ployment U; and the short-run real interest rate R;. The following variables are log-quadratically
detrended as described above: output, government spending and real net taxes, and are thus de-
noted with lower case. The exact construction of these variables can be found in the Appendix in
section[Z1l The decision has been made to not include the debt variable in the estimation as in the
original paper of Linnemann and Winkler (2016)EI The reason for this was that it was unavailable
for the same sample as their paper.

Some of the variables seem to have a unit root according to the Augmented Dickey Fuller test,
meaning they are assumed to be non-stationary, as can be confirmed from Table[§]in the Appendix.
Performing the Augmented Dickey Fuller test tells that the non-stationary variables are assumed
to be output, government spending and interest (see Appendix [§). Also, for more information
about what the Augmented Dickey Fuller test entails, see Section The variables output O,

In the Appendix in Figure some of the unused impulse response results can be found in which two
different implementations of the debt variable were considered, namely using a different sample starting from 1966Q1
and a yearly series that was interpolated to quarterly frequency.



government spending G; and taxes T; have an upward trend, which is observed in the data. The
tax variable seems to be trend stationary. This all can be confirmed from Figure[5]in the Appendix.
The second set of data considers the original variables without log-quadratic detrending. This
is performed in this way in order to capture the cointegration relation among the non-stationary
I(1) variables. The variables considered here are government spending Gy, real net taxes T;, output
O, unemployment U;, and the short-run real interest rate R;. These variables are all first differ-
enced before they are used to compute forecasts, even when they do not exhibit non-stationary
behaviour. The reason this is done is in order to make a proper comparison among the different
regression models because the VECM first differences each series, and only in this way it would
be possible to see whether adding cointegration relations to the estimation brings improvement
or not. Again, the exact construction of these variables can be found in the Appendix in section
Important to note is thus that variables that are in capital are in their original form whereas
variables in lower case are log-quadratically detrended throughout the rest of this research.

3 Methodology

This paper replicates part of the paper Linnemann and Winkler (2016), which mainly analyses non-
linear effects of government spending on the output and unemployment, and we further extend
on this research by also looking at the effects on output and unemployment in a linear fashion.
First, we implement two VAR models with first differences, then we implement two VEC models,
both for linear estimation, and then we implement two quantile VAR models for nonlinear esti-
mation. The reason there are two estimations for each model is because the variables output and
unemployment are interchanged as dependent variables. This is also based on how Linnemann
and Winkler (2016) decided to perform their estimation. Each model is analysed with respect to
the estimated impulse response. However, before we perform any estimation we first determine

whether the variables contain any unit roots.

3.1 Unit Root Testing

To test the stationarity of the variables, the Augmented Dickey-Fuller test is performed. This tests
the null hypothesis that the series contains a unit root against the alternative that the series does
not contain unit root. Alternatively, in the following regression we test whether Hy : p = 0, against
H, : p < 0 holds:
h
Ye =0+ Pt+pyi1+ Y Ay + €
i=1

Hence, tests with a P-value smaller than 0.05 lead to rejection of the null hypothesis, which is
that the variable is integrated. The assumption is made in this case that there is a constant and a
deterministic trend driving the data, which is evaluated by plotting the data. The t-statistic of p
determines whether the null hypothesis is rejected or not. The decision is made to let the optimal
lag order & to be determined using the Schwarz Information Criterion.



3.2 Vector Autoregression with First Differences

This research extends on Linnemann and Winkler (2016) by considering a second set of variables,
where there is no detrending, and use it for implementing a VAR model with first differences and
VECM. One of the goals in this research is to compare the forecasting performance of the vector
error correction model which considers cointegration relations with a model that does not consider
this. A suitable model would be a vector autoregression where the first differences are considered.
The model is of the following form:

Ayt =c+ A1y i+ -+ Ap 1Ay pi1 €

Here we have y; = (G, (s, Tt, Ry)', where {; € {O, U;}. So, we regress the first difference
of government spending, either output or unemployment, taxes and interest on p of their lags.
By first differencing all series, we are sure all of them are stationary even when they already were
stationary. The lag order of this system is determined with the Akaike Informaiton Criterion (AIC).
Namely, first the optimal lag order p* is determined for a simple VAR model which leads to the
optimal lag order of p* — 1. The decision is made to include in the model a constant c as some of
the variables do not have zero mean in their first difference. Furthermore, this assumes there is
a trend in the data, which is deduced from the plots of the data in levels which can be found in
the Appendix in Figure 5, The parameter estimates are estimated for each equation with Ordinary
Least Squares.

3.3 Vector Error Correction Model

In economics there is often a long-run equilibrium between variables. Given that some variables
are non-stationary, a simple VAR model would not be suitable in this case because there can be a
spurious regression with I(1) variables, which is why we consider a vector error correction model.

The implemented vector error correction model has the following form:

Axp =c+ap'xy1 +T1Ax 1+ -+ Ty 1Axp_pyg + 1y
where Xt = (Gt/ gt/ Ttl Rt)// &= (“G/ ‘Xgl Xr, “r) ’ ,B/t = (1/ _ﬁgr _IBT/ _,BR) and
,ut = (l’lG,t/ ;’lg,t/ ]/lT,tl ,uR,t)// g S {Otl ut}

We interpret f'x;_1 as the cointegrating relationship which is a long-run relation of the variables
in equilibrium. Then, a can be interpreted as the loadings vector which represents the sensitiv-
ity of the changes in the dependent variable to the cointegration equation p'x;_1. It can also be
interpreted as a speed adjustment parameter, namely when the equilibrium does not hold the pa-
rameters in « will pull the corresponding variable back towards it’s equilibrium relationship. Both
left and right hand side of the equations are stationary as the regressors are all first differenced.
Next, there is a restriction which normalizes some of the coefficients in p’. Namely if a cointegrat-
ing vector is found, a multiplication with any non-zero number can still be stationary. Therefore,

the following normalized form holds: B" = [I, B(k_,)x,], where r is the cointegration rank and



K the number of variables. All parameter estimates are computed with the Johansen estimation
strategy, which utilizes maximum likelihood, so the parameters for a« and p’ can be computed
simultaneously.

Again, the decision is made to include in the model a constant c as some of the variables do not
have zero mean in their first difference. The lag order of this system is also determined with the
Akaike Informaiton Criterion (AIC). Also, the Johansen Cointegration Test tests what might be an
approriate number of cointegration relations. After estimating this model the impulse responses
are considered in order to see the effect of a unit shock in government spending on output and

unemployment.

3.4 Johansen Cointegration Test

Determination of the cointegration rank is performed with the Trace test and Maximum Eigen-

value test, which is shortly discussed below.

3.4.1 Trace Test and Maximum Eigenvalue Test

This test has the following hypotheses, Hy : r = rg against Hy : r < rg < K.
The Trace statistic is defined as follows:

Trace(K,rg) = =T i log(1—A;)
i=ro+1

Here, the A; represents the i-th eigenvalue of a special matrix of which the determinant is taken
in computing the maximum likelihood of the VECM. This test statistic should be small under
null hypothesis r = ry and this hypothesis is rejected once it exceeds some critical value which is
determined by a nonstandard distribution that is simulated. So, a sequence of tests is performed
until we accept the hypothesis that r = r*.

Furthermore, the Maximum Eigenvalue test has the following hypotheses: Hy : ¥ = r¢ against
Hj : r = ro + 1 and this is tested with the following test statistic:

)\max - —TlOg(]. - /\r0+1)

Similarly to the Trace test, this test is performed sequentially until the null hypothesis gets rejected
and the optimal number of cointegration relations, the rank of ap’, is found.

3.5 Quantile Vector Autoregressive Model

The quantile regression model originates from Koenker and Bassett Jr (1978), and it can be seen as
an enhanced form of the well-known general ordinary least squares model. Ordinary least squares
estimates a B, which measures the marginal effects of explanatory variables on the dependent
variable, that will minimize the sum of squared residuals, in order to have model that predicts



the expected value of y; given x;. Quantile regression will focus more on the distribution of y;
which depends on the quantiles q € (0,1). If F(y;) is the probability distribution of y;, then the
qth quantile is represented by the quantile function Qy(+), with the property that Q,(y;) = F~'(g).
Essentially, the quantile of a distribution represents the value for which a certain provided fraction

of the observations is less than or equal to that value. The general form of a quantile regression is:

Qq(yelxi) = xiB(q),

where x; is a K by 1 vector with the explanatory variables and B(g) is the marginal effect of the
explanatory variables on the provided quantile of y;.

The regression parameter 3(q) for a g-th quantile regression can be found by solving the fol-
lowing optimization problem:

min Yo gl =X+ Y, =gy —xiB(g)]

B@ER e thy,>x1B(g))} te{ty<x;p(q)}

This minimization problem solves for the marginal effect parameters in such a way that a frac-
tion q of the dependent variable data lies below the estimated fit and a fraction 1 — g lies above
it. This mathematical problem can be interpreted in the following way: If the residual is positive
then a weight of q is given to the loss function, whereas if the residual is negative a weight of
1-q is given to the loss function. For example, if § = 0.8 a positive residual will lead to a higher
loss function value which leads the minimization problem to set the f(g) in such a way that there
will be a smaller residual by giving more weight to observations that will lie above the estimated
fit. This solves for the parameter estimate S(g) in such a way that the estimated fit of the model,
which is x}B(q), will be as close as possible to the datapoints of the dependent variable as there is
a unique solution to the minimization problem.

Now, the first model that is estimated in this research is a quantile VAR model. We have
e = (Y14, - Yk t), a vector of k explanatory variables at each point in time, and g = (44, ..., qk),
a vector of K values for the quantiles at which the conditional distribution of the variables in y;
will be assessed. The quantile VAR model has p lags that are based on previous literature, which
suggested to use four lags. The model is of the following form:

p
Qu(Welye-1, - yi—p) = c(q) + Y Bi(@)ys—i,

i=1
where
c1(q1) Bin(q1) -+ Biwlq1)
c(qg) =1 and B(q) = : :
ck(qk) Bixi(qx) - PBixk(qk)

This model is estimated with an equation-by-equation approach in EViews. The variables that
are used are also the following two sets y; = (g1, t, t, R¢)’, where {; € {01, U;}. So, we either add



output or unemployment to the system, as has been proposed by Linnemann and Winkler (2016).
Also, the variables government spending g;, real net taxes t; and the real interest rate R; are only
evaluated at g = 0.5, while output 0; and unemployment U; are evaluated at multiple quantiles,
namely g € {0.1, 0.5, 0.9}. This way we evaluate whether effects of government spending are
dependent on the quantile of the distribution of output and unemployment.

The main goal of setting up this model is to look at the impulse response function which repre-
sents the change of each of the dependent variables caused by a unit shock in one of the equations,

measured over multiple periods i = 0,..., H. More on this is discussed next in section

3.6 Computing Impulse Response Functions

After estimation of a vector autoregression the impulse response functions can be estimated. There
is only focus on the responses of output and unemployment after an impulse shock in government
spending. Also, the impulse responses are based on a Cholesky decomposed covariance matrix of
the residuals to ensure there is no correlation between the residuals.

We consider the following VAR(p) model: Y; = AY;_1 + U, where

Al Ay ... Ay A, )
i Ixk 0 0 0 ot
Y; = JA=10 Ik 0 O|,andU;=| |,
Yi—p+1 : e 5 0
(0 0 ... I 0]

We have | = [Ig, Og K(p,l)] and the response matrix of all variables at period i is calculated by:

@ =AY
KxK
To ensure the orthogonality of the errors the response is post-multiplied with the Cholesky
decomposition of the covariance matrix of the residual terms. The covariance matrix E(u;u}) is

N T A~
estimated as follows: 2 = (E@g%

use T observations to estimate the regression coefficients for K variables, all evaluated at p lags

, where we adjust for the degrees of freedom. Namely, we

and also one constant is involved which means we estimate K x p + 1 coefficients. The covariance
matrix can be represented by its Cholesky decomposition, namely: % = PP’, where P is a lower
triangular matrix. Post-multiplication with P ensures there is no correlation among the residuals
anymore, which gives more reliable estimates for the impulse response functions.

The computation of the impulse response functions for the quantile VAR with the detrended
data is performed with a self-written code in MATLAB (R2020a), whereas for the other models:
the VAR in first difference and the VECM, it is performed in EViews using existing functions also
based on a Cholesky decomposition of the residual covariance matrix.

Assessing fiscal multipliers is not feasible in this research so we assess another alternative for



the quantile VAR. The point-to-point ratio Rj,(¢) is defined as 0u0) op 1l0) \vhere 6, (q) represents

Sn(a) = &n(q)
the response of output /1 periods after a unit shock in government spending, i1, (g) represents the

response of unemployment 4 periods after a unit shock in government spending and §;(g) repre-
sents the response of government spending / periods after a unit shock in government spending.
We then calculate the maximum point-to-point ratio for output, minimum point-to-point ratio for

unemployment and the cumulative ratio, defined as:

, . it 0n(q)
MaxR(q) = R;,(q), MinR(g) = R,(q), CR(q) = Zh=0"m\1)
axR(q) pe DX n(q), MinR(q) i 1(q), CR(q) T2 2(a)

):;lzzo ﬁh(fl)
d CR === "7
and RO =Tz 2. ()

This calculation measures the maximum, minimum or cumulative responses of output or un-
employment relative to simultaneous government spending response for each quantile of the dis-
tribution of output or unemployment. They cannot be interpreted as dollar-for-dollar, but they
measure the percentage change of output or unemployment relative to the percentage change of

government spending.

3.7 Forecasting Evaluation

One-step ahead forecasts are computed for the following three models: the VAR model, the quan-
tile VAR model where the dependent variable is evaluated at its median and the VECM, where
each model has first differenced data as regressors. For each model there are expanding window
estimations which computes one-step ahead out of sample forecasts. The first 60 observations are
used to estimate the first model in order to forecast the 61st observation, which was at 1970Q1.
Then a new model is estimated in order to forecast the 62nd observation using the previous 61
observations, and it goes on in this recursive fashion.

Also, four-step ahead forecasts are computed in the following manner: The first 60 observations
are used to estimate the first model in order to forecast the 61st, 62th, 63rd and 64th observations
using forecasted values to estimate the next forecast. The coefficients of the model stay the same.
Then we recompute the coefficients of the model when we set up the forecast for the 65th, 66th,
67th and 68th observations using all previous data. Again, this goes on in this recursive way. To
implement this estimation programs in EViews are written, which is found in the Appendix under
Section[Z.3

In order to evaluate the accuracy of the forecasts we look at two criteria: the RMSE and the
MAE.

The Root Mean Squared Error (RMSE) for each model are analysed. The RMSE is in this case



mathematically defined as follows:

— 7 2
RMSE = \| 7— t_z (e —y1)%,

where 1j; denotes the predicted value of y;, T is the total number of observations and Tj is the
number of observations used to estimate the first model.

Furthermore, the Mean Absolute Error (MAE) for each model are analysed, which has the
following mathematical definition in this case:

1 T
MAE = Yo g —wil,
T—-To t=Ty+1

In order to examine whether for example forecasts from model 1 are significantly better com-
pared to the forecasts of model 2 the Diebold-Mariano test is performed. The test statistic is defined
to be:

DM = LN N(0,1),
5d
where we set up the following two definitions of the differential d: dsgr = (91,0 — y¢)* — (92,0 — y¢)?
or daps; = 914 — ye| — |92+ — y:|. d represents its average and s, represents the standard deviation
of d. One-sided P-values are provided as the RMSE and MAE indicate which model has less
forecasting error which already creates a hypothesis which model performs better than the other.

Furthermore, to illustrate whether adding all these models is useful, simple random walk one-
step ahead forecasts are also performed. Namely, the forecast for variable #j;1 is simply the ob-
served value one quarter before, namely y;. We can then also clearly see whether adding more
sophisticated models leads to better outcomes compared to the random walk forecasts.

Most importantly, the value for Tj is varied when analyzing the errors. The reason this is done
because we assume that it might lead to unproper conclusions when we just choose one value for
To and conclude that there is one winning model that forecasts the best. Namely, over different
considered samples different conclusions could possibly be drawn. So, in order to get a more
accurate view of which model performs good we assess the evaluation for different values of Tj.
According to the RMSE and MAE we decide which models is to be compared with the Diebold-
Mariano test, as we choose the two best performing models. To implement this all, a code has been
written in MATLAB (2020) which can be found in the Appendix in section

4 Results

4.1 Vector Autoregression with First Differences

The vector autoregressions with first differences has been estimated with four lags of the first

differences, based on the Akaike Information Criterion. This model has also been used to set

10



impulse response functions to observe its behaviour. There is no clear conclusion derived from the
impulse response function in Figure [16a} which is in the Appendix. The effect alternates around
zero and dies out after roughly 10 periods which is as is expected since the analysed series are both
stable I(0) processes. Because the data is first differenced it is not possible to really find economical

interpretations to these impulse responses.

4.2 Vector Error Correction Model

Estimating different VAR(p) models gave the outcome that an optimal lag order would be 5 lags,
given the Akaike Information Criterion. Thus, the VECM, where output is added, and the VECM,
where unemployment is added instead, have been implemented with 4 lags of the first difference.
The cointegration rank for the estimation with the VEC model with output is equal to 2 after
performing the Johanson cointegration test, whereas it was equal to 1 for the VEC model with
unemployment. More in-depth results on these test can be found in the Appendix in Tables [9)
and [14] Furthermore, the assumption was made that overall there is a linear trend
in the data, which added a constant to the cointegration relations and to the regression with first
differences as regressors. Assessing the subfigures in Figure 5/in the Appendix confirms this is a
proper assumption to make for most of the variables, especially government spending, output and
real net taxes.

Analyzing the cointegration equations we find multiple relations among the variables. Firstly,
considering the first cointegration relation which represents the long-run equilibrium in the VECM
with output, we observe the government spending, taxes and interest are positively related. Sec-
ondly, considering the second cointegration relation, we observe that output and taxes are posi-
tively related whereas output and interest are negatively related. The exact coefficients of § can
be found in the Appendix in Table This aligns with economic theory to some extent because
it is expected that higher government spending will be possible when more taxes are levied, as
both go paired with economic growth. However, one can question whether taxes and output are
always to be considered positively related. McNabb (2018) brings this to question as he finds that
increases in taxes can even lead to a reduction of GDP growth. The fact that interest and output are
negatively related is somewhat counter intuitive as economic theory states that they are supposed
to be positively related, as the well-known Taylor rule states. Nevertheless, the t-statistic for the
coefficient for the interest rate was not statistically significant at the 5% level which might explain
the outcome.

Also, the cointegration relationships derived from the VECM with unemployment show that
government spending, taxes and interest are positively related, and that government spending and
unemployment are negatively related. This is all aligned with the economic theory, as for example
more government spending is expected to reduce unemployment. Again, the exact coefficients of
B can be found in the Appendix in Table

What we observe in Figure [lais that a one time shock will result in a permanent effect due to

the non-stationarity of the series. This is also in line with what is observed in the book of Liitkepohl
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(2005), where a non-stationary series is also observed to have a permanent effect caused by a shock.
Namely, in this case a shock occurring will not die out due to the fact that in the autoregressive
data generating process the sum of the autoregressive coefficients of the lags is near 1 or exceeds
it. We clearly see that in this impulse response function an increase in government spending with
one billion Dollars will lead to an increase of 55 billion Dollars after 20 quarters.

Furthermore, in Figure [Ib| we observe that an increase in government spending leads to a re-
duction in unemployment. After 20 quarters there is a reduction of roughly -0.18% which is not
very considerable. Nevertheless, this is also aligned with the results that are observed next in the
quantile VAR models, where there is also not a very large decrease for the unemployment mea-

sured at its median.
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Figure 1: a): Response of output on a unit shock in government spending (measured in billions
of Dollars). b): Response of unemployment to a shock in government spending (measured in
percentages).

4.3 Quantile VAR

A quantile VAR(4) model with detrended data has been estimated, where the lag order has been
based on previous literature from Linnemann and Winkler (2016). Namely, for each variable a
quantile regression has been performed containing four lags of output o;, government spending
gt, tax t; and interest R; and a constant using the sample 1955Q1 to 2013Q4. We obtain an in-sample
fit where we look at the log quadratically detrended GDP, namely output o;, which can be seen in
Figure[2] The 10% and 90% quantiles of output were considered. The blue line represents the actual
output o, the orange line the 10% quantile fitted value and the green line the 90% quantile fitted
value. We observe in the figure that the actual output coincides with the 10% quantile forecast
mostly during downturns and coincides with the 90% quantile forecast mostly during upturns.
This finding is also in line with the findings of Linnemann and Winkler (2016).
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Figure 2: In-sample fit of output obtained with a quantile VAR(4) model for 10% and 90% quantiles.

4.3.1 Response of Output to Government Spending

After estimating the quantile VAR equation-by-equation with the variables (g, 04, t, R;), in this
order with four lags, we obtain impulse response functions depending on the quantile at which
output has been estimated. This ordering ensures that government spending is assumed to be
exogenous. Namely, the response of output depends on government spending, but the opposite
does not hold, because we used the Cholesky decomposition of the residual covariance matrix.
This implementation has also been advised by Blanchard and Perotti (2002).

In Figure[8|we find the orthogonalized impulse responses of output and government spending,
based on percentages as they are log quadratically detrended. For example, Figure [3a shows the
response of output to government spending, which is hump shaped. This shows that when output
is at the lowest decile, a 1% shock in government spending results in a very positive increase
in output, up to roughly 0.85%. When output is estimated at its median we find only a very
small increase in output shortly after a 1% shock in government spending. Lastly, when output
is booming we find that a 1% shock in government spending even unexpectedly results for some
period in negative response of output, which is nevertheless not far away from zero. These results
are much in line with the findings of Linnemann and Winkler (2016), but are still different looking
at for example Figure 3. This most likely is the case due to the fact that the debt variable they used
in the estimation has been omitted in this research.

Also, looking at Table [l we find from the maximum point-to-point ratio and cumulative ratio
that when output is depressed government spending has a higher multiplier compared to when it
is at the median of its conditional distribution or even booming at its highest decile. The interpre-
tation of the multipliers can be seen as for 4 = 0.1 that for a 1% increase in government spending,
output increases with 0.69% at maximum, and for the cumulative ratio we take into account the
overall effect over the first 12 quarters, which is 0.55% for g = 0.1. We even again observe that the

cumulative ratio is negative for booming output, but not very different from zero.
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Figure 3: Impulse responses at different quantiles of the output distribution. The lines show the
responses of output and government spending to a 1% government spending shock. These or-
thogonalized IRFs are based on a quantile VAR model with the variables government spending,
output, real net taxes and real interest (on a quarterly basis).

| g=01 q=05 g=09
MaxR | 069 028 021
CR 055 021  -0.03

Table 1: Maximum point-to-point ratio and Cumulative ratio for all three quantiles at which output
is evaluated in the quantile VAR.

4.3.2 Response of Unemployment to Government Spending

Next, we analyse the response of the unemployment rate to shocks in government spending. Look-
ing at Figure [ we again find different responses to government spending shocks across the dif-
ferent quantiles of the distribution of the unemployment rate. When the labor market has little
unemployment, at g = 0.1, the response is a slight reduction in unemployment and afterwards it
turns positive, but not very different from zero. Then, for the median of the unemployment the de-
creasing effect caused by the 1% shock in government spending is slightly larger than for g4 = 0.10,
but still not very different from zero. Lastly, when the labor market is depressed, a 1% government
spending shock brings a strong decrease to unemployment which almost reaches -0.4 percentage
points after more than eight quarters.

To continue, the Table 2| shows the minimum point-to-point ratios and cumulative ratios for
the three different quantiles of the distribution of unemployment. We see that as the quantile

increases one can overall conclude that the effects are stronger. For example, when unemployment
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is predicted to be high in a depressed labor market the multiplier effect of a government spending
shock can reach up to -0.34 percentage points for g = 0.9, which is much stronger compared to for

example the -0.05 percentage points for when unemployment is at its lowest decile.

(a) uto g. 0.1 quantile (b) uto g. 0.5 quantile (c) uto g. 0.9 quantile

Figure 4: Impulse responses at different quantiles of the output distribution. The lines show the
responses of unemployment to a 1% government spending shock. These orthogonalized IRFs are
based on a quantile VAR model with the variables government spending, unemployment, real net
taxes and real interest (on a quarterly basis).

| g=01 q=05 =09
MinR | 005 -0.10  -0.34
CR 002 007  -0.23

Table 2: Minimum point-to-point ratio and Cumulative ratio for three quantiles at which unem-
ployent is evaluated in the quantile VAR.

4.4 Robustness of Quantile VAR

Figure 8| and Figure [f] were computed in multiple different ways during the performance of the
research. Upcoming results can be confirmed by looking at the Appendix in Figures
Firstly, the interest rate was differently defined because monthly series at the beginning
of each quarter were used instead of average quarterly series. This gave very similar outcomes
for the sample 1955Q1 till 2013Q4 except for the response of output to government spending at
g = 0.9. Furthermore, two different implementations were performed in which a debt variable
were included aswell. The first implementation was changing the sample to 1966Q1 to 2013Q4
and include a debt variable that was available from 1966Q1, which gave very different outcomes
compared to Linnemann and Winkler (2016) who considered the same variables but the sample
1955Q1 to 2013Q4. Furthermore, an implementation was performed with an interpolated version
of the debt variable (which had a yearly frequency), with the sample 1955Q1 to 2013Q4. This also
gave very different outcomes. Lastly, for the impulse responses considering unemployment we
find that adding the interest variable which considered monthly series instead of average quarterly
frequency gave similar but still different outcomes, especially for g = 0.5.
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What this learns us is that impulse response functions are very sensitive to which regressors are

added, but also that different samples with the same variables can lead to totally different figures.

4.5 Forecast Evaluation
4.5.1 Forecast Evaluation for Output

We have set up expanding window forecasts for the VECM, VAR in first differences, the quantile
VAR for g = 0.5 in first differences and the simple random walk model. We observe that the
forecasts fit the actual values very well, which can mostly be explained from the fact that the
window models have been re-estimated before performing each forecast, instead of having just
one model with the same coefficients which forecasts an entire sample. Also, we observe that in
the period of 2009 the forecasts are clearly different from the actual observed output. This can
mainly be elucidated by the fact that during the financial crisis in this period a lot of external
shocks occured in the economy, causing the forecasts to be less accurate. In the Appendix the one-
step ahead forecasts and the four-step ahead forecasts graph for each of the models can be found in
Figures[7]and 8] It is also observed that forecasting one year ahead leads to less accurate forecasts
compared to one quarter ahead forecasts, as expected.

Table 3|shows the root mean squared error and mean absolute error for all four models consid-
ering one-step ahead forecasts: the VAR in first differences, the vector error correction model, the
quantile VAR in first differences and the Random Walk model. The statistics are there for different
values of Ty which is the value at which the forecast evaluation starts.

Clearly the Random Walk model performed the worst as it had highest RMSE and MAE values
for all values of Ty, which shows that estimating more sophisticated models is useful. We observe
that the quantile VAR in first difference at g = 0.5 and VECM alternate between which model
is best according to both criteria over different values of Tp. Next, we find that for the values of
To = 60,90,120,150 the VAR model in first difference outperformed all other models according
to the criteria of the RMSE and MAE. However, for Ty = 210,220 the VECM outperformed all
other models. This makes these two models candidates for performing a comparison among them
to see whether the difference is significant. The fact that the quantile VAR performed well for
To = 220,230 is not considered very important since the forecast sample evaluated is quite small
there.

Now, to see whether the models differed significantly from each other we still refer to Table
Again for each value of Ty we seek to see whether the VAR model compared to the VECM
estimates is more accurate. The P-values are one-sided because we assume that one of the models
is better than the other for each value of Ty, given the observed RMSE and MAE. The significance
level is set at 10%, namely we reject when the P-value is smaller or equal to 10%. Hence, we
do not reject the hypothesis that the forecasting performance is the same for most cases. We do
reject for Ty = 60,90 when considering the Diebold-Mariano statistic based on the absolute error.
This leads to the conclusion that the VAR model in first difference is significantly better than the
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VECM. Secondly, for Ty = 150 we find that the Diebold-Mariano test based on the squared errors
and absolute errors both lead to the rejection of the null hypothesis, and thus again tell us that the
VAR model with first differences is significantly better than the VECM.

VAR VECM Quantile VAR | RW

RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE
To =60 | 79.48 57.70* | 80.47 59.50 | 8143 59.35 | 101.57 85.53
To =90 | 80.55 57.41* | 81.80 59.13 | 82.32 58.63 | 106.69 90.63
To =120 | 83.04 58.27 | 84.11 59.72 | 8518 60.48 | 108.68 93.63
To =150 | 91.62* 64.85* | 93.38 67.61 | 9399 68.02 | 117.39 101.33
To =180 | 107.56 79.42 | 107.43 78.46 | 109.21 81.16 | 116.83 97.75
To =210 | 135.28 98.76 | 134.72 97.25 | 137.86 100.01 | 121.09 99.37
To =220 | 67.80 69.75 | 69.69 102.20 | 61.09 6041 | 63.75 87.01
To =230 | 65.00 66.16 | 6996 96.47 | 6044 59.64 | 66.09 7747

Table 3: One quarter ahead forecast errors for all expanding window models where output is
forecasted. Expressed in billions of Dollars. The errors in bold are the smallest. The * represents
the significance of the DM-statistic, performed with the VAR and VECM, at the 10% level.

Furthermore, when we look at the errors based on the four-step ahead forecasts, which are one
year ahead forecasts, we find that the VAR model with first differences overall outperforms both
the two other models for all values of T, except for Tp = 230 considering root mean squared error.
The Diebold-Mariano tests in which again the VAR and VECM were compared were all significant
at the 10% level, except for when T = 230.

VAR VECM Quantile VAR

RMSE MAE RMSE MAE | RMSE MAE

To =60 | 130.60* 96.78* | 143.36 101.79 | 145.61 109.09
To =90 | 131.62* 95.68 144.70 100.60 | 143.68 103.97
To = 120 | 130.08* 91.43* | 149.33 102.35 | 149.63 106.54
To = 150 | 146.62* 106.65* | 169.58 121.08 | 166.40 122.38
To =180 | 156.77* 108.27 | 166.11 116.65 | 183.50 134.93
To = 210 | 185.11* 117.49* | 195.39 134.85 | 210.22 146.59
To =220 | 87.96* 72.40* | 117.87 101.78 | 113.42 93.99

To =230 | 101.54 86.69 99.25 89.65 | 124.77 113.46

Table 4: One year ahead forecast errors for all expanding window models where output is fore-
casted. Expressed in billions of Dollars. The errors in bold are the smallest. The * represents the
significance of the DM-statistic, performed with the VAR and VECM, at the 10% level.

Overall, we can conclude from these findings that the VAR model with first differences per-
forms well for one-step ahead forecasts and is even much better when considering the four-step

17



ahead forecasts.

4.5.2 Forecast Evaluation for Unemployment

We performed one-step ahead and four-step ahead forecasts for unemployment based on the ex-
panding window as before. Based on the outcomes one could say the forecasts are quite close to
the actual values when considering the one-step ahead forecasts, again this likely holds due to
the fact that an expanding window has been performed, which incorporates all previous observa-
tions. However, the four-step ahead forecasts are observed to be very inaccurate. Again, this can
be confirmed in the Appendix in Figure 9]and Figure

Table 5| again show the root mean squared error and mean absolute error, for all different
models over different starting values for the forecast evaluation. This time we observe that for
To = 60,90,120,150,180 the VAR model is the best based on the RMSE, whereas based on the
MAE the quantile VAR is the best for each value of MAE, except for Ty = 230. At some values of
Tp we observe that the MAE values were equal for several models. Nevertheless, the two inter-
esting models to compare in this case turn out to be the VAR in first differences and the quantile
VAR in first differences, at g = 0.5. Based on the squared errors the VAR model was better whereas
based on the absolute error the quantile VAR model was better, which already leads to difficulty
in really concluding which model can be seen as better performing. It holds that only for Ty = 220
the quantile VAR at g = 0.5 is significantly better than the VAR model, at the 10% level, concluding

from both the DM-statistics based on squared errors and absolute errors.

VAR VECM Quantile VAR | RW

RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE
To =60 | 0312 0229 | 0.320 0.242 | 0.313 0.226 | 0.353 0.244
To =90 | 0.253 0.192 | 0.263 0.206 | 0.263 0.194 | 0.322 0.226
To =120 | 0.227 0.173 | 0.244 0.190 | 0.233 0.173 | 0.279  0.194
To =150 | 0.242 0.184 | 0.260 0.202 | 0.243 0.180 | 0.300 0.203
Tp =180 | 0.271 0.207 | 0.284 0.214 | 0.272 0.197 | 0.348 0.233
To =210 | 0.325 0.241 | 0.321 0.236 | 0.340 0.236 | 0.460 0.329
To =220 | 0.241 0.196 | 0.283  0.214 | 0.201* 0.165* | 0.235 0.196
To =230 | 0.114 0.104 | 0.100 0.078 | 0.100 0.089 | 0.226  0.211

Table 5: One quarter ahead forecast errors for all expanding window models where unemployment
is forecasted. Expressed in percentages. The errors in bold are the smallest. The * represents the
significance of the DM-statistic, performed with the quantile VAR and VAR, at the 10% significance
level.

Now, considering the Table [p| we find the four-step ahead forecast errors. We observe that the
VECM is performing seemingly better than before, namely starting from the value of Tp = 180
to Ty = 230 the mean absolute errors are all lower compared to the VAR model. This shows that
increasing the sample size with which the VECM is estimated can possibly improve the accuracy
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of the estimation, as then the long-run equilibrium is better defined. Nevertheless, the best per-
forming model is again clearly the quantile VAR model, which significantly outperforms the VAR

model for almost all values of Tj as can be seen in the table.

VAR VECM Quantile VAR
RMSE MAE | RMSE MAE | RMSE MAE
To=60 | 0.742 0527 | 0.800 0.567 | 0.667* 0.489*
To =90 | 0.647 0451 | 0.703 0.489 | 0.576* 0.425
To =120 | 0.542 0.371 | 0.706  0.475 | 0.450* 0.333*
To =150 | 0.610 0.430 | 0.785  0.543 | 0.470* 0.345*
To=180 | 0.722 0.534 | 0.798 0.511 | 0.530* 0.406*
To =210 | 0911 0.693 | 0.953 0.578 | 0.517* 0.394*
To =220 | 0.577 0.503 | 0.381  0.290 | 0.352* 0.303*
To =230 | 0414 0.328 | 0.203 0.199 | 0.322* 0.279

Table 6: One year ahead forecast errors for all expanding window models where unemployment
is forecasted. Expressed in percentages. The errors in bold are the smallest. The * represents the
significance of the DM-statistic, performed with the quantile VAR and VAR, at the 10% significance
level.

Thus, when considering unemployment we clearly observe that the quantile VAR model is the
best performing model. This is mostly based on the results of the four-step ahead forecasts since
there it had overall the lowest RMSE and MAE values.

5 Conclusion

This research conducts estimation of linear and nonlinear effects of government spending using US
data. In essence, the response of output and unemployment are analysed, in linear and nonlinear
ways. For the linear estimation a vector error correction model and a vector autoregression with
first differences are performed, to see whether adding a long-run equilibrium does improve the
estimation of output and unemployment. The approach for the nonlinear estimation implemented
is a quantile VAR using detrended data and first differenced data. We thus implement multiple
models in this research with the aim of managing to find which model forecasts best, considering
output and unemployment.

The findings of this research are that the VAR with first differences overall performs the best
regarding its forecasting performance. This is mostly concluded from the fact that at some results
there is a significant improvement in forecasting performance compared to the VECM, regarding
the output variable as the endogenous variable. Nevertheless, the quantile VAR model with first
differences, evaluated at its median can be considered also as a well performing model as it has
significantly better forecasts compared to the VAR model with first differences again for some

results, regarding the unemployment as the dependent variable.
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The nonlinear quantile VAR is still considered to be more relevant in estimating the effects
of fiscal policy. Firstly, we have confirmed that nonlinearities exist as different quantiles of the
distribution of output and unemployment showed to have different impulse response functions,
which is why a nonlinear approach is much better. Furthermore, when this model was performed
using first differenced data it had adequate accuracy regarding the forecasting of unemployment.
Thus, we conclude the quantile VAR model is much more appropriate for estimating the effects of
fiscal policy.

Also, it turns out to be that there is not a significant improvement when considering the cointe-
gration relations. Adding a long-run equilibrium to the estimation leads to overfitting apparently.

Overall, this research has thus confirmed earlier findings of Linnemann and Winkler 2016, but
has also found that linear estimation with vector error correction model leads to the same conclu-
sions drawn, even when data is not detrended. However, the truth is that nonlinear estimation is
much more suitable for estimating the effects as we have seen that there are differences in them
among different quantiles of the distribution. Developing more nonlinear different estimation pro-
cedures in order to estimate the effects of fiscal policy to assess its effectiveness is recommended
for future research.

6 Discussion

Sample size could be considered an issue of this research, as for example performing the Diebold-
Mariano test assumes normality of the test statistic and with little observations this is not accurate.
Take for example the fact that we evaluate only six forecasts at Ty = 230 which does not give an
accurate estimate. For lower values of Ty the Diebold-Mariano test was more accurate. Increasing
the sample size might possibly lead to different conclusions which is an interesting aspect for
future research.

Furthermore, the VECM has been performed with variables that are not concluded to be non-
stationary, even though cointegration requires non-stationary variables in order to transform into
stationairy series. Nevertheless, adding stationary variables such as unemployment and taxes
to the estimation likely has been reason that the Johansen tests gave the outcome that the num-
ber of cointegration relations is nonzero sometimes (at different assumptions), thus increasing the
number cointegration relations. However, it was necessary to include all the stationary and non-
stationary variables due to the fact that then a proper comparison among the three models would
be possible as they all have the same variables.

Lastly, taking first differences of all the data is not very economically meaningful. For example,
to take the first difference of an interest rate does not have a proper interpretation for the research.
Nevertheless, performing this was necessary in order to manage to compare the forecasts among
the models. Also, the Augmented Dickey-Fuller test hinted at performing the estimation with first
differences for the interest rate, likely due to the assumptions made.

Overall, this research is sensitive to many assumptions that are necessary for producing results.
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7 Appendix

7.1 Dataland Data 2

Variable

Construction Series Title & ID

Output

Government Spending  1qd(GCEC96)

Real interest rate

1qd(GDPC1) Real Gross Domestic Product (GDPC1)

Real Government Consumption Expenditures and
Gross Investment (GCEC96)

FEDFUNDS GDPDEF 4 1) Effective Federal Funds Rate (FEDFUNDS), 2) Gross
100

— log(eorpEr (1) Domestic Product: Implicit Price Deflator (GDPDEF)

Unemployment %S‘TE Unemployment Rate (UNRATE)

1) Government Current Tax Receipts (W054RC1Q027SBEA),
2) Government Current Receipts: Contributions for Government

Net Taxes lqd(WOS4R... S W782R..— ADBAR...) Social Insurance (W782RC1Q027SBEA),

Debt (not used) lgd(interpolate(FYP...))

GDPDE
3) Government Current Transfer Payments (A084RC1Q027SBEA),

4) Gross Domestic Product: Implicit Price Deflator (GDPDEF)

Gross Federal Debt Held by the Public as Percent
of Gross Domestic Product (FYPUGDA188S)

Federal Debt: Total Public Debt as Percent of Gross Domestic

1qd((GFD...)) Product (GFDEGDQ188S) (available from 1966Q1)

Table 7: Every series is taken from the Federal Reserve Bank of St. Louis database on the following
website: https://fred.stlouisfed.org/. Each used variable has a quarterly frequency. The lqd(-)
represents the log-quadratic detrending operator and the interpolate(-) represents that the annual
data has been converted into quarterly data by means of interpolation. The above mentioned data
is used as dataset 1, whereas dataset 2 considers the exact same variables but without the 1qd(-)
operator, so there is no form of detrending. These variables that are not detrended, but in their
original level form, are denoted by capital letters in the text. In the research these variables in
dataset 2 are first differenced.

For log-quadratic detrending we consider the same approach as implemented by Mendoza
(1991) to detrend the variables: Let y; = log(Y;), where log(-) denotes the natural logarithm and
Y; is the originally considered variable measured over time. We assume y; consists of a trend
component and a cyclical component, namely y; = y! + y§. We regress the following equation

using ordinary least squares:

yr =a+bt+ct?> + e,
where we have trend: y! = a + bt + ct?, and cycle: y¢ = €;

Thus we can retrieve the cyclical component y{ = €;. This way we likely also turn a variable which

possibly has a unit root into a variable that likely has no unit root, since it is detrended.
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7.2 Additional Results
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Figure 5: Plots of all considered variables in their original level form.

Hy: series contains unit root

Dickey Fuller statistic | P-value

Specification

Output

Government spending
Net Taxes

Real Interest rate

Unemployment rate

-1.92
-2.45
-4.16
-2.74
-3.89

0.64
0.35
0.01
0.22
0.00

Trend and intercept
Trend and intercept
Trend and intercept
Trend and intercept
Intercept

Table 8: Augmented Dickey-Fuller tests performed for the variables in levels.
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Data Trend: None None Linear Quadratic
Test Type: No Intercept Intercept Intercept Intercept
No Trend  No Trend No Trend Trend
Trace 3 2 1
Max-Eig 2 2 1

Table 9: Cointegration rank with output: Under most assumptions it holds that 2 cointegration
relations hold following from both the Trace test and Maximum Eigenvalue test.

Hypothesized No. of CE(s) | Eigenvalue Trace Statistic 0.05 Critical Value Prob.**
None * 0.14 76.49 0.00
Atmost 1* 0.13 40.55 0.00
At most 2 0.04 8.83 0.38
At most 3 0.00 0.01 0.93

Table 10: Cointegration rank with output: Trace test performed for the variables in levels. 4 lags of
the first differences are used and it allows for a linear deterministic trend in the data and constant.

Hypothesized No. of CE(s) | Figenvalue Max. Eigenvalue Statistic 0.05 Critical Value Prob.
None * 0.14 35.93 27.58 0.00
Atmost1* 0.13 31.72 21.13 0.00
At most 2 0.04 8.82 14.26 0.30
At most 3 0.00 0.01 3.84 0.93

Table 11: Cointegration rank with output: Maximum Eigenvalue test performed for the variables
in levels. 4 lags of the first differences are used and it allows for a linear deterministic trend in the

data and constant.

Data Trend: None None Linear Quadratic
Test Type No Intercept Intercept Intercept Intercept
No Trend  No Trend No Trend Trend
Trace 1 1 1
Max-Eig 1 1 1

Table 12: Cointegration rank with unemployment: Under most assumptions it holds that 1 cointe-
gration relation holds following from both the Trace test and Maximum Eigenvalue test.
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Hypothesized No. of CE(s) | Eigenvalue Trace Statistic 0.05 Critical Value Prob.**
None * 0.14 56.36 47.86 0.01
Atmost 1 0.05 20.63 29.80 0.38
At most 2 0.03 9.01 15.49 0.36
At most 3 0.01 2.18 3.84 0.14

Table 13: Cointegration rank with unemployment: Trace test performed for the variables in levels.
4 lags of the first differences are used and it allows for a linear deterministic trend in the data and

constant.

Hypothesized No. of CE(s) | Eigenvalue Max. Eigenvalue Statistic 0.05 Critical Value Prob.**
None * 0.14 35.73 27.58 0.00
At most 1 0.05 11.62 21.13 0.59
At most 2 0.03 6.83 14.26 0.51
At most 3 0.01 2.18 3.84 0.14

Table 14: Cointegration rank with unemployment: Maximum Eigenvalue test performed for the
variables in levels. 4 lags of the first differences are used and it allows for a linear deterministic

trend in the data and constant.

Cointegrating Eq: CointEql CointEq2
Government Spending(-1) | 1.00 0.00
Output(-1) 0.00 1.00

Tax(-1) -211.252 (-9.93) | -1632.27 (-9.42)
Interest(-1) -593.69 (-0.14) | 22755.67 (0.67)
C 781.23 11814.41

Cointegrating Eq:

Table 15: Estimated cointegration relations derived from VECM where output is added. T-statistics
are in brackets.

CointEql

Government Spending(-1) | 1.00

Unemployment(-1)
Tax(-1)

Interest(-1)

C

6333.29 ( 1.39)
-129.18 (-10.39)
-5542.05 (-1.80)
-553.50

Table 16: Estimated cointegration relation derived from VECM where unemployment is added.

T-statistics are in brackets.
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Figure 6: Error correction terms resulting from the cointegration relations for the VECM with out-
put and the VECM with unemployment.
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Figure 7: Actuals and one-step ahead forecasts for output obtained from an expanding window
for each of the four models, namely VAR with first differences, VECM, quantile VAR with first
differences and the random walk model.
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Figure 8: Actuals and four-step ahead forecasts for output obtained from an expanding window
for each of the three models, namely VAR with first differences, VECM and quantile VAR with first
differences.
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Figure 9: Actuals and one-step ahead forecasts for the unemployment rate obtained from an ex-
panding window for each of the four models, namely VAR with first differences, VECM, quantile
VAR with first differences and the random walk model.
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Figure 10: Actuals and four-step ahead forecasts for the unemployment rate obtained from an
expanding windows for each of the three models, namely VAR with first differences, VECM and
quantile VAR with first differences.
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Figure 11: Impulse responses at different quantiles of the output distribution. The lines show the
responses of output and government spending to a 1% government spending shock. The interest
rate has been determined using monthly series of the fedfunds rate selected at the beginning of

each quarter.
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Figure 12: Impulse responses at different quantiles of the output distribution. The lines show the
responses of output and government spending to a 1% government spending shock. The sample
considered is 1966Q1 to 2013Q4. The interest rate has been determined using monthly series of the
fedfunds rate selected at the beginning of each quarter. The quantile VAR(4) model also included

the debt variable, which was available from 1966Q1.
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Figure 13: Impulse responses at different quantiles of the output distribution. The lines show the
responses of output and government spending to a 1% government spending shock. The sample
considered is 1966Q1 to 2017Q2. The interest rate has been determined using monthly series of the
fedfunds rate selected at the beginning of each quarter. The quantile VAR(4) model also included
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the debt variable, which was available from 1966Q1.
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Figure 14: Impulse responses at different quantiles of the output distribution. The lines show the
responses of output and government spending to a 1% government spending shock. The sample
considered is 1955Q1 to 2013Q4. The interest rate has been determined using monthly series of the
fedfunds rate selected at the beginning of each quarter. The quantile VAR(4) model also included
the debt variable, which was available from 1955Q1 and has been interpolated as it was available
in a yearly frequency.
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Figure 15: Impulse responses at different quantiles of the output distribution. The lines show the
responses of output and government spending to a 1% government spending shock. The interest
rate has been determined using monthly series of the fedfunds rate selected at the beginning of
each quarter. The unemployment rate has been determined using average quarterly series.
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DM-statistic Sq. error | DM-statistic Abs. error
(one-sided P-value) (one-sided P-value)
To = 60 0.82 (0.21) 1.26 (0.10)
To =90 1.11 (0.13) 1.26 (0.10)
To = 120 1.06 (0.14) 1.11 (0.13)
Tp = 150 1.54 (0.06) 1.92 (0.03)
To = 180 -0.12 (0.55) -0.75 (0.77)
Tp = 210 -0.32 (0.63) -0.73 (0.77)
To = 220 0.57 (0.28) -0.21 (0.58)
Tp = 230 0.26 (0.40) -0.19 (0.57)

Table 17: DM-statistics for comparing VAR with first differences and VECM, considering the one

quarter ahead forecasts of output.

DM-statistic Sq. error | DM-statistic Abs. error
(one-sided P-value) (one-sided P-value)
To = 60 2.70 (0.00) 1.37(0.09)
To = 90 2.44 (0.01) 1.15(0.12)
To =120 3.09 (0.00) 2.32(0.01)
Tp = 150 3.17 (0.00) 2.42(0.01)
To = 180 2.15(0.02) 1.47 (0.07)
To = 210 1.92 (0.03) 1.92 (0.03)
To = 220 1.98 (0.02) 2.14 (0.02)
Tp = 230 -0.10 (0.54) 0.14 (0.44)

Table 18: DM-statistics for comparing VAR with first differences and VECM, considering the one
year ahead forecasts of output.
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10

DM-statistic Sq. error
(one-sided P-value)

DM -statistic Abs. error
(one-sided P-value)

Table 19: DM-statistics for Quantile VAR and VAR in first differences, considering the one quarter

Ty = 60
To = 90
Ty = 120
Ty = 150
Ty = 180
Ty = 210
Ty = 220
Ty = 230

0.12 (0.45)
0.79 (0.22)
0.56 (0.29)
0.02 (0.49)
0.07 (0.47)
0.56 (0.29)
-1.45 (0.93)
-1.17 (0.88)

ahead forecasts of unemployment.

DM-statistic Sq. error
(one-sided P-value)

-0.35 (0.64)
0.21 (0.42)
0.07 (0.47)
-0.56 (0.71)
-0.94 (0.83)
-0.26 (0.60)
-1.35 (0.91)
-0.87 (0.81)

DM-statistic Abs. error
(one-sided P-value)

Table 20: DM-statistics for comparing VAR with first differences and Quantile VAR with first dif-

Ty = 60
Ty = 90
Ty = 120
Ty = 150
Ty = 180
Ty = 210
Ty = 220
Ty = 230

2.08 (0.02)
1.67 (0.05)
1.50 (0.07)
1.89 (0.03)
1.98 (0.02)
2.33 (0.01)
3.26 (0.00)
1.53 (0.06)

1.48 (0.07)
1.08 (0.14)
1.30 (0.10)
2.35 (0.01)
2.43 (0.01)
3.03 (0.00)
2.90 (0.00)
0.69 (0.25)

ferences, considering the one year ahead forecasts of unemployment.

7.3 Programming Codes

EVIEWS ONE STEP AHEAD EXPANDING WINDOW CODE:

series yvar=na

for !i=60 to 235
smpl @first @first+!i—1
var varl.ls 1 4 d(gvtspend) d(gdp) d(tax) d(interest2)

smpl @first+!i @first+235

varl.forecast

yvar (!i+1)=gdp_f(!i+1)

next
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34

35

36

37

38

39

40

41

series yvecl=na

for !'i=60 to 235

smpl @first @first+!i—1

var vecl.ec(c,2) 1 4 gvtspend gdp tax interest2

smpl @first+!i @first+235
vecl. forecast

yvecl (!i+1)=gdp_f(!i+1)
next

series yquant=na

for !'i=60 to 235

smpl @first @first+!i—1

equation quantilemodel.qreg(quant=0.5) d(gdp) C d(GVISPEND(—-1)) d(GDP
(—1)) d(tax(—1)) d(interest2(—1)) d(GVISPEND(—2)) d(GDP(—2)) d(tax
(—2)) d(interest2(—2)) d(GVISPEND(—3)) d(GDP(—3)) d(tax(—3)) d(
interest2(—3)) d(GVISPEND(—4)) d(GDP(—4)) d(tax(—4)) d(interest2(—4)
)

smpl @first+!i @first+235
quantilemodel. forecast gdp_f
yquant (!i+1)=gdp_f(!'i+1)
next

series uquant=na

for !i=60 to 235

smpl @first @first+!i—1

equation quantilemodel.qreg(quant=0.5) d(unemployment2) C d(GVISPEND
(=1)) d(unemployment2(—1)) d(tax(—1)) d(interest2(—1)) d(GVISPEND
(—=2)) d(unemployment2(—2)) d(tax(—2)) d(interest2(—2)) d(GVISPEND
(—3)) d(unemployment2(—3)) d(tax(—3)) d(interest2(—3)) d(GVISPEND
(—4)) d(unemployment2(—4)) d(tax(—4)) d(interest2(—4))

~— N —

smpl @first+!i @first+235
quantilemodel. forecast unemployment2._f
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79

uquant (! i+1)=unemployment2_f (!i+1)

next

series uvar=na
for !'i=60 to 235
smpl @first @first+!i—1

var var2.1s 1 4 d(gvtspend) d(unemployment2) d(tax) d(interest2)

smpl @first+!i @first+235

var2. forecast

uvar (!i+1)=unemployment2_f (!i+1)
next

series uvec2=na
for 'i=60 to 235
smpl @first @first+!i—1

var vec2.ec(c,1) 1 4 gvtspend unemployment2 tax interest2

smpl @first+!i @first+235
vec2.forecast
uvec2 (!i+1)=unemployment2_f (!i+1)

next

series rwgdp=na

for !i=60 to 235
rwgdp (!i+1)=gdp (!1i)
next

series rwunemp2=na
for !'i=60 to 235

rwunemp? (! i +1)=unemployment2 (!1i)
next

smpl @all
EVIEWS 4-STEP AHEAD EXPANDING WINDOW FORECAST CODE:
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series yvar4step=na
'i=60

while !i<233
smpl @first @first+!i—1

var varl4step.ls 1 4 d(gvtspend) d(gdp) d(tax) d(interest2)

smpl @first+!i @first+235
varl4step . forecast
yvardstep (!i+1)=gdp_f(!i+1)
yvardstep (!i+2)=gdp_f(!i+2)
yvar4step (!i+3)=gdp_f(!i+3)
yvardstep (!i+4)=gdp_f(!i+4)
li=li+4

wend

series yvecl4step=na
'1=60

while !i<233

smpl @first @first+!i—1

var vecldstep.ec(c,2) 1 4 gvtspend gdp tax interest2

smpl @first+!i @first+235
vecl4step . forecast
yvecldstep (!i+1)=gdp_f(!i+1)
yvecl4step (!i+2)=gdp_f(!i+2)
yvecl4step (!i+3)=gdp_f(!i+3)
yvecldstep (!i+4)=gdp_f(!i+4)
li=li+4

wend

series yquant4step=na
'1=60

while !i<233

smpl @first @first+!i—1

equation quantilemodel4step.qreg(quant=0.5) d(gdp) C d(GVISPEND(—1)) d(

GDP(—1)) d(tax(—1)) d(interest2(—1)) d(GVISPEND(-2)) d(GDP(—2)) d(
tax(—2)) d(interest2(—2)) d(GVISPEND(—3)) d(GDP(—3)) d(tax(—3)) d(
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interest2(—3)) d(GVISPEND(—4)) d(GDP(—4)) d(tax(—4)) d(interest2(—4)
)

smpl @first+!i @first+235
quantilemodel4step . forecast gdp_f
yquant4step (!i+1)=gdp_f(!i+1)
yquant4step (! i+2)=gdp_f (!i+2)
yquant4step (!i+3)=gdp_f(!i+3)
yquant4step (!i+4)=gdp_f(!i+4)
li=li+4

wend

series uquant4step=na

1i=60

while !i<233

smpl @first @first+!i—1

equation quantilemodel.qreg(quant=0.5) d(unemployment2) C d(GVISPEND
(=1)) d(unemployment2(—1)) d(tax(—1)) d(interest2(—1)) d(GVISPEND
(—2)) d(unemployment2(—2)) d(tax(—2)) d(interest2(—2)) d(GVISPEND
(—=3)) d(unemployment2(—3)) d(tax(—3)) d(interest2(—3)) d(GVISPEND
(—4)) d(unemployment2(—4)) d(tax(—4)) d(interest2(—4))

smpl @first+!i @first+235
quantilemodel. forecast unemployment2_f
uquant4step (! i+1)=unemployment2_f(!i+1)
uquant4step (!i+2)=unemployment2_f (!i+2)
uquant4step (! i +3)=unemployment2_f (!i+3)
uquant4step (!i+4)=unemployment2_f (!i+4)
li=li+4

wend

series uvar4step=na

'i=60

while !i<233

smpl @first @first+!i—1

var var2.ls 1 4 d(gvtspend) d(unemployment2) d(tax) d(interest2)

smpl @first+!i @first+235
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10

var2. forecast

uvar4step (!i+1)=unemployment2_f(!i+1)
uvar4step (! i+2)=unemployment2_f (!i+2)
uvar4step (! i+3)=unemployment2_f (!i+3)
uvar4step (! i+4)=unemployment2_f (!i+4)
li=li+4

wend

series uvec4step=na
'1=60

while !i<233

smpl @first @first+!i—1

var vec2.ec(c,1) 1 4 gvtspend unemployment2 tax interest2

smpl @first+!i @first+235

vec2. forecast

uvecdstep (!i+1)=unemployment2_f (!i+1)
uvecdstep (! i+2)=unemployment2_f (!i+2)
uvecdstep (!i+3)=unemployment2_f (!i+3)
uvecdstep (! i+4)=unemployment2_f (!i+4)
li=li+4

wend

smpl @all
MATLAB IMPULSE RESPONSE (CHOL. DECOMP.) CODE:

%This code generates impulse responses based on a Cholesky composition.
%I'he input needed is the residuals of each regression in a matrix
%and the coefficient matrix, consisting of all coefficients except
%for the constant.

J=[eye(4) zeros(4,4%3)];

A=[P;eye(4) zeros(4,4) zeros(4,4) zeros(4,4);zeros(4,4) eye(4) zeros
(4,4) zeros(4,4);zeros(4,4) zeros(4,4) eye(4) zeros(4,4)];

covar=resid "xresid /(232 —(4x4+1) ) ;%compute covariance of residuals
adjusting for df

Bz=chol (covar);
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impulseresp=zeros(20,16) ;

for i=0:20
phi=J«A"ix] "«Bz’;
impulseresp (i+1,1)=phi(1,1) ;%gvtspend
impulseresp (i+1,2)=phi(1,2) ;%gvtspend
impulseresp (i+1,3)=phi(1,3) ;%gvtspend
impulseresp (i+1,4)=phi(1,4) ;%gvtspend
impulseresp (i+1,5)=phi(2,1) ;%gdp/unemp
impulseresp (i+1,6)=phi(2,2) ;%gdp/unemp
impulseresp (i+1,7)=phi(2,3) ;%gdp/unemp
impulseresp (i+1,8)=phi(2,4) ;%gdp/unemp

on

on
on
on
on

on

gvtspend
gdp/unemp
tax
interest
gvtspend
gdp
tax

interest

impulseresp (i+1,9)=phi(3,1) ;%tax on gvtspend

impulseresp (i+1,10)=phi(3,2) ;%tax on gdp/unemp

impulseresp (i+1,11)=phi(3,3) ;%tax on tax

impulseresp(i+1,12)=phi(3,4) ;%tax on interest

impulseresp (i+1,13)=phi(4,1) ;%interest
impulseresp (i+1,14)=phi(4,2) ;%interest
impulseresp (i+1,15)=phi(4,3) ;%interest
impulseresp (i+1,16)=phi(4,4) ;%interest

end
plot( [0:20] ,impulseresp (:,1))

hline = refline (0, 0);
hline .Color = ’black’;
axis ([0 20 —0.5 2])

on
on
on

on

gvtspend
gdp/unemp
tax

interest

maximumpointopoint= max(impulseresp (1:12,5)./impulseresp(1:12,1));

cumulativeratio=sum(impulseresp (1:12,5))/sum(impulseresp (1:12,1));

MATLAB FORECASTING EVALUATION CODE:

%This code sets up RMSE, MAE, DM statistics for squared and
%absolute errors. It uses another function called ’‘dmtest’ and

%’dmtestabs’ in order to get the DM-statistics for each value of

%T0 .

%I0=60,90,120,150,180,210,220,230 forecastmatrix is ordered VAR VEC

QUANT RW:
rmse=zeros (6 ,4);

mae=zeros (6 ,4) ;
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8

for i=1:4
for j=1:8
rmse(j ,i)=sqrt(mean((forecastmatrix(T:end,i)—actual(T:end))."2));
mae(j ,i)=mean(abs(forecastmatrix(T:end,i)—actual(T:end)));
el=forecastmatrix(T:end,3)—actual (T:end) ;%comparing errors of the
two that have smallest error
e2=forecastmatrix (T:end,1)—actual (T:end) ;
DMsq(j) = dmtest(el,e2, h);
DMabs(j)= dmtestabs(el,e2,h);
Pvalsq(j)=1— normcdf(DMsq(j));
Pvalabs (j)=1-normcdf(DMabs(j)) ;
if j<6
T=T+30;
else
T=T+10;
end
end
T=1;
end
output=[rmse mae DMsq" Pvalsq’ DMabs” Pvalabs '];
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