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Abstract

When estimating vector autoregressive (VAR) models, it is common to find the dimensionality of the

estimation to be high. Having accurate variable selection methods is one way to tackle this problem. Hsu

et al. (2008) show the relative performance of a number of variable selection methods in this context and

this paper seeks to extend this by considering the Adaptive Lasso and a novel augmented Adaptive Lasso

by using the partial correlation function. The Adaptive methods have higher predictive performance by

inducing low bias on the large parameters but only in presence of low dimensionality and high relative

parameter size differences. They trade the low bias in the large parameters for an increase in bias in the

small parameters, which can result in the more frequent wrong exclusion of variables. Furthermore, the

novel Adaptive Lasso is a competitive method to the original Adaptive Lasso in predictive performance

and substructure selection, by reducing the penalisation on variables with high partial correlation.

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

In machine learning, high predictive accuracy, discovering the relevant variables and model forms are among

the most important (Zou, 2006). Variable selection is therefore of great importance, not only to understand

which variables play a role in the determination of the dependent variable but also to improve predictive

accuracy. When the true model is sparse with respect to the variables considered, accurate variable selection

methods are crucial.

Vector auto regressive (VAR) models have a wide range of applications but are one of the main starting

points for any macro-economic model. The number of explanatory variables considered in a VAR model

is equal to k2 p+ k, where k is the amount of time series considered and p is the chosen lag order of the

VAR model. Due to the quadratic relationship of k, the dimensionality rises quickly. Because of this, it is

common that after selecting the order there is a need for variable selection due to the sparsity with respect

to the variables considered. As a result of this problem, Hsu et al. (2008) have applied multiple variable

selection methods on VAR models to be able to discover with greater precision the relevant variables and

increase predictive accuracy. These include the conventional methods such as the Forward Selection (FS),

Backward Elimnation (BE) but also include the more advanced such as using regularization terms in Lasso.

Zou (2006) has expanded on the idea of the Lasso by introducing the popular Adaptive Lasso. This paper

expands on the research of Hsu et al. (2008), by considering the Adaptive Lasso and a novel augmentation

of it with the goal to reduce potential problems of the Adaptive Lasso.

The aim of this paper is to augment the Adaptive Lasso, as introduced by Zou (2006), using partial

correlation. The motivation for augmenting the Adaptive Lasso is that it focuses on reducing the bias of

larger parameters relative to the smaller parameters. This approach is not only seen here but also for example

in the Smoothly Clipped Absolute Deviation (SCAD) method by Fan and Li (2001). While these can result

in higher predictive performance, asymptotic properties and higher sparsity, this paper shows the negative

implications for the bias of the smaller parameters and the resulting substructure selection. The augmentation

this paper proposes, maintains these good qualities of the Adaptive Lasso and focuses to reduce the bias in

the smaller parameters. This results in more accurate substructure selection and most prominently help the

Adaptive Lasso not wrongly eliminate variables from the model. The augmentation reduces the weights for

the variables with a high partial correlation with the dependent variable. This allows small variables to have

significantly reduced penalisation and therefore attain less bias. This augmentation will be referred to as the

Adaptive Lasso-n.

As a non-expert in the field of variable selection methods an initial approach would be to try all different
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combinations of variables that are being considered and picking the best one according to some criterion.

Such an elementary method would provide the most accurate results however due to computational limita-

tions, this is not always practical. For example, the number of possible combinations in VAR models is equal

to 2k2 p. This calls for more computational efficient methods that do not require such an exhaustive search

of all combinations but can systemically add or eliminate certain variables from the model. From here, one

finds the most conventional methods, namely the Backward Elimination (BE) and Forward Selection (FS).

The BE starts from a full model and as the name suggests eliminates certain variables iteratively according to

an information criterion. The FS on the other hand starts from an empty model and selects certain variables

to be included in the method. The information criterion used for selecting or eliminating variables from

the model can have a large impact on the final outcome of the model. The most common are the Akaike

information criterion (AIC) and the Bayesian information criterion (BIC).

The AIC is known for selecting variables to maximimize the predictive performance of the model and is

therefore more lenient on selecting or retaining (respectively for FS and BE) variables in the model. The BIC

however is more strict on which variables to select or retain in the model. Due to this, it is most commonly

used for descriptive regressions and therefore useful for finding the true data generating process (DGP),

These features result in the AIC selecting higher orders than the BIC. Besides the information criterion, the

order in which variables are tested to be selected or eliminated also plays a large role in the final outcome.

Sauerbrei et al. (2019) state that in the case a weak predictor is selected first by for example the FS, the

coefficient might be significantly biased from 0. In addition to this, the random element of which variable

is selected contributes to an increase in the mean squared error (MSE) of the predicted values (Sauerbrei

et al., 2019). Therefore, methods following simultaneously estimate the coefficients and select the variables,

which makes them more reliable. These methods are accompanied by criteria that are needed for an accurate

comparison of their performance. First are the asymptotic oracle properties of a variable selection method,

whose importance is argued by Fan and Li (2001) and Fan et al. (2004). The oracle properties state that

the method, as the sample size approaches infinity, estimates the parameters without bias and chooses the

correct substructure. Furthermore, Fan and Li (2001) go on to highlight three additional important features.

The first one being sparsity of selection, meaning the method should be able to either select strong or screen

weak predictors (or both). Secondly unbiasedness of the estimates, which are included in the model. The last

condition is continuous penalisation, not having continuous penalisation causes instability in the estimates

Fan and Li (2001).

Tibshirani (1996) proposed the Lasso method, which by employing shrinkage in the form of an L1

regularization method, shrinks some variables to exactly 0. Other shrinkage regularization methods such
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as the Ridge (L2), proposed by Hoerl and Kennard (1970), do not have this property. The Lasso imposes

sparsity on the variables and has continuous penalisation. On the other hand, the Lasso, in the presence of

multicolinearity or grouped variables is not able to include all of the variables, unlike the Ridge (Sauerbrei

et al., 2019). Zou (2006) shows that only under certain conditions (orthogonal design or p=2 and proper

choice of λ ) the Lasso has the oracle properties. Furthermore, it also estimates the parameters with bias. The

final disadvantage of the Lasso is that it cannot select more variables than data points noted by Sauerbrei

et al. (2019). Due to these issues, new solutions were proposed based around the original Lasso concept of

Tibshirani (1996).

The Adaptive Lasso introduces additional weights using pre-estimated coefficients with all variables

(Ordinary Least Squares (OLS) or Ridge) to the Lasso loss function. Properly chosen weights introduce

additional information to the Lasso and help it create additional sparsity while incurring less bias. In the

original proposal of the method, the weights were equal to the inverted pre-estimated parameters. The

increase in sparsity is due to the fact that the weights help to incur more loss in the variables with smaller

coefficients. Furthermore, the larger estimates receive less penalisation and therefore are less biased. Lastly,

Zou (2006) proved that the Adaptive Lasso enjoys the oracle properties. On the other hand as its penalisation

is still in the form of L1, it still struggles in selecting group variables in presence of multicolinearity. This

poor performance of the (Adaptive) Lasso in the presence of multicolinearity gave rise to the Elastic Net

(ENET) method by Zou and Hastie (2005) and the Adaptive ENET by Zou and Zhang (2009). The (Adaptive)

ENET is a weighted average of the L1 (Lasso) and L2 (Ridge) penalisation methods, in this way it enjoys

the variable selection of the L1 penalisation and the grouping effect of the L2 (Ogutu et al., 2012). However,

it loses sparsity and induces additional bias in comparison to the (Adaptive) Lasso.

More advanced methods such as the SCAD or the Adaptive Lasso are centered around relatively penal-

ising absolute larger parameters less than smaller parameters. The additional penalisation on the smaller

parameters results into additional bias and incorrect substructure selection. In response to this, Qian and

Yang (2013) propose to augment the weights with the standard error of the parameters (while maintaining

the asymptotic properties of the Adaptive Lasso). The weights now resemble the statistical significance of the

parameters in contrast to the absolute size. This paper is inspired by the approach to augment the Adaptive

Lasso and find a metric, which is not dependent on only the size of the absolute parameter size.

Besides the popular penalty based approaches, Bühlmann et al. (2010) have developed an approach which

is based around partial correlation. By introducing a simplified PC-Algorithm they first screen variables

using standard correlation and afterwards pick variables by looking at the partial correlations the variables

have with the dependent variable. The paper shows that this method is consistent for variable selection.

4



Partial correlation shows the amount of information a certain variable adds, in addition to the variables

already in the model. The idea of the Adaptive Lasso-n is therefore a combination of the partial correlation

approach by Bühlmann et al. (2010) and the idea of augmenting the weights of the Adaptive Lasso by Qian

and Yang (2013). By combining these approaches, the information of partial correlation is added and less

emphasis is put on the absolute parameter size when penalising, as partial correlation is not directly related

to it. The Adaptive Lasso-n lowers the original weights of the Adaptive Lasso when the partial correlation is

high and maintains the weights when low.

This paper shows that the Adaptive Lasso and Adaptive Lasso-n improve on the Lasso only in the pres-

ence of low dimensionality and high parameter size differences. Furthermore, the Adaptive Lasso-n lowers

the bias of the small parameters relative to the Adaptive Lasso consistently throughout the different data sets.

However, it loses some of the sparsity properties and on occassion incurs additional bias on the large pa-

rameters. In predictive accuracy and substructure selection it is a competitive method to the Adaptive Lasso

when estimating VAR models.

The details of how the methods are applied are stated in Section 2. These methods are applied on

simulated data and historic data. First, the details of the simulated and historical data are discussed in

Section 3. Section 4 discusses the results of these methods when applied on this data. The paper finishes

with concluding remarks on the research and potential further research that can be done on this topic in

Section 5.

2 Methodology

This section discusses the variable selection methods considered in this paper. First the most basic penal-

isation method is discussed, which is the Lasso proposed by Tibshirani (1996) in Section 2.2. Section 2.3

discusses the details of the Adaptive Lasso (Zou, 2006) and the Adaptive Lasso-n (together referred to as the

Adaptive Methods). After this, two information criteria (AIC and BIC) are discussed for selecting the order

of the lags in Section 2.4. Following this, in Section 2.5, are the details of how the conventional BE and FS

methods are implemented. Moreover, due to the promising results in the paper of Hsu et al. (2008), hybrid

methods of the latter are discussed in Section 2.6. Lastly the details about the performance measures and the

cross-validation process for finding the optimal hyperparameter are in Sections 2.7 and 2.8 respectively. The

notation and details of the methodology for the VAR model, AIC, BIC, BE, FS and Lasso, are based on the

paper from Hsu et al. (2008). As the focus of this paper is towards the Lasso and Adaptive methods, only

these will be tested in the simulation.
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2.1 VAR model

This section introduces notation necessary for the description of the VAR model. The following vector

yt = (y1,t ,y2,t , ...,yk,t) : t = 1,2, ...n represents a k-dimensional time series, where yt is a k-dimensional vector.

A VAR model with order p (VAR(p)), is described as follows:

yt = ψ +φ1yt−1 +φ2yt−2 + ...+φpyt−p +µt (1)

Where ψ , is a k-dimensional vector giving the intercept, φi,∀i = 1,2, ...p is kxk dimensional coefficient

matrix and the k-dimensional vector µt ,∀t = 1,2, ...n is a white noise process with covariance matrix Σu.

Through the following vectorisations the above VAR(p) model can be rewritten to Y = Xβ +M, where:

1. Y ∗ = (yp+1,yp+2, ...,yn), Y = vec(Y ∗), M∗ = (up+1,up+2, ...,un), M = vec(M∗)

2. Xt = (1,y′t ,y
′
t−1, ...,y

′
t−p+1)

′, X∗ = (Xp,Xp+1, ...Xn−1), X = (X∗)′⊗ Ik,

3. B = (ψ,φ1,φ2, ...,φp), β = vec(B)

Ik denotes the kxk dimensional identity matrix. The least squares cost function to be minimized in this case

becomes the following: (Y −Xβ )′(Y −Xβ ).

2.2 Penalised Likelihood Lasso

Penalised likelihood regressions are structured according to equation (2), here it is assumed that the least

squares is the standard (without any penalisation) loss function. Moreover, cλ (|β |) is the penalisation term

that can take on many forms. The Lasso can also be seen as a regular OLS regressing, however, with the

constraint: ∑ |β j|< s. You can estimate B similarly by estimating the regression in equation 2, with cλ (|β |)

set as in equation (3).

(Y −Xβ )′(Y −Xβ )+ cλ (|β |) (2)

Hsu et al. (2008) propose to apply the Lasso penalisation method on the VAR model described in equation

(1). This results in the cλ (β ) taking the following form, where λ is a hyperparameter chosen through cross-

validation (discussed in Section 2.7).

cλ (|β |) = λ ∑ |β j| (3)

Hsu et al. (2008) propose two ways of implementing this method, one is applied on each individual series

and the other on the entire system, these refer to the Lasso-s and Lasso-f respectively (Only Lasso-f used
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for simulations). Zou (2006) build on this principle to develop the Adaptive Lasso. He shows that, by

adding weights to the penalisation function, it is possible to maintain continuity, achieve additional sparsity,

unbiasedness and obtain the oracle properties. The execution of the methods in Section 2.2 and 2.3 are done

in Python 3.7, further details on packages used for optimisation and code are in Section 6.2.

2.3 Adaptive Methods

2.3.1 Adaptive Lasso

The Adaptive Lasso as proposed by Zou (2006) can be seen in equation (4), where β is a k-dimensional

vector and γ > 0. Here wi can take many forms although the original idea was to do a 2-step approach to this

penalisation function, where first the full model is estimated using an OLS regression. These estimates are

then used to calculate the weights and with these weights do the second model estimation as in equation (4).

cλ (|β |) = λ

k

∑
i=1

wi|βi|, wi =
1

| ˆβi,OLS|γ
(4)

Note that this method is applied only to the entire system (and not to the individual models), similar to

Lasso-f.

This paper considers the effect of inaccurate estimation of the weights in finite samples, this gets ampli-

fied in the case of high dimensionality. While the Ridge penalisation Hoerl and Kennard (1970) could be

used in this case, this method itself would also incur additional bias in the estimates and thus in the weights.

Therefore, a solution would be to combine the the weights with information from another source thereby

dampening any bias or high variance there might be in the estimates. This is for example done by augment-

ing the weights with partial correlation. Secondly, as discussed earlier the additional penalisation incurs

additional bias in these parameters and could result in incorrect substructure selection. In the next subsection

the Adaptive Lasso-n method is discussed. This method, by augmenting the weights of the Adaptive Lasso,

aims to decrease the severity of the problems mentioned above.

2.3.2 Adaptive Lasso-n

This novel method is referred to in this paper as the Adaptive Lasso-n. The method applies partial correla-

tion (and cross partial correlation) functions to the Adaptive Lasso’s weights to augment them. The intuition

behind the method comes from combining the penalisation and the PC-algorithm approaches. Partial corre-

lation shows how much information a certain variable adds to the model given the parts already explained

by previous variables. Thereby, using it as a criterion for penalisation the Adaptive Lasso-n can penalise
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variables that do not add additional information. This results in a parsimonious model and Bühlmann et al.

(2010) proved that by solely using partial correlation you can have a consistent variable selection method.

Furthermore, the information the partial correlation provides is not directly related to the absolute parameter

size and therefore will not incur additional bias solely on the smaller parameters, which is the source of the

potential problems of the Adaptive Lasso. Moreover, Qian and Yang (2013) showed that it is possible to

include information from another source into the Adaptive Lasso by augmenting the weights. In the paper

they used the standard error of the parameters. The Adaptive Lasso-n originated by combining this new

source of information from a fundamentally different approach by Bühlmann et al. (2010) and augmenting

the Adaptive Lasso with this information, in a similar way to Qian and Yang (2013).

The Adaptive Lasso-n uses the same two-step approach the Adaptive Lasso. In the first step the parame-

ters (using OLS) and the partial correlation are estimated. The partial correlation is estimated per individual

model and individual series added to those models. Consider the model for the jth series, where all series

are introduced as explanatory variables. Consider adding the ith series as explanatory variables.

1. For a given lag order p, find the partial correlation function (cross-correlation in case of j 6= i ) of the

ith series with the jth series. Find the (cross) partial correlation of the p lags from the ith series with

respect to the jth series.

2. Repeat this for all series i = 1,2, ...,k and all models j = 1,2, ...k

Note that by using this procedure the partial correlation is estimated for each explanatory series’s individu-

ally. For example the partial correlation function of the i+1th series with the dependent variable is unaffected

by the ith series and all previous. This is done such that the order in which the series as explanatory variables

are added, does not affect any results, in contrast to for example FS. Furthermore, within each series added

the lag structure is followed for the order of variables in the partial correlation. Due to the time-series nature

this is a logical choice but could be changed for future research. As a result, there is an estimated partial

correlation for each parameter, the resulting estimated vectorised partial correlation vector is denoted as p̂.

Using the partial correlation, the weights are calculated as follows: wi =
1

| ˆβi,OLS|γ
(1−|p̂i|),γ > 0, where p̂i is

the estimated partial correlation of the ith variable in vectorized form with the dependent variable. This paper

uses γ = 1, due to this being a standard approach. For further research, the γ can be treated as an additional

hyperparameter subject to optimisation.

A benefit to calculating partial correlation per individual series added is that its accuracy is only depen-

dent on the amount of data points and not dimensionality of the VAR model. Due to this the method hopes to

improve the performance in finite samples and high dimensionality. Partial correlation in time series is often
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used by researchers when investigating the lag stucture. The weights as calculated above always remain

positive, furthermore the weights for the variables with high partial correlation are lowered and are kept the

same for variables with low partial correlation (relative to original Adaptive Lasso weights). As a final result,

as the method uses partial correlation, it can distinguish between variables that are redundant with respect to

previously added variables and which ones provide unique additional information.

2.4 Order Selection with AIC and BIC

The information criteria can be used to select the orders of the lags to include. This can be done with many

different information criteria, this paper discusses using the AIC and BIC. Respectively for AIC and BIC,

the order is chosen as seen below. The notation is taken from the paper of Hsu et al. (2008). The symbols

ˆpaic and ˆpbic represent the order chosen using AIC and BIC respectively.

ˆpaic = arg minp{n ln|Σ̃u|+2pk2}

ˆpbic = arg minp{n ln|Σ̃u|+ ln(n)pk2}

Here Σ̃u represents the maximum likely hood estimate of the covariance matrix Σu. Furthermore n represents

the sample size and p and k the order and amount of time-series considered respectively.

2.5 Backward Elimination (BE) and Forward Selection (FS)

This section introduces two conventional benchmark models. These two methods can be differently imple-

mented based on ones choice of information criterion and order of selection for variables to be included

or eliminated. The methods in this paper use the AIC. Additionally B j denotes the kp+ 1 dimensional

parameter vector associated with the jth series. Furthermore, B j,i denotes the ith parameter in this vector.

Consider a set ζ (B j), which includes all parameters associated with the jth series. Lastly, ∀m < kp+ 1,

let ζ (B j/{B j,i1 ,B j,i2 , ...,B j,im}) be a set, which includes all parameters except B j,i1 ,B j,i2 , ...,B j,im . The BE

method is as follows:

1. Let i = kp+1 and the set υ = ζ (B j)

2. If IC(υ/{B j,i})≤ IC(υ), Update υ to υ/{B j,i})

3. Update i to i−1

4. Repeat 2-3 until i = 0
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Note that IC is a function for any information criteria but as eluded earlier in this paper uses the AIC. The

BE method starts out with a full model and systematically checks every variable to be eliminated. Secondly,

the FS method is discussed. In contrast to the BE, the FS starts with an empty model and systematically goes

through all variables to check whether to select them. Using the same notation as with the BE, the process is

summarised in the steps below for selecting the variables of the jth series:

1. ζ (B j)=/0, i=1

2. Keep variables in ζ (B j) and add the ith variable (B j,i) as an additional explanatory variable to ζ (B j).

3. If IC(ζ (B j))≥ IC(ζ (B j)/{B j,i}), remove B j,i from ζ (B j)

4. Update i to i=i+1

5. Repeat steps 2-4 until i=kp+1

Specifically in this FS process, Hsu et al. (2008) suggested to begin with an empty model and add univariate

AR series as explanatory variables of each endogenous variable considered in the VAR model. However, in

order to keep the same structure for the FS as the BE, the process above is followed.

2.6 Hybrid methods

Due to the excellent performance of hybrid methods in the paper by Hsu et al. (2008), hybrid methods are

also investigated. The hybrid methods considered are as follows:

1. BE + FS, first implement the FS method for each series then apply the BE on each series

2. AIC+BE, select order of VAR model using AIC (VAR( ˆpAIC)) then apply BE to each series.

3. AIC+Lasso-f, apply the Lasso-f to the VAR( ˆpAIC) model.

4. AIC+Lasso-s, apply the Lasso-s to the VAR( ˆpAIC) model’s individual series.

5. AIC+Adaptive Lasso, apply the Adaptive Lasso to the VAR( ˆpAIC) model.

6. AIC+Adaptive Lasso-n, apply the Adaptive Lasso-n to the VAR( ˆpAIC) model.

2.7 Performance Measures

In order to evaluate the performance of the chosen methods, the following performance measures are cho-

sen. As there is more information in the simulated data section, it is possible to include more performance
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measures. For the actual data the following performance measures are tracked: the maximum order selected,

the proportion of parameters equal to 0 and the prediction mean square error (PMSE) for both the individual

models and a normalised version for the models combined. The different PMSE will be calculated as fol-

lows:

Individual PMSE for model j, where H is the amount of data points to be forecast. Furthermore, to nor-

malise the PMSE the covariance matrix estimated with the VAR( ˆpaic) model is used, this is denoted as ˆΣaic.

Moreover, yi denotes the ith observation and ˆyZ+i the dynamic forecasted value of the (Z + i)th observation

given all data before and including the Zth observation. Z denotes the last observation in the training set. The

training and test division of the actual data set is specified in Section 3.1.

PMSE j =
H

∑
i=1

(y j,Z+i− ˆy j,Z+i)
2,∀ j = 1,2,3

PMSEAll =
H

∑
i=1

(yZ+i− ˆyZ+i)
′ ˆΣaic

−1
(yZ+i− ˆyZ+i)

Furthermore, for the simulated data the following performance measures are tracked, the PMSE for the

combined models alongside: proportion correct of substructure (PROP), proportion of parameters equal to

0 (Propzero), amount of wrongly excluded variables (ZeroW) and lastly, the bias in the large and small

parameters (BiasL and BiasS respectively). Below the formulas can be found for the PMSE and the bias for

small and large parameters. For the PMSE with the simulated data the first n1 data points (90%) are used for

training and the last n2 (10%) for testing. The static forecasted series with the estimates parameters using

the first n1 data points is denoted as ŷi. Furthermore, y∗i is static forecast value given the DGP. The Σ of

the DGP is used to standardize the models in contrast to an estimated Σ, in order to get the most accurate

normalisation possible. This will cause the PMSEALL to most accurately represent the error of the models

combined. Furthermore, it also gives us the property below.

PMSEAll = 1+
1
n2

n1+n2

∑
i=n1

(y∗i − ŷi)
′
Σ
−1(y∗i − ŷi)

The reason why 1+the sum is considered described above, is the fact that the forecasted series using the

estimated parameters are compared to the forecasted series knowing the DGP, not the observed values. The

above equation is formed by splitting the error in two parts, the error of the DGP forecast with the observed

and the error of the DGP forecast with the forecast using the estimated parameters. The expected value for the

normalised squared difference between the DGP forecast and the observed values is 1 (because normalisation

is done with the DGP Σ). Therefore this is taken in consideration above when calculating this.
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Let ψ and ϕ be two sets containing the parameters in the DGP which are considered small and large

respectively (See Appendix (Section 6.1) for selected parameters). These two sets combined do not span

the entire parameter set. They were chosen by hand, looking at the parameters when ordered from small

to large the parameters are chosen for the ψ set by including all the small parameters until the next one

constituted a relatively larger difference. The same process was executed for choosing the variables for the

ϕ set. Furthermore B and B̂ represent the DGP parameters and estimated parameter vectors respectively.

BiasS = ∑
i∈ψ

(Bi− B̂i)
2

BiasL = ∑
i∈ϕ

(Bi− B̂i)
2

These values are used to compare the bias relatively between methods.

2.8 Cross-validation hyperparameters

The optimal hyperparameters for the penalisation methods (Lasso and Adaptive Lasso (-n)) are unknown.

As suggested and implemented by Hsu et al. (2008), cross-validation is used in this paper to optimise this

parameter. The cross validation consisted of a search over 20 different hyperparameters. Data points 1 till T1

from Figure 1 is used to estimate the model for every hyperparameter considered, in this paper this constitutes

as 72% of the data (76% for the historical data). Each model estimated does a static forecast on T1 till T2,

which constitutes for 18% of the data (19% for the historical data). The optimal hyperparameter is chosen

such that it minimises the PMSEALL over this time period. Lastly, the model is re-estimated with the optimal

hyperparameter using the data from 1 till T2. The remaining data is then used for performance/forecast

evaluation.

Figure 1: An illustration by Nicholson et al. (2017) of process for selecting the optimal hyperparameter

3 Data

In this section the process of data collection and simulation is discussed.
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3.1 Application

Based on the paper of Hsu et al. (2008), the methods described in Section 2 are applied to model the re-

lationship between the following three variables: unemployment rate (UER), annual percentage change of

M1 and nominal GDP from the U.S (aggregation method: end of period). This is a good exercise to test

the performance of the methods and gives a chance to compare the results to those from the paper of Hsu

et al. (2008). Furthermore the data used is quarterly data from 1st of January 1960 till 1st of January 2006,

amounting to a total sample size of 185. From this, the first 176 data points are used to train the model and

the last 9 to test relative performance of the methods. Moreover in order to remove non-stationarity the first

difference of all 3 variables is taken. Table 1 shows that the mean of the first differenced variables is around

0. Furthermore, the varying sizes of the standard deviations and minimum and maximum values illustrate

that the variables differ in their variance.

Table 1: Descriptive statistics U.S. Macro-Economic Data
Obs. Mean St.Dev. Min. value Max. value

GDP 184 0.0015 1.2250 -5.0850 3.4380

M1 184 0.0045 1.6614 -6.7543 7.4986

UER 184 -0.0038 0.3469 -0.9000 1.4000

UER measured in percentage;

Nominal GDP and M1 measured in annual percentage difference

The seasonally adjusted data is collected using the database from the Federal Reserve Bank of St. Louis

(2020). Following the execution of these methods by Hsu et al. (2008), the maximum lag order considered

for the methods (henceforth referred to as pmax) will be equal to 10.

Furthermore, Figure 2 and Figure 3 display the differenced and the non-differenced macro-economic

data.

3.2 Simulation

The simulation study consists of 4 different models from which 50 data samples of sample size 150, 300

and 600 are generated. Different models are investigated to test the performance of the different methods

under varying conditions. Furthermore, multiple sample sizes are considered to see the effect of increasing

sample size on the accuracy of the different methods. Due to some methods possessing the asymptotic oracle

properties, it is interesting to see whether this can manifest itself in these increasing sample sizes. The four

models consist of two templates, where for both templates two different parameter generating ranges are
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Figure 2: Data from Federal Reserve Bank

of St. Louis (2020)

Figure 3: Data from Federal Reserve Bank

of St. Louis (2020)

used. The two templates can be seen below and are referred to as Model 1 and 2. The instances of the two

models that are generated can be seen in the Appendix (Section 6.1). B represents the lag operator

Model 1:

(I−A1B−A2B3−A3B5)yt = ut ,ut ∼ N(0,Σu1)

Model 2:

(I−A4B−A5B2−A6B3)yt = ut ,ut ∼ N(0,Σu2)

Where A1=

a11 0

a12 a13

 , A2=

a21 0

0 a22

 , A3=

a31 a32

a33 0

, Σu1=

 1 0.5

0.5 1

 and

A4=


a41 0 0 0

a42 0 0 a43

a44 0 a45 0

0 a46 0 a47

 , A5=


0 0 0 0

0 a51 0 0

0 a52 a53 0

0 a54 0 0

 , A6=


a61 0 0 0

0 a62 0 0

0 0 a63 0

0 0 0 a63

,

Σu2=


1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1


The first model considers two time series, because of its high lag order the model does become high di-

mensional. Furthermore, the model contains seasonality by not including the third and fifth lag in the DGP.

Because of this seasonality, the model is sparse with respect to the variables considered. The pmax considered

is 5 for this model. The total amount of parameters in the first 5 lags, including the constants, sum to 22. The

number of non-zero parameters to be estimated from those are 8. This causes the model to have a sparsity
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of 64%. The second model, on the other hand, has higher dimensionality and lower order, while not having

seasonality. The sparsity of this model is due to the sparsity in the parameter matrices. The pmax considered

is 3 for this model. The total amount of variables in the first three lags, including the constants, sum up to

52. The number of variables to be estimated from those are 15. This causes the model to have a sparsity

fraction of 71%. The main differences between the two models are therefore the origins of their sparsity and

their dimensionality.

The entries in the parameter matrices were randomly generated twice for each model. Once they are

generated according to U ∼ (0,0.8) and once according to U ∼ (0,0.4). In order to guarantee the stability of

the models, parameters are generated according to these distributions until parameter matrices are generated

which correspond to a stable process. The two differently generated parameters illustrate how the methods

handle different absolute size of parameters. Furthermore, the covariance matrix was chosen to allow for

correlation between the error terms. Data was simulated using the mlVAR package in Rstudio (Details

Section 6.3).

4 Results
In this section, the results of the methods on both data sets are discussed. First are the results from the

simulation, where Model 1 and 2 are discussed (in that order), and second are the results from the historical

data set.

4.1 Model 1

Firstly, Model 1 with the parameter set generated with the larger parameters (set 1 henceforth) is discussed,

results reported in Table 2. According to the PMSE, the methods rank from best to worst as Adaptive Lasso-

n, Adaptive Lasso and Lasso respectively, where the Adaptive methods are closest in their performance.

The order is identical in the bias of the large parameters and explains for a large portion the ranking of

the PMSE. These parameters have the largest effect on the forecasting performance and thus being able

to estimate these with low bias results into lower PMSE. The Adaptive methods however, both trade low

bias in the large parameters for higher bias in the small parameters and thereby eliminating more often the

wrong variables (relative to Lasso). Therefore, there seems to exist a trade-off between low bias in the large

parameters resulting into higher predictive performance and low bias in the small parameters resulting in

more correct substructure selection. While this trade-off occurs in both Adaptive methods, the Adaptive

Lasso-n has lower bias in the smaller parameters relative to the Adaptive Lasso and therefore, is also less

likely to wrongly eliminate a variable. However, the bias in the smaller parameters still remains larger than

with the Lasso.
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Furthermore, the Adaptive methods attain the highest sparsity, while the Adaptive Lasso-n trades some

of this sparsity for the benefits above. There is no clear conclusion from the PROP of the methods, they

are fluctuating for the different sample sizes and have no conclusive ranking. Lastly, the performance of

both the Adaptive methods increase the most with sample size for the PMSE. This follows from their oracle

properties. This is also expected to happen for the PROP, but it does not. Therefore, it could be that the

oracle properties for choosing the correct substructure occurs with higher sample sizes.

Moving on to the parameter set generated with the smaller parameters (set 2 henceforth), the results are

different (See Table 2). Although the relative performance of the Adaptive Lasso-n and Adaptive Lasso has

remained generally the same. The large difference is that the Lasso outperforms both Adaptive methods

for sample sizes 150 and 300 in all performance measures. The oracle properties of the Adaptive methods

take effect when the sample size increases to 600 and therefore outperform the Lasso here. This difference

can be explained by the inaccurate estimate of the weights when the parameters are closer to 0. The OLS

estimates due to their high variance in the high dimensional setting struggle to represent the relative sizes of

the parameters. This results into inaccurate weights, certainly in lower sample sizes, and negatively impact

the performance of both Adaptive methods. The Adaptive Lasso-n, which also uses partial correlation partly

rectifies this problem. While performing better than the Adaptive Lasso because of it, it is not enough

to surpass the Lasso. Lastly, when looking at correct substructure selection, the Lasso outperforms both

Adaptive methods for all sample sizes, between the Adaptive methods they are generally equal.

Table 2: Simulation Results Model 1
Model 1 Param ∼U(0,0.8) Param ∼U(0,0.4)

Sample Size Method PMSE PROP PropZero ZeroW BiasS BiasL PMSE PROP PropZero ZeroW BiasS BiasL

150 Lasso 1.1716 0.5973 0.3182 0.9200∗ 0.0256∗ 0.0284 1.1129∗ 0.5900∗ 0.3464 1.3200∗ 0.0080∗ 0.0234∗

Adapt. Lasso 1.1535∗ 0.6045∗ 0.3755∗ 1.4800 0.0320 0.0193∗ 1.1473 0.5627 0.3645∗ 1.3400 0.0115 0.0270

Adapt. Lasso-n 1.1574 0.5964 0.3564 1.3600 0.0322 0.0199 1.1424 0.5709 0.3545 1.3300 0.0108 0.0264

300 Lasso 1.0708 0.6236 0.3527 1.0200∗ 0.0097∗ 0.0166 1.0709∗ 0.6812∗ 0.4336 1.3000 0.0045∗ 0.0142∗

Adapt. Lasso 1.0693 0.6264 0.3972∗ 1.4800 0.0145 0.0122 1.0969 0.6364 0.4839∗ 1.2800 0.0055 0.0181

Adapt. Lasso-n 1.0645∗ 0.6400∗ 0.3891 1.2400 0.0136 0.0118∗ 1.0941 0.6236 0.4752 1.2000∗ 0.0053 0.0168

600 Lasso 1.0381 0.6163 0.3327 0.8800∗ 0.0060∗ 0.0069 1.0312 0.6509∗ 0.3864∗ 0.7400 0.0028∗ 0.0039

Adapt. Lasso 1.0378 0.6318∗ 0.4118∗ 1.0200 0.0081 0.0066 1.0307∗ 0.6409 0.3745 0.6800 0.0033 0.0030∗

Adapt. Lasso-n 1.0354∗ 0.6036 0.4016 1.0200 0.0076 0.0060∗ 1.0309 0.6318 0.3514 0.6600∗ 0.0031 0.0033

∗ shows best performance of performance measure for respective data set. PMSE is normalized with DGP Covariance Matrix, PROP and PropZero is fraction correct and zero respectively.

4.2 Model 2

Similar to the result analysis of Model 1, first the parameter set generated with the larger parameters (set 3

henceforth) is analyzed (See Table 3). The results are similar to set 2. However now also when the sample

size is 600, the Lasso outperforms the Adaptive methods. The possible reason for this is again inaccurate

weight estimation. As stated in Section 3, Model 2 has constituted a severe increase in the dimensionality
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of the model. OLS estimation under high dimensionality (certainly in combination with low sample size)

suffers from high variance in its estimates. The resulting weight estimation is therefore inaccurate and thus

causes the Adaptive methods to become inaccurate. The Adaptive Lasso-n succeeds also in set 3 to lower the

bias of the smaller parameters relative to the Adaptive Lasso and thus achieve better substructure selection.

The effects of higher dimensions on the performance of the Adaptive methods is certainly apparent in the low

sample sizes. Here the Adaptive methods struggle to attain their sparsity. The effects of high dimensionality

on the performance of the three methods are clearly reflected in the heat maps shown below. They show the

parameter matrices estimated (with constants) for all three methods for set 1 and set 3 for sample size 150

(as this sample size is closest to the application data as well). The difference in sparsity for the Adaptive

methods for the set 1 and set 3, certainly relative to the base case of the Lasso.

DGP Model 1 Set 1 Lasso Adaptive Lasso Adaptive Lasso-n

DGP Model 2 Set 3 Lasso Adaptive Lasso Adaptive Lasso-n

Figure 4: Heat Maps Model 1 (set 1) and Model 2 (set 3) Sample Size: 150

Moving on to the parameter set generated with the smaller parameters (set 4 henceforth) (See Table 3), there

is a combination of the effects discussed earlier. Not only is set 4 in a high dimensional setting, but the

parameter absolute differences are also smaller. The combined effect has a severe negative impact on the

accuracy of the weights in the Adaptive methods and therefore they also perform poorly relative to the Lasso.

The Adaptive Lasso-n outperforms the Adaptive Lasso in all sample sizes in most performance measures.

Furthermore, the sparsity of the Adaptive methods is remarkably low, however this is explained above using

inaccurate weight estimation as an argument. This is reflected in the low PROP and is due to worse substruc-

ture selection. The low number of wrongly excluded variables by the Adaptive methods is also due to their

low sparsity in this data set. Lastly, the bias in the large estimates in the Adaptive methods remains lower

than that of the Lasso but do not result in lower PMSE.

4.3 Application
This section discusses the results of the methods from Hsu et al. (2008) and the added (hybrid) Adaptive

Methods when applied on the macro-economic data set, seen in Table 4 and 5. The AIC+Lasso-f and

AIC+Lasso-s methods perform best, with AIC+BE following afterwards. The Adaptive methods are among
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Table 3: Simulation Results Model 2
Model 2 Param ∼U(0,0.8) Param ∼U(0,0.4)

Sample Size Method PMSE PROP PropZero ZeroW BiasS BiasL PMSE PROP PropZero ZeroW BiasS BiasL

150 Lasso 1.3595∗ 0.6031∗ 0.3946∗ 1.3800 0.0292∗ 0.0365 1.2931∗ 0.5931∗ 0.4062∗ 2.6400 0.0115∗ 0.0439

Adapt. Lasso 1.4241 0.4730 0.2442 1.5400 0.0307 0.0237 1.3520 0.4731 0.2600 1.9600 0.0219 0.0412

Adapt. Lasso-n 1.4219 0.4731 0.2308 1.2000∗ 0.0336 0.0235∗ 1.3479 0.4617 0.2512 1.9500∗ 0.0214 0.0393∗

300 Lasso 1.1900∗ 0.6269∗ 0.3823∗ 1.1400 0.0167∗ 0.0168∗ 1.1387∗ 0.6327∗ 0.4269∗ 2.1600 0.0082∗ 0.0210

Adapt. Lasso 1.1941 0.5150 0.3511 1.2200 0.0188 0.0195 1.1637 0.4800 0.2435 1.3600 0.0150 0.0162

Adapt. Lasso-n 1.1904 0.5335 0.3631 1.1000∗ 0.0168 0.0169 1.1626 0.4827 0.2458 1.3400∗ 0.0147 0.0158∗

600 Lasso 1.0816∗ 0.6431∗ 0.3846∗ 0.8000 0.0071∗ 0.0062∗ 1.0713∗ 0.6500∗ 0.4423∗ 2.0600 0.0064∗ 0.0096

Adapt. Lasso 1.0928 0.5265 0.3634 0.9000 0.0079 0.0092 1.0759 0.4862 0.2438 1.2000 0.0088 0.0068

Adapt. Lasso-n 1.0902 0.5347 0.3611 0.6000∗ 0.0076 0.0070 1.0756 0.4912 0.2458 1.1200∗ 0.0085 0.0066∗

∗ shows best performance of performance measure for respective data set. PMSE is normalized with DGP Covariance Matrix, PROP and PropZero is fraction correct and zero respectively.

the worst performing methods of all, including the most basic such as AIC, which selects only the order.

However, the poor results of the Adaptive methods when applied on this data set concurs with the results of

the simulation. The simulation results show an increase in dimensionality with low sample size causes poor

performance in the Adaptive methods (from Model 1 to 2). The application has the same conditions as Model

2 with sample size 150, referring to the similar sample size and high dimensionality. The poor performance

because of the high dimensionality in the result section is explained by inaccurate weight estimation. The

poor performance of the AIC method is an indicator for the inaccurate weight estimation of the Adaptive

methods. This method is an OLS regression with lag order 8, its inverted parameters are equal to the weights

for AIC+Adaptive Lasso and used in calculating those for the AIC+Adaptive Lasso-n. The AIC method

performs the worst of all 12 methods. Therefore, when the weights are constructed from these parameters,

they themselves also do not give much information. In this case, they even sabotage the effectiveness of

these Adaptive Lasso methods. This is also reflected in the worse performance of the non-hybrid Adaptive

methods, which have a higher pmax (10) and therefore higher dimensionality. This amplifies the effects of

high dimensionality and therefore causes the performance of these methods to deteriorate.

Furthermore, the low sparsity of the Adaptive methods are also reflected in the simulation results. When

looking at the results of set 3 and 4 with sample size 150 (very similar to macro-economic data set, which

has 185), the low sample size combined with high dimensionality caused problems with the sparsity of the

methods. This gets resolved by a higher sample size or when looking at set 1, with lower dimensionality.

The inaccurate weight estimation for high dimensionality partly exists due to limitations of this paper’s

implementation of the Adaptive methods. These are discussed further in the Conclusion (Section 5).

4.3.1 Comparison with results Hsu et al. (2008)

As noted throughout the paper, the methods proposed in Table 4 and the macro-economic data on which the

methods are applied form a replication of the paper from Hsu et al. (2008). However the results from this
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Table 4: Results Macro-Economic Data, methods from Hsu et al. (2008)

Perform. Crit. AIC BIC AIC+BE BE+FS Lasso-s Lasso-f AIC+Lasso-s AIC+Lasso-f

Proportion zero - - 0.5067 0.6267 0.3441 0.6021 0.3880 0.6167

Lag Order 8 4 8 9 10 10 8 8

PMSE1 0.5181 0.2300 0.2208 0.4965 0.2695 0.2679 0.2246 0.1771

Rank 11 4 2 9 6 5 3 1

PMSE2 0.0447 0.0380 0.02647 0.0431 0.0573 0.0247 0.0285 0.0246

Rank 11 8 3 10 12 2 5 1

PMSE3 3.1514 2.1107 2.1290 1.6648 1.5278 2.4656 1.1562 1.8921

Rank 10 5 6 3 2 9 1 4

PMSEall 3.7095 2.4639 2.1700 2.8938 2.6374 2.5172 1.6892 1.9794

Rank 12 4 3 9 6 5 1 2

PMSEall is normalized with VAR( ˆpaic) Sigma, Proportion of zero is fraction of parameters equal to 0.

PMSE1 , PMSE2 and PMSE3 correspond respectively to GDP, Unemployment rate and M1. Rank combined with Table 5.

Table 5: Results Macro-Economic Data, (Hybrid) Adaptive methods
Perform. Crit. Adaptive Lasso Adaptive Lasso-n AIC+Adaptive Lasso AIC+Adaptive Lasso-n

Proportion zero 0.1075 0.0967 0.1200 0.0933

Lag Order 10 10 8 8

PMSE1 0.3657 0.4752 0.5148 0.5389

Rank 7 8 10 12

PMSE2 0.0394 0.0359 0.0281 0.0306

Rank 9 7 4 6

PMSE3 3.5819 3.4135 2.1571 2.1318

Rank 12 11 8 7

PMSEall 3.6799 3.5757 2.7839 2.7755

Rank 11 10 8 7

PMSEall is normalized with VAR( ˆpaic) Sigma, Proportion of zero is fraction of parameters equal to 0.

PMSE1 , PMSE2 and PMSE3 correspond respectively to GDP, Unemployment rate and M1. Rank combined with Table 4.

paper differs from theirs. This can be because of multiple reasons, which are discussed in this subsection.

The first possible reason is the use of seasonally adjusted data provided to us by the Federal Reserve Bank

of St. Louis. It is not entirely clear from the paper by Hsu et al. (2008), whether they used this as well but

it could play a minor role. Furthermore, for the methods not involving the Lasso, this paper uses standard

OLS regression to find the parameters. Whether this is to compare models for elimination or selection in

BE or FS or choosing the lag order in AIC and BIC. Hsu et al. (2008) most likely used weighted OLS.

This could affect the different number of elimination and selection by the BE and FS and the accuracy of

estimation of the other methods. Furthermore, specifically for the FS, Hsu et al. (2008) uses a version where
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they add the parameters as univariate series. On the other hand, in this paper the parameters are added lag

wise, starting per model with the first lags and considering the final lags last. This is further explained in

Section 2.4. This affects in which order the different variables are considered and as noted before affect the

final result severely. Moreover, to optimise the cost function of the Lasso, this paper employs a gradient

descent method. Hsu et al. (2008), on the other hand, use the more efficient algorithm: least-angle regression

(LARS) to optimise. As the gradient descent method this paper employs is inferior to that of the LARS, the

parameters estimated might not be the optimal ones (or atleast different to the ones found with LARS).

Lastly, the cross-validation process for choosing the lambda for the penalisation methods (Lasso, Adap-

tive Lasso, Adaptive Lasso-n) were not fully explained by Hsu et al. (2008). This paper follows the method-

ology described in section 2.8 for finding the optimal hyperparameter. To what extent this is similar to that

from Hsu et al. (2008) is not known. However, it is likely they are different, which plays a role in the final

outcome of the penalisation.

5 Conclusion
In the results of the simulation, the oracle properties for both the Adaptive methods cause accurate predictive

performance (low PMSE) in high sample size conditions. However, the substructure selection accuracy did

not increase consistently with sample size, which is expected for the methods, certainly the Adaptive meth-

ods, which have the oracle properties. Furthermore, in presence of low dimensionality and parameters that

are generated with potentially large parameters (set 1), the Adaptive methods with OLS estimates outperform

the Lasso in substructure selection (PROP), sparsity (PropZero) and predictive accuracy (PMSE). Both the

Adaptive methods did have higher bias in the smaller parameters relative to the Lasso, which resulted in

more often wrongfully excluding variables (ZeroW). However, this effectiveness was reduced severely when

either the parameters were generated to be lower (set 1 to set 2), the dimensionality increased (set 1 to set 3)

or when both these effects appear (set 1 to set 4). The results of the methods replicated from Hsu et al. (2008)

and applied on the same macro-economic data set, mostly concur with that of the paper. Furthermore, the

poor results of the added Adaptive methods in this data set concur with the simulations. Namely the model’s

high dimension and relatively low sample size causes a similar negative effect on the performance of the

Adaptive methods as from set 1 to set 3 of the simulation.

Between the Adaptive methods it is observed that the Adaptive Lasso-n is a competitive method with the

Adaptive Lasso. This manifests in the PMSE for both the simulated and the real data. Furthermore, also in

choosing the correct substructure they are competitive. The main difference is that the Adaptive Lasso-n is

able to reduce the bias in the smaller parameters and thus lowers the amount of wrongly excluded variables.

However, it sacrifices some of the sparsity features from the Adaptive Lasso-n for this. Because of this the
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substructure selection remains equal. Furthermore, it generally keeps the characteristic low bias in the large

parameters from the Adaptive Lasso. This causes it to have its competitive PMSE. The relatively lower bias

in the smaller parameters is due to the ability of the Adaptive Lasso-n to distinguish between the smaller

parameters in the DGP and the zero parameters more accurately, using the information from the partial

correlation. This resulted in consistenly reducing the number of wrongful exclusions of variables (ZeroW)

by the Adaptive Lasso.

During the research there were limitations, which should be taken in consideration when interpreting

the results. The first limitation is the execution of the penalisation methods (Lasso, Adaptive Lasso and

Adaptive Lasso-n). For these three methods this paper uses a gradient descent method in order to optimise

the objective function. Certainly in a high dimensional setting this causes trouble finding the global optimum.

Furthermore, it resulted in a high computation time, which limited the search for the optimal hyperparameters

to consider only 20 options. However, as Hsu et al. (2008) suggest, using the LARS algorithm could fix both

of these issues, Efron et al. (2004) show that the order of the computational time would be equal to that of the

OLS. Another issue with the implementation of the Adaptive methods specifically was the use of OLS for

the weight estimation. As suggested by Zou (2006), in presence of multi-colinearity and high dimensions the

weights should be estimated with Ridge. Moreover, the simulation used 50 generated data sets per generated

parameter set. This number is however quite low and should be increased to further the reliability of the

research. Concluding, for the estimation of the simulation models, the pmax should be consider higher than

that of the DGP, instead of equal. This resembles reality more closely.

5.1 Further Research
For further research, the partial correlation in step 1 of the Adaptive Lasso could be calculated in different

ways. Consider the example of the largest parameters being the last lags considered and the smaller ones the

first. This would cause the partial correlation to have the same structure as the parameter estimates, namely

small parameters score low and vice versa. Therefore, a different approach could calculate partial correlation

in order of large to small parameters instead of following the order of the lags. This could be done by using

for example the OLS or Ridge estimates (to pick the order). Lastly, there have been other variable selection

methods with similar ideas to the ones presented in this paper, such as the the SCAD (Fan and Li, 2001) and

the standard error adjusted Adaptive Lasso (Qian and Yang, 2013). It would be interesting to see the relative

performance of these methods to the methods of this paper under similar analysis.
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6 Appendix

6.1 Generated Parameters

The red colored elements of the matrices are the ones that are selected to be in the set containing the smaller

elements. This corresponds to set denoted by ψ .

The green colored elements of the matrices are the ones that are selected to be in the set containing the larger

elements. This corresponds to set denoted by ϕ .

Set 1 (Model 1: Param ∼U(0,0.8) )

A1=

0.007 0

0.687 0.125

 , A2=

0.485 0

0 0.1726

 , A3=

0.341 0.002

0.375 0


Set 2 (Model 1: Param ∼U(0,0.4) )

A1=

0.170 0

0.200 0.039

 , A2=

0.266 0

0 0.034

 , A3=

0.272 0.198

0.125 0


Set 3 (Model 2: Param ∼U(0,0.8) )

A4=


0.170 0 0 0

0.455 0 0 0.006

0.768 0 0.185 0

0 0.295 0 0.015

 , A5=


0 0 0 0

0 0.362 0 0

0 0.247 0.066 0

0 0.242 0 0

 , A6=


0.174 0 0 0

0 0.175 0 0

0 0 0.255 0

0 0 0 0.730


Set 4 (Model 2: Param ∼U(0,0.4) )

A4=


0.293 0 0 0

0.335 0 0 0.169

0.064 0 0.010 0

0 0.363 0 0.350

 , A5=


0 0 0 0

0 0.233 0 0

0 0.120 0.214 0

0 0.210 0 0

 , A6=


0.283 0 0 0

0 0.030 0 0

0 0 0.382 0

0 0 0 0.005


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6.2 Python Code Details

The Python Code was written in Jupyter Notebook and for the exact code we refer to the attached ZipFile.

The version of Python used was 3.7. Furthermore the optimisation package used was SciPy v.1.5.0. From

this specific package we used the L-BFGS-B gradient descent method for the penalisation methods. The

Python code was used for all methods and optimisation. The simulated data was made using R, for which

the details are in the following subsection.

6.3 R Code Details

The R code was written in RStudio and for the exact code we refer to the attached ZipFile. R was used for

simulating the Data. For this purpose we used the mlVAR package, which had a function prewritten for it.
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