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Abstract

Much research has been done in the non-linearity of government spending and its impact on the real

economy. This paper provides new evidence on the non-linearity of fiscal shocks through quantile regres-

sion. In particular, quantile regression is used to construct quantile specific impulse response functions.

Consequently, quantile methods are employed to forecast different quantiles of output (real GDP). This

paper uses two data sets: a baseline set and an extended one. The baseline set is employed to prove the

non-linearity of fiscal shocks. It is then used to construct forecasts and extended with additional variables

to enhance the forecasting performance. From this research, it can be concluded that the impact of fiscal

shocks is indeed non-linear and differs per quantile in which output is estimated. Quantile methods using

only the baseline variables result in accurate forecasts. The forecasting performance does not improve with

adding additional variables.

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Government spending and its impact on the real economy is a topic of broad discussion. Policy makers

often have the objective to stimulate the economy during a recession, and slow down the economy during

an expansion. To adequately respond to the real economy, policy makers should understand the impact of

government spending. Much research has been done in this direction. Early contributions of the effect of fiscal

policy came from Blanchard & Perotti (2002). They used linear structural vector autoregressions (VAR) to

estimate the impact of government spending shocks. More recent research has focused on non-linear models

to estimate the effect of government spending. Auerbach & Gorodnickenko (2012) provide evidence of this

non-linearity of government spending shocks. They show that the impact of government spending shocks on

output is systematically larger in recessions compared to expansions. Linnemann & Winkler (2016) present

new evidence on the non-linearity of fiscal shocks by using quantile regression to estimate a VAR model. As

Ramey (2011) argues in her research, there is some delay in the impact of government spending on the real

economy. If one increases government spending now, what would be the impact tomorrow? Therefore, policy

makers should also be aware of the future possible states of output to implement fiscal policy well.

The aim of this paper is to see if non-linear models using information on government spending can forecast

output (real GDP) adequately. In particular, three quantile regression methods are evaluated regarding their

forecasting performance. The use of quantile regression in this research is beneficial for two reasons. First,

quantile regression allows the parameters to differ across different quantiles of output. Since the effect of

government spending shocks are non-linear, quantile regression is an adequate method to use. Moreover,

quantile regression gives a more complete picture about the future states of output compared to a linear

estimation methods, which only gives information about the mean forecast. In this research I first provide

evidence on the non-linearity of fiscal shocks by computing the impulse response functions of output relative

to a government spending shock. Consequently, I use three different methods to forecast different states of

future output and evaluate the three methods.

The first method that is used for both providing evidence on the non-linearity of government spending and

forecasting different states of output, is quantile vector autoregression (QVAR). This methodology is based

on Cecchetti & Li (2008), who compute quantile-specific impulse response function to estimate the non-linear

effect of asset price booms and crashes. Linnemann & Winkler (2016) follow this research and estimate the

impact of government spending on the real economy by applying quantile regression to a VAR model. They

argue that this approach has two advantages relatively to traditional linear estimation methods and to smooth

transition estimated used by Auerbach & Gorodnickenko (2012). First, quantile regression allows the effect

of government spending on the real output to differ across conditional quantiles. Second, relatively to the

smooth transition methods, there is no need to characterize the data to pre-specified recession or expansion

periods. Hence, my research follows the paper of Linnemann & Winkler (2016) for providing evidence on the

non-linearity of government spending shocks.

Next to the VAR model, two machine learning techniques are evaluated to forecast output. The advantage
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of machine learning techniques relative to traditional forecasting methods (such as VAR models) is that they

are able to capture non-linear relations between response and explanatory variables. Traditional methods

rely on strict mathematical relations between inputs and outputs which does not allow non-linear relations.

Quantile regression allows the parameters to differ across quantiles, but within the quantiles the relation

between inputs and output is linear. Machine learning methods are much more flexible and able to capture

complex relations. Therefore, they are in general powerful tools and widely applied in the forecasting area.

Machine learning methods are in particular useful for this research as the impact of government spending is

non-linear.

The first methods that is applied, is the quantile regression forest by Meinshausen (2006). This quantile

regression forest is derived from the random forest algorithm by Breiman (2001). Where the random forest

algorithm gives an approximation of the conditional mean, the quantile regression forest gives an approximation

of the full conditional distribution. The quantiles can subsequently be derived from the conditional distribution.

Meinshausen (2006) shows that this method can construct prediction intervals that cover new observations

with a high probability. This method is in particular power full with high-dimensional data. Therefore, the

data set as used in Linnemann & Winkler (2016) is extended with additional variables. Random forest is

an ensemble technique which does not need any optimization in contrast to other machine learning methods.

Instead, it grows an ensemble of trees. Therefore, the computation time of this method is much less compared

to other machines learning techniques which is why this method is evaluated.

The second machine learning methods that I will use in this research is quantile regression neural network

(QRNN), which is a neural network approach to quantile regression. It is based on artificial neural networks

(ANNs). ANNs have attractive features for forecasting and are therefore extensively used in the forecasting

area (Zhang et al., 1998). First, they do not require prior information about the distribution of the data, they

only require enough observations. Instead of guessing the underlying distribution of the data, ANNs learn from

experience. Another advantage of ANNs is, that they can generalize well. Most of the time they can predict

the unknown part of the population correctly. Therefore, ANNs are widely applied in forecasting, as forecasts

try to estimate the unknown part of the population. The third advantage of ANNs that makes them suitable

for forecasting is that they can approximate underlying functions between response and explanatory variables

well, whereas traditional statistical methods (like VAR models) have limitations due to the complexity of some

relations. The final advantage of ANNs in the area of forecasting is that the models are nonlinear. Traditional

forecasting methods often assume that time series studied are generated from linear processes. In the real

world, this is usually not the case.

QRNN regression is based on a single hidden-layer feedforward network network and is similar to traditional

ANNs. QRNN is therefore also a highly suitable method for forecasting. The major advantage that makes

it in particular useful for this research, is that is able to estimate potentially non linear models without the

need to specify the precise function in advance (Taylor, 2000). Therefore, the forecasting performance of this

method is evaluated as well.

This paper uses the same variables as the paper of Linnemann & Winkler (2016) to provide evidence on
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the non-linearity of fiscal shocks. I use US quarterly data ranging from 1955Q1 to 2019Q4 which is the longest

sample on which the data are available. The variables used are: government spending, output, net taxes,

real interest rate, and the ratio of government debt held by the public to GDP. The data are cleaned from

seasonal effects and the trends in the data are removed by log-quadratic detrending. Additional variables are

then added to the originial data set since the random quantile forest algorithm is particularly powerful with

high-dimensional data. This set is called the extended set and consists of 26 variables ranging from 1992Q2

to 2019Q4.

The main results are as follows. The impulse response functions and fiscal multipliers show that the

response of output to a government spending shocks differs across quantiles. The impact of fiscal shocks are

much more persistent when output is relatively low. Opposite effects occur when output is in the highest

quantile of its conditional distribution. The variable set used to prove the non-linearity provide accurate

forecasts on output. The QVAR model yields most precise forecasts on short horizons, whereas the machine

learning methods, in particular QRNN, work well for longer horizons. Adding additional variables does not

improve the forecast quality. The QVAR forecasts become inaccurate due to the fact of dimensionality, whilst

the machine learning methods still provide accurate forecasts. The forecasts are however poorer compared to

the baseline data set, as the in-sample period contains less observations.

In what follows, I first present the data in section 2. Section 3 elaborates on the different methods used,

both for proving the non-linearity and forecasting. Section 4 demonstrates the most important results and

a discussion is provided. Finally, Section 5 summarized the most important results and highlights ideas for

future research.

2 Data

This paper uses two data sets. The first data set is used for both providing evidence on the non-linearity

of government spending. This data set is then extended with additional variables to see if the forecasting

performance can be enhanced.

2.1 Baseline Data Set

The baseline data is the set similar to the research of Linnemann & Winkler (2016). The set of variables used

is government spending Gt, real GDP Yt, real net taxes ψt, the short-run real interest rate Rt and the ratio

of government debt held by public relative to GDP Dt. The data are retrieved from the FRED database on a

quarterly basis ranging from 1955Q1 to 2019Q4 which is the longest sample over which the data are available.

Only US data is used in this research. The data are seasonally adjusted. The level variables Gt, Yt, ψt, and

Dt are measured as log-deviations from quadratic time trends as these variables contain strong upward trends.

In the research of Linnemann & Winkler (2016), quadratic detrending was also used to remove the trend in

the level variables. To facilitate comparisons, quadratic detrending is used to remove the trend in variables
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here as well. The ratio of government debt held by public relative to GDP Dt is only available on an annual

basis. Therefore, this series is interpolated to obtain quarterly data. The transformations that are applied to

the data, both to the baseline and extended data set, are summarized in Table 3 in Appendix A.

This paper only takes real GDP (output) as response variable as it adequately measures the economic

activity. To ordering of the variable matters in the computation of the impulse response function since a

Cholesky decomposition is used to obtain orthogonal shocks. Keeping up with literature, the government

spending Gt variable is ordered first. The variables have the following ordering: (Gt, Yt, ψt, Rt, Dt). Summary

statistics and correlations of the baseline data data set are displayed in Appendix A, Table 4 and Table 5

respectively. Visual representations of the transformed data are given in Appendix A, Figure 10.

2.2 Extended Data Set

Quantile regression forest gives accurate predictions with high-dimensional data (Meinshausen, 2006). There-

fore, the baseline data set is extended with some additional variables that correlate with output. The additional

variables are based on the research of Stock & Watson (1999), who evaluated several models in their macro-

economic forecasting performance. They split up U.S. Macro-economic time series in 5 different categories,

namely: (A) Income, output, sales, and capacity utilization, (B) Employment and unemployment, (C) Con-

struction, inventories and orders, (D) Interest rates and asset prices, and (E) Nominal, prices, wages and

money. To enrich the baseline variable set, several variables per category are added to the baseline variable

set. The additional variables are retrieved from the FRED database on a quarterly basis ranging from 1992Q2

to 2019Q4 since this is the longest time period over which the variables are available. There are 21 additional

variables, so the total data set (which includes the baseline set), contains 26 variables. The variables and the

transformations are displayed in Table 3 in Appendix A. The level variables are log-quadratic detrended in

this data set as well. A descriptive statistics of the extended transformed data is given in Appendix A, in

Table 6. Visual representations of the transformed data are displayed in Appendix A, Figure 11.

3 Methods

In the following section, the methods for both estimating the model as well as for forecasting are elaborated on.

First, quantile regression is used to prove the non-linearity of output relative to government spending. After-

wards, quantile regression is used to estimate the future states of output using an quantile vector autoregressive

model (QVAR) and two machine learning approaches: quantile regression forest and QRNN.

3.1 Quantile Regression

First I will eleborate on quantile regression in general since this method is used for both estimating and

forecasting. To illustrate the working of quantile regression, consider the following simple regression model:
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yt = x′tβ + εt, (1)

where xt is a k × 1 vector of regressors, β a vector of coefficients, and E(ε|x) = 0. The OLS estimator of

Equation 1 can be written as:

β̂ols = arg min
β

T∑
t=1

(yt − x′tβ)2. (2)

By applying OLS, the error function is evaluated at its mean. The mean of the variable yt conditional on

the explanatory variables is defined as: E(yt|xt) = x′tβ. It is of interest to see the impact of fiscal policy

shocks during recessions and expansions separately, therefore the conditional distribution of yt is evaluated at

different quantiles. Koenker & Basset (1978) came up with the concept of quantile regression. It measures the

impact of a change in a variable xt on the qth quantile of yt. The function in Equation 2 can be generalized

by writing the function as follows:

β̂ = arg min
β

T∑
t=1

ρ(yt − x′tβ), (3)

where ρ(·) is a weighting function. In order to obtain the quantile weight function, consider the following

weighting function:

ρq(yt − x′tβ) =

 q(yt − x′tβ) if (yt − x′tβ) ≥ 0

(1− q)|yt − x′tβ| otherwise,

(4)

where q is the quantile where the function is evaluated. The errors get a positive weight q ,when the estimation

error exceeds 0, and a weight (1− q) when the estimation error is smaller than 0. In the case of q = 0.5, the

function in Equation 4 minimizes the sum of absolute deviations, which coincides with the estimation of the

conditional distribution of yt at its median. The estimator β(q), which measures the conditional effect of xt

on yt in the qth quantile, is defined as:

β̂(q) = arg min
β(q)

T∑
t=1

ρq(yt − x′tβ(q)), (5)

with ρq as defined in equation 4. When Equation 5 is evaluated in different quantiles q, one can determine the

impact of xt on the whole conditional distribution of yt.

3.1.1 Quantile Vector Autoregression

The baseline data contain quarterly observations of five different variables. Since there are multiple variables, I

model the data as a vector autoregression model (VAR). The VAR model is estimated using quantile regression.

A VAR(p) model with k variables and p lags is defined as follows:

yt = c+A1yt−1 +A2yt−2 + · · ·+Apyt−p + ut, (6)
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where yt is a k × 1 vector of variables, c a k × 1 vector of intercepts, ut a k × 1 vector of errors, and Ai are

k × k matrices of coefficients.

The VAR model in this research is estimated by quantile regression. The general QVAR(p) model in the

case of p lags and k variables can be written as follows:

yt = c(q) +A1(q)yt−1 +A2(q)yt−2 + · · ·+Ap(q)yt−p + ut(q), (7)

where yt is a k×1 vector of variables, c(q) a k×1 vector of intercept, ut(q) a k×1 vector of errors, and Ai are

k×k fixed coefficient matrices. k is equal to 5 (variables) for the baseline data set and 26 for the extended data

set. The parenthesis indicate that the parameters are dependent on the quantile in which they are estimated.

The quantiles in which the conditional distribution of the variables are estimated can differ per variable, so

the coefficients in each equation are dependent on the quantiles in which the variables are estimated.

The number of lags that are included in the model is determined by the information criteria. The values

of the information criteria should be minimized when choosing the correct VAR order. The values of the

information criteria at different lags for both data sets are displayed in Table 8 and 9 in the Appendix B.1

respectively. Table 7 in Appendix B.1 displays the correct VAR order according to the information criteria.

For robustness, in the baseline set, forecasts are constructed based on both AIC and BIC criteria (so with 5

and 3 lags respectively). The impulse response functions are computed with the VAR model with 5 lags. Since

the criteria agree on the number of lags in the extended set, only one VAR model is estimated with 3 lags.

The information criteria give infinite values for lags larger than three, which indicates that the extended data

set is too large for the VAR to give proper estimations. The model suffers from dimensionality.

In this paper, following the research of Linnemann & Winkler (2016), the output equation (y) is estimated

at 3 different quantiles of its conditional distribution, q = {0.1, 0.5, 0.9}. When q = 0.1, the output is at the

lowest quantile of its conditional distribution which coincides with a recession. Similarly, estimating output

at q = 0.9 coincides with an expansion. When q = 0.5, the output is estimated at its median which is close

to the OLS estimate (since OLS estimates the system at the mean). The other variables are estimated at the

median of their conditional distribution. The model is estimated by applying equation-by-equation quantile

regression.

3.1.2 Fitted Values

First the fitted values of the lower and upper quantile will be compared to the actual output realizations. In

this way, one can observe when the actual output is close to the 0.1 quantile or 0.9 quantile forecast. Hence,

displaying when shocks occur that push output far below or above its conditional mean forecast. At these

time, the conditional mean will give a poor estimate of the actual output.
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3.1.3 Impulse Response

To provide evidence on the non-linearity of fiscal shocks, quantile specific impulse response functions are

computed for the baseline data set. The impulse response function shows the response of one variable to an

exogenous shock in the another variable. Suppose I have a bivariate (k = 2) model with 1 lag (p = 1) and

there is an exogenous shock in the first variable. This can be written as follows:

u∗0 =

u∗1,0
u∗2,0

 =

1

0

 , (8)

where u∗i,0 is the shock in the ith variable at time 0. The impulse response functions track the effect of this

shock through estimating the VAR system first. The effect of this shock can be traced as follows:

y0 =

y1,0
y2,0

 =

u∗1,0
u∗2,0

 =

1

0

 (9)

y1 =

y1,1
y2,1

 = A1y0 = A1u
∗
0 (10)

...

yh =

y1,h
y2,h

 = A1yh1 = Ah1u
∗
0, (11)

where yi,t is the response of variable i at time t, and A1 a 2 × 2 fixed coefficient matrix. In this paper, the

response of yt and gt to a positive one percent shock in the median of government spending is evaluated up

to 20 periods (h = 20). To compute the impulse response function, the covariance matrix of residuals is

orthogonalized first through a Cholesky decomposition as shocks are likely to be correlated. In this way, one

can obtain orthogonal shocks that are not correlated. In this transformation, u∗0 in Equation 8 is replaced by

e∗0 = P−1u∗0, where P is defined by Σu = PP ′ which is the Cholesky decomposition of the covariance matrix

of shocks. The effect of the orthogonalized shock can be traced by replacing u∗0 by P−1u∗0 in Equation 9, 10,

and 11 respectively.

The response of a variable to a shock in another variable can be tracked with the estimated coefficients of the

VAR model. The impulse response functions are computed for the 3 different quantiles q = {0.1, 0.5, 0.9}. The

ordering of variables matters for the Cholesky decomposition and are ordered as follows: (Gt, Yt, ψt, Rt, Dt),

which keeps up with earlier research. 90% confidence intervals on the impulse response functions are then

computed through the bootstrapping of residuals.

The impulse responses are only computed for the baseline data set since interpretation and ordering of the

variables becomes too difficult for the extended data set. The baseline data set alone succeeds in proving the

non-linearity of government spending shocks. Evaluating the impulse response functions on the other data set

is therefore out of the scope of this research.
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3.1.4 Fiscal Multipliers

To facilitate comparisons between the effects of fiscal policy at different quantiles and strengthen the evidence

of the non-linearity of fiscal shocks, I compute fiscal multipliers. Fiscal multipliers normalize the output

response to a change in the government spending variable. In particular, I compute two ratio’s: the maximum

point-to-point ratio and the cumulative ratio. The point-to-point ratio is defined as: Rh(q) = ŷh(q)/ĝh(q),

where ŷh(q) and ĝh(q) are the impulse responses of output and government spending respectively, h periods

after the shock with the variables estimated at the qth quantile. The maximum point-to-point ratio is the

maximum of these values, MRq = maxh∈{0,··· ,12}Rh(q). To compute this ratio, all quantiles between 0.05

and 0.95 are estimated in steps of 5% and the largest ratio within 12 periods (h) is then stored. So the

maximum-point-to-point ratio displays the largest normalized response per quantile.

The cumulative ratio is defined as: CRh(q) = [
∑
h=0,··· ,12 ŷh(q)]/[

∑
h=0,··· ,12 ĝh(q)]. It measures the nor-

malized total response of output in the first 12 periods after the shock relative to government spending and

gives a more complete picture on the impact of fiscal shocks compared to the point-to-point multiplier.

3.2 Forecasting

After proving the non-linearity of government spending shocks, I will see if the variables included in the

research of Linnemann & Winkler (2016) yield accurate forecasts on the output variable y. First, I give a brief

overview of the general set-up of the forecast. Consequently, I elaborate on the different methods used for

forecasting. To end with, I discuss forecasting performance measures used in the evaluation of the forecasts.

Both the baseline as well as the extended data set are used to construct forecasts. The sets are both divided

up into two subsamples: the in-sample period and the out-sample period. In the baseline data set, the in-

sample period is set to 1955Q1 to 2014Q4 and the out-sample period, for which the forecasts are constructed,

is 2015Q1 to 2019Q4. Hence, the in-sample period contains 240 observations (Nin) and the out-of sample

period 20 observations (Nout). The extended data set is used to see if the forecasting performance can be

enhanced using additional variables. The in-sample period in this set is 1992Q2 to 2014Q4, and the out-sample

period is 2015Q1 to 2019Q4. Thus, the in-sample set contains 91 observations (Nin) and the out-sample set

20 observations (Nout). The data sets have the same out-of-sample set to facilitate comparisons. The forecasts

are constructed using 3 different forecast horizons, namely h = {1, 4, 12}. Where h = 1 is the one-quarter

ahead forecast, h = 4 the one-year ahead forecasts , and h = 12 the three year ahead forecast. All forecasts

are constructed using an expanding window. This means that the entire in-sample period (observation 1 to

Nin) is used to construct the first sequence of forecasts for horizon 1 to 12. Hence, the first observation that is

forecasted with horizon 12 is observation 252 in the baseline variable set (Nin + h). Consequently, the models

are re-estimated using observations 1 tot Nin + 1 to produce a new sequence of forecasts for horizon 1 to 12.

Finally, for each forecasts horizon h, Nout − h+ 1 forecasts are created. So for the baseline set, with horizon

12, there are 9 forecasted values for observation 252 up to and including 260. An overview of the in-and out

sample period for both data sets are given in Appendix B.2, Table 10.
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In this research, quantile methods are used to forecast the output at three different quantiles, namely

q = {0.1, 0.5, 0.9}. The 0.1 and 0.9 quantile forecasts are used to construct confidence intervals around the

median forecast. Using quantile methods, I obtain information about different future quantiles, whereas normal

estimation methods usually only give information about the mean. The median forecast is the leading forecast

which is used to evaluate the forecasting performance of the forecasts since this forecast is closest to the mean

forecast.

3.2.1 Quantile Vector Autoregression Model (QVAR)

To begin with, the QVAR model defined in Section 3.1.1 is employed to construct forecasts. In literature,

VAR models are popular for macro-economic time series forecasting. They can adequately capture the dynamic

behaviour of both economic and financial time series (Zivot & Wang, 2006).

The general h-step ahead forecast of a VAR(p) model with constant estimated with quantile regression is

defined as:

ŷT+h|T = ĉ(q) + Â1(q)ŷT+h−1|T + · · · Âh(q)yT + · · ·+ Âp(q)yT+h−p, (12)

where yT+h|T is a k × 1 vector of h-step ahead forecasts and where ŷT+h−1|T , · · · ŷT+1|T are forecasted using

similar schemes. The forecasts are depended on the conditional quantiles in which the variables are forecasted.

Since the output variable is forecasted at three different quantiles, there will be three different forecast vectors

corresponding to the different quantiles.

3.2.2 Quantile Regression Forest

Quantile regression forest was first introduced by Meinshausen (2006). Quantile forest is a machine learning

technique that is based on the random forest algorithm by Breiman (2001). The algorithm behind quantile

forest resembles the random forest algorithm. The quantile forest algorithm gives information about the entire

conditional distribution of a variable, whereas the random forest algorithm only gives information about the

mean. First I will first briefly explain the intuition behind the random forest algorithm.

The random forest algorithm grows an ensemble of decision trees using independent observations. At each

tree, the tree makes a class prediction of the data. The class prediction that has the most votes becomes the

model’s prediction. Random forest keeps the mean of the observations for each node in each tree. On the

contrary, quantile regression forest stores the value of all observations in each node. The model is usually

divided in a training and test sample. The model is trained using the training sample and predictions are

made based on the test sample. The response and prediction variables are separated to establish the relation

between these variables in the training sample.

In contrast to the recursive iterated method which is used to construct h-step ahead forecasts in the QVAR

model, quantile regression forest creates direct forecasts. The advantage of the direct forecasts is that is

does not have to predict the predictor variables in the test set. Normally, for constructing predictions on the

response variables, data on the prediction variables are used from the test set. Since I try to forecasts future
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states of output for an out-of-sample period, information on the prediction variables will not be available which

is why direct forecasting is useful for this purpose.

Again, forecasts are constructed for 3 different horizons using an expanding window. Direct forecasts for

horizon 1 to 12 are constructed using all in-sample observations. The in-sample observations are then split up

in different training samples, to overcome the problem of overfitting. The forecasts are thus constructed using

information on different training samples. The size of the training sample is dependent on the window size. If

the window size is for instance 5 years, the in-sample period will be split up in 12 training samples (in-sample

observations/ window size in quarters) in the baseline data set. For robustness, forecasts are created using

different window sizes, namely 3, 5, and 10 years. The number of forecasts available per time period is equal

to the number of different training samples. To come up with one forecast per time period, I take the mean

of the forecasts. This process is repeated using an expanding window to create new forecasts. An overview

of the different forecasting methods, windows sizes, and abbreviations used in the result section is given in

Appendix B.2, Table 11.

3.2.3 Quantile Regression Neural Network (QRNN)

Finally, QRNN is employed to produce forecasts on output. QRNN is widely applied in the forecasting area

due to its attractive features. It is particularly useful in this research since it is able to estimate non-linear

relationships adequately without a prior specification of the data or model.

The QRNN is displayed in Figure 1. The left or the first layer is the input layer which receives the

information on the variables and consists of m input neurons for the predictors. The most right layer is the

output layer were one output neuron yields the prediction. The layers between the input and the output layers

are called the hidden layers. In the case of forecasting, the single hidden-layer feedforward network is the most

common used (Zhang et al., 1998) which is illustrated in Figure 1.

Figure 1: Quantile Regression Neural Network

The process of training makes the QRNN different from traditional ANNs. If the model is trained using

Equation 13 as cost function, then the output is estimated at the condtional regression quantiles (Taylor,

2000).
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E(q) =
1

T

T∑
t=1

ρ(yt − ŷt) (13)

ρq(yt − ŷt) =

 q(yt − ŷt) if(yt − ŷt) ≥ 0

(1− q)|(yt − ŷt)| otherwise,

(14)

where yt is the value of the response variable at time t, ŷt the predicted value at time t, T the number of

observations in the training sample, q the quantile in which the equation is estimated, and ρ(·) the weighing

function.

The direct forecasts are constructed in a similar way as the quantile random forest algorithm. The training

sets are trained with the QRNN algorithm, instead of the quantile random forest algorithm. Due to heavily

computations, only one window size is used in each data set. In the baseline data set the window size is set

as 10 years and in the extended data set as 5 years since both sets differ in length. The number of hidden

nodes is 2, which allows the model to look for non-linear decision boundaries. An overview of the forecasting

methods are given in B.2, Table 11.

3.2.4 Forecast Evaluation

The forecast performance is measured using 5 different criteria. Namely the RMSE, MAE, Theil’s U, the

ratio of observations that the quantile intervals covers, and the Diebold Mariano Test statistics. The measures

compare the median (q = 0.5) forecasts with the actual values, since the median forecasts is closest to the

OLS estimate. I will briefly elaborate on the forecasts accuracy measures in this section.

Root Mean Squared Error The Root Mean Squared Error is a scale dependent measure of the dataset

and is measures the scaled squared error. The RMSE is computed as follows:

RMSE =

√√√√ T∑
t=1

(ŷt − yt)2
T

, (15)

where ŷt is the median forecast of yt at time t, yt the actual value, and T the total number of forecasts. The

advantage of the RMSE is that it is on the same scale of the data and therefore a widely used measure. The

disadvantage of this measure is that it is not robust to outliers. Therefore, also the Mean Absolute Error is

evaluated.

Mean Absolute Error The Mean Absolute Error measures the absolute average error of the forecast. The

advantage of this criteria relative to the RMSE is that this measure is robust to outliers. It is computed in

the following way:

MAE =
1

T

T∑
t=1

| (ŷt − yt) |, (16)

where ŷt is the median forecast of yt at time t, yt the actual value, and T the total number of forecasts.
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Theil’s U Theil’s U (Theil, 1966) is a relative measure of forecast quality and measures the forecast error

relative to forecasting with minimal data. A Theil’s U value close to zero indicates a good forecast, whereas

a value close or larger then one indicates a poor forecast. For a value larger then one, the forecasting method

applied should be rejected as it not able to beat forecasts resulting from simple extrapolation (Bliemel, 1973).

The measure is easy to interpret and understand which is why also this criteria is evaluated.

U =

√√√√ 1
T

∑T−1
t=1 ( ŷt+1−yt+1

yt
)2

1
T

∑T−1
t=1 (yt+1−yt

yt
)2

, (17)

where ŷt is the median forecast of yt at time t, yt the actual value, and T the total number of forecasts.

Prediction Ratio The prediction ratio is used to test whether the forecasting methods are able to construct

confidence intervals which cover all future observation. The intervals are created with the 0.1 and 0.9 quantile

forecasts. The prediction ratio is the number of actual output realizations that lies within the interval divided

by the total number of observations (for the out-sample). This measure is evaluated to see which models can

give accurate prediction intervals. Next to the prediction ratio, graphs of the intervals and actual output are

created to evaluate the accuracy of the intervals.

Diebold-Mariano Test Statistics The Diebold-Mariano test statistic is used to test whether two forecast

methods differ significantly. From the above criteria, one can define what forecasting method performs best, but

it also of interest to see if the methods differ significantly in performance. The Diebold-Mariano test statistics

indicate whether the methods differ significantly. Suppose I compare two different forecasting methods. The

forecasts errors are defined as:

εit = ŷit − yt, for i=1,2, (18)

where ŷit is the median forecast of yt at time t constructed with method i. The loss differential is then defined

as:

dt = g(ε1t)− g(ε2t), (19)

where g(·) is a squared loss function (g(εit) = ε2it). The forecasts have equal accuracy if and only if the

expected value of the differential is equal to zero for all t. The Diebold-Mariano statistics test the hypothesis

H0 : E(dt) = 0 versus the alternative hypothesis H1 : E(dt) 6= 0.

The sample mean and autocorrelation function are used as input for the test statistics and are defined in

the following equations:

d =
1

T

T∑
t=1

dt, (20)

γk =
1

T

T∑
t=k+1

(dt − d)(dt−k − d), (21)
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where dt denotes the loss function at time t, T the total number of forecasts, and k the order of the autocor-

relation. The Diebold-Mariano test statistics now can be calculated as:

DM =
d√

(γ0 + 2
∑h−1
k=1 γk/T )

. (22)

Under the null-hypothesis that the forecasting methods do not differ significantly, the Diebold-Mariano statistic

follows a standard normal distribution (e.g. DM ∼ N(0, 1)).

4 Results

In this section, the result are presented. First evidence is provided on the non-linearity of fiscal shocks.

Consequently, the forecasts are evaluated using the different methods.

4.1 Non-linearity government spending

4.1.1 Fitted Values

To provide evidence on the non-linearity of fiscal shocks, it is of interest to see where the actual output is

close to the highest or lowest decile of its conditional distribution. Here I follow the research of Linnemann &

Winkler (2016), who also compare the lowest and highest decile with the actual output. The fitted (predicted)

values of the lowest and highest quantile together with the actual output are presented in Figure 2 and resemble

the results of Linnemann & Winkler (2016). Just as in their research, it can be observed when the actual

output is close to an expansion or to a recession, so when linear methods will not provide good estimations

(as the actual output is close to either an expansion or to an recession and not to the mean). For instance,

one can note that the output in the years 2004-2008 was close to the 0.9 conditional quantile forecasts, which

pushed the output far above its mean. During these years, linear methods will fail to adequately estimate

output.
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Figure 2: Fitted values baseline data set estimated with QVAR where the green and red line present the one step ahead forecast

(fitted values) for the 0.9 and 0.1 quantile respectively. Actual output is given in black.

4.1.2 Impulse Response

The quantile specific orthogonalized impulse response functions are displayed in Figure 3. In the upper

3 figures, the response of output relative to a positive 1% shock in the median of government spending

is displayed, with 90% confidence intervals given in dashed lines. When output is estimated at its lowest

conditional quantile (during a recession) the effect of a government spending shock peaks after 9 to 11 quarters.

Afterwards the impact decreases and even becomes negative. It can be seen that the impact of the shock is

much more persistent when output is estimated at it lowest decile. When output is estimated at its median

(q = 0.5), the impact of a government spending shock is only small and declines slowly towards zero. The effect

of a government spending shock during an expansion, when q = 0.9, is first negative and becomes positive

after approximately 10 periods. The different impulse response functions prove that the impact of government

spending is non-linear and differs across quantiles. Less evidence on the non-linearity of government spending

in response to a fiscal shock can be derived from the second row of Figure 3. Here, the responses do not differ

significantly.

The response of the output relative to a government spending shock, when output is estimated at the lowest

decile, has the same hump-shaped recovery as in Linnemann & Winkler (2016). The output peaks between

7 and 9 periods after the shock. After these periods, the response function declines at a much smaller rate

than in this research. There is no clear difference between the impulse response functions estimated at the

median in this research compared to the research of Linnemann & Winkler (2016). At the highest decile, the

response becomes negative after some periods, similar to Linnemann & Winkler (2016). However, the response

increases after some periods in this research which does not happen in the research of Linnemann & Winkler

(2016). The response of government spending relative to a government spending shock resemble the results

of Linnemann & Winkler (2016), except for the lowest decile, where the effect of a shock increases instead

of decreases. The overall conclusion is similar to Linnemann & Winkler (2016): the effect of fiscal policy is
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indeed non-linear and differs per quantile. Small differences may be caused by small dissimilarities between

the data sets and the number of lags included in the research. I interpolated some variables that were not

available on a quarterly basis and did not know the exact serie source of the ratio of government debt held by

the public to GDP dt series. In this research, the lags are chosen by the information criteria and the impulse

response functions are based on 5 lags, whilst Linnemann & Winkler (2016) work with 4 lags.

Figure 3: Impulse response functions of output (real GDP) and government spending relative to a 1% positive shock in the

median of government spending, when the parameters are estimated at the 0.1, 0.5, and 0.9 output quantiles

4.1.3 Fiscal Multipliers

Fiscal multipliers are computed to give a better overview of the normalized response of output relative to

government spending at different quantiles. Figure 4 and 5 display the maximum point-to-point and cumulative

ratio respectively. The normalized response are shown on the y-axis and the quantiles in which the ratios are

estimated on the x-axis. One can clearly see in Figure 4 that the maximum normalized response of output

to a government spending shock is higher when output is at its lowest quantiles. The ratio varies strongly

across the quantiles in which it is estimated. The maximum point-to-point ratio is the highest when output is

estimated at q = 0.15. The graphs show that fiscal policy shocks are strong and persistent when they occur

in phases were output is low.

The cumulative ratio (CR) gives a more complete picture than the maximum point-to-point ratio as it

gives not just information on one point, but on the entire response. The results look quite similar: fiscal policy

shocks are much more persistent when they occur in phases were output is low.
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Figure 4: Maximum point-to-point multiplier with

normalized response on the y-axis and the quantiles

in which the equations are estimated on the x-axis

Figure 5: Cumulative multiplier with normalized

response on the y-axis and the quantiles in which

the equations are estimated on the x-axis

4.2 Forecasting performance evaluation

In this section, the forecasting performance of the three models on both data sets are compared. I will first

start by evaluating the forecasting performance on the baseline data set. Consequently, the extended data set

is evaluated.

4.2.1 Baseline Data Set

Performance measures Table 1 presents the RMSE, MAE, Theil’s U, and the interval ratio obtained by

using the different forecasting models. The Diebold-Mariano (DM) test statistics are displayed in Table 2.

The best performing method per horizon is highlighted in grey. A positive value in Table 2 indicates that the

”row” method performs better than the ”column” method. It obvious to see that the forecasting performances

deteriorates for almost all models when the forecasting horizon increases. All models except for QRNN and

QVAR-AIC yield accurate one-step-ahead forecasts. The QVAR model with the number of lags chosen by the

BIC information criteria performs best on horizon 1, but not significantly better than the forest forecasts. On

horizon 4, QRNN performs best according to the performance measures, but performs slightly worse according

to the DM test statistics. This difference is however not significant. On horizon 12, the forest methods with

an estimation window of 10 yields the most accurate forecasts, but does not perform significantly better than

the QRNN algorithm. Both QVAR models perform poor on this horizon and are significantly outperformed

by the random forest algorithm with estimation windows of 5 and 10 years.

In short, I can not draw a clear conclusion about what method is superior in forecasting for the baseline

data set. The QVAR model with the number of lags chosen by the AIC information criteria is significantly

outperformed on every forecast horizon. The QVAR-BIC model performs well on short horizons but is out-

performed on longer horizons, whilst both machine learning methods succeed in providing accurate forecasts

on longer horizons. In general, one can say that the data set used Linnemann & Winkler (2016) with only 5

variables, can provide accurate forecasts on the output variable.
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Table 1: Forecasting performance measures

Baseline Data Set Extended Data Set

RMSE MAE Theil U Interval RMSE MAE Theil U Interval

Horizon=1

QVAR-AIC 0.350 0.287 0.211 0.950

QVAR-BIC 0.251 0.192 0.151 1.000 0.696 0.552 1.397 1.000

Forest, 3yrs 0.292 0.222 0.177 1.000 0.527 0.476 0.238 0.800

Forest, 5yrs 0.299 0.229 0.183 1.000 0.555 0.499 0.251 0.800

Forest, 10 yrs 0.301 0.231 0.183 1.000 0.595 0.535 0.273 0.800

QRNN 0.402 0.336 0.243 0.900 0.542 0.461 0.244 0.550

Horizon=4

QVAR-AIC 0.964 0.746 1.140 1.000

QVAR-BIC 0.811 0.619 0.487 1.000 16.894 13.736 1.474 1.000

Forest, 3yrs 0.835 0.702 0.578 1.000 1.359 1.150 0.568 0.647

Forest, 5yrs 0.837 0.713 0.582 1.000 1.416 1.234 0.592 0.706

Forest, 10 yrs 0.790 0.667 0.529 1.000 1.552 1.409 0.649 0.588

QRNN 0.714 0.570 0.428 1.000 1.410 1.257 0.590 0.059

Horizon=12

QVAR-AIC 0.879 0.702 1.161 1.000

QVAR-BIC 1.010 0.749 0.967 1.000 2891.580 1485.689 0.508 1.000

Forest, 3yrs 0.651 0.562 0.623 1.000 1.511 1.334 0.466 0.555

Forest, 5yrs 0.608 0.508 0.582 1.000 1.425 1.220 0.439 0.555

Forest, 10 yrs 0.442 0.377 0.423 1.000 1.519 1.449 0.442 0.556

QRNN 0.478 0.368 0.457 1.000 2.060 1.815 0.635 0.444

Notes: This table reports the forecasting performance per forecasting method for different horizons for both data

sets. The best performing method per horizon and per data set is highlighted. The names in the left column

resemble the forecasting methods. Since only one QVAR model with 3 lags is used in the extended data set, the

QVAR-AIC row is left blank.

Figure 6: Median, 0.1 quantile and 0.9 quantile

one-step ahead forecasts BIC criteria with the

median forecast given in red, actual output in

black, and 0.1-0.9 interval in blue dashed lines

Figure 7: Median, 0.1 quantile and 0.9 quantile

one-step ahead forecasts BIC criteria with the

0.1-0.9 interval in orange, median forecast in black,

and the actual observations given in blue dots
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Table 2: Diebold-Mariano Test Statistics

Baseline Data Set Extended Data Set

Horizon 1

QVAR-AIC QVAR-BIC Forest, 3yrs Forest, 5yrs Forest, 10 yrs QVAR Forest, 3 yrs Forest, 5yrs Forest, 10 yrs

QVAR-AIC

QVAR-BIC 3.058***

Forest, 3yrs 0.844 -0.896 3.947***

Forest, 5yrs 0.769 -1.068 -1.417 3.946*** -2.609**

Forest, 10 yrs 0.832 -1.236 -0.647 -0.068 3.945*** -2.852** -2.177**

QRNN -2.012* -3.081*** -1.796* -1.770* -1.906* 2.191** 0.734 1.564 2.264***

Horizon 4

QVAR-AIC QVAR-BIC Forest, 3yrs Forest, 5yrs Forest, 10 yrs QVAR Forest, 3 yrs Forest, 5yrs Forest, 10 yrs

QVAR-AIC

QVAR-BIC 6.575***

Forest, 3yrs 5.167*** -1.503 3.471***

Forest, 5yrs 5.309*** -1.182 1.511 3.479*** -2.380**

Forest, 10 yrs 5.372*** -1.001 2.420** 0.897 3.466*** -3.913*** -4.371***

QRNN 5.793*** -0.170 0.921 0.657 0.549 3.465*** 0.184 0.535 1.018

Horizon 12

QVAR-AIC QVAR-BIC Forest, 3yrs Forest, 5yrs Forest, 10 yrs QVAR Forest, 3 yrs Forest, 5yrs Forest, 10 yrs

QVAR-AIC

QVAR-BIC 2.059*

Forest, 3yrs 5.602*** 1.621 4.132***

Forest, 5yrs 6.771*** 1.920* 2.300 4.042*** 4.253***

Forest, 10 yrs 5.775*** 2.027* 2.945** 2.260* 4.134*** 0.742 -0.981

QRNN -0.422 -1.067 0.921 -4.962*** -7.189 4.014*** -2.142* -2.370** -1.998*

This table reports t-statistics for Diebold-Mariano tests for both data sets. A positive value is reported when a ”row” model is superior to a ”column” model. *, **, ***

mean statistical significance at 10%, 5%, and 1% respectively. The best performing method per horizon per model and per data set is highlighted. Since only one QVAR

model with 3 lags is used in the extended data set, the QVAR-AIC row is left blank.

Forecast Graphs Since all methods provide confidence intervals that cover all new observations, I will

evaluate the graphs of the forecast interval to see how accurate the intervals are.

The ratio of observations that lies within the 0.1 quantile - 0.9 quantile interval is 1 for almost all forecasting

models on the different horizons (which is displayed in the last column of Table 1). To give an idea about the

interval size and the observations that lie within it, plots of the forecasts are created. The graphs of the best

performing method on horizon 1 are displayed above, whilst the complete set of plots (for all horizons and

methods) can be found in Appendix C.

Figure 6 displays the 0.1 and 0.9 quantile forecasts in the blue dashed lines, the median forecast in red,

and the actual output in black. Figure 7 presents the forecasted median values and the interval of the 0.1 and

0.9 quantile in orange. The blue rounds display the observations of the actual output whereas the forecasted

median is visible in black. It can be observed that the one-step ahead QVAR-BIC forecast displayed in Figure

6 and 7 respectively are quite accurate and resemble the actual output. The black and the red line in Figure 7
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deviate only small in the beginning and converge to each other towards the end. The interval (in dashed lines

in Figure 7 and in red in Figure 6) is fairly small and accurate for future states of forecasts. When the forecast

horizon increases, which can be seen in Appendix C.2 and C.3 respectively, the median forecasts become more

imprecise. The interval in which the forecasts lies increases substantial which makes it useless to indicate an

accurate range for future observations.

4.2.2 Extended Data Set

Extra variables are added to the baseline data set to see if the forecasting performance can be enhanced using

information on new variables. Table 1 and 2 display the results of the extended data set. If these results are

compared to the results of the baseline data set, one can observe that the forecasting performance actually

deteriorates for all forecasting models.

The QVAR model is significantly outperformed on all horizons by all different methods. The QVAR

forecasts on longer horizons are highly imprecise. The forecast values become large due to the fact that past

forecasts are recursively involved in the next forecast. The QVAR model performs particularly poor due

to the fact of dimensionality. Unimportant or redundant variables cause biased and poor estimations what

again causes poor forecasts (Uematsu & Tanaka, 2018). Therefore, QVAR forecasting with high dimensional

variables without variable selection results in inaccurate forecasts.

Both quantile regression and QRNN do not suffer from dimensionality and work particular well with high-

dimensional data. The QRNN model provides the most accurate forecast on a one-step horizon, but does

not perform significantly better than the quantile forest algorithms. The quantile forest algorithm with an

estimation window of 10 years performs significantly poorer then the quantile forest algorithm with estimation

window 3 and 5 years respectively. This can be explained by the fact that the in-sample period for the extended

data set is only approximately 22 years. The estimation window of 10 years trains the quantile forest on two

subsamples, whereas the estimation window of 3 and 5 years are trained on 7 and 4 subsamples respectively,

what causes more inaccurate forecasts.

From these results, it can be concluded that machine learning methods work well with high dimensional

data. Since the in-sample period is only small, the estimation window for the machine learning methods should

be small as well. In this way, one can still obtain quite accurate forecasts. The forecasts are more inaccurate

for the extended data set compared to the baseline data set. One should however note that the in-sample set

of the extended data contains less observations than the in-sample set of the baseline data, which causes more

inaccurate forecasts.

Forecast graphs The best performing one-step ahead forecast are again displayed to visualize the 0.1 and

0.9 quantile forecasts. The complete set of forecast plots are displayed in Appendix D. One can observe that

the one-step ahead forecasts are quite accurate and that the 0.1-0.9 quantile interval covers new observations

with a high probability. The QVAR model is not able to construct a interval that contains future observations.

The forecasts become more inaccurate as the horizon increases. The width of the intervals also increases which
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decreases the usefulness of the intervals.

Figure 8: Median, 0.1 quantile and 0.9 quantile

one-step ahead QRNN forecasts with the median

forecast given in red, actual output in black, and

0.1-0.9 interval in blue dashed lines

Figure 9: Median, 0.1 quantile and 0.9 quantile

one-step ahead forecasts BIC criteria with the

0.1-0.9 interval in orange, median forecast in black,

and the actual observations given in blue dots

5 Conclusion

In this research, the non-linearity of government spending shocks is proven through the computation of im-

pulse response functions. These impulse response functions were constructed by applying quantile regression

to a VAR model, where the output variable y was estimated in three different quantiles of its conditional

distribution. The impulse response functions show that the response of the output variables y indeed differs

across quantiles and that shocks are much more persistent when output is at its lowest decile. Information on

government spending and other macro-economic variables were then used to forecast the output (real GDP).

Output is forecasted using three forecasting methods: QVAR, quantile regression forest, and QRNN. The

advantage of the quantile random forest relative to the VAR-model is, that is works well with high-dimensional

data. For that purpose, additional variables are added to the set that was used to construct the quantile specific

impulse response functions. The forecast were constructed using an expanding window on forecasts horizons

h = {1, 4, 12} which resemble the one quarter, one year and three year ahead forecasts.

For the baseline data set, no clear conclusion can be drawn in what method is superior in forecasting. The

QVAR model with the number of lags choosen by the BIC criteria performs well on shorter horizon, wheras

machine learning methods perform better on longer horizons. The QVAR model with the number of lags

chosen by the AIC criteria was significantly outperformed by all forecasting methods. In general, the forecasts

as well as the confidence intervals are quite accurate, and one can say that the information on government

spending used in Linnemann & Winkler (2016) are suitable to construct forecasts on output.

Additional variables were added to the baseline data set to see if the forecasting performance can be

enhanced. The new data set has a shorter time period due to the availability of some variables. The QVAR

model performs poor on all forecast horizons. This is due to the fact of dimensionality. Unimportant or
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redundant variables cause biased and poor estimations what causes again poor forecasts. The quantile forest

algorithm and QRNN do not suffer from this issue and provide better forecasts than the QVAR model on this

data set. It can be concluded that machine learning methods work well with high dimensional data and are

a reliable and easy way to construct forecasts. The estimation should however be chosen carefully, as there

should be enough different training samples to train the models on.

In general, one can say that the government spending variable Gt, net taxes ψt, interest Rt ,and ratio of

government debt held by the public relative to GDP dDt are able to construct accurate forecasts on the output

variable Yt. Adding extra variables in this research does not improve the forecast performance of the models.

This is because of the dimensionality issue in the QVAR model and of less training samples in the extended

set. The forecasting performance deteriorates substantially for the QVAR model on the extended data set. A

good idea for further research would be to perform forecasts with the QVAR model with performing variable

selection first. An idea for variable selection would be LASSO variable selection. Next to LASSO variable

selection, one can also think about using factor models to construct forecasts.

Another thing that might be interesting for further research is to see how well the methods perform on a

different out-of-sample period. In this research, the years 2015-2020 were taken as out-of-sample period. It

would be of interest to see how well the models can perform on another out-of-sample period. Since the models

are not compared on different out-of-sample period, it can be coincidentally that the one and four step-ahead

forecasts are quite accurate. Further investigation into different out-of-sample periods can make models robust

to other periods.
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Appendices

A Data

Table 3: Transformation and ID’s data series, with QD as log-quadratic detrending

Short Series Title Construction Series ID

Gt Government Spending QD GDPC1

Yt Output QD GCEC96

ψt Net Taxes QD(W54+W782−A084
GDPDEF ) W054RC1Q027SBEA, A084RC1Q027SBEA, W782RC1Q027SBEA

Rt Real Interest Rate FEDFUNDS
100 − log( GDPDEF

GDPDEF (−1) ) ∗ 4 FEDFUNDS, GDPDEF

Dt Government Debt held by Public to GDP Ratio QD, Interpolated FYPUGDA188S

IPTt Industrial Production: Total QD IPB50001N

IPMt Industrial Production: Manufacturing QD IPMAN

IPEGt Industrial Production: Electric and Gas Utitilies QD IPUTIL

IPCGt Industrial Production: Consumer Goods QD IPCONGD

PCEt Personal Consumption Expenditures QD PCEPI

UNt Unemployment Rate UNRATE/100 UNRATE

AVHt Average Weekly Hours Worked AWHMAN/100 AWHMAN

MANISt Manufacturing: Inventories to Sales Ratio MNFCTRIRSA/100 MNFCTRIRSA

MANDGt Manufacturing: Durable Goods QD DGORDER

MANNDGt Manufacturing: Non-Durable Goods QD IPG311A2S

MERWt Merchant: Wholesales QD WHLSLRSMSA

MERSDGt Merchant: Sales Durable QD S423SMM144SCEN

MERSNDGt Merchant: Non-Durable Sales QD S4248SM144SCEN

RETTt Total Retail Trades QD USASARTMISMEI

BITt Total Business Inventories QD BUSINV

PIt Private Inventories QD A371RX1Q020SBEA

PPIt Producer Price Index QD PPIACO

M1t Monetary aggregate M1 QD M1

M2t Monetary aggregate M2 QD M2

M3t Monetary aggregate M3 QD M3

Loanst Commercial and Industrial Loans Outstanding QD TOTCI

Table 4: Descriptive statistics of the baseline data set ranging from 1995Q1 to 2019Q4

Row Mean Var Std Min Max

Government Spending Gt -0.012 26.316 5.130 -8.989 13.772

Output Yt -0.004 10.637 3.261 -9.125 6.465

Taxes ψt 0.006 182.038 13.492 -46.420 31.530

Interest Rt 1.648 6.569 2.563 -2.681 10.120

Public government debt ratio Dt -0.062 361.058 19.002 -34.701 36.558
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Table 5: Correlation coefficients of the baseline data set ranging from 1955Q1 to 2019Q4

Gt Yt ψt Rt Dt

Government Spending Gt 1.000 0.501 0.124 -0.134 -0.081

Output Yt 0.501 1.000 0.694 -0.095 -0.503

Taxes ψt 0.124 0.694 1.000 0.156 -0.214

Interest Rt -0.134 -0.095 0.156 1.000 0.141

Public government debt ratio Dt -0.081 -0.503 -0.214 0.141 1.000

Figure 10: Time series plot of baseline variables ranging from 1955Q1 to 2019Q4
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Figure 11: Time series plot of the different variables ranging from 1992Q2 to 2019Q4
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Table 6: Descriptive statistics of extended data set ranging from 1992Q2 to 2019Q4

Mean Var Std Min Max

Gt -0.066 10.391 3.223 -5.652 6.434

Yt 0.004 5.632 2.373 -4.470 4.402

ψt 0.123 301.304 17.358 -48.733 25.864

Rt 0.708 4.592 2.143 -2.529 4.938

Dt 0.087 213.638 14.616 -26.585 25.595

INTt 0.042 25.317 5.032 -15.510 9.043

INDMt 0.040 30.580 5.530 -17.170 9.667

INDEGt 0.009 4.244 2.060 -6.556 4.509

INDCGt 0.046 17.727 4.210 -9.710 7.193

PCEt -0.007 5.244 2.290 -3.678 4.586

UNt 5.799 2.696 1.642 3.533 9.933

AVHt 0.018 1.273 1.128 -3.954 2.021

MANISt 1.338 0.009 0.093 1.147 1.550

MANDGt 0.083 87.440 9.351 -35.130 14.721

MANNDGt 0.026 5.141 2.267 -4.097 4.612

MERWt -0.021 30.518 5.524 -13.628 14.485

MERSDGt 0.068 38.777 6.227 -20.809 10.897

MERSNDGTt -0.106 8.185 2.861 -6.393 8.931

RETTt 0.041 18.618 4.315 -12.470 6.497

BITt 0.035 16.678 4.084 -10.906 7.369

PIt 0.017 15.468 3.933 -9.267 6.697

PPIt -0.052 39.344 6.272 -11.789 16.595

M1t 0.146 37.426 6.118 -13.183 10.246

M2t -0.086 7.507 2.740 -5.291 8.328

M3t -0.086 7.473 2.734 -5.328 8.306

Loanst 0.008 109.650 10.471 -18.729 19.598
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B Methods

B.1 Lag Selection

Table 7: Number of lags to include according to the information criteria

Information Criteria baseline set extended set

AIC(n) 5 3

HQ(n) 2 3

BIC(n) 1 3

FPE(n) 5 3

Table 8: Values information criteria baseline data set

1 2 3 4 5 6 7 8 9 10

AIC(n) 3.508 3.394 3.338 3.406 3.132 3.174 3.282 3.415 3.358 3.430

HQ(n) 3.692 3.731 3.828 4.049 3.928 4.123 4.385 4.671 4.767 4.993

BIC(n) 3.964 4.229 4.553 5.000 5.105 5.527 6.015 6.527 6.850 7.302

FPE(n) 33.387 29.802 28.194 30.221 23.029 24.105 26.996 31.046 29.582 32.138

Table 9: Values information criteria extended set

1 2 3 4 5 6 7 8 9 10

AIC(n) -42.019 -62.861 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf

HQ(n) -33.693 -46.517 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf

SC(n) -21.267 -22.126 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf

FPE(n) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B.2 Forecasting Details

Table 10: Overview of the in and out-sample periods for both data sets

In-Sample Out-Sample Nin Nout Variables

Baseline 1955Q1-2014Q4 2015Q1-2019Q4 240 20 5

Extended 1992Q2-2014Q4 2015Q1-2019Q4 91 20 26
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Table 11: Overview of the different forecasting methods

Abbreviations Methods Lags Window Size Number of training samples

QVAR AIC QVAR 5 n/a n/a

QVAR BIC QVAR 2 n/a n/a

Forest, 3. yrs Quantile Forest 5 3 years 20

Forest, 5. yrs Quantile Forest 5 5 years 12

Forest, 10. yrs Quantile Forest 5 10 years 6

QRNN QRNN 5 10 years 6

QVAR QVAR 3 n/a n/a

Forest, 3. yrs Quantile Forest 3 3 years 8

Forest, 5. yrs Quantile Forest 3 5 years 5

Forest, 10. yrs Quantile Forest 3 10 years 2

QRNN QRNN 3 5 years 5

C Forecasts Baseline set

C.1 One-step ahead forecasts

Figure 12: Median, 0.1th quantile and 0.9th quantile one-step

ahead forecasts AIC criteria

Figure 13: Median, 0.1th quantile and 0.9th quantile one-step

ahead forecasts AIC criteria
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Figure 14: Median, 0.1th quantile and 0.9th quantile one-step

ahead forecasts BIC criteria

Figure 15: Median, 0.1th quantile and 0.9th quantile one-step

ahead forecasts BIC criteria

Figure 16: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forest forecasts, w=3 yrs

Figure 17: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forest forecasts, w=3 yrs
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Figure 18: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forest forecasts, w=5 yrs

Figure 19: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forest forecasts, w=5 yrs

Figure 20: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forest forecasts, w=10 yrs

Figure 21: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forest forecasts, w=10 yrs
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Figure 22: Median, 0.1th quantile and 0.9th quantile one-step

ahead QRNN

Figure 23: Median, 0.1th quantile and 0.9th quantile one-step

ahead QRNN

C.2 Four-step ahead forecasts

Figure 24: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forecasts AIC criteria

Figure 25: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forecasts AIC criteria
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Figure 26: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forecasts BIC criteria

Figure 27: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forecasts BIC criteria

Figure 28: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=3 yrs

Figure 29: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=3 yrs
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Figure 30: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=5 yrs

Figure 31: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=5 yrs

Figure 32: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=10 yrs

Figure 33: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=10 yrs
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Figure 34: Median, 0.1th quantile and 0.9th quantile four-step

ahead QRNN

Figure 35: Median, 0.1th quantile and 0.9th quantile four-step

ahead QRNN

C.3 Twelve-step ahead forecasts

Figure 36: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forecasts AIC criteria

Figure 37: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forecasts AIC criteria
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Figure 38: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forecasts BIC criteria

Figure 39: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forecasts BIC criteria

Figure 40: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=3yrs

Figure 41: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forest forecasts, w=3yrs
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Figure 42: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forest forecasts, w=5yrs

Figure 43: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forest forecasts, w=5yrs

Figure 44: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forest forecasts, w=10yrs

Figure 45: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forest forecasts, w=10yrs
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Figure 46: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead QRNN

Figure 47: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead QRNN

D Forecasts Extended set

D.1 One-step ahead forecasts

Figure 48: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forecasts VAR Model

Figure 49: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forecasts VAR Model
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Figure 50: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forest forecasts, w=3yrs

Figure 51: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forest forecasts, w=3yrs

Figure 52: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forest forecasts, w=5yrs

Figure 53: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forest forecasts, w=5yrs
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Figure 54: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forest forecasts, w=10yrs

Figure 55: Median, 0.1th quantile and 0.9th quantile one-step

ahead quantile forest forecasts, w=10yrs

Figure 56: Median, 0.1th quantile and 0.9th quantile one-step

ahead QRNN

Figure 57: Median, 0.1th quantile and 0.9th quantile one-step

ahead QRNN
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D.2 Four-step ahead forecasts

Figure 58: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forecasts VAR Model

Figure 59: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forecasts VAR Model

Figure 60: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=3yrs

Figure 61: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=3yrs
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Figure 62: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=5yrs

Figure 63: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=5yrs

Figure 64: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=10yrs

Figure 65: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=10yrs
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Figure 66: Median, 0.1th quantile and 0.9th quantile four-step

ahead QRNN

Figure 67: Median, 0.1th quantile and 0.9th quantile four-step

ahead QRNN

D.3 Twelve-step ahead forecasts

Figure 68: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forecasts VAR Model

Figure 69: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forecasts VAR Model
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Figure 70: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forest forecasts, w=3yrs

Figure 71: Median, 0.1th quantile and 0.9th quantile four-step

ahead quantile forest forecasts, w=3yrs

Figure 72: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forest forecasts, w=5yrs

Figure 73: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forest forecasts, w=5yrs
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Figure 74: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forest forecasts, w=10yrs

Figure 75: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead quantile forest forecasts, w=10yrs

Figure 76: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead QRNN

Figure 77: Median, 0.1th quantile and 0.9th quantile

twelve-step ahead QRNN
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