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Abstract

The knowledge of real-world network can largely facilitate decision making and thereby

improve efficiency. In the novel study by De Paula, Rasul, and Souza (2020), the authors derive

assumptions under which a network can be recovered directly from the data. Building on their

results, I compare three distinct regularisation and variable selection techniques in the context

of estimating network ties. In particular, Adaptive LASSO, Adaptive Elastic Net and SCAD are

implemented with a GMM objective function. I find that each method has its own advantages

and drawbacks and none of them is globally optimal. Moreover, I conduct a case study to

investigate how corporate tax rates are interrelated in Western Europe. I conclude that there

is a high level of connectivity among the countries in this area and the relations depend on a

complex combination of factors.
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1 Introduction

Everything in the world is interconnected, this makes it both beautiful and complex. The

human body has different subsystems that have independent functions but all influence each

other. In a society, the actions of every individual are affected by other people as well as

external circumstances. The economic and political situation in one country significantly

impacts the countries it has relations with. In every context, knowing the structure of a

network enables understanding the group dynamics which, in turn, can largely facilitate

decision making and improve efficiency.

Studying networks comprises three main types of activities: the postulation of theoretical

models based on observation and knowledge, the identification of the model parameters and

the data collection (Blume, Brock, Durlauf, & Jayaraman, 2015). To derive conclusions

about real-world phenomena using data, it is important to be aware of possible limitations

and requirements of each one of these steps. In this paper, I cover all three activities, but my

main focus lies on the parameter estimation which belongs to the field of econometrics. The

estimation of network models usually involves dealing with high-dimensional data sets where

variables simultaneously influence each other. Therefore, it is necessary to derive assumptions

under which the model parameters can be uniquely identified. An important contribution

to this field was made by Manski (1993) who introduced the so-called ‘Reflection problem’.

This problem encompasses that network parameters are not identifiable if the researcher does

not possess some prior information on relations among individuals in a given group.

Since this study, a lot of econometric research about networks has been done, most of

which uses the data containing information on social ties (Sacerdote, 2001; Topa, 2001).

However, as a result of high costs of data collection as well as privacy concerns, the infor-

mation about the relations within a group of interest is often absent (Breza, Chandrasekhar,

McCormick, & Pan, 2017). In this case, the authors often work with partial knowledge. For

example, Blume et al. (2015) construct the sociomatrices by using the available information

to divide the individuals into multiple neighbourhoods. Other researchers use economic the-

ory to postulate the relations inside a group (Cassette & Paty, 2008; Redoano, 2014). A

notable disadvantage of using limited information to create an adjacency matrix is that it
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can largely bias the results.

This is where the work of De Paula et al. (2020) makes an important contribution. They

prove that, under certain assumptions, model parameters and the matrix capturing the in-

teractions among individuals can be jointly identified from the data set. The authors demon-

strate the validity of their results by estimating different simulated networks. Furthermore,

they use data on taxation and other characteristics in different states of the United States of

America to study the tax competition among them.

They perform the estimation by using Generalised Method of Moments (GMM) combined

with diverse regularisation and variable selection techniques, among which the Adaptive Least

Absolute Shrinkage and Selection Operator (LASSO) and Adaptive Elastic Net. The latter

was found to be the best performing method, however, the authors acknowledge that some

other methods might work better. Consequently, the question arises whether Adaptive Elastic

Net is truly an optimal choice for the estimation.

The ultimate objective of this paper is to investigate how various estimation techniques

differ in recovering network ties. For this, I carry out an extensive simulation study to

analyse the performance of GMM with three distinct penalties on recovering four types of

networks. In particular, the methods employed are Adaptive LASSO, Adaptive Elastic Net

and Smoothly Clipped Absolute Deviation (SCAD). The networks for the study are carefully

chosen such that they satisfy all the necessary assumptions, but vary in their characteristics to

avoid biased conclusions. To summarise the goal, I formulate the following research question:

What are the relative strengths and weaknesses of Adaptive LASSO, Adaptive Elastic Net

and SCAD in the context of recovering the network structure from panel data?

All models are estimated for various sample sizes by utilising the Particle Swarm Algo-

rithm. Moreover, final estimates of the parameters are obtained employing two-stage least

squares (2SLS) with peers-of-peers as instruments. Although these methods have been com-

pared in various settings, the estimation of a whole network is a new area which is not yet

sufficiently researched. Therefore, I enrich the econometric literature on high-dimensional

estimation techniques by providing an overview of the qualities of the studied methods in

the context of networks.

4



I find that all three methods have comparable performance and none of them is domi-

nant. Adaptive Elastic Net is shown to recover the largest fraction of redundant parameters.

Further, all networks can identify the majority of strong links but perform poorly in finding

weaker ones. SCAD has the highest hit rate for weak links, however, this comes at the cost

of a large number of falsely classified edges. Lastly, Adaptive LASSO enjoys the advantage

of lowest computation time with only slightly inferior results.

After learning about the properties of each method, I conduct a case study in which I

investigate the taxation in the first fifteen countries joining the European Union (henceforth

Western Europe).1 The question I aim to answer with this study is:

How are the corporate income tax rates interrelated in Western Europe?

To perform the analysis, I take a two-stage approach. First, I estimate the social inter-

action matrix using the data on statutory corporate income tax rates as well as on several

social-economic characteristics of the respective countries for years 1981 up to 2018. For this,

I employ the Adaptive Elastic Net and SCAD methodologies. As a second step, I use the

Logit regression to investigate whether and to what extent the links depend on geographic

and social-economic proximity of a pair of countries. I find that the corporate income tax

rates are highly interconnected among the studied states. The results show that the connec-

tions go beyond the neighbouring countries and depend on a complex mix of various factors

such as economic policy and demographics of each country.

In what follows, I first summarise the linear social interaction model and the main iden-

tification results of De Paula et al. (2020) in section 2. Next, I provide an explanation of the

estimation procedure in section 3. In section 4, I describe relevant network characteristics,

the selected networks as well as the procedure for data simulation. I then present the sim-

ulation results in section 5. Further, section 6 encompasses the detailed report of the case

study and section 7 concludes the paper.

1Those are Austria (AUT), Belgium (BEL), Denmark (DNK), Finland (FIN), France (FRA), Germany

(DEU), Greece (GRC), Ireland (IRL), Italy (ITA), Luxembourg (LUX), The Netherlands (NLD), Portugal

(PRT), Spain (ESP), Sweden (SWE) and United Kingdom (GBR).
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2 Model and identification

In this section, I introduce the linear social interactions model employed by De Paula et

al. (2020) together with the assumptions for the parameter identification they derive. The

starting point of the model is availability of panel data with T observations on N individuals.

The individual outcomes, denoted by yit, and individual characteristics, xit, are assumed to

be known for t = 1, ..., T and i = 1, ..., N . Given those, the model is:

yit = ρ0

N∑
j=1

W0,ijyjt + β0xit + γ0

N∑
j=1

W0,ijxjt + αi + αt + εit. (1)

This model can be written more compactly in a matrix notation:

yt = ρ0W0yt + β0xt + γ0W0xt + α∗ + αtı+ εt. (2)

W0 is the adjacency matrix, also called social interactions matrix, where W0,ij measures the

effect of individual j on the outcome of an individual i. The coefficients ρ0 and γ0 stand for

the endogenous and exogenous effects respectively. Furthermore, β0 represents the impact of

an individual’s own characteristics and α∗ represents the unobserved heterogeneity. Finally,

the scalar αt accounts for time-specific shocks affecting each individual, ı is an N×1 vector of

ones and εt captures the individual deviations for every outcome. The subscript zero stands

for the true parameter value.

The model has been presented in this form by Blume et al. (2015). It rests on the inference

that all individuals choose their actions (which result in the outcomes) simultaneously and

thus this is an incomplete information game. Each individual has a goal of maximising his

or her own utility and so uses all available knowledge to make the best possible decision. As

mentioned in the Introduction, De Paula et al. (2020) derive a set of assumptions necessary

for the joint identification of network parameters and W0. Since I will need to comply with

these when estimating, I briefly review them below.

The model from equation 2 can be simplified by excluding individual fixed effects and

common shocks. In this case, there are five assumptions to be satisfied. The first one states

that an individual does not affect himself:

A1: W0,ii = 0, i = 1,...,N.
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The next assumption makes sure the effect of each shock vanishes with time:

A2:
∑N

j=1 | ρ0W0,ij |<1 for every i = 1,...N, || W0 ||< C, C positive, C ∈ R and | ρ0 |<1.

The third assumption prevents cancelling out of endogenous and exogenous network effects:

A3: β0ρ0 + γ0 6= 0.

Furthermore, a normalisation is necessary to enable joint identification of ρ0 and γ0:

A4: There exists an i such that
∑N

j=1W0,ij = 1.

Lastly, assumption A5 requires that a network is asymmetric, meaning that individuals differ

in popularity:

A5: There exist l and k such that W 2
0,ll 6=W2

0,kk.

Given these assumptions and provided ρ0 > 0 and W0,ij > 0, the model has a unique global

solution.2

To incorporate the unobserved heterogeneity, for the individual characteristics and out-

comes the mean over time should be subtracted. This results in replacing xit by x∗it =

xit − T−1
∑T

t=1 xit and yit by y∗it = yit − T−1
∑T

t=1 yit. Then, the model can be written in a

reduced form as follows:

y∗t = (I − ρ0W0)
−1(β0I + γ0W0)x

∗
t + (I − ρ0W0)

−1αtı+ (I − ρ0W0)
−1ε∗t . (3)

To account for common shocks, assumption A4 needs to be modified:

A4’:
∑N

j=1W0,ij = 1 for all i = 1, ..., N .

Next, the global differences should be taken by pre-multiplying by (I−H), where H = 1
N

(ıı′).

If Assumption A4’ holds, (I −H)(I − ρ0W0)
−1αtı = 0 and the model becomes:

(I −H)y∗t = (I −H)(I − ρ0W0)
−1(β0I + γ0W0)x

∗
t + νt. (4)

This is the model I work with in the remainder of the paper unless specified otherwise.

2Stated in Corollary 3 of De Paula et al. (2020).
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3 Estimation

I start this section by introducing the GMM objective function. Then I describe three

variable selection procedures which are employed and compared in this paper. Lastly, I

explain how the optimisation is performed.

3.1 Problem description

The ultimate goal of the estimation is to recover the unknown parameter vector θ =

(W1,2, ...,WN,N−1, ρ, γ, β)′ from the observed characteristics and outcomes of the individuals

within a group. What makes the estimation challenging is that while there are only NT

observations, there are m = N(N − 2) + 3 parameters.3 At the same time, since the true

value of the majority of the parameters is usually zero, the density of the networks of interest

is low. Hence, some high-dimensional estimation technique which can simultaneously select

and estimate the variables is required. An appropriate solution is using a penalty function.

Therefore, to obtain the parameters from the data, I minimise the penalised GMM func-

tion. In this paper, the GMM objective function takes the following form:

GNT (θ) = gNT (θ)′MTgNT (5)

It is based on the moment conditions which assume independence of covariates and error

terms. Here, gNT (θ) = (I −H)
∑T

t=1[x
∗
1tνt(θ)

′...x∗Ntνt(θ)
′]′ with residuals νt(θ) = (I −H)y∗t −

(I−H)(I−ρW )−1(βI+γW )x∗t . Furthermore, MT is a weight matrix and it is set to IN2×N2

for simplicity. To ensure that ρ > 0 and W > 0, ρ and W are replaced for the minimisation

by ρ̃2 and W̃ 2 respectively.

3.2 Variable selection

According to Fan and Li (2001), a good penalty should possess three main qualities: a

stable model selection, sparse solution and unbiased estimates for larger coefficients. Further-

more, an important quality is the oracle property which means that a technique “performs

3Only N(N-2) parameters of W0 need to be estimated since in each row i of W one entry next to the main

diagonal, Wi,j∗ , is set to 1 -
∑N

j=1,j 6=j∗ Wi,j to satisfy the assumption A4’.
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as well as if the true underlying model were given in advance” (Zou, 2006). Next, three esti-

mation methods used in this study are described and compared in terms of these properties.

3.2.1 Adaptive LASSO

The first estimation method is Adaptive LASSO. It consists of two steps. The estimate

of the first step is equivalent to that of LASSO:

θ̂l(p1) = arg min
θ∈Rm

{
GNT (θ) + p1

N∑
i,j=1
i 6=j

| Wij |
}
. (6)

Although LASSO performs well in shrinking the insignificant coefficients to zero, it produces

biased estimates for large coefficients (Fan & Li, 2001). For this reason, an adaptive step

was proposed by Zou (2006). This step introduces coefficient-specific weights which use the

adjacency matrix estimate of the first step, Ŵl, and thereby achieves the oracle property.

The resulting Adaptive LASSO is defined as:

θ̂al(p
∗
1) = arg min

θ∈Rm

{
GNT (θ) + p∗1

∑
i,j:Ŵl;ij 6=0,
i,j=1,...N,

i 6=j

| Wij |
| Ŵl;ij |γ

}
. (7)

Similarly to Caner and Zhang (2014), I set the exponent γ in equation 7 to 2.5 as it has been

shown to achieve satisfactory results in diverse settings.

3.2.2 Adaptive Elastic Net

Next to biased coefficients, a drawback of LASSO is that it performs poorly if the ex-

planatory variables are highly correlated. To improve this, Zou and Hastie (2005) suggest a

method called Elastic Net which extends LASSO with quadratic penalty of Ridge regression.

Furthermore, Zou and Zhang (2009) combine the two extensions in the Adaptive Elastic

Net and prove that it simultaneously satisfies the oracle property and successfully handles

collinearity. Later, Caner and Zhang (2014) showed that using the GMM objective function

instead of Least Squares does not affect the desired properties. Hence, the second technique

I use is the Adaptive Elastic Net whose first step estimate is calculated as follows:

θ̂en(p1, p2) = (1 + p2/T ) · arg min
θ∈Rm

{
GNT (θ) + p1

N∑
i,j=1
i 6=j

| Wij | +p2
N∑

i,j=1
i 6=j

| Wij |2
}
. (8)
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The adaptive step estimate is then given by:

θ̂aen(p∗1, p2) = (1+p2/T ) ·arg min
θ∈Rm

{
GNT (θ)+p∗1

∑
i,j:Ŵen;ij 6=0,
i,j=1,...N,

i 6=j

| Wij |
| Ŵen;ij |γ

+p2

N∑
i,j:Ŵen;ij 6=0,
i,j=1,...N,

i 6=j

| Wij |2
}
.

(9)

In both steps, the term (1 + p2/T ) adjusts for the bias. Moreover, also here γ is set to 2.5.

3.2.3 SCAD

The third method used is SCAD. It possesses all the desired properties of a good penalty

and is most commonly defined in form of its derivative. For i 6= j it can be written as:

J ′λ(| Wij |) = λ

{
I(| Wij |≤ λ) +

(aλ− | Wij |)+
(a− 1)λ)

I(| Wij |> λ)

}
, (10)

with a > 2 and λ > 0 being the tuning parameters. Despite great statistical properties,

the SCAD penalty is non-convex and is therefore challenging to estimate. The first two

proposed solutions use Local Quadratic Approximation (Fan & Li, 2001) and Local Linear

Approximation (Zou & Li, 2008). More efficient approaches were derived by Kim, Choi,

and Oh (2008) and Wu and Liu (2009). The former uses Coupling of the Concave Convex

Procedure (CCCP) and the latter the Difference Convex Algorithm (DCA). These two are

essentially the same so I focus on describing the CCCP which is used for the estimation.

The SCAD penalty can be decomposed as a sum of convex and concave functions such

that J ′λ(| Wij |) = J ′λ,1(| Wij |) + J ′λ,2(| Wij |) with:J
′
λ,1(| Wij |) = λ,

J ′λ,2(| Wij |) = −λ(1− (aλ−|Wij |)+
(a−1)λ) )I(| Wij |> λ),

(11)

and with (t)+ = tI(t > 0). Furthermore, for Jλ,2(Wij) a linear approximation can be used.

The parameters of SCAD-penalised GMM can then be obtained by iterative estimation:

θ̂scad,k+1(λ) = arg min
θ∈Rm

{
GNT (θ) +

1

NT
λ

N∑
i,j=1
i 6=j

| Wi,j | +
1

NT

N∑
i,j=1
i 6=j

J ′λ,2(| Ŵscad,k;ij |)Wij

}
. (12)

I only perform three iterations since through preliminary testing I find that in most cases

this is enough for the estimates to converge.
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3.3 Implementation

3.3.1 Particle swarm algorithm

Similarly to De Paula et al. (2020), I choose Particle Swarm Algorithm for the optimisation

of all three estimation methods. In this algorithm, multiple particles (i.e. initial conditions)

independently search for the optimal solution which increases the probability of finding the

global minimum. Next to that, this algorithm does not use derivatives which is convenient

for functions that are non-linear in their parameters. Since these advantages come at the

cost of efficiency, I make several simplifications as compared to De Paula et al. (2020).

First of all, to ensure the feasibility of an extensive simulation study, I only perform 100,

instead of 1000, simulation rounds. Then, I make use of the ′MaxTime′ option in the build-

in particleswarm function in MATLAB and restrict the maximum estimation time to 150

seconds for networks with N = 30, to 175 seconds for a network with N = 45 and to 200

seconds for a network with N = 65. Finally, I set the lower bound to zero and the upper

bound to one on the parameters as this information is incorporated in the assumptions and

helps to reduce the search space. Furthermore, I only use five, instead of 100, initial particles,

of which the first three are calculated from the data.4

Particle 1: The parameters corresponding to the entries of W are obtained from the LASSO

regression of yt on yt of the other individuals. As LASSO penalty, p1 is used for Adaptive

LASSO and Adaptive Elastic Net. For SCAD this penalty is fixed at 0.15. The estimated

parameters get weights proportional to their magnitude such that the row-sum normalisation

is respected. To initialise β, I use an estimate of the Ordinary Least Squares regression of y

on x. Finally, I set γ=0 and ρ=0.5 which ensures that Assumption A3 holds.

Particle 2: Similarly to particle 1, but now with LASSO regression of yt on xt of others.5

Particle 3: I sum the estimates from the LASSO regression of yt on yt of others and from

the LASSO regression of yt on xt of other. All other computations are similar to particle 1.

In addition, the second and third iterations of SCAD use estimates from the previous

step as an initial condition. The remaining particles are generated randomly by the build-in

option of the particleswarm function.

4The particles based on the gradient are omitted due to their computational intensity.
5This particle is also used as the initial estimate of Wij for the first iteration of SCAD.
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3.3.2 Choice of tuning parameters

For all three methods described above, the estimates strongly depend on the regularisation

parameters. However, choosing those individually in each simulation run or making use of

cross-validation would again heavily affect the evaluation time. Therefore, for Adaptive

LASSO and Adaptive Elastic Net, the selection of the tuning parameter is only carried out

for the first five simulation runs. In the subsequent 95 runs, the median of the optimal

penalty vectors is used. The selection is done by evaluating the model for all possible p’s on

the grid given by {0.15, 0.2, 0.225}. This results in 9 possible permutations for Adaptive

LASSO and 27 for Adaptive Elastic Net. Note that this grid differs from De Paula et al.

(2020) who define it as {0, 0.025, 0.05, 0.1}. This choice is made after observing that

increasing the penalty leads to a higher number of zeroes estimated correctly as well as a

general performance improvement. For each of the first five runs, the optimal penalty vector

is the one minimising the BIC criterion defined as:

BIC(p) = log
[
gNT (θ̂(p))′MTgNT (θ̂(p))

]
+ A(θ̂(p)) · logT

T
, (13)

with A(θ̂(p)) =
∑

i,j:Ŵij 6=0 Ŵij. Because the objective of this paper is estimating the param-

eters, the BIC criterion is preferred over other information criteria based on its asymptotic

consistency (Nishii, 1984).

For SCAD, a similar approach to parameter tuning is used. To start with, I follow the

convention and set a=3.7 as suggested by Fan and Li (2001). As only one parameter needs

to be chosen, for the first 10 out of 100 simulation runs the estimation is done for all λ in the

set {3, 2.5, 2, 1, 0.5}. The optimum per round is selected based on BIC (equation 13 with λ

instead of p) and the median of the ten optimal values is used for the remaining runs.

3.3.3 Evaluation of results

Following De Paula et al. (2020), I calculate the “post-” β0, γ0 and ρ0. For this, I

implement 2SLS with peers-of-peers covariates as instruments using the estimated Ŵ . I

describe the procedure in detail in Appendix A.

To compare the different estimation methods, I calculate the mean absolute deviation of

the social interaction matrix, defined as MAD(Ŵ ) = 1
N(N−1)

∑N
i,j=1
i 6=j

(Ŵij −W0,ij). Further-
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more, I separately compute the proportion of correctly recovered zero and non-zero entries

of W0. I also report the number of correctly classified strong and weak links. For a deeper

analysis, the network characteristics described in next section are presented.

4 Networks and data simulation

As real-world networks differ a lot in their structure, it is important to pick diverse

networks for testing the performance of the proposed estimation methods. In this section, I

first introduce the relevant network terminology and characteristics, then I describe the four

selected networks and subsequently explain how the data will be simulated.

4.1 Network characteristics

The standard network representation is a graph with N nodes and edges connecting them.

The adjacency matrix W0 is another representation where an entry W0,ij stands for an edge

going from individual i to individual j. I only work with weighted directed networks, meaning

that edges are of different strengths and W0,ij 6= 0 does not imply that W0,ji 6= 0. This type

of networks is most representative of social and economic relations. The directed ties are

naturally present in seller-buyer relationships (Kranton & Minehart, 2001) and supply chain

systems (Carvalho, Nirei, Saito, & Tahbaz-Salehi, 2016). Furthermore, the weak ties often

serve as a connection between multiple smaller well-established networks and thereby extend

microenvironments to macroenvironments (Granovetter, 1977).

The first informative feature of a network system is its density. This feature represents the

level of connectedness and is calculated as the fraction of total edges over total possible edges.

Further, networks may contain different number of components, i.e. independently connected

subgraphs (Jackson, Rogers, & Zenou, 2017). For directed graphs, a distinction between weak

and strong components is made. To find weak components, all edges are seen as undirected

and two nodes belong to the same component if there is a path connecting them. On the

other hand, in case of a strong link, for each pair of nodes there exists a path connecting them

in both directions. In what follows, I only report the number of strong components for each

network and therefore refer to those simply as “components”. Lastly, a relevant measure is the
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clustering coefficient. It is computed as (3·Number of triangles)/(Total number of triples)

and describes to what extent the location of links is correlated (Watts & Strogatz, 1998). For

the exact definition of triangles and triples I refer to Newman, Watts, and Strogatz (2002).

4.2 Selected networks

The first network used for this simulation study is the famous Erdos-Renyi network (Erdős

& Rényi, 1960). It is constructed by randomly setting one of the entries in each row of W0

equal to one such that each individual is only influenced by one other individual and not

him/herself. For N = 30, it has a relatively low density (3.45%). Despite being a convenient

choice for its simplicity, the Erdos-Renyi network does not capture many aspects present in

real-world networks. It is not scale-free, i.e. the distribution of links does not follow the

power law under which there exists a small number of nodes with an exceptionally high in-

and/or out-degree. Also, the Erdos-Renyi network is not a small-world network as it does

not have a high clustering coefficient and an average path between two nodes is long.

An attempt to improve with respect to the scale-free property is the Political Party

network. In this network, the nodes are assumed to belong to two political parties, the first

N
3

nodes to Party A and the remaining 2N
3

to Party B, with the individuals 1 and N
3

+1

being the party leaders. Each leader directly affects half of the party members and in each

row there is an additional random link. As a consequence, the two nodes representing the

party leaders have a significantly higher out-degree. To make sure the Assumption A4’ is

complied with, the link from party leader always gets value 0.7 and the additional link in the

corresponding row is set to 0.3. Given N = 30, the density of this network is 5.17%.

The third network is based on the true interaction matrix which captures the family

relations of the households in a rural village in India. The village selected is the village 10 of

the original study by Banerjee, Chandrasekhar, Duflo, and Jackson (2013a) and consists of

77 households. The data set is retrieved from Harvard Dataverse (Banerjee, Chandrasekhar,

Duflo, & Jackson, 2013b). Further, some adjustments need to be made. First, the 12 isolated

households are removed which results in a network with N = 65 and density of 5.77%. Then,

the binary ties are transformed such that they have different strength and the row-sum

normalisation is satisfied. This is done in the following way. Assume there are l ‘ones’ in a
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row i of W0. One of these positive entries is randomly selected and set to 0.7. The remaining

l − 1 entries each get the value 0.3/(l − 1). This network is larger, denser and has a higher

clustering coefficient than the previous two and is therefore a suitable choice to get insights

into the performance of estimation methods.

The last network is the Watts–Strogatz network. Although the links in this network do

not follow the power law, it possesses the small-world property (Watts & Strogatz, 1998).

In this network, the N nodes are located in form of a ring and every node is connected to

the K nearest nodes on each side. Moreover, the parameter β is the probability that an

edge gets rewired and hereby introduces some randomness into the model.6 I construct a

Watts-Strogatz network with N = 45, K = 3 and β = 0.05 by using the function made by

The MathWorks (2015). It is important to set β > 0 as otherwise the assumption A5 would

be violated. I then assign the strength to each edge in the same way as for the Village network.

With a density of 13.64% and clustering coefficient 0.2812, this network is significantly more

complex than the other ones and hence it is a valuable contribution.

The first three networks are the same as in De Paula et al. (2020). Note that some

features of the stylised networks may slightly differ from the original paper due to the ran-

domness involved. Table 1 summarises the characteristics of all networks and also contains

the standard deviation across the diagonal elements of W 2
0 to demonstrate that the chosen

networks satisfy Assumption A5.7 Moreover, Figure 2 in Appendix B shows their graphical

representation.

4.3 Data generation

In each simulation round, the data is generated for a given T. This is done in the same

way for each network. First, the variables αt ∼ N(1, 1), α∗ ∼ N(ıN ,IN×N), xt ∼N(0N ,IN×N)

and εt ∼N(0N , IN×N) are drawn from the corresponding distributions. Subsequently, these

variables, the W0 of the corresponding network as well as the true parameters ρ0=0.3, β0=0.4

and γ0=0.5 are used to generate the outcomes yt. The simulations are conducted for T =

6The additional parameter is defined as β here to follow the conventional notation. However, for the

remainder of the text, β is the parameter of individual’s characteristics in social interactions model.
7A5 does not hold if this value is zero.
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{50,100,150} for each of the four networks.

Table 1: Characteristics of the selected networks

Characteristic Erdos-Renyi Political party Village Watts–Strogatz

Density 3.45% 5.17% 5.77% 13.64%

Total edges 30 45 240 270

Strong edgesa 30 30 65 45

Weak edges 0 15 175 225

Reciprocal edges 2 1 120 135

In-degree distributionb 1.0000 (0.0000) 1.5000 (0.5085) 3.6923 (2.3513) 6.0000 (0.4767)

Out-degree distribution 1.0000 (1.0828) 1.5000 (2.1616) 3.6923 (2.3513) 6.0000 (0.4767)

Highest out-degreec {29,28,5} {11,1,5} {35,23,57} {19,26,34}

Number of components 23 27 3 1

Size largest component 6 4 51 45

Clustering coefficient - 0 0.0998 0.2812

St. Dev. diagonal of W 2
0 0.3457 0.0761 0.1935 0.1545

a An edge is define as strong if its weight is >0.3. b For in- and out-degree distribution the mean and standard

deviation in parenthesis are reported. c Three nodes with highest out-degree.

5 Results

The results are summarised in the following tables. Tables 2 up to 5 present the perfor-

mance metrics for each of the four networks. Appendix B contains tables with the estimates

of the peers-of-peers regressions (Tables 13, 14, 15 and 16) and with the various characteris-

tics of the estimated networks (Tables 17, 18, 19 and 20). While the performance metrics give

a concise overview, the characteristics of the recovered networks provide additional valuable

insights which help understanding the origin of the results and the specifics of each method.
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Table 2: Simulation results for Erdos-Renyi network

Method Adaptive LASSO Adaptive Elastic Net SCAD

Size (T) 50 100 150 50 100 150 50 100 150

MAD(Ŵ ) 0.0976 0.0497 0.0226 0.0728 0.0434 0.0257 0.0608 0.0233 0.0154

(0.0968) (0.0449) (0.0132) (0.0675) (0.0391) (0.0286) (0.0519) (0.0046) (0.0036)

true zerosa 0.9061 0.9705 0.9581 0.9600 0.9702 0.9788 0.9259 0.9470 0.9581

(0.0886) (0.0228) (0.0097) (0.0337) (0.0328) (0.0158) (0.0248) (0.0099) (0.0103)

true non-zeros 0.6903 0.7963 0.9480 0.6823 0.8400 0.9013 0.7877 0.9530 0.9917

(0.1713) (0.1102) (0.0557) (0.1262) (0.1297) (0.1221) (0.0846) (0.0464) (0.0167)

true strong linksb 18.9000 23.6300 28.0000 20.1100 24.7800 26.8500 21.6200 28.0500 29.6400

(5.4910) (3.3474) (2.0938) (3.6622) (4.0666) (3.8987) (2.9671) (1.5594) (0.5777)

The reported results are averaged over 100 simulation runs. Standard deviations in parentheses.

a Fraction of true zeros and of true non-zeros recovered correctly.

b The links with weights bigger than 0.3 are classified as strong.

Table 3: Simulation results for Political Party network

Method Adaptive LASSO Adaptive Elastic Net SCAD

Size (T) 50 100 150 50 100 150 50 100 150

MAD(Ŵ ) 0.0971 0.0728 0.0558 0.0985 0.0636 0.0538 0.1110 0.0357 0.0246

(0.0696) (0.0803) (0.0524) (0.0506) (0.0405) (0.0668) (0.0656) (0.0064) (0.0041)

true zerosa 0.9493 0.9622 0.9700 0.9489 0.9671 0.9698 0.9128 0.9422 0.9549

(0.0405) (0.0419) (0.0306) (0.0271) (0.0230) (0.0361) (0.0346) (0.0116) (0.0107)

true non-zeros 0.3982 0.5093 0.5624 0.3951 0.5067 0.5458 0.4602 0.6467 0.7333

(0.0817) (0.0881) (0.0794) (0.0786) (0.0707) (0.0931) (0.0758) (0.0613) (0.0521)

true strong linksb 15.3700 20.2300 22.2400 15.2700 20.2000 22.2100 15.5400 23.0600 26.2000

(3.2213) (3.6896) (3.3246) (3.3540) (3.1042) (3.9982) (3.1056) (2.1687) (2.0101)

true weak links 0.0300 0.1600 0.2600 0.1100 0.0900 0.1900 0.7600 1.8100 2.5300

(0.1714) (0.4197) (0.5966) (0.3145) (0.3208) (0.5064) (0.9003) (1.4120) (1.6172)

The reported results are averaged over 100 simulation runs. Standard deviations in parentheses.

a Fraction of true zeros and of true non-zeros recovered correctly.

b The links with weights bigger than 0.3 are classified as strong.
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Table 4: Simulation results for Village network

Method Adaptive LASSO Adaptive Elastic Net SCAD

Size (T) 50 100 150 50 100 150 50 100 150

MAD(Ŵ ) 0.0568 0.0289 0.0203 0.0485 0.0271 0.0189 0.0437 0.0205 0.0143

(0.0206) (0.0077) (0.0078) (0.0102) (0.0053) (0.0078) (0.0466) (0.0022) (0.0014)

true zerosa 0.9701 0.9894 0.9937 0.9784 0.9901 0.9944 0.9559 0.9749 0.9823

(0.0136) (0.0042) (0.0045) (0.0066) (0.0030) (0.0050) (0.0468) (0.0042) (0.0038)

true non-zeros 0.1828 0.2262 0.2603 0.1786 0.2332 0.2618 0.2471 0.3241 0.3507

(0.0237) (0.0243) (0.0222) (0.0258) (0.0249) (0.0192) (0.0306) (0.0288) (0.0236)

true strong linksb 27.0200 44.9200 54.1700 28.4600 46.1800 54.6900 31.1000 45.9200 57.4300

(3.8898) (4.8151) (4.5706) (4.2603) (4.3886) (4.7048) (5.4393) (3.9227) (3.0920)

true weak links 1.3100 0.2600 0.7200 0.2800 0.3900 0.6800 9.2700 13.4100 13.9300

(1.5288) (0.6908) (1.5247) (0.8771) (1.5301) (1.3772) (4.8966) (4.5083) (4.2409)

The reported results are averaged over 100 simulation runs. Standard deviations in parentheses.

a Fraction of true zeros and of true non-zeros recovered correctly.

b The links with weights bigger than 0.3 are classified as strong.

Table 5: Simulation results for Watts Strogatz network

Method Adaptive LASSO Adaptive Elastic Net SCAD

Size (T) 50 100 150 50 100 150 50 100 150

MAD(Ŵ ) 0.0542 0.0359 0.0294 0.0517 0.0378 0.0359 0.0320 0.0227 0.0184

(0.0089) (0.0130) (0.0143) (0.0077) (0.0164) (0.0359) (0.0030) (0.0017) (0.0012)

true zerosa 0.9799 0.9892 0.9925 0.9809 0.9883 0.9878 0.9604 0.9724 0.9799

(0.0056) (0.0076) (0.0088) (0.0051) (0.0089) (0.0205) (0.0052) (0.0041) (0.0043)

true non-zeros 0.1339 0.1586 0.1701 0.1354 0.1596 0.1778 0.2477 0.2760 0.2705

(0.0182) (0.0157) (0.0163) (0.0201) (0.0174) (0.0211) (0.0214) (0.0207) (0.0217)

true strong linksb 21.1200 32.3900 36.6900 21.9000 31.8800 36.8600 26.9200 38.3900 42.9900

(3.5370) (4.0847) (3.8995) (3.0732) (4.0509) (5.6712) (3.5124) (2.3394) (1.4805)

true weak links 0.4200 0.7400 1.0200 0.5500 0.7900 2.2200 17.6900 21.3400 20.9600

(1.2963) (1.2841) (1.6936) (1.8056) (1.4020) (2.8018) (4.5186) (4.6887) (5.2875)

The reported results are averaged over 100 simulation runs. Standard deviations in parentheses.

a Fraction of true zeros and of true non-zeros recovered correctly.

b The links with weights bigger than 0.3 are classified as strong.
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5.1 General results

A positive observation shared by all methods and networks is that the performance dras-

tically improves with higher sample size and the variation of each statistic decreases. This

convergence seems to occur at the same rate for all three methods. Especially the precision

of correctly discovering non-zero edges improves. In particular, the number of true zeros es-

timated as non-zeros decreases while the total number of edges recovered increases. For each

method, the edge recovery rate is highest for Erdos-Renyi network which can be attributed

to the fact that all its edges have a value of one and thus are strong. The results for the

other three networks show that strong links can be more easily identified than weak ones.

This can be explained by the fact that as the number of weak links present in the network

increases, their value decreases (due to the row-sum normalisation). Hence, these edges have

less influence on the GMM objective function and it is harder to distinguish them from zero.

Moreover, there is a lot of variability across the simulation runs which can be attributed

to the fact that only 100 (as opposed to 1000 in De Paula et al. (2020)) runs have been

performed for each combination of network, method and sample size. This, unfortunately,

makes the results less reliable as they depend on the generated data sets. Nonetheless, since

the same random seed has been used for each simulation, the data sets are identical across

various methods and consequently the comparison is valid. Because the relation between the

outcomes of the three methods is mostly constant, I only analyse the results for T = 150.

5.2 Comparison of the methods

Even though the three techniques have very similar performances, each method has its

strengths and weaknesses on which I elaborate here. SCAD mostly outperforms the other

two methods according to the mean absolute deviation of the estimated social interactions

matrix, meaning that on average it comes closest to the true values. Moreover, it always has

the highest fraction of true non-zeros. Although it discovers only a couple more strong links,

it is significantly better at recovering weaker ones. However, SCAD always falsely finds many

more weak edges than the number present in the network. For example, for Village network,

SCAD defines on average 650 links as weak which is more than 17 times as many as other
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methods find. Out of those links only around 2.15% are truly non-zero. This explains why

the percentage of correctly classified zeros is slightly lower for SCAD. Nonetheless, the hit

rate for weak edges is even higher for SCAD than for the other two methods.

On the other hand, Adaptive LASSO and Adaptive Elastic Net often estimate too few

weak links which is especially visible for the Watts Strogatz network. For this network, the

number of edges categorised as weak corresponds to only about 11% of the true number for

Adaptive LASSO and to 15% for Adaptive Elastic Net. Next to that, usually none or one

of these are correct. A similar tendency is observed for the Village network. From this, it

can be concluded that the entries of social interaction matrix are excessively penalised by

Adaptive LASSO and Adaptive Elastic Net and, consequently, the weak links are pushed

towards zero.

With regards to discovering the nodes with the highest out-degree, the given methods

are very similar. For the Erdos-Renyi and Village network, they all identify two out of three

nodes correctly. For Political Party Network, Adaptive Elastic Net and SCAD are slightly

better since they discover all nodes while Adaptive LASSO finds two. Lastly, for the Watts

Strogatz network, none of the nodes with the highest out-degree are found. This is reasonable

since by construction the nodes in this network have initially the same popularity which is

slightly adjusted through random rewiring.

Next, I discuss the quality of the “post-” estimates of the parameters β, ρ and γ. For

Adaptive LASSO and Adaptive Elastic Net, β̂ always approaches the true value. The es-

timated ρ̂ is relatively accurate for Erdos-Renyi network but varies a lot for other ones.

Further, the γ̂ is always biased downward. These outcomes can be explained by the fact that

ρ and γ are more dependent on the estimated Ŵ than β as the latter is the coefficient of

the individual’s own effects. In general, the bias decreases for all three parameters with a

larger T which is caused by the improved estimate of W0. The results for SCAD are rather

surprising. The parameters which are based on Ŵscad are around ten times smaller than their

true values. A possible explanation for this could be a large number of edges estimated as

non-zero as in this way the effects are spread out across the individuals and, consequently,

the coefficients are pushed towards zero. Also, there is no clear evidence that those estimates

converge to the true values with larger T .
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Since none of the three methods can be globally preferred based on its accuracy, it is

interesting to compare their computational intensity. Although for all methods the same

maximum estimation time is employed for the particle swarm algorithm, a different number

of optimisations is necessary per 100 simulations. The number of optimisations is 280 for

Adaptive LASSO, 460 for Adaptive Elastic Net and 420 for SCAD. Hence, despite on average

slightly superior outcomes of Adaptive Elastic Net in contrast to Adaptive LASSO, the latter

might be preferred for its speed. I note that those numbers result from my choices concerning

the fitting of tuning parameters and the number of iterative evaluations for SCAD. A concise

summary of the comparison is presented in Table 6.

Table 6: Overview of comparison of the methods

Method Adaptive LASSO Adaptive Elastic Net SCAD

MAD(Ŵ ) middle middle lowest

true zeros recovered middle highest lowest

true non-zeros recovered middle lowest highest

Hit rate strong links middle middle middle

Hit rate weak links lowest middle highest

Computation intensity lowest highest middle

a Averaged over networks and sample sizes.

5.3 Comparison to De Paula et al. (2020)

Since De Paula et al. (2020) do not report the performance metrics for the Village network,

I focus on the comparison of the Erdos-Renyi and Political Party networks, for the sample

size T = 150. For the Erdos-Renyi network, the results are very similar. However, De Paula

et al. (2020) always recover significantly more non-zeros. For the Political Party network

the estimates are quite close to De Paula et al. (2020) in terms of finding zero links. Also,

similarly to them, both methods are less good at finding weak links as compared to strong

links. Still, in this paper substantially fewer non-zeros are recovered.

Moreover, the authors always find a visible difference between Adaptive LASSO and

Adaptive Elastic Net while in this implementation the two methods have approximately the

same performance. Surprisingly, the results for Adaptive LASSO are superior to those found
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by De Paula et al. (2020). Concerning the “post-” estimates of β, γ and ρ, for De Paula et al.

(2020) the parameters converge to the true values for Adaptive Elastic Net, but are strongly

biased for Adaptive LASSO. In this study, on the other hand, estimates of both techniques

are similar and, apart from β̂, slightly biased.

Since the values used for the tuning parameters are larger than in De Paula et al. (2020),

all estimates are pushed more towards zero. This partly explains why fewer non-zeros are

found. Additionally, the simplifications made increase the chance of the optimisation algo-

rithm ending in a local minimum. Lastly, the apparent differences for Adaptive LASSO could

be caused by a slightly different implementation of the algorithm by De Paula et al. (2020)

as a detailed presentation is not provided.

Table 7: Simulation results for Erdos-Renyi network, comparison to De Paula et al. (2020)

Method Adaptive LASSO Adaptive Elastic Net

results by De Paula et al. (2020) this paper De Paula et al. (2020) this paper

MAD(Ŵ ) 0.033 0.023 0.001 0.026

true zerosa 0.878 0.958 0.997 0.979

true non-zeros 1.000 0.948 0.962 0.901

β̂ 0.254 0.392 0.400 0.387

γ̂ 0.999 0.394 0.498 0.301

ρ̂ 0.965 0.418 0.283 0.352

a Fraction of true zeros and of true non-zeros recovered correctly.

Table 8: Simulation results for Political Party network, comparison to De Paula et al. (2020)

Method Adaptive LASSO Adaptive Elastic Net

results by De Paula et al. (2020) this paper De Paula et al. (2020) this paper

MAD(Ŵ ) 0.032 0.056 0.010 0.054

true zerosa 0.880 0.9700 0.989 0.970

true non-zeros 1.000 0.562 0.960 0.546

β̂ 0.259 0.384 0.398 0.393

γ̂ 0.999 0.136 0.463 0.114

ρ̂ 0.979 0.379 0.223 0.329

a Fraction of true zeros and of true non-zeros recovered correctly.
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6 Case study: tax interdependence in Western Europe

6.1 Theoretical framework

After discovering the theoretical properties of the different estimation methods, I now

apply these techniques in a real-world setting. Similarly to De Paula et al. (2020) I focus

on the topic of tax competition, however, on an international level. The interconnections

between the tax rates of different political institutions are usually explained by two well-

known theories, the theory of factor mobility and the theory of yardstick competition. The

former one was introduced by Tiebout (1956) and states that, given a certain level of public

goods provision, if the mobility of capital and labour is enabled, the individuals and/or

firms will migrate to the region with more favourable tax rates. The theory of yardstick

competition, on the other hand, says that during the elections voters compare the taxes with

the neighbouring jurisdictions which affects the tax setting by politicians (Shleifer, 1985).

Initially, those theories mainly referred to competition among the regions of the same

country since the costs of obtaining information about and moving to other regions are

relatively low. However, the recent political and economic integration enables to extend the

notion of tax competition to an international level. The most trivial example of a high level

of integration is the European Union. Its history began with the establishment of European

Coal and Steel Community (ECSC) in 1951. Since then, the goal of creating a single market

was pursued through various treaties such as the Treaty of Rome in 1957, which established

the European Economic Community, and the Maastricht Treaty in 1992. Moreover, in 1985

a Schengen Agreement was signed by several European countries which created a border-free

area thereby largely facilitating the labour mobility.

In the case study I conduct, I investigate how the statutory corporate income tax rates

are interrelated among fifteen countries in Western European. The reasons to focus on the

statutory corporate income tax are the following. First of all, literature shows that tax

interdependence is stronger for mobile factors (Tiebout, 1956; Besley, Griffith, & Klemm,

2001). Secondly, in the past decades, the corporate income tax rates have been decreasing

for all countries which can be seen from Figure 3 in Appendix C. Also, the ratio of the

corporate income tax rate to effective labour tax rate declined over time for the OECD
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member countries which includes the countries in this study (Bretschger & Hettich, 2002).

This suggests that taxation of corporations has been affected the most by globalisation. Next

to that, the corporate income tax rates are relevant for the profit shifting by the firms and

for attracting new business by the governments and it is easily observed by both.

Multiple studies find evidence that European countries influence each others’ corporate

income tax rates (Redoano, 2014; Davies & Voget, 2008). Moreover, Cassette and Paty

(2008) show that the effects differ for Western Europe as compared to Central and Eastern

Europe. In particular, they find the most profound dependence for Western Europe which

is the reason why I limit my analysis to this group. The existing research uses postulated

interaction matrix W0 by deriving it from geographic and/or economic proximity. This case

study differs in that I estimate the links directly from the data and then investigate their

possible origin. In this way, biases caused by invalid interaction matrices are avoided.

6.2 Methods

6.2.1 Estimation

To estimate the interaction matrix as precisely as possible, I extend the model presented

in section 2 by including multiple characteristics of the countries. I assume that the W0 does

not differ for various characteristics, but that parameters β and γ do. Consequently, the

adjusted model extends the equation 4 in the following way:

(I −H)y∗t = (I −H)(I − ρ0W0)
−1

(
K∑
k=1

(β0,kI + γ0,kW0)x
∗
t,k

)
+ νt, (14)

with K being the number of covariates. For this application, y∗t and x∗t,k are again ob-

tained by subtracting the mean of the corresponding variable (outcome or characteristic)

over time to account for individual fixed effects. Furthermore, the gNT (θ) in GMM objec-

tive function (see equation 5) becomes a N2 × K dimensional vector defined as gNT (θ) =

(I −H)
∑T

t=1[x
∗
1t,1νt(θ)

′...x∗Nt,Kνt(θ)
′]′. The residuals νt(θ) are defined similarly as before but

using the equation 14.

To improve the model fit, I enlarge the set of tuning parameters for the case study. I use

the set {0, 0.025, 0.05, 0.1, 0.15, 0.2, 0.225} to construct the grid for Adaptive Elastic Net
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and I do not estimate Adaptive LASSO because zero is included in this set. For SCAD, the

parameter λ for SCAD is chosen from {3.25, 3, 2.75, 2.5, 2.25, 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5}.

Furthermore, I set the number of initial conditions to 10, adjust the maximum time for the

Particle Swarm Optimisation to 300 seconds and perform five instead of three iterations of

optimisation for SCAD. Lastly, I note no “post-” estimation of the parameters is used due

to additional complexity caused by multiple covariates.

For the interpretation of the outcomes, I consider a link as non-zero if it is larger or equal

to 0.1 and as strong if it is larger or equal to 0.7. It may occur that the links used for the

row-sum normalisation are estimated as negative. In this case, I set them to zero to avoid

falsely classifying relations that are not present.

6.2.2 Interpretation of the links

To determine the main sources of interrelated corporate income taxes among the Western

European countries, I make use of the Logit model. For this, I first transform the estimated

links into a binary variable and next construct a linear probability model of the form:

Ŵij = λ0 +
L∑
l=1

λlXij,l +
S∑

s=L+1

λsXj,s, (15)

where Xij,l reflects a certain proximity l of the pair of states i, j and Xj,s corresponds to

some characteristic of state j. Since the sample consists of 15 states, 15 · (15 − 1) = 210

observations are used for the Logit model. The estimated parameters are interpreted based

on the Log odds ratio which can be written as follows:

log

(
Pr(Wij = 1|Xij, Xj)

Pr(Wij = 0|Xij, Xj)

)
= λ0 +

L∑
l=1

λlXij,l +
S∑

s=L+1

λsXj,s. (16)

Here, Pr(Wij = 1|Xij, Xj) is the probability of a link being present and Pr(Wij = 0|Xij, Xj)

the probability of a link being absent.

6.3 Data

The analysis is performed using annual data for the fifteen countries in Western Europe

for 38 years, from 1981 up to and including 2018. The sources and brief description of the
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data are summarised in Table 21 in Appendix C. As mentioned earlier, the outcomes yit

for the estimation are the corporate income tax rates in each country in a given year. The

characteristics xit,k, which I include for estimation of W0, are the fraction of the population in

non-working age (the dependency ratio), the total tax revenues as a percentage of GDP, the

unemployment rate, the population density and the net inflows of Foreign Direct Investment

(FDI) as a percentage of GDP. The variables are chosen in such a way that the social-economic

characteristics are representative for public expenditures and economic characteristics reflect

the attractiveness of the country for businesses. I note that for Luxembourg the data on FDI

is not available for first the 21 years which I solve by replacing it with the mean across other

countries for the respective years. Since in this earlier period there are little differences in

FDI among the countries, this should not affect the validity of outcomes.

Table 22 in Appendix C depicts the mean and standard deviation of the variables used.

It can be observed that there is a lot of variation. Concerning the corporate income tax rate,

the countries for which its average is the highest are Belgium, France and Italy. It is usually

around ten percentage points lower for Finland, Ireland and Luxembourg. Next to that, one

can see on GDP per capita and unemployment that there is a discrepancy between northern

and southern European countries.

To interpret the estimated links, I construct three types of variables. Firstly, the variables

reflecting the geographic closeness. These are a dummy for geographical neighbours and

the distance between the capitals of the corresponding pair of countries.8 Next, variables

representing economical and social proximity. I derive these from the absolute values of

the differences in GDP per capita and in proportion of the population in non-working age,

both calculated using the country’s average over time. Thirdly, I use a dummy variable

for the countries being unofficially considered as tax havens.9 Within the given group of

countries, these are Ireland, Luxembourg and The Netherlands (Sawulski, 2020; Cassette &

Paty, 2008). The choice is confirmed by the fact that for these countries the FDI corresponds

to a substantially larger fraction of GDP than for others (see Table 22 in Appendix C).

Moreover, Ireland, Luxembourg and The Netherlands have favourable tax regulations for

8I include Belgium, France, Ireland and The Netherlands as neighbours of Great Britain.
9For Ŵij , xj,s is set to one if country j is known as tax haven.
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certain types of enterprises (Genschel, 2002). While in Ireland and Luxembourg corporate

tax rates are the lowest, The Netherlands gives companies access to non-European tax havens

such as Aruba and The Netherlands Antilles (Cassette & Paty, 2008).

6.4 Results

The networks estimated by both Adaptive Elastic Net and SCAD have a density of around

20% and find approximately the same number of links (see Table 9). As expected, SCAD

recovers slightly more weak links than Adaptive Elastic Net. The same table also shows the

estimated parameters ρ, β and γ. Surprisingly, both methods find that ρ is equal to zero

meaning that the corporate tax rates of the countries do not influence each other directly. For

countries own characteristics, the corporate income tax rate seems to increase with a higher

fraction of population in non-working age and higher population density. The interpretation

of the parameters corresponding to the impact of the characteristics of other countries is

rather ambiguous as it differs for two methods. I note that as no “post-” estimation is

performed, these results should be interpreted with caution.

To get further insights, the plots of the estimated networks are presented in Figure 1.

The networks found by both methods do not contain isolated nodes and the relations go

beyond the neighbouring countries. This suggests a high level of connectivity among the

countries in Western Europe. However, when looking at the links more closely, it can be

observed that the two methods lead to different outcomes. This is confirmed by Tables 10

and 11 which summarise the number of incoming and outgoing connections for each country.

The only country for which the results of Adaptive Elastic Net and SCAD are very similar is

The Netherlands. With the out-degree of 6 and 7 for the two methods respectively, it seems

to have the highest influence on the other countries. This is in line with the fact that The

Netherlands has more favourable corporate taxation policy relative to other member states.

Contradicting results are obtained for Greece, Portugal and Spain. According to Adaptive

Elastic Net, those countries have very little influence on the corporate income tax rates in

the other states. SCAD, on the other hand, finds a high number of outgoing links for those

countries.
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Table 9: Characteristics of the estimated networks of Western European countries

Adaptive Elastic Net SCAD

All links 40 44

Strong links 23 20

Weak links 17 24

Reciprocal links 2 4

Density 0.1905 0.2095

Number of components 2 4

Size largest component 14 12

Clustering coefficient 0.3125 0.2857

St. Dev. diagonal of Ŵ 2 0.2222 0.8338

In-degree distribution 2.6667 (0.8997) 2.9333 (1.2799)

Out-degree distribution 2.6667 (1.5887) 2.9333 (2.4044)

ρ̂ 0.0000 0.0000

β̂1 (POPNONWORK) 1.0000 1.0000

β̂2 (TAXES) 0.0000 0.7863

β̂3 (UNEMPL) 0.0000 0.0000

β̂4 (POPDENS) 0.0737 0.0850

β̂5 (FDI) 0.0000 0.0000

γ̂1 (POPNONWORK) 0.0000 0.0000

γ̂2 (TAXES) 1.0000 0.0000

γ̂3 (UNEMPL) 0.0000 1.0000

γ̂4 (POPDENS) 0.0661 0.0000

γ̂5 (FDI) 0.0000 0.0000

Table 10: Summary statistics for estimation results per country, Adaptive Elastic Net

AUT BEL DNK FIN FRA DEU GRC IRL ITA LUX NLD PRT ESP SWE GBR

In-degree 2 2 2 4 2 4 3 4 3 3 2 3 2 1 3

Out-degree 4 1 4 3 3 1 2 2 2 4 6 1 0 3 4

Table 11: Summary statistics for estimation results per country, SCAD

AUT BEL DNK FIN FRA DEU GRC IRL ITA LUX NLD PRT ESP SWE GBR

In-degree 4 4 3 3 2 3 2 2 6 3 3 3 1 4 1

Out-degree 1 0 3 2 1 3 6 4 1 1 7 5 7 3 0
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(a) Adaptive Elastic Net, all links (b) Adaptive Elastic Net, strong links

(c) SCAD, all links (d) SCAD, strong links

Figure 1: The graphs of the estimated networks

I now elaborate on the results of the Logit regressions which are displayed in Table 12.

The outcomes of regression which uses the Ŵ from Adaptive Elastic Net are all insignificant

even at a 10% level. When using the Ŵ from SCAD, however, all variables except for GDP

homophily seem to be relevant. Hence, I will focus on discussing those results now. The

negative intercept means that if all other regressors are zero, a relation of the two countries

is unlikely to be present. Furthermore, on average being neighbours increases the probability

of interconnected corporate income tax rates. However, the probability is also increasing with

distance. This unexpected result could be caused by the fact that the distances are generally

not large for the countries analysed. Therefore, the costs of moving location of a corporation
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within the European Union are more likely to depend on the language differences and the

relative facilities for the business rather than on the geographic distance between countries.

The negative coefficient for demographic homophily confirms that the corporate income tax

rates might be more correlated for the countries with a similar dependency ratio. Also, the

hypothesis that the states with favourable corporate tax regulations (tax havens) are more

likely to influence other countries is supported.

Table 12: Results of Logit regression with links between countries as dependent variable

Adaptive Elastic Net SCAD

Constant – 0.9529 – 2.2862∗∗∗

(0.6055) (0.6032)

Neighbours – 0.1803 0.8685∗

(0.5279) (0.5211)

Distance – 0.0003 0.0008∗∗∗

(0.0003) (0.0003)

Demographic homophily – 10.6149 – 31.0112∗

(17.1690) (16.0573)

GDP homophily – 0.0000 – 0.0000

(0.0000) (0.0000)

Tax haven 0.7309 1.1864∗∗

(0.4468) (0.4651)

Notes: ∗∗∗ denotes significance at 1%, ∗∗ at 5% and ∗ at 10%.

Standard errors in parentheses.

7 Conclusion and discussion

7.1 Main simulation study

The objective of the main part of this research was to determine what are the relative

strengths and weaknesses of Adaptive LASSO, Adaptive Elastic Net and SCAD in the context

of estimation of network structure. In general, all methods showed similar performance and

neither of them can be said to be universally the best. Firstly, each method is accurate for

shrinking the estimates of redundant parameters to zero although Adaptive Elastic Net is

usually slightly better than others. Furthermore, SCAD is superior in correctly finding the
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non-zero edges, both in absolute number and in the hit rate of recovery. However, this method

also estimates substantially more edges falsely as non-zero which in a certain situation could

be a strong drawback. An advantage that Adaptive LASSO has over the other two methods

is the shorter estimation time.

Based on these observations, I conclude that the choice among the three techniques de-

pends on the researcher’s priority. For his/her goal could be either maximising the number

of links found or minimising the amount of falsely discovered links. For example, for the net-

works similar to Erdos-Renyi it is reasonable to prefer Adaptive LASSO or Adaptive Elastic

Net as the intention is to correctly discover the strong links. However, if, like in Watts Stro-

gatz network, the total number of edges is dominated by the weak links, SCAD might be a

better choice.

Nonetheless, it is important to be aware of the limitations of the analysis when assessing

the quality of the results. First of all, it should be noted that the implementation of the

methods is simplified in a number of ways. The small number of simulation runs, few initial

conditions and restricted calculation time doubtlessly increase the variability and thereby de-

teriorate the reliability of results. Therefore, given the availability of computation facilities,

it would be valuable to conduct the study with a larger scope. Another suggestion for further

research is to see whether more time-efficient optimisation algorithms could be implemented.

Since the non-linearity of the GMM objective function restrains from using linear program-

ming or algorithms which use derivatives, one should look into a different formulation of the

problem. For example, the parameters of the reduced form could be estimated from which

then the original parameters would be obtained.

Secondly, the performance of SCAD is strongly affected by a large number of weak edges.

In particular, as the downward biased estimates of β, γ and ρare used for the BIC criterion,

they influence the selection of tuning parameter λ. Therefore, a suboptimal λ might be

chosen which in turn might worsen the quality of the results. A possible solution could be

setting a higher threshold for classifying a link as non-zero. Also, larger λ could be used to

increase the weight of the penalty.

A lot of improvement could be achieved by advancing the procedure for selecting the

tuning penalty parameters. The most straightforward extension would be to increase the grid
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of parameter values and evaluate those for a larger fraction of total simulation runs. Even

better results could be obtained by making use of the various cross-validation approaches,

such as widely used five-fold cross-validation or generalised cross-validation. These techniques

have not been applied in this paper due to time constraints.

7.2 Case study

In the case study, I aimed to identify how the statutory corporate income tax rates

are interrelated among fifteen Western European countries. The two techniques employed,

Adaptive Elastic Net and SCAD, recover quite different networks. Nonetheless, both estimate

relatively dense networks with links spread evenly across Western Europe. From this, I

conclude that tax competition is indeed present and its dynamics is governed by a complex

combination of various factors. To make reliable conclusions, additional research is necessary.

The conducted case study also posses several limitations. First of all, as 38 years is a quite

long period, the relations among countries might have changed in this time frame. Hence,

it would be interesting to further investigate how the adjacency matrix evolves throughout

time. Secondly, due to the restricted set of analysed countries, the possible influence of other

countries is not captured by the model. An interesting extension would be to apply the

study to a larger geographic area. Furthermore, it is important to acknowledge that the

corporate tax rates alone do not contain complete information on how the countries compete

for enterprises. Incorporating the insights about possible influential taxation policies could

significantly improve the quality of results.
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A Appendix: Estimation

In this Appendix, I describe the implementation of instrumental variable regression using

peers-of-peers covariates. The procedure is similar to Bramoullé, Djebbari, and Fortin (2009)

with some adjustments.

First of all, I define y and x as an NT ×1 vectors with the outcomes and characteristics of

N individuals for T instances respectively. Also, I combine the parameters of interest into a

vector ψ = [ρ, γ, β]′. Then, I construct the following four NT ×NT block-diagonal matrices

with blocks of dimension N ×N :

– B with blocks given by (I −H);

– Wb with blocks given by (I −H)Ŵ ;

– W 2
b with blocks given by (I −H)Ŵ 2;

– K(ψ) with blocks given by Ŵ (I − ρ− Ŵ )−1[(I −H)βI + γŴ ).

In the next step, I create four matrices:

– X̃ = [Wby Bx Wbx], the matrix of explanatory variables;

– S = [Bx Wbx W 2
b x], the matrix of instruments for the first step;

– P = S(S ′S)−1S, the weighting matrix for the first step;

– Z(ψ) = [K(ψ)x Bx Wbx], the matrix of instruments for the second step.

Using these, the estimate of the first step is obtained as:

ψ̂1 = (X̃ ′PX̃)−1X̃Py. (17)

Furthermore, the estimate of the second and final step can be calculated as:

ψ̂2 = (Z(ψ̂1)
′X̃)−1Z(ψ̂1)

′y. (18)
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B Appendix: Simulation Study

(a) Erdos-Renyi (b) Political Party

(c) Village (d) Watts Strogatz

Figure 2: The graphs of the selected networks
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Table 13: Results of Peers-of-Peers regression for Erdos-Renyi network

Method Adaptive LASSO Adaptive Elastic Net SCAD

Size (T) 50 100 150 50 100 150 50 100 150

β̂ 0.6630 0.3803 0.3924 0.3820 0.3978 0.3867 0.0381 0.0388 0.0391

(2.8668) (0.0945) (0.1675) (0.0465) (0.0752) (0.0293) (0.1153) (0.1174) (0.1369)

γ̂ 0.4860 0.1620 0.3938 0.1508 0.2474 0.3010 0.0244 0.0352 0.0467

(12.9025) (0.3134) (0.1344) (0.1256) (0.1855) (0.1644) (0.0801) (0.1108) (0.1417)

ρ̂ – 0.1077 0.3352 0.4180 0.2083 0.2066 0.3523 0.0498 0.0601 0.0443

(30.8550) (0.6767) (0.1675) (0.2416) (0.5117) (0.1687) (0.1612) (0.1893) (0.1369)

The reported results are averaged over 100 simulation runs. Standard deviations in parentheses.

Table 14: Results of Peers-of-Peers regression for Political Party network

Method Adaptive LASSO Adaptive Elastic Net SCAD

Size (T) 50 100 150 50 100 150 50 100 150

β̂ 0.3682 0.3783 0.3835 0.4165 0.3860 0.3934 0.0347 0.0389 0.0399

(0.0979) (0.0277) (0.0220) (0.3966) (0.0238) (0.1038) (0.1058) (0.1175) (0.1206)

γ̂ 0.0917 0.0956 0.1359 0.1799 0.1140 0.1724 0.0035 0.0217 0.0278

(0.3841) (0.1703) (0.0962) (1.0397) (0.0976) (0.2598) (0.0271) (0.0717) (0.0885)

ρ̂ 0.2054 0.3795 0.3788 – 0.0115 0.3285 0.3855 0.0655 0.0785 0.0767

(1.0503) (0.3716) (0.2611) (2.3777) (0.2386) (0.6621) (0.1058) (0.2510) (0.2465)

The reported results are averaged over 100 simulation runs. Standard deviations in parentheses.

Table 15: Results of Peers-of-Peers regression for Village network

Method Adaptive LASSO Adaptive Elastic Net SCAD

Size (T) 50 100 150 50 100 150 50 100 150

β̂ 0.4134 0.4198 0.4115 0.4239 0.4167 0.4090 0.0445 0.0381 0.0385

(0.1212) (0.0323) (0.0172) (0.0368) (0.0202) (0.0185) (0.1226) (0.1152) (0.1163)

γ̂ 0.0969 0.1270 0.1772 0.0626 0.1302 0.1890 0.0091 0.0207 0.0280

(0.3045) (0.1432) (0.0716) (0.1851) (0.0596) (0.0672) (0.0378) (0.0643) (0.0861)

ρ̂ – 0.0527 0.1284 0.2113 0.0822 0.1609 0.2177 0.0445 0.0394 0.0413

(0.7198) (0.3737) (0.0956) (0.4481) (0.1262) (0.1052) (0.1503) (0.1200) (0.1267)

The reported results are averaged over 100 simulation runs. Standard deviations in parentheses.
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Table 16: Results of Peers-of-Peers regression for Watts Strogatz network

Method Adaptive LASSO Adaptive Elastic Net SCAD

Size (T) 50 100 150 50 100 150 50 100 150

β̂ 0.4059 0.4074 0.4005 0.4023 0.4058 0.4012 0.0359 0.0372 0.0379

(0.0444) (0.0278) (0.0193) (0.0343) (0.1016) (0.0830) (0.1084) (0.1124) (0.1143)

γ̂ 0.0714 0.1381 0.1845 0.0663 0.1635 0.2352 0.0195 0.0252 0.0294

(0.1907) (0.1152) (0.0895) (0.1288) (0.2606) (0.4009) (0.0663) (0.0792) (0.0894)

ρ̂ 0.1712 0.2362 0.2224 0.2111 0.1467 0.1209 0.0693 0.0573 0.0479

(0.5112) (0.2018) (0.2470) (0.2827) (0.7040) (1.0542) (0.2208) (0.1763) (0.1457)

The reported results are averaged over 100 simulation runs. Standard deviations in parentheses.
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C Appendix: Case Study

Table 21: Description of data on Western European countries, 1981-2018

Variable name Description Source(s)

CIT Statutory corporate income tax rate OECD.Stat

POPNONWORK Fraction of non-working population (below 20 and above 65) OECD.Stat

TAXES Total tax revenues as % of GDP OECD.Stat

POPDENS Population density in people per squared kilometre OECD.Stat

FDI FDI net inflows as % of GDP TheWorldBank

GDP GDP per capita in constant US dollars TheWorldBank

UNEMPL Unemployment as % of total labour force OECD.Stat for 1981-1990

TheWorldBank for 1991-2018

Figure 3: The Statutory Corporate Income Tax Rate for selected countries, 1981-2018
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Table 22: Mean and St. Dev. (in parenthesis) of the countries’ characteristics, 1981-2018

CIT POPNONWORK TAXES POPDENS FDI GDP UNEMPL

AUT 34.5789 0.3916 41.2863 97.6074 1.8812 3.9873·104 4.8104

(11.3057) (0.0135) (1.4390) (4.6811) (5.3078) (0.7333·104) (0.7728)

BEL 38.0632 0.4034 43.1001 341.6317 9.1904 3.7766·104 8.4341

(5.1326) (0.0055) (1.1170) (18.8490) (13.4378) (0.6598·104) (1.4739)

DNK 33.0263 0.4036 45.3734 126.5105 1.7603 5.2075·104 6.5542

(8.6735) (0.0136) (1.9239) (5.3927) (4.1779) (0.8103·104) (1.8157)

FIN 28.3421 0.3995 42.2299 16.9851 2.3541 3.8396·104 8.7141

(6.8577) (0.0114) (2.5095) (0.7072) (3.4832) (0.7958·104) (3.8518)

FRA 39.2703 0.4190 42.8481 111.9015 1.5925 3.6194·104 9.1856

(5.4147) (0.0086) (1.5694) (6.6940) (1.0285) (0.5252·104) (1.8082)

DEU 36.5798 0.3849 35.7661 231.6742 1.5318 3.6825·104 7.0770

(16.7090) (0.0133) (0.9464) (5.0472) (2.2600) (0.6273·104) (2.0307)

GRC 35.7763 0.3978 29.9739 82.1526 0.8385 2.2471·104 11.6825

(8.7801) (0.0133) (4.8410) (3.4039) (0.4933) (0.3631·104) (6.4257)

IRL 28.1053 0.4311 30.1519 57.8641 11.7379 3.9492·104 10.5925

(15.5020) (0.0445) (3.5167) (7.0772) (15.1660) (1.6710·104) (4.3935)

ITA 39.9579 0.3936 39.0114 196.6265 0.7526 3.2983·104 9.6034

(11.1235) (0.0145) (3.7152) (5.0391) (0.7514) (0.4048·104) (1.9572)

LUX 29.2582 0.3765 36.4101 179.5793 11.5827 8.3571·104 3.5052

(7.0175) (0.0102) (1.8076) (34.2980) (23.7264) (2.3118·104) (1.5707)

NLD 33.6342 0.3906 37.8313 467.4527 13.0408 4.2913·104 6.0532

(7.1933) (0.0129) (2.2936) (27.3770) (19.2472) (0.8406·104) (2.2581)

PRT 34.4158 0.4103 29.5812 111.7744 2.8178 1.9088·104 7.4189

(8.3051) (0.0213) (3.3913) (2.5761) (2.2705) (0.3738·104) (3.2321)

ESP 33.0263 0.3960 31.5074 84.0353 2.4341 2.6094·104 16.9234

(3.3671) (0.0279) (3.0893) (6.7846) (1.3742) (0.5108·104) (4.9001)

SWE 32.1105 0.4202 45.5900 21.8981 3.2849 4.4062·104 5.9930

(9.9183) (0.0058) (2.1420) (1.3161) (4.4362) (0.8694·104) (2.6275)

GBR 31.5526 0.4146 32.5662 247.3884 3.5321 3.3878·104 7.2073

(8.0696) (0.0086) (1.6752) (13.0252) (2.9817) (0.6986·104) (2.0608)
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D Appendix: Codes

In this appendix, I provide the description of the MATLAB functions and scripts used

to obtain the presented results. The codes are divided into two folders, “Codes Main” and

“Codes Case Study”. I first briefly review all the codes used for the simulation study.

Codes Main: Functions used to create networks

– erdos renyi func.m: creates the W0 for Erdos-Renyi network for given N.

– political party func.m: creates the W0 for Political Party network for given N.

– village func.m: creates the W0 for the Village network using the original data set.

– WattsStrogatz.m: creates a Watts Strogatz graph for given N, k and β (The MathWorks,

2015).

– watts strogatz func.m: creates the W0 for Watts Strogatz network using its graph repre-

sentation.

– data simulation func.m: simulates the x∗ and y∗ given W0 and T.

Codes Main: Functions used for estimation and evaluation

– theta to par func.m: transforms the parameter vector θ into W , ρ, γ and β.

– LASSO initial fun.m: computes the starting value of Particles 1 and 2.

– particle initial func.m: computes the starting value of Particle 3.

– gmm func.m: computes the GMM objective function as a function of θ.

– gmm BIC func.m: computes the GMM objective function as a function of ρ, γ and β.

– gmm l en func.m: computes the GMM with LASSO or Elastic Net penalty dependent on

value of p2.

– gmm al aen func.m: computes the GMM with Adaptive LASSO or Adaptive Elastic Net

penalty dependent on value of p2.

– gmm scad func.m: computes the GMM with SCAD penalty.

– peers of peers func.m: computes the ”post-” estimates of ρ, γ and β.

– BIC func.m: computes the BIC given the results of estimation and certain p or λ.

– density network func.m: computes the density of a network.
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– network stats func.m: computes a number of network characteristics (also used for the

Case Study).

– network performance func.m: computes a number of performance metrics for Ŵ .

– MAD W func.m: computes the mean absolute deviation of estimated W.

Codes Main: Scripts for creating graphs

– graph W0.m: makes a graph of a given network using W .

– graph W0 pp.m: makes a graph of Political Party network using W (it marks the party

leaders).

Codes Main: Scripts for implementation

To implement those scripts, the Parallel Computing Toolbox should be installed. Moreover,

at the beginning of the scripts the sample size T can be predetermined. Then, each of the

scripts below implements the simulation and computes the relevant performance metrics and

network characteristics.

– al er.m: GMM with Adaptive LASSO penalty for Erdos-Renyi network.

– al pp.m: GMM with Adaptive LASSO penalty for Political Party network.

– al vil.m: GMM with Adaptive LASSO penalty for Village network.

– al ws.m: GMM with Adaptive LASSO penalty for Watts Strogatz network.

– aen er.m: GMM with Adaptive Elastic Net penalty for Erdos-Renyi network.

– aen pp.m: GMM with Adaptive Elastic Net penalty for Political Party network.

– aen vil.m: GMM with Adaptive Elastic Net penalty for Village network.

– aen ws.m: GMM with Adaptive Elastic Net penalty for Watts Strogatz network.

– scad er.m: GMM with SCAD penalty for Erdos-Renyi network.

– scad pp.m: GMM with SCAD penalty for Political Party network.

– scad vil.m: GMM with SCAD penalty for Village network.

– scad ws.m: GMM with SCAD penalty for Watts Strogatz network.

Codes Main: External data set

Finally, for the Village network, the original data set needs to be placed in the same folder
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as the codes. As described in section 4, the data can be retrieved from Harvard Dataverse

(Banerjee et al., 2013b). The relevant file can be then found under “Data / 1. Network Data

/ Adjacency Matrices” and has the following name:

– adj rel HH vilno 10.csv.

Below, all codes used for the case study are reviewed. Before running them, it is impor-

tant to open the file workspace initial.mat as the current workspace.

Case Study: Scripts used for data preparation

– data transformation.m: performs necessary data transformations and subtracts the mean

over time for each variable.

Case Study: Functions used for estimation and evaluation

– EU gmm func.m: computes the GMM objective function as a function of θ.

– EU gmm l en func.m: computes the GMM with LASSO or Elastic Net penalty depen-

dent on value of p2.

– EU gmm al aen func.m: computes the GMM with Adaptive LASSO or Adaptive Elastic

Net penalty dependent on value of p2.

– EU gmm scad func.m: computes the GMM with SCAD penalty.

– EU theta to par func.m: transforms the parameter vector θ into W , ρ, γ and β.

– EU LASSO initial func.m: computes the starting value of Particles 1 and 2 using five

characteristics.

– EU gmm BIC func.m: computes the GMM objective function as a function of ρ, γ and

β.

– EU BIC func.m: computes the BIC given the results of estimation and certain p or λ.

Case Study: Scripts for implementation

– aen EU.m: GMM with Adaptive Elastic Net penalty.

– scad EU.m: GMM with SCAD penalty.

– W hat interpretation.m: estimates Logit model with entries of Ŵ as dependent variable.
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Case Study: Scripts for creating graphs

– corporate tax rate plot.m: creates a plot of statutory corporate tax rate of each variable

over time.

– aen all plot.m: creates a plot with all links estimated using Adaptive Elastic Net.

– aen strong plot.m: creates a plot with strong links estimated using Adaptive Elastic Net.

– scad all plot.m: creates a plot with all links estimated using SCAD.

– scad strong plot.m: creates a plot with strong links estimated using SCAD.
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