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Abstract

This research focuses on the performance of Linear Regression methods. The Elastic Net

(Zou & Hastie, 2005) and Least Angle Regression (Efron, Hastie, Johnstone, Tibshirani, et al.,

2004) specifically. When choosing which method to apply to a data set, it is important to know

the strengths and weaknesses of the methods. By comparing the discussed methods, this decision

can be improved. In this research the methods are applied on different data sets, based on their

strengths and shortcomings. A comparison based on the Median Mean Squared Error is made

and the model performing best for the specific instance concluded. The Median Mean Squared

Error for Elastic Net was shown to be smaller in both considered data sets and is concluded to

perform better than Least Angle Regression on data sets with grouped variables, for both many

and few variables considered.
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1 Introduction

Linear Regression is a method used oftentimes and in varying research subjects (Andrews, 1974). As

stated by Weisberg (2005), Linear Regression is the basis for many newer methods. Linear Regres-

sion is easily understandable and often gives good results. The method often associated with Linear

Regression is Least Squares. Specifically Ordinary Least Squares (OLS). For OLS, some assump-

tions have to hold. For instance, the error terms should all have an equal variance (Weisberg, 2005).

If this assumption does not hold for the data set of interest, Weisberg (2005) states a different type

of Linear Regression should be used. In this case it could be Weighted Least Squares (Weisberg,

2005). From this it can be concluded that data sets differ and may have different qualities. Based

on these qualities, different methods should be used.

James, Witten, Hastie, and Tibshirani (2013) state that one of the downsides of OLS is the fact

that for data sets with a high amount of variables compared to the amount of observations, the

model produces a low bias but high variance. This is a result of over-fitting. OLS also includes all

variables which are considered in the model (James et al., 2013). So if many irrelevant variables are

considered, these will all be modelled. This makes the model more complex. It also allows for the ir-

relevant variables to influence the model (Hawkins, 2004). To fit the model better to data sets where

these problems occur, variations and adaptions of the OLS are introduced. These adaptions include

methods to select a set of relevant independent variables to be considered in the model, including

for instance Stepwise or Stagewise Linear Regression (James et al., 2013). Or solutions to the case

of over-fitting which include least absolute shrinkage and selection operator (LASSO) or Elastic

Net (EN) (James et al., 2013). Some of these adaptations were found to be computational, this is

an aspect on which Least Angle Regression (LAR) as introduced by Efron et al. (2004) performs well.

As can be seen, many different methods are available to model Linear Regression. The choice of

method to use is based on the data set. Therefore it is important to know which method performs

well on which type of data set. For many methods there have been comparisons of performance

and the strengths and weaknesses of the methods are know. For instance, Segal, Dahlquist, and

Conklin (2003) compare LAR and LASSO on a data set with a relatively high amount of variables

compared to observations. A comparison which, to the author’s knowledge, has not previously been

made is the comparison of EN and LAR.
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This leads to the following research question. How does the performance of an EN com-

pare to LAR, when considering varying data sets?

With the sub question: How do LAR, LASSO and Stagewise Forward Regression compare for the

data set as used by Efron et al. (2004)?

The qualities the data sets, on which the methods are compared, should have, are derived in

Section 2. The different data sets will be derived in Section 3. They will be simulated to contain

variables correlated in groups, as well as a data set with more variables than observations.

The objective of this research is to provide insight in the difference in terms of performance

between the considered models. Which will enable fitting the model choice better to the data set

and ultimately better modelling the dependent variable of interest. Although closely related models

have been compared, to the author’s knowledge, EN and LAR still lack a comparison.

The paper first finds the features of interest when comparing models and then implements the

models on different data sets to compare their performance and conclude the difference in applica-

tion.

This paper will firstly give a introduction of all methods of interest, with a theoretical background

of the problem, in Section 2. The data will then be introduced in Section 3 after which the

methodology will be explained in Section 4. Finally the results can be found in Section 5, from

which a final conclusion will be drawn in Section 6.

2 Literature

In this section the relevant theory will be introduced. Followed by a summary of previous literature

related to the research in the form of a model comparison. For the relevant theory, several linear

regression methods will be introduced and they will be compared based on their qualities.
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2.1 Criteria Linear Regression

This paper focuses on computing Linear Regression models. To be able to test how well a model

performs and compare models, we have to define what is considered good. We follow the statement

“Goodness is often defined in terms of prediction accuracy, but parsimony is another important

criterion: simpler models are preferred for the sake of scientific insight into the x− y relationship.”

(Efron et al., 2004, p. 407). These criteria are also supported by Zou and Hastie (2005). What

can be concluded from this statement is that, as the goal is to predict a certain dependent variable

using the linear model, the accuracy with which this is done correctly is of importance. Intuitively,

to predict well, one could simply input as many variables as possible to get a better prediction.

A result of doing this can be fitting the model too well to a specific data set, the model will then

fit very well to the data set but is not general any more, which is called over-fitting (James et al.,

2013, p. 29-34). Also with a large amount of variables, the actual effects working on the dependent

variable are no longer clearly deductible from the model (Zou & Hastie, 2005). A smaller model

would be preferred. How interpretable a model is, is referred to as ‘parsimony’. Parsimony also is

able to prevent over-fitting (Hawkins, 2004). As less variables are being considered in the model,

it allows the model to fit less perfectly to the data set. How well a model fits to the data and the

parsimony of this model are of importance when modeling a data set, as can be seen in the above

quote of Efron et al. (2004).

Within the prediction accuracy another trade off occurs. This is the trade off between variance

and the bias as explained more thoroughly in James et al. (2013, p. 33-37). When over-fitting

occurs, a low bias and high variance are expected.

2.2 Least Squares Regression

Least Squares is a relatively simple linear regression, Least Squares is explained by Hastie, Tibshi-

rani, and Friedman (2009, p. 44-49). The model is optimized by minimizing the euclidean distance

between the prediction and the actual dependent variable value. For two-dimensional data, this

method is often visualised as a line between the data points. The best line is the line for which

the sum of the distance of all point to the line is minimized. Several problems arise when using

Least Squares, as stated by James et al. (2013, p. 203-204) . Firstly when little observations are

used to estimate many parameters, over-fitting can occur. Also if many variables are included, the

parsimony will not hold. To solve this problem, only a few relevant variables can be used instead

of all available variables.
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2.3 Forward Regression

One way of only including a few variables and not all is by selecting only a few of the total amount

of available variables (James et al., 2013, p.205-214). The objective is selecting a subset of all

variables, containing only the most influential variables. Two types of Forward Regression are used

in this paper. Firstly a method called Stepwise Forward regression, from here on referred to as

‘Stepwise’, as explained by James et al. (2013, p. 203-204) is introduced. This particular method

continuously adds variables which are correlated to the dependent variable until all variables are

added or some condition is fulfilled. As stated by Efron et al. (2004), in Stepwise, relatively large

steps are taken towards the solution. This method often leads to selecting the best variable in the

current step, but it is not able to look forward and consider the whole model. The best variable

now, might not be part of the best model. So by choosing the variable now, the best model will not

be reached. This feature is called ‘greedy’.

A solution to this greedy feature is taking smaller steps, which is implemented in Stagewise Forward

Linear Regression (from now on referred to as Stagewise) as described in Hastie et al. (2009, chapter

10.3). Efron et al. (2004) states this variation of the Forward Linear Regression method is less greedy,

however the method is very computational due to the large amount of small steps being taken.

2.4 Penalized Regression

A Penalized Regression implements a certain restriction on the Least Squares Regression. As stated

before, Least Squares has the risk of obtaining a high variance and overfitting. This is part of the

bias-variance trade off. A method which is able to influence this trade off is the Ridge Regression

as introduced by Hoerl and Kennard (1970). This method adds a penalty to the standard Least

Squares Regression which restricts the sum of the squared coefficients (James et al., 2013, p. 215-

219). This restricts the model and causes the coefficients to be lower than in Least Squares. The

model is not able to fit as well to the data in the training set, which prevents over-fitting. The

equation minimized in Ridge regression is stated in Equation 1. Where p equals the amount of

variables.

L(β, λ) = |y −Xβ|2 + λ
p∑

j=1
β2

j (1)

The result of this restriction is a lower variance, but also a higher bias. The method is not able to

set coefficients equal to zero and therefore does not create parsimony (Zou & Hastie, 2005).
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A method also able to influence the bias-variance trade-off is the LASSO Regression as introduced

by Tibshirani (1996). This method uses the penalty of restricting the sum of the absolute value of

the coefficients. The equation minimized in LASSO is stated in Equation 2.

L(β, λ) = |y −Xβ|2 + λ
p∑

j=1
|β| (2)

Efron et al. (2004) explains that one of the results of this restriction is coefficients being able to

be set to zero. This method therefore also is able to create parsimony. Several problems still arise

for LASSO, as explained in Zou and Hastie (2005). The problem we will focus on is the fact that

LASSO is not able to treat groups of correlated variables as such. A Ridge Regression in some cases

then outperforms the LASSO (Tibshirani, 1996).

For the objective of keeping the benefits of LASSO, namely the parsimony and trade off capacities,

and gaining the capacity to group variables, the Elastic Net is introduced by Zou and Hastie (2005).

This method combines the restrictions of the Ridge and LASSO Regression in one method. The

equation can be seen in Equation 3, where Equation 4 and Equation 5 hold (Zou & Hastie, 2005).

With the solution in Equation 6 (Zou & Hastie, 2005).

L(β, λ1, λ2) = |y −Xβ|2 + λ1|β|2 + λ2|β|1 (3)

|β|2 =
p∑

j=1
β2

j (4)

β|1 =
p∑

j=1
|β| (5)

min(L(β, λ1, λ2)) (6)

A big improvement in this method is the ability to treat variables correlated in groups as a group,

instead of altering these variables independently (Zou & Hastie, 2005).

8



2.5 Least Angle Regression

As stated before, Stagewise contains a lot of little steps, which is very computational. To solve

this problem and find a method, accomplishing the same objective with less steps, the Least Angle

Regression (LAR) method was introduced by Efron et al. (2004). This method is a very intuitive

way to use the variables to get to the objective of modelling the dependent variable. Namely by

using the equiangular vector between parameters as a direction, instead of going in the direction

of the variables separately. The method is able to reach the objective through as many steps as

there are parameters whilst not becoming as greedy as Stepwise. The method chooses the highest

correlated variable in each step and adds it to the set of variables it uses to calculate the direction

to take a step in. By including multiple variables in the step, the stairwise steps of Stagewise are

not necessary. Which allows LAR to compute the model much faster. For a thorough explanation

of the mathematics and method, this paper refers to Efron et al. (2004).

2.5.1 LASSO and Stagewise using LAR

As explained in (Efron et al., 2004), the LAR method can be adjusted to capture the LASSO as

well as Stagewise. This allows for both methods to be less computational compared to their original

form. The adjustment for the LASSO allows for the model to not only gain a variable per step, but

also to be able to lose a variable in a step. For the Stagewise, an adjustment when the direction

is not feasible for the original method is implemented. This leads to the possibility to delete more

than one variable per step from the model.

2.6 Comparison

Some of the before mentioned methods have already been compared in terms of performance. This

section will give a brief insight in the conclusions drawn from these comparisons. Theoretically,

Efron et al. (2004) shows LAR, LASSO and Stagewise to give nearly identical results.

When comparing with Elastic Net the following conclusions can be made based on before mentioned

information. LASSO, and therefore also Elastic Net, is able to both control the variance-bias trade

off and the parsimony.

A comparison of LASSO, Ridge and EN is performed by Zou and Hastie (2005). EN is shown to

perform well on data sets with a relatively large amount of observations. As expected treating the

variables as groups when they are group correlated is also a feature primarily visible in EN. For the
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data sets and simulations used by Zou and Hastie (2005), EN outperformed LASSO.

For a theoretical comparison of LAR and LASSO, Efron et al. (2004) is followed. As explained here,

the LAR algorithm is able to work for cases where the amount of variables exceeds the amount of

observations. The LASSO algorithm is not able to do this.

To the knowledge of the author, no comparison of both Stagewise and LAR with Elastic Net has

been documented to date.

3 Data

In this section the necessary data to answer the research question will be discussed and introduced.

Firstly to answer the sub question, testing the performance of LAR, LASSO and Stagewise on the

data sets as used by Efron et al. (2004). The data sets as used have been retrieved from Stanford

University 1, the data sets consist of data on diabetes research. Secondly simulated data sets are

introduced to compare the EN and LAR.

3.1 Diabetes data

The data used in this section follows Efron et al. (2004). When testing LAR and comparing LAR

with LASSO and Stagewise, firstly a data set of 10 variables, concerning diabetes, is used. This data

set consists of 442 patient observations. The variables include the categorical sex of the patient, the

numerical age, BMI, Blood Pressure and finally several numerical ‘serum measures’. The dependent

variable is a quantitative indication of the disease of the patient (Efron et al., 2004). Secondly a

data set is used which consists of the original variables, combines with several combinations and

squares of the original 10 variables, which leads to 64 variables. The squares include all variables

except for he categorical variable 2.

These data sets have been standardized. The amount of observations is much larger than the amount

of variables. A visualisation of the dependent variable of the data set can be seen in Figure 1. As

can be expected from a standardized data set, the values lay around zero. No normal distribution

is seen.
1https://web.stanford.edu/ hastie/StatLearnSparsityfiles/DAT A/diabetes.html
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Figure 1: A histogram of the y.

3.1.1 Diabetes Simulation

Apart from the data set itself as introduced in Section 3.1, the larger data set of 64 variables is used

in a Simulation. This Simulation again follows Efron et al. (2004). Firstly the model is trained on

the actual data set of 10 variables, the mean and residuals from this model are used to construct the

simulations. For each simulation, from the residuals, 442 residuals are picked randomly. A residual

could be picked more than once. With the actual mean and the new set of residuals, the simulated

y is generated by Equation 7 (Efron et al., 2004).

y∗ = µ+ ε∗ (7)

Where y∗ is the simulated dependent variable, µ is the actual µ and ε∗ is the simulated set of

residuals. The simulated dependent variable and the set of dependent variables containing 64

variables, make up the data set used in each simulation.

3.2 Simulations

For a comparison using the Elastic Net, a data set with specific qualities is needed. As can be

concluded from Section 2, the main difference between all models are their computational qualities,

their performance on large or smaller data sets (relative to the amount of parameters) and their

performance when dealing with highly correlated data sets. To best be able to compare the meth-

ods, this information will be used. Two data sets are simulated to capture the qualities discussed.

Both Simulations are based on ‘example 4’ by Zou and Hastie (2005). This simulated data set

contains 40 variables, where the first 15 variables consist of three groups of correlated variables

with a coefficient of three. The last 25 variables are not informational in the actual model as the
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coefficient for these variables is set to zero. 50 simulated observations are used as a training set,

400 observations are used as a testing set. As a result the training data set does capture the group

correlated variables, but does not contain more variables than observations.

3.2.1 Simulation one

To alter the described simulation to allow for EN to be implemented, the amount of variables used

in the training set was increased to 500. This was done because cross-validation as used in the code,

creates subsets of the observations. In the case of 50 observations, for the code used, each subset

would contain one observation, which is not desired. Also in Zou and Hastie (2005), three data sets

are simulated. In this paper only two data sets will be simulated, the ‘validation set’ is omitted.

3.2.2 Simulation two

To also capture the instance where the amount of variables is larger than the amount of obser-

vations, a different simulation is introduced. This simulation is based on the previous simulation

as introduced in Section 3.2.1, but contains 360 non-informational variables and 240 informational

variables. Again the informational variables are divided in three correlated groups.

4 Methodology

To compare the different methods on their performance, firstly the methods have to be implemented.

Afterwards comparison methods are discussed.

4.1 Implementation

All methods and Simulations are implemented using MATLAB R2017a (MATLAB, 2017). The

code can be found in Appendix C.

4.1.1 LAR

To implement LAR, the formulas as introduced in Efron et al. (2004) were used. This method is

able to take steps towards the solution by using several variables at the same time. To do this

efficiently, it uses an equiangular vector. Every step a variable is added, however no variables can
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be removed from the set used to calculate the vector. Therefore the parsimony decreases for every

step, the method however does get closer to the least squares output with each step as well. A

selection criterion for which step to take as output for the model will be introduced in Section 4.2.2.

4.1.2 LASSO

The LASSO method is implemented by using a modification of LAR, again following Efron et al.

(2004). The modification allows for variables to also be removed from the active set when otherwise

the assumptions of LASSO do not hold.

4.1.3 Stagewise and Stepwise

Both Stepwise and Stagewise are based on taking subsequent steps in the direction of the variables.

For Stepwise, as explained in Efron et al. (2004), in every step a new variable is added to the set

of used variables. This variable should not before be used and is chosen on having the highest

correlation with the residuals. A large step in the direction of this variable is taken, namely a

step of the size equal to the absolute highest correlation. The Stagewise implementation can be

implemented following LAR as described by Efron et al. (2004). However for this paper it is based

on Stepwise following Efron et al. (2004). Where Stepwise takes large steps in the direction of

the variable with the highest correlation, Stagewise takes many small steps in the direction of the

variable with the highest correlation (Efron et al., 2004).

4.1.4 EN

The implementation of EN is based on Zou and Hastie (2005). EN contains two parameters which

should be chosen before being able to optimize the model. These variables are called hyperparam-

eters. In the case of EN, these variables are the alpha and lambda. To find these hyperparameters,

a method is used where several subsets are made of the observations. By doing optimizations of EN

where every time a different subset is the validation set and all other subsets combined are the train-

ing set, the optimal hyperparameters can be concluded. This method is called ‘cross-validation’. A

training set is here a data set on which the model is trained. The validation set is the data set on

which the trained model is implemented to be able to compare the different trained models. The

comparison in this paper is done based on the Mean Squared Error (MSE) as will be explained in

Section 4.2.2. Where ten subsets are created, this is called ‘ten-fold cross-validation’. The optimiza-

tion of EN by using cross-validation for the hyperparameters follows Zou and Hastie (2005).
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Once the ten sets of hyperparameters are found, they are used to construct ten EN models on the

entire data set. For these ten models, the optimal coefficients and the MSE are reported.

To concur with LAR, the ten models are not validated on a different data set. The optimal model

is decided based on the MSE of the training set. This decision ensures not more data sets are used

for EN, however by not validating on a different data set, the decision of optimal coefficients could

be incorrect. This should be considered when drawing a conclusion from the results.

4.2 Comparisons

4.2.1 Comparing LAR, LASSO and Stagewise

For the implementation, firstly the data set has to be standardized. In this case, the used data set

was already standardized. This data is as described in Section 3.1.

The entire following comparison is introduced by Efron et al. (2004). The LAR method is executed

firstly using the data set with ten variables. To visualise the trajectory of the correlations for every

separate variable, a graph is created mapping these correlations for each step of the algorithm.

Also a graph of the coefficient for each variable plotted against the sum of the absolute coefficients

is created. This is again done to analyse the trajectory of, in this case, the coefficients for each

separate variable as the sum of absolute coefficients increases.

Then to compare the LAR, LASSO and Stagewise, using the data set consisting of 64 variables,

100 simulations of the data set were modelled using the methods. The methods had a maximum

of 40 steps or 40 coefficients to be nonzero. Stepwise is also included in the graph. Stepwise is

expected to behave differently to the other models and is included to give a reference point to

different methods. To compare the performance of the methods, the ‘average proportion explained’

is used. The formula for the average proportion explained, is stated in Equation 8 (Efron et al.,

2004). Where µ is the actual and µ̂ is the estimated prediction.

pe(µ̂) = 1− ‖µ̂− µ‖2/‖µ‖2 (8)

For each step the average proportion explained over all simulations is plotted against the step or

average amount of coefficients nonzero. A higher proportion explained could be preferred, based on

the objective of the model.
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4.2.2 Comparing LAR and Elastic Net

The following comparison was implemented on both Simulations as introduced in Section 3.2. The

objective is to be able to compare LAR and EN on a comparison measure. The Median Mean

Squared Error (MMSE) will be used, following for instance Li, Lin, et al. (2010) and Zou and

Hastie (2005).

The MMSE is calculated by taking the Median of the MSE. The MSE is calculated by Equation

9 (James et al., 2013, p. 29-30).

MSE = 1
n
∗

n∑
i=1

(yi − f̂(xi))2 (9)

Where n is the amount of observations, yi is the actual value of the dependent variable for observa-

tion i and finally f̂(xi) is the predicted value at observation i. A higher MMSE error, as with the

MSE, implies a higher error and therefore a less preferred model.

To obtain the MMSE for the LAR and EN method, two Simulations as explained in Section 3.2

are used. For every simulation the MSE is concluded. The MMSE is concluded based on the MSE

found in the simulations. For the Simulation as explained in Section 3.2.1, 10 simulations are used.

This is done because the simulations were costly in terms of time. For the second Simulation as

explained in Section 3.2.2, 3 simulations are used. Again because of a high cost in terms of time.

To compare using the MSE of every simulation, the MSE of each simulation is concluded using

a validation set. This process follows Zou and Hastie (2005). The optimal model found by imple-

menting Section 4.1 and concluding the optimal model, is implemented on a separate ‘testing set’

as found in Section 3.2. Which is used as a validation set from which the MSE for the optimal

model is concluded.

The last step is to be able to conclude the optimal model within each simulation. The selection

criterion for LAR will now be introduced. Here the parsimony and accuracy are relevant. Following

Efron et al. (2004), a criterion based on a risk calculation is used. By minimizing this risk, the

optimal solution is found. For EN the optimal model is found using Section 4.1.4.

In summary, for both Simulations as introduced in Section 4.2.2 a certain amount of simulations
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is ran. Within each simulation the optimal model is concluded for the simulated data set. The

MSE is concluded from these simulations and by using the MMSE, LAR and EN can be compared.

Aside from the MMSE, the values of the coefficients found in the optimal models are also of

interest. Firstly the parsimony of the model can be concluded based on these coefficients. But also

whether the model is able to identify irrelevant variables and set this coefficient to zero, can be seen

in the coefficients. Finally, as the data sets contain group correlated variables, a preferred model is

able to treat these variables as a group and does not treat them independently (Zou & Hastie, 2005).

The before mentioned comparisons are executed and the results are described in the following

section.

5 Results

In this section the results will be introduced and discussed.

5.1 Comparing LAR LASSO and Stagewise

Firstly LAR itself is applied to the data set. The variables were added on each step in the order

[3 9 4 7 2 10 6 5 8 1]. The regression coefficients for each variable are plotted against the sum of

the absolute regression coefficients. The output of this plot can be seen in Figure 2. Also for each

variable the correlations over every step are plotted against the steps. This plot can be seen in

Figure 3.

The order in which the variables are added, agree with the order which occurred in Efron et al.

(2004). Also when looking at the figures, not a big difference is seen. As the data set is the same

as in the original research, no differences are expected. However, a difference in scaling in Figure 3

can be seen. This difference is expected to be a mistake in the paper by Efron et al. (2004). Also

Figure 2 does not follow the figure in Efron et al. (2004), especially variable 7.

When LAR has been computed, a simulation is implemented for LAR, LASSO, and Stepwise.

To be able to compare their performance in terms of ‘proportion explained’. After 100 simulations,

each consisting of 40 steps, Figure 4 is obtained. For both LAR, LASSO and Stagewise the figure

does not differ much from the figure shown in Efron et al. (2004). However for Stepwise the plot does

seem to differ greatly. The Stagewise results are slightly above the LAR and LASSO results, this

would imply Stagewise to better explain the dependent variable for larger amounts of independent
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Figure 2: The coefficients for all variables, plotted against the sum of the absolute coefficients.

Figure 3: The correlations for each variable as well as the maximum correlation, plotted against
the steps.

17



variables considered. The results given by the Stepwise algorithm seem unlikely. As stated by

Efron et al. (2004), a fast increase due to the large steps taken, would be expected. Whereafter the

proportion explained will decrease as a result of the algorithm not taking into consideration future

steps and overfitting quickly. The obtained results do not show this behaviour, the proportion

explained is seen to stay level over the increasing amount of variables included in the model. As

this result does not agree with the behavior of a Stepwise model, a mistake in the programming

might explain the results.

Figure 4: The proportion explained for each method is plotted against the Average number of terms.

5.2 Comparing LAR and Elastic Net

The objective of this paper is to compare the performance of LAR and EN on varying data sets.

This subsection will describe the results of this comparison. The conclusions made will be based on

the MMSE over several simulations as described in Section 3. As the amount of simulations run in

each Simulation are small, no distribution and significance will be included. There is not enough

information for these results. The coefficients of only the last simulation within each Simulation is

returned, therefore this set of coefficients will be discussed. Because only one set of coefficients is

considered, it should be noted the conclusions based on these coefficients are not trustworthy.

5.2.1 Simulation one

The first simulation consists of more observations than independent variables. Where three sets of

variables with grouped correlation and several irrelevant variables exist in the independent variables.

The MSE values for the LAR method can be found in Appendix A.1. The MSE values for the EN

method can be found in Appendix A.2. MMSE for the LAR model is 239.60, the MMSE for the

EN is 234.04. These results would lead to the conclusion of preferring EN over LAR for this data

set. However it should be noted that the values are close to each other and therefore no definite

conclusion can be made. The coefficients of one model of LAR can be found in Appendix A.3. The
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coefficients of one model of EN can be found in Appendix A.4. In terms of parsimony, the LAR

model used a beta with seven nonzero values. The EN model used a beta with 31 nonzero values.

The EN model takes into account many of the irrelevant independent variables, this would indicate

a downside to using EN. However this conclusion is in contrast with the benefits of an EN and

the reliability of the results should therefore be considered. What can be seen is EN having values

relatively close to the actual coefficient value of three for all informational variables, whereas LAR

has coefficients varying more from the actual value.

5.2.2 Simulation two

For the second Simulation, a data set with more independent variables than observations is used.

Again with three sets of grouped variables and several irrelevant variables. The MSE values for the

LAR method can be found in Appendix B.1. The MSE values for the EN method can be found

in Appendix B.2. The MMSE for the LAR model is 1.09 ∗ 104, the MMSE for the EN is 303.97.

The MMSE of LAR is very high, which means the model does not fit to the data set well. The

coefficients of one model of LAR can be found in Appendix B.3. The coefficients of one model of

EN can be found in Appendix B.4. For EN the coefficients for the relevant variables are close to the

actual value of three, whereas the coefficients for the irrelevant variables are either small or equal

to zero. For LAR this is not the case, most variables are zero and only a very few are nonzero.

EN however does contain many nonzero coefficients for the irrelevant variables which leads to bad

parsimony. Only three simulations were run, so no conclusive decisions can be made. In terms of

MMSE, EN is expected to be able to perform well on data sets with a high amount of variables

compared to observations. For LAR the author did not find previous information on this topic.

The results imply LAR is not able to perform well on this data set.

6 Conclusion

The objective of this paper is to compare several Linear Regression methods. Primarely EN and

LAR. This is relevant because when the qualities of data sets on which specific methods work well

are known, fitting a model to this data set becomes easier as less models have to be tried. So by

comparing EN and LAR for future research, the selection between the two methods can possibly

be based on theory instead of practice.
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In terms of comparing the methods, EN is able to work well for data sets with grouped variables,

as well as data sets with more variables than observations. Therefore the EN and LAR have been

implemented on two simulated data sets, capturing these qualities to compare the performance of

the methods. Their performance is compared based on the MMSE as well as the obtained coeffi-

cients for the optimal models.

For the data set simulated to have group correlated variables, but more observations than vari-

ables, the MMSE for EN was 234.04, the MMSE for LAR was 239.60. The coefficients showed EN to

include many of the irrelevant variables, whereas LAR had less irrelevant variables with a coefficient

of nonzero. For the data set simulated to have group correlated variables and more variables than

observations, the MMSE for the LAR model is 1.09 ∗ 104, the MMSE for EN is 303.97. Also the

coefficients for EN behave well, whereas very few of the coefficients for LAR are nonzero.

These results are used to answer the Research Question. How does the performance of an

Elastic net compare to a LAR, when considering varying data sets?

With the sub question: How do LAR, LASSO and Stagewise Forward Regression compare for the

data set as used by Efron et al. (2004)?

From the results, it can be concluded that for both data sets, EN had a lower MMSE. This

implies EN to be preferred. However it should be noted for the first Simulation that MMSE values

are very close, so no conclusive statement can be made when comparing LAR and EN. For the first

Simulation, LAR had a better parsimony. The preference for the first Simulation can be based on

the objective for the model. For the second Simulation however, the MMSE for LAR is much larger

and the coefficients do not behave as well as for EN. Therefore for group correlated variables with

more variables than observations, the EN can be concluded to perform better. It should be noted

that very little simulations were ran, so no definite conclusions can be made.

Several implications of the research and suggestions for future research will now be introduced.

Firstly, the fact that for EN a validation set was ommited, causes the method to reduce in reliability.

A solution to this problem should be found to make the results more trustworthy. Also as LAR

used non standardized data, whereas the EN did use standardized data, the results of both methods

can not be formally compared. In the future the data for both methods should be standardized.
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Furthermore only a small amount of simulations was used within each Simulation. To obtain more

results and for instance obtain a standard error for the MMSE, more simulations should be ran.

Finally the coefficients for all models used to obtain the MMSE should be registered. This would

make conclusions based on these coefficients more reliable.

For future research; it would be useful to also compare the methods on real data. And possibly

include other versions of EN in the comparison. For instance Adaptive Elastic Net as introduced

by Zou and Zhang (2009) could be used. Finally more data sets could be used, with for instance

non group correlated variables, to generalize the conclusions drawn from this research more.
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Appendix A Simulation one

A.1 MSE LAR

Table 1: The MSE for ten simulations using LAR

simulation MSE

1 265.12
2 191.91
3 207.04
4 218.24
5 250.69
6 235.69
7 269.33
8 243.75
9 271.32
10 233.69

A.2 MSE EN

Table 2: The MSE for ten simulations using EN

simulation MSE

1 248.15
2 191.74
3 207.98
4 218.33
5 256.35
6 243.19
7 248.11
8 243.01
9 268.95
10 237.04
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A.3 Coefficients LAR

Table 3: The coefficients for one of the simulations using LAR

variable coefficient

1 0.0000
2 0.0000
3 0.9847
4 11.6007
5 0.0000
6 4.0335
7 3.5153
8 −0.0029
9 5.7153
10 0.0000
11 8.0058
12 2.3954
13 0.0000
14 0.0000
15 2.9870
16 0.0000
17 0.0000
18 0.0000
19 0.0000
20 0.0000
21 0.0000
22 0.0000
23 0.0000
24 0.0000
25 0.0000
26 0.0000
27 0.0000
28 0.0000
29 0.0000
30 0.0000
31 0.0000
32 0.0000
33 0.0000
34 0.0000
35 0.0000
36 0.0000
37 0.0000
38 0.0000
39 0.0000
40 0.0000
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A.4 Coefficients EN

Table 4: The coefficients for one of the simulations using EN

variable coefficient

1 2.4310
2 2.4522
3 2.4656
4 2.6377
5 2.4845
6 2.6377
7 2.6549
8 2.5236
9 2.6659
10 2.4957
11 2.7320
12 2.5922
13 2.5678
14 2.5531
15 2.6442
16 0.0160
17 0.5261
18 0.0000
19 0.0000
20 0.0000
21 −0.0198
22 −0.4916
23 −0.2803
24 0.0000
25 −0.2160
26 0.0000
27 −0.9168
28 0.1303
29 −0.0459
30 0.0000
31 −0.7669
32 0.0324
33 0.2030
34 −0.0483
35 −0.4617
36 0.0000
37 0.0000
38 0.0000
39 −0.0180
40 0.3485
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Appendix B Simulation two

B.1 MSE LAR

Table 5: The MSE for three simulations using LAR

simulation MSE

1 7.4838*103

2 1.0880*104

3 1.2469*104

B.2 MSE EN

Table 6: The MSE for three simulations using EN

simulation MSE

1 303.97
2 316.26
3 301.364

B.3 Coefficients LAR

Table 7: The coefficients for one of the simulations using LAR

Begin of Table

variable coefficient

1 0

2 0

3 0

4 0

5 36,43701

6 0

7 0

8 23,09386

9 0,350746

10 0
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Continuation of Table 7

variable coefficient

11 0

12 0

13 0

14 0

15 0

16 0

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 37,80286

26 0

27 0

28 0

29 0

30 0

31 0

32 0

33 0

34 0

35 0

36 0

37 0

38 0

39 0

40 0
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Continuation of Table 7

variable coefficient

41 7,300507

42 0

43 0

44 0

45 0

46 0

47 0

48 0

49 9,676849

50 0

51 0

52 0

53 0

54 0

55 0

56 0

57 0

58 26,55317

59 0

60 38,51033

61 0

62 0

63 0

64 0

65 0

66 0

67 0

68 0

69 0

70 0
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Continuation of Table 7

variable coefficient

71 0

72 0

73 0

74 0

75 0

76 0

77 0

78 0

79 0

80 0

81 0

82 0

83 0

84 0

85 0

86 0

87 0

88 0

89 0

90 0

91 0

92 0

93 0

94 0

95 0

96 0

97 0

98 0

99 0

100 0
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Continuation of Table 7

variable coefficient

101 0

102 0

103 0

104 0

105 0

106 0

107 0

108 0

109 0

110 0

111 0

112 0

113 0

114 0

115 0

116 0

117 0

118 0

119 0

120 0

121 12,10556

122 0

123 0

124 0

125 0

126 0

127 17,74682

128 0

129 0

130 0
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Continuation of Table 7

variable coefficient

131 0

132 0

133 20,83736

134 0

135 0

136 0

137 0

138 0

139 0

140 0

141 0

142 0

143 0

144 35,50126

145 0

146 0

147 36,65461

148 0

149 0

150 0

151 0

152 0

153 0

154 0

155 0

156 51,97355

157 0

158 0

159 0

160 0
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Continuation of Table 7

variable coefficient

161 0,480041

162 55,94665

163 1,559043

164 16,46237

165 0

166 0

167 0

168 0

169 0

170 0

171 0

172 0

173 0

174 0

175 0

176 0

177 0

178 16,92194

179 0

180 0

181 0

182 0

183 0

184 0

185 0

186 0

187 0

188 0

189 0

190 0
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Continuation of Table 7

variable coefficient

191 0

192 0

193 0

194 0

195 0

196 15,26166

197 0

198 8,261605

199 0

200 0

201 0

202 0

203 0

204 0

205 0

206 0

207 0

208 0

209 0

210 0

211 0

212 0

213 0

214 0

215 25,08781

216 0

217 0

218 0

219 0

220 0
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Continuation of Table 7

variable coefficient

221 0

222 0

223 5,599927

224 0

225 0

226 0

227 0

228 0

229 0

230 0

231 0

232 4,529976

233 0

234 0

235 22,27213

236 0

237 0,444717

238 0

239 0

240 0

241 0

242 0

243 0

244 0

245 0

246 0

247 0

248 0

249 0

250 0
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Continuation of Table 7

variable coefficient

251 0

252 0

253 0

254 0

255 0

256 0

257 0

258 0

259 0

260 0

261 0

262 0

263 0

264 0

265 0

266 0

267 0

268 0

269 0

270 0

271 0

272 0

273 0

274 0

275 0

276 0

277 0

278 0

279 0

280 0
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Continuation of Table 7

variable coefficient

281 0

282 0

283 0

284 0

285 0

286 0

287 0

288 0

289 0

290 0

291 0

292 0

293 0

294 0

295 0

296 0

297 0

298 0

299 0

300 0

301 0

302 0

303 0

304 0

305 0

306 0

307 0

308 0

309 0

310 0
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Continuation of Table 7

variable coefficient

311 0

312 0

313 0

314 0

315 0

316 0

317 0

318 0

319 0

320 0

321 0

322 0

323 0

324 0

325 0

326 0

327 0

328 0

329 0

330 0

331 0

332 0

333 0

334 0

335 0

336 0

337 0

338 0

339 0

340 0
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Continuation of Table 7

variable coefficient

341 0

342 0

343 0

344 0

345 0

346 0

347 0

348 0

349 0

350 0

351 0

352 0

353 0

354 0

355 0

356 0

357 0

358 0

359 0

360 0

361 0

362 0

363 0

364 0

365 0

366 0

367 0

368 0

369 0

370 0
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Continuation of Table 7

variable coefficient

371 0

372 0

373 0

374 0

375 0

376 0

377 0

378 0

379 0

380 0

381 0

382 0

383 0

384 0

385 0

386 0

387 0

388 0

389 0

390 0

391 0

392 0

393 0

394 0

395 0

396 0

397 0

398 0

399 0

400 0
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Continuation of Table 7

variable coefficient

401 0

402 0

403 0

404 0

405 0

406 0

407 0

408 0

409 0

410 0

411 0

412 0

413 0

414 0

415 0

416 0

417 0

418 0

419 0

420 0

421 0

422 0

423 0

424 0

425 0

426 0

427 0

428 0

429 0

430 0
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Continuation of Table 7

variable coefficient

431 0

432 0

433 0

434 0

435 0

436 0

437 0

438 0

439 0

440 0

441 0

442 0

443 0

444 0

445 0

446 0

447 0

448 0

449 0

450 0

451 0

452 0

453 0

454 0

455 0

456 0

457 0

458 0

459 0

460 0
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Continuation of Table 7

variable coefficient

461 0

462 0

463 0

464 0

465 0

466 0

467 0

468 0

469 0

470 0

471 0

472 0

473 0

474 0

475 0

476 0

477 0

478 0

479 0

480 0

481 0

482 0

483 0

484 0

485 0

486 0

487 0

488 0

489 0

490 0
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Continuation of Table 7

variable coefficient

491 0

492 0

493 0

494 0

495 0

496 0

497 0

498 0

499 0

500 0

501 0

502 0

503 0

504 0

505 0

506 0

507 0

508 0

509 0

510 0

511 0

512 0

513 0

514 0

515 0

516 0

517 0

518 0

519 0

520 0
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Continuation of Table 7

variable coefficient

521 0

522 0

523 0

524 0

525 0

526 0

527 0

528 0

529 0

530 0

531 0

532 0

533 0

534 0

535 0

536 0

537 0

538 0

539 0

540 0

541 0

542 0

543 0

544 0

545 0

546 0

547 0

548 0

549 0

550 0
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Continuation of Table 7

variable coefficient

551 0

552 0

553 0

554 0

555 0

556 0

557 0

558 0

559 0

560 0

561 0

562 0

563 0

564 0

565 0

566 0

567 0

568 0

569 0

570 0

571 0

572 0

573 0

574 0

575 0

576 0

577 0

578 0

579 0

580 0
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Continuation of Table 7

variable coefficient

581 0

582 0

583 0

584 0

585 0

586 0

587 0

588 0

589 0

590 0

591 0

592 0

593 0

594 0

595 0

596 0

597 0

598 0

599 0

600 0

End of Table
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B.4 Coefficients EN

Table 8: The coefficients for one of the simulations using EN

Begin of Table

variable coefficient

1 3,010461

2 2,892294

3 3,052786

4 3,015276

5 3,068465

6 2,964138

7 2,941848

8 2,963363

9 2,928604

10 2,999172

11 2,994384

12 2,98641

13 2,90279

14 2,948346

15 2,968901

16 2,8029

17 2,876565

18 3,063118

19 2,939367

20 3,016215

21 2,998622

22 2,922078

23 2,924082

24 2,916623

25 2,98439

26 2,908217

27 2,88573
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Continuation of Table 8

variable coefficient

28 3,033446

29 2,934459

30 3,046321

31 2,860964

32 2,999917

33 2,972034

34 2,917284

35 2,937175

36 2,92007

37 2,944916

38 2,933949

39 3,014088

40 3,050735

41 2,927839

42 3,002232

43 3,00225

44 2,970086

45 2,877009

46 2,977308

47 2,933847

48 2,981263

49 3,040637

50 2,943181

51 3,03909

52 2,8974

53 2,891068

54 2,876949

55 2,90019

56 2,915214

57 2,993491
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Continuation of Table 8

variable coefficient

58 3,021326

59 3,057585

60 3,03826

61 2,935406

62 2,952229

63 2,898145

64 2,973293

65 2,903468

66 2,920825

67 2,949535

68 2,958478

69 2,997151

70 2,867791

71 2,933351

72 2,918357

73 2,855118

74 2,958202

75 2,857739

76 2,982726

77 2,958387

78 2,976453

79 3,042642

80 2,911211

81 2,985867

82 2,978118

83 2,997991

84 3,013152

85 2,895777

86 2,983619

87 2,982586
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Continuation of Table 8

variable coefficient

88 2,856795

89 2,910953

90 2,905985

91 2,913591

92 2,944458

93 2,960007

94 2,93827

95 2,925755

96 3,056504

97 2,951523

98 3,063621

99 2,988078

100 2,865823

101 2,843676

102 3,020708

103 2,959377

104 2,876056

105 2,882448

106 2,926122

107 2,997335

108 2,929825

109 2,854674

110 2,889643

111 2,844441

112 2,907244

113 2,955446

114 2,834533

115 3,006253

116 2,94365

117 2,981617
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Continuation of Table 8

variable coefficient

118 2,985007

119 2,959468

120 2,928587

121 2,968854

122 2,999826

123 3,002867

124 2,963211

125 2,956698

126 2,948719

127 3,015117

128 2,806303

129 2,938958

130 3,020763

131 2,876651

132 2,968913

133 2,955707

134 3,033085

135 2,960786

136 2,956754

137 2,876555

138 2,942852

139 2,987294

140 2,973469

141 2,863541

142 3,024311

143 2,904927

144 3,014495

145 2,988884

146 3,018683

147 2,94596
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Continuation of Table 8

variable coefficient

148 2,956849

149 3,03122

150 2,88745

151 3,120243

152 2,981694

153 2,913896

154 2,813139

155 3,014122

156 2,984541

157 3,011163

158 2,955683

159 3,06966

160 2,99613

161 2,939308

162 3,003036

163 2,953774

164 3,08788

165 2,966253

166 2,878796

167 2,905681

168 2,875967

169 3,019383

170 2,873456

171 2,925379

172 2,926154

173 2,956233

174 2,953092

175 2,953851

176 2,933813

177 2,91201

52



Continuation of Table 8

variable coefficient

178 2,978436

179 2,901817

180 2,958651

181 3,026574

182 2,949417

183 3,019499

184 2,903373

185 2,96074

186 3,019514

187 2,885832

188 2,940148

189 2,98227

190 2,886392

191 2,982398

192 2,950849

193 3,010815

194 2,91771

195 2,885805

196 2,839181

197 3,052135

198 3,07469

199 3,039092

200 2,925175

201 2,992543

202 2,872627

203 2,924435

204 2,829511

205 2,884708

206 2,994074

207 2,952915
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Continuation of Table 8

variable coefficient

208 2,860276

209 2,840492

210 2,98791

211 2,973946

212 2,932092

213 2,965684

214 2,916517

215 2,985981

216 2,933049

217 2,955849

218 2,928604

219 2,968552

220 2,924461

221 2,980004

222 2,988634

223 2,942022

224 2,97661

225 2,879341

226 2,870667

227 2,900159

228 2,954743

229 2,951056

230 2,875161

231 2,96942

232 2,95408

233 2,91694

234 2,998633

235 3,021529

236 3,006506

237 2,92947
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Continuation of Table 8

variable coefficient

238 2,973618

239 2,911312

240 2,882442

241 0,485848

242 0,036963

243 0,031225

244 0

245 0

246 0,147985

247 0,322436

248 0

249 0

250 0,235152

251 0

252 -0,00427

253 -0,55052

254 -0,2177

255 -0,36979

256 0,191486

257 0,068344

258 0,47195

259 0

260 0,221672

261 0,056852

262 -0,30205

263 0

264 0

265 0,016594

266 0

267 0
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Continuation of Table 8

variable coefficient

268 0,170121

269 0

270 0,375281

271 0

272 0,23447

273 0

274 -0,55482

275 0

276 0,198654

277 0,265071

278 -0,11135

279 0

280 0,115517

281 0

282 0,182227

283 0

284 0,001973

285 0,305637

286 0

287 -0,02888

288 0

289 0,026231

290 0,202679

291 -0,07844

292 -0,15836

293 0

294 -0,20078

295 -0,02295

296 0

297 0,271805
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Continuation of Table 8

variable coefficient

298 0,042074

299 0

300 0

301 0

302 0,176349

303 -0,14947

304 0,025728

305 -0,03698

306 0

307 0,041203

308 0

309 0,42749

310 -0,13551

311 -0,16721

312 -0,03397

313 -0,06788

314 0,285926

315 0,004618

316 -0,41809

317 -0,01042

318 0

319 0,141345

320 0

321 0,037057

322 -0,11321

323 0

324 0

325 0

326 0,278423

327 0
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Continuation of Table 8

variable coefficient

328 0

329 0,10475

330 0,414752

331 0

332 -0,0053

333 -0,19779

334 0,058385

335 0

336 0

337 -0,0977

338 -0,0924

339 -0,40403

340 0,060374

341 0,034917

342 -0,00563

343 0

344 0,25889

345 -0,12896

346 -0,31567

347 -0,02636

348 0,219246

349 0,169034

350 0,080167

351 0,080688

352 -0,25698

353 -0,03801

354 -0,3925

355 0

356 -0,11257

357 0,15444
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Continuation of Table 8

variable coefficient

358 0,271639

359 0

360 0

361 0

362 0

363 -0,23097

364 0,517474

365 -0,00996

366 -0,10974

367 -0,43221

368 0

369 0,400111

370 -0,16148

371 0,38106

372 -0,15082

373 0,431767

374 0,145242

375 -0,15882

376 -0,12928

377 0,12196

378 -0,26362

379 0,192737

380 0

381 -0,00287

382 -0,01077

383 0

384 -0,43369

385 0

386 0,350631

387 0,228229
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Continuation of Table 8

variable coefficient

388 0,217288

389 -0,30143

390 0,031279

391 0

392 -0,00492

393 -0,23773

394 0,348685

395 0

396 0,501141

397 -0,37553

398 0

399 0,434365

400 -0,02467

401 0,203849

402 -0,1485

403 0

404 -0,52765

405 0

406 -0,07627

407 -0,09352

408 -0,33268

409 -0,01815

410 0

411 0

412 -0,47246

413 0

414 0,411065

415 0

416 0,267553

417 0
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Continuation of Table 8

variable coefficient

418 -0,05274

419 0,102379

420 0

421 -0,13652

422 0,12445

423 -0,05329

424 0

425 -0,42676

426 -0,03907

427 0,282265

428 0

429 0

430 0

431 -0,32184

432 0,475829

433 0,049012

434 -0,44127

435 0,062859

436 0,296227

437 -0,46183

438 0

439 0

440 0

441 -0,09644

442 0

443 -0,2002

444 -0,36145

445 -0,2086

446 -0,66476

447 -0,21326
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Continuation of Table 8

variable coefficient

448 -0,15619

449 0,166938

450 0,450434

451 -0,51778

452 0

453 0,001925

454 -0,10025

455 -0,38954

456 -0,46612

457 0

458 -0,01197

459 0,232006

460 -0,28049

461 -0,11519

462 0

463 -0,43118

464 0

465 0,0857

466 0,171302

467 0,187612

468 0

469 -0,16285

470 -0,13689

471 0,002417

472 0

473 -0,39498

474 0

475 -0,26821

476 0

477 -0,19958
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Continuation of Table 8

variable coefficient

478 0

479 -0,07049

480 0

481 0

482 0

483 0,093534

484 0

485 -0,31097

486 -0,06825

487 0

488 -0,01207

489 0,042761

490 0

491 0

492 0,525652

493 -0,08927

494 -0,02443

495 0

496 0

497 0,057819

498 -0,04797

499 -0,16824

500 0,055251

501 -0,00598

502 0,014395

503 0

504 0

505 0

506 0,022903

507 0,118074
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Continuation of Table 8

variable coefficient

508 0

509 0,231741

510 -0,103

511 0

512 0,193854

513 0

514 0

515 -0,05554

516 0,574329

517 0

518 0,015882

519 0,290309

520 0,394619

521 -0,01009

522 0

523 0

524 0,352417

525 0

526 0

527 0

528 0

529 0,253079

530 -0,14627

531 0

532 0

533 -0,09088

534 -0,05712

535 0,528117

536 0

537 0,006824
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Continuation of Table 8

variable coefficient

538 -0,40107

539 -0,08014

540 0

541 0

542 0,301237

543 0

544 -0,26827

545 0,780553

546 -0,53792

547 0,064107

548 0

549 -0,56041

550 0

551 -0,16017

552 0

553 0

554 0,104999

555 0,056844

556 -0,68657

557 -0,13411

558 -0,04211

559 0,014022

560 0

561 0

562 -0,13146

563 -0,49893

564 -0,46833

565 -0,04299

566 0

567 -0,32787
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Continuation of Table 8

variable coefficient

568 0,109658

569 0,510489

570 0

571 0

572 0

573 0,303123

574 -0,25498

575 0

576 0,035122

577 0,18463

578 0

579 0,186214

580 -0,54806

581 0,266758

582 0,26623

583 -0,07693

584 0

585 -0,07835

586 0,118636

587 0,203333

588 0,11666

589 -0,1205

590 0,071783

591 -0,02563

592 0,056049

593 -0,1454

594 0

595 0,215203

596 0

597 -0,23105
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Continuation of Table 8

variable coefficient

598 0

599 0

600 1,009665

End of Table

Appendix C Code

C.1 LAR and LASSO

Listing 1: Matlab code: programming LAR and LASSO
function [ f i g u r e 1 , f i g u r e 2 , mu, mus , step , s i z e a l p h a ] = LARS(X, y , maxsteps , type , f i g u r e 1 , f i g u r e 2 )
%This f u n c t i o n r e c e i v e s t h e d e p e n d e n t and i n d e p e n d e n t v a r i a b l e s and a

%maximum amount o f s t e p s t o t a k e .

%For a t y p e which i s e i t h e r l a s s o or l a r , t h e f u n c t i o n o u t p u t s t h e

%c o e f f i c i e n t s as w e l l as e i t h e r f i g u r e 1 or 2

%f i g u r e 1 and 2 c o r r e s p o n d t o t h e t a b l e 3a or b i n t h e paper by

%Efron e t a l . ( 2 0 0 4 )

%t h e o u t p u t c o n s i s t s o f t h e o p t i m a l mu f o r e v e r y s t e p , t h e amount o f s t e p s

%t a k e n and t h e s i z e o f a l p h a f o r e v e r y s t e p .

%t h i s f u n c t i o n implements t h e l a r s a l g o r i t h m as i n t r o d u c e d by Efron e t a l .

%( 2 0 0 4 ) . A l l named formula ’ s c o r r e s p o n d t o t h e f o r m u l a s named i n t h i s

%paper .

%a l s o t h e m o d i f i c a t i o n s t o c a p t u r e a l l LASSO r e g r e s s i o n o u t p u t s are

%implemented .

[ k , n]= s i z e (X) ; % i n i t i a l i s i n g

X trans= X . ’ ;
y t r a n s= y . ’ ;
mu=zeros ( [ k 1 ] ) ;
beta= zeros ( [ n 1 ] ) ;
b e t a p r e v i o u s = zeros ( [ n 1 ] ) ;
alpha= [ ] ;
g a l p h a = [ ] ;
A alpha= [ ] ;
w alpha = [ ] ;
u alpha = [ ] ;
gamma= [ ] ;
a = [ ] ;
s i z e a l p h a = [ ] ;
s t e p = [ ] ;
Absolutec= [ ] ;
Maximum correlation = [ ] ;
b e t a s = [ ] ;
b e t a s =[ b e t a s beta ] ;
betasum = [ ] ;
betasum =[ betasum 0 ] ;
a l l C = [ ] ;
mus = [ ] ;
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i =1;
while i<=maxsteps && length ( alpha)< n %l o o p u n t i l t h e d e s i r e d amount o f

%s t e p s i s r e a c h e d or a l l v a r i a b l e s

%are used ( i n s p i r e d by R code )

c h a t= X trans ∗( y−mu ) ; %f o r m u l a 2 . 8 , c a l c u l a t e s t h e

‘ %c u r r e n t c o r r e l a t i o n s f o r a l l v a r i a b l e s

C o p t i o n a l =[1: n ] ;
r=length ( alpha ) ;
q=1;

%c r e a t e t h e v e c t o r o f c o r r e l a t i o n f o r

%a l l v a r i a b l e s not i n a l p h a

while q<=n
u=1;
i n a l p h a =0;
while u<=r

i f q == alpha ( u )
i n a l p h a=i n a l p h a +1;

end

u=u+1;
end

i f i n a l p h a==0
C o p t i o n a l ( q)= c h a t ( q ) ;

e l s e

C o p t i o n a l ( q)= 0 ;
end

q=q+1;
end

[ C hat , j ]= max( abs ( C o p t i o n a l ) ) ; %f o r m u l a 2 . 9 , o b t a i n t h e maximum

%c o r r e l a t i o n and new v a r i a b l e t o add t o a l p h a

alpha= [ alpha j ] ;

r= length ( alpha ) ;
ones= [ ] ;
s j =[1: r ] ;
u=1;
X alpha = [ ] ;
while u<=n

q=1;
while q<=r %u p d a t e s j , X alpha and t h e ones v e c t o r

i f u==alpha ( q ) && c h a t ( u)>=0
s j ( q)= 1 ; %2 . 1 0

X alpha ( : , q)= 1∗X( : , u ) ; %2 . 4

ones =[1 ones ] ;
e l s e i f u==alpha ( q )

s j ( q)= −1; %2 . 1 0

X alpha ( : , q)= −1∗X( : , u ) ; %2 . 4

ones =[1 ones ] ;
end

q=q+1;
end

u=u+1;
end

X a l p h a t r a n s=X alpha . ’ ;
o n e s t r a n s=ones . ’ ;

g a l p h a= X a l p h a t r a n s ∗ X alpha ; %f o r m u l a 2 . 5
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i n v e r t g a l p h a= inv ( g a l p h a ) ;

A alpha1= ( ones ∗ i n v e r t g a l p h a ∗ o n e s t r a n s ) ; %f o r m u l a 2 . 5

A alpha= 1/( sqrt ( A alpha1 ) ) ;

w alpha= A alpha ∗ i n v e r t g a l p h a ∗ o n e s t r a n s ; %f o r m u l a 2 . 6 , o b t a i n t h e w e i g h t s v e c t o r

u alpha= X alpha ∗ w alpha ; %f o r m u l a 2 . 6

a= X trans ∗ u alpha ; %f o r m u l a 2 . 1 1 , t h e i n n e r p r o d u c t

gamma= [ ] ;
q=1;
t e s t = [ ] ;
while q<=(n −1) %f o r m u l a 2 . 1 3 , c a l c u l a t e t h e gamma

u=1;
i n a l p h a =0;
while u<=r

i f q == alpha ( u )
i n a l p h a=i n a l p h a +1;

end

u=u+1;
end

i f i n a l p h a==0

derde= ( C hat−c h a t ( q ) ) / ( A alpha − a ( q ) ) ;
t e s t= [ t e s t derde ] ;
i f derde >0 %i n c l u d e o n l y p o s i t i v e components

gamma=[gamma derde ] ;
end

z e s d e= ( C hat+c h a t ( q ) ) / ( A alpha +a ( q ) ) ;
t e s t= [ t e s t z e s d e ] ;
i f zesde >0 %i n c l u d e o n l y p o s i t i v e components

gamma=[gamma z e s d e ] ;
end

end

q=q+1;
end

gamma estimated=min(gamma) ;
i f r==n %on t h e l a s t s t e p gamma i s d i f f e r e n t

gamma estimated=C hat / A alpha ;
end

q=1;
while q<=n

u=1;
while u<=r

i f q == alpha ( u )
%c a l c u l a t e t h e c o e f f i c i e n t s

beta ( q)=beta ( q ) + gamma estimated ∗ s j ( u )∗ w alpha ( u ) ;
end

u=u+1;
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end

q=q+1;
end

b e t a s =[ b e t a s beta ] ;

beta summed= sum( abs ( beta ) ) ;

betasum =[ betasum beta summed ] ;

i f strcmp ( f i g u r e 2 , ’ t r u e ’)==1 %c r e a t e a m a t r i x w i t h t h e a b s o l u t e

%c o r r e l a t i o n f o r a l l v a r i a b l e s a t each s t e p

c u r r e n t s = [ ] ;
q=1;
while q<=n %c a l c u l a t e t h e c o r r e l a t i o n s i n s t e p i

c o r r e l a t i o n= X trans ( q , : ) ∗ ( y−mu ) ;
c o r r e l a t i o n=abs ( c o r r e l a t i o n ) ;
c u r r e n t s= [ c u r r e n t s c o r r e l a t i o n ] ;
q=q+1;

end

%c r e a t e a v e c t o r o f t h e maximum c o r r e l a t i o n per s t e p

Maximum correlation= [ Maximum correlation ; max( c u r r e n t s ) ] ;

Absolutec= [ Absolutec ; c u r r e n t s ] ;
i f i==maxsteps

Absolutec =[ Absolutec Maximum correlation ] ;
end

end

i f strcmp ( type , ’LASSO ’ )==1 %The LASSO a d a p t i o n

D=zeros ( [ n 1 ] ) ;
q=1;
while q<=r

D( alpha ( q))= s j ( q )∗ w alpha ( q ) ; %o b t a i n e d from f o r m u l a 3 . 2

q=q+1;
end

t r a c k = [ ] ;
gammas = [ ] ;
q=1;
count =0;
while q<=n

gammaj= (−1∗beta ( q ) ) /D( q ) ; %f o r m u l a 3 . 4 , c a l c u l a t e t h e p o i n t o f s i g n change

i f gammaj >0
gammas=[gammas gammaj ] ;
count=count +1;
t r a c k =[ t r a c k q ] ;

end

q=q+1;
end

[ Gamma test , j ]=min(gammas ) ; %f o r m u l a 3 . 5 , o b t a i n t h e a l t e r n a t i v e gamma

i f Gamma test<gamma estimated %or count==0

q=1;
to remove=t r a c k ( j ) ;
new alpha = [ ] ;
while q<=r %f o r m u l a 3 . 4 , remove t h e v a r i a b l e

%where t h e s i g n changed o c c u r e d from a l p h a
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i f alpha ( q ) ˜= to remove
new alpha= [ new alpha alpha ( q ) ] ;

end

q=q+1;
end

alpha=new alpha ;
mu= mu + Gamma test∗ u alpha ; %f o r m u l a 3 . 6 , u p d a t i n g mu i f a LASSO s t e p was made

e l s e %f o r m u l a 2 . 1 2 , u p d a t i n g mu i f no LASSO s t e p was made

mu= mu + gamma estimated ∗ u alpha ;
end

e l s e

mu= mu + gamma estimated ∗ u alpha ; %u p d a t e mu i f not LASSO

end

r=length ( alpha ) ; %c r e a t i n g o u t p u t f o r t h e f u n c t i o n

s i z e a l p h a =[ s i z e a l p h a r ] ;
s t e p= [ s t e p i ] ;
mus=[mus mu ] ;

i=i +1;
end

betasum trans= betasum . ’ ;
i f strcmp ( f i g u r e 2 , ’ t r u e ’)==1 %o u t p u t f o r f i g u r e 3 . 2

f i g u r e 2 = plot ( step , Absolutec , ’ DisplayName ’ , ’ Absolutec ’ ) ;
xlabel ( ’ amount o f s t e p s taken ’ )
ylabel ( ’ a b s o l u t e c o r r e l a t i o n ’ )

end

i f strcmp ( f i g u r e 1 , ’ t r u e ’)==1 %o u t p u t f o r f i g u r e 3 . 1

f i g u r e 1 = plot ( betasum trans , betas , ’ DisplayName ’ , ’ beta ’ ) ;
xlabel ( ’ sum o f the a b s o l u t e c o e f f i c i e n t s ’ )
ylabel ( ’ va lue o f the c o e f f i c i e n t ’ )

end

end
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C.2 Stepwise and Stagewise

Listing 2: Matlab code: programming Stepwise and Stagewise
function [ mus , s t e p ] = s t e p w i s e (X, y , maxsteps , type )
%t h i s f u n c t i o n p e r f o r m s s t e p w i s e or s t a g e w i s e r e g r e s s i o n

%t h i s f u n c t i o n r e c e i v e s t h e d e p e n d e n t and i n d e p e n d e n t v a r i a b l e s as i n p u t .

%As w e l l as t h e maximum amount o f s t e p s t o t a k e and t h e t y p e which i s

%e i t h e r s t e p w i s e or s t a g e w i s e .

%The f u n c t i o n o u t p u t s t h e p r e d i c t e d v a l u e a t each r e p o r t e d s t e p

%( e v e r y t ime a new v a r i a b l e i s added t o t h e model ) , as w e l l as a v e c t o r

%c o n t a i n i n g 1 t o 4 0 .

[ k , n]= s i z e (X) ; %i n i t i a t i n g

X trans= X . ’ ;
mu=zeros ( [ k 1 ] ) ;
mus = [ ] ;
e p s i l o n =1; %s e t t i n g t h e s t e p s i z e f o r s t a g e w i s e

s t e p = [ ] ;
alpha = [ ] ;
s i z e a l p h a = [ ] ;
alpha amount =0;
i =1;
while i<=maxsteps && length ( alpha amount)<=40 %a maximum o f 40 v a r i a b l e s

%s h o u l d be c o n c l u d e d i n t h e model

c h a t= X trans ∗( y−mu ) ; %c a l c u l a t i n g t h e c u r r e n t c o r r e l a t i o n

C o p t i o n a l =[1: n ] ;
q=1;
r=length ( alpha ) ;
while q<=n %c r e a t i n g a v e c t o r c o n t a i n i n g

%o n l y t h e c o r r e l a t i o n s f o r not y e t used v a r i a b l e s

u=1;
i n a l p h a =0;
while u<=r

i f q == alpha ( u )
i n a l p h a= 1 ;

end

u=u+1;
end

i f i n a l p h a==0
C o p t i o n a l ( q)= c h a t ( q ) ;

e l s e

C o p t i o n a l ( q)= 0 ;
end

q=q+1;
end

i f strcmp ( type , ’ s t e p w i s e ’)==1
[ C hat , j ]= max( abs ( C o p t i o n a l ) ) ; %i f s t e p w i s e , t h e n o n l y a

%v a r i a b l e not a l r e a d y used can be chosen

alpha =[ alpha j ] ;
e l s e

[ C hat , j ]= max( abs ( c h a t ) ) ; %i f s t a g e w i s e , any v a r i a b l e can be chosen

alpha =[ alpha j ] ; %a l p h a s h o u l d be u p d a t e d t o

%keep t r a c k o f t h e amount o f v a r i a b l e s i n t h e model

end

i f c h a t ( j )>=0
sign =1;

e l s e

sign = −1;
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end

i f strcmp ( type , ’ s t e p w i s e ’)==1 %s e t t i n g t h e s t e p s i z e

e p s i l o n=C hat ;
end

mu=mu+e p s i l o n . ∗ sign . ∗X( : , j ) ; %u p d a t i n g mu

a l p h a t e s t= unique ( alpha ) ;
i f length ( a l p h a t e s t )>length ( alpha amount ) %t e s t i n g i f a v a r i a b l e was

%added , t h e n u p d a t i n g s t a g e w i s e

mus=[mus mu ] ;
end

alpha amount=a l p h a t e s t ;

s t e p = [ 1 : 4 0 ] ;

i=i +1;
end

end

73



C.3 Diabetes Simulation

Listing 3: Matlab code: The Simulation for Diabetes data
%This code c r e a t e s 100 s i m u l a t i o n s o f a d a t a s e t an c a l c u l a t e s t h e

%p r o p o r t i o n e x p l a i n e d f o r each c o m p u t a t i o n a l s t e p f o r LAR, LASSO, S t a g e w i s e

%and S t e p w i s e f o r e v e r y s i m u l a t i o n . Which i s p r i n t e d i n a graph .

%o b t a i n i n g t h e a c t u a l mu

[ ˜ , ˜ , mu set , ˜ , ˜ , ˜ ] = LARS(X1 , y , 10 , ’ l a r s ’ , ’ f a l s e ’ , ’ f a l s e ’ ) ;
mut=mu set ;
e p s i l o n = y − mut ;

a v g p r o p o r t i o n e x p l a i n e d l a r s = [ ] ; % i n i t i a l i s i n g

avg proport ion explained LASSO = [ ] ;
a v g e x p l a i n e d s t a g e w i s e = [ ] ;
a v g p r o p o r t i o n e x p l a i n e d s t e p w i s e = [ ] ;
a v g p r o p o r t i o n e x p l a i n e d s t a g e w i s e = [ ] ;
avg size alpha LASSO = [ ] ;
a v g s i z e a l p h a s t a g e w i s e = [ ] ;
a v e r a g e s i z e a l p h a s t a g e w i s e = [ ] ;
randoms = [ ] ;
q u e s t i o n = [ ] ;

i =1; %s i m u l a t e 100 t i m e s

while i <=100

p r o p o r t i o n e x p l a i n e d l a r s = [ ] ; % i n i t i a l i s i n g w i t h i n t h e l o o p

proportion explained LASSO = [ ] ;
p r o p o r t i o n e x p l a i n e d s t a g e w i s e = [ ] ;
p r o p o r t i o n e x p l a i n e d s t e p w i s e = [ ] ;
e p s i l o n s t a r = [ ] ;

random = r a n d i ( [ 1 4 4 2 ] , 1 , 4 4 2 ) ; %f i n d i n g a v e c t o r o f 442 random i n t e g e r s be tween 1 , 442

randoms=[randoms ; rng ] ; %s a v i n g t h e random v a l u e s f o r t h e s a k e o f r e p r o d u c t i o n

q=1;
while q<=442 %by u s i n g t h e random v e c t o r , c r e a t e a s i m u l a t e d e r r o r v e c t o r

e p s i l o n s t a r =[ e p s i l o n s t a r ; e p s i l o n ( random ( q ) ) ] ;
q=q+1;

end

y s t a r= mut+e p s i l o n s t a r ; o b t a i n the s i m u l a t e d y

[ ˜ , ˜ , ˜ , mus , ˜ , ˜ ] = LARS(X, y s t a r , 40 , ’ l a r s ’ , ’ f a l s e ’ , ’ f a l s e ’ ) ;
%run 40 s t e p s o f l a r s and s a v e t h e mu o b t a i n e d i n each s t e p

q=1;
while q<=40 %c a l u l a t e t h e p r o p o r t i o n e x p l a i n e d f o r each s t e p

mu minus=mus ( : , q)−mut ;
pe= sum(mut . ’ ∗ mut ) ;
s e= sum( mu minus . ’ ∗ mu minus ) ;
pe=1−s e / pe ;
p r o p o r t i o n e x p l a i n e d l a r s =[ p r o p o r t i o n e x p l a i n e d l a r s pe ] ;
q=q+1;

end

a v g p r o p o r t i o n e x p l a i n e d l a r s =[ a v g p r o p o r t i o n e x p l a i n e d l a r s ; p r o p o r t i o n e x p l a i n e d l a r s ] ;

[ ˜ , ˜ , ˜ , mus , ˜ , s i z e a l p h a ] = LARS(X, y s t a r , 40 , ’LASSO ’ , ’ f a l s e ’ , ’ f a l s e ’ ) ;
%run 40 s t e p s o f LASSO and s a v e t h e mu and t h e amount o f v a r i a b l e s i n a lpha , i n each s t e p

q=1;
while q<=40 %c a l c u l a t e t h e p r o p o r t i o n e x p l a i n e d f o r each s t e p

mu minus=mus ( : , q)−mut ;
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mu minus trans=mu minus . ’ ;
pe= sum(mut . ’ ∗ mut ) ;
s e= sum( mu minus trans ∗mu minus ) ;
pe=1−s e / pe ;
proportion explained LASSO =[ proportion explained LASSO pe ] ;
q=q+1;

end

avg proport ion explained LASSO =[ avg proport ion explained LASSO ; proportion explained LASSO ] ;
avg size alpha LASSO =[ avg size alpha LASSO ; s i z e a l p h a ] ;

[ mus , s t e p ] = s t e p w i s e (X, y s t a r , 6000 , ’ s t a g e w i s e ’ ) ;
%run u n t i l l 40 v a r i a b l e s i n t h e model

q=1;

while q<=40 %c a l c u l a t e t h e p r o p o r t i o n e x p l a i n e d f o r each s t e p

mu minus=mus ( : , q)−mut ;
mu minus trans=mu minus . ’ ;
pe= sum(mut . ’ ∗ mut ) ;
s e= sum( mu minus trans ∗mu minus ) ;
pe=1−s e / pe ;
p r o p o r t i o n e x p l a i n e d s t a g e w i s e =[ p r o p o r t i o n e x p l a i n e d s t a g e w i s e pe ] ;
q=q+1;

end

a v g p r o p o r t i o n e x p l a i n e d s t a g e w i s e =[ a v g p r o p o r t i o n e x p l a i n e d s t a g e w i s e ; p r o p o r t i o n e x p l a i n e d s t a g e w i s e ] ;
a v g s i z e a l p h a s t a g e w i s e =[ a v g s i z e a l p h a s t a g e w i s e ; s t e p ] ;

[ mus , s t e p ] = s t e p w i s e (X, y s t a r , 1000 , ’ s t e p w i s e ’ ) ;
%run 40 s t e p s o f s t e p w i s e and s a v e t h e mu and t h e amount o f v a r i a b l e s i n a lpha , i n each s t e p

q=1;
while q<=40 %c a l c u l a t e t h e p r o p o r t i o n e x p l a i n e d f o r each s t e p

mu minus=mus ( : , q)−mut ;
mu minus trans=mu minus . ’ ;
pe= sum(mut . ’ ∗ mut ) ;
s e= sum( mu minus trans ∗mu minus ) ;
pe=1−s e / pe ;
p r o p o r t i o n e x p l a i n e d s t e p w i s e =[ p r o p o r t i o n e x p l a i n e d s t e p w i s e pe ] ;
q=q+1;

end

a v g p r o p o r t i o n e x p l a i n e d s t e p w i s e =[ a v g p r o p o r t i o n e x p l a i n e d s t e p w i s e ; p r o p o r t i o n e x p l a i n e d s t e p w i s e ] ;

i=i +1;
end

f i n a l p r o p o r t i o n= [ ] ; %c r e a t e t h e a v e r a g e v e c t o r s f o r ’ f i g u r e 5 ’

f i n a l p r o p o r t i o n =[mean( a v g p r o p o r t i o n e x p l a i n e d l a r s , 1) ; mean( avg proportion explained LASSO , 1 ) ] ;
f i n a l p r o p o r t i o n =[ f i n a l p r o p o r t i o n ; mean( a v g p r o p o r t i o n e x p l a i n e d s t e p w i s e , 1) ] ;
f i n a l p r o p o r t i o n =[ f i n a l p r o p o r t i o n ; mean( a v g p r o p o r t i o n e x p l a i n e d s t a g e w i s e , 1 ) ] ;
f i n a l s t e p s = [ ] ;
f i n a l s t e p s= [ s t e p ; mean( avg size alpha LASSO , 1) ; s t e p ; s t e p ] ;

plot ( f i n a l s t e p s . ’ , f i n a l p r o p o r t i o n . ’ , ’ DisplayName ’ , ’ f i n a l p r o p o r t i o n ’ ) ; %f i g u r e 5

xlabel ( ’ number o f terms i n c l u d e d ’ )
ylabel ( ’ p r o p o r t i o n e x p l a i n e d ’ )
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C.4 Simulation one

Listing 4: Matlab code: Generating Simulation one
function [ y , X]= s i m u l a t i o n ( s t e p )
%t h i s f u n c t i o n r e t u r n s a s i m u l a t e d d a t a s e t , f o r a g i v e n s t e p i n t h e

%p r o c e s s . This s i m u l a t i o n c o n c u r s w i t h S i m u l a t i o n one

b e t a 1 =3∗ones ( [ 1 1 5 ] ) ; %r e l e v a n t v a r i a b l e s

b e t a 2=zeros ( [ 1 2 5 ] ) ; %i r r e l e v a n t v a r i a b l e s

beta=[ b e t a 1 b e t a 2 ] ;
sigma =15;

i f s t e p==1 %s e t t h e amount o f o b s e r v a t i o n s

n=500;
e l s e i f s t e p==2

n=50;
e l s e

n=400;
end

X= [ ] ;
e p s i l o n= randn ( [ n 1 ] ) ;
i =1;
Z 1=randn ( [ n 1 ] ) ; %c r e a t e t h r e e s e t s o f grouped v a r i a b l e s

Z 2=randn ( [ n 1 ] ) ;
Z 3=randn ( [ n 1 ] ) ;
while i <=40

i f i <=5
e p s i l o n i =0.1∗randn ( [ n 1 ] ) ;

x= Z 1 +e p s i l o n i ;
e l s e i f i <=10

e p s i l o n i =0.1∗randn ( [ n 1 ] ) ;
x= Z 2 +e p s i l o n i ;

e l s e i f i <=15
e p s i l o n i =0.1∗randn ( [ n 1 ] ) ;
x= Z 3 +e p s i l o n i ;

e l s e

x= randn ( [ n 1 ] ) ;
end

X=[X x ] ;
i=i +1;

end

i f s t e p==1
X=X;
y=X∗beta . ’ +sigma ∗ e p s i l o n ; %c r e a t e t h e d a t a s e t

e l s e i f s t e p==2
X=X;
y=X∗beta . ’ +sigma ∗ e p s i l o n ;

e l s e

X=X;
y=X∗beta . ’ +sigma ∗ e p s i l o n ;

end

end
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C.5 Simulation two

Listing 5: Matlab code: Generating Simulation two
function [ y , X]= s i m u l a t i o n ( s t e p )
%t h i s f u n c t i o n r e t u r n s a s i m u l a t e d d a t a s e t , f o r a g i v e n s t e p i n t h e

%p r o c e s s . This s i m u l a t i o n c o n c u r s w i t h S i m u l a t i o n two

b e t a 1 =3∗ones ( [ 1 2 4 0 ] ) ; %r e l e v a n t v a r i a b l e s

b e t a 2=zeros ( [ 1 3 6 0 ] ) ; %i r r e l e v a n t v a r i a b l e s

beta=[ b e t a 1 b e t a 2 ] ;
sigma =15;

i f s t e p==1 %s e t t h e amount o f o b s e r v a t i o n s

n=500;
e l s e i f s t e p==2

n=50;
e l s e

n=400;
end

X= [ ] ;
e p s i l o n= randn ( [ n 1 ] ) ;
i =1;
Z 1=randn ( [ n 1 ] ) ; %c r e a t e t h r e e s e t s o f grouped v a r i a b l e s

Z 2=randn ( [ n 1 ] ) ; %t h i s p r o c e d u r e f o l l o w s H a s t i e e t a l .

Z 3=randn ( [ n 1 ] ) ;
while i <=600

i f i <=80
e p s i l o n i =0.1∗randn ( [ n 1 ] ) ;

x= Z 1 +e p s i l o n i ;
e l s e i f i <=160

e p s i l o n i =0.1∗randn ( [ n 1 ] ) ;
x= Z 2 +e p s i l o n i ;

e l s e i f i <=240
e p s i l o n i =0.1∗randn ( [ n 1 ] ) ;
x= Z 3 +e p s i l o n i ;

e l s e

x= randn ( [ n 1 ] ) ;
end

X=[X x ] ;
i=i +1;

end

i f s t e p==1 %t h e v a l i d a t i o n s e t / t r a i n i n g / t e s t i n g s e t

X=X;
y=X∗beta . ’ +sigma ∗ e p s i l o n ;
e l s e i f s t e p==2

X=X;
y=X∗beta . ’ +sigma ∗ e p s i l o n ;

e l s e

X=X;
y=X∗beta . ’ +sigma ∗ e p s i l o n ;

end

end
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C.6 Train EN

Listing 6: Matlab code: Training EN
function [ alpha , lambda ] = EN train ing (X, y )
%This f u n c t i o n t r a i n s EN on a d a t a s e t and o u t p u t s o p t i m a l c o m b i n a t i o n s o f

%a l p h a and lambda f o r s i m u l a t i o n two

alpha mse = [ ] ;
b e t a s = [ ] ;
lambdas = [ ] ;
y 1 = [ ] ;
X 1 = [ ] ;
y 2 = [ ] ;
X 2 = [ ] ;
y 3 = [ ] ;
X 3 = [ ] ;
y 4 = [ ] ;
X 4 = [ ] ;
y 5 = [ ] ;
X 5 = [ ] ;
y 6 = [ ] ;
X 6 = [ ] ;
y 7 = [ ] ;
X 7 = [ ] ;
y 8 = [ ] ;
X 8 = [ ] ;
y 9 = [ ] ;
X 9 = [ ] ;
y 10 = [ ] ;
X 10 = [ ] ;

random = r a n d i ( [ 1 5 0 0 ] , 1 , 5 0 0 ) ; %s p l i t t h e d a t a s e t f o r c r o s s v a l i d a t i o n

i =1;
while i <=500

i f random ( i ) <=50
y 1 =[ y 1 ; y ( i ) ] ;
X 1=[X 1 ; X( i , : ) ] ;

e l s e i f 50< random ( i ) <=100
y 2 =[ y 2 ; y ( i ) ] ;
X 2=[X 2 ; X( i , : ) ] ;
e l s e i f 100< random ( i ) <=150
y 3 =[ y 3 ; y ( i ) ] ;
X 3=[X 3 ; X( i , : ) ] ;
e l s e i f 150< random ( i ) <=200
y 4 =[ y 4 ; y ( i ) ] ;
X 4=[X 4 ; X( i , : ) ] ;
e l s e i f 200< random ( i ) <=250
y 5 =[ y 5 ; y ( i ) ] ;
X 5=[X 5 ; X( i , : ) ] ;
e l s e i f 250< random ( i ) <=300
y 6 =[ y 6 ; y ( i ) ] ;
X 6=[X 6 ; X( i , : ) ] ;
e l s e i f 300< random ( i ) <=350
y 7 =[ y 7 ; y ( i ) ] ;
X 7=[X 7 ; X( i , : ) ] ;
e l s e i f 350< random ( i ) <=400
y 8 =[ y 8 ; y ( i ) ] ;
X 8=[X 8 ; X( i , : ) ] ;
e l s e i f 400< random ( i ) <=450
y 9 =[ y 9 ; y ( i ) ] ;
X 9=[X 9 ; X( i , : ) ] ;
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e l s e

y 10 =[ y 10 ; y ( i ) ] ;
X 10=[X 10 ; X( i , : ) ] ;

end

i=i +1;
end

X=[X 1 ; X 2 ; X 3 ; X 4 ; X 5 ; X 6 ; X 7 ; X 8 ; X 9 ; X 10 ] ;
y=[ y 1 ; y 2 ; y 3 ; y 4 ; y 5 ; y 6 ; y 7 ; y 8 ; y 9 ; y 10 ] ;

a l p h a v a l = [ ] ;
lambda val = [ ] ;

k=1;
while k<=10 %c r o s s v a l i d a t i o n

a l p h a t e s t = [ ] ;
l a m b d a t e s t = [ ] ;
m s e t e s t = [ ] ;

t r a i n x = [ ] ;
t r a i n y = [ ] ;
v a l i d a t e X=X( ( k−1)∗50+1 : k ∗50 , : ) ;
v a l i d a t e y=y ( ( k−1)∗50+1 : k ∗ 5 0 ) ;

t r a i n x =[ t r a i n x ; X( 1 : ( k −1)∗50 , : ) ; X( k ∗ 5 0 : 500 , : ) ] ;
t r a i n y =[ t r a i n y ; y ( 1 : ( k −1)∗50) ; y ( ( k ) ∗ 5 0 : 5 0 0 ) ] ;

i =1;
while i <=10 %o p t i m i z e lambda on 10 t y p e s o f a l p h a

alpha=i / 1 0 ;
[ ˜ , F i t I n f o ] = l a s s o ( t r a i n x , t r a i n y , ’ Alpha ’ , alpha , ’CV ’ , 1 0 ) ;

%EN f o r g i v e n a l p h a and ten−f o l d c r o s s v a l i d a t i o n

idxLambda1SE = F i t I n f o . Index1SE ;
a l p h a t e s t =[ a l p h a t e s t alpha ] ;
l a m b d a t e s t =[ l a m b d a t e s t F i t I n f o . Lambda1SE ] ;

%v a l i d a t e t h e a l p h a lambda c o m b i n a t i o n

[ ˜ , F i t I n f o ] = l a s s o ( v a l i d a t e X , v a l i d a t e y , ’ Alpha ’ , alpha , ’Lambda ’ , F i t I n f o . Lambda1SE ) ;
%EN f o r g i v e n lambda and a l p h a

MSE est= F i t I n f o .MSE;
m s e t e s t =[ m s e t e s t MSE est ] ; %f i n d t h e MSE

i=i +1;
end

[ ˜ , index ]= min( m s e t e s t ) ; %s a v e t h e o p t i m a l lambda and a l p h a

lambda val =[ lambda val l a m b d a t e s t ( index ) ] ;
a l p h a v a l =[ a l p h a v a l a l p h a t e s t ( index ) ] ;

k=k+1;
end

alpha=a l p h a v a l ;
lambda=lambda val ;

end
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C.7 Optimize EN

Listing 7: Matlab code: Optimizing EN
function [ b e t a e n ]= E N v a l i d a t i o n (X, y , alpha , lambda )
%t h i s f u n c t i o n i n p u t s a d a t a s e t , and c o m b i n a t i o n s o f a l p h a and lambda

%and o u t p u t s t h e o p t i m a l EN c o e f f i c i e n t s f o r t h e d a t a s e t

i =1;
b e t a s = [ ] ;
MSE= [ ] ;
while i <=10 %perform EN f o r a l l a lpha , lambda c o m b i n a t i o n s

[ B, F i t I n f o ] = l a s s o (X, y , ’ Alpha ’ , alpha ( i ) , ’Lambda ’ , lambda ( i ) ) ;
MSE=[MSE F i t I n f o .MSE ] ;
b e t a s =[ b e t a s B ] ;
i=i +1;
end

[ ˜ , index ]= min(MSE) ; %f i n d t h e o p t i m a l c o m b i n a t i o n

b e t a e n=b e t a s ( : , index ) ; %o u t p u t t h e c o e f f i c i e n t s

end

C.8 Validation

Listing 8: Matlab code: Generating the MSE for models
function [ mse ] = v a l i d a t i o n (X, y , beta )
%u s i n g a d a t a s e t and g i v e n c o e f f i c i e n t s t o o u t p u t t h e MSE

[ k ,˜ ]= s i z e (X) ;
e s t i m a t e= X∗beta ;
mse=1/k ∗sum( ( y−e s t i m a t e ) . ˆ 2 ) ;
end
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C.9 LAR with Risk

Listing 9: Matlab code: Generating The optimal LAR
function [ beta ]=LAR( y , X, maxsteps )
%t h i s f u n c t i o n works t h e same as t h e p r e v i o u s l a r method

%however a l l i r r e l e v a n t code i s removed , o n l y LAR remains

%i t i n p u t s a d a t a s e t and a maximum o f s t e p s and o u t p u t s t h e o p t i m a l

%c o e f f i c i e n t s

[ k , n]= s i z e (X) ;
r i s k = [ ] ;
s t an d a r d y=std ( y ) ;
X trans= X . ’ ;
y t r a n s= y . ’ ;
mu=zeros ( [ k 1 ] ) ;
beta= zeros ( [ n 1 ] ) ;
b e t a p r e v i o u s = zeros ( [ n 1 ] ) ;
alpha= [ ] ;
g a l p h a = [ ] ;
A alpha= [ ] ;
w alpha = [ ] ;
u alpha = [ ] ;
gamma= [ ] ;
a = [ ] ;
s i z e a l p h a = [ ] ;
s t e p = [ ] ;
Absolutec= [ ] ;
Maximum correlation = [ ] ;
b e t a s = [ ] ;
b e t a s =[ b e t a s beta ] ;
betasum = [ ] ;
betasum =[ betasum 0 ] ;
a l l C = [ ] ;
mus = [ ] ;

i =1;
while i<=maxsteps && length ( alpha)< n

c h a t= X trans ∗( y−mu ) ;

C o p t i o n a l =[1: n ] ;
r=length ( alpha ) ;
q=1;

while q<=n
u=1;
i n a l p h a =0;
while u<=r

i f q == alpha ( u )
i n a l p h a=i n a l p h a +1;

end

u=u+1;
end

i f i n a l p h a==0
C o p t i o n a l ( q)= c h a t ( q ) ;

e l s e

C o p t i o n a l ( q)= 0 ;
end

q=q+1;
end
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[ C hat , j ]= max( abs ( C o p t i o n a l ) ) ;
alpha= [ alpha j ] ;

r= length ( alpha ) ;
ones= [ ] ;
s j =[1: r ] ;
u=1;
X alpha = [ ] ;
while u<=n

q=1;
while q<=r

i f u==alpha ( q ) && c h a t ( u)>=0
s j ( q)= 1 ;
X alpha ( : , q)= 1∗X( : , u ) ;
ones =[1 ones ] ;

e l s e i f u==alpha ( q )
s j ( q)= −1;
X alpha ( : , q)= −1∗X( : , u ) ;
ones =[1 ones ] ;

end

q=q+1;
end

u=u+1;
end

X a l p h a t r a n s=X alpha . ’ ;
o n e s t r a n s=ones . ’ ;

g a l p h a= X a l p h a t r a n s ∗ X alpha ;
i n v e r t g a l p h a= inv ( g a l p h a ) ;

A alpha1= ( ones ∗ i n v e r t g a l p h a ∗ o n e s t r a n s ) ;
A alpha= 1/( sqrt ( A alpha1 ) ) ;

w alpha= A alpha ∗ i n v e r t g a l p h a ∗ o n e s t r a n s ;

u alpha= X alpha ∗ w alpha ;

a= X trans ∗ u alpha ;

gamma= [ ] ;
q=1;
t e s t = [ ] ;
while q<=(n −1)

u=1;
i n a l p h a =0;
while u<=r

i f q == alpha ( u )
i n a l p h a=i n a l p h a +1;

end

u=u+1;
end

i f i n a l p h a==0

derde= ( C hat−c h a t ( q ) ) / ( A alpha − a ( q ) ) ;
t e s t= [ t e s t derde ] ;
i f derde >0

gamma=[gamma derde ] ;
end
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z e s d e= ( C hat+c h a t ( q ) ) / ( A alpha +a ( q ) ) ;
t e s t= [ t e s t z e s d e ] ;
i f zesde >0

gamma=[gamma z e s d e ] ;
end

end

q=q+1;
end

gamma estimated=min(gamma) ;
i f r==n

gamma estimated=C hat / A alpha ;
end

q=1;
while q<=n

u=1;
while u<=r

i f q == alpha ( u )

beta ( q)=beta ( q ) + gamma estimated ∗ s j ( u )∗ w alpha ( u ) ;
end

u=u+1;
end

q=q+1;
end

b e t a s =[ b e t a s beta ] ;

mu= mu + gamma estimated ∗ u alpha ;
r=length ( alpha ) ;
s i z e a l p h a =[ s i z e a l p h a r ] ;
s t e p= [ s t e p i ] ;
mus=[mus mu ] ;

t u s s e n= y−mu; %c a l c u l a t e t h e r i s k component f o r each s t e p

t u s s e n 2= sum( t u s s e n . ’ ∗ t u s s e n ) ;
r i s k y =( t u s s e n 2 )/ s t a n da r d y . ˆ 2 − k + 2∗ i ;

r i s k =[ r i s k ; r i s k y ] ;

i=i +1;
end

[ ˜ , index ]= min( r i s k ) ; %o u t p u t t h e c o e f f i c i e n t s f o r t h e minimal r i s k

beta=b e t a s ( : , index ) ;
end

83



C.10 Run the LAR, EN simulation

Listing 10: Matlab code: Comparing the MMSE for EN and LAR
%t h i s f u n c t i o n works w i t h e i t h e r s i m u l a t i o n one or two .

%f o r a c e r t a i n amount o f s i m u l a t i o n s ( s i m u l a t i o n one =10)

%( s i m u l a t i o n two =3) , t h e o p t i m a l model f o r LAR and EN are found and t h e MSE

%r e p o r t e d .

%o v e r a l l s i m u l a t i o n s , t h e MMSE i s c a l c u l a t e d

mse EN = [ ] ;
mse LAR = [ ] ;
i =1;

while i<=a m o u n t o f s i m u l a t i o n s

%S i m u l a t i n g a t r a i n i n g s e t

[ y , X]= s i m u l a t i o n ( 1 ) ;
%t r a i n i n g t h e LAR on t h e t r a i n i n g s e t

[ b e t a l a r ]=LAR( y , X, max steps ) ; %m a x s t e p s : s e t 500 f o r s i m u l a t i o n two

%t r a i n i n g EN on t h e t r a i n i n g s e t

[ alpha , lambda ] = EN train ing (X, y ) ;
%o p t i m i z i n g EN on t h e t r a i n i n g s e t

[ b e t a e n ]= E N v a l i d a t i o n (X, y , alpha , lambda ) ;

%v a l i d a t i o n

[ y , X]= s i m u l a t i o n ( 3 ) ;
[MSE LAR] = v a l i d a t i o n (X, y , b e t a l a r ) ;
mse LAR=[mse LAR MSE LAR ] ;
[ MSE EN ] = v a l i d a t i o n (X, y , b e t a e n ) ;
mse EN=[mse EN MSE EN ] ;

i=i +1;
end

MMSE lar=median( mse LAR ) ; %g e n e r a t i n g t h e MMSE f o r LAR and EN

MMSE en=median( mse EN ) ;
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