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1 Introduction

When studying the dynamics of consumption growth, persistence properties play a significant

role in the discovery of long-run risk. Ortu, Tamoni, and Tebaldi (2013) highlight the problem

that arises while trying to detect the long-run risk in practice; namely that standard statistical

tests fail to distinguish a time series from white noise and thus are not able to estimate the

highly persistent components embedded in these series. The reason behind this is that these

persistent components only account for a slight fraction of the total volatility.

Any time series can be considered as a 1-Dimensional (henceforth, 1-D) signal, this is where

wavelet transforms can make a difference. Tangirala, Mukhopadhyay, and Tiwari (2013) call

attention to the immense relevance wavelet transforms have had in numerous fields, econometrics

among others, over the past three decades. This reason for this, it being a useful tool for

the analysis of signals (Schimmack, Nguyen, and Mercorelli 2016), a multiresolution analysis

in particular in this paper. Wavelet transforms facilitate the use of a multi-scale framework

in which one is able to decompose any 1-D signal into components at a number of different

resolutions, labeled by a certain scale parameter.

This paper makes use of a certain kind of wavelet transforms, namely Discreet Wavelet

Transform (henceforth, DWT). In a DWT, the wavelets are discretely sampled. Given a time

series, DWT can be used at each level of persistence, up to the largest desirable level, which

results in a full decomposition of the original time series. DWT has a fundamental advantage

over the generally used Fourier Transforms, temporal resolution. This means that its functions

are able to capture information both in the time and the frequency domain, i.e. the location

in time (Holschneider et al. 1990). Therefore, DWT is preferred as it can accurately provide

information about frequencies at certain times because of its better resolution (Schimmack,

Nguyen, and Mercorelli 2016). In addition, it is more suitable for capturing signals with sharp

spikes, which are frequent in growth time series.

Ortu, Tamoni, and Tebaldi (2013) propose a method to decompose a time series based on the

level of aggregation, in other words, the persistence of the components which make up the time

series. This method relies on a specific DWT, namely the Haar wavelet as introduced by Haar

(1909). Different spaces of shock segregate layers generated by the time series based on their

half-life. Therefore, economic events that take place at distinct time scales can be captured.

This persistence based decomposition has essential implications in practice for the predictability

of consumption growth, the intertemporal elasticity of substitution (henceforth, IES), and the

equity premia generated by holding cash flows.

Ortu, Tamoni, and Tebaldi (2013) bring forward the empirical pricing implications the high-
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persistence components induce in practice. Financial agents who have recursive preferences wish

to receive a long-run risk premium for maintaining cash flows whose future shocks are positively

correlated with the fluctuations in consumption growth. In order to price the predictable com-

ponents of consumption growth, a comprehensive analysis has to be performed on a long-run

risk economy in which these components are the exogenous driving variables of the economy.

For more a extensive explanation I refer to their Ortu, Tamoni, and Tebaldi (2013), since this

is not the main topic of this paper.

The approach of Ortu, Tamoni, and Tebaldi (2013) differs on this aspect in terms of pricing,

in comparison to the previous literature by Bansal and Yaron (2004). Ortu, Tamoni, and Tebaldi

(2013) price the different components of consumption growth with each one corresponding to a

specific level of persistence. The focus is thus on the entire term structure of consumption risk

and not as much on the long-run risk itself.

In this paper, I attempt to replicate and discuss the following findings of Ortu, Tamoni,

and Tebaldi (2013). Firstly, with regard to distinguishing a time series from white noise by

means of Monte Carlo simulations based on a multi-scale autoregressive process. Secondly,

concerning consumption growth and its predictability by determining the optimal number of

components through a variance ratio test, identifying proxies that exhibit comovements and

testing the predictability of consumption and dividend components by the price-dividend ratio

and the price-consumption ratio. Thirdly, I reproduce the IES estimates and the multi-scale

autoregressive process estimates which I use to reconstruct the equity premia and its term

structure at different levels of persistence. Finally, I test the robustness of the findings with the

use of annual data.

In addition, I extend their research by deploying the decomposition on other macroeconomic

variables, together with the use of more recent data. I concentrate my analysis on the three

respective growth series of income, measured by the GDP, consumption and investment. I

discuss the findings in a macroeconomic context.

In conclusion, the research question of this paper is stated as follows: how can the persistent

components be uncovered and what is the impact of persistence properties of consumption

growth and other macroeconomic variables on their predictability and the term structure of risk

premia?

In the continuation of this paper I discuss the necessary methodology related to my research.

Furthermore, I describe the data set in detail for the replication and the extension part. In the

next step I provide and explain the produced results. Finally, I interpret the main findings in

the conclusion. Results I do not find key to my research are shown in the Appendix.
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2 Methodology

2.1 Time series decomposition

The decomposition of a given time series {gt}t∈Z into different components, each corresponding

to a specific level of aggregation or time scale, start with the following. I first consider, following

the notation of Ortu, Tamoni, and Tebaldi (2013), sample means. I construct these sample

means, i.e. moving averages, over a certain interval by looking at a window of observations in

the past of size 2j :

π
(j)
t = 1

2j
2j−1∑
p=0

gt−p (1)

where j ≥ 1 and π(0)
t ≡ gt (indicating that the first observation is equivalent to the ’first’ sample

mean of size 20 = 1). Hereafter, I formulate g(j)
t which make up j different, newly derived time

series {g(j)
t }t∈Z , the components with aggregation level j, by taking the difference of the moving

averages over an interval of sizes 2j−1 and 2j :

g
(j)
t = π

(j−1)
t − π(j)

t (2)

where the sample mean over a 2j-long period, π(j)
t , serves as a low band pass filter that attenuates

all the components, i.e. signals, of which the frequency exceeds 2j . This entails that when a

higher order filter (in j), π(j)
t , is applied, only the low frequency components remain and therefore

shifting the focus to the longer term. Thus, g(j)
t contains the shocks of which the frequency lies

on the interval [2j−1,2j). In other words, g(j)
t now only incorporates the fluctuations that have

a half-life between 2j−1 and 2j periods.

To illustrate, I assume the original time series {gt}t∈Z is observed at quarterly intervals and

has a length of 1 year, i.e. 4 periods. Consequently, the {g(1)
t }t∈Z component captures shocks

with a quarterly frequency resolution lying on the interval 1 - 2 quarters after applying the two

period ’π(1)
t -filter’. Subsequently, {g(2)

t } contains the shocks with a 2 - 4 quarter frequency and

π
(2)
t symbolizes a long-run average as it captures shocks that exceed a half-life of 2J = 4 periods,

where J represents the largest possible level of aggregation given the original time series. The

maximum number for J given T = 2J observations is equal to log2(T ).

In conclusion, the original time series gt can be expressed as the sum over j-different, 1 ≤

j ≤ J , components and a long-run average:

gt =
J∑
j=1

g
(j)
t + π

(J)
t ∀ J ≥ 1 (3)

The components are constructed with the use of overlapping moving averages which may

lead to a serial correlation in the components that is not actually present in the original time
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series. This can cause a biased analysis of the time series and should thus be avoided. The

solution to this problem is to decimate the different components, hereby eliminating all serial

correlation. The process of decimation maintains only the observations that are relevant for

reconstructing the original time series gt and can be understood as follows:

{g(j)
t , t = k2j , k ∈ Z} (4)

{π(j)
t , t = k2j , k ∈ Z} (5)

where for the j-th component a 2j ’jump’ is taken between observations to ensure no false serial

correlation is present in the component. This process is characterized by the use of a scaled Haar

matrix, the (2jx2j) operator τ (j) , that produces the decimated components. For illustration I

take the J = 3 case:

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

1/8 1/8 1/8 1/8 −1/8 −1/8 −1/8 −1/8

1/4 1/4 −1/4 −1/4 0 0 0 0

0 0 0 0 1/4 1/4 −1/4 −1/4

1/2 −1/2 0 0 0 0 0 0

0 0 1/2 −1/2 0 0 0 0

0 0 0 0 1/2 −1/2 0 0

0 0 0 0 0 0 1/2 −1/2





gt

gt−1

gt−2

gt−3

gt−4

gt−5

gt−6

gt−7



=



π
(3)
t

g
(3)
t

g
(2)
t

g
(2)
t−4

g
(1)
t

g
(1)
t−2

g
(1)
t−4

g
(1)
t−6



(6)

where the (8x8) matrix is τ (3). By pre-multiplying the vector of the decimated components with

(τ (3))(−1), the original time series can be reconstructed. If the number of observations for the

original time series exceeds 2j , this process is simply repeated T
2j times. The appendix contains

a simulation example regarding the benefits of decomposing a time series.

2.2 Variance ratio test

Ortu, Tamoni, and Tebaldi (2013) propose a test to distinguish a white noise process from a

time series that has serially correlated, decimated components. This variance ratio test is based

on a test for serial correlation introduced by Gencay and Signori (2015) (their working paper

is used). The test statistic resembles the ratio between the sample variance of a decimated

component which has T
2j observations, (g(j)

t )
′
g

(j)
t

T

2j
, and the sample variance of the original time

series:

ξ̂j = 2j ∗ (g(j)
t )

′

g
(j)
t

(X(J)
t )

′

X
(J)
t

(7)
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where X(J)
t is the vector containing the time series gt. The null hypothesis of this test is no

serial correlation. In order to be able to reject or not reject the null hypothesis, ξ̂j is rescaled

so it converges to a standard normal distribution:√
T

aj
(ξ̂j −

1
2j ) d−→ N(0, 1) (8)

where aj = binom(2j ,2)
2j(22(j−1)) . This rescaled test statistic can be interpreted as the rescaled deviation

of ξ̂j from the theoretical sample mean 1
2j of the j-th decimated component.

Ortu, Tamoni, and Tebaldi (2013) examine the behaviour of their variance ratio test through

Monte Carlo simulations. This exercise demonstrates that the test displays appropriate power

at the desired level j for which the component has persistence. The replication of this exercise

is added to the appendix.

2.3 Predictive regressions

In order to investigate the predictability of consumption growth (and dividend growth), I run a

series of predictive regressions following Ortu, Tamoni, and Tebaldi (2013):

g
(j)
t+2j = β0,j + β1,jx

(j)
t + ε

(j)
t+2j (9)

where x(j)
t is the j-th component of the price-consumption ratio or the price-dividend ratio and

g
(j)
t+2j is either the j-th component of consumption growth or dividend growth. Notice that the

explanatory variable is from 2j period earlier in comparison to the regressor. For these regressions

I use the redundant, i.e. non-decimated components. Taking the lag of 2j between the regressor

and the corresponding regressand ensures that the OLS estimates are unbiased. However, the

residuals ε(j)
t+2j might be correlated. To account for this issue I use Hansen and Hodrick corrected

t-statistics and standard errors that are heteroskedastic-serial consistent. Hansen and Hodrick

require a specification for the lag. In this case the lag is set equal to 2j − 1, stemming from the

corresponding number of overlapping data points.

2.4 Wavelet-Generalized Least Squares for estimating the IES

The persistence based decomposition has essential implications for the estimation of the IES.

Historically, the approach to estimate the IES, ψ, is done in the following way (Hansen and

Singleton 1983):

rf,t = αf + 1
ψ
gt (10)

where rf,t is the real risk-free rate and gt the consumption growth series. The utilization of

equation (10) often provides an inaccurate estimation of ψ (Ortu, Tamoni, and Tebaldi 2013).
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Therefore, the decomposition of a time series into different components with a certain level of

persistence offers an opportunity to be applied to the IES estimation. Applying the decompo-

sition to both sides of (10) generates the following system of equations:

r
(j)
f,t = αf + 1

ψ
g

(j)
t (11)

where r(j)
f,t and g

(j)
t are the j-th component of the real risk free rate and consumption growth

respectively. Following Fadili and Bullmore (2002), the most efficient way to estimate this set of

restricted equations is using a form of GLS, Wavelet-GLS (henceforth, WLS). They show that

under these conditions, the WLS-estimator is theoretically the closest to the BLUE. Fadili and

Bullmore (2002) propose the following algorithm to estimate such a regression with a restricted

coefficient:

1. Initialize an OLS fit with the use of the regression in (10)

2. Decompose the design matrix X and the y vector using the DWT, obtaining:

Xw (2Jx2) =



1 g
(J+1)
t

1 g
(J)
t

...
...

1 g
(1)
t


and yw (2Jx1) =



r
(J+1)
f,t

r
(J)
f,t
...

r
(1)
f,t


3. Calculate the detail residuals vector (2Jx1) for each persistence level j: dj = yj − xj β̂ for

j = 1,...,J+1 where J+1 is associated with the long term average π(J)
t . yj and xj are r(j)

f,t

and g
(j)
t from equation (11) respectfully.

4. Specify the estimated (2Jx2J) diagonal variance-covariance matrix of the noise (the resid-

uals):

Σ̂j =



SdJ+1

SdJ SdJ−1

SdJ−1


. . . 

Sd1

. . .

Sd1




where Sdj is the variance of dj for j = 1,...,J+1.

5. Estimate the parameter vector β̂ = (X ′wΣ̂j
−1
Xw)−1(X ′wΣ̂j

−1
yw)

6. Go to step 3 and iterate until the change in successive β̂ estimates is smaller than 10−2.
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2.5 Multi-scale autoregressive process

Following Ortu, Tamoni, and Tebaldi (2013), I assume that the components of consumption

growth follow an autoregressive process at different scales. Taken together, the j decimated

components comprise a multi-scale autoregressives system. The process for the decimated com-

ponents g(j)
t can be expressed as follows:

g
(j)
t+2j = ρjg

(j)
t + ε

(j)
t+2j (12)

I highlight the lag of 2j between the regressor and the explanatory variable that ensures he OLS

estimates are unbiased. This can be understood as the j-th lagged decimated component trying

to predict the next 2j periods.

2.6 Term structure of risk premia

The empirical pricing implications the persistent components induce in practice can be measured

by a long-run risk, or equity premium that financial agents who have recursive preferences wish to

receive for holding cash flows whose future shocks are positively correlated with the fluctuations

in consumption growth. In order to price the predictable components of consumption growth,

Ortu, Tamoni, and Tebaldi (2013) perform a comprehensive analysis on a Bansal and Yaron

(2004), long-run risk economy in which these components are the exogenous driving variables of

the economy. Hence, for more a comprehensive explanation I refer to their research since this is

not the main topic of this paper. I highlight only the relevant final estimation equations.

The annualized risk prices are collected in the vector λ̂ε with the elements:

λ̂ε,j = k1(1− θ)Âj ∗
4
2j (13)

where k1 = 0.988, as specified by Ortu, Tamoni, and Tebaldi (2013). θ = 1−γ
1− 1

ψ

, with γ the

risk aversion parameter and ψ the IES. Âj = ρ̂j

β̂1,j
, with ρ̂j the estimate from (12) and β̂1,j the

estimate from (9) with regard to the price-dividend ratio.

The annualized risk exposure for the component at time-scale j is captured by:

Q̂jjÂ
m
j ∗

4
2j (14)

where Q̂ is the estimated variance-covariance matrix from the residuals ε(j)
t+2j in (12). Âmj =

ρ̂j

β̂1,j
, with ρ̂j the estimate from (12) and β̂1,j the estimate from (9) with regard to the price-

consumption ratio.

The annualized equity premium called for by the j-th component can be estimated as a

(scaled) product of the risk price and the risk exposure:

Et,j [rm,t+1 − rf,t] = λ̂ε,jQ̂jjÂ
m
j (15)
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3 Data

3.1 Replication data

The data for replication are made available by one of the co-authors on his website1. In addi-

tion, in appendix A, Ortu, Tamoni, and Tebaldi (2013) elaborate on the used data and on the

construction of the variables that they use in their empirical analysis. Five variables are most

relevant to study the persistence heterogeneity in long-run risk:

1. The growth rates of the log series of consumption (real nondurables and services per capita

in chained (2005) dollars)

2. The growth rates of the log series of dividend

3. The log of the price-dividend ratio

4. The log of the price-consumption ratio

5. The real risk-free rate

Ortu, Tamoni, and Tebaldi (2013) state that the data derive from the Bureau of Economic

Analysis (henceforth, BEA) and the Center for Research in Security Prices (henceforth, CRSP).

All the data are related to the United States.

However, to construct these variables used in the research, transformations or conversions

have to be made from the ’raw’ data. The appendix A does not clearly mention how this is done.

If one seeks to understand how the used variables are exactly constructed, it requires thorough

work.

To test the ability of the components of financial ratios to predict the components of con-

sumption growth and cash flows under persistence heterogeneity, Ortu, Tamoni, and Tebaldi

(2013) use US postwar quarterly data over the period 1947Q2-2011Q4 (259 data points) with

regard to three-month nominal yield, derived from CRSP. To check the robustness for this, they

use an annual series over the period 1930-2010, obtained from CRSP as well.

For the initialization of the filtering procedure used in the detection of the persistent com-

ponents, both quarterly and annual data is used. The quarterly data range over the period

1927Q1-1946Q4 and is collected from the CRSP database. The use of annual data requires the

same amount of data points and thus, observations from further back in time are needed. For

this purpose, Ortu, Tamoni, and Tebaldi (2013) use the annual dataset obtained from Robert

Shiller’s website2.

Lastly, a time series of the annual productivity is used for comparison of the persistent

components. The time series over the period 1948-2011 is from Bureau of Labor Statistics.
1https://andreatamoni.meltinbit.com/events/publications
2http://www.econ.yale.edu/ shiller/data.htm
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In conclusion, the data set provided by the co-author is not structured well and contains a

lot of unused variables. I construct a separate data file, including only the data relevant for my

research. The appendix A lacks on clearly describing what data are exactly used. It requires

detailed research on what has to be done to be able to replicate the results.

3.2 Extension Data

In addition to the file containing the data for the reproduction, I construct a new data set that

includes the data from the original sources. This way, I can include only relevant data for my

research and perform the cleaning myself. This makes it easy to compare with the provided

data set and include more recent data. To study persistence heterogeneity in the long-run in a

macroeconomic context, three variables are relevant for my research:

1. The growth rates of the log series of consumption (real nondurables and services per capita

in chained (2012) dollars)

2. The growth rates of the log series of GDP (real, per capita in chained (2012) dollars)

3. The growth rates of the log series of investment (private residential- and private nonresi-

dential fixed investment in billions of dollars)

The data derive from BEA and are retrieved from the Federal Reserve Bank of St. Louis

(FRED). The effective sample is 1956Q1-2019Q4.

4 Results

4.1 Consumption growth

In this section, I focus on the consequences of applying the time series decomposition on con-

sumption growth with regard to the findings of Ortu, Tamoni, and Tebaldi (2013).

4.1.1 Variance ratio test for consumption growth

The results of applying the variance ratio test to the quarterly consumption growth series over

1948Q1-2011Q4 are reported in Table 1. The shown values are not precisely the same as Ortu,

Tamoni, and Tebaldi (2013) report, however, they are in the same order of magnitude. With

regard to the significance, only the rescaled statistic for the third component is not significant

in my analysis, whereas Ortu, Tamoni, and Tebaldi (2013) do not reject the null hypothesis for

both the third and seventh component.
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Table 1: This table reports the values of the rescaled test statistic for the quarterly consumption

growth series over 1948Q1-2011Q4. Significant values that reject the null hypothesis of no serial

correlation at α = 0.05 are denoted in bold.

Persistence level j = 1 2 3 4 5 6 7√
T
aj

(ξ̂j − 1
2j ) -4.106 -1.978 0.791 5.422 2.027 3.258 2.780

The rejection of a white noise process at several levels of persistence indicates that consumption

growth consists of multiple persistent components.

Following Ortu, Tamoni, and Tebaldi (2013), I determine the optimal number of components

to be extracted from the consumption growth series by sequentially applying the variance ratio

test to {π(j)
t , t = k2j , k ∈ Z} for j = 1,...,7. Since π(J=8)

t only consist out of one observation

that represents the long run average over the period 1948Q1-2011Q4, I do not take into account

this component. π
(j)
t includes the possible shocks with a persistence that exceeds 2j periods.

Thus, the first value of j, for which π
(j)
t cannot be distinguished from white noise, corresponds

to maximum level of persistence in the original time series gt. The results of this sequential

exercise are shown in Table 2.

Table 2: This table reports the values of the rescaled test statistic for the quarterly consumption

growth series over 1948Q1-2011Q4. The component at scale k is extracted from π(J) for J =

1,...,7. Significant values that reject the null hypothesis of no serial correlation at α = 0.05 are

denoted in bold.

Scale k = 1 2 3 4 5 6 7

π(1) -3.907 −0.603 3.313 0.961 2.027 1.779 4.268

π(2) -2.353 1.332 −0.033 0.905 0.872 2.645

π(3) −0.022 −0.703 0.218 0.322 1.672

π(4) −0.873 0.225 0.326 1.686

π(5) −0.261 −0.003 1.155

π(6) −0.167 1.009

π(7) 1

Unfortunately, the results I produce are substantially different from the values reported by Ortu,

Tamoni, and Tebaldi (2013). The first value of j for which (a component of) π(j) does not reject

the null hypothesis, is 3 in my analysis as one can observe from Table 2, contrary to π(7) that

Ortu, Tamoni, and Tebaldi (2013) find. I do not have a clear explanation for this significant
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dissimilarity. It is possible Ortu, Tamoni, and Tebaldi (2013) perform some additional steps in

the testing process that they do not state or, that they handle the data in a peculiar way that

is not explained.

4.1.2 Comovements components of consumption growth

Following Ortu, Tamoni, and Tebaldi (2013), I identify certain economic proxies that exhibit

a significant correlation with the different components of consumption growth for j = 2,...,6.

Firstly, the shocks that are incorporated in g
(2)
t and g

(3)
t that last between 2(2−1) = 2 and

2(3) = 8 periods, i.e. between one half and two years for a quarterly sample, show considerable

correlations with the fourth-quarter growth rate of consumption. This comovement is shown in

Figure 4 in the appendix. This figure is in line with Ortu, Tamoni, and Tebaldi (2013).

Secondly, the fourth and fifth component added together capture fluctuations with a half-life

between 2(4−1) = 8 and 25 = 32 periods, i.e. between two and eight years for a quarterly sample.

The sum of g(4)
t and g(5)

t exhibits a notable (negative) correlation with economic variables related

to the business cycle, namely, the term spread and the default yield spread. The comovement

of the sum of the fourth and fifth component with these business cycle indicators is plotted in

Figure 5 in the appendix which is in compliance with Ortu, Tamoni, and Tebaldi (2013).

Lastly, regarding the identification of an economic proxy for the sixth component of con-

sumption growth that includes shocks that last between 2(6−1) = 32 and 26 = 64 periods, i.e.

between eight and sixteen years for a quarterly sample, Ortu, Tamoni, and Tebaldi (2013) high-

light a considerable correlation with Total Factor Productivity (henceforth, TFP). In particular,

the sixth component filtered out of the TFP growth series. Figure 6 in the appendix shows

the comovement of g(6)
t and the sixth component of TFP growth. This figure is consistent with

Ortu, Tamoni, and Tebaldi (2013).

4.1.3 Predictive regressions for consumption- and dividend growth

To start, I run OLS regressions of the components of the consumption growth series on the

components of the log price-dividend ratio. Figure 7 in the appendix shows the log price-dividend

ratio and the time series of consumption growth. Figure 7 is in line with Ortu, Tamoni, and

Tebaldi (2013). The results of the regressions are displayed in Table 3.
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Table 3: This table reports the OLS estimates, multiplied by -100, of the regression of the

components of the consumption growth, g(j)
t+2j , on the components of the log price-dividend

ratio pd(j)
t . Significant values at α = 0.05 are denoted in bold. Hansen and Hodrick corrected

t-statistics are shown in parenthesis and the adjusted R2 in brackets. The sample period is

1947Q2-2011Q4.

Variable Persistence level j = 1 2 3 4 5 6 7

0.24 0.61 0.48 -0.24 0.24 0.37 0.02

pd
(j)
t (-0.82) (-2.13) (-1.40) (0.65) (-0.90) (-1.85) (3.02)

[0.00] [0.02] [0.03] [0.01] [0.03] [0.19] [0.00]

The results from my regressions are similar to ones Ortu, Tamoni, and Tebaldi (2013) produce.

The values are in the same order of magnitude, however, not exactly the same and the sign of

the estimates is turned around. I suspect their values are multiplied by ’-100’ instead of the

stated ’100’. The corresponding coefficients, with Ortu, Tamoni, and Tebaldi (2013), are labeled

significant, except for the significant coefficient at j = 7 in my analysis. This is most likely due to

an error in my calculations since it is remarkable that a coefficient so close to zero is significant.

I highlight the significant coefficient for j = 6 that is able to explain a substantial part of future

consumption growth with the adjusted R2 equal to 0.19.

Secondly, I run OLS regressions of the components of the consumption growth series on the

components of the log price-consumption ratio. The results are shown in Table 4.

Table 4: This table reports the OLS estimates, multiplied by -100, of the regression of the

components of the consumption growth, g(j)
t+2j , on the components of the log price-consumption

ratio pc(j)
t . Significant values at α = 0.05 are denoted in bold. Hansen and Hodrick corrected

t-statistics are shown in parenthesis and the adjusted R2 in brackets. The sample period is

1947Q2-2011Q4.

Variable Persistence level j = 1 2 3 4 5 6 7

0.31 0.40 0.40 -0.050 0.26 0.15 0.06

pc
(j)
t (-1.53) (-2.37) (-2.46) (0.26) (5.4) (-1.33) (47.64)

[0.00] [0.02] [0.04] [0.00] [0.08] [0.04] [0.03]

Most of the conclusions from the previous regressions apply to this case as well. The results

from my regressions are in agreement with the ones Ortu, Tamoni, and Tebaldi (2013) compute.

The values are in the same order of magnitude, but not exactly the same and the sign of the
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estimates is turned around repeatedly. In my analysis, the coefficients at j = 2, 3, 5 and 7

are labeled significant as opposed to only the estimates for j = 3 and 6 in their regressions.

The significance of the seventh component is likely to be caused by the reason discussed above,

namely that my calculation of the Hansen-Hodrick corrected standard errors contain an error.

I am unable to explain the difference in significant estimates for the other values of j.

To summarize, regarding the predictive power of the financial ratios for future shocks in

consumption growth, I identify a significant second component when using both the price-

consumption and price-dividend ratio. For the third component, only the price-consumption

ratio shows predictive power. Fluctuations with lower frequencies are captured by a significant

sixth component for the price-dividend ratio whereas the fifth components shows predictive

power with the use of the price-consumption ratio.

Finally, I run OLS regressions of the components of the dividend growth series on the compo-

nents of the log price-dividend ratio. The estimated coefficients of these regressions are reported

in Table 5.

Table 5: This table reports the OLS estimates, multiplied by 100, of the regression of the

components of the log dividend growth, g(j)
t+2j , on the components of the log price-dividend

ratio pd(j)
t . Significant values at α = 0.05 are denoted in bold. Hansen and Hodrick corrected

t-statistics are shown in parenthesis and the adjusted R2 in brackets. The sample period is

1947Q2-2011Q4.

Variable Persistence level j = 1 2 3 4 5 6 7

12.04 -2.83 -4.15 2.61 0.026 0.97 1.43

pd
(j)
t (0.87) (-1.92) (-2.23) (1.67) (0.03) (1.32) (-54.30)

[0.00] [0.00] [0.04] [0.04] [0.00] [0.08] [0.28]

My estimates are unfortunately not in line with the coefficients Ortu, Tamoni, and Tebaldi

(2013) generate. The values differ substantially in both order of magnitude and sign. The

components for j = 2 and 3 are significant in my case, whereas the third and sixth component

show predictability in their analysis. Again, the significance of the seventh component is likely

to be caused by the reason discussed earlier.

In conclusion, my results are partially in agreement with Ortu, Tamoni, and Tebaldi (2013).

The different regressions show that consumption growth does contain predictable components

by the corresponding components of the financial ratios.
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4.1.4 IES estimation

Using the WLS-algorithm specified in the methodology section, I estimate the IES for three

different sample periods. The outcome of exercise is reported in Table 6.

Table 6: This table reports the WLS-estimates of ψ, the IES, with the use of the real risk free

rate. The top row uses the full sample 1948Q1-2011Q4 with T = 256 to estimate ψ where

consequently the maximum number of components is eight. The bottom two rows use the

1948Q1-1979Q4 and 1980Q1-2011Q4 sample respectively, both with T = 128 to estimate ψ

where consequently the maximum number of components is seven.

Variable Sample ψ̂

rf,t 1948Q1 - 2011Q4 8.23

rf,t 1948Q1 - 1979Q4 9.97

rf,t 1980Q1 - 2011Q4 4.94

My IES-estimates are in line with the ψ-values Ortu, Tamoni, and Tebaldi (2013) compute.

Despite having the same order of magnitude, the values are not precisely similar as my ψ̂’s

deviate approximately three and one units for the first two rows and the last row respectively.

I do not have a clear explanation for these deviations. I write my own code for the adaption

of the WLS-estimation Gencay and Signori (2015) propose, and thus suspect it can be due to

a difference in the estimation method. Ortu, Tamoni, and Tebaldi (2013) do not distinctly

describe the steps they take or the exact data that is used related to the risk-free rate.

4.1.5 Multi-scale autoregressive process

I estimate ρj in the multi-scale autoregressive system for j = 1,..,7. I report the results of these

regressions in Table 7.

My estimated values for ρj are very close to the ones Ortu, Tamoni, and Tebaldi (2013)

report. My ρ̂j ’s are not more than a hundredth off, except for ρ̂7, that has a deviation of

approximately 0.1. However, in my analysis, only ρ̂2 and ρ̂7 can be labeled as significant,

whereas Ortu, Tamoni, and Tebaldi (2013) find that for j = 2, 5, 6 and 7 the estimates are

significant.

I point out that the half-lives I obtain are calculated by a different formula Ortu, Tamoni,

and Tebaldi (2013) use. Their stated formula for this does not provide the correct values, even

in their own tables. Consequentially, I suspect they use the formula I provide in Table 7. In

Table 7, I report only the half-lives of the significant coefficients in my analysis, which deviate
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from Ortu, Tamoni, and Tebaldi (2013) for the straightforward reason that my ρ̂j ’s are different.

Tables 8 and 14 contain all the estimated half-lives.

Table 7: This table reports the estimates of ρj for the regressions of g(j)
t+2j on its own lagged

component g(j)
t , for j = 1,..,7. Significant values at α = 0.05 are denoted in bold. Hansen

and Hodrick corrected t-statistics are shown in parenthesis and the adjusted R2 in brackets.

Half-lives in annual units are calculated by: − ln(2)
ln(|ρj |) ∗

2j
4 . The sample period is 1947Q2-2010Q4.

Variable ρ̂j Half-life (years)

g(1)
t+21 -0.01 (-0.08) - [0.00]

g(2)
t+22 -0.16 (-2.74) 0.4 [0.03]

g(3)
t+23 -0.11 (-0.88) - [0.01]

g(4)
t+24 -0.08 (-0.47) - [0.00]

g(5)
t+25 -0.14 (-0.94) - [0.02]

g(6)
t+26 -0.23 (-1.07) - [0.09]

g(7)
t+27 0.26 (-4.51) 16.4 [0.12]

4.1.6 Term structure of risk premia

With the use of the equations (13) - (15) discussed in the methodology section, I estimate the

annualized equity premium (in %) demanded by the j-th component of consumption growth. I

report the results in Tables 8 and 14. Table 14 is added to the appendix.

The risk premia I estimate are unfortunately not in line with the values Ortu, Tamoni, and

Tebaldi (2013) produce and neither are the risk exposure and risk price estimates. I point out

that for some of the components, the risk premium differs up to a factor of five. The estimated

risk premia for the first component lie between 0.17 and 0.34 percent, where Ortu, Tamoni,

and Tebaldi (2013) estimate a maximum of 0.01 percent commanded by the first component

of consumption growth. Additionally, although my estimated risk premium for the seventh

component is only a maximum of two hundredths off in all four combinations of γ and ψ, the

estimated risk exposures and risk prices are by no means similar to Ortu, Tamoni, and Tebaldi

(2013).

I highlight the fact that for the fourth and seventh component, both the risk exposure and

the risk price are negative, which is different from Ortu, Tamoni, and Tebaldi (2013). Since

both values are negative, the resulting risk premia are not affected by this changed sign. My
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values for Q̂jj however, are very similar to the estimates of Ortu, Tamoni, and Tebaldi (2013).

Table 8: This table reports the annualized equity premium, Et,j [rm,t+1 − rf,t], for j = 1,...,7 (in

%). Q̂jj-estimates are shown in the second column. γ = 5 and ψ = 5 in top panel. γ = 7.5 and

ψ = 5 in the bottom panel. The risk exposure and the risk price are annualized as well.

γ = 5 & ψ = 5

Scale Half-life Q̂jj Risk exposure Risk price Risk premium
j = (years) (1 x 10−5) (1 x 10−6) (%)

1 0.08 0.90 64.51 53.82 0.17
2 0.4 0.49 192.68 150.24 2.90
3 0.6 0.42 57.11 66.68 0.76
4 1.1 0.30 -118.51 -49.33 2.34
5 2.8 0.16 11.11 43.60 0.39
6 7.6 0.08 8.20 23.55 0.31
7 16.4 0.02 -2.27 -225.08 1.63

γ = 7.5 & ψ = 5

Scale Half-life Q̂jj Risk exposure Risk price Risk premium
j = (years) (1 x 10−5) (1 x 10−6) (%)

1 0.08 0.90 64.51 81.86 0.26
2 0.4 0.49 192.68 228.49 4.40
3 0.6 0.42 57.11 101.41 1.16
4 1.1 0.30 -118.51 -75.03 3.56
5 2.8 0.16 11.11 66.30 0.59
6 7.6 0.08 8.20 35.82 0.47
7 16.4 0.02 -2.27 -342.31 2.48

In conclusion, despite my estimated risk premia differing substantially from Ortu, Tamoni, and

Tebaldi (2013), this exercise shows that the different components of consumption growth call

for a significant annual risk premium investors should be receiving.

4.2 Macroeconomic analysis

In this section, I focus on the consequences of applying the time series decomposition on other

macroeconomic variables, next to consumption growth, and discuss the findings in a macroeco-

nomic context.

There exist numerous economic theories on the covariability, or comovement, of economic

variables in the long-run (Müller and Watson 2018). The long-run relationship between con-

sumption and income is considered to be one of the most studied ones while they appear to

move proportionally throughout history. Klein and Kosobud (1961) even label the consumption-
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income ratio as one of the ’great ratios’ in economics. The investment-income ratio is another

one of those celebrated ratios. All variations in income, consumption and investment seem to

arise from variations in TFP growth. In section 4.1.2, I identify a significant correlation between

TFP growth and consumption growth in the long-run, for the sixth component of both respec-

tive series. Hence, in this analysis, I concentrate on the three variables consumption, income

and investment. In order to extend my analysis to more recent times, I consider the growth

series of the three respective variables over the period 1959Q1-2019Q4.

Figure 1: This figure displays the comovement of the series of consumption growth, GDP growth

and investment growth over the period 1959Q1-2019Q4.

Figure 1 plots the respective growth series of consumption, GDP and investment. At a short

glance, one can notice that the three variables appear to move closely together in the long-run,

although investment growth shows to be more volatile in comparison to consumption- and GDP

growth. Taking a look at the correlations between the three variables, the consumption growth

series and the GDP growth series display a correlation of 0.54 in the relevant sample period.

The correlation between consumption- and investment growth is 0.48. Finally, GDP growth and

investment growth exhibit a sizeable correlation of 67%.

4.2.1 Variance ratio tests

In order to determine if the three series consist of any persistence components and if so, on

which time-scales, I apply the variance ratio test. I report the results in Tables 9, 10 and 11.
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Table 9: This table reports the values of the rescaled test statistic for the quarterly consumption

growth series over 1956Q1-2019Q4. Significant values that reject the null hypothesis of no serial

correlation at α = 0.05 are denoted in bold.

Persistence level j = 1 2 3 4 5 6 7√
T
aj

(ξ̂j − 1
2j ) -5.102 -2.284 1.308 6.110 2.824 3.754 1.898

I observe from Table 9 that the test rejects a white noise process at exactly the same levels

of persistence as in the older sample, see Table 1, except at j = 7 for which the test just fails

to reject the null hypothesis. This indicates that in this different, but overlapping, sample of

consumption growth, multiple persistent components are still present.

Table 10: This table reports the values of the rescaled test statistic for the quarterly income

growth series over 1956Q1-2019Q4. Significant values that reject the null hypothesis of no serial

correlation at α = 0.05 are denoted in bold.

Persistence level j = 1 2 3 4 5 6 7√
T
aj

(ξ̂j − 1
2j ) -2.691 −0.389 1.702 1.927 2.549 0.261 −0.152

Table 10 shows that the components of GDP growth at level j = 1 and 5 reject the null hypothesis

of white noise. I point out that at time-scale j = 4, the variance ratio test is almost able to

classify the fourth component as persistent.

Table 11: This table reports the values of the rescaled test statistic for the quarterly investment

growth series over 1956Q1-2019Q4. Significant values that reject the null hypothesis of no serial

correlation at α = 0.05 are denoted in bold.

Persistence level j = 1 2 3 4 5 6 7√
T
aj

(ξ̂j − 1
2j ) -5.971 0.054 1.110 4.081 3.804 3.756 1.583

The rejection of a white noise process at several levels of persistence, namely for j = 1, 4, 5 and

6 in Table 11 indicates that four persistent components are present in the investment growth

series.

4.2.2 Long-run analysis

I notice that for all three variables, the first and the fifth component display persistent properties.

A rejection of the null hypothesis at j = 1 does not reveal much because the half-lives of the shocks
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captured by this component are by construction very volatile. Since at j = 4, the component

for income is almost persistent and the values of the test statistic at this level is the largest for

the other two variables, I decide to take this component into account as well. Thus, I focus on

investigating the scale-interactions at the fourth and fifth level of persistence. The fourth and

fifth component capture fluctuations with a half-life between between two and four, and four

and eight years respectively. I plot the fifth components and the sum of the fourth and fifth

components of the respective series in Figure 2.

(a) (b)

Figure 2: This figure displays the comovement of g5
t , together with the fifth component of GDP

growth and investment growth in (a), and it displays the comovement of g4
t + g5

t , together with

the respective sums of the fourth and fifth component of GDP growth and investment growth

in (b). The sample is 1959Q1-2019Q4.

Looking at Figure 2, it is evident that all three series display clear cyclical patterns in line

with the corresponding half-lives related to the business cycle (Burns and Mitchell 1946). The

substantial long-run comovement is apparent between consumption and income, but less so for

investment growth. This is in line with the long-run projections of the three growth series

identified by Müller and Watson (2018) who estimate a correlation close to one between con-

sumption and income, and a smaller, but still substantial correlation with investment. Nonethe-

less, the correlation between g
(5)
t and ∆Investment(5)

t is 0.67 and 0.56 between ∆GDP (5)
t and

∆Investment(5)
t . The correlation between the g(5)

t series and ∆GDP (5)
t is a sound 71%. When

taking the respective sums of the fourth and fifth components, the correlations increase to 0.73,

0.60 and 0.71 respectively.
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5 Conclusion

The goal of this paper is to replicate the findings of Ortu, Tamoni, and Tebaldi (2013) and to

extend their research by applying the decomposition to other macroeconomic variables, next

to consumption growth, and discuss these results in a macroeconomic context. The research

question is stated as follows: how can the persistent components be uncovered and what is the

impact of persistence properties of consumption growth and other macroeconomic variables on

their predictability and the term structure of risk premia?

In line with Ortu, Tamoni, and Tebaldi (2013), I identify persistent components concealed in

consumption growth, by means of a DWT and a variance ratio test, that exhibit high correlations

with certain economic proxies. The financial ratios of price-dividend and price-consumption show

to have predictive power for consumption growth at multiple levels of persistence. Moreover,

using the WLS-algorithm, I estimate an IES greater than one consistent with Ortu, Tamoni, and

Tebaldi (2013). Finally, revisiting the term structure of risk premia, I show that the different

components of consumption growth demand a significant annual risk premium investors should

be receiving. Despite my estimates and results rarely being exactly in compliance with Ortu,

Tamoni, and Tebaldi (2013), but most often not differing substantially, I am able to draw

reasonably similar conclusions.

Additionally, decomposing a time series along the persistence dimension allows for one to

compare economic variables at specific time-scales and identify proxies or large correlations

between certain macroeconomic series. I establish substantial comovements between fluctuations

in consumption growth, GDP growth and investment growth in the long-run related to the

business cycle which can be relevant to predict future shocks.

My research is limited in a number of ways. Firstly, the framework of Ortu, Tamoni, and

Tebaldi (2013) related to consumption growth is not easily applicable to other economic variables

and thus does not allow for straightforward and accessible extensions. Furthermore, the absence

of code to replicate the majority of the results forced me to thoroughly check into all details of

the methodology, leaving less room to perform a more in-depth extension of the topic.

Future research can be devoted to investigating scale-interactions between different economic

variables that is allowed through decomposing a time series into a number of components with

specific half-lives. This could be relevant for identifying proxies for certain variables and es-

tablishing high correlations in order to predict future shocks. In addition, one can apply the

decomposition method to financial asset data, e.g. bonds, and formulate an accompanying

framework to determine if such assets demand any equity premia.
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6 Appendix

6.1 Persistence versus white noise example

The benefits of the decomposition method can be shown by means of a simple simulation exercise

that highlights the importance of detecting a persistent, decimated component that otherwise

would not have been observed and consequently have labeled the time series as white noise. I

simulate decimated components for J = 4: g(1)
t , g(2)

t , g(3)
t , g(4)

t and π(4)
t where only the persistent

component g(4)
t follows an autoregressive process and the others are independent normal inno-

vations. Figure 3 shows the reconstructed time series and the simulated components. The right

panel shows the autocorrelation functions corresponding to the series in the left panel. I observe

that the autocorrelation function of the reconstructed time series does not show any significant

lags and thus looks like white noise while one of the components does display persistence.

Figure 3: This figure displays the reconstructed time series on the top left with below the

simulated components, g(1)
t , g(2)

t , g(3)
t , g(4)

t and π
(4)
t where only the persistent component g(4)

t

follows an autoregressive process and the others are independent normal innovations. The right

panel shows the autocorrelation functions corresponding to the series in the left panel.
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6.2 Performance variance ratio test

I test the behaviour of the variance ratio proposed by Ortu, Tamoni, and Tebaldi (2013) through

Monte Carlo simulations with N = 5000. I simulate decimated components for J = 6: g(1)
t , g(2)

t ,

g
(3)
t , g(4)

t , g(5)
t , g(6)

t and π
(6)
t where only the persistent component g(6)

t follows an autoregressive

process and the others are independent normal innovations. Hereafter, I reconstruct the original

time series using the inverse of τ (j). I set ρ2
J equal to 0.2 or 0.4 and the proportion of the total

variance explained by g
(J)
t , V ar(g(J)

t )
V ar(gt) , equal to 0.03, 0.05 or 0.07. I run the simulation for T =

256 and T = 2048. The results of this exercise are shown in Table 12.

Table 12: This table shows the probabilities of the variance ratio test for rejecting the null

hypothesis of no serial correlation, i.e. white noise, against an autoregressive process for α

= 0.05. I simulate decimated components for J = 6: g
(1)
t , g(2)

t , g(3)
t , g(4)

t , g(5)
t , g(6)

t and π
(6)
t

where only the persistent component g(6)
t follows an autoregressive process and the others are

independent normal innovations. The outcome is based on N = 5000 replications.

T = 256 Persistence level j = 1 2 3 4 5 6 7

ρJ
V ar(g(J)

t )
V ar(gt)

0.2 0.03 0.058 0.048 0.047 0.040 0.040 0.277 0.048
0.2 0.05 0.082 0.049 0.042 0.037 0.036 0.557 0.045
0.2 0.07 0.116 0.056 0.039 0.034 0.033 0.718 0.042

0.4 0.03 0.060 0.048 0.047 0.040 0.040 0.252 0.048
0.4 0.05 0.080 0.048 0.042 0.037 0.037 0.517 0.045
0.4 0.07 0.115 0.057 0.040 0.034 0.033 0.680 0.042

T = 2048 Persistence level j = 1 2 3 4 5 6 7

ρJ
V ar(g(J)

t )
V ar(gt)

0.2 0.03 0.075 0.055 0.052 0.046 0.041 0.816 0.039
0.2 0.05 0.210 0.092 0.063 0.047 0.039 0.997 0.035
0.2 0.07 0.427 0.174 0.094 0.055 0.043 1.000 0.032

0.4 0.03 0.076 0.054 0.052 0.046 0.041 0.776 0.039
0.4 0.05 0.207 0.093 0.064 0.047 0.039 0.993 0.035
0.4 0.07 0.425 0.173 0.095 0.057 0.043 1.000 0.032

I observe that for the T = 256 case, my results are very similar to Ortu, Tamoni, and Tebaldi

(2013), except for a slight over-rejection of the null hypothesis for the first component when
V ar(g(J)

t )
V ar(gt) becomes larger. This outcome shows the high power of the variance ratio test only at

the ’correct’ time scale of J = 6 for which the component is persistent. Unfortunately, in my

Monte Carlo analysis for T = 2048, a large over-rejection of the null hypothesis of white noise
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is present for the first two components, compared to Ortu, Tamoni, and Tebaldi (2013). This is

particularly true for V ar(g(J)
t )

V ar(gt) equal to 0.05 and 0.07. I suspect this is due to a mistake in my

code but I am not able to find it. I point out that the test still is able to correctly reject the

null hypothesis for the persistent component at J = 6.

Despite the over-rejection for the first (two) components, this exercise illustrates that the test

reject has strong power against the null hypothesis of white noise when a persistent component

is present at a time-scale j.

6.3 Figures comovements components of consumption growth

Figure 4: This figure displays the comovement of g(2)
t with the fourth-quarter growth rate of

consumption.
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Figure 5: This figure displays the comovement of the negative of the sum of g(4)
t and g

(5)
t with

the term spread in the top panel and with the default yield spread in the bottom panel.

Figure 6: This figure displays the comovement of g(6)
t and the sixth component of TFP growth.
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6.4 Figure consumption growth and the price-dividend ratio

Figure 7: This figure displays the price-dividend ratio and consumption growth.
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6.5 Robustness Check

I test the robustness of the findings for the predictive regressions where the explanatory variable

is the price-dividend ratio with the use of annual data. I report the results of these regressions

in Table 13.

Table 13: This table reports the OLS estimates, multiplied by -100, of the regression of the

components of the consumption growth, g(j)
t+2j , on the components of the log price-dividend

ratio pd(j)
t . Significant values at α = 0.05 are denoted in bold. Hansen and Hodrick corrected

t-statistics are shown in parenthesis and the adjusted R2 in brackets. The sample period is

1948-2011 and 1930-2011 in the top and lower panel respectfully.

Sample: 1948-2011

Variable Persistence level j = 1 2 3 4 5

3.34 -0.57 0.72 0.68 0.19

pd
(j)
t (-4.37) (0.58) (-1.03) (-2.08) (1.79)

[0.20] [0.00] [0.02] [0.05] [0.02]

Sample: 1930-2011

Variable Persistence level j = 1 2 3 4 5

3.08 3.04 -0.71 1.61 -0.45

pd
(j)
t (-4.31) (-2.07) (0.56) (-1.91) (1.12)

[0.10] [0.10] [0.01] [0.14] [0.02]

The results from my regressions are similar to ones Ortu, Tamoni, and Tebaldi (2013) produce.

The values are in the same order of magnitude, however, not exactly the same and the sign of the

estimates is turned around. As mentioned in the main text, I suspect their values are multiplied

by ’-100’ instead of the stated ’100’. The corresponding coefficients are labeled significant for

the 1948-2011 sample. However, for the 1930-2011 sample, the component at j = 2 is significant

in my analysis, whereas this is not true in their results. I highlight that for my results, the

coefficient at j = 4 is almost significant as this is also the case in Ortu, Tamoni, and Tebaldi

(2013).

Additionally, similar to Ortu, Tamoni, and Tebaldi (2013), I investigate the characteristics

in the long-run of the shocks in log consumption growth. Firstly, I take a look at the truncated

sum of the components of consumption growth greater than five together with the long run

average, ∑J
j=6 g

(j)
t + π

(J)
t = gt−26−1 , that represents a smoothed series of consumption growth
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with shocks lasting more than 32 quarters. In Figure 8, I plot gt−26−1 , together with the

corresponding truncated sum of the TFP growth series.

Figure 8: This figure displays the comovement of gt−26−1 and the corresponding truncated sum

of TFP growth.

Figure 8 is in line with Ortu, Tamoni, and Tebaldi (2013) and exhibits a large resemblance

with Figure 6 that displays the comovement of g6
t and the sixth component of TFP growth. It

highlights the fact that most of the long-run fluctuations in both series are captured by the sixth

component of the respective series.

To further investigate this, I plot the sixth component together with the truncated sum for

both the consumption growth and TFP growth series in Figure 9, which is consistent with Ortu,

Tamoni, and Tebaldi (2013). I notice that both subplots indeed show substantial comovement,

affirming the claim that most of the long-run shock are indeed captured by the sixth component

of the corresponding series.
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Figure 9: This figure displays the comovement of g6
t and gt−26−1 for consumption growth in the

top panel and the respective series of TFP growth in the bottom panel.
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6.6 Table term structure of risk premia

Table 14: This table reports the annualized equity premium, Et,j [rm,t+1− rf,t], for j = 1,...,7 (in

%). Q̂jj-estimates are shown in the second column. γ = 5 and ψ = 2.5 in top panel. γ = 7.5

and ψ = 2.5 in the bottom panel. The risk exposure and the risk price are annualized as well.

γ = 5 & ψ = 2.5

Scale Half-life Q̂jj Risk exposure Risk price Risk premium
j = (years) (1 x 10−5) (1 x 10−6) (%)

1 0.08 0.90 64.51 68.78 0.22
2 0.4 0.49 192.68 191.98 3.70
3 0.6 0.42 57.11 85.20 0.97
4 1.1 0.30 -118.51 -63.04 2.99
5 2.8 0.16 11.11 55.71 0.49
6 7.6 0.08 8.20 30.09 0.39
7 16.4 0.02 -2.27 -287.60 2.09

γ = 7.5 & ψ = 2.5

Scale Half-life Q̂jj Risk exposure Risk price Risk premium
j = (years) (1 x 10−5) (1 x 10−6) (%)

1 0.08 0.90 64.51 106.15 0.34
2 0.4 0.49 192.68 296.31 5.71
3 0.6 0.42 57.11 131.51 1.50
4 1.1 0.30 -118.51 -97.30 4.61
5 2.8 0.16 11.11 85.98 0.76
6 7.6 0.08 8.20 46.45 0.61
7 16.4 0.02 -2.27 -443.91 3.22
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6.7 Matlab programs

6.7.1 Replication

• simulationFigure: This program replicates Figure 3

• simulationWN: This program performs one MCMC simulation in Table 12

• simulationTable: This program perform all the MCMC simulation in Table 12

• VRtestLCG: This program perform the variance ratio test for consumption growth in

Table 1

• optimalNumComp: This program determines the optimal number of components for

consumption growth in Table 2

• replicationFigures3456783: This (adjusted) program replicates Figures 4, 5, 6, 7, 8 and

9

• IESestimationJ8: This program estimates the IES in Table 6 for j = 8

• IESestimationJ7: This program estimates the IES in Table 6 for j = 7

• MultiscaleARregressions: This program performs the multiscale AR-regressions in Ta-

ble 7

• PredictiveRegressions: This program performs the predictive regressions in Table 3, 4

and 5

• TermStructureRiskPremia: This program computes the risk exposures, risk prices and

risk premia in Tables 8 and 14

• olshacAdjusted4: This (adjusted) program performs OLS with Hansen and Hodrick

corrected standard errors

• AnnualPredictiveRegressions: This program performs the annual predictive regres-

sions in Table 13

• RedundantHaar5: This program performs a redundant decomposition of a time series

• ConstructTau: This program construct the Tau matrix for a given value of j
3https://andreatamoni.meltinbit.com/events/publications
4https://www.mathworks.com/matlabcentral/fileexchange/43259-ols-with-newey-west-and-hansen-hodrick-se
5https://andreatamoni.meltinbit.com/events/publications
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6.7.2 Extension

• macroPlots: This program replicates Figures 1 and 2

• VRtestMacro: This program perform the variance ratio test for consumption growth,

GDP growth and investment growth in Tables 9, 10 and 11

• RedundantHaar6: This program performs a redundant decomposition of a time series

6https://andreatamoni.meltinbit.com/events/publications
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