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Abstract

In this paper we perform various machine learning techniques to forecast US treasury yields
of various maturities for different forecast horizons over the period of March 1992 until
July 2016. This research builds further upon the work of Swanson and Xiong (2018). We
introduce the gradient boosted tree, elastic net and lasso as new machine learning methods
applied to forecasting the yield curve. Additionally, we use the regression tree, random
forest and Gaussian process regression methods. From all the machine learning techniques
the Gaussion process regressions seems to produce the most accurate forecast. However, none
of these machine learning methods is able to produce significantly more accurate forecasts
than the ordinary econometric methods applied by Swanson and Xiong (2018).
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1 Introduction

The modelling and forecasting of the term structure of interest rates is an important subject in

economic research. Economists believe that the yield curve is a great predictor for economic re-

cessions and has therefore significant influence on monetary policies. Furthermore, the forecasts

of yields and interest rates is of great importance for investors and pension funds. Over the years

this topic has been analyzed and researched thoroughly for this reason. Many researchers have

tried to find a model that is able to accurately predict the yield curve. A popular model is that

of Nelson and Siegel (1987). They introduced a three factor model that produces more accurate

forecasts than a random walk model unlike most other models at that time. The Nelson-Siegel

model and its extensions are therefore widely used in the financial sector. One of these exten-

sions is the dynamic Nelson-Siegel model, which forecasts the latent factors with a autoregressive

model. Swanson and Xiong (2018) compare the forecasting ability of the dynamic Nelson-Siegel

model with that of simple autoregressive, vector autoregressive and principal components mod-

els. However, they state that there is still a lot of room for improvement left. Machine learning

algorithms might be one of the possible improvements for predicting the yield curve. Therefore,

this paper tries to investigate to what extend machine learning techniques are able to improve

the forecasting of the term structure of interest rates.

The social relevance of this paper is the usefulness for investors and policy makers. According

to many economists the inversion of the yield curve is a good predictor of recessions and GDP

growth (see Haubrich, Dombrosky, et al., 1996; Chauvet and Potter, 2005; Ang, Piazzesi, and

Wei, 2006). Therefore, policy makers adjust their monetary policies according to the develop-

ment of the yield curve. When more accurate forecasts of these yield curves are made, policy

makers are able to make these adjustments to the monetary policies earlier and may be able

to prevent their country from falling into a great recession. Furthermore, investors are able to

make better investments when the yield curve predictions are more accurate, since they can

anticipate earlier on a possible recession.

The academic relevance lies in the fact that this paper is an extension to the research of Swanson

and Xiong (2018). Their paper compares and extends the models from Nelson and Siegel (1987)

and Diebold and Li (2006) with principal components models, autoregressive and vector autore-

gressive models. Hence, this paper builds even further upon the extensive history of forecasting

the term structure of interest rates by applying different machine learning techniques to forecast

the term structure of interest rates.

The objective of this paper is to forecast US treasury yields of five different maturities for a 1
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month, 3 months and 12 months forecast horizon. We use a 120 months moving window and

various models to construct these forecasts. The first part of the paper focuses on replicating the

’ordinary’ econometric models as applied by Swanson and Xiong (2018). The first models are

the autoregressive and vector autoregressive models with one lag and lags based on the Schwarz

information criterion (Schwarz et al., 1978). The next models discussed are the dynamic Nelson-

Siegel models as introduced by Diebold and Li (2006). The last ’ordinary’ econometric models

make use of principal component analysis.

The second part of the paper focuses on the machine learning techniques used for the prediction of

the term structure of interest rates. The first machine learning technique we use is the Gaussian

process regression as proposed by Sambasivan and Das (2017). Furthermore, we introduce a

model where the coefficients are estimated through a lasso and a elastic net regression (see

Tibshirani, 1996; Zou and Hastie, 2005). In addition we use a random forest model, since

Rahimi (2020) finds that a random forest model (see Breiman, 2001) performs particularly well

in the short end of the yield curve. We extend this by introducing a forecast of the yield curve by

regression tree models and gradient boosted tree models (see (see Breiman, Friedman, Stone, and

Olshen, 1984; Friedman, 2001). All models are evaluated based on their mean squared forecast

error relative to that of a benchmark model. The benchmark model used in this research is the

autoregressive model with one lag, the same model used as benchmark by Swanson and Xiong

(2018). Significant difference in predictive accuracy is tested with the Diebold and Mariano

(2002) test.

We find that the machine learning models are not able to make significant more accurate forecasts

compared to the simple autoregressive model with one lag. Therefore, predicting the term

structure of interest rates does not improve by applying machine learning techniques compared

to more ordinary econometric methods.

2 Literature Review

The term structure of interest rates is the relationship between bond yields of different maturi-

ties. The yield curve is the graphical representation of this relationship. Estrella and Mishkin

(1996) and Dueker (1997) find that the yield curve has significant better performance in pre-

dicting recessions than other financial and macroeconomic indicators. Not surprisingly, many

economists tried, therefore, to model and forecast this yield curve. The first paper to investigate

the modelling of the yield curve was published by Durand (1942). The popular three-factor

Nelson-Siegel model for modelling the term structure of interest rates was introduced by Nelson
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and Siegel (1987). The three factors used in this model can be interpreted as a level, slope and

curvature factor. Svensson (1994) extends this Nelson-Siegel model with an extra fourth factor

which can be interpreted as an additional slope factor. The Bank of International Settlements

reported in 2005 that nine out thirteen central banks applied either the Nelson-Siegel or the

Svensson model to estimate their yield curve at that time (BIS,2005). Diebold and Li (2006)

introduce the dynamic Nelson-Siegel model to improve the forecasting of the term structure for

both short and long horizons. Diebold, Rudebusch, and Aruoba (2006) and Mönch (2008) show

that models provide better predictions when macroeconomic variables are taken into consider-

ation. A different approach to model the yield curve, applied by Litterman and Scheinkman

(1991) and Knez, Litterman, and Scheinkman (1994), is based on principal component analy-

sis. In recent years machine learning models have become more and more popular in economic

modelling and forecasting. Sambasivan and Das (2017) find that a Gaussian process regression

shows promising results for forecasting the yield curve for the medium and long term. Rahimi

(2020) finds that a random forest model performs particularly well in the short end of the yield

curve, mainly due to the ability of the random forest to correct for overfitting.

3 Data

This research builds further upon the work of Swanson and Xiong (2018) and uses the same

data to make an improvement of their forecasts. Their monthly term structure data are the

by the Federal Reserve Board provided end of the month US zero-coupon yield curve data 1

(Gürkaynak, Sack, and Wright, 2007). The data spans the period January 1982 through July

2016 consisting of 1- through 10-year maturities. Furthermore 103 macro-economic variables are

obtained from the FRED-MD as given by the Federal Reserve Bank of St. Louis. McCracken

and Ng (2016) provide the adjustments made to this data set2. These monthly macro-economic

variables span the the same period as the term structure data. Table 1 reports the mean,

standard deviation, minimum and maximum for the yield curve data. Furthermore, the table

shows the skewness, kurtosis and Jarque-Bera test statistic, where normality is rejected for every

maturity. Figure 1 shows the evolution of the yield curve over time.

4 Methodology

The models used to predict the US treasury yields consist of a moving window of 120 months.

The 1-step-, 3-step- and 12-step-ahead forecasts are constructed for yields with five different
1Available at quandl.com/data/FED/SVENY-US-Treasury-Zero-Coupon-Yield-Curve
2Available at research.stlouisfed.org/econ/mccracken/fred-databases
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Table 1: Descriptive statistics of yield data.

Maturity Mean Std Min Max Skew Kurt JB

1 year 4.508 3.282 0.099 14.009 0.366 2.527 13.152
2 years 4.805 3.310 0.188 14.128 0.386 2.546 13.867
3 years 5.054 3.267 0.306 14.075 0.417 2.580 15.105
4 years 5.271 3.200 0.454 13.978 0.450 2.617 16.540
5 years 5.462 3.128 0.627 13.881 0.478 2.653 17.916
6 years 5.630 3.057 0.815 13.797 0.501 2.686 19.102
7 years 5.778 2.991 1.007 13.729 0.519 2.715 20.055
8 years 5.908 2.931 1.197 13.674 0.533 2.741 20.789
9 years 6.021 2.879 1.380 13.646 0.543 2.764 21.349
10 years 6.120 2.833 1.498 13.651 0.551 2.784 21.787

This table reports the mean, standard deviation, minimum, maximum, skewness, kurtosis and the
Jarque-Bera test statistic for the monthly US zero-coupon yield for different maturities over the period

January 1982 through July 2016.

Figure 1: Yield curve over time in monthly frequency.

maturities: 1 year, 2 years, 3 years, 5 years and 10 years. Since this paper tries to compare

the machine learning models with the ’ordinary’ econometric models as applied by Swanson

and Xiong (2018), the same four out-of-sample periods are used as in their paper: 1992:3-

1999:12, 2000:1-2007:12, 2008:1-2016:7, 1992:3-2016:7. First the ’ordinary’ econometric models

are further elaborated on. Furthermore, the machine learning techniques are discussed as well

as the forecast evaluation.
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4.1 ’Ordinary’ Econometrics

In this section the methods applied by Swanson and Xiong (2018) are explained3. First the

autoregressive (AR) and vector autoregressive (VAR) models are summarized. Secondly, the

dynamic Nelson-Siegel (DNS) models as introduced by Diebold and Li (2006) are discussed.

This section ends with an explanation of the principal component analysis (PCA) based models.

4.1.1 AR and VAR models

First we show the AR model, which is given as follows:

yt+h(τ) = c+β′W t+ εt+h, (1)

where yt+h(τ) is the yield,τ ∈ {1,2,3,5,10} and denotes the maturity of a bond in years, c is a

constant, β is the coefficient vector, W t contains the lags of yt+h and εt+h denotes the error

term. The VAR model is given as follows:

yt+h = c+BW t+εt+h, (2)

where yt+1 is a vector consisting of the yield with the five different maturities, c is a vector of

constants, B is coefficient matrix, W t is matrix of the lags of yt+h and εt+h is a vector of error

terms. Both an AR and a VAR model with a lag of 1 and both an AR and a VAR model with

at most 5 lags, where we choose the lags based on the Schwarz information criterion (SIC), are

considered (Schwarz et al., 1978).

4.1.2 Dynamic Nelson-Siegel models

First we define the following three vectors of yields for different maturities at time t:

y4
t (τ) = [yt(12) yt(36) yt(60) yt(120)], y6

t (τ) = [yt(12) yt(24) yt(36) yt(60) yt(84) yt(120)] and

y10
t (τ) = [yt(12) yt(24) yt(36) yt(48) yt(60) yt(72) yt(84) yt(96) yt(108) yt(120)]. Furthermore, the

Nelson-Siegel factors are obtained by running the following regression at every period t:

yt(τ) = β1,t+β2,t

[1− exp(−λtτ)
λtτ

]
+β3,t

[1− exp(−λtτ)
λtτ

− exp(−λtτ)
]
, (3)

where yt(τ) ∈ {y4
t (τ),y6

t (τ),y10
t (τ)} and λt, the rate of decay, is set at 0.0609 as suggested by

Diebold and Li (2006). Furthermore they explain that since β1,t is constant and can therefore

be seen as the ’level’ factor, that an increase of the maturity decreases β2,t and can therefore
3For this section we use the code provided by Swanson: http://econweb.rutgers.edu/nswanson/comp.htm
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be interpreted as the short-term ’slope’ factor and that β3,t closely resembles the ’curvature’

factor. By running this regression for every point t in the moving window period a time series

of estimated betas is created. These betas are used in the following AR regression to make a

h-step-ahead forecast:

β̂i,t+h = c+γiiβ̂i,t, for i= 1,2,3. (4)

The betas are forecasted using a VAR(1) model as well:

β̂t+h = c+γβ̂t, (5)

where β̂t+h = (β̂1,t+h, β̂2,t+h, β̂3,t+h)′,c is a vector of constants, γ = (γ1,γ2,γ3) , with γj a vector

of coefficients, for j = 1,2,3. Additionally, the betas are forecasted using extended versions of

these AR and VAR models. Three key macroeconomic variables proposed by Diebold et al.

(2006) are added to the models. The extended version of equation (4) is as follows:

β̂i,t+h = c+γiiβ̂i,t+α′iM t, for i= 1,2,3, (6)

where αi is a vector of coefficients and M t includes the variables annual personal consump-

tion expenditures price deflator, federal funds rate and manufacturing capacity utilization. In

addition the extended version of equation (5) becomes:

β̂t+h = c+γβ̂t+αMt, (7)

where α = (α1,α2,α3). Inserting these forecasted betas in the following formula gives the

forecasted yield per maturity:

ŷt+h(τ) = β̂1,t+h+ β̂2,t+h

[1− exp(−λtτ)
λtτ

]
+ β̂3,t+1

[1− exp(−λtτ)
λtτ

− exp(−λtτ)
]
. (8)

Estimating the betas for the in-sample period using three different yield vectors and forecasting

the betas using the two AR models and two VAR models results in twelve different models for

forecasting the term structure.

4.1.3 Principal Component Analysis

For the principal component methods again the framework from Swanson and Xiong (2018) is

applied. First the set yields with the ten different maturities are standardized before constructing
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the principal components of this set of yields using the following formula:

F Y ield
i = Y eY ieldi , for i= 1,2,3. (9)

Here F Y ield
i and eY ieldi denote respectively the ith principal component and the ith eigenvector

corresponding to the ith largest eigenvalue of of the covariance matrix of Y and Y is the matrix

of the set of yields with the ten different maturities. We calculate these eigenvectors using the

spectral decomposition of the covariance matrix of Y . These principal components are added

to the simple AR model in equation (1) , resulting in the following equation:

yt+h(τ) = c+β′Wt+α′F Y ield
t + εt+h, (10)

where Wt includes one lag and F Y ield
t includes either the first, the first and the second or the

first, second and third principal components. This results in three different PCA models. In

addition, the principal components of the 103 macroeconomic variables are calculated as follows:

FMACRO
i =XeMACRO

i , for i= 1,2,3. (11)

Here FMACRO
i and eMACRO

i denote respectively the ith principal component and the ith eigen-

vector corresponding to the ith largest eigenvalue of of the covariance matrix of X and X is the

matrix of the 103 macroeconomic variables. These principal components are added to the simple

AR model with one lag as well which gives equation (10) only with F Y ield
t replaced by FMACRO

t

and therefore resulting in three different models as well. Furthermore, both the first principal

component and the first and second principal component of the 103 macroeconomic variables are

added to the two VAR models, the six DNS models without the three macroeconomic variables

and the three models with the principal components of the yields, resulting in an additional 22

models.

4.2 Machine Learning

In the following section we explain the machine learning models used in this paper. All models

use three different sets of explanatory variables. The first set consists of the yields with the 10

different maturities, the second set consists of the three key macroeconomic variables proposed

by Diebold et al. (2006) and the third set is the combination of the first two sets.
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4.2.1 Regression Tree

The first machine learning method being considered is the regression tree model as introduced

by Breiman et al. (1984). A regression tree consists of decision nodes and leaves. In every

decision node a input variable is tested against a certain threshold. One goes, starting from the

top of the tree, down on a different branch depending on the outcome. At every node visited

this process is repeated and ends at a leaf at the bottom of the tree. This leaf provides the

predicted value of the target variable. The regression tree itself is constructed by, starting with

the whole predictive space, top-down splitting this predictive space in two different regions at

each node. These regions are chosen such that the residual sum of squares (RSS) is minimized,

where the RSS is defined in the following way:

RSS =
∑

t:xt∈R1(j,s)
(yt− ŷR1)2 +

∑
t:xt∈R2(j,s)

(yt− ŷR2)2, (12)

where R1(j,s) = {X|Xj ≤ s}, R2(j,s) = {X|Xj > s} and ŷRi is mean response for the training

set of the ith region. The input variables considered at each node are chosen through minimizing

the RSS as well. An example of a regression tree is given in Figure 2. For the creation of the

regression tree models the RegressionTree class available via Matlab is used.

Figure 2: Regression tree example. When, for example, X1 is smaller than threshold A, you
continou to the decision node to the left and if then X2 is larger than B you end up at the leaf
with Outcome 2

4.2.2 Random Forest and Gradient Boosted Tree

The next machine learning method is the random forest as proposed by Breiman (2001). Random

Forest is an ensemble technique that uses bootstrap aggregation. For the random forest a 100
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regression trees are constructed by training them on a random sample of the input observations.

Furthermore, these samples are drawn with replacement, such that certain data points can be

chosen multiple times in a single regression tree. In addition it randomly selects a sample of

variables to evaluate at every node. The prediction provided by the random forest is the average

of the results of the 100 single regression trees. The random forest is performed using the

RegressionEnsemble class in Matlab.

Additionally, we apply the gradient boosted tree from Friedman (2001). The gradient boosted

tree is a ensemble technique as well. It builds the regression trees one at a time, while using

the errors of the previous constructed regression tree. The errors are calculated using the least

squares criteria. The algorithm for the gradient boosted tree is given in Algorithm 1. This

model is constructed via the RegressionEnsemble class in Matlab.

Algorithm 1: Gradient boosted tree
1 F0(x) = ȳ
for m= 1 to 100 do

(2) ỹi = yi−Fm−1(xi), for i= 1,2, . . . ,N
(3)(ρm,am) = arg mina,ρ

∑N
i=1[ỹi−ρh(xi;a)]2

(4) Fm(x) = Fm−1(x+ρmh(x;am)
end for
Result FM (x);

4.2.3 Regularization

The next machine learning methods make use of regularization. They extend the standard least

squares function with an extra penalty term. The first regularization method applied is the

least absolute shrinkage and selection operator (lasso)(Tibshirani, 1996). This method performs

both variable selection and shrinkage by adding the sum of absolute values of the regression

coefficients as a penalty to the least squares loss function. The objective function of the lasso is

given by the following:

min
c,β

 1
2N

N∑
i=1

(yi− c−x′iβ)2 +λ
P∑
j=1
|βj |

 , (13)

where λ is the weight given to the penalty term. The lasso function is solved through the

coordinate descent algorithm (Friedman, Hastie, and Tibshirani, 2010). λ is chosen as the

largest value of λ such that the mean squared error (MSE) is minimized. The lasso model is

estimated using the lasso function in Matlab. The second regularization method is the elastic

net (enet) (Zou and Hastie, 2005). The enet extends equation (13) with a ridge penalty term.
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Therefore, the enet combines both the strong variable selection property from the lasso and the

strong shrinkage property from the ridge. The enet objective function is given by the following:

min
c,β

 1
2N

N∑
i=1

(yi− c−x′iβ)2 +λ
P∑
j=1

(
α|βj |+

(1−α)
2 β2

j

) , (14)

where λ is given by the same specification as in the lasso function and α is set to 0.5 such that

the ridge penalty and the lasso penalty term get equal weight. The objective function is solved

through the coordinate descent algorithm as well. The Matlab function lasso is used for the enet

model.

4.2.4 Gaussian Process

In this section the Gaussian process as suggested by Williams and Rasmussen (2006) is further

elaborated on. Consider the following standard regression model:

y = f(x) + ε, (15)

where y is the observed value, f is the regression function, x is a vector of inputs and ε∼N (0,σ2
ε ).

From equation (15) follows that:

y ∼N (µ(X),K+σ2
ε I), (16)

where µ(X) and K = k(X,X) are respectively the expected value and the covariance function

(kernel) of f(X). The joint distribution of the observed data y and the regression function

f(X∗), where X∗ is the out of sample data, is given by the following:

 y

f(X∗)

=N


µ(X)

µ(X∗)

 ,
K+σ2

ε I K∗

K ′∗ K∗∗


 , (17)

where K∗ = k(X,X∗) and K∗∗ = k(X∗,X∗). Williams and Rasmussen (2006) show the following:

f(X∗)|X,y,X∗ ∼N (µ∗,σ2
∗), (18)

where

µ∗ = µ(X∗) +K ′∗(K+σ2
ε I)−1(y−µ(X)), (19)
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and

σ2
∗ =K∗∗−K ′∗(K+σ2

ε I)−1K∗. (20)

After every prediction the model is trained again using the 120 month moving window. Thus,

there is only one observation x∗ and we can rewrite equation (19) into:

µ∗ = µ(x∗) +k′∗(K+σ2
ε I)−1(y−µ(x∗)), (21)

where k∗ is a vector of covariances between the forecast observation x∗ and the n training points

x such that:

k∗ = [k(x1,x∗, . . . ,k(xn,x∗)]′. (22)

Therefore equation (21) can be written as a linear combination of kernel functions:

µ∗ = µ(x∗) +k′∗α= µ(x∗) +
n∑
i=1

αik(xi,x∗). (23)

Sambasivan and Das (2017) find that a combination of a linear and squared exponential kernel

produce good results. Therefore, the following kernel is used in the Gaussian process regression:

k(x,x∗) = σ2
f

(
x′x∗+ exp

(
−(x−x∗)2

2`2

))
. (24)

This Gaussian process regression now has three hyperparameters that have to be estimated: σ2
f ,

`2 and σ2
ε , where ` is the length scale that defines how smooth the kernel function is. These

hyperparameters can be obtained by maximizing the following log marginal likelihood function

(Williams and Rasmussen, 2006):

log p(y|X,σ2
f , `,σ

2
ε ) =−1

2y
′(K+σ2

ε I)y+ 1
2log(|K+σ2

ε I|) + n

2 log(2π), (25)

where n is the length of the input data, which is 120. For the training of the Gaussian process

regression the Matlab class RegressionGP is used.

4.3 Forecast Evaluation

The benchmark model is the same as in the research of Swanson and Xiong (2018): the simple

AR model with one lag. For every model the mean square forecast error (MSFE) over the
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out-of-sample period is calculated:

MSFEi =
∑

(yt− ŷi,t)2

L
, (26)

where MSFEi is the MSFE for model i and L is the number of test sample observations.

The MSFEs are used to calculate the relative mean squared forecast errors (rMSFE) using the

following formula:

rMSFEi = MSFEi
MSFEBenchmark

, (27)

where rMSFEi is the rMSFE for model i and MSFEBenchmark is the MSFE of the simple

AR model. The Diebold-Mariano (DM) test is used to test whether a model has a significant

different MSFE than the benchmark model (Diebold and Mariano, 2002). The DM test statistic

is given as follows:

DM = d̄t
σ̂d̄t

, (28)

where d̄t = 1
L

∑
dt, dt = (yt− ŷ1,t)2− (yt− ŷ2,t)2, σ̂d̄t

= σ̂dt√
L

and DM ∼N(0,1)
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TABLE 2: Models used to forecast the yield curve
Model Description
AR(1) Autoregressive model with one lag
VAR(1) Five-dimensional vector autoregressive model with one lag

VAR(1) + FB1 VAR(1) model with one principle components added, principle
component analysis based on all 103 macroeconomic variables

VAR(1) + FB2 VAR(1) model with two principle components added, principle
component analysis based on all 103 macroeconomic variables

AR(SIC) Autoregressive model with lag(s) selected by the Schwarz information
criterion

VAR(SIC) Five-dimensional vector autoregressive model with lag(s) selected by
the Schwarz information criterion

VAR(SIC) + FB1 VAR(SIC) model with one principle components added, principle
component analysis based on all 103 macroeconomic variables

VAR(SIC) + FB2 VAR(SIC) model with two principle components added, principle
component analysis based on all 103 macroeconomic variables

DNS(1)
Dynamic Nelson–Siegel (DNS) model with underlying AR(1) factor
specifications fitted with 10-dimensional yields: maturity
τ = 12,24,36,48,60,72,84,96,108,120month

DNS(2) DNS model with underlying AR(1) factor specifications fitted with
six-dimensional yields: maturity τ = 12,24,36,60,84,120months

DNS(3) DNS model with underlying AR(1) factor specifications fitted with
four-dimensional yields: maturity τ = 12,36,60,120months

DNS(4)
DNS model with underlying VAR(1) factor specifications fitted with
10-dimensional yields: maturity τ = 12,24,36,48,60,72,84,96,108,
120 months

DNS(5) DNS model with underlying VAR(1) factor specifications fitted with
six-dimensional yields: maturity τ = 12,24,36,60,84,120months

DNS(6) DNS model with underlying VAR(1) factor specifications fitted with
four-dimensional yields: maturity τ = 12,36,60,120months

DNS(1) + FB1 DNS(1) model with one principle component added, principle
component analysis based on all 103 macroeconomic variables

DNS(2) + FB1 DNS(2) model with two principle component added, principle
component analysis based on all 103 macroeconomic variables

DNS(3) + FB1 DNS(3) model with one principle component added, principle
component analysis based on all 103 macroeconomic variables

DNS(4) + FB1 DNS(4) model with one principle component added, principle
component analysis based on all 103 macroeconomic variables

DNS(5) + FB1 DNS(5) model with one principle component added, principle
component analysis based on all 103 macroeconomic variables

DNS(6) + FB1 DNS(6) model with one principle component added, principle
component analysis based on all 103 macroeconomic variables

DNS(1) + FB2 DNS(1) model with two principle component added, principle
component analysis based on all 103 macroeconomic variables

DNS(2) + FB2 DNS(2) model with two principle component added, principle
component analysis based on all 103 macroeconomic variables

DNS(3) + FB2 DNS(3) model with two principle component added, principle
component analysis based on all 103 macroeconomic variables

DNS(4) + FB2 DNS(4) model with two principle component added, principle
component analysis based on all 103 macroeconomic variables
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TABLE 2 (Continued)
Model Description

DNS(5) + FB2 DNS(5) model with two principle component added, principle
component analysis based on all 103 macroeconomic variables

DNS(6) + FB2 DNS(6) model with two principle component added, principle
component analysis based on all 103 macroeconomic variables

DNS(1)+MAC
DNS(1) model with three key macroeconomic variables added:
manufacturing capacity utilization, the federal funds rate and annual
price inflation

DNS(2)+MAC
DNS(2) model with three key macroeconomic variables added:
manufacturing capacity utilization, the federal funds rate and annual
price inflation

DNS(3)+MAC
DNS(3) model with three key macroeconomic variables added:
manufacturing capacity utilization, the federal funds rate and annual
price inflation

DNS(4)+MAC
DNS(4) model with three key macroeconomic variables added:
manufacturing capacity utilization, the federal funds rate and annual
price inflation

DNS(5)+MAC
DNS(5) model with three key macroeconomic variables added:
manufacturing capacity utilization, the federal funds rate and annual
price inflation

DNS(6)+MAC
DNS(6) model with three key macroeconomic variables added:
manufacturing capacity utilization, the federal funds rate and annual
price inflation

DIF(1) Diffusion index model with one principle component estimator based on
all 10-dimensional yields

DIF(2) Diffusion index model with two principle component estimator based on
all 10-dimensional yields

DIF(3) Diffusion index model with three principle component estimator based on
all 10-dimensional yields

DIF(4) Diffusion index model with one principle component estimator based on
all 103 macroeconomic variables

DIF(5) Diffusion index model with two principle component estimator based on
all 103 macroeconomic variables

DIF(6) Diffusion index model with three principle component estimator based on
all 103 macroeconomic variables

DIF(1)+FB1 DIF(1) model with one principle component added, principle component
analysis based on all 103 macroeconomic variables

DIF(2)+FB1 DIF(2) model with one principle component added, principle component
analysis based on all 103 macroeconomic variables

DIF(3)+FB1 DIF(3) model with one principle component added, principle component
analysis based on all 103 macroeconomic variables

DIF(1)+FB2 DIF(1) model with two principle components added, principle
component analysis based on all 103 macroeconomic variables

DIF(2)+FB2 DIF(2) model with two principle components added, principle
component analysis based on all 103 macroeconomic variables

DIF(3)+FB2 DIF(3) model with two principle components added, principle
component analysis based on all 103 macroeconomic variables

TRE(1) Regression tree model with all 10-dimensional yields as input variables

14



TABLE 2 (Continued)
Model Description

TRE(2) Regression tree model with the three key macroeconomic variables as input
variables

TRE(3) Regression tree model with all 10-dimensional yields and the three key
macroeconomic variables as input variables

FOR(1) Random forest model with all 10-dimensional yields as input variables

FOR(2) Random forest model with the three key macroeconomic variables as input
variables

FOR(3) Random forest model with all 10-dimensional yields and the three key
macroeconomic variables as input variables

GBT(1) Gradient boosted tree model with all 10-dimensional yields as input
variables

GBT(2) Gradient boosted tree model with the three key macroeconomic variables as
input variables

GBT(3) Gradient boosted tree model with all 10-dimensional yields and the three key
macroeconomic variables as input variables

LAS(1) Lasso regression model with all 10-dimensional yields as input variables

LAS(2) Lasso regression model with the three key macroeconomic variables as
input variables

LAS(3) Lasso regression model with all 10-dimensional yields and the three key
macroeconomic variables as input variables

ENE(1) Elastic net regression model with all 10-dimensional yields as input variables

ENE(2) Elastic net regression model with the 3 key macroeconomic variables as
input variables

ENE(3) Elastic net regression model with all 10-dimensional yields and the three key
macroeconomic variables as input variables

GPR(1) Gaussian process regression model with all 10-dimensional yields as input variables

GPR(2) Gaussian process regression model with the three key macroeconomic variables as
input variables

GPR(3) Gaussian process regression model with all 10-dimensional yields and the three key
macroeconomic variables as input variables

5 Results

Tables 3-6 report the relative MSFEs for the term structure of interest rates forecasts of the

models from Table 2 for a 1 month forecast horizon for the 1-, 2-, 3-, 5- and 10-years maturities.

The four different forecast subsamples are: 1992:3-1999:12, 2000:1-2007:12, 2008:1-2016:7 and

1992:3-2016:7. The AR(1) model is used as a benchmark for the construction of the relative

MSFEs. Rejection of the null hypothesis of equal predictive accuracy is indicated by asterisks

after the rMSFEs. The best performing models during the first two subsamples given in Table 3

and 4 are the DNS+FB type models. However, these models are not able to produce significant

more accurate forecasts during the most recent subsample as given in Table 5. Nevertheless,

when taking the whole prediction period into consideration, the DNS+FB type models do pro-
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vide lower MSFEs than the AR(1) model and for the 1 year maturity they are able to perform

significantly better. When focusing on the machine learning models, it stands out that in none

of the subsamples they give significant more accurate forecasts than the simple AR(1) model and

that only the GPR(1) and GPR(3) models have rMSFEs lower than 1 for subsamples 2, 3 and

4 for some of the maturities. Furthermore, the addition of the three key macroeconomic vari-

ables doesn’t seem to produce lower rMSFEs in contrast to the models without those variables,

whereas the models with only the three key macroeconomic variables are the worst performing

models.

Tables 7-10 report the relative MSFEs for the term structure of interest rates forecasts of the

models from Table 2 for a 3 months forecast horizon for the 1-, 2-, 3-, 5- and 10-years maturities.

The four different forecast subsamples are: 1992:7-1999:12, 2000:1-2007:12, 2008:1-2016:7 and

1992:7-2016:7. The results for the three step forecast horizon are pretty similar to that of the

one step forecast horizon. Again the DNS + FB type models produce the best results, except

for the most recent subsample given in Table 9. In this subsample the AR model where the

lags are chosen by the SIC gives the most accurate predictions. This model performs well

across all subsamples for the three step forecast horizon. The machine learning methods, on the

other hand, all have rMSFEs above one, except the GPR(3) model for the one year maturity

in subsample 2 with an rMSFE of 0.974 given in Table 8. Again the addition of the three key

macroeconomic variables does not seem to be an improvement compared to the models without

those three key macroeconomic variables.

Tables 11-14 report the relative MSFEs for the term structure of interest rates forecasts of the

models from Table 2 for a 12 months forecast horizon for the 1-, 2-, 3-, 5- and 10-years maturities.

The four different forecast subsamples are: 1994:1-1999:12, 2000:1-2007:12, 2008:1-2016:7 and

1994:1-2016:7. For the 12 step forecast horizon the best performing models are the (V)AR type

models and the DNS type models. This is different from the one month and three months

forecast horizon, where clearly the best models where the DNS + FB type models. The machine

learning methods with the lowest rMSFEs are the regression tree models, random forest models

and the Gaussian process regression models. However, in the most recent subsample, given in

Table 13, the lasso models and the elastic net models perform surprisingly well. Only for the 10

years maturity none of these models makes significant more accurate predictions than the AR(1)

model. Furthermore, it seems that for the 12 step forecast horizon the addition of the three key

macroeconomic variable does slightly improve the results of the machine learning techniques.

When we focus on all the tables at the same time, it seems that the machine learning models
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perform better in the third more recent subsample, whereas the ordinary econometric models

have their worst performance during this period. Furthermore, the models with only the princi-

pal components as explanatory variables have rMSFEs of bigger than one for all maturities and

all forecast horizons.

6 Conclusion

In this paper we try to answer to what extend machine learning techniques are able to improve

the forecasting of the term structure of interest rates. We performed various machine learning

methods and evaluated them based on their MSFE relative to the MSFE of a simple autore-

gressive model with one lag. However, these models perform rather disappointing. First, we

replicate the econometric models proposed by Swanson and Xiong (2018). Thereafter, we use

regression trees, random forests and gradient boosted trees to forecast the yield for five differ-

ent maturities and three different forecast horizons. Next we apply the lasso and elastic net

models, which shrink the number of variables used in the forecasts. The last machine learning

method used to forecast the different yields we apply is the Gaussian process regression. For

these machine learning models we use three sets of explanatory variables. The first set consists

of 10 yields with different maturities, the second set of the three key macroeconomic variables

suggested by Diebold et al. (2006) and the third set is the combination of the first two sets.

The regression tree based models are not able to significantly beat the benchmark AR(1) model

in predicting the term structure of interest rates. This seems to contradict the findings of Rahimi

(2020). However, Rahimi does not compare his random forest model with an AR(1) model, but

only with a dynamic Nelson-Siegel model where the latent factors are forecasted using a AR

model. When we compare our random forest model with the DNS(1), DNS(2) and DNS(3)

we find that the the random forest model only performs better during the third most recent

subsample. This difference with the findings of Rahimi is possibly due to the use of a different

data set.

The lasso and elastic net model are not able to produce more significant more accurate forecasts

of the yield curve than the AR(1) model as well. A reason for this could be the amount of

explanatory variables used in the models. Increasing the amount of explanatory variables may

improve the predictive performance of these models.
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Table 3: One-step-ahead relative MSFEs of all forecasting models (subsample 1: 1992:3–1999:12)
Model rMSFE Model rMSFE

Maturity 1 year 2 years 3 years 5 years 10 years Maturity 1 year 2 years 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000 DNS(6)+MAC 1.119 1.165 1.130 1.161 1.188
VAR(1) 1.099 1.108 1.103 1.098 1.141 DIF(1) 3.048 2.655 1.926 0.919** 2.245
VAR(1)+FB1 0.819** 0.868* 0.893* 0.927 1.045 DIF(2) 1.274 1.067 1.038 1.029 1.199
VAR(1)+FB2 0.844 0.874 0.897 0.940 1.106 DIF(3) 0.973 1.046 1.044 1.049 1.128
AR(SIC) 0.864** 0.942* 0.958 0.974 0.972** DIF(4) 2.238 2.303 2.337 2.382 2.438
VAR(SIC) 1.099 1.108 1.103 1.098 1.141 DIF(5) 2.253 2.338 2.386 2.455 2.588
VAR(SIC)+FB1 0.819** 0.868* 0.893* 0.927 1.045 DIF(6) 2.236 2.320 2.359 2.410 2.514
VAR(SIC)+FB2 0.844 0.874 0.897 0.940 1.106 DIF(1)+FB1 2.208 2.182 1.717 0.950 2.239
DNS(1) 1.032 1.097 1.061 1.039 1.067 DIF(2)+FB1 1.340 1.074 1.026 1.039 1.254
DNS(2) 1.036 1.088 1.053 1.046 1.064 DIF(3)+FB1 0.958 1.006 1.021 1.060 1.164
DNS(3) 1.040 1.123 1.066 1.045 1.037 DIF(1)+FB2 2.002 1.933 1.489 0.969 2.065
DNS(4) 1.088 1.160 1.104 1.070 1.102 DIF(2)+FB2 1.269 1.052 1.016 1.029 1.247
DNS(5) 1.095 1.147 1.095 1.081 1.098 DIF(3)+FB2 0.947 1.007 1.022 1.057 1.177
DNS(6) 1.094 1.190 1.107 1.065 1.071 TRE(1) 1.898 2.118 1.736 2.140 2.203
DNS(1)+FB1 0.900 0.862* 0.895 0.981 0.981 TRE(2) 90.607 62.668 53.187 43.335 63.626
DNS(2)+FB1 0.891 0.865* 0.903 1.000 0.980 TRE(3) 2.345 2.225 2.181 2.575 2.499
DNS(3)+FB1 0.876 0.868* 0.896 1.006 0.990 FOR(1) 2.179 1.581 1.458 1.591 2.074
DNS(4)+FB1 0.784** 0.861** 0.870** 0.922 0.990 FOR(2) 64.868 46.561 38.998 37.432 43.655
DNS(5)+FB1 0.785** 0.854** 0.867** 0.934 0.987 FOR(3) 2.396 1.608 1.521 1.635 2.121
DNS(6)+FB1 0.775*** 0.882** 0.872** 0.930 0.985 GBT(1) 2.113 2.590 2.145 2.455 2.610
DNS(1)+FB2 0.960 0.908 0.948 1.053 1.053 GBT(2) 93.773 60.341 54.303 55.356 65.699
DNS(2)+FB2 0.948 0.911 0.957 1.074 1.051 GBT(3) 2.653 3.102 2.273 2.435 3.049
DNS(3)+FB2 0.933 0.911 0.948 1.081 1.073 LAS(1) 1.822 1.872 2.005 2.259 4.494
DNS(4)+FB2 0.789** 0.844** 0.858** 0.920 0.988 LAS(2) 446.429 375.295 370.567 425.594 682.249
DNS(5)+FB2 0.790** 0.840** 0.857** 0.934 0.985 LAS(3) 1.744 2.008 2.392 2.671 6.000
DNS(6)+FB2 0.775** 0.863** 0.860** 0.929 0.987 ENE(1) 2.108 1.705 1.724 1.582 4.737
DNS(1)+MAC 1.028 1.099 1.073 1.056 1.095 ENE(2) 444.809 374.603 368.661 425.032 683.862
DNS(2)+MAC 1.029 1.089 1.065 1.063 1.091 ENE(3) 1.938 1.803 2.043 1.881 6.318
DNS(3)+MAC 1.032 1.123 1.079 1.062 1.063 GPR(1) 1.023 1.067 1.078 1.092 1.193
DNS(4)+MAC 1.132 1.147 1.129 1.154 1.191 GPR(2) 64.573 46.084 39.960 38.229 45.884
DNS(5)+MAC 1.130 1.140 1.125 1.164 1.184 GPR(3) 1.004 1.087 1.106 1.119 1.201

This table reports the relative mean squared forecast error (rMSFE) for predictions of the monthly US treasury bond yields of various maturities for a one
month forecast horizon, where the AR(1) model is used as a benchmark. Entries superscripted with ***, ** and * denote rejections of the null of equal

predictive accuracy at 0.01, 0.05 and 0.10 significance levels, respectively, based on application of the Diebold–Mariano test and indicate that the listed model
produces more accurate forecasts compared to the AR(1) benchmark, based on MSFE loss. Bold entries denote the best performing machine learning models for

each maturity.
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Table 4: One-step-ahead relative MSFEs of all forecasting models (subsample 2: 2000:1–2007:12)
Model rMSFE Model rMSFE

Maturity 1 year 2 years 3 years 5 years 10 years Maturity 1 year 2 years 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000 DNS(6)+MAC 0.949 1.057 1.056 1.190 1.097
VAR(1) 0.970 1.029 1.032 1.045 1.110 DIF(1) 2.474 2.046 1.688 1.062 1.788
VAR(1)+FB1 0.733** 0.858* 0.906 0.971 1.084 DIF(2) 1.288 1.112 1.104 1.061 1.214
VAR(1)+FB2 0.810 0.899 0.936 1.003 1.157 DIF(3) 1.029 1.128 1.114 1.073 1.121
AR(SIC) 0.939 1.033 1.033 1.035 1.015 DIF(4) 1.566 1.733 1.830 1.930 1.961
VAR(SIC) 0.970 1.029 1.032 1.045 1.110 DIF(5) 1.349 1.688 1.805 1.884 1.937
VAR(SIC)+FB1 0.733** 0.858* 0.906 0.971 1.084 DIF(6) 1.389 1.697 1.804 1.868 1.919
VAR(SIC)+FB2 0.810 0.899 0.936 1.003 1.157 DIF(1)+FB1 1.575 1.633 1.468 1.045 1.794
DNS(1) 1.211 1.015 1.000 1.094 0.959* DIF(2)+FB1 1.093 1.001 1.027 1.038 1.227
DNS(2) 1.182 1.016 1.012 1.121 0.958** DIF(3)+FB1 0.892 1.021 1.049 1.053 1.115
DNS(3) 1.150 1.015 0.998 1.126 0.983 DIF(1)+FB2 1.435 1.673 1.521 1.039 1.667
DNS(4) 1.017 1.067 1.031 1.082 1.026 DIF(2)+FB2 1.117 1.024 1.039 1.046 1.184
DNS(5) 1.014 1.058 1.034 1.110 1.027 DIF(3)+FB2 0.875 1.023 1.058 1.059 1.122
DNS(6) 1.021 1.099 1.037 1.099 1.032 TRE(1) 1.728 1.562 1.724 1.758 1.548
DNS(1)+FB1 0.780* 0.851 0.860 0.947 0.947 TRE(2) 75.620 50.094 41.182 34.342 23.738
DNS(2)+FB1 0.773* 0.842 0.859* 0.966 0.944 TRE(3) 1.862 1.811 1.962 1.908 1.907
DNS(3)+FB1 0.770* 0.873 0.863 0.966 0.944 FOR(1) 2.784 1.907 1.600 1.359 1.144
DNS(4)+FB1 0.708*** 0.853** 0.866** 0.962 0.959 FOR(2) 65.510 40.243 30.064 21.867 17.613
DNS(5)+FB1 0.703*** 0.840** 0.865** 0.987 0.960 FOR(3) 3.006 2.026 1.668 1.359 1.131
DNS(6)+FB1 0.713*** 0.884* 0.872** 0.979 0.965 GBT(1) 1.835 2.244 2.161 1.895 1.646
DNS(1)+FB2 0.717** 0.741** 0.763** 0.887 0.855** GBT(2) 92.456 65.436 47.425 38.136 27.007
DNS(2)+FB2 0.707** 0.734** 0.766** 0.912 0.854** GBT(3) 2.078 1.898 2.069 2.493 1.674
DNS(3)+FB2 0.697** 0.756** 0.765** 0.915 0.877** LAS(1) 2.392 1.864 1.851 1.980 2.465
DNS(4)+FB2 0.727*** 0.793*** 0.824*** 0.961 0.933 LAS(2) 240.590 189.181 182.306 211.990 353.721
DNS(5)+FB2 0.721*** 0.791*** 0.832** 0.991 0.935 LAS(3) 1.625 1.584 1.869 2.317 4.046
DNS(6)+FB2 0.703*** 0.810*** 0.824*** 0.983 0.960 ENE(1) 2.602 2.095 1.976 1.436 2.895
DNS(1)+MAC 1.065 0.982 1.002 1.099 0.979 ENE(2) 240.377 190.009 182.504 212.072 354.666
DNS(2)+MAC 1.037 0.983 1.011 1.125 0.977 ENE(3) 2.033 1.737 1.880 1.406 5.264
DNS(3)+MAC 1.000 0.983 1.000 1.129 0.997 GPR(1) 0.962 1.013 1.023 1.052 1.126
DNS(4)+MAC 0.972 1.040 1.056 1.165 1.064 GPR(2) 63.757 40.299 30.444 23.207 18.417
DNS(5)+MAC 0.960 1.037 1.065 1.197 1.065 GPR(3) 0.895 1.047 1.039 1.078 1.179

See notes to table 3.
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Table 5: One-step-ahead relative MSFEs of all forecasting models (subsample 3: 2008:1–2016:7)
Model rMSFE Model rMSFE

Maturity 1 year 2 years 3 years 5 years 10 years Maturity 1 year 2 years 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000 DNS(6)+MAC 1.144 1.199 1.132 1.437 1.077
VAR(1) 1.177 1.242 1.222 1.180 1.158 DIF(1) 2.521 2.326 2.076 1.245 1.621
VAR(1)+FB1 1.249 1.311 1.293 1.281 1.297 DIF(2) 1.581 1.336 1.315 1.215 1.196
VAR(1)+FB2 1.369 1.451 1.406 1.345 1.320 DIF(3) 1.058 1.392 1.388 1.259 1.257
AR(SIC) 0.920 1.028 1.005 0.999 1.009 DIF(4) 4.145 3.409 2.884 2.440 2.219
VAR(SIC) 1.177 1.242 1.222 1.180 1.158 DIF(5) 4.718 3.707 2.960 2.305 1.980
VAR(SIC)+FB1 1.249 1.311 1.293 1.281 1.297 DIF(6) 4.699 3.805 3.151 2.573 2.192
VAR(SIC)+FB2 1.369 1.451 1.406 1.345 1.320 DIF(1)+FB1 4.053 3.207 2.411 1.280 1.575
DNS(1) 2.108 1.044 1.137 1.444 0.932* DIF(2)+FB1 2.127 1.637 1.439 1.270 1.226
DNS(2) 1.966 1.085 1.223 1.542 0.928* DIF(3)+FB1 1.367 1.666 1.532 1.326 1.320
DNS(3) 1.710 1.003 1.098 1.521 0.980 DIF(1)+FB2 4.438 3.232 2.257 1.179 1.452
DNS(4) 1.396 1.156 1.141 1.387 1.042 DIF(2)+FB2 2.100 1.615 1.403 1.182 1.106
DNS(5) 1.317 1.127 1.167 1.459 1.030 DIF(3)+FB2 1.341 1.623 1.448 1.190 1.147
DNS(6) 1.231 1.220 1.137 1.450 1.071 TRE(1) 1.372 1.801 1.743 2.029 2.452
DNS(1)+FB1 2.132 1.536 1.390 1.511 1.078 TRE(2) 139.756 100.203 75.180 46.067 21.543
DNS(2)+FB1 2.030 1.522 1.421 1.583 1.072 TRE(3) 1.559 2.070 2.055 2.459 2.585
DNS(3)+FB1 1.914 1.577 1.379 1.582 1.110 FOR(1) 1.456 1.677 1.730 1.601 1.526
DNS(4)+FB1 1.420 1.315 1.212 1.387 1.132 FOR(2) 103.158 76.155 56.616 36.700 20.745
DNS(5)+FB1 1.373 1.275 1.223 1.452 1.123 FOR(3) 1.502 1.739 1.777 1.660 1.595
DNS(6)+FB1 1.306 1.403 1.213 1.437 1.138 GBT(1) 2.089 2.476 2.371 2.316 2.017
DNS(1)+FB2 2.259 1.661 1.469 1.523 1.075 GBT(2) 200.279 125.565 94.255 55.715 23.052
DNS(2)+FB2 2.149 1.645 1.497 1.591 1.068 GBT(3) 2.051 2.857 2.470 2.458 2.084
DNS(3)+FB2 2.044 1.707 1.462 1.595 1.106 LAS(1) 9.156 6.381 4.609 3.396 4.911
DNS(4)+FB2 1.553 1.467 1.327 1.454 1.177 LAS(2) 22.994 24.709 30.986 50.870 96.424
DNS(5)+FB2 1.503 1.423 1.332 1.513 1.166 LAS(3) 3.940 3.164 2.920 2.528 4.866
DNS(6)+FB2 1.442 1.552 1.325 1.501 1.180 ENE(1) 9.407 6.573 4.720 3.394 5.114
DNS(1)+MAC 1.720 1.051 1.094 1.331 0.943 ENE(2) 22.565 24.054 30.774 50.362 96.263
DNS(2)+MAC 1.604 1.064 1.149 1.413 0.939 ENE(3) 5.346 3.730 2.920 2.434 5.270
DNS(3)+MAC 1.429 1.060 1.078 1.406 0.966 GPR(1) 0.819 0.966 0.968 0.984 1.078
DNS(4)+MAC 1.316 1.137 1.141 1.382 1.056 GPR(2) 104.178 76.496 56.695 37.218 20.790
DNS(5)+MAC 1.228 1.108 1.162 1.447 1.041 GPR(3) 0.910 0.922 0.910 0.928 0.983

See notes to table 3.
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Table 6: One-step-ahead relative MSFEs of all forecasting models (subsample 4: 1992:3–2016:7)
Model rMSFE Model rMSFE

Maturity 1 year 2 years 3 years 5 years 10 years Maturity 1 year 2 years 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000 DNS(6)+MAC 1.055 1.127 1.100 1.252 1.112
VAR(1) 1.063 1.103 1.101 1.102 1.139 DIF(1) 2.702 2.334 1.863 1.067 1.838
VAR(1)+FB1 0.874* 0.955 0.990 1.046 1.165 DIF(2) 1.344 1.141 1.128 1.095 1.203
VAR(1)+FB2 0.940 1.003 1.029 1.081 1.213 DIF(3) 1.014 1.151 1.151 1.119 1.181
AR(SIC) 0.906* 0.998 0.999 1.004 1.001 DIF(4) 2.361 2.293 2.256 2.229 2.198
VAR(SIC) 1.063 1.103 1.101 1.102 1.139 DIF(5) 2.397 2.349 2.281 2.197 2.128
VAR(SIC)+FB1 0.874* 0.955 0.990 1.046 1.165 DIF(6) 2.404 2.366 2.314 2.253 2.193
VAR(SIC)+FB2 0.940 1.003 1.029 1.081 1.213 DIF(1)+FB1 2.334 2.165 1.774 1.081 1.818
DNS(1) 1.331 1.052 1.053 1.177 0.976 DIF(2)+FB1 1.403 1.159 1.120 1.105 1.234
DNS(2) 1.291 1.058 1.075 1.218 0.973 DIF(3)+FB1 1.016 1.147 1.149 1.134 1.215
DNS(3) 1.226 1.053 1.046 1.213 0.996 DIF(1)+FB2 2.279 2.092 1.677 1.056 1.681
DNS(4) 1.123 1.120 1.083 1.166 1.053 DIF(2)+FB2 1.381 1.156 1.114 1.080 1.167
DNS(5) 1.108 1.106 1.086 1.201 1.047 DIF(3)+FB2 1.000 1.140 1.134 1.096 1.147
DNS(6) 1.093 1.158 1.085 1.189 1.059 TRE(1) 1.718 1.822 1.733 1.964 2.108
DNS(1)+FB1 1.109 0.996 0.994 1.122 1.012 TRE(2) 94.738 65.150 53.318 40.744 33.366
DNS(2)+FB1 1.081 0.991 1.003 1.155 1.008 TRE(3) 1.982 2.021 2.063 2.291 2.354
DNS(3)+FB1 1.050 1.016 0.993 1.157 1.027 FOR(1) 2.276 1.736 1.578 1.507 1.553
DNS(4)+FB1 0.886* 0.951 0.946 1.071 1.041 FOR(2) 73.151 50.013 39.381 31.369 25.849
DNS(5)+FB1 0.874* 0.935 0.947 1.104 1.037 FOR(3) 2.460 1.809 1.639 1.538 1.592
DNS(6)+FB1 0.861** 0.990 0.950 1.095 1.045 GBT(1) 1.994 2.423 2.203 2.204 2.060
DNS(1)+FB2 1.132 0.993 0.992 1.127 1.001 GBT(2) 115.537 75.853 60.613 48.986 35.566
DNS(2)+FB2 1.100 0.988 1.003 1.162 0.998 GBT(3) 2.291 2.551 2.235 2.464 2.213
DNS(3)+FB2 1.069 1.010 0.991 1.167 1.027 LAS(1) 3.592 2.794 2.536 2.483 4.047
DNS(4)+FB2 0.924 0.951 0.951 1.090 1.052 LAS(2) 273.118 225.951 216.608 237.001 330.809
DNS(5)+FB2 0.911 0.939 0.955 1.123 1.047 LAS(3) 2.155 2.069 2.300 2.497 4.914
DNS(6)+FB2 0.885 0.982 0.951 1.115 1.061 ENE(1) 3.840 2.867 2.509 2.051 4.331
DNS(1)+MAC 1.188 1.040 1.049 1.152 0.995 ENE(2) 272.326 225.899 215.944 236.697 331.458
DNS(2)+MAC 1.153 1.040 1.063 1.187 0.991 ENE(3) 2.691 2.171 2.177 1.862 5.546
DNS(3)+MAC 1.102 1.052 1.047 1.187 1.001 GPR(1) 0.955 1.024 1.031 1.046 1.124
DNS(4)+MAC 1.105 1.101 1.102 1.224 1.094 GPR(2) 72.532 49.925 39.905 32.290 26.706
DNS(5)+MAC 1.081 1.091 1.109 1.258 1.086 GPR(3) 0.940 1.036 1.034 1.049 1.101

See notes to table 3.
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Table 7: Three-step-ahead relative MSFEs of all forecasting models (subsample 1: 1992:7–1999:12)
Model rMSFE Model rMSFE

Maturity 1 year 2 years 3 years 5 years 10 years Maturity 1 year 2 years 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000 DNS(6)+MAC 0.950 1.053 1.054 1.038 1.025
VAR(1) 1.014 1.062 1.074 1.063 1.035 DIF(1) 1.678 1.558 1.285 0.987 1.381
VAR(1)+FB1 0.981 1.037 1.055 1.050 1.030 DIF(2) 1.272 1.252 1.227 1.207 1.248
VAR(1)+FB2 1.070 1.119 1.134 1.130 1.114 DIF(3) 1.209 1.241 1.218 1.181 1.195
AR(SIC) 0.885** 0.963 0.974 0.969 0.933** DIF(4) 1.217 1.278 1.312 1.355 1.430
VAR(SIC) 1.014 1.062 1.074 1.063 1.035 DIF(5) 1.465 1.533 1.563 1.568 1.541
VAR(SIC)+FB1 0.981 1.037 1.055 1.050 1.030 DIF(6) 1.489 1.558 1.587 1.587 1.538
VAR(SIC)+FB2 1.070 1.119 1.134 1.130 1.114 DIF(1)+FB1 1.272 1.340 1.196 0.998 1.406
DNS(1) 1.061 1.079 1.065 1.047 1.029 DIF(2)+FB1 1.216 1.199 1.178 1.176 1.240
DNS(2) 1.067 1.082 1.069 1.054 1.031 DIF(3)+FB1 1.050 1.100 1.111 1.124 1.184
DNS(3) 1.065 1.080 1.062 1.046 1.028 DIF(1)+FB2 1.395 1.513 1.388 1.200 1.408
DNS(4) 0.990 1.075 1.063 1.024 1.003 DIF(2)+FB2 1.316 1.305 1.276 1.244 1.266
DNS(5) 0.996 1.071 1.058 1.024 1.002 DIF(3)+FB2 1.140 1.203 1.209 1.199 1.229
DNS(6) 1.000 1.086 1.063 1.017 0.989 TRE(1) 1.770 2.068 1.864 1.889 2.472
DNS(1)+FB1 0.922 0.914 0.954 1.013 1.000 TRE(2) 19.027 11.414 10.116 9.741 11.119
DNS(2)+FB1 0.923 0.924 0.964 1.024 1.004 TRE(3) 1.742 1.965 2.174 2.056 2.364
DNS(3)+FB1 0.918 0.914 0.955 1.025 1.022 FOR(1) 1.442 1.427 1.469 1.677 1.988
DNS(4)+FB1 0.855** 0.961 0.973 0.966 0.959 FOR(2) 13.180 10.002 9.058 8.895 10.386
DNS(5)+FB1 0.861** 0.957 0.969 0.966 0.956 FOR(3) 1.547 1.460 1.475 1.606 1.950
DNS(6)+FB1 0.860** 0.968 0.972 0.961 0.951 GBT(1) 1.939 2.109 1.993 2.378 2.487
DNS(1)+FB2 1.033 1.019 1.039 1.063 1.008 GBT(2) 19.532 12.835 9.541 10.664 13.289
DNS(2)+FB2 1.032 1.027 1.048 1.074 1.013 GBT(3) 1.782 2.367 2.271 2.635 2.999
DNS(3)+FB2 1.034 1.024 1.045 1.080 1.035 LAS(1) 2.416 2.493 2.171 2.299 5.076
DNS(4)+FB2 0.920* 1.016 1.025 1.014 0.998 LAS(2) 98.778 88.212 89.804 104.342 160.987
DNS(5)+FB2 0.930 1.017 1.025 1.019 0.999 LAS(3) 2.380 3.024 2.864 3.051 6.409
DNS(6)+FB2 0.919* 1.018 1.021 1.008 0.990 ENE(1) 2.517 2.389 2.184 2.258 5.169
DNS(1)+MAC 1.056 1.099 1.091 1.063 1.025 ENE(2) 99.304 88.253 89.678 104.289 161.298
DNS(2)+MAC 1.063 1.102 1.093 1.068 1.028 ENE(3) 2.456 2.631 2.689 3.026 6.749
DNS(3)+MAC 1.060 1.102 1.089 1.061 1.020 GPR(1) 1.122 1.307 1.283 1.332 1.401
DNS(4)+MAC 0.942 1.043 1.052 1.040 1.031 GPR(2) 13.671 10.586 9.687 9.635 11.394
DNS(5)+MAC 0.945 1.037 1.045 1.036 1.026 GPR(3) 1.187 1.227 1.219 1.260 1.304

See notes to table 3.
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Table 8:Three-step-ahead relative MSFEs of all forecasting models (subsample 2: 2000:1–2007:12)
Model rMSFE Model rMSFE

Maturity 1 year 2 years 3 years 5 years 10 years Maturity 1 year 2 years 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000 DNS(6)+MAC 0.854*** 0.901* 0.898* 0.959 0.996
VAR(1) 0.832*** 0.880*** 0.885** 0.909* 1.013 DIF(1) 1.641 1.460 1.331 1.146 1.286
VAR(1)+FB1 0.837*** 0.880*** 0.882** 0.905** 1.009 DIF(2) 1.234 1.217 1.191 1.188 1.354
VAR(1)+FB2 0.839*** 0.889** 0.895** 0.924* 1.043 DIF(3) 1.186 1.280 1.261 1.241 1.340
AR(SIC) 0.819*** 0.877** 0.873** 0.881** 0.937 DIF(4) 0.946 1.084 1.188 1.330 1.358
VAR(SIC) 0.832*** 0.880*** 0.885** 0.909* 1.013 DIF(5) 0.970 1.143 1.210 1.305 1.488
VAR(SIC)+FB1 0.837*** 0.880*** 0.882** 0.905** 1.009 DIF(6) 1.007 1.182 1.247 1.331 1.511
VAR(SIC)+FB2 0.839*** 0.889** 0.895** 0.924* 1.043 DIF(1)+FB1 0.943 1.057 1.096 1.196 1.428
DNS(1) 1.250 1.068 1.009 1.051 0.913*** DIF(2)+FB1 0.915 1.018 1.082 1.184 1.462
DNS(2) 1.233 1.069 1.019 1.066 0.913*** DIF(3)+FB1 0.911 1.081 1.149 1.227 1.413
DNS(3) 1.232 1.063 1.009 1.078 0.977 DIF(1)+FB2 1.090 1.273 1.266 1.189 1.728
DNS(4) 0.905*** 0.919** 0.895** 0.915** 0.929 DIF(2)+FB2 0.913 1.059 1.124 1.196 1.414
DNS(5) 0.900*** 0.916** 0.897** 0.926** 0.929 DIF(3)+FB2 0.905 1.098 1.171 1.242 1.432
DNS(6) 0.915*** 0.930* 0.897** 0.920** 0.942 TRE(1) 2.160 1.477 1.568 1.751 1.856
DNS(1)+FB1 0.676** 0.705** 0.724** 0.827** 0.846** TRE(2) 16.525 12.579 11.322 11.637 11.576
DNS(2)+FB1 0.674** 0.706** 0.730** 0.840* 0.846** TRE(3) 2.189 1.712 1.462 1.745 1.884
DNS(3)+FB1 0.672** 0.703** 0.720** 0.842* 0.891* FOR(1) 1.773 1.502 1.315 1.183 1.254
DNS(4)+FB1 0.830*** 0.857*** 0.846*** 0.884** 0.909* FOR(2) 12.944 10.366 8.693 7.467 7.435
DNS(5)+FB1 0.830*** 0.857*** 0.851*** 0.898** 0.909* FOR(3) 1.792 1.489 1.347 1.214 1.197
DNS(6)+FB1 0.833*** 0.863** 0.845*** 0.889** 0.925* GBT(1) 2.165 1.767 1.863 1.864 2.267
DNS(1)+FB2 0.794* 0.755** 0.773** 0.898 0.921 GBT(2) 19.769 14.682 12.059 11.824 11.774
DNS(2)+FB2 0.784* 0.754** 0.779** 0.912 0.920 GBT(3) 1.997 1.979 1.788 1.548 2.142
DNS(3)+FB2 0.793 0.757** 0.777** 0.929 0.998 LAS(1) 3.464 2.531 2.362 1.775 3.780
DNS(4)+FB2 0.833*** 0.860*** 0.849*** 0.887** 0.915* LAS(2) 45.880 45.727 48.777 65.766 134.252
DNS(5)+FB2 0.833*** 0.860*** 0.854*** 0.901** 0.916* LAS(3) 2.410 2.358 2.806 2.509 6.657
DNS(6)+FB2 0.836*** 0.866** 0.848*** 0.892** 0.931* ENE(1) 3.587 2.770 2.099 1.799 4.255
DNS(1)+MAC 1.073 1.026 1.026 1.097 0.963* ENE(2) 46.119 45.850 48.888 65.759 133.963
DNS(2)+MAC 1.055 1.028 1.036 1.111 0.962* ENE(3) 2.372 2.279 2.116 2.074 7.859
DNS(3)+MAC 1.049 1.018 1.025 1.122 1.020 GPR(1) 1.146 1.255 1.295 1.403 1.897
DNS(4)+MAC 0.853*** 0.897* 0.900* 0.952 0.972 GPR(2) 12.814 10.320 8.849 7.916 7.964
DNS(5)+MAC 0.849*** 0.896* 0.903* 0.964 0.970 GPR(3) 0.974 1.176 1.237 1.296 1.448

See notes to table 3.
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Table 9: Three-step-ahead relative MSFEs of all forecasting models (subsample 3: 2008:1–2016:7)
Model rMSFE Model rMSFE

Maturity 1 year 2 years 3 years 5 years 10 years Maturity 1 year 2 years 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000 DNS(6)+MAC 0.988 0.981 0.987 1.061 0.911**
VAR(1) 0.975 0.998 0.974 0.927* 0.926* DIF(1) 1.367 1.366 1.315 1.124 1.230
VAR(1)+FB1 0.937 0.976 0.961 0.924 0.935 DIF(2) 1.514 1.527 1.428 1.249 1.170
VAR(1)+FB2 0.942 0.978 0.963 0.926 0.936 DIF(3) 1.483 1.602 1.535 1.369 1.219
AR(SIC) 0.975 0.971 0.946** 0.921** 0.917** DIF(4) 2.757 2.332 2.023 1.677 1.430
VAR(SIC) 0.975 0.998 0.974 0.927* 0.926* DIF(5) 2.918 2.444 2.107 1.728 1.429
VAR(SIC)+FB1 0.937 0.976 0.961 0.924 0.935 DIF(6) 3.131 2.713 2.456 2.145 1.729
VAR(SIC)+FB2 0.942 0.978 0.963 0.926 0.936 DIF(1)+FB1 2.756 2.260 1.817 1.282 1.270
DNS(1) 1.825 1.278 1.304 1.407 0.971 DIF(2)+FB1 2.146 1.940 1.674 1.376 1.230
DNS(2) 1.762 1.310 1.357 1.453 0.968 DIF(3)+FB1 1.867 1.948 1.741 1.460 1.272
DNS(3) 1.652 1.203 1.260 1.431 1.022 DIF(1)+FB2 2.826 2.300 1.852 1.328 1.252
DNS(4) 1.046 0.974 0.990 1.050 0.907* DIF(2)+FB2 2.111 1.912 1.662 1.377 1.244
DNS(5) 1.025 0.973 1.001 1.071 0.899* DIF(3)+FB2 1.810 1.895 1.702 1.437 1.256
DNS(6) 0.997 0.979 0.987 1.070 0.919* TRE(1) 1.867 1.649 1.815 2.238 1.821
DNS(1)+FB1 2.186 1.848 1.660 1.545 1.093 TRE(2) 32.547 33.425 25.600 16.914 9.243
DNS(2)+FB1 2.154 1.846 1.675 1.571 1.089 TRE(3) 1.234 1.730 1.617 1.860 1.658
DNS(3)+FB1 2.118 1.823 1.633 1.563 1.136 FOR(1) 1.258 1.546 1.539 1.401 1.348
DNS(4)+FB1 0.957 0.929 0.948 1.014 0.914 FOR(2) 20.402 18.229 15.393 11.961 8.182
DNS(5)+FB1 0.939 0.927 0.957 1.035 0.907 FOR(3) 1.108 1.414 1.460 1.436 1.384
DNS(6)+FB1 0.915 0.939 0.947 1.032 0.920* GBT(1) 1.244 1.850 2.026 2.157 2.225
DNS(1)+FB2 2.215 1.871 1.643 1.478 1.041 GBT(2) 38.157 30.898 26.558 15.911 12.274
DNS(2)+FB2 2.184 1.863 1.651 1.499 1.036 GBT(3) 1.198 1.814 2.019 2.398 2.515
DNS(3)+FB2 2.158 1.853 1.619 1.493 1.074 LAS(1) 8.242 5.012 3.330 2.671 4.209
DNS(4)+FB2 0.984 0.948 0.964 1.027 0.923 LAS(2) 5.728 6.372 8.200 14.847 35.004
DNS(5)+FB2 0.966 0.945 0.972 1.047 0.916 LAS(3) 5.813 4.365 3.087 3.110 5.662
DNS(6)+FB2 0.943 0.960 0.964 1.045 0.930 ENE(1) 8.669 5.201 3.493 2.557 4.357
DNS(1)+MAC 1.864 1.393 1.372 1.423 1.006 ENE(2) 5.407 6.199 8.085 15.032 34.983
DNS(2)+MAC 1.811 1.417 1.416 1.467 1.003 ENE(3) 6.237 4.576 3.550 2.744 6.052
DNS(3)+MAC 1.721 1.337 1.339 1.451 1.056 GPR(1) 1.132 1.594 1.477 1.346 1.156
DNS(4)+MAC 1.039 0.977 0.992 1.045 0.903* GPR(2) 19.460 17.003 14.508 11.058 7.933
DNS(5)+MAC 1.017 0.978 1.004 1.065 0.895* GPR(3) 1.168 1.312 1.335 1.235 1.130

See notes to table 3.
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Table 10: Three-step-ahead relative MSFEs of all forecasting models (subsample 4: 1992:7–2016:7)
Model rMSFE Model rMSFE

Maturity 1 year 2 years 3 years 5 years 10 years Maturity 1 year 2 years 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000 DNS(6)+MAC 0.918** 0.976 0.978 1.017 0.974
VAR(1) 0.927** 0.974 0.977 0.972 0.987 DIF(1) 1.589 1.475 1.310 1.081 1.298
VAR(1)+FB1 0.909*** 0.960 0.966 0.965 0.988 DIF(2) 1.312 1.300 1.261 1.212 1.246
VAR(1)+FB2 0.941** 0.994 1.001 1.002 1.027 DIF(3) 1.263 1.339 1.310 1.255 1.243
AR(SIC) 0.878*** 0.930** 0.928*** 0.925*** 0.928*** DIF(4) 1.460 1.438 1.435 1.438 1.411
VAR(SIC) 0.927** 0.974 0.977 0.972 0.987 DIF(5) 1.591 1.582 1.557 1.523 1.484
VAR(SIC)+FB1 0.909*** 0.960 0.966 0.965 0.988 DIF(6) 1.665 1.668 1.664 1.658 1.604
VAR(SIC)+FB2 0.941** 0.994 1.001 1.002 1.027 DIF(1)+FB1 1.477 1.434 1.306 1.147 1.359
DNS(1) 1.320 1.119 1.101 1.150 0.976 DIF(2)+FB1 1.304 1.294 1.260 1.235 1.295
DNS(2) 1.300 1.129 1.118 1.171 0.976 DIF(3)+FB1 1.181 1.284 1.276 1.254 1.279
DNS(3) 1.273 1.101 1.089 1.166 1.012 DIF(1)+FB2 1.598 1.594 1.452 1.233 1.433
DNS(4) 0.967* 0.989 0.981 0.994 0.946* DIF(2)+FB2 1.329 1.343 1.310 1.265 1.297
DNS(5) 0.962* 0.986 0.982 1.004 0.943* DIF(3)+FB2 1.195 1.318 1.312 1.281 1.293
DNS(6) 0.963* 0.999 0.981 0.999 0.949** TRE(1) 1.960 1.735 1.738 1.941 2.058
DNS(1)+FB1 1.111 1.041 1.034 1.100 0.995 TRE(2) 21.105 16.866 14.288 12.423 10.517
DNS(2)+FB1 1.103 1.045 1.044 1.116 0.995 TRE(3) 1.815 1.809 1.766 1.894 1.964
DNS(3)+FB1 1.092 1.035 1.027 1.114 1.031 FOR(1) 1.549 1.486 1.425 1.426 1.542
DNS(4)+FB1 0.868*** 0.912** 0.918** 0.952** 0.928** FOR(2) 14.761 12.011 10.434 9.273 8.754
DNS(5)+FB1 0.866*** 0.910*** 0.920*** 0.962* 0.925** FOR(3) 1.549 1.461 1.422 1.423 1.532
DNS(6)+FB1 0.861*** 0.919** 0.917** 0.956** 0.932** GBT(1) 1.874 1.913 1.951 2.139 2.328
DNS(1)+FB2 1.206 1.106 1.081 1.124 0.997 GBT(2) 23.973 17.669 14.585 12.548 12.496
DNS(2)+FB2 1.194 1.106 1.089 1.139 0.997 GBT(3) 1.738 2.085 2.025 2.195 2.585
DNS(3)+FB2 1.193 1.104 1.079 1.145 1.040 LAS(1) 4.222 3.078 2.522 2.225 4.398
DNS(4)+FB2 0.898*** 0.938* 0.943** 0.974 0.947* LAS(2) 54.446 52.564 54.460 65.760 105.315
DNS(5)+FB2 0.897*** 0.938** 0.947** 0.987 0.945* LAS(3) 3.192 3.059 2.895 2.882 6.186
DNS(6)+FB2 0.889*** 0.944* 0.940** 0.979 0.951** ENE(1) 4.409 3.179 2.465 2.185 4.614
DNS(1)+MAC 1.251 1.136 1.133 1.177 1.001 ENE(2) 54.652 52.590 54.428 65.790 105.339
DNS(2)+MAC 1.234 1.144 1.148 1.196 1.001 ENE(3) 3.301 2.929 2.675 2.620 6.774
DNS(3)+MAC 1.209 1.121 1.124 1.192 1.034 GPR(1) 1.135 1.351 1.334 1.360 1.438
DNS(4)+MAC 0.927** 0.969 0.979 1.011 0.966 GPR(2) 14.653 11.931 10.519 9.449 9.151
DNS(5)+MAC 0.921** 0.967 0.981 1.020 0.961 GPR(3) 1.092 1.225 1.254 1.265 1.275

See notes to table 3.
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Table 11: 12-step-ahead relative MSFEs of all forecasting models (subsample 1: 1994:1–1999:12)
Model rMSFE Model rMSFE

Maturity 1 year 2 years 3 years 5 years 10 years Maturity 1 year 2 years 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000 DNS(6)+MAC 1.237 1.280 1.253 1.176 1.045
VAR(1) 1.312 1.302 1.280 1.207 1.049 DIF(1) 0.984 0.925* 0.838*** 1.124 1.829
VAR(1)+FB1 1.299 1.290 1.267 1.194 1.036 DIF(2) 1.328 1.346 1.493 1.748 1.905
VAR(1)+FB2 1.292 1.282 1.260 1.189 1.031 DIF(3) 1.254 1.224 1.348 1.586 1.812
AR(SIC) 1.208 1.217 1.206 1.132 0.967 DIF(4) 1.122 1.156 1.184 1.225 1.292
VAR(SIC) 1.312 1.302 1.280 1.207 1.049 DIF(5) 1.619 1.610 1.647 1.689 1.690
VAR(SIC)+FB1 1.299 1.290 1.267 1.194 1.036 DIF(6) 1.718 1.695 1.723 1.747 1.712
VAR(SIC)+FB2 1.292 1.282 1.260 1.189 1.031 DIF(1)+FB1 1.340 1.283 1.158 1.371 2.125
DNS(1) 0.635*** 0.682*** 0.730*** 0.846** 0.954 DIF(2)+FB1 1.622 1.749 1.871 2.054 2.170
DNS(2) 0.640*** 0.688*** 0.737*** 0.853** 0.956 DIF(3)+FB1 1.459 1.542 1.653 1.850 2.084
DNS(3) 0.624*** 0.669*** 0.718*** 0.845** 0.973 DIF(1)+FB2 1.487 1.503 1.548 1.960 2.324
DNS(4) 1.276 1.298 1.259 1.165 1.022 DIF(2)+FB2 1.883 1.908 2.002 2.166 2.262
DNS(5) 1.283 1.298 1.258 1.168 1.025 DIF(3)+FB2 1.593 1.637 1.752 1.961 2.176
DNS(6) 1.284 1.301 1.256 1.157 1.013 TRE(1) 1.756 1.783 1.510 1.767 1.890
DNS(1)+FB1 0.905 0.889 0.952 1.097 1.159 TRE(2) 2.387 2.066 1.905 2.136 2.782
DNS(2)+FB1 0.902 0.895 0.960 1.104 1.157 TRE(3) 2.119 2.204 1.498 1.984 1.871
DNS(3)+FB1 0.897 0.882 0.950 1.113 1.200 FOR(1) 1.392 1.406 1.418 1.523 1.672
DNS(4)+FB1 1.225 1.265 1.237 1.157 1.024 FOR(2) 1.304 1.360 1.517 1.939 2.459
DNS(5)+FB1 1.232 1.265 1.236 1.158 1.027 FOR(3) 1.402 1.416 1.441 1.564 1.637
DNS(6)+FB1 1.234 1.270 1.236 1.150 1.017 GBT(1) 2.669 2.287 2.275 2.018 2.092
DNS(1)+FB2 1.055 0.980 1.049 1.226 1.295 GBT(2) 2.716 2.201 1.714 2.486 2.746
DNS(2)+FB2 1.047 0.984 1.056 1.233 1.293 GBT(3) 2.469 2.430 2.319 2.071 2.250
DNS(3)+FB2 1.059 0.984 1.060 1.256 1.351 LAS(1) 5.481 6.650 7.571 8.878 12.598
DNS(4)+FB2 1.210 1.252 1.227 1.152 1.020 LAS(2) 25.858 24.790 26.050 29.047 36.006
DNS(5)+FB2 1.216 1.250 1.225 1.153 1.022 LAS(3) 6.138 7.285 7.885 9.363 12.919
DNS(6)+FB2 1.220 1.257 1.226 1.147 1.014 ENE(1) 5.473 6.645 7.438 8.836 12.292
DNS(1)+MAC 0.685** 0.729** 0.776** 0.889 0.977 ENE(2) 25.888 24.911 26.070 29.097 36.018
DNS(2)+MAC 0.689** 0.734** 0.782** 0.895 0.978 ENE(3) 6.296 7.226 7.913 9.324 12.601
DNS(3)+MAC 0.672** 0.716** 0.765** 0.889 0.998 GPR(1) 4.372 4.263 3.833 3.400 3.340
DNS(4)+MAC 1.228 1.275 1.253 1.181 1.050 GPR(2) 1.484 1.530 1.722 2.187 2.766
DNS(5)+MAC 1.233 1.273 1.250 1.180 1.050 GPR(3) 2.063 1.864 1.635 1.693 2.017

See notes to table 3.
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Table 12: 12-step-ahead relative MSFEs of all Forecasting models (subsample 2: 2000:1–2007:12)
Model rMSFE Model rMSFE

Maturity 1 year 2 years 3 years 5 years 10 years Maturity 1 year 2 years 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000 DNS(6)+MAC 0.583*** 0.497*** 0.450*** 0.447*** 0.568***
VAR(1) 0.567*** 0.475*** 0.432*** 0.431*** 0.557*** DIF(1) 1.244 1.157 1.124 1.142 1.537
VAR(1)+FB1 0.583*** 0.488*** 0.444*** 0.441*** 0.561*** DIF(2) 1.895 1.456 1.321 1.372 1.801
VAR(1)+FB2 0.587*** 0.493*** 0.451*** 0.452*** 0.584*** DIF(3) 2.284 1.721 1.565 1.569 1.959
AR(SIC) 0.574*** 0.485*** 0.444*** 0.445*** 0.547*** DIF(4) 0.842*** 0.966 1.112 1.448 1.910
VAR(SIC) 0.567*** 0.475*** 0.432*** 0.431*** 0.557*** DIF(5) 1.019 1.109 1.243 1.765 3.530
VAR(SIC)+FB1 0.583*** 0.488*** 0.444*** 0.441*** 0.561*** DIF(6) 1.037 1.146 1.299 1.857 3.729
VAR(SIC)+FB2 0.587*** 0.493*** 0.451*** 0.452*** 0.584*** DIF(1)+FB1 1.001 1.056 1.129 1.539 2.403
DNS(1) 0.708*** 0.602*** 0.571*** 0.631*** 0.770*** DIF(2)+FB1 1.544 1.364 1.412 1.711 2.703
DNS(2) 0.707*** 0.605*** 0.576*** 0.638*** 0.771*** DIF(3)+FB1 1.798 1.664 1.720 2.028 2.985
DNS(3) 0.702*** 0.599*** 0.570*** 0.639*** 0.811*** DIF(1)+FB2 1.032 1.138 1.272 1.842 3.941
DNS(4) 0.593*** 0.507*** 0.460*** 0.454*** 0.564*** DIF(2)+FB2 1.850 1.804 1.980 2.589 4.305
DNS(5) 0.593*** 0.506*** 0.459*** 0.456*** 0.564*** DIF(3)+FB2 2.098 2.053 2.226 2.832 4.471
DNS(6) 0.599*** 0.510*** 0.460*** 0.452*** 0.563*** TRE(1) 1.153 1.191 1.332 1.522 2.233
DNS(1)+FB1 0.548*** 0.507*** 0.520*** 0.658*** 0.999 TRE(2) 1.491 1.370 1.268 1.630 2.815
DNS(2)+FB1 0.547*** 0.508*** 0.523*** 0.662*** 0.996 TRE(3) 1.219 1.456 1.485 1.728 2.423
DNS(3)+FB1 0.543*** 0.502*** 0.516*** 0.661*** 1.036 FOR(1) 1.357 1.306 1.304 1.426 1.969
DNS(4)+FB1 0.595*** 0.509*** 0.461*** 0.455*** 0.564*** FOR(2) 1.094 1.069 1.091 1.304 2.269
DNS(5)+FB1 0.595*** 0.508*** 0.461*** 0.457*** 0.565*** FOR(3) 1.479 1.427 1.393 1.499 1.985
DNS(6)+FB1 0.598*** 0.511*** 0.461*** 0.452*** 0.562*** GBT(1) 1.367 1.334 1.398 1.676 2.523
DNS(1)+FB2 1.023 1.049 1.143 1.530 2.724 GBT(2) 1.438 1.426 1.604 1.786 3.045
DNS(2)+FB2 1.023 1.055 1.152 1.541 2.725 GBT(3) 1.254 1.607 1.556 1.962 2.466
DNS(3)+FB2 1.010 1.036 1.130 1.521 2.739 LAS(1) 2.128 2.049 1.921 1.918 4.485
DNS(4)+FB2 0.594*** 0.510*** 0.464*** 0.460*** 0.574*** LAS(2) 3.392 3.946 4.959 8.677 27.737
DNS(5)+FB2 0.594*** 0.510*** 0.464*** 0.462*** 0.575*** LAS(3) 1.830 1.844 1.786 2.076 4.978
DNS(6)+FB2 0.597*** 0.511*** 0.463*** 0.456*** 0.571*** ENE(1) 2.022 1.920 1.793 1.907 4.494
DNS(1)+MAC 0.671*** 0.609*** 0.604*** 0.700*** 0.884*** ENE(2) 3.395 3.957 4.930 8.665 27.743
DNS(2)+MAC 0.669*** 0.611*** 0.609*** 0.706*** 0.884*** ENE(3) 1.693 1.633 1.617 2.088 5.128
DNS(3)+MAC 0.665*** 0.606*** 0.604*** 0.708*** 0.922** GPR(1) 1.837 1.786 1.711 1.894 3.491
DNS(4)+MAC 0.579*** 0.495*** 0.451*** 0.449*** 0.567*** GPR(2) 1.134 1.114 1.151 1.403 2.372
DNS(5)+MAC 0.580*** 0.495*** 0.450*** 0.451*** 0.566*** GPR(3) 1.373 1.460 1.575 1.951 3.321

See notes to table 3.
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Table 13: 12-step-ahead relative MSFEs of all forecasting models (subsample 3: 2008:1–2016:7)
Model rMSFE Model rMSFE

Maturity 1 year 2 years 3 years 5 years 10 years Maturity 1 year 2 years 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000 DNS(6)+MAC 0.739*** 0.675*** 0.689*** 0.747*** 0.711***
VAR(1) 0.737*** 0.716*** 0.695*** 0.663*** 0.709*** DIF(1) 1.190 1.280 1.277 1.357 1.155
VAR(1)+FB1 0.778*** 0.756*** 0.731*** 0.686*** 0.707*** DIF(2) 2.405 2.453 2.228 1.789 1.155
VAR(1)+FB2 0.796*** 0.773*** 0.747*** 0.697*** 0.713*** DIF(3) 2.787 2.711 2.641 2.260 1.472
AR(SIC) 0.729*** 0.714*** 0.687*** 0.674*** 0.737*** DIF(4) 1.978 1.719 1.539 1.291 1.086
VAR(SIC) 0.737*** 0.716*** 0.695*** 0.663*** 0.709*** DIF(5) 1.859 1.677 1.611 1.564 1.457
VAR(SIC)+FB1 0.778*** 0.756*** 0.731*** 0.686*** 0.707*** DIF(6) 2.332 2.278 2.257 2.110 1.711
VAR(SIC)+FB2 0.796*** 0.773*** 0.747*** 0.697*** 0.713*** DIF(1)+FB1 2.036 1.789 1.563 1.316 1.167
DNS(1) 1.468 1.389 1.483 1.559 1.118 DIF(2)+FB1 2.280 2.164 1.982 1.663 1.171
DNS(2) 1.451 1.412 1.520 1.591 1.118 DIF(3)+FB1 2.490 2.487 2.410 2.139 1.569
DNS(3) 1.423 1.356 1.467 1.583 1.179 DIF(1)+FB2 1.886 1.726 1.614 1.618 1.462
DNS(4) 0.765*** 0.689*** 0.697*** 0.737*** 0.687*** DIF(2)+FB2 2.289 2.228 2.123 1.907 1.430
DNS(5) 0.759*** 0.694*** 0.708*** 0.748*** 0.683*** DIF(3)+FB2 2.503 2.530 2.505 2.297 1.737
DNS(6) 0.747*** 0.679*** 0.692*** 0.747*** 0.706*** TRE(1) 1.585 2.081 1.965 1.875 1.513
DNS(1)+FB1 1.744 1.554 1.511 1.534 1.209 TRE(2) 3.190 3.932 3.967 3.894 3.058
DNS(2)+FB1 1.734 1.557 1.524 1.552 1.206 TRE(3) 1.973 2.059 2.354 2.298 1.556
DNS(3)+FB1 1.736 1.542 1.502 1.554 1.274 FOR(1) 1.341 1.576 1.666 1.544 1.189
DNS(4)+FB1 0.813*** 0.730*** 0.737*** 0.771*** 0.703*** FOR(2) 2.568 3.125 3.427 3.322 2.625
DNS(5)+FB1 0.804*** 0.735*** 0.746*** 0.781*** 0.699*** FOR(3) 1.232 1.553 1.679 1.633 1.201
DNS(6)+FB1 0.791*** 0.718*** 0.730*** 0.780*** 0.723*** GBT(1) 1.559 1.727 2.102 1.953 1.485
DNS(1)+FB2 1.895 1.779 1.792 1.842 1.427 GBT(2) 3.397 4.071 4.294 3.788 3.254
DNS(2)+FB2 1.887 1.785 1.809 1.863 1.425 GBT(3) 1.474 2.194 2.450 2.063 1.458
DNS(3)+FB2 1.877 1.757 1.771 1.851 1.486 LAS(1) 1.621 0.851*** 0.648*** 0.519*** 1.501
DNS(4)+FB2 0.827*** 0.742*** 0.747*** 0.777*** 0.703*** LAS(2) 0.679*** 0.932*** 1.536 3.487 9.576
DNS(5)+FB2 0.816*** 0.745*** 0.755*** 0.786*** 0.699*** LAS(3) 0.884*** 0.972*** 1.034 0.727*** 1.620
DNS(6)+FB2 0.804*** 0.730*** 0.740*** 0.786*** 0.723*** ENE(1) 1.789 0.794*** 0.527*** 0.489*** 1.670
DNS(1)+MAC 1.579 1.583 1.729 1.824 1.274 ENE(2) 0.646*** 0.910*** 1.495 3.553 9.549
DNS(2)+MAC 1.555 1.600 1.761 1.850 1.269 ENE(3) 0.711*** 0.655*** 0.701*** 0.561*** 1.797
DNS(3)+MAC 1.543 1.557 1.723 1.865 1.353 GPR(1) 1.306 1.513 1.533 1.733 2.386
DNS(4)+MAC 0.758*** 0.685*** 0.695*** 0.739*** 0.694*** GPR(2) 2.736 3.301 3.576 3.441 2.840
DNS(5)+MAC 0.751*** 0.690*** 0.705*** 0.749*** 0.691*** GPR(3) 1.359 1.592 1.620 1.430 1.225

See notes to table 3.
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Table 14: 12-step-ahead relative MSFEs of all forecasting models (subsample 4: 1994:1–2016:7)
Model rMSFE Model rMSFE

Maturity 1 year 2 years 3 years 5 years 10 years Maturity 1 year 2 years 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000 DNS(6)+MAC 0.707*** 0.661*** 0.647*** 0.687*** 0.770***
VAR(1) 0.706*** 0.660*** 0.643*** 0.665*** 0.767*** DIF(1) 1.197 1.146 1.104 1.191 1.492
VAR(1)+FB1 0.724*** 0.674*** 0.655*** 0.673*** 0.763*** DIF(2) 1.941 1.653 1.546 1.561 1.602
VAR(1)+FB2 0.730*** 0.680*** 0.661*** 0.680*** 0.771*** DIF(3) 2.267 1.854 1.755 1.744 1.738
AR(SIC) 0.695*** 0.652*** 0.635*** 0.657*** 0.748*** DIF(4) 1.149 1.159 1.216 1.358 1.419
VAR(SIC) 0.706*** 0.660*** 0.643*** 0.665*** 0.767*** DIF(5) 1.299 1.312 1.395 1.698 2.204
VAR(SIC)+FB1 0.724*** 0.674*** 0.655*** 0.673*** 0.763*** DIF(6) 1.435 1.478 1.581 1.895 2.367
VAR(SIC)+FB2 0.730*** 0.680*** 0.661*** 0.680*** 0.771*** DIF(1)+FB1 1.292 1.250 1.227 1.445 1.871
DNS(1) 0.879** 0.784*** 0.794*** 0.910** 0.953 DIF(2)+FB1 1.729 1.598 1.617 1.777 1.984
DNS(2) 0.875** 0.792*** 0.806*** 0.923* 0.954* DIF(3)+FB1 1.917 1.821 1.855 2.015 2.192
DNS(3) 0.863*** 0.773*** 0.788*** 0.919* 0.994 DIF(1)+FB2 1.295 1.323 1.395 1.813 2.540
DNS(4) 0.725*** 0.673*** 0.656*** 0.686*** 0.753*** DIF(2)+FB2 1.959 1.912 2.014 2.324 2.627
DNS(5) 0.724*** 0.674*** 0.658*** 0.690*** 0.753*** DIF(3)+FB2 2.127 2.088 2.199 2.502 2.764
DNS(6) 0.725*** 0.674*** 0.655*** 0.685*** 0.756*** TRE(1) 1,336 1,478 1,500 1,665 1,866
DNS(1)+FB1 0.880 0.794** 0.810** 0.975 1.125 TRE(2) 2,014 2,034 1,960 2,306 2,892
DNS(2)+FB1 0.876 0.796** 0.816** 0.983 1.122 TRE(3) 1,518 1,706 1,673 1,928 1,937
DNS(3)+FB1 0.873 0.787** 0.805** 0.985 1.173 FOR(1) 1,358 1,380 1,402 1,477 1,595
DNS(4)+FB1 0.730*** 0.678*** 0.661*** 0.692*** 0.759*** FOR(2) 1,472 1,558 1,667 1,948 2,457
DNS(5)+FB1 0.729*** 0.679*** 0.663*** 0.696*** 0.759*** FOR(3) 1,410 1,452 1,463 1,547 1,593
DNS(6)+FB1 0.729*** 0.677*** 0.659*** 0.692*** 0.764*** GBT(1) 1,586 1,572 1,708 1,823 2,014
DNS(1)+FB2 1.234 1.195 1.264 1.539 1.807 GBT(2) 2,073 2,120 2,198 2,441 3,025
DNS(2)+FB2 1.232 1.201 1.274 1.551 1.806 GBT(3) 1,468 1,866 1,885 2,012 2,035
DNS(3)+FB2 1.222 1.183 1.254 1.543 1.850 LAS(1) 2,453 2,532 2,679 3,151 5,974
DNS(4)+FB2 0.731*** 0.679*** 0.663*** 0.695*** 0.761*** LAS(2) 5,731 6,652 8,072 12,013 23,821
DNS(5)+FB2 0.730*** 0.680*** 0.665*** 0.699*** 0.760*** LAS(3) 2,177 2,532 2,737 3,395 6,279
DNS(6)+FB2 0.729*** 0.678*** 0.661*** 0.695*** 0.766*** ENE(1) 2,425 2,438 2,552 3,128 5,941
DNS(1)+MAC 0.889* 0.838** 0.875** 1.022 1.054 ENE(2) 5,729 6,674 8,049 12,034 23,817
DNS(2)+MAC 0.882** 0.844** 0.886* 1.032 1.052 ENE(3) 2,071 2,323 2,569 3,351 6,290
DNS(3)+MAC 0.875** 0.828*** 0.872** 1.036 1.101 GPR(1) 2,047 2,126 2,060 2,196 3,046
DNS(4)+MAC 0.708*** 0.662*** 0.649*** 0.687*** 0.765*** GPR(2) 1,562 1,651 1,772 2,086 2,665
DNS(5)+MAC 0.707*** 0.662*** 0.651*** 0.690*** 0.764*** GPR(3) 1,461 1,554 1,595 1,763 2,156

See notes to table 3.

29



The final machine learning method, the Gaussian process regression, does produce rMSFEs

smaller than one for some subsamples. Nevertheless, in none of these cases the Gaussian process

regression models makes predictions that are significant more accurate than that of an AR(1)

model. Sambasivan and Das (2017) find that in the medium and long term the Gaussian progress

regression models do well compared to (V)AR models. However, they only report the root mean

squared error of both models and not whether their is a significant difference between. Since

the differences between the root mean squared errors are rather small, this corresponds to the

the slightly smaller than one rMSFEs found for the third more recent subsample, which closely

resembles the period investigated by Sambasivan and Das.

Furthermore, we find that the addition of the three key macroeconomic variables proposed by

Diebold et al. (2006) does not substantially increase the predictive accuracy of the machine

learning methods. All in all, the machine learning techniques are not able to provide significant

more accurate forecasts than the AR(1) model and are therefore not an improvement compared

to the more ordinary econometric models.

One of the limitations of this paper is of course that not all machine learning techniques are being

considered in this research. Therefore, future research could focus on other machine learning

methods and whether they produce better results than the machine learning methods proposed in

this paper. Another extension one could make is the application of forecast combinations. Future

research could make a combination of the different machine learning forecasts and check whether

this yields any improvement compared to the single forecasts, since, according to Swanson

and Xiong (2018), the inclusion of forecast combinations is useful for time series forecasts.

Furthermore, as mentioned earlier, the addition of extra explanatory variables may improve the

predictive accuracy of the machine learning methods.
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