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Abstract

This paper investigates popular stochastic volatility models for the purpose of density

forecasting and option pricing. Using data of the S&P 500 index and its options for the

period 1990-2014, I evaluate the performance of the different stochastic volatility models.

Evaluation of density forecasts is done through the simulation-based dynamic probability

integral transform, introduced by Yun (2018), while option pricing is evaluated through

standard econometric methods. I show that important features to include in the stochastic

volatility model are the leverage effect and the fat tails of the asset returns. The asymmetric

GARCH model with a skewed t-distribution, which includes both of these features, performs

best for density forecasting. For option pricing, the best performing model is the two-factor

diffusion model with jumps in mean, spot variance and long-term variance. The jumps allow

for extra flexibility, which turns out to improve option pricing performance.
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1 Introduction

Forecasting of financial asset returns has a central place in financial econometrics. Cont (2001)

outlined the stylized facts that describe most financial assets, which form a basis for building a

model:

1. Absence of autocorrelations, leading to the famous paradigm: “Past performance is not

indicative of future results”

2. Non-normal distribution with negative skewness and excess kurtosis.

3. Small, declining autocorrelations in squared returns, with periods of ‘volatility clustering’.

Although these stylized facts do not always hold (see for example Jegadeesh and Titman (1993)),

a model should capture these facts to correctly describe most financial assets. In the past, fi-

nancial institutions would mostly focus on point forecasts, however due to the first stylized fact,

these rarely beat out the simple random walk benchmark, as they do not contain much more

information. Nowadays, interval forecasts are preferred, as these also capture the uncertainty

around the point forecast. However, an interval forecast still does not describe the full condi-

tional probability distribution, leaving important information out of the forecast. Therefore,

this paper focuses on density forecasts, where the full conditional probability distribution is

given by the forecast, encompassing both the point and interval forecast.

The GARCH model (Engle (1982), Bollerslev (1986)) is the most popular for modelling asset

returns, and has been widely studied. However, the GARCH model is not flexible enough to

include all financial phenomena researchers come across. Therefore, recent research, especially

in the field of option pricing, has been focused on modelling an asset return and its volatility as

separate, possibly correlated, diffusion processes. This class of models is referred to as stochastic

volatility models. This paper analyses these models and their evaluation. A stochastic volatility

model can be widely applied from density forecasting all the way to for example derivative

pricing. Therefore, this research is relevant for companies across the financial industry, from

more traditional investors such as pension funds to complex traders like hedge funds. The

purposefully ambiguous central question is: “Which stochastic volatility model is most accurate

in modelling asset returns?”. How to evaluate the accuracy depends on the goal of the model.

First I look at density forecasting, where accuracy is not straightforward to evaluate, as the true

density is unknown. This is solved by using the simulation-based dynamic probability integral

transform introduced by Yun (2018). For option pricing, the market prices are observed, so

that evaluation can be done through standard econometric methods.

Yun (2018) has shown that the out-of-sample forecasting performance of one-factor diffusion

models that include jumps is promising, using his simulation-based dynamic probability integral

transform. This makes these models a strong alternative to the popular GARCH type models.

In this paper I replicate the analysis performed in Yun (2018), but I also include two-factor dif-

fusion models with jumps, which are not evaluated in Yun (2018). Moreover, I briefly examine

how dynamic parameter estimation leads to further improvement of the density forecasts. Fur-

thermore, I investigate whether the results found using the evaluation methods by Yun (2018)
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also translate over to option pricing. For this purpose, I use the stochastic volatility models to

price options using Monte Carlo simulation.

Using data from the S&P 500 index and its options for the period 1990-2014, I evaluate a

wide range of stochastic volatility models. The period 1990-2000 is used for estimation, while

the period 2001-2014 is saved for out-of-sample evaluation. I show that the GJR-ST model, a

GARCH type model, has the best out-of-sample forecasting performance. The one- and two-

factor diffusion models with a jump in mean are relatively close in performance. Furthermore, I

show that stochastic volatility models outperform the standard Black-Scholes model for option

pricing, with the two-factor diffusion model with jumps in mean, spot variance and long-term

variance being the best performing. This shows the potential stochastic volatility models have,

not only for forecasting, but also for option pricing.

The rest of this paper is structured as follows. The remainder of this Section is devoted

to discussing literature regarding stochastic volatility models, density forecast evaluation and

option pricing. In Section 2 the data used for the analysis is outlined. Next, in Section 3 the

different models and methods are further specified and elaborated. In Section 4 the results of a

simulation study as well as the empirical results are presented. Lastly, in Section 5 a discussion

of the results as well as a conclusion are given.

1.1 Stochastic volatility models

Engle (1982) and Bollerslev (1986) introduced the GARCH model, which is still the standard for

volatility modelling in the financial industry. This discrete time model gives an explicit value for

the model implied volatility, given the past asset returns. Due to the closed form likelihood of

the model being available, estimation is done through maximum likelihood estimation (MLE).

The model is able to describe the stylized facts from asset returns outlined in Section 1. The

GARCH model has been widely studied and numerous extensions (see Bollerslev (2008) for an

extensive list) to the model have been suggested to allow for additional features. An example is

assuming a different underlying distribution for the error, such as the (skewed) t-distribution,

to deal with excess kurtosis.

A prominent extensions captures the ‘leverage effect’, which states that volatility increases

more because of a large negative return than a large positive return. This is done through

the GJR (or threshold/asymmetric GARCH) model, suggested by Glosten et al. (1993), which

includes positive and negative shocks separately. Again different distributional assumptions

can be introduced to this model. I include both the standard GARCH and GJR model in my

analysis.

Another recent approach to volatility modelling is the usage of a stochastic process in the

variance specification, allowing for more flexibility. The idea is to model the asset return and

volatility as separate, possibly correlated, diffusion processes. This class of models is referred

to as stochastic volatility models, and these models are typically time continuous, making

estimation challenging. The stochastic volatility model is able to incorporate a wide range of

financial phenomena. As an example, Heston (1993) showed that this type of model can produce

a closed form option pricing formula, which is able to describe the ‘volatility smile’ in option

prices. This makes it a strong alternative for the well-known Black-Scholes formula (based
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on constant volatility), which does not capture this anomaly observed in option prices. The

first stochastic volatility model described is the log stochastic volatility (LSV) model, proposed

by Taylor (1982). A popular form of the stochastic volatility model is to use a CIR (Cox

et al. (1985)) specification for the variance and to incorporate sudden moves in the asset price

and/or volatility through a jump process (see for example Duffie et al. (2000), Broadie and Kaya

(2006)). Similarly to Yun (2018), the LSV type model as well as one-factor diffusion models,

with a CIR specification and possible jumps, are examined in this paper.

To include the difference between short and long-term volatility, two-factor diffusion models

have been studied by Bates (2000), Chernov et al. (2003) and Kaeck and Alexander (2012).

These models allow even more flexibility, again with for example the inclusion of jump processes

in the different variables. Kaeck and Alexander (2012) conclude that these models are superior

to more traditional models in the field of option pricing. As noted earlier, only two-factor

models without jumps have been evaluated in Yun (2018), whereas I also include two-factor

models with jumps.

Estimation of the stochastic volatility models is commonly done using Bayesian Markov

Chain Monte Carlo (MCMC) estimation, introduced by Jacquier et al. (1994). They argued

that this method of estimation is superior to for example GMM or QMLE. Eraker et al. (2003),

Yu (2005) and Li et al. (2008) have shown that Bayesian MCMC accurately estimate parameters

for diffusion type stochastic volatility models, possibly including jumps. Therefore, Bayesian

MCMC is also the estimation method I use.

1.2 Density forecast evaluation

Pioneering work for density forecast evaluation has been done by Rosenblatt (1952), who intro-

duced the probability integral transform (PIT). Through the PIT a series of generalized residuals

is obtained. If the model is correctly specified, these generalized residuals follow a uniform dis-

tribution. This fact forms the basis for testing the forecasting ability of a model. Because

the stochastic volatility models do not have a closed form PIT available, the simulation-based

dynamic PIT method based on particle filters proposed by Yun (2018) is used. The testing

of the distribution of the generalized residuals can be done through informal analysis of the

histogram and autocorrelation function as in Diebold et al. (1998). Formal statistical tests

for distributional assumptions can also be used, such as the Kolmogorov-Smirnov (KS) (1948),

Jarque and Bera (JB) (1980), Berkowitz (B) (2001) or Hong and Li (HL) (2005) test. All these

tests will be employed in my analysis.

Another way to evaluate density forecasts is by looking at the coverage of predicted intervals

(or specifically the value at risk (VaR)) as in Christoffersen (1998) or Engle and Manganelli

(2004). Lastly the log-likelihood can be used for evaluation as well. This is done by using a

scoring rule, such as the one suggested by Gneiting and Raftery (2007), and comparing these

scores through the test developed by Diebold and Mariano (1995). Both the model implied

VaR violations as well as the log-likelihood are available from the simulation-based dynamic

PIT by Yun (2018). These methods will be used for evaluation of the models in addition to the

distribution based tests.
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1.3 Option pricing

Stochastic volatility models are most prominent in the field of option pricing. In their semi-

nal paper, Black and Scholes (1973) model an asset using a geometric Brownian motion with

constant volatility. Combined with the assumption of a perfect market, they derive a closed

form formula for the price of a European call option. This now famous Black-Scholes formula is

still considered the standard for option pricing. Other popular model choices are the one-factor

diffusion model (Heston (1993)) and one-factor diffusion model with jumps in mean (Bates

(1996)), which also allow for a closed form option price. These models, as well as the other

stochastic volatility models discussed in Section 1.1 will be used for option pricing in this paper.

2 Data

For empirical analysis, daily closing prices in dollars of the S&P 500 index1 are used. These are

transformed into continuously compounded daily returns through rt = 100log( St
St−1

), where St

is the asset price at time t. I use data ranging from 1990 until 2014, similarly to Yun (2018).

The period 1990-2000 (2780 observations) is used for estimation. I consider two different out-

of-sample periods: 2001-2007 (1758 observations) is used as a smaller out-of-sample period and

2001-2014 (3521 observations) is used as a second, larger out-of-sample period, which includes

the financial crisis.

The S&P 500 index and daily return are shown in Figure 1. Here the financial crisis of 2008

is clearly visible, leading to a drop in the index, as well as a larger volatility. This pattern is

in accordance with what one would expect from the leverage effect. In Figure 1b, volatility

clustering is also present, as there are extended periods of continuous small and large volatility.

A histogram and summary statistics of the returns, as well as the autocorrelation function are

shown in Figure 2. Here the stylized facts as discussed in Section 1 are visible. The non-

normality is clear from Figure 2a, with a negative skewness of -0.24 and excess kurtosis of

11.76. Figure 2b shows the autocorrelation function of the (squared) returns. The patterns

described by the stylized facts are again visible, namely nearly insignificant autocorrelation for

the returns, and significant, slowly decreasing autocorrelation for the squared returns.

(a) S&P 500 index over 1990-2014 (b) S&P 500 daily returns over 1990-2014

Figure 1: S&P 500 index and daily returns over 1990-2014

1Obtained from YahooFinance: https://finance.yahoo.com/quote/%5EGSPC/history/
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(a) Histogram of returns over 1990-2014 (b) Autocorrelation of returns over 1990-2014

Figure 2: Histogram and autocorrelation of returns over 1990-2014

For option pricing, I use SPX (based on S&P 500 index) option data2. I work with European

call options, and only consider nearly at-the-money (meaning the strike price is within 2.5% of

the value of the underlying) options that have been traded on the first 7 trading days of 2001,

giving a total of 112 options. Summary statistics of these options are given in Table 1. I define

the market value of the option as the average between the highest ask and the lowest bid. The

maturity of the options ranges from 7 days to almost 1 year. An important problem with the

option dataset is that the exact time at which the option was traded is unknown, meaning the

exact value of the underlying at which the option was traded cannot be determined.

Table 1: Summary statistics of the option data

Mean Std. dev. Min Max

Market value (dollars) 50.71 32.37 8.250 155.4

Strike price (dollars) 1315.5 29.46 1275.0 1380.0

Maturity (trading days) 44.88 54.22 7 243

3 Methodology

3.1 Stochastic volatility models

3.1.1 GARCH

The standard GARCH model as described by Engle (1982) and Bollerslev (1986) takes the

following form:

rt = µ+ σtεt (1)

σ2
t = α0 + α1σ

2
t−1 + α2ε

2
t−1 (2)

where µ is the mean return, σ2
t is the conditional variance and εt ∼ N(0, 1) (GARCH-N) or

εt ∼
√

ν−2
ν t(ν) (GARCH-T).

Glosten et al. (1993) introduced the GJR model to capture the leverage effect. This is done

by changing the conditional variance specification in Equation 2 to:

σ2
t = α0 + α1σ

2
t−1 + α2ε

2
t−1 + α3ε

2
t−1Iεt−1<0 (3)

2Obtained from OptionMetrics page of WRDS: https://wrds-www.wharton.upenn.edu/
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where I is the indicator function. α3 is the leverage effect parameter, a significantly positive

α3 indicates the presence of the leverage effect. Again εt ∼ N(0, 1) (GJR-N) or εt ∼
√

ν−2
ν t(ν)

(GJR-T). Lastly the skewed t-distribution (Fernández and Steel (1998)) (GJR-ST) defined as:

p(x|ξ) =

 2
ξ+ξ−1 f(xξ), if x < 0

2
ξ+ξ−1 f(xξ−1), if x ≥ 0

(4)

is also used. Here ξ is the skewness parameter and f(ν) the density of the t-distribution with ν

degrees of freedom. All GARCH-type models are straightforward to estimate using maximum

likelihood estimation (MLE) in R (using the package rugarch).

3.1.2 LSV

The log stochastic volatility model, first suggested by Taylor (1982), is given by the stochastic

differential equations (SDE):

r(t) = µdt+ σ(t)dW r(t) (5)

dlog(σ2(t)) = α+ βlog(σ2(t))dt+ σvdW
σ(t) (6)

where W r(t) and W σ(t) are Brownian motions with corr(W r(t),W σ(t)) = ρ.

An Euler-Maruyama discretization is necessary for estimation, the discretized model is given

by:

rt = µ+ e
1
2
σ2
t εt (7)

∆σ2
t = α+ βσ2

t−1 + σvρεt−1 + σv
√

1− ρ2ηt (8)

where (εt−1, ηt) ∼ N(0, I2). A negative parameter ρ indicates the presence of the leverage

effect. Namely when the correlation between the return and variance is negative, a negative

return leads to higher variance. A restricted version of the LSV model with ρ = 0 (LSV0) is

also considered. Estimation is done through Bayesian MCMC, using the specialized software

JAGS in R. I use initialization and priors similar to Meyer and Yu (2000) and Yu (2005), given

by µ ∼ N(0, 25), α∗ ∼ N(0, 25), α = α∗

1−β , β∗ ∼ β(20, 1.5), β = 2β∗ − 1, σ2
v ∼ IG(2.5, 0.025),

ρ ∼ U(−1, 1) and σ2
0 ∼ N(α, σ2

v).

3.1.3 Diffusion models with jumps

Diffusion models allow the incorporation of jumps in the stochastic processes, as well as multiple

factors that describe the asset return. The two-factor diffusive model considers a separate

process for the long-term mean M of the spot variance σ2, and is given in its most general form

by the SDE (based on ideas from Bates (2000) and Kaeck and Alexander (2012)):

r(t) = µdt+ σ(t)dW r(t) + dJr(t) (9)

dM(t) = κM (θM −M(t))dt+ σM
√
M(t)dWM (t) + dJM (t) (10)

dσ2(t) = κ(M(t)− σ2(t))dt+ σvσ(t)dW σ(t) + dJσ(t) (11)
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where W r(t), WM (t) and W σ(t) are Brownian motions with corr(W r(t),W σ(t)) = ρ and WM (t)

independent of both W r(t) and W σ(t). The process dJ i(t) = Zi(t)dN(t) with i ∈ {r,M, σ}
gives the jumps, with Zr(t) ∼ N(µr, σ

2
r ) the size of the jump in return, ZM (t) ∼ exp(µM ) the

size of the jump in long-term variance, Zσ(t) ∼ exp(µσ) the size of the jump in spot variance

and dN(t) a Poisson process with intensity λ. Both the long-term mean of the variance and the

spot variance are modelled using the CIR process (Cox et al. (1985)). Note that the jumps are

assumed to be contemporaneous, which is reasonable as an unexpected event should influence

both the mean and variance at the same time.

Now the Euler-Maruyama discretization of the model is given by:

rt = µ+ σt−1εt + JtZ
r
t (12)

∆Mt = κM (θM −Mt−1) + σM
√
Mt−1ut + JtZ

M
t (13)

∆σ2
t = κ(Mt − σ2

t−1) + σvρσt−1εt−1 + σv
√

1− ρ2σt−1ηt + JtZ
σ
t (14)

where (εt−1, ut, ηt, ) ∼ N(0, I3) and Jt ∼ Ber(λ) (a Bernoulli distribution is used to discretize

the Poisson process). The models considered are: One-factor models (just using the spot

variance σ2, where Mt in Equation 14 is replaced by θ) without jumps (SV), with jumps in the

return (SVJ) and with jumps in both the return and variance (SV2J). And two-factor models,

without jumps (2-SV), with jumps in return (2-SVJ), jumps in return and spot variance (2-

SV2J) and jumps in return, spot variance and long-term variance (2-SV3J). The models are

again estimated through Bayesian MCMC using JAGS. Priors and initialization is based on

Eraker et al. (2003): µ ∼ N(1, 25), µr ∼ N(0, 100), σ2
r ∼ IG(5, 20), κM ∼ N(0, 1), θM ∼

N(1, 1), σ2
M ∼ 1/16IG(2.5, 0.1), µM ∼ G(20, 10), κ ∼ N(0, 1), κθ ∼ N(0, 1), σ2

v ∼ IG(2.5, 0.1),

µσ ∼ G(20, 10), λ ∼ β(2, 40) and ρ ∼ U(−1, 1). Initialization is done through M0 = θM and

σ2
0 = θ (one-factor) or M0 (two-factor).

3.2 Density forecast evaluation

3.2.1 Probability integral transform

Central for the evaluation of density forecasts is the probability integral transform (PIT), first

introduced by Rosenblatt (1952). Given a model implied density function ft() for the asset

return at time t, the PIT is defined as:

zt =

∫ rt

−∞
ft(u)du (15)

When the model is correct, the series {zt} of generalized residuals is i.i.d. U(0, 1) distributed,

which forms a basis for testing the model specification.

3.2.2 Simulation-based dynamic probability integral transform

However, as discussed in Yun (2018), evaluation of the PIT is troublesome for some of the

complex models described in Section 3.1, because a closed form PIT is not available. Yun

(2018) gives the LSV model as an example, where multiple complex integrals are necessary to
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evaluate the PIT (the same holds for log-likelihood values):

zt =

∫ rt

−∞
f(r|rt−1)dr

=

∫ rt

−∞

∫ ∞
0

f(r|σt)f(σt|rt−1)dσtdr

=

∫ rt

−∞

∫ ∞
0

∫ ∞
0

f(r|σt)f(σt|σt−1)f(σt−1|rt−1)dσt−1dσtdr

(16)

This problem is solved by Yun (2018) through a simulation-based approach using particle filters.

All the steps of the algorithm for the different models are shown in the Appendix (Sections 6.2

and 6.3), and for a more detailed explanation I refer to the paper by Yun (2018).

3.2.3 Distribution based testing

In their paper regarding the evaluation of density forecasts, Diebold et al. (1998) advocate an

informal investigation of the histogram as well as the empirical autocorrelation function of the

generalized residuals. Through this analysis potential problems such as non-uniformity or serial

dependence are identified.

The distribution of the generalized residuals can also be tested formally. There is a plethora

of formal tests for distributional assumptions, in this paper some of the most popular ones are

used. The KS-test proposed by Kolmogorov and Smirnov (1948), tests the null hypothesis that

a sample is drawn from a reference distribution. The test statistic is given by:

KS = max
0<x<1

|F̃ (x)− F (x)| (17)

where F̃ () is the empirical CDF, and F () is the CDF of the reference distribution. The test

statistic follows the non-standard Kolmogorov distribution, which is used to find critical values.

Due to its generality, this test is low in power. Moreover, the test assumes that the independence

of the generalized residuals is satisfied.

The uniformity of the generalized residuals allows for a transformation into the normal

distribution, which forms the basis for the JB-test by Jarque and Bera (1980) and the B-test

by Berkowitz (2001). The transformation is given by:

xt = Φ−1(zt) (18)

where Φ is the standard normal CDF. The JB-test tests the null hypothesis of normality by

looking at the skewness and kurtosis, which are 0 and 3 respectively for a standard normal

distribution. The test statistic is given by:

JB = n(
SK2

6
+

(K − 3)2

24
) (19)

where SK is the skewness and K is the kurtosis of the series {xt}. The statistic follows the

standard Chi-square distribution with 2 degrees of freedom. Again the JB-test does not consider

dependence, and has relatively low power due to its generality.
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The B-test tests the null hypothesis of normality versus the alternative of an AR(1) process

given by:

xt − µ = φ(xt−1 − µ) + εt with εt ∼ N(0, σ2) (20)

Under the null hypothesis, the parameters in this process are restricted to µ = 0, σ2 = 1 and

φ = 0, leading to a likelihood ratio test statistic given by:

B = −2(L0(µ = 0, σ2 = 1, φ = 0)− La(µ, σ2, φ)) (21)

where L is the log-likelihood of the model. This statistic follows a Chi-square distribution with

3 degrees of freedom, and tests for both normality as well as independence simultaneously.

The HL-test by Hong and Li (2005) is most geared towards the testing of density forecasts.

The test compares a kernel estimator ĝ(u1, u2) for the joint density of {zt, zt−j} with the product

of two uniform densities (which is given by 1), with j a chosen lag order. Hong et al. (2007)

suggest combining the different statistics into one single Portmanteau type statistic. I choose

to work with this statistic, with lag truncation orders ρ = 5, 10 and 20. All steps of the test

are given in the Appendix (Section 6.4), for more details I again refer to the paper by Yun

(2018) as well as Hong and Li (2005) and Hong et al. (2007). Because of its specificity, this test

has the highest power for density forecast evaluation. All these tests are performed using the

implementations in R (using the packages tseries and rugarch).

3.2.4 VaR based testing

The value at risk (VaR) is one of the most popular risk measures in finance. Through the

PIT, VaR violations are identified without the need for explicit VaR calculations, due to the

fact that I(rt < −VaRt(p)) = I(zt < p) where p is the chosen probability level. These VaR

violations are used for formal testing. The test by Christoffersen (1998) provides a likelihood

ratio statistic for the unconditional coverage (which indicates whether the amount of violations

corresponds with the chosen probability level), for the independence of the violations and for

the conditional coverage (which combines the unconditional coverage and independence). The

DQ test by Engle and Manganelli (2004) also tests for unconditional coverage and independence

simultaneously. Details of both tests are given in the Appendix (Sections 6.5 and 6.6).

3.2.5 Log-likelihood based testing

The methods suggested by Yun (2018) in addition allow for the calculation of the log-likelihood

L(m) for a model m. This allows for the calculation of a series of differences in log-likelihood

between two competing models m and n given by:

dt = L(m)(rt)− L(n)(rt) (22)

The significance of these differences can be formally tested through a Diebold and Mariano

(1995) type test given by:

DM =
d̄√

VAR(d)/T
(23)

10



where d̄ and VAR(d) are the sample mean and variance of {dt} and T is the sample size.

Under the null hypothesis of equal model performance, this statistic follows a standard normal

distribution.

3.3 Monte Carlo method for option pricing

I now move to using the stochastic volatility models to price European call options. Although

stochastic volatility models allow for closed form option pricing formulas, this involves solving

complex systems of differential equations. Instead I use Monte Carlo simulation to find option

prices, based on option pricing theory by Cox and Ross (1976). Monte Carlo simulation can

more easily adopt different stochastic volatility models for the underlying, as well as price more

exotic options. The disadvantage of simulation is that it is more time consuming, but speed is

not of concern in this paper. Boyle (1977) has shown that Monte Carlo simulation gives similar

results to analytical pricing for the Black-Scholes model.

The Monte Carlo simulation approach, as proposed by Boyle (1977), is described by the

following steps:

1. Generate a large amount N sample paths for the underlying security S, based on the

chosen model. Because the models are formulated in terms of the daily return rt, this

means the formula St+1 = Ste
rt is used to calculate the value of S at time t+ 1.

2. Calculate the option payoff for each simulated underlying, given by πi = max(ST,i−K, 0)

for a European call option. Here ST,i is the value of the underlying at maturity for

simulation i, and K is the strike price.

3. Average the payoffs π̄ = 1
N

∑N
i=1 πi.

4. Discount the average payoff, to find the simulated present value of the option V̂ = e−rT π̄,

where r is the risk-free rate, and T the time to maturity in years.

The Black-Scholes model is used as a benchmark. Here the underlying is modeled using the

simple formula rt = µ+σεt with εt ∼ N(0, 1), corresponding to the geometric Brownian motion.

Evaluation of the models is done through the mean squared error MSE = 1
K

∑K
k=1(Vk − V̂k)2

and mean absolute percentage error MAPE = 1
K

∑K
k=1

|Vk−V̂k|
Vk

, where Vk and V̂k are respectively

the true and simulated price of option k = 1, ...,K. The difference in these measures between

the models is formally tested using a Diebold-Mariano type test similarly to Section 3.2.5.

Quite substantial biases could occur in the predicted option prices for two reasons. First

of all problems with the data, such as the asynchronization between the option prices and

price of the underlying mentioned in Section 2, can lead to a bias. Especially because returns

are continuously compounded, meaning that an incorrect value of the underlying gets further

amplified. Secondly, the static parameter estimates can lead to a discrepancy between the model

and the real world underlying prices. To solve these biases, I introduce a simple correction.

Namely for every day, I subtract the average error made by the model on that day from the

modeled option prices. This results in a mean error of zero, which could be interpreted as the

bias no longer existing.

11



Note that this correction cannot be done in practice, as it requires knowledge of the real

option prices to calculate the modeled option prices. However this correction can be justified,

as it helps the theoretical comparison of the models, and in practice a trader can avoid the

issues that lead to these biases in the first place.

4 Results

4.1 Simulation based test performance

Before looking at empirical results, I check whether the different statistical tests from Section

3.2 give correct size performance. This check is done by simulating sample paths generated by

the different models and then applying the different statistical tests. Note that this approach

ignores the additional uncertainty from parameter estimation and discretization. Ideally, this

would be taken into account by using Bayesian MCMC estimation during the simulations, but

this induces a too high computational cost. If the size performance of a test is correct, the

rejection rate of the test should be similar to the chosen significance level. Table 8 in the

Appendix, shows the results for the different models (the GARCH type models are excluded, as

these do not require a simulation-based PIT). This table shows that indeed the rejection rates

of the different tests for the different models are very close to the chosen significance levels of

10%, 5% and 1%, for different sample lengths. This confirms that these evaluation methods are

a reliable way too evaluate the accuracy of density forecasts from the different models.

4.2 Application to the empirical S&P 500 data

All models from Section 3.1 are estimated on daily returns of the S&P 500 over the period 1990-

2000. Estimated coefficients are shown in Table 9 in the Appendix. The estimated coefficients

are comparable to those found in related studies. Notably, the coefficient related to the leverage

effect, which is α3 for GARCH type models, and ρ for all other models, is always found to be

significant, suggesting it is important to incorporate this phenomenon into the model. Another

interesting observation is that the estimated jump intensity lies around 1% for jumps in mean

(for example λ = 0.0116 for SVJ), and 0.4% for jumps in mean and variance. On a side note,

this shows that the discretization bias is not that influential for jumps as the probability of for

example two or more jumps in mean during a day, is only 0.01%3.

Given the parameter estimates, the accuracy of the different density forecasts can be eval-

uated for the two out-of-sample periods 2001-2007 and 2001-2014. Note that static parameter

estimates are used for forecasting, meaning that the parameters are not updated after every

forecasts, as this would induce too high computational costs. This means that the performance

of the models is not be optimal, especially during and after the crisis, where parameter updates

would be most necessary. The usage of dynamic parameter estimates is discussed in the follow-

ing section. Full results of the different tests are given in Tables 10 and 11, however for clarity I

will only show results of the best performing model within each class4 in this section. Looking

3Simply sum the probability
∑∞
n=2 0.01n = 0.0001

4I consider GARCH type, LSV, one-factor diffusion and two-factor diffusion as 4 different classes
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at the best performing model within each class also helps distinguish important features that

should be incorporated in the model.

From the test statistics in Tables 10 and 11, I conclude that for GARCH type models, the

best performing model is the GJR-ST model. As noted before the leverage effect seems impor-

tant to incorporate, which is confirmed by the test results, as the GJR models perform better

than their GARCH counterparts. Moreover, the (skewed) t-distribution strongly outperforms

the normal distribution on all test statistics, because it is able to incorporate the fat tails usu-

ally observed in asset returns. Although the estimated skew coefficient ξ is not significantly

different from 1 (which indicates a standard t-distribution), the skewed t-distribution performs

slightly better. This is presumably because it is more flexible in allowing asymmetry in the

distribution. The unrestricted LSV model outperforms the restricted version, again showing

the importance of including the leverage effect. For one-factor diffusion models, results are very

close, but the SVJ model with jumps in mean is slightly better. For two-factor diffusion models,

results are again close, but the 2-SVJ model seems to have an edge. In both cases the inclusion

of a jump in mean appear to help deal with spikes and regime switches in the data, but adding

a contemporaneous jump in (long-term) variance, does not lead to further improvement. In

summary, the best performing model within each class are the GJR-ST, LSV, SVJ and 2-SVJ

model. The rest of this section will be devoted to the results of these four models.

Firstly, I do an informal analysis of the histograms and autocorrelation functions of the

generalized residuals as suggested by Diebold et al. (1998). Only results for the larger out-of-

sample period are used. The histograms of the generalized residuals for the different models are

shown in Figure 3. It can be observed that the generalized residuals are reasonably uniformly

distributed, mostly falling within the 95% confidence interval. The histograms display what

is called a (one-winged) butterfly shape in Diebold et al. (1998), with a hump in the middle,

and a wing at the left tail. This indicates that especially large losses are a bit more common

than forecasted by the models, which is plausible as the financial crisis is included in this time

period.

Figure 3: Histograms of generalized residuals for the period 2001-2014, dotted lines give 95% confidence interval

The autocorrelation function of the (squared) generalized residuals are shown in Figures 4

and 5 respectively. From these figures it can be seen that the models did not fully capture the

conditional volatility dynamics of the data, as there is still significant autocorrelation for the

first lag in both the normal and squared residuals. So from the informal analysis I conclude

that the specifications cannot be considered fully correct, as they violate both uniformity and

independence.
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Figure 4: Autocorrelation function of generalized residuals for the period 2001-2014, dotted lines give 95%
confidence interval

Figure 5: Autocorrelation function of squared generalized residuals for the period 2001-2014, dotted lines give
95% confidence interval

Secondly, I discuss the distribution based tests, shown in Table 2. For the first out-of-sample

period, none of the models are rejected by the Kolmogorov-Smirnov test at 5% significance level.

Only the GJR-ST and LSV model are rejected by the Jarque-Bera test, however all models are

rejected by the Berkowitz and Hong-Li tests. As discussed in Section 3.2, these tests are more

geared towards specifically evaluating density forecasts, and therefore have the highest statistical

power. This means they are more likely to reject a false null hypothesis. Additionally, these two

tests also look at serial dependence, which I already identified as problematic in the informal

analysis. For these reasons I consider these two tests, especially the Hong-Li test, most relevant.

Based on these results it is hard to call the model specifications correct, as they are still rejected

by the relevant Berkowitz and Hong-Li tests. Finally, the difference in log-likelihood between

the GJR-ST model (-2311.6) and the others (the second highest log-likelihood is -2319.7) is

quite substantial in favor of the GJR-ST model. However, this comparison is not completely

fair, as the GJR-ST model is estimated using maximum likelihood. As suggested by its name,

MLE is solely focused on maximizing the likelihood, whereas the Bayesian MCMC estimation

is not. Moreover, the evaluation of the GJR-ST log-likelihood is direct, whereas the other

log-likelihoods are evaluated using the simulation-based dynamic PIT.

Next, I look at the second out-of-sample period, also shown in Table 2. Here the performance

is generally worse, as all models are rejected by the Jarque-Bera, Berkowitz and Hong-Li test.

Only the Kolmogorov-Smirnov test does not reject the GJR-ST and 2-SVJ model. There are

two main reasons for this worse performance. First and most obvious, this sample period

includes the financial crisis, during which asset prices are much harder to forecast, leading to

worse forecasting performance. Second, because this sample period is longer, the usage of static

parameter estimates is even more problematic, as the longer timeframe gives more room for

the parameters to change. This effect gets magnified by the crisis, which makes it even more

likely that parameters change. Even though the inclusion of jumps should theoretically help

deal with the sudden moves in the asset price due to the financial crisis, it appears from these

results that it does not help in practice.
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Table 2: Distribution based test results

2001-2007

KS JB B HL(5) HL(10) HL(20) log-likelihood

GJR-ST 0.030*(0.083) 7.55 (0.023) 9.1 (0.028) 8.1 10.0 13.6 -2311.6

LSV 0.029*(0.096) 14.3 (0.001) 8.8 (0.032) 10.0 13.1 17.8 -2326.8

SVJ 0.027*(0.148) 3.07*(0.215) 8.1 (0.043) 9.4 12.4 17.0 -2319.7

2-SVJ 0.026*(0.194) 4.35*(0.114) 8.4 (0.038) 9.2 12.2 16.3 -2321.9

2001-2014

KS JB B HL(5) HL(10) HL(20) log-likelihood

GJR-ST 0.018*(0.189) 16.1 (0.000) 15.2 (0.002) 12.8 14.0 17.7 -4870.6

LSV 0.025 (0.026) 56.1 (0.000) 17.7 (0.000) 18.8 23.0 31.3 -4893.3

SVJ 0.024 (0.037) 17.4 (0.000) 20.1 (0.000) 18.0 22.1 29.2 -4911.7

2-SVJ 0.022*(0.064) 13.8 (0.001) 17.6 (0.001) 17.2 20.5 27.4 -4902.0

Test results of the Kolmogorov-Smirnov, Jarque-Bera, Berkowitz and Hong-Li tests, as well as the log-

likelihood for both out-of-sample periods, with p-values in parenthesis. For the HL test, 5% critical values

obtained from simulation are 3.40 for 2001-2007 and 3.58 for 2001-2014. * indicates the null hypothesis of

correct model specification is not rejected at 5% significance level. Bold gives the model with the best result

on the corresponding statistic.

Thirdly, I turn to the VaR based tests, shown in Table 3. For the first out-of-sample

period, all models have correct conditional coverage, based on both the LRcc and DQ test

statistics. This shows that VaR forecasts based on the models are very accurate for this period.

Similarly to the distribution based tests, the performance is worse for the second out-of-sample

period. Although the independence of VaR violations is correct for all models, the unconditional

coverage is not (with the exception of the GJR-ST and 2-SVJ model for 1% VaR). This can be

attributed to abnormally large losses that happened during the crisis. Only the GJR-ST model

still performance reasonably for this timeframe, specifically correct conditional coverage is not

rejected by the LRcc for 5% VaR and not rejected by both the LRcc and DQ for 1% VaR.
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Table 3: VaR based test results

2001-2007

5% VaR 1% VaR

LRuc LRid LRcc DQ LRuc LRid LRcc DQ

GJR-ST 0.656* 0.581* 0.778* 0.891* 0.156* 0.687* 0.337* 0.846*

LSV 0.382* 0.732* 0.644* 0.361* 0.426* 0.250* 0.376* 0.231*

SVJ 0.382* 0.732* 0.644* 0.908* 0.920* 0.470* 0.827* 0.507*

2-SVJ 0.382* 0.732* 0.644* 0.925* 0.701* 0.590* 0.803* 0.398*

2001-2014

5% VaR 1% VaR

LRuc LRid LRcc DQ LRuc LRid LRcc DQ

GJR-ST 0.029 0.348* 0.059* 0.016 0.641* 0.365* 0.595* 0.775*

LSV 0.000 0.233* 0.000 0.000 0.000 0.098* 0.000 0.000

SVJ 0.000 0.544* 0.000 0.000 0.000 0.150* 0.000 0.000

2-SVJ 0.000 0.260* 0.000 0.000 0.057* 0.261* 0.088* 0.000

P-values of the Christoffersen test for unconditional coverage, independence and conditional

coverage as well as the DQ test for both out-of-sample periods. * indicates correct VaR’s at

5% significance level.

Lastly, I formally test the difference in log-likelihood through the Diebold-Mariano type

test. As discussed earlier the likelihood comparison is not completely fair due to the different

estimation methods. The results are given in Table 4, where a positive number indicates the

model in the row has a higher log-likelihood than the one in the column. Only the GJR-

ST model achieves a log-likelihood significantly higher than the other models for the second

out-of-sample period. All other differences in log-likelihood are not significant.

Table 4: Likelihood based Diebold-Mariano test results

GJR-ST LSV SVJ 2-SVJ

GJR-ST - 2.341* 2.905* 2.376*

LSV -1.522 - 1.269 0.641

SVJ -1.290 0.173 - -2.370*

2-SVJ -1.484 0.022 -0.834 -

DM-test statistic between the different models. Bottom left results are

for the period 2001-2007, top right for 2001-2014. A positive number

indicates the model in the row has a higher likelihood than the one

in the column. * indicates a significant difference at 5% significance

level.

Combining all these results, I conclude that none of the models are fully satisfactory. The

informal analysis by Diebold et al. (1998) shows that uniformity and dependence are problem-

atic, and all models are rejected by the relevant Hong-Li test. However, if one model had to be

chosen, my preference would go to the GJR-ST model, as it has slightly better test statistics

compared to its competitors, especially during the second out-of-sample period. Specifically, the
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model scores best on the relevant HL test during both periods, and has the best VaR coverage.

Moreover, the GJR-ST is also less computationally expensive to estimate.

4.2.1 Dynamic parameter estimates

As discussed before, the static parameters might lead to sub optimal results. To investigate the

amount of improvement possible, I estimate the GJR-ST model dynamically. This is done by

using a moving window; a window length is chosen, and then the parameters are estimated using

data within the window length only. Through this approach, parameters are (slowly) adjusted

for different financial circumstances. For the GJR-ST model, this is computationally expensive,

but still feasible. However, for the stochastic volatility models this is not feasible, due to too

high computational times of repeatedly estimating the model. Results of the distribution based

tests and the log-likelihood are given in Table 2, for the window lengths of 0.5, 1, 3 and 10 years

(the results of the statically estimated GJR-ST model are also included for comparison).

From the table, it can be seen that dynamic estimation leads to quite substantial improve-

ment. A window length of about 0.5 to 1 years seems optimal from these results. With this

window length, the test statistics improve, to the point where even the Berkowitz test does

not reject correct model specification during the first out-of-sample period (all static models

were rejected). Notably, log-likelihood value as well as the relevant Hong-Li statistic also get

improved, although correct model specification is still rejected by the Hong-Li test. Overall this

shows that dynamic estimation indeed improves the results substantially. For the stochastic

volatility models, similar improvement is expected, if the computational resources would be

available.

Table 5: Distribution based test results for dynamic estimation

2001-2007

KS JB B HL(5) HL(10) HL(20) log-likelihood

GJR-ST 0.030*(0.083) 7.55 (0.023) 9.1 (0.028) 8.1 10.0 13.6 -2311.6

GJR-ST, 0.5 year 0.026*(0.183) 5.25*(0.072) 4.3*(0.232) 6.0 6.2 8.0 -2238.8

GJR-ST, 1 year 0.028*(0.117) 2.37*(0.306) 5.6* (0.132) 6.7 7.2 9.5 -2268.1

GJR-ST, 3 years 0.035 (0.025) 1.56*(0.459) 7.0* (0.073) 8.6 9.3 11.0 -2292.9

GJR-ST, 10 years 0.034 (0.038) 1.27*(0.530) 11.9 (0.001) 6.4 8.7 12.2 -2309.2

2001-2014

KS JB B HL(5) HL(10) HL(20) log-likelihood

GJR-ST 0.018*(0.189) 16.1 (0.000) 15.2 (0.002) 12.8 14.0 17.7 -4870.6

GJR-ST, 0.5 year 0.021*(0.087) 5.63*(0.060) 9.0 (0.030) 7.8 8.8 10.6 -4705.6

GJR-ST, 1 year 0.019*(0.141) 2.81*(0.244) 10.4 (0.015) 6.8 7.2 8.6 -4768.7

GJR-ST, 3 years 0.026 (0.019) 2.03*(0.361) 13.9 (0.003) 11.9 12.4 13.7 -4815.5

GJR-ST, 10 years 0.025 (0.027) 4.64*(0.098) 15.2 (0.002) 10.9 12.4 15.6 -4844.0

Test results of the Kolmogorov-Smirnov, Jarque-Bera, Berkowitz and Hong-Li tests, as well as the log-likelihood for

both out-of-sample periods, with p-values in parenthesis. The window length in years is indicated after the model.

For the HL test, 5% critical values obtained from simulation are 3.40 for 2001-2007 and 3.58 for 2001-2014. * indicates

the null hypothesis of correct model specification is not rejected at 5% significance level. Bold gives the model with

the best result on the corresponding statistic.
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4.3 Application to SPX option pricing

Given the estimated parameters from Table 9, I employ the models to price European call

options using Monte Carlo simulation as described in Section 3.3. The Black-Scholes (BS)

model is used as a benchmark, with estimated parameters5 µ = 0.0469 and σ = 0.9457. For

simplicity I use a risk-free rate of 3% (which is close to the federal funds rate in 2001). Full

results are shown in Table 12 in the Appendix. Most models have a quite substantial bias,

indicated by the average error being substantially different from zero. Therefore, I will focus

my analysis on the errors that have been corrected for this bias as described in Section 3.3.

For clarity I will again show results from the best performing models within each class, which

for option pricing are the GJR-N, LSV, SVJ and 2-SV3J model (which can be seen from Table

12). The GJR-N model performing well is a bit surprising, since GARCH type models with

a normal distribution did not perform well for density forecasts. However, this result cannot

be attributed to coincidence, as the GARCH-N model also outperforms the GARCH-T model,

suggesting that a normal is more appropriate in the context of option pricing.

Results of the best performing models within each class are shown in Table 6. All 4 models

are able to outperform the Black-Scholes model on both corrected MSE and MAPE. The SVJ

and 2-SV3J models perform especially well on corrected MSE, mainly because these models price

the options with a long maturity more accurately, as shown in Figure 6, where the corrected

errors are plotted against the option maturity. This can be explained by the fact that the

likelihood of a jump occurring in the actual data is higher during a longer time to maturity,

meaning that incorporating this jump into the model specification becomes more relevant.

Table 6: Accuracy of option prices given by the different models

mean MSE MAPE corrected corrected

error MSE MAPE

BS -4.1113 122.4 0.2137 97.81 0.1154

GJR-N -6.4470 82.22 0.2222 35.72 0.0671

LSV -8.4358 136.6 0.2912 58.57 0.0843

SVJ -9.9970 115.3 0.2560 9.899 0.0762

2-SV3J -8.0801 81.09 0.2188 10.90 0.0542

The mean error, mean squared error and mean absolute percentage

error and their corrected (see Section 3.3) version, for at the money

options traded on the first 7 trading days of 2001. 10.000 simulated

sample paths are used to calculate the option price. Bold gives

the model with the best result on the corresponding statistic.

Furthermore, Table 7 shows that the differences in corrected MSE and MAPE are mostly

significant. Especially the difference between the Black-Scholes model and all other models is

always significant in favor of the stochastic volatility models. Also, the SVJ and 2-SV3J models

score significantly better than all other models on corrected MSE. Between these two, there is

no significant difference in MSE, but a very significant difference in MAPE. Meaning that from

an absolute point of view, the models make similar errors, but from a relative point of view the

5Parameters are estimated similarly to the other models; using Bayesian MCMC on the period 1990-2000
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Figure 6: Corrected error plotted against the maturity of the option

2-SV3J model is strongly preferred. The reason that the test statistics are not as large as one

could expect from the results of Table 6, is that there is also large variance in the size of the

errors made.

These results show that the stochastic volatility models can be effectively applied to option

pricing. The models lead to smaller errors than the benchmark Black-Scholes model. Looking

at the absolute performance, which corresponds to the MSE, the SVJ and 2-SV3J model are

the best performing. Notably, both of these models include jumps. For relative performance,

corresponding to the MAPE, the 2-SV3J model performs best. This is in contrast with the

results for density forecasting, where the GJR-ST model is the best performing. This shows

that the extra flexibility allowed by the inclusion of jumps turns out to be more relevant for

option pricing.

Table 7: Diebold-Mariano test results for corrected MSE and MAPE

BS GJR-N LSV SVJ 2-SV3J

BS - 7.244* 4.672* 4.038* 5.894*

GJR-N -3.088* - -8.017* -1.293 2.235*

LSV -2.884* 3.333* - 1.449 4.604*

SVJ -2.814* -2.313* -2.741* - 6.755*

2-SV3J -2.938* -2.586* -2.937* -0.387 -

DM-test statistic between the different models. Bottom left results are for the cor-

rected MSE, top right for the corrected MAPE. A positive number indicates the

model in the row has higher errors than the one in the column. * indicates a signifi-

cant difference at 5% significance level.

19



5 Conclusion

In this paper I have examined a wide range of stochastic volatility models, focusing on density

forecasting and option pricing. First off all I have shown that it is important to incorporate the

fat tails and the leverage effect in the model. As the models that include these phenomena are

the best performing within their respective model class.

For density forecasts, none of the models are fully satisfactory, but the GJR-ST model

performs best. It scores best on the relevant distribution based test statistics, specifically the

Hong-Li test, during both out-of-sample periods. Furthermore, the GJR-ST model is the only

model that gives correct conditional coverage for both 5% and 1% value at risk, measured by

both the Christoffersen and DQ tests, during both sample periods (with the exception of the

DQ test for sample period 2 for 5% VaR). The model also has a higher likelihood than the

competing models, with this difference being significant for the second out-of-sample period,

although the likelihood based comparison is not completely fair. Results for the other models are

also reasonable, for example the LSV, SVJ and 2-SVJ model have correct conditional coverage

for both 5% and 1% VaR for the first out-of-sample period. I have in addition shown that

dynamic estimation leads to substantial further improvement of the GJR-ST model. Dynamic

estimation is not yet feasible for the stochastic volatility models.

For option pricing however, the GJR-ST is not even the best performing among the GARCH

type models, being outperformed by the GJR-N model. The best performing models within

each class significantly outperform the standard Black-Scholes model. In contrast to density

forecasting, the best performing models are the SVJ and 2-SV3J model. The increased flexibility,

induced by the introduction of jumps, seems to be especially effective for the pricing of (long-

maturity) options. Looking at the errors from an absolute perspective, the SVJ and 2-SV3J

model are similar, but from a relative perspective, the 2-SV3J model makes significantly smaller

errors.

All in all this shows that the question “Which stochastic volatility model is most accurate?”,

can have a different answer depending on the type of application the stochastic volatility model

is used for. For making density forecasts of the S&P 500 I have shown that the GJR-ST is the

best of the models considered, while the 2-SV3J model is preferred for option pricing. With

the field of quantitative finance constantly evolving, and new, more sophisticated models being

introduced constantly, a lot of research is still necessary to give a definite answer, if one even

exists.

For future research one of the most obvious suggestions is to look into making dynamic

parameter estimation feasible, as it can lead to substantial improvement of the models. Dynamic

estimation helps improve the flexibility of the models, as it allows the models to pick up on

changes in parameters, for example due to regime switches, in the data. Of course developing

and evaluating different stochastic volatility models, as well as looking into different data sets

or financial applications is also very useful. Lastly the usage of not only the daily returns, but

also different exogenous variables that potentially contain information to improve the models is

interesting.
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6 Appendix

6.1 Tables

Table 8: Performance of different tests on simulated data

LSV0 LSV SV

10% 5% 1% 10% 5% 1% 10% 5% 1%

T=250 KS 0.096 0.048 0.013 0.084 0.030 0.003 0.095 0.048 0.013

JB 0.081 0.039 0.014 0.083 0.047 0.017 0.078 0.041 0.016

B 0.090 0.045 0.008 0.087 0.038 0.004 0.098 0.041 0.010

HL(5) 0.092 0.043 0.011 0.087 0.036 0.006 0.099 0.051 0.007

T=500 KS 0.106 0.050 0.003 0.093 0.042 0.006 0.107 0.051 0.008

JB 0.098 0.040 0.013 0.079 0.041 0.014 0.094 0.051 0.019

B 0.119 0.064 0.014 0.094 0.049 0.008 0.118 0.060 0.010

HL(5) 0.097 0.057 0.009 0.086 0.041 0.013 0.109 0.055 0.009

T=1000 KS 0.115 0.058 0.010 0.102 0.049 0.010 0.100 0.048 0.011

JB 0.097 0.052 0.017 0.098 0.062 0.021 0.102 0.056 0.018

B 0.094 0.053 0.015 0.097 0.045 0.012 0.105 0.057 0.013

HL(5) 0.096 0.042 0.010 0.122 0.061 0.008 0.105 0.049 0.007

SVJ SV2J 2-SV

10% 5% 1% 10% 5% 1% 10% 5% 1%

T=250 KS 0.106 0.057 0.013 0.097 0.052 0.013 0.096 0.055 0.008

JB 0.080 0.043 0.017 0.082 0.049 0.018 0.083 0.045 0.020

B 0.103 0.060 0.008 0.097 0.047 0.013 0.090 0.040 0.008

HL(5) 0.105 0.055 0.017 0.113 0.055 0.011 0.091 0.042 0.007

T=500 KS 0.106 0.054 0.008 0.109 0.049 0.007 0.104 0.045 0.005

JB 0.094 0.053 0.016 0.087 0.044 0.012 0.094 0.036 0.008

B 0.111 0.060 0.008 0.105 0.062 0.012 0.092 0.051 0.005

HL(5) 0.103 0.047 0.011 0.111 0.054 0.013 0.088 0.039 0.009

T=1000 KS 0.106 0.056 0.011 0.109 0.048 0.011 0.090 0.043 0.009

JB 0.087 0.044 0.014 0.100 0.049 0.016 0.084 0.049 0.010

B 0.101 0.046 0.007 0.107 0.058 0.013 0.113 0.051 0.009

HL(5) 0.107 0.052 0.009 0.111 0.057 0.012 0.092 0.042 0.006

2-SVJ 2-SV2J 2-SV3J

10% 5% 1% 10% 5% 1% 10% 5% 1%

T=250 KS 0.102 0.048 0.011 0.114 0.058 0.008 0.104 0.046 0.011

JB 0.069 0.044 0.020 0.087 0.049 0.022 0.095 0.058 0.023

B 0.110 0.052 0.005 0.103 0.058 0.010 0.127 0.068 0.016

HL(5) 0.109 0.056 0.016 0.092 0.046 0.004 0.102 0.053 0.008

T=500 KS 0.115 0.065 0.013 0.114 0.061 0.011 0.100 0.048 0.010

JB 0.081 0.041 0.011 0.093 0.051 0.020 0.108 0.060 0.027

B 0.115 0.062 0.019 0.115 0.056 0.007 0.124 0.075 0.018

HL(5) 0.116 0.065 0.013 0.123 0.064 0.006 0.108 0.057 0.010

T=1000 KS 0.093 0.047 0.013 0.099 0.046 0.010 0.093 0.049 0.014

JB 0.098 0.055 0.017 0.115 0.060 0.018 0.121 0.069 0.023

B 0.101 0.045 0.009 0.090 0.052 0.008 0.124 0.066 0.015

HL(5) 0.111 0.065 0.011 0.100 0.052 0.013 0.107 0.058 0.015

Fraction rejected based on 1000 simulated sample paths of length of the return, using the estimated

coefficients from Table 9. The sample paths have length T = 250, 500 and 1000. For the HL test,

critical values for 10%, 5% and 1% are given by 2.52, 3.56 and 5.73 for T = 250, 2.52, 3.43 and 5.41

for T = 500 and 2.54, 3.43 and 5.605 for T = 1000 respectively (Yun (2018)).
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Table 9: Estimated coefficients for density forecast models

GARCH-N GARCH-T GJR-N GJR-T GJR-ST

µ 0.0548*(0.0142) 0.0608*(0.0131) 0.0383*(0.0136) 0.0492*(0.0132) 0.0411*(0.0140)

α0 0.0047*(0.0017) 0.0029*(0.0013) 0.0100 (0.0063) 0.0063*(0.0024) 0.0067*(0.0025)

α1 0.9439*(0.0088) 0.9538*(0.0142) 0.9291*(0.0290) 0.9403*(0.0115) 0.9391*(0.0116)

α2 0.0525*(0.0082) 0.0447*(0.0048) 0.0136 (0.0089) 0.0119 (0.0079) 0.0117 (0.0079)

α3 - - 0.0938*(0.0427) 0.0829*(0.0196) 0.0855*(0.0197)

ν - 6.1474*(0.6990) - 6.6636*(0.8127) 6.8472*(0.8649)

ξ - - - - 0.9547 (0.0252)

LSV0 LSV

µ 0.0641*(0.0132) 0.0416*(0.0135)

α -0.0059*(0.0017) -0.0087*(0.0039)

β -0.0133*(0.0046) -0.0196*(0.0054)

ρ - -0.5629*(0.0597)

σ2
v 0.1339*(0.0175) 0.1671*(0.0198)

SV SVJ SV2J

µ 0.0421*(0.0141) 0.0436*(0.0136) 0.0436*(0.0138)

µr - -1.2948 (0.7446) -4.4274*(0.8419)

σr - 2.0144*(0.3563) 2.1500*(0.4291)

θ 0.9458*(0.1385) 0.9261*(0.1714) 0.7585*(0.1219)

κ 0.0166*(0.0041) 0.0142*(0.0042) 0.0206*(0.0046)

σv 0.1237*(0.0110) 0.1117*(0.0106) 0.1172*(0.0098)

ρ -0.4175*(0.0884) -0.5407*(0.0689) -0.4729*(0.0779)

µσ - - 0.6206*(0.1474)

λ - 0.0116*(0.0050) 0.0034*(0.0013)

2-SV 2-SVJ 2-SV2J 2-SV3J

µ 0.0367*(0.0131) 0.0451*(0.0128) 0.0300*(0.0131) 0.0327*(0.0133)

µr - -1.5395 (0.8919) -2.6110*(1.1445) -2.7016*(1.0796)

σr - 2.0001*(0.3368) 2.2159*(0.4176) 2.2040*(0.3955)

κM 0.4879 (0.3036) 0.8050 (0.4669) 0.9025*(0.0142) 0.9994*(0.1509)

θM 1.0324*(0.0294) 0.9603*(0.0272) 0.9983*(0.0368) 1.1027*(0.0508)

σM 0.0781*(0.0319) 0.0545*(0.0180) 0.0475*(0.0099) 0.0631*(0.0241)

µM - - - 0.4542*(0.1081)

κ 0.0150*(0.0031) 0.0125*(0.0028) 0.0156*(0.0041) 0.0126*(0.0026)

σv 0.1245*(0.0092) 0.1105*(0.0089) 0.1204*(0.0150) 0.1183*(0.0102)

ρ -0.4448*(0.0628) -0.5233*(0.0700) -0.5277*(0.0802) -0.4872*(0.0769)

µσ - - 0.6441*(0.1585) 0.6873*(0.1631)

λ - 0.0104*(0.0049) 0.0043*(0.0015) 0.0034*(0.0014)

Estimated coefficients of daily returns of the S&P 500 index for the period 1990-2000. The param-

eters of the models are of the models in Section 3, with standard errors in parenthesis. * indicates

significance at 5% significance level. The estimates for the GARCH type models are the ML esti-

mators. For all other models, the estimators are the mean and standard deviation of the posterior

distribution, given by the Bayesian MCMC. The Bayesian MCMC uses 11.000 iterations and 4

chains, 1000 iterations are burn-in.
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Table 10: Distribution based test results

2001-2007

KS JB B HL(5) HL(10) HL(20) log-likelihood

GARCH-N 0.047 (0.001) 264 (0.000) 9.8 (0.021) 16.6 21.8 30.4 -2357.4

GARCH-T 0.040 (0.007) 8.7 (0.013) 11.6 (0.009) 12.5 15.3 20.7 -2341.1

GJR-N 0.042 (0.004) 175 (0.000) 9.1 (0.028) 15.2 20.7 28.9 -2325.7

GJR-T 0.034 (0.037) 11.3 (0.004) 9.7 (0.021) 10.5 13.1 18.1 -2315.3

GJR-ST 0.030*(0.083) 7.55 (0.023) 9.1 (0.028) 8.1 10.0 13.6 -2311.6

LSV0 0.036 (0.020) 9.65 (0.008) 12.3 (0.006) 13.0 16.5 22.4 -2341.5

LSV 0.029*(0.096) 14.3 (0.001) 8.8 (0.032) 10.0 13.1 17.8 -2326.8

SV 0.030*(0.087) 12.1 (0.002) 8.0 (0.046) 9.3 12.3 16.8 -2319.6

SVJ 0.027*(0.148) 3.07*(0.215) 8.1 (0.043) 9.4 12.4 17.0 -2319.7

SV2J 0.028*(0.128) 4.09*(0.130) 7.9 (0.047) 10.8 14.0 18.7 -2320.9

2-SV 0.029*(0.109) 13.1 (0.001) 7.7*(0.053) 10.8 14.2 19.0 -2325.0

2-SVJ 0.026*(0.194) 4.35*(0.114) 8.4 (0.038) 9.2 12.2 16.3 -2321.9

2-SV2J 0.027*(0.151) 4.95*(0.084) 11.6 (0.009) 11.4 14.7 19.9 -2317.6

2-SV3J 0.029*(0.107) 4.91*(0.444) 11.7 (0.008) 11.4 14.9 20.3 -2320.4

2001-2014

KS JB B HL(5) HL(10) HL(20) log-likelihood

GARCH-N 0.040 (0.000) 425 (0.000) 18.4 (0.000) 35.8 47.5 64.4 -4993.7

GARCH-T 0.027 (0.014) 22.0 (0.000) 19.1 (0.000) 21.0 24.9 30.4 -4944.8

GJR-N 0.039 (0.000) 280 (0.000) 14.5 (0.002) 33.9 43.9 59.8 -4913.5

GJR-T 0.022*(0.065) 29.3 (0.000) 15.7 (0.001) 17.4 20.4 26.7 -4881.5

GJR-ST 0.018*(0.189) 16.1 (0.000) 15.2 (0.002) 12.8 14.0 17.7 -4870.6

LSV0 0.026 (0.014) 47.0 (0.000) 25.4 (0.000) 22.0 27.5 36.0 -4943.5

LSV 0.025 (0.026) 56.1 (0.000) 17.7 (0.000) 18.8 23.0 31.3 -4893.3

SV 0.023 (0.047) 65.7 (0.000) 24.0 (0.000) 17.6 21.6 28.6 -4913.7

SVJ 0.024 (0.037) 17.4 (0.000) 20.1 (0.000) 18.0 22.1 29.2 -4911.7

SV2J 0.024 (0.032) 14.1 (0.001) 14.7 (0.002) 18.9 22.6 30.1 -4883.4

2-SV 0.026 (0.019) 67.1 (0.000) 19.7 (0.000) 20.0 24.5 32.8 -4910.5

2-SVJ 0.022*(0.064) 13.8 (0.001) 17.6 (0.001) 17.2 20.5 27.4 -4902.0

2-SV2J 0.033 (0.001) 20.4 (0.000) 14.7 (0.002) 20.6 24.2 32.1 -4876.6

2-SV3J 0.032 (0.002) 22.3 (0.000) 15.0 (0.001) 20.9 24.7 32.8 -4883.7

Test results of the Kolmogorov-Smirnov, Jarque-Bera, Berkowitz and Hong-Li tests, as well as the log-likelihood

for both out-of-sample periods, with p-values in parenthesis. For the HL test, 5% critical values obtained

from simulation are 3.40 for 2001-2007 and 3.58 for 2001-2014. * indicates the null hypothesis of correct

model specification is not rejected at 5% significance level. Bold gives the model with the best result on the

corresponding statistic.
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Table 11: VaR based test results

2001-2007

5% VaR 1% VaR

LRuc LRid LRcc DQ LRuc LRid LRcc DQ

GARCH-N 0.233* 0.154* 0.178* 0.150* 0.004 0.293* 0.008 0.000

GARCH-T 0.069* 0.066* 0.035 0.026 0.701* 0.590* 0.803* 0.102*

GJR-N 0.580* 0.618* 0.758* 0.693* 0.145* 0.417* 0.248* 0.001

GJR-T 0.382* 0.437* 0.505* 0.732* 0.250* 0.662* 0.469* 0.168*

GJR-ST 0.656* 0.581* 0.778* 0.891* 0.156* 0.687* 0.337* 0.846*

LSV0 0.069* 0.141* 0.065* 0.149* 0.145* 0.336* 0.217* 0.119*

LSV 0.382* 0.732* 0.644* 0.361* 0.426* 0.250* 0.376* 0.231*

SV 0.233* 0.303* 0.290* 0.433* 0.308* 0.457* 0.451* 0.003

SVJ 0.382* 0.732* 0.644* 0.908* 0.920* 0.470* 0.827* 0.507*

SV2J 0.327* 0.469* 0.476* 0.433* 0.526* 0.613* 0.720* 0.323*

2-SV 0.277* 0.279* 0.308* 0.519* 0.308* 0.617* 0.451* 0.003

2-SVJ 0.382* 0.732* 0.644* 0.925* 0.701* 0.590* 0.803* 0.398*

2-SV2J 0.991* 0.837* 0.979* 0.770* 0.374* 0.638* 0.602* 0.242*

2-SV3J 0.904* 0.809* 0.964* 0.751* 0.374* 0.638* 0.602* 0.242*

2001-2014

5% VaR 1% VaR

LRuc LRid LRcc DQ LRuc LRid LRcc DQ

GARCH-N 0.009 0.846* 0.031 0.000 0.000 0.519* 0.000 0.000

GARCH-T 0.001 0.777* 0.003 0.000 0.112* 0.282* 0.158* 0.000

GJR-N 0.016 0.298* 0.032 0.012 0.000 0.113* 0.000 0.000

GJR-T 0.007 0.394* 0.018 0.002 0.264* 0.316* 0.324* 0.024

GJR-ST 0.029 0.348* 0.059* 0.016 0.641* 0.365* 0.595* 0.775*

LSV0 0.000 0.803* 0.000 0.000 0.000 0.746* 0.000 0.000

LSV 0.000 0.233* 0.000 0.000 0.000 0.098* 0.000 0.000

SV 0.000 0.643* 0.000 0.000 0.000 0.088* 0.000 0.000

SVJ 0.000 0.544* 0.000 0.000 0.000 0.150* 0.000 0.000

SV2J 0.000 0.389* 0.000 0.000 0.012 0.222* 0.021 0.001

2-SV 0.000 0.457* 0.001 0.000 0.000 0.103* 0.000 0.001

2-SVJ 0.000 0.260* 0.000 0.000 0.057* 0.261* 0.088* 0.000

2-SV2J 0.013 0.033 0.005 0.003 0.202* 0.304* 0.262* 0.000

2-SV3J 0.024 0.042 0.010 0.009 0.152* 0.293* 0.206* 0.001

P-values of the Christoffersen test for unconditional coverage, independence and conditional

coverage as well as the DQ test for both out-of-sample periods. * indicates correct VaR’s at 5%

significance level. Bold gives the model with the best result on the corresponding statistic.
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Table 12: Accuracy of option prices given by the different models

mean MSE MAPE corrected corrected

error MSE MAPE

BS -4.1113 122.4 0.2137 97.81 0.1154

GARCH-N 2.9569 267.4 0.1386 244.3 0.2080

GARCH-T 22.390 1351 0.3542 812.0 0.4620

GJR-N -6.4470 82.22 0.2222 35.72 0.0671

GJR-T 9.0989 532.8 0.1685 429.1 0.3253

GJR-ST -4.5447 90.92 0.2040 64.10 0.0962

LSV0 1.0689 473.3 0.2526 443.7 0.2777

LSV -8.4358 136.6 0.2912 58.57 0.0843

SV -5.3649 99.20 0.2174 64.28 0.0907

SVJ -9.9970 115.3 0.2560 9.899 0.0762

SV2J -11.146 143.3 0.2955 13.70 0.0778

2-SV -6.2390 78.26 0.2111 34.24 0.0613

2-SVJ -9.2444 101.6 0.2428 10.61 0.0664

2-SV2J -11.003 138.9 0.2686 11.22 0.0905

2-SV3J -8.0801 81.09 0.2188 10.90 0.0542

The mean error, mean squared error and mean absolute percentage

error and their corrected (see Section 3.3) version, for at the money

options traded on the first 7 trading days of 2001. 10.000 simulated

sample paths are used to calculate the option price. Bold gives the

model with the best result on the corresponding statistic.
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6.2 Dynamic probability integral transform for LSV

The simulation-based dynamic probability integral transform algorithm for the LSV (Section

3.1.2) model as described in Yun (2018) consists of the following steps, given an amount of

particles P (Like Yun (2018), I work with P = 25000):

1. Auxiliary variable: Suppose a set of P particles for conditional variances, {σ2
t−1(p)}Pp=1,

is given, drawn from f(σ2
t−1|rt−1). Draw the initial particles according to the marginal

distribution given by the model: {σ2
0(p)}Pp=1 ∼ N( α

−β ,
σ2
v

1−(1+β)2
). Then compute the aux-

iliary variable σ̂2
t (p) for each p = 1, ..., P . For each p, σ̂2

t (p) is the conditional expectation

of σ2
t given σ2

t−1(p) and rt−1. This auxiliary variable is used to improve efficiency and is

given by:

σ̂2
t (p) = exp(log(σ2

t−1(p)) + α+ βlog(σ2
t−1(p)) +

ρσv(rt−1 − µ)

σt−1(p)
+

1

2
σ2
v(1− ρ2) (24)

The last term 1
2σ

2
v(1− ρ2) comes from Jensen’s inequality adjustment.

2. First-stage resampling: Using σ̂2
t (p) from the previous step, compute the first-stage

weights for each p according to:

w̃t(p) ∝ φ(rt|µ, σ̂2
t (p)) (25)

where φ is the normal distribution PDF. Standardize the weights to wt(p) = w̃t(p)∑P
p=1 w̃t(p)

.

Using these weights, resample the particles σ̂2
t (p) (meaning draw the particles with re-

placement, with the probability of drawing the particle σ̂2
t (p) given by wt(p)). Let

{σ2
t−1(p, w)}Pp=1 denote the set of resampled particles.

3. Second-stage resampling: Simulate the log conditional variance at time t, i.e. σ2
t (p, w),

by drawing η̃t(p, w) ∼ N(0, 1) and computing:

log(σ2
t (p, w)) = log(σ2

t−1(p, w))+α+βlog(σ2
t−1(p, w))+

ρσv(rt−1 − µ)

σt−1(p, w)
+σv

√
1− ρ2η̃t(p, w)

(26)

Then compute the second-stage weight for each (p, w):

π̃t(p, w) ∝ f(rt|σ2
t (p, w))

f(rt|σ̂2
t (p, w))

=
φ(rt|µ, σ2

t (p, w))

φ(rt|µ, σ̂2
t (p, w))

(27)

Again standardize the weights πt(p) = π̃t(p)∑P
p=1 π̃t(p)

. Use these weights to resample the

particles σ2
t (p, w). Let {σ2

t (p)}Pp=1 denote these final particles, which are now equivalent

to a sample from f(σ2
t |rt)

4. Simulation-based dynamic probability integral transform and log-likelihood

evaluation: For each particle σ2
t (p), draw σ̃2

t+1(p) from the transition density of the

model, given in Equation 8. Using the drawn {σ̃2
t+1(p)}Pp=1, approximate the generalized
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residual zt+1 through the PIT as follows:

zt+1 ≈
1

P

P∑
p=1

∫ rt+1

−∞
f(r|σ̃2

t+1(p))dr

=
1

P

P∑
p=1

∫ rt+1

−∞
φ(r|µ, σ̃2

t+1(p))dr

(28)

Then calculate the log-likelihood as follows:

Lt+1 = logf(rt+1|rt)

≈ log[
1

P

P∑
p=1

φ(rt+1|µ, σ̃2
t+1(p))]

(29)

Lastly discard {σ̃2
t+1(p)}Pp=1

5. Iteration: Go back to step 1, and start to update the particles from {σ2
t (p)}Pp=1 to

{σ2
t+1(p)}Pp=1 with rt+1 until t = T − 1.

6.3 Dynamic probability integral transform for 2-SV3J

The simulation-based dynamic probability integral transform algorithm for the 2-SV3J model

(Section 3.1.3) as described in Yun (2018) consists of the following steps, given an amount of

particles P (Like Yun (2018), I work with P = 25000):

1. Auxiliary variable: Suppose a set of P particles at time t−1, {Lt−1(p)}Pp=1, is given, with

Lt−1(p) = (Mt−2(p), σ2
t−2(p), Jt−1(p), Zrt−1(p), ZMt−2(p), Zσt−2(p)) generated from f(Lt−1|rt−1).

Draw the initial particles according to the marginal distribution given by the model

{L0(p)}Pp=1. Compute the auxiliary variables, which are the conditional expectation of

the long-term and spot variance on Lt−1(p) and rt−1:

M̂t−1(p) = Mt−2(p) + κM (θM −Mt−2(p)) + Jt−1(p)µM (30)

σ̂2
t−1(p) = σt−2(p)+κ(M̂t−1(p)−σ2

t−2(p))+ρσv(rt−1−µ−Jt−1(p)Zrt−1(p))+Jt−1(p)µσ (31)

2. First-stage resampling: Using σ̂2
t−1(p) from step 1, compute the first-stage weights for

each p:

w̃t(p) ∝ λφ(rt|µ+ µr, σ̂
2
t−1(p) + σ2

r ) + (1− λ)φ(rt|µ, σ̂2
t−1(p)) (32)

Then standardize the weights wt(p) = w̃t(p)∑P
p=1 w̃t(p)

, and resample the particles {Lt−1(p)}Pp=1

according to the weights wt(p), obtaining the set of resampled particles denoted {Lt−1(p, w)}Pp=1.

Also resample the weights to obtain wt(p, w), which is necessary for step 7.

3. Generating a jump occurrence: For each (p, w), draw an occurrence of the jump

Jt(p, w) from a Bernoulli distribution with jump probability qJ(p, w) given by:

qJ(p, w) = Pr(Jt(p, w) = 1|σ̂2
t−1(p, w), rt) (33)
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where

Pr(Jt(p, w) = 1|σ̂2
t−1, rt) ∝ Pr(Jt(p, w) = j)Pr(rt|σ̂2

t−1(p, w), Jt(p, w) = j)

= λj(1− λ)1−jφ(rt|µ+ jµr, σ̂
2
t−1(p, w) + jσ2

r )
(34)

for j = 0, 1.

4. Generating a jump in return size: For (p, w) with Jt(p, w) = 1, draw a jump-in-return

size Zrt (p, w) from a normal distribution with mean µ̄(p, w) and variance σ̄2(p, w) given

by:

µ̄(p, w) = σ̄2(p, w)(
rt − µ

σ̂2
t−1(p, w)

+
µr
σ2
r

) (35)

σ̄2(p, w) = (
1

σ̂2
t−1(p, w)

+
1

σ2
r

)−1 (36)

5. Simulating long-term variance: For (p, w) draw an innovation ut−1(p, w) and if Jt−1(p, w) =

1, draw a jump in long-term variance size ZMt−1(p, w) from exp(µM ). Then Mt−1(p, w) can

be generated through:

Mt−1(p, w) = Mt−2(p, w)+κM (θM−Mt−2(p, w))+σM
√
Mt−2(p, w)ut−1(p, w)+Jt−1(p, w)ZMt−1(p, w)

(37)

6. Simulating spot variance: For (p, w) draw an innovation ηt−1(p, w) and if Jt−1(p, w) =

1, draw a jump in spot variance size Zσt−1(p, w) from exp(µσ). Then σ2
t−1(p, w) can be

generated through:

σ2
t−1(p, w) = σ2

t−2(p, w)+κ(Mt−1(p, w)−σ2
t−2(p, w))+σvρ(rt−1−µ−Jt−1(p, w)Zrt−1(p, w))

(38)

+σv
√

1− ρ2
√
σ2
t−2(p, w)ηt−1(p, w) + Jt−1(p, w)Zσt−1(p, w)

The particles {Lt(p, w)}Pp=1 have now been obtained.

7. Second-stage resampling: Calculate weights according to:

π̃t(p, w) ∝ λJt(p,w)(1− λ)1−Jt(p,w)φ(Zrt (p, w)|µr, σ2
r )
Jt(p,w)φ(rt|µ+ Jt(p, w)Zrt (p, w), σ2

t (p, w))

qJ(p, w)Jt(p,w)(1− qJ(p, w))1−Jt(p,w)φ(Zrt (p, w)|µ̄(p, w), σ̄2(p, w))wt(p, w)
(39)

Then standardize the weights πt(p) = π̃t(p)∑P
p=1 π̃t(p)

. Resample the particles Lt(p, w) using

these weights. Let {Lt(p)}Pp=1 denote these final particles, which are now equivalent to a

sample from f(Lt|rt).

8. Simulation-based dynamic probability integral transform and log-likelihood

evaluation: For each particle Lt(p), draw η̃t(p) from N(0, 1), J̃t+1(p) from Ber(λ) and

Z̃σt (p) from exp(µσ). {σ̃2
t (p)}Pp=1 can now be obtained from the transition density of the

model, given in Equation 14. Using the simulated {σ̃2
t (p), J̃t+1(p)}Pp=1, approximate the
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generalized residual zt+1 through the PIT as follows:

zt+1 =

∫ rt+1

−∞
f(r|rt)dr

=

∫ rt+1

−∞

∫ ∞
0

∫
f(r|σ2

t )f(σ2
t |Lt, rt)f(Lt|rt)dLtdσ2

t dr

≈ 1

P

P∑
p=1

∫ rt+1

−∞
f(r|σ̃2

t (p), J̃t+1(p))dr

=
1

P

P∑
p=1

∫ rt+1

−∞
IJ̃t+1(p)=1φ(r|µ+ µr, σ̃

2
t (p) + σ2

r ) + IJ̃t+1(p)=0φ(r|µ, σ̃2
t (p))dr

(40)

Then calculate the log-likelihood as follows:

Lt+1 = logf(rt+1|rt)

≈ log[
1

P

P∑
p=1

IJ̃t+1(p)=1φ(rt+1|µ+ µr, σ̃
2
t (p) + σ2

r ) + IJ̃t+1(p)=0φ(rt+1|µ, σ̃2
t (p))]

(41)

Lastly discard {Ṽt(p), J̃t+1(p)}Pp=1

9. Iteration: Go back to step 1, and start to update the particles from {Lt(p)}Pp=1 to

{Lt+1(p)}Pp=1 until t = T − 1.

This method can be easily modified for the other diffusion type models, described in Section

3.1.3.

6.4 HL test

For the HL test by Hong and Li (2005), the kernel estimator of the joint densities for lag order

j is given by:

ĝ(u1, u2) =
1

T − j

T∑
t=j+1

Kh(u1, zt)Kh(u2, zt−j) (42)

where zt is evaluated at any
√
T -consistent estimator for the true model parameter and Kh(u, zt)

for x ∈ [0, 1] is given by

Kh(x, y) =


k(x−y

h
)

h
∫ 1
−x/h k(u)du

, if x ∈ [0, h)

k(x−yh ), if x ∈ [h, 1− h]
k(x−y

h
)

h
∫ (1−x)/h
−1 k(u)du

, if x ∈ (1− h, 1)

(43)

with k() a pre-specified symmetric probability density, for example given by k(u) = 15
16(1 −

u2)2I|u|≤1 and h = ŜzT
− 1

6 with Ŝz the sample standard deviation of {zt} as in Yun (2018).

The HL statistic is based on a properly standardized version of the quadratic form between

32



ĝj(u1, u2) and 1:

Q̂(j) =
(T − j)h

∫ 1
0

∫ 1
0 (ĝj(u1, u2)− 1)2du1du2 − hA0

h√
V 0

(44)

with

A0
h = [(h−1 − 2)

∫ 1

−1
k2(u)du+ 2

∫ 1

0

∫ 1

−1
k2
b (u)dudb]2 − 1 (45)

V 0 = 2[

∫ 1

−1
[

∫ 1

−1
k(u+ v)k(v)dv]2du]2 (46)

with kb() = k()∫ b
−1 k(v)dv

. Such that under correct model specification, Q̂(j)→ N(0, 1) ∀j.

Hong et al. (2007) suggest a Portmanteau type statistic to combine different lag orders into

a single test-statistic, given by:

HL(ρ) =
1
√
ρ

ρ∑
j=1

Q̂(j) (47)

where ρ is a chosen lag truncation order, in this paper I work with ρ = 5, 10 and 20. This

statistic also asymptotically follows a N(0, 1) distribution. However, Hong et al. (2007) have

shown that using the asymptotic test statistic over rejects the null hypothesis. Instead they

suggest simulation to obtain critical values. I use the simulated critical values obtained by Yun

(2018) in this paper.

6.5 Christoffersen test

Christoffersen (1998) developed a test based on VaR violations. First the test for unconditional

coverage, which should be equal to the chosen probability level p. Let T1 denote the amount of

VaR violations, i.e. T1 =
∑T

t=1 Irt<VaRt(p) and T0 = T − T1 the amount of non-violations. The

null hypothesis is tested that the fraction of VaR violations π = T1
T0+T1

is equal to the chosen

probability level p for the VaR forecasts. Under this null hypothesis, the test statistic is given

by:

LRuc = −2(log(pT1(1− p)T0)− log(πT1(1− π)T0)) ∼ X2(1) (48)

Next the VaR violations should be independent. This comes down to testing the null hypothesis

of independence against a first-order Markov chain. Let Tij denote the number of transitions

from state i = 0, 1 to j = 0, 1, where 0 indicates non-violation and 1 indicates violation.

For example T00 =
∑T

t=2 Irt−1≥VaRt−1(p)Irt≥VaRt(p). Under the null hypothesis the transition

probability is given by π = T01+T11
T00+T01+T10+T11

. Under the alternative hypothesis the transition

matrix is given by Π =

(
1− π01 π01

1− π11 π11

)
with π01 = T01

T00+T01
and π11 = T11

T10+T11
. The test statistic

is given by:

LRid = −2(log(π(T01+T11)(1−π)(T00+T10))− log((1−π01)T00πT0101 (1−π11)T10πT1111 )) ∼ X2(1) (49)

Finally these test can be combined into a joint test statistic for conditional coverage, the test
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statistic is given by:

LRcc = LRuc + LRid ∼ X2(2) (50)

6.6 DQ test

Engle and Manganelli (2004) proposed a joint test for unconditional coverage and independence

as well. Define the adjusted hit rate: h̃itt = Irt<VaRt(p)− p, with p the chosen probability level.

Now consider the linear regression:

h̃itt = δ0 + δ1h̃itt−1 + ...+ δlh̃itt−l + ut (51)

with l a chosen lag length (I use l = 4 like Yun (2018)). Unconditional coverage would imply

δ0 = 0 and independence would imply δi = 0 for i = 1, ..., l. So testing conditional coverage

is similar to testing whether all estimated coefficients are jointly equal to 0. Hence, the test

statistic is given by:

DQ =
δ̂′OLS(X ′X)−1δ̂OLS

p(1− p)
∼ X2(l + 1) (52)

where δ̂OLS is a vector containing the coefficients estimated by OLS, and X is a matrix con-

taining all regressors.

6.7 Description of code

Code has been uploaded in the file Thesis code.zip. The code consists of the following folders,

with the program name indicating which model the file is for.

• Simulation: Here the size performance of the different tests is measured using simulation

• Estimation JAGS: Here all the stochastic volatility models are estimated using Bayesian

MCMC (the GARCH type models are directly estimated in the empirical analysis)

• Empirical: Here all the empirical analysis is done, the dynamic parameter estimation

script is included in this folder as well, named GJRST - dynamic.R

• Options: Here option pricing is done

If data is used or figures are generated, these are also included in the folder. Most pro-

grams should be able to run, once the relevant packages are installed. However the estimation

requires a correctly installed version of JAGS. Also, there are 2 Eviews files for the Diebold-

Mariano test, as this was simpler to implement in Eviews. These of course require Eviews to

be installed, and can be used by opening the corresponding file of LikelihoodsDMtest.xlsx or

correctedmsemapeDMtest.xlsx.

Four important things to note:

• Notation used in the code is not completely the same as in the paper, as I changed notation

in the paper for the sake of clarity

• I did not use fixed seeds, so running the code again gives slightly different results, although

results should of course be similar
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• Comments are a bit scarce, due to the amount of coding that was necessary

• I did not use a master script to run the different models, instead there is a different R

script for every model
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